modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 12:29:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
500 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 12:27:55
card
stringlengths
11
1.01M
barc0/llama3.2-1b-instruct-fft-transduction-engineer_lr1e-5_epoch4
barc0
2024-10-11T01:09:36Z
40
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "alignment-handbook", "trl", "sft", "generated_from_trainer", "conversational", "dataset:barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems", "dataset:barc0/transduction_angmented_100k_gpt4o-mini_generated_problems", "dataset:barc0/transduction_rearc_dataset_400k", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-09T04:58:41Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B-Instruct tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems - barc0/transduction_angmented_100k_gpt4o-mini_generated_problems - barc0/transduction_rearc_dataset_400k model-index: - name: llama3.2-1b-instruct-fft-transduction-engineer_lr1e-5_epoch4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3.2-1b-instruct-fft-transduction-engineer_lr1e-5_epoch4 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems, the barc0/transduction_angmented_100k_gpt4o-mini_generated_problems and the barc0/transduction_rearc_dataset_400k datasets. It achieves the following results on the evaluation set: - Loss: 0.0409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0618 | 1.0 | 1126 | 0.0657 | | 0.0504 | 2.0 | 2252 | 0.0494 | | 0.0363 | 3.0 | 3378 | 0.0418 | | 0.0238 | 4.0 | 4504 | 0.0409 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1
RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf
RichardErkhov
2024-10-11T01:07:37Z
22
0
null
[ "gguf", "arxiv:2403.19522", "endpoints_compatible", "region:us" ]
null
2024-10-10T22:53:37Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3-MahouDevil-8B - GGUF - Model creator: https://huggingface.co/lemon07r/ - Original model: https://huggingface.co/lemon07r/Llama-3-MahouDevil-8B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Llama-3-MahouDevil-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q2_K.gguf) | Q2_K | 2.96GB | | [Llama-3-MahouDevil-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [Llama-3-MahouDevil-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.IQ3_S.gguf) | IQ3_S | 3.43GB | | [Llama-3-MahouDevil-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [Llama-3-MahouDevil-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.IQ3_M.gguf) | IQ3_M | 3.52GB | | [Llama-3-MahouDevil-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q3_K.gguf) | Q3_K | 3.74GB | | [Llama-3-MahouDevil-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [Llama-3-MahouDevil-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [Llama-3-MahouDevil-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [Llama-3-MahouDevil-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q4_0.gguf) | Q4_0 | 4.34GB | | [Llama-3-MahouDevil-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [Llama-3-MahouDevil-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [Llama-3-MahouDevil-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q4_K.gguf) | Q4_K | 4.58GB | | [Llama-3-MahouDevil-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [Llama-3-MahouDevil-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q4_1.gguf) | Q4_1 | 4.78GB | | [Llama-3-MahouDevil-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q5_0.gguf) | Q5_0 | 5.21GB | | [Llama-3-MahouDevil-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [Llama-3-MahouDevil-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q5_K.gguf) | Q5_K | 5.34GB | | [Llama-3-MahouDevil-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [Llama-3-MahouDevil-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q5_1.gguf) | Q5_1 | 5.65GB | | [Llama-3-MahouDevil-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q6_K.gguf) | Q6_K | 6.14GB | | [Llama-3-MahouDevil-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/lemon07r_-_Llama-3-MahouDevil-8B-gguf/blob/main/Llama-3-MahouDevil-8B.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- base_model: - mlabonne/NeuralDaredevil-8B-abliterated - flammenai/Mahou-1.2-llama3-8B - flammenai/Mahou-1.3-llama3-8B library_name: transformers tags: - mergekit - merge license: llama3 --- # Llama-3-MahouDevil-8B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [mlabonne/NeuralDaredevil-8B-abliterated](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated) as a base. ### Models Merged The following models were included in the merge: * [flammenai/Mahou-1.2-llama3-8B](https://huggingface.co/flammenai/Mahou-1.2-llama3-8B) * [flammenai/Mahou-1.3-llama3-8B](https://huggingface.co/flammenai/Mahou-1.3-llama3-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: mlabonne/NeuralDaredevil-8B-abliterated dtype: bfloat16 merge_method: model_stock slices: - sources: - layer_range: [0, 32] model: flammenai/Mahou-1.2-llama3-8B - layer_range: [0, 32] model: flammenai/Mahou-1.3-llama3-8B - layer_range: [0, 32] model: mlabonne/NeuralDaredevil-8B-abliterated ```
kbulutozler/distilbert-base-uncased-FT-ner-BC5CDR-disease
kbulutozler
2024-10-11T00:40:56Z
199
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "BC5CDR-disease", "NER", "en", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-10-11T00:39:33Z
--- library_name: transformers tags: - BC5CDR-disease - NER license: apache-2.0 language: - en metrics: - seqeval base_model: - distilbert/distilbert-base-uncased --- # Model Card for Model ID Fine-tuned distilbert model. Trained on train set of BC5CDR-disease dataset taken from [BLURB](https://microsoft.github.io/BLURB/tasks.html). ## Model Details ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/kbulutozler/medical-llm-benchmark ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Train set of BC5CDR-disease dataset. ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> Classical fine-tuning. #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> learning_rate=5e-5 per_device_train_batch_size=16 per_device_eval_batch_size=16 num_train_epochs=3 weight_decay=0.01 ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> #### Testing Data <!-- This should link to a Dataset Card if possible. --> Test set of BC5CDR-disease dataset. ### Results Precision: 0.76 Recall: 0.81 Micro-F1: 0.79 ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> - **Hardware Type:** 1xRTX A4000 - **Hours used:** 00:07:00
RefalMachine/ruadapt_qwen2.5_3B_ext_cl100k_bpe_32000_full_lr2e4_2k_bs256
RefalMachine
2024-10-11T00:30:33Z
6
0
null
[ "tensorboard", "safetensors", "qwen2", "generated_from_trainer", "base_model:RefalMachine/ruadapt_qwen2.5_3B_ext_cl100k_bpe_32000_mean_init", "base_model:finetune:RefalMachine/ruadapt_qwen2.5_3B_ext_cl100k_bpe_32000_mean_init", "region:us" ]
null
2024-10-11T00:25:07Z
--- base_model: RefalMachine/ruadapt_qwen2.5_3B_ext_cl100k_bpe_32000_mean_init tags: - generated_from_trainer metrics: - accuracy model-index: - name: ruadapt_qwen2.5_3B_ext_cl100k_bpe_32000_full_lr2e4_2k_bs256 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ruadapt_qwen2.5_3B_ext_cl100k_bpe_32000_full_lr2e4_2k_bs256 This model is a fine-tuned version of [RefalMachine/ruadapt_qwen2.5_3B_ext_cl100k_bpe_32000_mean_init](https://huggingface.co/RefalMachine/ruadapt_qwen2.5_3B_ext_cl100k_bpe_32000_mean_init) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3590 - Accuracy: 0.5146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 64 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 0.0 | 1 | 5.2631 | 0.3345 | | 2.5263 | 0.09 | 2000 | 2.4055 | 0.5090 | | 2.4897 | 0.17 | 4000 | 2.3810 | 0.5119 | | 2.4809 | 0.26 | 6000 | 2.3712 | 0.5130 | | 2.4672 | 0.34 | 8000 | 2.3661 | 0.5138 | | 2.4738 | 0.43 | 10000 | 2.3632 | 0.5140 | | 2.4747 | 0.51 | 12000 | 2.3613 | 0.5142 | | 2.4777 | 0.6 | 14000 | 2.3602 | 0.5145 | | 2.4636 | 0.68 | 16000 | 2.3596 | 0.5145 | | 2.4792 | 0.77 | 18000 | 2.3592 | 0.5146 | | 2.4774 | 0.85 | 20000 | 2.3590 | 0.5147 | | 2.4603 | 0.94 | 22000 | 2.3591 | 0.5146 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0a0+6ddf5cf85e.nv24.04 - Datasets 2.18.0 - Tokenizers 0.15.2
kbulutozler/distilbert-base-uncased-FT-ner-BC5CDR-chem
kbulutozler
2024-10-11T00:28:27Z
186
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "BC5CDR-chem", "NER", "en", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-10-11T00:25:55Z
--- library_name: transformers tags: - BC5CDR-chem - NER license: apache-2.0 language: - en metrics: - seqeval base_model: - distilbert/distilbert-base-uncased --- # Model Card for Model ID Fine-tuned distilbert model. Trained on train set of BC5CDR-chem dataset taken from [BLURB](https://microsoft.github.io/BLURB/tasks.html). ## Model Details ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/kbulutozler/medical-llm-benchmark ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Train set of BC5CDR-chem dataset. ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> Classical fine-tuning. #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> learning_rate=5e-5 per_device_train_batch_size=16 per_device_eval_batch_size=16 num_train_epochs=3 weight_decay=0.01 ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> #### Testing Data <!-- This should link to a Dataset Card if possible. --> Test set of BC5CDR-chem dataset. ### Results Precision: 0.89 Recall: 0.87 Micro-F1: 0.88 ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> - **Hardware Type:** 1xRTX A4000 - **Hours used:** 00:07:00
haorandai/png_randomnoise_vehicle_solid_gray_20_with20constraints
haorandai
2024-10-11T00:27:50Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-10-11T00:23:10Z
--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Text-to-image finetuning - haorandai/png_randomnoise_vehicle_solid_gray_20_with20constraints This pipeline was finetuned from **CompVis/stable-diffusion-v1-4** on the **haorandai/png_randomnoise_vehicle_solid_gray_20_with20constraints** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: None: ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("haorandai/png_randomnoise_vehicle_solid_gray_20_with20constraints", torch_dtype=torch.float16) prompt = "None" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 20 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 224 * Mixed-precision: fp16 ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
haorandai/png_randomnoise_vehicle_solid_olive_20_with20constraints
haorandai
2024-10-11T00:23:00Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-10-11T00:18:43Z
--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Text-to-image finetuning - haorandai/png_randomnoise_vehicle_solid_olive_20_with20constraints This pipeline was finetuned from **CompVis/stable-diffusion-v1-4** on the **haorandai/png_randomnoise_vehicle_solid_olive_20_with20constraints** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: None: ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("haorandai/png_randomnoise_vehicle_solid_olive_20_with20constraints", torch_dtype=torch.float16) prompt = "None" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 20 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 224 * Mixed-precision: fp16 ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
mav23/gte-Qwen2-7B-instruct-GGUF
mav23
2024-10-11T00:14:54Z
73
0
sentence-transformers
[ "sentence-transformers", "gguf", "mteb", "transformers", "Qwen2", "sentence-similarity", "arxiv:2308.03281", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us", "conversational" ]
sentence-similarity
2024-10-10T23:23:46Z
--- tags: - mteb - sentence-transformers - transformers - Qwen2 - sentence-similarity license: apache-2.0 model-index: - name: gte-qwen2-7B-instruct results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 91.31343283582089 - type: ap value: 67.64251402604096 - type: f1 value: 87.53372530755692 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 97.497825 - type: ap value: 96.30329547047529 - type: f1 value: 97.49769793778039 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 62.564 - type: f1 value: 60.975777935041066 - task: type: Retrieval dataset: type: mteb/arguana name: MTEB ArguAna config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 36.486000000000004 - type: map_at_10 value: 54.842 - type: map_at_100 value: 55.206999999999994 - type: map_at_1000 value: 55.206999999999994 - type: map_at_3 value: 49.893 - type: map_at_5 value: 53.105000000000004 - type: mrr_at_1 value: 37.34 - type: mrr_at_10 value: 55.143 - type: mrr_at_100 value: 55.509 - type: mrr_at_1000 value: 55.509 - type: mrr_at_3 value: 50.212999999999994 - type: mrr_at_5 value: 53.432 - type: ndcg_at_1 value: 36.486000000000004 - type: ndcg_at_10 value: 64.273 - type: ndcg_at_100 value: 65.66199999999999 - type: ndcg_at_1000 value: 65.66199999999999 - type: ndcg_at_3 value: 54.352999999999994 - type: ndcg_at_5 value: 60.131 - type: precision_at_1 value: 36.486000000000004 - type: precision_at_10 value: 9.395000000000001 - type: precision_at_100 value: 0.996 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 22.428 - type: precision_at_5 value: 16.259 - type: recall_at_1 value: 36.486000000000004 - type: recall_at_10 value: 93.95400000000001 - type: recall_at_100 value: 99.644 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 67.283 - type: recall_at_5 value: 81.294 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 56.461169803700564 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 51.73600434466286 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 67.57827065898053 - type: mrr value: 79.08136569493911 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 83.53324575999243 - type: cos_sim_spearman value: 81.37173362822374 - type: euclidean_pearson value: 82.19243335103444 - type: euclidean_spearman value: 81.33679307304334 - type: manhattan_pearson value: 82.38752665975699 - type: manhattan_spearman value: 81.31510583189689 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 87.56818181818181 - type: f1 value: 87.25826722019875 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 50.09239610327673 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 46.64733054606282 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 33.997 - type: map_at_10 value: 48.176 - type: map_at_100 value: 49.82 - type: map_at_1000 value: 49.924 - type: map_at_3 value: 43.626 - type: map_at_5 value: 46.275 - type: mrr_at_1 value: 42.059999999999995 - type: mrr_at_10 value: 53.726 - type: mrr_at_100 value: 54.398 - type: mrr_at_1000 value: 54.416 - type: mrr_at_3 value: 50.714999999999996 - type: mrr_at_5 value: 52.639 - type: ndcg_at_1 value: 42.059999999999995 - type: ndcg_at_10 value: 55.574999999999996 - type: ndcg_at_100 value: 60.744 - type: ndcg_at_1000 value: 61.85699999999999 - type: ndcg_at_3 value: 49.363 - type: ndcg_at_5 value: 52.44 - type: precision_at_1 value: 42.059999999999995 - type: precision_at_10 value: 11.101999999999999 - type: precision_at_100 value: 1.73 - type: precision_at_1000 value: 0.218 - type: precision_at_3 value: 24.464 - type: precision_at_5 value: 18.026 - type: recall_at_1 value: 33.997 - type: recall_at_10 value: 70.35900000000001 - type: recall_at_100 value: 91.642 - type: recall_at_1000 value: 97.977 - type: recall_at_3 value: 52.76 - type: recall_at_5 value: 61.148 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 35.884 - type: map_at_10 value: 48.14 - type: map_at_100 value: 49.5 - type: map_at_1000 value: 49.63 - type: map_at_3 value: 44.646 - type: map_at_5 value: 46.617999999999995 - type: mrr_at_1 value: 44.458999999999996 - type: mrr_at_10 value: 53.751000000000005 - type: mrr_at_100 value: 54.37800000000001 - type: mrr_at_1000 value: 54.415 - type: mrr_at_3 value: 51.815 - type: mrr_at_5 value: 52.882 - type: ndcg_at_1 value: 44.458999999999996 - type: ndcg_at_10 value: 54.157 - type: ndcg_at_100 value: 58.362 - type: ndcg_at_1000 value: 60.178 - type: ndcg_at_3 value: 49.661 - type: ndcg_at_5 value: 51.74999999999999 - type: precision_at_1 value: 44.458999999999996 - type: precision_at_10 value: 10.248 - type: precision_at_100 value: 1.5890000000000002 - type: precision_at_1000 value: 0.207 - type: precision_at_3 value: 23.928 - type: precision_at_5 value: 16.878999999999998 - type: recall_at_1 value: 35.884 - type: recall_at_10 value: 64.798 - type: recall_at_100 value: 82.345 - type: recall_at_1000 value: 93.267 - type: recall_at_3 value: 51.847 - type: recall_at_5 value: 57.601 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 39.383 - type: map_at_10 value: 53.714 - type: map_at_100 value: 54.838 - type: map_at_1000 value: 54.87800000000001 - type: map_at_3 value: 50.114999999999995 - type: map_at_5 value: 52.153000000000006 - type: mrr_at_1 value: 45.016 - type: mrr_at_10 value: 56.732000000000006 - type: mrr_at_100 value: 57.411 - type: mrr_at_1000 value: 57.431 - type: mrr_at_3 value: 54.044000000000004 - type: mrr_at_5 value: 55.639 - type: ndcg_at_1 value: 45.016 - type: ndcg_at_10 value: 60.228 - type: ndcg_at_100 value: 64.277 - type: ndcg_at_1000 value: 65.07 - type: ndcg_at_3 value: 54.124 - type: ndcg_at_5 value: 57.147000000000006 - type: precision_at_1 value: 45.016 - type: precision_at_10 value: 9.937 - type: precision_at_100 value: 1.288 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 24.471999999999998 - type: precision_at_5 value: 16.991 - type: recall_at_1 value: 39.383 - type: recall_at_10 value: 76.175 - type: recall_at_100 value: 93.02 - type: recall_at_1000 value: 98.60900000000001 - type: recall_at_3 value: 60.265 - type: recall_at_5 value: 67.46600000000001 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 27.426000000000002 - type: map_at_10 value: 37.397000000000006 - type: map_at_100 value: 38.61 - type: map_at_1000 value: 38.678000000000004 - type: map_at_3 value: 34.150999999999996 - type: map_at_5 value: 36.137 - type: mrr_at_1 value: 29.944 - type: mrr_at_10 value: 39.654 - type: mrr_at_100 value: 40.638000000000005 - type: mrr_at_1000 value: 40.691 - type: mrr_at_3 value: 36.817 - type: mrr_at_5 value: 38.524 - type: ndcg_at_1 value: 29.944 - type: ndcg_at_10 value: 43.094 - type: ndcg_at_100 value: 48.789 - type: ndcg_at_1000 value: 50.339999999999996 - type: ndcg_at_3 value: 36.984 - type: ndcg_at_5 value: 40.248 - type: precision_at_1 value: 29.944 - type: precision_at_10 value: 6.78 - type: precision_at_100 value: 1.024 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 15.895000000000001 - type: precision_at_5 value: 11.39 - type: recall_at_1 value: 27.426000000000002 - type: recall_at_10 value: 58.464000000000006 - type: recall_at_100 value: 84.193 - type: recall_at_1000 value: 95.52000000000001 - type: recall_at_3 value: 42.172 - type: recall_at_5 value: 50.101 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 19.721 - type: map_at_10 value: 31.604 - type: map_at_100 value: 32.972 - type: map_at_1000 value: 33.077 - type: map_at_3 value: 27.218999999999998 - type: map_at_5 value: 29.53 - type: mrr_at_1 value: 25.0 - type: mrr_at_10 value: 35.843 - type: mrr_at_100 value: 36.785000000000004 - type: mrr_at_1000 value: 36.842000000000006 - type: mrr_at_3 value: 32.193 - type: mrr_at_5 value: 34.264 - type: ndcg_at_1 value: 25.0 - type: ndcg_at_10 value: 38.606 - type: ndcg_at_100 value: 44.272 - type: ndcg_at_1000 value: 46.527 - type: ndcg_at_3 value: 30.985000000000003 - type: ndcg_at_5 value: 34.43 - type: precision_at_1 value: 25.0 - type: precision_at_10 value: 7.811 - type: precision_at_100 value: 1.203 - type: precision_at_1000 value: 0.15 - type: precision_at_3 value: 15.423 - type: precision_at_5 value: 11.791 - type: recall_at_1 value: 19.721 - type: recall_at_10 value: 55.625 - type: recall_at_100 value: 79.34400000000001 - type: recall_at_1000 value: 95.208 - type: recall_at_3 value: 35.19 - type: recall_at_5 value: 43.626 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 33.784 - type: map_at_10 value: 47.522 - type: map_at_100 value: 48.949999999999996 - type: map_at_1000 value: 49.038 - type: map_at_3 value: 43.284 - type: map_at_5 value: 45.629 - type: mrr_at_1 value: 41.482 - type: mrr_at_10 value: 52.830999999999996 - type: mrr_at_100 value: 53.559999999999995 - type: mrr_at_1000 value: 53.588 - type: mrr_at_3 value: 50.016000000000005 - type: mrr_at_5 value: 51.614000000000004 - type: ndcg_at_1 value: 41.482 - type: ndcg_at_10 value: 54.569 - type: ndcg_at_100 value: 59.675999999999995 - type: ndcg_at_1000 value: 60.989000000000004 - type: ndcg_at_3 value: 48.187000000000005 - type: ndcg_at_5 value: 51.183 - type: precision_at_1 value: 41.482 - type: precision_at_10 value: 10.221 - type: precision_at_100 value: 1.486 - type: precision_at_1000 value: 0.17500000000000002 - type: precision_at_3 value: 23.548 - type: precision_at_5 value: 16.805 - type: recall_at_1 value: 33.784 - type: recall_at_10 value: 69.798 - type: recall_at_100 value: 90.098 - type: recall_at_1000 value: 98.176 - type: recall_at_3 value: 52.127 - type: recall_at_5 value: 59.861 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 28.038999999999998 - type: map_at_10 value: 41.904 - type: map_at_100 value: 43.36 - type: map_at_1000 value: 43.453 - type: map_at_3 value: 37.785999999999994 - type: map_at_5 value: 40.105000000000004 - type: mrr_at_1 value: 35.046 - type: mrr_at_10 value: 46.926 - type: mrr_at_100 value: 47.815000000000005 - type: mrr_at_1000 value: 47.849000000000004 - type: mrr_at_3 value: 44.273 - type: mrr_at_5 value: 45.774 - type: ndcg_at_1 value: 35.046 - type: ndcg_at_10 value: 48.937000000000005 - type: ndcg_at_100 value: 54.544000000000004 - type: ndcg_at_1000 value: 56.069 - type: ndcg_at_3 value: 42.858000000000004 - type: ndcg_at_5 value: 45.644 - type: precision_at_1 value: 35.046 - type: precision_at_10 value: 9.452 - type: precision_at_100 value: 1.429 - type: precision_at_1000 value: 0.173 - type: precision_at_3 value: 21.346999999999998 - type: precision_at_5 value: 15.342 - type: recall_at_1 value: 28.038999999999998 - type: recall_at_10 value: 64.59700000000001 - type: recall_at_100 value: 87.735 - type: recall_at_1000 value: 97.41300000000001 - type: recall_at_3 value: 47.368 - type: recall_at_5 value: 54.93900000000001 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 28.17291666666667 - type: map_at_10 value: 40.025749999999995 - type: map_at_100 value: 41.39208333333333 - type: map_at_1000 value: 41.499249999999996 - type: map_at_3 value: 36.347 - type: map_at_5 value: 38.41391666666667 - type: mrr_at_1 value: 33.65925 - type: mrr_at_10 value: 44.085499999999996 - type: mrr_at_100 value: 44.94116666666667 - type: mrr_at_1000 value: 44.9855 - type: mrr_at_3 value: 41.2815 - type: mrr_at_5 value: 42.91491666666666 - type: ndcg_at_1 value: 33.65925 - type: ndcg_at_10 value: 46.430833333333325 - type: ndcg_at_100 value: 51.761 - type: ndcg_at_1000 value: 53.50899999999999 - type: ndcg_at_3 value: 40.45133333333333 - type: ndcg_at_5 value: 43.31483333333334 - type: precision_at_1 value: 33.65925 - type: precision_at_10 value: 8.4995 - type: precision_at_100 value: 1.3210000000000004 - type: precision_at_1000 value: 0.16591666666666666 - type: precision_at_3 value: 19.165083333333335 - type: precision_at_5 value: 13.81816666666667 - type: recall_at_1 value: 28.17291666666667 - type: recall_at_10 value: 61.12624999999999 - type: recall_at_100 value: 83.97266666666667 - type: recall_at_1000 value: 95.66550000000001 - type: recall_at_3 value: 44.661249999999995 - type: recall_at_5 value: 51.983333333333334 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 24.681 - type: map_at_10 value: 34.892 - type: map_at_100 value: 35.996 - type: map_at_1000 value: 36.083 - type: map_at_3 value: 31.491999999999997 - type: map_at_5 value: 33.632 - type: mrr_at_1 value: 28.528 - type: mrr_at_10 value: 37.694 - type: mrr_at_100 value: 38.613 - type: mrr_at_1000 value: 38.668 - type: mrr_at_3 value: 34.714 - type: mrr_at_5 value: 36.616 - type: ndcg_at_1 value: 28.528 - type: ndcg_at_10 value: 40.703 - type: ndcg_at_100 value: 45.993 - type: ndcg_at_1000 value: 47.847 - type: ndcg_at_3 value: 34.622 - type: ndcg_at_5 value: 38.035999999999994 - type: precision_at_1 value: 28.528 - type: precision_at_10 value: 6.902 - type: precision_at_100 value: 1.0370000000000001 - type: precision_at_1000 value: 0.126 - type: precision_at_3 value: 15.798000000000002 - type: precision_at_5 value: 11.655999999999999 - type: recall_at_1 value: 24.681 - type: recall_at_10 value: 55.81 - type: recall_at_100 value: 79.785 - type: recall_at_1000 value: 92.959 - type: recall_at_3 value: 39.074 - type: recall_at_5 value: 47.568 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 18.627 - type: map_at_10 value: 27.872000000000003 - type: map_at_100 value: 29.237999999999996 - type: map_at_1000 value: 29.363 - type: map_at_3 value: 24.751 - type: map_at_5 value: 26.521 - type: mrr_at_1 value: 23.021 - type: mrr_at_10 value: 31.924000000000003 - type: mrr_at_100 value: 32.922000000000004 - type: mrr_at_1000 value: 32.988 - type: mrr_at_3 value: 29.192 - type: mrr_at_5 value: 30.798 - type: ndcg_at_1 value: 23.021 - type: ndcg_at_10 value: 33.535 - type: ndcg_at_100 value: 39.732 - type: ndcg_at_1000 value: 42.201 - type: ndcg_at_3 value: 28.153 - type: ndcg_at_5 value: 30.746000000000002 - type: precision_at_1 value: 23.021 - type: precision_at_10 value: 6.459 - type: precision_at_100 value: 1.1320000000000001 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 13.719000000000001 - type: precision_at_5 value: 10.193000000000001 - type: recall_at_1 value: 18.627 - type: recall_at_10 value: 46.463 - type: recall_at_100 value: 74.226 - type: recall_at_1000 value: 91.28500000000001 - type: recall_at_3 value: 31.357000000000003 - type: recall_at_5 value: 38.067 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 31.457 - type: map_at_10 value: 42.888 - type: map_at_100 value: 44.24 - type: map_at_1000 value: 44.327 - type: map_at_3 value: 39.588 - type: map_at_5 value: 41.423 - type: mrr_at_1 value: 37.126999999999995 - type: mrr_at_10 value: 47.083000000000006 - type: mrr_at_100 value: 47.997 - type: mrr_at_1000 value: 48.044 - type: mrr_at_3 value: 44.574000000000005 - type: mrr_at_5 value: 46.202 - type: ndcg_at_1 value: 37.126999999999995 - type: ndcg_at_10 value: 48.833 - type: ndcg_at_100 value: 54.327000000000005 - type: ndcg_at_1000 value: 56.011 - type: ndcg_at_3 value: 43.541999999999994 - type: ndcg_at_5 value: 46.127 - type: precision_at_1 value: 37.126999999999995 - type: precision_at_10 value: 8.376999999999999 - type: precision_at_100 value: 1.2309999999999999 - type: precision_at_1000 value: 0.146 - type: precision_at_3 value: 20.211000000000002 - type: precision_at_5 value: 14.16 - type: recall_at_1 value: 31.457 - type: recall_at_10 value: 62.369 - type: recall_at_100 value: 85.444 - type: recall_at_1000 value: 96.65599999999999 - type: recall_at_3 value: 47.961 - type: recall_at_5 value: 54.676 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 27.139999999999997 - type: map_at_10 value: 38.801 - type: map_at_100 value: 40.549 - type: map_at_1000 value: 40.802 - type: map_at_3 value: 35.05 - type: map_at_5 value: 36.884 - type: mrr_at_1 value: 33.004 - type: mrr_at_10 value: 43.864 - type: mrr_at_100 value: 44.667 - type: mrr_at_1000 value: 44.717 - type: mrr_at_3 value: 40.777 - type: mrr_at_5 value: 42.319 - type: ndcg_at_1 value: 33.004 - type: ndcg_at_10 value: 46.022 - type: ndcg_at_100 value: 51.542 - type: ndcg_at_1000 value: 53.742000000000004 - type: ndcg_at_3 value: 39.795 - type: ndcg_at_5 value: 42.272 - type: precision_at_1 value: 33.004 - type: precision_at_10 value: 9.012 - type: precision_at_100 value: 1.7770000000000001 - type: precision_at_1000 value: 0.26 - type: precision_at_3 value: 19.038 - type: precision_at_5 value: 13.675999999999998 - type: recall_at_1 value: 27.139999999999997 - type: recall_at_10 value: 60.961 - type: recall_at_100 value: 84.451 - type: recall_at_1000 value: 98.113 - type: recall_at_3 value: 43.001 - type: recall_at_5 value: 49.896 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 17.936 - type: map_at_10 value: 27.399 - type: map_at_100 value: 28.632 - type: map_at_1000 value: 28.738000000000003 - type: map_at_3 value: 24.456 - type: map_at_5 value: 26.06 - type: mrr_at_1 value: 19.224 - type: mrr_at_10 value: 28.998 - type: mrr_at_100 value: 30.11 - type: mrr_at_1000 value: 30.177 - type: mrr_at_3 value: 26.247999999999998 - type: mrr_at_5 value: 27.708 - type: ndcg_at_1 value: 19.224 - type: ndcg_at_10 value: 32.911 - type: ndcg_at_100 value: 38.873999999999995 - type: ndcg_at_1000 value: 41.277 - type: ndcg_at_3 value: 27.142 - type: ndcg_at_5 value: 29.755 - type: precision_at_1 value: 19.224 - type: precision_at_10 value: 5.6930000000000005 - type: precision_at_100 value: 0.9259999999999999 - type: precision_at_1000 value: 0.126 - type: precision_at_3 value: 12.138 - type: precision_at_5 value: 8.909 - type: recall_at_1 value: 17.936 - type: recall_at_10 value: 48.096 - type: recall_at_100 value: 75.389 - type: recall_at_1000 value: 92.803 - type: recall_at_3 value: 32.812999999999995 - type: recall_at_5 value: 38.851 - task: type: Retrieval dataset: type: mteb/climate-fever name: MTEB ClimateFEVER config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 22.076999999999998 - type: map_at_10 value: 35.44 - type: map_at_100 value: 37.651 - type: map_at_1000 value: 37.824999999999996 - type: map_at_3 value: 30.764999999999997 - type: map_at_5 value: 33.26 - type: mrr_at_1 value: 50.163000000000004 - type: mrr_at_10 value: 61.207 - type: mrr_at_100 value: 61.675000000000004 - type: mrr_at_1000 value: 61.692 - type: mrr_at_3 value: 58.60999999999999 - type: mrr_at_5 value: 60.307 - type: ndcg_at_1 value: 50.163000000000004 - type: ndcg_at_10 value: 45.882 - type: ndcg_at_100 value: 53.239999999999995 - type: ndcg_at_1000 value: 55.852000000000004 - type: ndcg_at_3 value: 40.514 - type: ndcg_at_5 value: 42.038 - type: precision_at_1 value: 50.163000000000004 - type: precision_at_10 value: 13.466000000000001 - type: precision_at_100 value: 2.164 - type: precision_at_1000 value: 0.266 - type: precision_at_3 value: 29.707 - type: precision_at_5 value: 21.694 - type: recall_at_1 value: 22.076999999999998 - type: recall_at_10 value: 50.193 - type: recall_at_100 value: 74.993 - type: recall_at_1000 value: 89.131 - type: recall_at_3 value: 35.472 - type: recall_at_5 value: 41.814 - task: type: Retrieval dataset: type: mteb/dbpedia name: MTEB DBPedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 9.953 - type: map_at_10 value: 24.515 - type: map_at_100 value: 36.173 - type: map_at_1000 value: 38.351 - type: map_at_3 value: 16.592000000000002 - type: map_at_5 value: 20.036 - type: mrr_at_1 value: 74.25 - type: mrr_at_10 value: 81.813 - type: mrr_at_100 value: 82.006 - type: mrr_at_1000 value: 82.011 - type: mrr_at_3 value: 80.875 - type: mrr_at_5 value: 81.362 - type: ndcg_at_1 value: 62.5 - type: ndcg_at_10 value: 52.42 - type: ndcg_at_100 value: 56.808 - type: ndcg_at_1000 value: 63.532999999999994 - type: ndcg_at_3 value: 56.654 - type: ndcg_at_5 value: 54.18300000000001 - type: precision_at_1 value: 74.25 - type: precision_at_10 value: 42.699999999999996 - type: precision_at_100 value: 13.675 - type: precision_at_1000 value: 2.664 - type: precision_at_3 value: 60.5 - type: precision_at_5 value: 52.800000000000004 - type: recall_at_1 value: 9.953 - type: recall_at_10 value: 30.253999999999998 - type: recall_at_100 value: 62.516000000000005 - type: recall_at_1000 value: 84.163 - type: recall_at_3 value: 18.13 - type: recall_at_5 value: 22.771 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 79.455 - type: f1 value: 74.16798697647569 - task: type: Retrieval dataset: type: mteb/fever name: MTEB FEVER config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 87.531 - type: map_at_10 value: 93.16799999999999 - type: map_at_100 value: 93.341 - type: map_at_1000 value: 93.349 - type: map_at_3 value: 92.444 - type: map_at_5 value: 92.865 - type: mrr_at_1 value: 94.014 - type: mrr_at_10 value: 96.761 - type: mrr_at_100 value: 96.762 - type: mrr_at_1000 value: 96.762 - type: mrr_at_3 value: 96.672 - type: mrr_at_5 value: 96.736 - type: ndcg_at_1 value: 94.014 - type: ndcg_at_10 value: 95.112 - type: ndcg_at_100 value: 95.578 - type: ndcg_at_1000 value: 95.68900000000001 - type: ndcg_at_3 value: 94.392 - type: ndcg_at_5 value: 94.72500000000001 - type: precision_at_1 value: 94.014 - type: precision_at_10 value: 11.065 - type: precision_at_100 value: 1.157 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 35.259 - type: precision_at_5 value: 21.599 - type: recall_at_1 value: 87.531 - type: recall_at_10 value: 97.356 - type: recall_at_100 value: 98.965 - type: recall_at_1000 value: 99.607 - type: recall_at_3 value: 95.312 - type: recall_at_5 value: 96.295 - task: type: Retrieval dataset: type: mteb/fiqa name: MTEB FiQA2018 config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 32.055 - type: map_at_10 value: 53.114 - type: map_at_100 value: 55.235 - type: map_at_1000 value: 55.345 - type: map_at_3 value: 45.854 - type: map_at_5 value: 50.025 - type: mrr_at_1 value: 60.34 - type: mrr_at_10 value: 68.804 - type: mrr_at_100 value: 69.309 - type: mrr_at_1000 value: 69.32199999999999 - type: mrr_at_3 value: 66.40899999999999 - type: mrr_at_5 value: 67.976 - type: ndcg_at_1 value: 60.34 - type: ndcg_at_10 value: 62.031000000000006 - type: ndcg_at_100 value: 68.00500000000001 - type: ndcg_at_1000 value: 69.286 - type: ndcg_at_3 value: 56.355999999999995 - type: ndcg_at_5 value: 58.687 - type: precision_at_1 value: 60.34 - type: precision_at_10 value: 17.176 - type: precision_at_100 value: 2.36 - type: precision_at_1000 value: 0.259 - type: precision_at_3 value: 37.14 - type: precision_at_5 value: 27.809 - type: recall_at_1 value: 32.055 - type: recall_at_10 value: 70.91 - type: recall_at_100 value: 91.83 - type: recall_at_1000 value: 98.871 - type: recall_at_3 value: 51.202999999999996 - type: recall_at_5 value: 60.563 - task: type: Retrieval dataset: type: mteb/hotpotqa name: MTEB HotpotQA config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 43.68 - type: map_at_10 value: 64.389 - type: map_at_100 value: 65.24 - type: map_at_1000 value: 65.303 - type: map_at_3 value: 61.309000000000005 - type: map_at_5 value: 63.275999999999996 - type: mrr_at_1 value: 87.36 - type: mrr_at_10 value: 91.12 - type: mrr_at_100 value: 91.227 - type: mrr_at_1000 value: 91.229 - type: mrr_at_3 value: 90.57600000000001 - type: mrr_at_5 value: 90.912 - type: ndcg_at_1 value: 87.36 - type: ndcg_at_10 value: 73.076 - type: ndcg_at_100 value: 75.895 - type: ndcg_at_1000 value: 77.049 - type: ndcg_at_3 value: 68.929 - type: ndcg_at_5 value: 71.28 - type: precision_at_1 value: 87.36 - type: precision_at_10 value: 14.741000000000001 - type: precision_at_100 value: 1.694 - type: precision_at_1000 value: 0.185 - type: precision_at_3 value: 43.043 - type: precision_at_5 value: 27.681 - type: recall_at_1 value: 43.68 - type: recall_at_10 value: 73.707 - type: recall_at_100 value: 84.7 - type: recall_at_1000 value: 92.309 - type: recall_at_3 value: 64.564 - type: recall_at_5 value: 69.203 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 96.75399999999999 - type: ap value: 95.29389839242187 - type: f1 value: 96.75348377433475 - task: type: Retrieval dataset: type: mteb/msmarco name: MTEB MSMARCO config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 25.176 - type: map_at_10 value: 38.598 - type: map_at_100 value: 39.707 - type: map_at_1000 value: 39.744 - type: map_at_3 value: 34.566 - type: map_at_5 value: 36.863 - type: mrr_at_1 value: 25.874000000000002 - type: mrr_at_10 value: 39.214 - type: mrr_at_100 value: 40.251 - type: mrr_at_1000 value: 40.281 - type: mrr_at_3 value: 35.291 - type: mrr_at_5 value: 37.545 - type: ndcg_at_1 value: 25.874000000000002 - type: ndcg_at_10 value: 45.98 - type: ndcg_at_100 value: 51.197 - type: ndcg_at_1000 value: 52.073 - type: ndcg_at_3 value: 37.785999999999994 - type: ndcg_at_5 value: 41.870000000000005 - type: precision_at_1 value: 25.874000000000002 - type: precision_at_10 value: 7.181 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 16.051000000000002 - type: precision_at_5 value: 11.713 - type: recall_at_1 value: 25.176 - type: recall_at_10 value: 68.67699999999999 - type: recall_at_100 value: 92.55 - type: recall_at_1000 value: 99.164 - type: recall_at_3 value: 46.372 - type: recall_at_5 value: 56.16 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 99.03784769721841 - type: f1 value: 98.97791641821495 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 91.88326493388054 - type: f1 value: 73.74809928034335 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 85.41358439811701 - type: f1 value: 83.503679460639 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 89.77135171486215 - type: f1 value: 88.89843747468366 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 46.22695362087359 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 44.132372165849425 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 33.35680810650402 - type: mrr value: 34.72625715637218 - task: type: Retrieval dataset: type: mteb/nfcorpus name: MTEB NFCorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 7.165000000000001 - type: map_at_10 value: 15.424 - type: map_at_100 value: 20.28 - type: map_at_1000 value: 22.065 - type: map_at_3 value: 11.236 - type: map_at_5 value: 13.025999999999998 - type: mrr_at_1 value: 51.702999999999996 - type: mrr_at_10 value: 59.965 - type: mrr_at_100 value: 60.667 - type: mrr_at_1000 value: 60.702999999999996 - type: mrr_at_3 value: 58.772000000000006 - type: mrr_at_5 value: 59.267 - type: ndcg_at_1 value: 49.536 - type: ndcg_at_10 value: 40.6 - type: ndcg_at_100 value: 37.848 - type: ndcg_at_1000 value: 46.657 - type: ndcg_at_3 value: 46.117999999999995 - type: ndcg_at_5 value: 43.619 - type: precision_at_1 value: 51.393 - type: precision_at_10 value: 30.31 - type: precision_at_100 value: 9.972 - type: precision_at_1000 value: 2.329 - type: precision_at_3 value: 43.137 - type: precision_at_5 value: 37.585 - type: recall_at_1 value: 7.165000000000001 - type: recall_at_10 value: 19.689999999999998 - type: recall_at_100 value: 39.237 - type: recall_at_1000 value: 71.417 - type: recall_at_3 value: 12.247 - type: recall_at_5 value: 14.902999999999999 - task: type: Retrieval dataset: type: mteb/nq name: MTEB NQ config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 42.653999999999996 - type: map_at_10 value: 59.611999999999995 - type: map_at_100 value: 60.32300000000001 - type: map_at_1000 value: 60.336 - type: map_at_3 value: 55.584999999999994 - type: map_at_5 value: 58.19 - type: mrr_at_1 value: 47.683 - type: mrr_at_10 value: 62.06700000000001 - type: mrr_at_100 value: 62.537 - type: mrr_at_1000 value: 62.544999999999995 - type: mrr_at_3 value: 59.178 - type: mrr_at_5 value: 61.034 - type: ndcg_at_1 value: 47.654 - type: ndcg_at_10 value: 67.001 - type: ndcg_at_100 value: 69.73899999999999 - type: ndcg_at_1000 value: 69.986 - type: ndcg_at_3 value: 59.95700000000001 - type: ndcg_at_5 value: 64.025 - type: precision_at_1 value: 47.654 - type: precision_at_10 value: 10.367999999999999 - type: precision_at_100 value: 1.192 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 26.651000000000003 - type: precision_at_5 value: 18.459 - type: recall_at_1 value: 42.653999999999996 - type: recall_at_10 value: 86.619 - type: recall_at_100 value: 98.04899999999999 - type: recall_at_1000 value: 99.812 - type: recall_at_3 value: 68.987 - type: recall_at_5 value: 78.158 - task: type: Retrieval dataset: type: mteb/quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 72.538 - type: map_at_10 value: 86.702 - type: map_at_100 value: 87.31 - type: map_at_1000 value: 87.323 - type: map_at_3 value: 83.87 - type: map_at_5 value: 85.682 - type: mrr_at_1 value: 83.31 - type: mrr_at_10 value: 89.225 - type: mrr_at_100 value: 89.30399999999999 - type: mrr_at_1000 value: 89.30399999999999 - type: mrr_at_3 value: 88.44300000000001 - type: mrr_at_5 value: 89.005 - type: ndcg_at_1 value: 83.32000000000001 - type: ndcg_at_10 value: 90.095 - type: ndcg_at_100 value: 91.12 - type: ndcg_at_1000 value: 91.179 - type: ndcg_at_3 value: 87.606 - type: ndcg_at_5 value: 89.031 - type: precision_at_1 value: 83.32000000000001 - type: precision_at_10 value: 13.641 - type: precision_at_100 value: 1.541 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 38.377 - type: precision_at_5 value: 25.162000000000003 - type: recall_at_1 value: 72.538 - type: recall_at_10 value: 96.47200000000001 - type: recall_at_100 value: 99.785 - type: recall_at_1000 value: 99.99900000000001 - type: recall_at_3 value: 89.278 - type: recall_at_5 value: 93.367 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 73.55219145406065 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 74.13437105242755 - task: type: Retrieval dataset: type: mteb/scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 6.873 - type: map_at_10 value: 17.944 - type: map_at_100 value: 21.171 - type: map_at_1000 value: 21.528 - type: map_at_3 value: 12.415 - type: map_at_5 value: 15.187999999999999 - type: mrr_at_1 value: 33.800000000000004 - type: mrr_at_10 value: 46.455 - type: mrr_at_100 value: 47.378 - type: mrr_at_1000 value: 47.394999999999996 - type: mrr_at_3 value: 42.367 - type: mrr_at_5 value: 44.972 - type: ndcg_at_1 value: 33.800000000000004 - type: ndcg_at_10 value: 28.907 - type: ndcg_at_100 value: 39.695 - type: ndcg_at_1000 value: 44.582 - type: ndcg_at_3 value: 26.949 - type: ndcg_at_5 value: 23.988 - type: precision_at_1 value: 33.800000000000004 - type: precision_at_10 value: 15.079999999999998 - type: precision_at_100 value: 3.056 - type: precision_at_1000 value: 0.42100000000000004 - type: precision_at_3 value: 25.167 - type: precision_at_5 value: 21.26 - type: recall_at_1 value: 6.873 - type: recall_at_10 value: 30.568 - type: recall_at_100 value: 62.062 - type: recall_at_1000 value: 85.37700000000001 - type: recall_at_3 value: 15.312999999999999 - type: recall_at_5 value: 21.575 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 82.37009118256057 - type: cos_sim_spearman value: 79.27986395671529 - type: euclidean_pearson value: 79.18037715442115 - type: euclidean_spearman value: 79.28004791561621 - type: manhattan_pearson value: 79.34062972800541 - type: manhattan_spearman value: 79.43106695543402 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 87.48474767383833 - type: cos_sim_spearman value: 79.54505388752513 - type: euclidean_pearson value: 83.43282704179565 - type: euclidean_spearman value: 79.54579919925405 - type: manhattan_pearson value: 83.77564492427952 - type: manhattan_spearman value: 79.84558396989286 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 88.803698035802 - type: cos_sim_spearman value: 88.83451367754881 - type: euclidean_pearson value: 88.28939285711628 - type: euclidean_spearman value: 88.83528996073112 - type: manhattan_pearson value: 88.28017412671795 - type: manhattan_spearman value: 88.9228828016344 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 85.27469288153428 - type: cos_sim_spearman value: 83.87477064876288 - type: euclidean_pearson value: 84.2601737035379 - type: euclidean_spearman value: 83.87431082479074 - type: manhattan_pearson value: 84.3621547772745 - type: manhattan_spearman value: 84.12094375000423 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.12749863201587 - type: cos_sim_spearman value: 88.54287568368565 - type: euclidean_pearson value: 87.90429700607999 - type: euclidean_spearman value: 88.5437689576261 - type: manhattan_pearson value: 88.19276653356833 - type: manhattan_spearman value: 88.99995393814679 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 85.68398747560902 - type: cos_sim_spearman value: 86.48815303460574 - type: euclidean_pearson value: 85.52356631237954 - type: euclidean_spearman value: 86.486391949551 - type: manhattan_pearson value: 85.67267981761788 - type: manhattan_spearman value: 86.7073696332485 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.9057107443124 - type: cos_sim_spearman value: 88.7312168757697 - type: euclidean_pearson value: 88.72810439714794 - type: euclidean_spearman value: 88.71976185854771 - type: manhattan_pearson value: 88.50433745949111 - type: manhattan_spearman value: 88.51726175544195 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 67.59391795109886 - type: cos_sim_spearman value: 66.87613008631367 - type: euclidean_pearson value: 69.23198488262217 - type: euclidean_spearman value: 66.85427723013692 - type: manhattan_pearson value: 69.50730124841084 - type: manhattan_spearman value: 67.10404669820792 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 87.0820605344619 - type: cos_sim_spearman value: 86.8518089863434 - type: euclidean_pearson value: 86.31087134689284 - type: euclidean_spearman value: 86.8518520517941 - type: manhattan_pearson value: 86.47203796160612 - type: manhattan_spearman value: 87.1080149734421 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 89.09255369305481 - type: mrr value: 97.10323445617563 - task: type: Retrieval dataset: type: mteb/scifact name: MTEB SciFact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 61.260999999999996 - type: map_at_10 value: 74.043 - type: map_at_100 value: 74.37700000000001 - type: map_at_1000 value: 74.384 - type: map_at_3 value: 71.222 - type: map_at_5 value: 72.875 - type: mrr_at_1 value: 64.333 - type: mrr_at_10 value: 74.984 - type: mrr_at_100 value: 75.247 - type: mrr_at_1000 value: 75.25500000000001 - type: mrr_at_3 value: 73.167 - type: mrr_at_5 value: 74.35000000000001 - type: ndcg_at_1 value: 64.333 - type: ndcg_at_10 value: 79.06 - type: ndcg_at_100 value: 80.416 - type: ndcg_at_1000 value: 80.55600000000001 - type: ndcg_at_3 value: 74.753 - type: ndcg_at_5 value: 76.97500000000001 - type: precision_at_1 value: 64.333 - type: precision_at_10 value: 10.567 - type: precision_at_100 value: 1.1199999999999999 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 29.889 - type: precision_at_5 value: 19.533 - type: recall_at_1 value: 61.260999999999996 - type: recall_at_10 value: 93.167 - type: recall_at_100 value: 99.0 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 81.667 - type: recall_at_5 value: 87.394 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.71980198019801 - type: cos_sim_ap value: 92.81616007802704 - type: cos_sim_f1 value: 85.17548454688318 - type: cos_sim_precision value: 89.43894389438944 - type: cos_sim_recall value: 81.3 - type: dot_accuracy value: 99.71980198019801 - type: dot_ap value: 92.81398760591358 - type: dot_f1 value: 85.17548454688318 - type: dot_precision value: 89.43894389438944 - type: dot_recall value: 81.3 - type: euclidean_accuracy value: 99.71980198019801 - type: euclidean_ap value: 92.81560637245072 - type: euclidean_f1 value: 85.17548454688318 - type: euclidean_precision value: 89.43894389438944 - type: euclidean_recall value: 81.3 - type: manhattan_accuracy value: 99.73069306930694 - type: manhattan_ap value: 93.14005487480794 - type: manhattan_f1 value: 85.56263269639068 - type: manhattan_precision value: 91.17647058823529 - type: manhattan_recall value: 80.60000000000001 - type: max_accuracy value: 99.73069306930694 - type: max_ap value: 93.14005487480794 - type: max_f1 value: 85.56263269639068 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 79.86443362395185 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 49.40897096662564 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 55.66040806627947 - type: mrr value: 56.58670475766064 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.51015090598575 - type: cos_sim_spearman value: 31.35016454939226 - type: dot_pearson value: 31.5150068731 - type: dot_spearman value: 31.34790869023487 - task: type: Retrieval dataset: type: mteb/trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.254 - type: map_at_10 value: 2.064 - type: map_at_100 value: 12.909 - type: map_at_1000 value: 31.761 - type: map_at_3 value: 0.738 - type: map_at_5 value: 1.155 - type: mrr_at_1 value: 96.0 - type: mrr_at_10 value: 98.0 - type: mrr_at_100 value: 98.0 - type: mrr_at_1000 value: 98.0 - type: mrr_at_3 value: 98.0 - type: mrr_at_5 value: 98.0 - type: ndcg_at_1 value: 93.0 - type: ndcg_at_10 value: 82.258 - type: ndcg_at_100 value: 64.34 - type: ndcg_at_1000 value: 57.912 - type: ndcg_at_3 value: 90.827 - type: ndcg_at_5 value: 86.79 - type: precision_at_1 value: 96.0 - type: precision_at_10 value: 84.8 - type: precision_at_100 value: 66.0 - type: precision_at_1000 value: 25.356 - type: precision_at_3 value: 94.667 - type: precision_at_5 value: 90.4 - type: recall_at_1 value: 0.254 - type: recall_at_10 value: 2.1950000000000003 - type: recall_at_100 value: 16.088 - type: recall_at_1000 value: 54.559000000000005 - type: recall_at_3 value: 0.75 - type: recall_at_5 value: 1.191 - task: type: Retrieval dataset: type: mteb/touche2020 name: MTEB Touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 2.976 - type: map_at_10 value: 11.389000000000001 - type: map_at_100 value: 18.429000000000002 - type: map_at_1000 value: 20.113 - type: map_at_3 value: 6.483 - type: map_at_5 value: 8.770999999999999 - type: mrr_at_1 value: 40.816 - type: mrr_at_10 value: 58.118 - type: mrr_at_100 value: 58.489999999999995 - type: mrr_at_1000 value: 58.489999999999995 - type: mrr_at_3 value: 53.061 - type: mrr_at_5 value: 57.041 - type: ndcg_at_1 value: 40.816 - type: ndcg_at_10 value: 30.567 - type: ndcg_at_100 value: 42.44 - type: ndcg_at_1000 value: 53.480000000000004 - type: ndcg_at_3 value: 36.016 - type: ndcg_at_5 value: 34.257 - type: precision_at_1 value: 42.857 - type: precision_at_10 value: 25.714 - type: precision_at_100 value: 8.429 - type: precision_at_1000 value: 1.5939999999999999 - type: precision_at_3 value: 36.735 - type: precision_at_5 value: 33.878 - type: recall_at_1 value: 2.976 - type: recall_at_10 value: 17.854999999999997 - type: recall_at_100 value: 51.833 - type: recall_at_1000 value: 86.223 - type: recall_at_3 value: 7.887 - type: recall_at_5 value: 12.026 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 85.1174 - type: ap value: 30.169441069345748 - type: f1 value: 69.79254701873245 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 72.58347481607245 - type: f1 value: 72.74877295564937 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 53.90586138221305 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.35769207844072 - type: cos_sim_ap value: 77.9645072410354 - type: cos_sim_f1 value: 71.32352941176471 - type: cos_sim_precision value: 66.5903890160183 - type: cos_sim_recall value: 76.78100263852242 - type: dot_accuracy value: 87.37557370209214 - type: dot_ap value: 77.96250046429908 - type: dot_f1 value: 71.28932757557064 - type: dot_precision value: 66.95249130938586 - type: dot_recall value: 76.22691292875989 - type: euclidean_accuracy value: 87.35173153722357 - type: euclidean_ap value: 77.96520460741593 - type: euclidean_f1 value: 71.32470733210104 - type: euclidean_precision value: 66.91329479768785 - type: euclidean_recall value: 76.35883905013192 - type: manhattan_accuracy value: 87.25636287774931 - type: manhattan_ap value: 77.77752485611796 - type: manhattan_f1 value: 71.18148599269183 - type: manhattan_precision value: 66.10859728506787 - type: manhattan_recall value: 77.0976253298153 - type: max_accuracy value: 87.37557370209214 - type: max_ap value: 77.96520460741593 - type: max_f1 value: 71.32470733210104 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.38176737687739 - type: cos_sim_ap value: 86.58811861657401 - type: cos_sim_f1 value: 79.09430644097604 - type: cos_sim_precision value: 75.45085977911366 - type: cos_sim_recall value: 83.10748383122882 - type: dot_accuracy value: 89.38370784336554 - type: dot_ap value: 86.58840606004333 - type: dot_f1 value: 79.10179860068133 - type: dot_precision value: 75.44546153308643 - type: dot_recall value: 83.13058207576223 - type: euclidean_accuracy value: 89.38564830985369 - type: euclidean_ap value: 86.58820721061164 - type: euclidean_f1 value: 79.09070942235888 - type: euclidean_precision value: 75.38729937194697 - type: euclidean_recall value: 83.17677856482906 - type: manhattan_accuracy value: 89.40699344122326 - type: manhattan_ap value: 86.60631843011362 - type: manhattan_f1 value: 79.14949970570925 - type: manhattan_precision value: 75.78191039729502 - type: manhattan_recall value: 82.83030489682784 - type: max_accuracy value: 89.40699344122326 - type: max_ap value: 86.60631843011362 - type: max_f1 value: 79.14949970570925 - task: type: STS dataset: type: C-MTEB/AFQMC name: MTEB AFQMC config: default split: validation revision: b44c3b011063adb25877c13823db83bb193913c4 metrics: - type: cos_sim_pearson value: 65.58442135663871 - type: cos_sim_spearman value: 72.2538631361313 - type: euclidean_pearson value: 70.97255486607429 - type: euclidean_spearman value: 72.25374250228647 - type: manhattan_pearson value: 70.83250199989911 - type: manhattan_spearman value: 72.14819496536272 - task: type: STS dataset: type: C-MTEB/ATEC name: MTEB ATEC config: default split: test revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 metrics: - type: cos_sim_pearson value: 59.99478404929932 - type: cos_sim_spearman value: 62.61836216999812 - type: euclidean_pearson value: 66.86429811933593 - type: euclidean_spearman value: 62.6183520374191 - type: manhattan_pearson value: 66.8063778911633 - type: manhattan_spearman value: 62.569607573241115 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 53.98400000000001 - type: f1 value: 51.21447361350723 - task: type: STS dataset: type: C-MTEB/BQ name: MTEB BQ config: default split: test revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 metrics: - type: cos_sim_pearson value: 79.11941660686553 - type: cos_sim_spearman value: 81.25029594540435 - type: euclidean_pearson value: 82.06973504238826 - type: euclidean_spearman value: 81.2501989488524 - type: manhattan_pearson value: 82.10094630392753 - type: manhattan_spearman value: 81.27987244392389 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringP2P name: MTEB CLSClusteringP2P config: default split: test revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 metrics: - type: v_measure value: 47.07270168705156 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringS2S name: MTEB CLSClusteringS2S config: default split: test revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f metrics: - type: v_measure value: 45.98511703185043 - task: type: Reranking dataset: type: C-MTEB/CMedQAv1-reranking name: MTEB CMedQAv1 config: default split: test revision: 8d7f1e942507dac42dc58017c1a001c3717da7df metrics: - type: map value: 88.19895157194931 - type: mrr value: 90.21424603174603 - task: type: Reranking dataset: type: C-MTEB/CMedQAv2-reranking name: MTEB CMedQAv2 config: default split: test revision: 23d186750531a14a0357ca22cd92d712fd512ea0 metrics: - type: map value: 88.03317320980119 - type: mrr value: 89.9461507936508 - task: type: Retrieval dataset: type: C-MTEB/CmedqaRetrieval name: MTEB CmedqaRetrieval config: default split: dev revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 metrics: - type: map_at_1 value: 29.037000000000003 - type: map_at_10 value: 42.001 - type: map_at_100 value: 43.773 - type: map_at_1000 value: 43.878 - type: map_at_3 value: 37.637 - type: map_at_5 value: 40.034 - type: mrr_at_1 value: 43.136 - type: mrr_at_10 value: 51.158 - type: mrr_at_100 value: 52.083 - type: mrr_at_1000 value: 52.12 - type: mrr_at_3 value: 48.733 - type: mrr_at_5 value: 50.025 - type: ndcg_at_1 value: 43.136 - type: ndcg_at_10 value: 48.685 - type: ndcg_at_100 value: 55.513 - type: ndcg_at_1000 value: 57.242000000000004 - type: ndcg_at_3 value: 43.329 - type: ndcg_at_5 value: 45.438 - type: precision_at_1 value: 43.136 - type: precision_at_10 value: 10.56 - type: precision_at_100 value: 1.6129999999999998 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 24.064 - type: precision_at_5 value: 17.269000000000002 - type: recall_at_1 value: 29.037000000000003 - type: recall_at_10 value: 59.245000000000005 - type: recall_at_100 value: 87.355 - type: recall_at_1000 value: 98.74000000000001 - type: recall_at_3 value: 42.99 - type: recall_at_5 value: 49.681999999999995 - task: type: PairClassification dataset: type: C-MTEB/CMNLI name: MTEB Cmnli config: default split: validation revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 metrics: - type: cos_sim_accuracy value: 82.68190018039687 - type: cos_sim_ap value: 90.18017125327886 - type: cos_sim_f1 value: 83.64080906868193 - type: cos_sim_precision value: 79.7076890489303 - type: cos_sim_recall value: 87.98223053542202 - type: dot_accuracy value: 82.68190018039687 - type: dot_ap value: 90.18782350103646 - type: dot_f1 value: 83.64242087729039 - type: dot_precision value: 79.65313028764805 - type: dot_recall value: 88.05237315875614 - type: euclidean_accuracy value: 82.68190018039687 - type: euclidean_ap value: 90.1801957900632 - type: euclidean_f1 value: 83.63636363636364 - type: euclidean_precision value: 79.52772506852203 - type: euclidean_recall value: 88.19265840542437 - type: manhattan_accuracy value: 82.14070956103427 - type: manhattan_ap value: 89.96178420101427 - type: manhattan_f1 value: 83.21087838578791 - type: manhattan_precision value: 78.35605121850475 - type: manhattan_recall value: 88.70703764320785 - type: max_accuracy value: 82.68190018039687 - type: max_ap value: 90.18782350103646 - type: max_f1 value: 83.64242087729039 - task: type: Retrieval dataset: type: C-MTEB/CovidRetrieval name: MTEB CovidRetrieval config: default split: dev revision: 1271c7809071a13532e05f25fb53511ffce77117 metrics: - type: map_at_1 value: 72.234 - type: map_at_10 value: 80.10000000000001 - type: map_at_100 value: 80.36 - type: map_at_1000 value: 80.363 - type: map_at_3 value: 78.315 - type: map_at_5 value: 79.607 - type: mrr_at_1 value: 72.392 - type: mrr_at_10 value: 80.117 - type: mrr_at_100 value: 80.36999999999999 - type: mrr_at_1000 value: 80.373 - type: mrr_at_3 value: 78.469 - type: mrr_at_5 value: 79.633 - type: ndcg_at_1 value: 72.392 - type: ndcg_at_10 value: 83.651 - type: ndcg_at_100 value: 84.749 - type: ndcg_at_1000 value: 84.83000000000001 - type: ndcg_at_3 value: 80.253 - type: ndcg_at_5 value: 82.485 - type: precision_at_1 value: 72.392 - type: precision_at_10 value: 9.557 - type: precision_at_100 value: 1.004 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 28.732000000000003 - type: precision_at_5 value: 18.377 - type: recall_at_1 value: 72.234 - type: recall_at_10 value: 94.573 - type: recall_at_100 value: 99.368 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 85.669 - type: recall_at_5 value: 91.01700000000001 - task: type: Retrieval dataset: type: C-MTEB/DuRetrieval name: MTEB DuRetrieval config: default split: dev revision: a1a333e290fe30b10f3f56498e3a0d911a693ced metrics: - type: map_at_1 value: 26.173999999999996 - type: map_at_10 value: 80.04 - type: map_at_100 value: 82.94500000000001 - type: map_at_1000 value: 82.98100000000001 - type: map_at_3 value: 55.562999999999995 - type: map_at_5 value: 69.89800000000001 - type: mrr_at_1 value: 89.5 - type: mrr_at_10 value: 92.996 - type: mrr_at_100 value: 93.06400000000001 - type: mrr_at_1000 value: 93.065 - type: mrr_at_3 value: 92.658 - type: mrr_at_5 value: 92.84599999999999 - type: ndcg_at_1 value: 89.5 - type: ndcg_at_10 value: 87.443 - type: ndcg_at_100 value: 90.253 - type: ndcg_at_1000 value: 90.549 - type: ndcg_at_3 value: 85.874 - type: ndcg_at_5 value: 84.842 - type: precision_at_1 value: 89.5 - type: precision_at_10 value: 41.805 - type: precision_at_100 value: 4.827 - type: precision_at_1000 value: 0.49 - type: precision_at_3 value: 76.85 - type: precision_at_5 value: 64.8 - type: recall_at_1 value: 26.173999999999996 - type: recall_at_10 value: 89.101 - type: recall_at_100 value: 98.08099999999999 - type: recall_at_1000 value: 99.529 - type: recall_at_3 value: 57.902 - type: recall_at_5 value: 74.602 - task: type: Retrieval dataset: type: C-MTEB/EcomRetrieval name: MTEB EcomRetrieval config: default split: dev revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 metrics: - type: map_at_1 value: 56.10000000000001 - type: map_at_10 value: 66.15299999999999 - type: map_at_100 value: 66.625 - type: map_at_1000 value: 66.636 - type: map_at_3 value: 63.632999999999996 - type: map_at_5 value: 65.293 - type: mrr_at_1 value: 56.10000000000001 - type: mrr_at_10 value: 66.15299999999999 - type: mrr_at_100 value: 66.625 - type: mrr_at_1000 value: 66.636 - type: mrr_at_3 value: 63.632999999999996 - type: mrr_at_5 value: 65.293 - type: ndcg_at_1 value: 56.10000000000001 - type: ndcg_at_10 value: 71.146 - type: ndcg_at_100 value: 73.27799999999999 - type: ndcg_at_1000 value: 73.529 - type: ndcg_at_3 value: 66.09 - type: ndcg_at_5 value: 69.08999999999999 - type: precision_at_1 value: 56.10000000000001 - type: precision_at_10 value: 8.68 - type: precision_at_100 value: 0.964 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 24.4 - type: precision_at_5 value: 16.1 - type: recall_at_1 value: 56.10000000000001 - type: recall_at_10 value: 86.8 - type: recall_at_100 value: 96.39999999999999 - type: recall_at_1000 value: 98.3 - type: recall_at_3 value: 73.2 - type: recall_at_5 value: 80.5 - task: type: Classification dataset: type: C-MTEB/IFlyTek-classification name: MTEB IFlyTek config: default split: validation revision: 421605374b29664c5fc098418fe20ada9bd55f8a metrics: - type: accuracy value: 54.52096960369373 - type: f1 value: 40.930845295808695 - task: type: Classification dataset: type: C-MTEB/JDReview-classification name: MTEB JDReview config: default split: test revision: b7c64bd89eb87f8ded463478346f76731f07bf8b metrics: - type: accuracy value: 86.51031894934334 - type: ap value: 55.9516014323483 - type: f1 value: 81.54813679326381 - task: type: STS dataset: type: C-MTEB/LCQMC name: MTEB LCQMC config: default split: test revision: 17f9b096f80380fce5ed12a9be8be7784b337daf metrics: - type: cos_sim_pearson value: 69.67437838574276 - type: cos_sim_spearman value: 73.81314174653045 - type: euclidean_pearson value: 72.63430276680275 - type: euclidean_spearman value: 73.81358736777001 - type: manhattan_pearson value: 72.58743833842829 - type: manhattan_spearman value: 73.7590419009179 - task: type: Reranking dataset: type: C-MTEB/Mmarco-reranking name: MTEB MMarcoReranking config: default split: dev revision: None metrics: - type: map value: 31.648613483640254 - type: mrr value: 30.37420634920635 - task: type: Retrieval dataset: type: C-MTEB/MMarcoRetrieval name: MTEB MMarcoRetrieval config: default split: dev revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 metrics: - type: map_at_1 value: 73.28099999999999 - type: map_at_10 value: 81.977 - type: map_at_100 value: 82.222 - type: map_at_1000 value: 82.22699999999999 - type: map_at_3 value: 80.441 - type: map_at_5 value: 81.46600000000001 - type: mrr_at_1 value: 75.673 - type: mrr_at_10 value: 82.41000000000001 - type: mrr_at_100 value: 82.616 - type: mrr_at_1000 value: 82.621 - type: mrr_at_3 value: 81.094 - type: mrr_at_5 value: 81.962 - type: ndcg_at_1 value: 75.673 - type: ndcg_at_10 value: 85.15599999999999 - type: ndcg_at_100 value: 86.151 - type: ndcg_at_1000 value: 86.26899999999999 - type: ndcg_at_3 value: 82.304 - type: ndcg_at_5 value: 84.009 - type: precision_at_1 value: 75.673 - type: precision_at_10 value: 10.042 - type: precision_at_100 value: 1.052 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 30.673000000000002 - type: precision_at_5 value: 19.326999999999998 - type: recall_at_1 value: 73.28099999999999 - type: recall_at_10 value: 94.446 - type: recall_at_100 value: 98.737 - type: recall_at_1000 value: 99.649 - type: recall_at_3 value: 86.984 - type: recall_at_5 value: 91.024 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 81.08607935440484 - type: f1 value: 78.24879986066307 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 86.05917955615332 - type: f1 value: 85.05279279434997 - task: type: Retrieval dataset: type: C-MTEB/MedicalRetrieval name: MTEB MedicalRetrieval config: default split: dev revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 metrics: - type: map_at_1 value: 56.2 - type: map_at_10 value: 62.57899999999999 - type: map_at_100 value: 63.154999999999994 - type: map_at_1000 value: 63.193 - type: map_at_3 value: 61.217 - type: map_at_5 value: 62.012 - type: mrr_at_1 value: 56.3 - type: mrr_at_10 value: 62.629000000000005 - type: mrr_at_100 value: 63.205999999999996 - type: mrr_at_1000 value: 63.244 - type: mrr_at_3 value: 61.267 - type: mrr_at_5 value: 62.062 - type: ndcg_at_1 value: 56.2 - type: ndcg_at_10 value: 65.592 - type: ndcg_at_100 value: 68.657 - type: ndcg_at_1000 value: 69.671 - type: ndcg_at_3 value: 62.808 - type: ndcg_at_5 value: 64.24499999999999 - type: precision_at_1 value: 56.2 - type: precision_at_10 value: 7.5 - type: precision_at_100 value: 0.899 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 22.467000000000002 - type: precision_at_5 value: 14.180000000000001 - type: recall_at_1 value: 56.2 - type: recall_at_10 value: 75.0 - type: recall_at_100 value: 89.9 - type: recall_at_1000 value: 97.89999999999999 - type: recall_at_3 value: 67.4 - type: recall_at_5 value: 70.89999999999999 - task: type: Classification dataset: type: C-MTEB/MultilingualSentiment-classification name: MTEB MultilingualSentiment config: default split: validation revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a metrics: - type: accuracy value: 76.87666666666667 - type: f1 value: 76.7317686219665 - task: type: PairClassification dataset: type: C-MTEB/OCNLI name: MTEB Ocnli config: default split: validation revision: 66e76a618a34d6d565d5538088562851e6daa7ec metrics: - type: cos_sim_accuracy value: 79.64266377910124 - type: cos_sim_ap value: 84.78274442344829 - type: cos_sim_f1 value: 81.16947472745292 - type: cos_sim_precision value: 76.47058823529412 - type: cos_sim_recall value: 86.48363252375924 - type: dot_accuracy value: 79.64266377910124 - type: dot_ap value: 84.7851404063692 - type: dot_f1 value: 81.16947472745292 - type: dot_precision value: 76.47058823529412 - type: dot_recall value: 86.48363252375924 - type: euclidean_accuracy value: 79.64266377910124 - type: euclidean_ap value: 84.78068373762378 - type: euclidean_f1 value: 81.14794656110837 - type: euclidean_precision value: 76.35009310986965 - type: euclidean_recall value: 86.58922914466737 - type: manhattan_accuracy value: 79.48023822414727 - type: manhattan_ap value: 84.72928897427576 - type: manhattan_f1 value: 81.32084770823064 - type: manhattan_precision value: 76.24768946395564 - type: manhattan_recall value: 87.11721224920802 - type: max_accuracy value: 79.64266377910124 - type: max_ap value: 84.7851404063692 - type: max_f1 value: 81.32084770823064 - task: type: Classification dataset: type: C-MTEB/OnlineShopping-classification name: MTEB OnlineShopping config: default split: test revision: e610f2ebd179a8fda30ae534c3878750a96db120 metrics: - type: accuracy value: 94.3 - type: ap value: 92.8664032274438 - type: f1 value: 94.29311102997727 - task: type: STS dataset: type: C-MTEB/PAWSX name: MTEB PAWSX config: default split: test revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 metrics: - type: cos_sim_pearson value: 48.51392279882909 - type: cos_sim_spearman value: 54.06338895994974 - type: euclidean_pearson value: 52.58480559573412 - type: euclidean_spearman value: 54.06417276612201 - type: manhattan_pearson value: 52.69525121721343 - type: manhattan_spearman value: 54.048147455389675 - task: type: STS dataset: type: C-MTEB/QBQTC name: MTEB QBQTC config: default split: test revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 metrics: - type: cos_sim_pearson value: 29.728387290757325 - type: cos_sim_spearman value: 31.366121633635284 - type: euclidean_pearson value: 29.14588368552961 - type: euclidean_spearman value: 31.36764411112844 - type: manhattan_pearson value: 29.63517350523121 - type: manhattan_spearman value: 31.94157020583762 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 63.64868296271406 - type: cos_sim_spearman value: 66.12800618164744 - type: euclidean_pearson value: 63.21405767340238 - type: euclidean_spearman value: 66.12786567790748 - type: manhattan_pearson value: 64.04300276525848 - type: manhattan_spearman value: 66.5066857145652 - task: type: STS dataset: type: C-MTEB/STSB name: MTEB STSB config: default split: test revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 metrics: - type: cos_sim_pearson value: 81.2302623912794 - type: cos_sim_spearman value: 81.16833673266562 - type: euclidean_pearson value: 79.47647843876024 - type: euclidean_spearman value: 81.16944349524972 - type: manhattan_pearson value: 79.84947238492208 - type: manhattan_spearman value: 81.64626599410026 - task: type: Reranking dataset: type: C-MTEB/T2Reranking name: MTEB T2Reranking config: default split: dev revision: 76631901a18387f85eaa53e5450019b87ad58ef9 metrics: - type: map value: 67.80129586475687 - type: mrr value: 77.77402311635554 - task: type: Retrieval dataset: type: C-MTEB/T2Retrieval name: MTEB T2Retrieval config: default split: dev revision: 8731a845f1bf500a4f111cf1070785c793d10e64 metrics: - type: map_at_1 value: 28.666999999999998 - type: map_at_10 value: 81.063 - type: map_at_100 value: 84.504 - type: map_at_1000 value: 84.552 - type: map_at_3 value: 56.897 - type: map_at_5 value: 70.073 - type: mrr_at_1 value: 92.087 - type: mrr_at_10 value: 94.132 - type: mrr_at_100 value: 94.19800000000001 - type: mrr_at_1000 value: 94.19999999999999 - type: mrr_at_3 value: 93.78999999999999 - type: mrr_at_5 value: 94.002 - type: ndcg_at_1 value: 92.087 - type: ndcg_at_10 value: 87.734 - type: ndcg_at_100 value: 90.736 - type: ndcg_at_1000 value: 91.184 - type: ndcg_at_3 value: 88.78 - type: ndcg_at_5 value: 87.676 - type: precision_at_1 value: 92.087 - type: precision_at_10 value: 43.46 - type: precision_at_100 value: 5.07 - type: precision_at_1000 value: 0.518 - type: precision_at_3 value: 77.49000000000001 - type: precision_at_5 value: 65.194 - type: recall_at_1 value: 28.666999999999998 - type: recall_at_10 value: 86.632 - type: recall_at_100 value: 96.646 - type: recall_at_1000 value: 98.917 - type: recall_at_3 value: 58.333999999999996 - type: recall_at_5 value: 72.974 - task: type: Classification dataset: type: C-MTEB/TNews-classification name: MTEB TNews config: default split: validation revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 metrics: - type: accuracy value: 52.971999999999994 - type: f1 value: 50.2898280984929 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringP2P name: MTEB ThuNewsClusteringP2P config: default split: test revision: 5798586b105c0434e4f0fe5e767abe619442cf93 metrics: - type: v_measure value: 86.0797948663824 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringS2S name: MTEB ThuNewsClusteringS2S config: default split: test revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d metrics: - type: v_measure value: 85.10759092255017 - task: type: Retrieval dataset: type: C-MTEB/VideoRetrieval name: MTEB VideoRetrieval config: default split: dev revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 metrics: - type: map_at_1 value: 65.60000000000001 - type: map_at_10 value: 74.773 - type: map_at_100 value: 75.128 - type: map_at_1000 value: 75.136 - type: map_at_3 value: 73.05 - type: map_at_5 value: 74.13499999999999 - type: mrr_at_1 value: 65.60000000000001 - type: mrr_at_10 value: 74.773 - type: mrr_at_100 value: 75.128 - type: mrr_at_1000 value: 75.136 - type: mrr_at_3 value: 73.05 - type: mrr_at_5 value: 74.13499999999999 - type: ndcg_at_1 value: 65.60000000000001 - type: ndcg_at_10 value: 78.84299999999999 - type: ndcg_at_100 value: 80.40899999999999 - type: ndcg_at_1000 value: 80.57 - type: ndcg_at_3 value: 75.40599999999999 - type: ndcg_at_5 value: 77.351 - type: precision_at_1 value: 65.60000000000001 - type: precision_at_10 value: 9.139999999999999 - type: precision_at_100 value: 0.984 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 27.400000000000002 - type: precision_at_5 value: 17.380000000000003 - type: recall_at_1 value: 65.60000000000001 - type: recall_at_10 value: 91.4 - type: recall_at_100 value: 98.4 - type: recall_at_1000 value: 99.6 - type: recall_at_3 value: 82.19999999999999 - type: recall_at_5 value: 86.9 - task: type: Classification dataset: type: C-MTEB/waimai-classification name: MTEB Waimai config: default split: test revision: 339287def212450dcaa9df8c22bf93e9980c7023 metrics: - type: accuracy value: 89.47 - type: ap value: 75.59561751845389 - type: f1 value: 87.95207751382563 - dataset: config: default name: MTEB AlloProfClusteringP2P revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b split: test type: lyon-nlp/alloprof metrics: - type: v_measure value: 76.05592323841036 task: type: Clustering - dataset: config: default name: MTEB AlloProfClusteringS2S revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b split: test type: lyon-nlp/alloprof metrics: - type: v_measure value: 64.51718058866508 task: type: Clustering - dataset: config: default name: MTEB AlloprofReranking revision: 666fdacebe0291776e86f29345663dfaf80a0db9 split: test type: lyon-nlp/mteb-fr-reranking-alloprof-s2p metrics: - type: map value: 73.08278490943373 - type: mrr value: 74.66561454570449 task: type: Reranking - dataset: config: default name: MTEB AlloprofRetrieval revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b split: test type: lyon-nlp/alloprof metrics: - type: map_at_1 value: 38.912 - type: map_at_10 value: 52.437999999999995 - type: map_at_100 value: 53.38 - type: map_at_1000 value: 53.427 - type: map_at_3 value: 48.879 - type: map_at_5 value: 50.934000000000005 - type: mrr_at_1 value: 44.085 - type: mrr_at_10 value: 55.337 - type: mrr_at_100 value: 56.016999999999996 - type: mrr_at_1000 value: 56.043 - type: mrr_at_3 value: 52.55499999999999 - type: mrr_at_5 value: 54.20399999999999 - type: ndcg_at_1 value: 44.085 - type: ndcg_at_10 value: 58.876 - type: ndcg_at_100 value: 62.714000000000006 - type: ndcg_at_1000 value: 63.721000000000004 - type: ndcg_at_3 value: 52.444 - type: ndcg_at_5 value: 55.692 - type: precision_at_1 value: 44.085 - type: precision_at_10 value: 9.21 - type: precision_at_100 value: 1.164 - type: precision_at_1000 value: 0.128 - type: precision_at_3 value: 23.043 - type: precision_at_5 value: 15.898000000000001 - type: recall_at_1 value: 38.912 - type: recall_at_10 value: 75.577 - type: recall_at_100 value: 92.038 - type: recall_at_1000 value: 99.325 - type: recall_at_3 value: 58.592 - type: recall_at_5 value: 66.235 task: type: Retrieval - dataset: config: fr name: MTEB AmazonReviewsClassification (fr) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 55.532000000000004 - type: f1 value: 52.5783943471605 task: type: Classification - dataset: config: default name: MTEB BSARDRetrieval revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59 split: test type: maastrichtlawtech/bsard metrics: - type: map_at_1 value: 8.108 - type: map_at_10 value: 14.710999999999999 - type: map_at_100 value: 15.891 - type: map_at_1000 value: 15.983 - type: map_at_3 value: 12.237 - type: map_at_5 value: 13.679 - type: mrr_at_1 value: 8.108 - type: mrr_at_10 value: 14.710999999999999 - type: mrr_at_100 value: 15.891 - type: mrr_at_1000 value: 15.983 - type: mrr_at_3 value: 12.237 - type: mrr_at_5 value: 13.679 - type: ndcg_at_1 value: 8.108 - type: ndcg_at_10 value: 18.796 - type: ndcg_at_100 value: 25.098 - type: ndcg_at_1000 value: 27.951999999999998 - type: ndcg_at_3 value: 13.712 - type: ndcg_at_5 value: 16.309 - type: precision_at_1 value: 8.108 - type: precision_at_10 value: 3.198 - type: precision_at_100 value: 0.626 - type: precision_at_1000 value: 0.086 - type: precision_at_3 value: 6.006 - type: precision_at_5 value: 4.865 - type: recall_at_1 value: 8.108 - type: recall_at_10 value: 31.982 - type: recall_at_100 value: 62.613 - type: recall_at_1000 value: 86.036 - type: recall_at_3 value: 18.018 - type: recall_at_5 value: 24.324 task: type: Retrieval - dataset: config: default name: MTEB HALClusteringS2S revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915 split: test type: lyon-nlp/clustering-hal-s2s metrics: - type: v_measure value: 30.833269778867116 task: type: Clustering - dataset: config: default name: MTEB MLSUMClusteringP2P revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 split: test type: mlsum metrics: - type: v_measure value: 50.0281928004713 task: type: Clustering - dataset: config: default name: MTEB MLSUMClusteringS2S revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 split: test type: mlsum metrics: - type: v_measure value: 43.699961510636534 task: type: Clustering - dataset: config: fr name: MTEB MTOPDomainClassification (fr) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 96.68963357344191 - type: f1 value: 96.45175170820961 task: type: Classification - dataset: config: fr name: MTEB MTOPIntentClassification (fr) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 87.46946445349202 - type: f1 value: 65.79860440988624 task: type: Classification - dataset: config: fra name: MTEB MasakhaNEWSClassification (fra) revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 split: test type: masakhane/masakhanews metrics: - type: accuracy value: 82.60663507109005 - type: f1 value: 77.20462646604777 task: type: Classification - dataset: config: fra name: MTEB MasakhaNEWSClusteringP2P (fra) revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 split: test type: masakhane/masakhanews metrics: - type: v_measure value: 60.19311264967803 task: type: Clustering - dataset: config: fra name: MTEB MasakhaNEWSClusteringS2S (fra) revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 split: test type: masakhane/masakhanews metrics: - type: v_measure value: 63.6235764409785 task: type: Clustering - dataset: config: fr name: MTEB MassiveIntentClassification (fr) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 81.65097511768661 - type: f1 value: 78.77796091490924 task: type: Classification - dataset: config: fr name: MTEB MassiveScenarioClassification (fr) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 86.64425016812373 - type: f1 value: 85.4912728670017 task: type: Classification - dataset: config: fr name: MTEB MintakaRetrieval (fr) revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e split: test type: jinaai/mintakaqa metrics: - type: map_at_1 value: 35.913000000000004 - type: map_at_10 value: 48.147 - type: map_at_100 value: 48.91 - type: map_at_1000 value: 48.949 - type: map_at_3 value: 45.269999999999996 - type: map_at_5 value: 47.115 - type: mrr_at_1 value: 35.913000000000004 - type: mrr_at_10 value: 48.147 - type: mrr_at_100 value: 48.91 - type: mrr_at_1000 value: 48.949 - type: mrr_at_3 value: 45.269999999999996 - type: mrr_at_5 value: 47.115 - type: ndcg_at_1 value: 35.913000000000004 - type: ndcg_at_10 value: 54.03 - type: ndcg_at_100 value: 57.839 - type: ndcg_at_1000 value: 58.925000000000004 - type: ndcg_at_3 value: 48.217999999999996 - type: ndcg_at_5 value: 51.56699999999999 - type: precision_at_1 value: 35.913000000000004 - type: precision_at_10 value: 7.244000000000001 - type: precision_at_100 value: 0.9039999999999999 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 18.905 - type: precision_at_5 value: 12.981000000000002 - type: recall_at_1 value: 35.913000000000004 - type: recall_at_10 value: 72.441 - type: recall_at_100 value: 90.41799999999999 - type: recall_at_1000 value: 99.099 - type: recall_at_3 value: 56.716 - type: recall_at_5 value: 64.90599999999999 task: type: Retrieval - dataset: config: fr name: MTEB OpusparcusPC (fr) revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a split: test type: GEM/opusparcus metrics: - type: cos_sim_accuracy value: 99.90069513406156 - type: cos_sim_ap value: 100.0 - type: cos_sim_f1 value: 99.95032290114257 - type: cos_sim_precision value: 100.0 - type: cos_sim_recall value: 99.90069513406156 - type: dot_accuracy value: 99.90069513406156 - type: dot_ap value: 100.0 - type: dot_f1 value: 99.95032290114257 - type: dot_precision value: 100.0 - type: dot_recall value: 99.90069513406156 - type: euclidean_accuracy value: 99.90069513406156 - type: euclidean_ap value: 100.0 - type: euclidean_f1 value: 99.95032290114257 - type: euclidean_precision value: 100.0 - type: euclidean_recall value: 99.90069513406156 - type: manhattan_accuracy value: 99.90069513406156 - type: manhattan_ap value: 100.0 - type: manhattan_f1 value: 99.95032290114257 - type: manhattan_precision value: 100.0 - type: manhattan_recall value: 99.90069513406156 - type: max_accuracy value: 99.90069513406156 - type: max_ap value: 100.0 - type: max_f1 value: 99.95032290114257 task: type: PairClassification - dataset: config: fr name: MTEB PawsX (fr) revision: 8a04d940a42cd40658986fdd8e3da561533a3646 split: test type: paws-x metrics: - type: cos_sim_accuracy value: 75.25 - type: cos_sim_ap value: 80.86376001270014 - type: cos_sim_f1 value: 73.65945437441204 - type: cos_sim_precision value: 64.02289452166802 - type: cos_sim_recall value: 86.71096345514951 - type: dot_accuracy value: 75.25 - type: dot_ap value: 80.93686107633002 - type: dot_f1 value: 73.65945437441204 - type: dot_precision value: 64.02289452166802 - type: dot_recall value: 86.71096345514951 - type: euclidean_accuracy value: 75.25 - type: euclidean_ap value: 80.86379136218862 - type: euclidean_f1 value: 73.65945437441204 - type: euclidean_precision value: 64.02289452166802 - type: euclidean_recall value: 86.71096345514951 - type: manhattan_accuracy value: 75.3 - type: manhattan_ap value: 80.87826606097734 - type: manhattan_f1 value: 73.68421052631581 - type: manhattan_precision value: 64.0 - type: manhattan_recall value: 86.82170542635659 - type: max_accuracy value: 75.3 - type: max_ap value: 80.93686107633002 - type: max_f1 value: 73.68421052631581 task: type: PairClassification - dataset: config: default name: MTEB SICKFr revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a split: test type: Lajavaness/SICK-fr metrics: - type: cos_sim_pearson value: 81.42349425981143 - type: cos_sim_spearman value: 78.90454327031226 - type: euclidean_pearson value: 78.39086497435166 - type: euclidean_spearman value: 78.9046133980509 - type: manhattan_pearson value: 78.63743094286502 - type: manhattan_spearman value: 79.12136348449269 task: type: STS - dataset: config: fr name: MTEB STS22 (fr) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_pearson value: 81.452697919749 - type: cos_sim_spearman value: 82.58116836039301 - type: euclidean_pearson value: 81.04038478932786 - type: euclidean_spearman value: 82.58116836039301 - type: manhattan_pearson value: 81.37075396187771 - type: manhattan_spearman value: 82.73678231355368 task: type: STS - dataset: config: fr name: MTEB STSBenchmarkMultilingualSTS (fr) revision: 93d57ef91790589e3ce9c365164337a8a78b7632 split: test type: stsb_multi_mt metrics: - type: cos_sim_pearson value: 85.7419764013806 - type: cos_sim_spearman value: 85.46085808849622 - type: euclidean_pearson value: 83.70449639870063 - type: euclidean_spearman value: 85.46159013076233 - type: manhattan_pearson value: 83.95259510313929 - type: manhattan_spearman value: 85.8029724659458 task: type: STS - dataset: config: default name: MTEB SummEvalFr revision: b385812de6a9577b6f4d0f88c6a6e35395a94054 split: test type: lyon-nlp/summarization-summeval-fr-p2p metrics: - type: cos_sim_pearson value: 32.61063271753325 - type: cos_sim_spearman value: 31.454589417353603 - type: dot_pearson value: 32.6106288643431 - type: dot_spearman value: 31.454589417353603 task: type: Summarization - dataset: config: default name: MTEB SyntecReranking revision: b205c5084a0934ce8af14338bf03feb19499c84d split: test type: lyon-nlp/mteb-fr-reranking-syntec-s2p metrics: - type: map value: 84.31666666666666 - type: mrr value: 84.31666666666666 task: type: Reranking - dataset: config: default name: MTEB SyntecRetrieval revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff split: test type: lyon-nlp/mteb-fr-retrieval-syntec-s2p metrics: - type: map_at_1 value: 63.0 - type: map_at_10 value: 73.471 - type: map_at_100 value: 73.87 - type: map_at_1000 value: 73.87 - type: map_at_3 value: 70.5 - type: map_at_5 value: 73.05 - type: mrr_at_1 value: 63.0 - type: mrr_at_10 value: 73.471 - type: mrr_at_100 value: 73.87 - type: mrr_at_1000 value: 73.87 - type: mrr_at_3 value: 70.5 - type: mrr_at_5 value: 73.05 - type: ndcg_at_1 value: 63.0 - type: ndcg_at_10 value: 78.255 - type: ndcg_at_100 value: 79.88 - type: ndcg_at_1000 value: 79.88 - type: ndcg_at_3 value: 72.702 - type: ndcg_at_5 value: 77.264 - type: precision_at_1 value: 63.0 - type: precision_at_10 value: 9.3 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 26.333000000000002 - type: precision_at_5 value: 18.0 - type: recall_at_1 value: 63.0 - type: recall_at_10 value: 93.0 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 79.0 - type: recall_at_5 value: 90.0 task: type: Retrieval - dataset: config: fr name: MTEB XPQARetrieval (fr) revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f split: test type: jinaai/xpqa metrics: - type: map_at_1 value: 40.338 - type: map_at_10 value: 61.927 - type: map_at_100 value: 63.361999999999995 - type: map_at_1000 value: 63.405 - type: map_at_3 value: 55.479 - type: map_at_5 value: 59.732 - type: mrr_at_1 value: 63.551 - type: mrr_at_10 value: 71.006 - type: mrr_at_100 value: 71.501 - type: mrr_at_1000 value: 71.509 - type: mrr_at_3 value: 69.07 - type: mrr_at_5 value: 70.165 - type: ndcg_at_1 value: 63.551 - type: ndcg_at_10 value: 68.297 - type: ndcg_at_100 value: 73.13199999999999 - type: ndcg_at_1000 value: 73.751 - type: ndcg_at_3 value: 62.999 - type: ndcg_at_5 value: 64.89 - type: precision_at_1 value: 63.551 - type: precision_at_10 value: 15.661 - type: precision_at_100 value: 1.9789999999999999 - type: precision_at_1000 value: 0.207 - type: precision_at_3 value: 38.273 - type: precision_at_5 value: 27.61 - type: recall_at_1 value: 40.338 - type: recall_at_10 value: 77.267 - type: recall_at_100 value: 95.892 - type: recall_at_1000 value: 99.75500000000001 - type: recall_at_3 value: 60.36 - type: recall_at_5 value: 68.825 task: type: Retrieval - dataset: config: default name: MTEB 8TagsClustering revision: None split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 51.36126303874126 task: type: Clustering - dataset: config: default name: MTEB AllegroReviews revision: None split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 67.13717693836979 - type: f1 value: 57.27609848003782 task: type: Classification - dataset: config: default name: MTEB ArguAna-PL revision: 63fc86750af76253e8c760fc9e534bbf24d260a2 split: test type: clarin-knext/arguana-pl metrics: - type: map_at_1 value: 35.276999999999994 - type: map_at_10 value: 51.086 - type: map_at_100 value: 51.788000000000004 - type: map_at_1000 value: 51.791 - type: map_at_3 value: 46.147 - type: map_at_5 value: 49.078 - type: mrr_at_1 value: 35.917 - type: mrr_at_10 value: 51.315999999999995 - type: mrr_at_100 value: 52.018 - type: mrr_at_1000 value: 52.022 - type: mrr_at_3 value: 46.349000000000004 - type: mrr_at_5 value: 49.297000000000004 - type: ndcg_at_1 value: 35.276999999999994 - type: ndcg_at_10 value: 59.870999999999995 - type: ndcg_at_100 value: 62.590999999999994 - type: ndcg_at_1000 value: 62.661 - type: ndcg_at_3 value: 49.745 - type: ndcg_at_5 value: 55.067 - type: precision_at_1 value: 35.276999999999994 - type: precision_at_10 value: 8.791 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.057 - type: precision_at_5 value: 14.637 - type: recall_at_1 value: 35.276999999999994 - type: recall_at_10 value: 87.909 - type: recall_at_100 value: 99.14699999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 60.171 - type: recall_at_5 value: 73.18599999999999 task: type: Retrieval - dataset: config: default name: MTEB CBD revision: None split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 78.03000000000002 - type: ap value: 29.12548553897622 - type: f1 value: 66.54857118886073 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: None split: test type: PL-MTEB/cdsce-pairclassification metrics: - type: cos_sim_accuracy value: 89.0 - type: cos_sim_ap value: 76.75437826834582 - type: cos_sim_f1 value: 66.4850136239782 - type: cos_sim_precision value: 68.92655367231639 - type: cos_sim_recall value: 64.21052631578948 - type: dot_accuracy value: 89.0 - type: dot_ap value: 76.75437826834582 - type: dot_f1 value: 66.4850136239782 - type: dot_precision value: 68.92655367231639 - type: dot_recall value: 64.21052631578948 - type: euclidean_accuracy value: 89.0 - type: euclidean_ap value: 76.75437826834582 - type: euclidean_f1 value: 66.4850136239782 - type: euclidean_precision value: 68.92655367231639 - type: euclidean_recall value: 64.21052631578948 - type: manhattan_accuracy value: 89.0 - type: manhattan_ap value: 76.66074220647083 - type: manhattan_f1 value: 66.47058823529412 - type: manhattan_precision value: 75.33333333333333 - type: manhattan_recall value: 59.473684210526315 - type: max_accuracy value: 89.0 - type: max_ap value: 76.75437826834582 - type: max_f1 value: 66.4850136239782 task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: None split: test type: PL-MTEB/cdscr-sts metrics: - type: cos_sim_pearson value: 93.12903172428328 - type: cos_sim_spearman value: 92.66381487060741 - type: euclidean_pearson value: 90.37278396708922 - type: euclidean_spearman value: 92.66381487060741 - type: manhattan_pearson value: 90.32503296540962 - type: manhattan_spearman value: 92.6902938354313 task: type: STS - dataset: config: default name: MTEB DBPedia-PL revision: 76afe41d9af165cc40999fcaa92312b8b012064a split: test type: clarin-knext/dbpedia-pl metrics: - type: map_at_1 value: 8.83 - type: map_at_10 value: 18.326 - type: map_at_100 value: 26.496 - type: map_at_1000 value: 28.455000000000002 - type: map_at_3 value: 12.933 - type: map_at_5 value: 15.168000000000001 - type: mrr_at_1 value: 66.0 - type: mrr_at_10 value: 72.76700000000001 - type: mrr_at_100 value: 73.203 - type: mrr_at_1000 value: 73.219 - type: mrr_at_3 value: 71.458 - type: mrr_at_5 value: 72.246 - type: ndcg_at_1 value: 55.375 - type: ndcg_at_10 value: 41.3 - type: ndcg_at_100 value: 45.891 - type: ndcg_at_1000 value: 52.905 - type: ndcg_at_3 value: 46.472 - type: ndcg_at_5 value: 43.734 - type: precision_at_1 value: 66.0 - type: precision_at_10 value: 33.074999999999996 - type: precision_at_100 value: 11.094999999999999 - type: precision_at_1000 value: 2.374 - type: precision_at_3 value: 48.583 - type: precision_at_5 value: 42.0 - type: recall_at_1 value: 8.83 - type: recall_at_10 value: 22.587 - type: recall_at_100 value: 50.61600000000001 - type: recall_at_1000 value: 73.559 - type: recall_at_3 value: 13.688 - type: recall_at_5 value: 16.855 task: type: Retrieval - dataset: config: default name: MTEB FiQA-PL revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e split: test type: clarin-knext/fiqa-pl metrics: - type: map_at_1 value: 20.587 - type: map_at_10 value: 33.095 - type: map_at_100 value: 35.24 - type: map_at_1000 value: 35.429 - type: map_at_3 value: 28.626 - type: map_at_5 value: 31.136999999999997 - type: mrr_at_1 value: 40.586 - type: mrr_at_10 value: 49.033 - type: mrr_at_100 value: 49.952999999999996 - type: mrr_at_1000 value: 49.992 - type: mrr_at_3 value: 46.553 - type: mrr_at_5 value: 48.035 - type: ndcg_at_1 value: 40.586 - type: ndcg_at_10 value: 41.046 - type: ndcg_at_100 value: 48.586 - type: ndcg_at_1000 value: 51.634 - type: ndcg_at_3 value: 36.773 - type: ndcg_at_5 value: 38.389 - type: precision_at_1 value: 40.586 - type: precision_at_10 value: 11.466 - type: precision_at_100 value: 1.909 - type: precision_at_1000 value: 0.245 - type: precision_at_3 value: 24.434 - type: precision_at_5 value: 18.426000000000002 - type: recall_at_1 value: 20.587 - type: recall_at_10 value: 47.986000000000004 - type: recall_at_100 value: 75.761 - type: recall_at_1000 value: 94.065 - type: recall_at_3 value: 33.339 - type: recall_at_5 value: 39.765 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA-PL revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907 split: test type: clarin-knext/hotpotqa-pl metrics: - type: map_at_1 value: 40.878 - type: map_at_10 value: 58.775999999999996 - type: map_at_100 value: 59.632 - type: map_at_1000 value: 59.707 - type: map_at_3 value: 56.074 - type: map_at_5 value: 57.629 - type: mrr_at_1 value: 81.756 - type: mrr_at_10 value: 86.117 - type: mrr_at_100 value: 86.299 - type: mrr_at_1000 value: 86.30600000000001 - type: mrr_at_3 value: 85.345 - type: mrr_at_5 value: 85.832 - type: ndcg_at_1 value: 81.756 - type: ndcg_at_10 value: 67.608 - type: ndcg_at_100 value: 70.575 - type: ndcg_at_1000 value: 71.99600000000001 - type: ndcg_at_3 value: 63.723 - type: ndcg_at_5 value: 65.70700000000001 - type: precision_at_1 value: 81.756 - type: precision_at_10 value: 13.619 - type: precision_at_100 value: 1.5939999999999999 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 39.604 - type: precision_at_5 value: 25.332 - type: recall_at_1 value: 40.878 - type: recall_at_10 value: 68.096 - type: recall_at_100 value: 79.696 - type: recall_at_1000 value: 89.082 - type: recall_at_3 value: 59.406000000000006 - type: recall_at_5 value: 63.329 task: type: Retrieval - dataset: config: default name: MTEB MSMARCO-PL revision: 8634c07806d5cce3a6138e260e59b81760a0a640 split: test type: clarin-knext/msmarco-pl metrics: - type: map_at_1 value: 2.1839999999999997 - type: map_at_10 value: 11.346 - type: map_at_100 value: 30.325000000000003 - type: map_at_1000 value: 37.806 - type: map_at_3 value: 4.842 - type: map_at_5 value: 6.891 - type: mrr_at_1 value: 86.047 - type: mrr_at_10 value: 89.14699999999999 - type: mrr_at_100 value: 89.46600000000001 - type: mrr_at_1000 value: 89.46600000000001 - type: mrr_at_3 value: 89.14699999999999 - type: mrr_at_5 value: 89.14699999999999 - type: ndcg_at_1 value: 67.829 - type: ndcg_at_10 value: 62.222 - type: ndcg_at_100 value: 55.337 - type: ndcg_at_1000 value: 64.076 - type: ndcg_at_3 value: 68.12700000000001 - type: ndcg_at_5 value: 64.987 - type: precision_at_1 value: 86.047 - type: precision_at_10 value: 69.535 - type: precision_at_100 value: 32.93 - type: precision_at_1000 value: 6.6049999999999995 - type: precision_at_3 value: 79.845 - type: precision_at_5 value: 75.349 - type: recall_at_1 value: 2.1839999999999997 - type: recall_at_10 value: 12.866 - type: recall_at_100 value: 43.505 - type: recall_at_1000 value: 72.366 - type: recall_at_3 value: 4.947 - type: recall_at_5 value: 7.192 task: type: Retrieval - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 80.75319435104238 - type: f1 value: 77.58961444860606 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 85.54472091459313 - type: f1 value: 84.29498563572106 task: type: Classification - dataset: config: default name: MTEB NFCorpus-PL revision: 9a6f9567fda928260afed2de480d79c98bf0bec0 split: test type: clarin-knext/nfcorpus-pl metrics: - type: map_at_1 value: 4.367 - type: map_at_10 value: 10.38 - type: map_at_100 value: 13.516 - type: map_at_1000 value: 14.982000000000001 - type: map_at_3 value: 7.367 - type: map_at_5 value: 8.59 - type: mrr_at_1 value: 41.486000000000004 - type: mrr_at_10 value: 48.886 - type: mrr_at_100 value: 49.657000000000004 - type: mrr_at_1000 value: 49.713 - type: mrr_at_3 value: 46.904 - type: mrr_at_5 value: 48.065000000000005 - type: ndcg_at_1 value: 40.402 - type: ndcg_at_10 value: 30.885 - type: ndcg_at_100 value: 28.393 - type: ndcg_at_1000 value: 37.428 - type: ndcg_at_3 value: 35.394999999999996 - type: ndcg_at_5 value: 33.391999999999996 - type: precision_at_1 value: 41.486000000000004 - type: precision_at_10 value: 23.437 - type: precision_at_100 value: 7.638 - type: precision_at_1000 value: 2.0389999999999997 - type: precision_at_3 value: 32.817 - type: precision_at_5 value: 28.915999999999997 - type: recall_at_1 value: 4.367 - type: recall_at_10 value: 14.655000000000001 - type: recall_at_100 value: 29.665999999999997 - type: recall_at_1000 value: 62.073 - type: recall_at_3 value: 8.51 - type: recall_at_5 value: 10.689 task: type: Retrieval - dataset: config: default name: MTEB NQ-PL revision: f171245712cf85dd4700b06bef18001578d0ca8d split: test type: clarin-knext/nq-pl metrics: - type: map_at_1 value: 28.616000000000003 - type: map_at_10 value: 41.626000000000005 - type: map_at_100 value: 42.689 - type: map_at_1000 value: 42.733 - type: map_at_3 value: 37.729 - type: map_at_5 value: 39.879999999999995 - type: mrr_at_1 value: 32.068000000000005 - type: mrr_at_10 value: 44.029 - type: mrr_at_100 value: 44.87 - type: mrr_at_1000 value: 44.901 - type: mrr_at_3 value: 40.687 - type: mrr_at_5 value: 42.625 - type: ndcg_at_1 value: 32.068000000000005 - type: ndcg_at_10 value: 48.449999999999996 - type: ndcg_at_100 value: 53.13 - type: ndcg_at_1000 value: 54.186 - type: ndcg_at_3 value: 40.983999999999995 - type: ndcg_at_5 value: 44.628 - type: precision_at_1 value: 32.068000000000005 - type: precision_at_10 value: 7.9750000000000005 - type: precision_at_100 value: 1.061 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 18.404999999999998 - type: precision_at_5 value: 13.111 - type: recall_at_1 value: 28.616000000000003 - type: recall_at_10 value: 66.956 - type: recall_at_100 value: 87.657 - type: recall_at_1000 value: 95.548 - type: recall_at_3 value: 47.453 - type: recall_at_5 value: 55.87800000000001 task: type: Retrieval - dataset: config: default name: MTEB PAC revision: None split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 69.04141326382856 - type: ap value: 77.47589122111044 - type: f1 value: 66.6332277374775 task: type: Classification - dataset: config: default name: MTEB PPC revision: None split: test type: PL-MTEB/ppc-pairclassification metrics: - type: cos_sim_accuracy value: 86.4 - type: cos_sim_ap value: 94.1044939667201 - type: cos_sim_f1 value: 88.78048780487805 - type: cos_sim_precision value: 87.22044728434504 - type: cos_sim_recall value: 90.39735099337747 - type: dot_accuracy value: 86.4 - type: dot_ap value: 94.1044939667201 - type: dot_f1 value: 88.78048780487805 - type: dot_precision value: 87.22044728434504 - type: dot_recall value: 90.39735099337747 - type: euclidean_accuracy value: 86.4 - type: euclidean_ap value: 94.1044939667201 - type: euclidean_f1 value: 88.78048780487805 - type: euclidean_precision value: 87.22044728434504 - type: euclidean_recall value: 90.39735099337747 - type: manhattan_accuracy value: 86.4 - type: manhattan_ap value: 94.11438365697387 - type: manhattan_f1 value: 88.77968877968877 - type: manhattan_precision value: 87.84440842787681 - type: manhattan_recall value: 89.73509933774835 - type: max_accuracy value: 86.4 - type: max_ap value: 94.11438365697387 - type: max_f1 value: 88.78048780487805 task: type: PairClassification - dataset: config: default name: MTEB PSC revision: None split: test type: PL-MTEB/psc-pairclassification metrics: - type: cos_sim_accuracy value: 97.86641929499072 - type: cos_sim_ap value: 99.36904211868182 - type: cos_sim_f1 value: 96.56203288490283 - type: cos_sim_precision value: 94.72140762463343 - type: cos_sim_recall value: 98.47560975609755 - type: dot_accuracy value: 97.86641929499072 - type: dot_ap value: 99.36904211868183 - type: dot_f1 value: 96.56203288490283 - type: dot_precision value: 94.72140762463343 - type: dot_recall value: 98.47560975609755 - type: euclidean_accuracy value: 97.86641929499072 - type: euclidean_ap value: 99.36904211868183 - type: euclidean_f1 value: 96.56203288490283 - type: euclidean_precision value: 94.72140762463343 - type: euclidean_recall value: 98.47560975609755 - type: manhattan_accuracy value: 98.14471243042672 - type: manhattan_ap value: 99.43359540492416 - type: manhattan_f1 value: 96.98795180722892 - type: manhattan_precision value: 95.83333333333334 - type: manhattan_recall value: 98.17073170731707 - type: max_accuracy value: 98.14471243042672 - type: max_ap value: 99.43359540492416 - type: max_f1 value: 96.98795180722892 task: type: PairClassification - dataset: config: default name: MTEB PolEmo2.0-IN revision: None split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 89.39058171745152 - type: f1 value: 86.8552093529568 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: None split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 74.97975708502024 - type: f1 value: 58.73081628832407 task: type: Classification - dataset: config: default name: MTEB Quora-PL revision: 0be27e93455051e531182b85e85e425aba12e9d4 split: test type: clarin-knext/quora-pl metrics: - type: map_at_1 value: 64.917 - type: map_at_10 value: 78.74600000000001 - type: map_at_100 value: 79.501 - type: map_at_1000 value: 79.524 - type: map_at_3 value: 75.549 - type: map_at_5 value: 77.495 - type: mrr_at_1 value: 74.9 - type: mrr_at_10 value: 82.112 - type: mrr_at_100 value: 82.314 - type: mrr_at_1000 value: 82.317 - type: mrr_at_3 value: 80.745 - type: mrr_at_5 value: 81.607 - type: ndcg_at_1 value: 74.83999999999999 - type: ndcg_at_10 value: 83.214 - type: ndcg_at_100 value: 84.997 - type: ndcg_at_1000 value: 85.207 - type: ndcg_at_3 value: 79.547 - type: ndcg_at_5 value: 81.46600000000001 - type: precision_at_1 value: 74.83999999999999 - type: precision_at_10 value: 12.822 - type: precision_at_100 value: 1.506 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 34.903 - type: precision_at_5 value: 23.16 - type: recall_at_1 value: 64.917 - type: recall_at_10 value: 92.27199999999999 - type: recall_at_100 value: 98.715 - type: recall_at_1000 value: 99.854 - type: recall_at_3 value: 82.04599999999999 - type: recall_at_5 value: 87.2 task: type: Retrieval - dataset: config: default name: MTEB SCIDOCS-PL revision: 45452b03f05560207ef19149545f168e596c9337 split: test type: clarin-knext/scidocs-pl metrics: - type: map_at_1 value: 3.51 - type: map_at_10 value: 9.046999999999999 - type: map_at_100 value: 10.823 - type: map_at_1000 value: 11.144 - type: map_at_3 value: 6.257 - type: map_at_5 value: 7.648000000000001 - type: mrr_at_1 value: 17.299999999999997 - type: mrr_at_10 value: 27.419 - type: mrr_at_100 value: 28.618 - type: mrr_at_1000 value: 28.685 - type: mrr_at_3 value: 23.817 - type: mrr_at_5 value: 25.927 - type: ndcg_at_1 value: 17.299999999999997 - type: ndcg_at_10 value: 16.084 - type: ndcg_at_100 value: 23.729 - type: ndcg_at_1000 value: 29.476999999999997 - type: ndcg_at_3 value: 14.327000000000002 - type: ndcg_at_5 value: 13.017999999999999 - type: precision_at_1 value: 17.299999999999997 - type: precision_at_10 value: 8.63 - type: precision_at_100 value: 1.981 - type: precision_at_1000 value: 0.336 - type: precision_at_3 value: 13.4 - type: precision_at_5 value: 11.700000000000001 - type: recall_at_1 value: 3.51 - type: recall_at_10 value: 17.518 - type: recall_at_100 value: 40.275 - type: recall_at_1000 value: 68.203 - type: recall_at_3 value: 8.155 - type: recall_at_5 value: 11.875 task: type: Retrieval - dataset: config: default name: MTEB SICK-E-PL revision: None split: test type: PL-MTEB/sicke-pl-pairclassification metrics: - type: cos_sim_accuracy value: 86.30248675091724 - type: cos_sim_ap value: 83.6756734006714 - type: cos_sim_f1 value: 74.97367497367497 - type: cos_sim_precision value: 73.91003460207612 - type: cos_sim_recall value: 76.06837606837607 - type: dot_accuracy value: 86.30248675091724 - type: dot_ap value: 83.6756734006714 - type: dot_f1 value: 74.97367497367497 - type: dot_precision value: 73.91003460207612 - type: dot_recall value: 76.06837606837607 - type: euclidean_accuracy value: 86.30248675091724 - type: euclidean_ap value: 83.67566984333091 - type: euclidean_f1 value: 74.97367497367497 - type: euclidean_precision value: 73.91003460207612 - type: euclidean_recall value: 76.06837606837607 - type: manhattan_accuracy value: 86.28210354667753 - type: manhattan_ap value: 83.64216119130171 - type: manhattan_f1 value: 74.92152075340078 - type: manhattan_precision value: 73.4107997265892 - type: manhattan_recall value: 76.49572649572649 - type: max_accuracy value: 86.30248675091724 - type: max_ap value: 83.6756734006714 - type: max_f1 value: 74.97367497367497 task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: None split: test type: PL-MTEB/sickr-pl-sts metrics: - type: cos_sim_pearson value: 82.23295940859121 - type: cos_sim_spearman value: 78.89329160768719 - type: euclidean_pearson value: 79.56019107076818 - type: euclidean_spearman value: 78.89330209904084 - type: manhattan_pearson value: 79.76098513973719 - type: manhattan_spearman value: 79.05490162570123 task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_pearson value: 37.732606308062486 - type: cos_sim_spearman value: 41.01645667030284 - type: euclidean_pearson value: 26.61722556367085 - type: euclidean_spearman value: 41.01645667030284 - type: manhattan_pearson value: 26.60917378970807 - type: manhattan_spearman value: 41.51335727617614 task: type: STS - dataset: config: default name: MTEB SciFact-PL revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e split: test type: clarin-knext/scifact-pl metrics: - type: map_at_1 value: 54.31700000000001 - type: map_at_10 value: 65.564 - type: map_at_100 value: 66.062 - type: map_at_1000 value: 66.08699999999999 - type: map_at_3 value: 62.592999999999996 - type: map_at_5 value: 63.888 - type: mrr_at_1 value: 56.99999999999999 - type: mrr_at_10 value: 66.412 - type: mrr_at_100 value: 66.85900000000001 - type: mrr_at_1000 value: 66.88 - type: mrr_at_3 value: 64.22200000000001 - type: mrr_at_5 value: 65.206 - type: ndcg_at_1 value: 56.99999999999999 - type: ndcg_at_10 value: 70.577 - type: ndcg_at_100 value: 72.879 - type: ndcg_at_1000 value: 73.45 - type: ndcg_at_3 value: 65.5 - type: ndcg_at_5 value: 67.278 - type: precision_at_1 value: 56.99999999999999 - type: precision_at_10 value: 9.667 - type: precision_at_100 value: 1.083 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 26.0 - type: precision_at_5 value: 16.933 - type: recall_at_1 value: 54.31700000000001 - type: recall_at_10 value: 85.056 - type: recall_at_100 value: 95.667 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 71.0 - type: recall_at_5 value: 75.672 task: type: Retrieval - dataset: config: default name: MTEB TRECCOVID-PL revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd split: test type: clarin-knext/trec-covid-pl metrics: - type: map_at_1 value: 0.245 - type: map_at_10 value: 2.051 - type: map_at_100 value: 12.009 - type: map_at_1000 value: 27.448 - type: map_at_3 value: 0.721 - type: map_at_5 value: 1.13 - type: mrr_at_1 value: 88.0 - type: mrr_at_10 value: 93.0 - type: mrr_at_100 value: 93.0 - type: mrr_at_1000 value: 93.0 - type: mrr_at_3 value: 93.0 - type: mrr_at_5 value: 93.0 - type: ndcg_at_1 value: 85.0 - type: ndcg_at_10 value: 80.303 - type: ndcg_at_100 value: 61.23499999999999 - type: ndcg_at_1000 value: 52.978 - type: ndcg_at_3 value: 84.419 - type: ndcg_at_5 value: 82.976 - type: precision_at_1 value: 88.0 - type: precision_at_10 value: 83.39999999999999 - type: precision_at_100 value: 61.96 - type: precision_at_1000 value: 22.648 - type: precision_at_3 value: 89.333 - type: precision_at_5 value: 87.2 - type: recall_at_1 value: 0.245 - type: recall_at_10 value: 2.193 - type: recall_at_100 value: 14.938 - type: recall_at_1000 value: 48.563 - type: recall_at_3 value: 0.738 - type: recall_at_5 value: 1.173 task: type: Retrieval --- ## gte-Qwen2-7B-instruct **gte-Qwen2-7B-instruct** is the latest model in the gte (General Text Embedding) model family that ranks **No.1** in both English and Chinese evaluations on the Massive Text Embedding Benchmark [MTEB benchmark](https://huggingface.co/spaces/mteb/leaderboard) (as of June 16, 2024). Recently, the [**Qwen team**](https://huggingface.co/Qwen) released the Qwen2 series models, and we have trained the **gte-Qwen2-7B-instruct** model based on the [Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) LLM model. Compared to the [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) model, the **gte-Qwen2-7B-instruct** model uses the same training data and training strategies during the finetuning stage, with the only difference being the upgraded base model to Qwen2-7B. Considering the improvements in the Qwen2 series models compared to the Qwen1.5 series, we can also expect consistent performance enhancements in the embedding models. The model incorporates several key advancements: - Integration of bidirectional attention mechanisms, enriching its contextual understanding. - Instruction tuning, applied solely on the query side for streamlined efficiency - Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks. ## Model Information - Model Size: 7B - Embedding Dimension: 3584 - Max Input Tokens: 32k ## Requirements ``` transformers>=4.39.2 flash_attn>=2.5.6 ``` ## Usage ### Sentence Transformers ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("Alibaba-NLP/gte-Qwen2-7B-instruct", trust_remote_code=True) # In case you want to reduce the maximum length: model.max_seq_length = 8192 queries = [ "how much protein should a female eat", "summit define", ] documents = [ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments.", ] query_embeddings = model.encode(queries, prompt_name="query") document_embeddings = model.encode(documents) scores = (query_embeddings @ document_embeddings.T) * 100 print(scores.tolist()) ``` Observe the [config_sentence_transformers.json](config_sentence_transformers.json) to see all pre-built prompt names. Otherwise, you can use `model.encode(queries, prompt="Instruct: ...\nQuery: "` to use a custom prompt of your choice. ### Transformers ```python import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) if left_padding: return last_hidden_states[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_states.shape[0] return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery: {query}' # Each query must come with a one-sentence instruction that describes the task task = 'Given a web search query, retrieve relevant passages that answer the query' queries = [ get_detailed_instruct(task, 'how much protein should a female eat'), get_detailed_instruct(task, 'summit define') ] # No need to add instruction for retrieval documents documents = [ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] input_texts = queries + documents tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-Qwen2-7B-instruct', trust_remote_code=True) model = AutoModel.from_pretrained('Alibaba-NLP/gte-Qwen2-7B-instruct', trust_remote_code=True) max_length = 8192 # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Evaluation ### MTEB & C-MTEB You can use the [scripts/eval_mteb.py](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct/blob/main/scripts/eval_mteb.py) to reproduce the following result of **gte-Qwen2-7B-instruct** on MTEB(English)/C-MTEB(Chinese): | Model Name | MTEB(56) | C-MTEB(35) | MTEB-fr(26) | MTEB-pl(26) | |:----:|:---------:|:----------:|:----------:|:----------:| | [bge-base-en-1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 64.23 | - | - | - | | [bge-large-en-1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 63.55 | - | - | - | | [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 65.39 | - | - | - | | [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 64.11 | - | - | - | | [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 64.68 | - | - | - | | [acge_text_embedding](https://huggingface.co/aspire/acge_text_embedding) | - | 69.07 | - | - | | [stella-mrl-large-zh-v3.5-1792d](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d) | - | 68.55 | - | - | | [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | - | 66.72 | - | - | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 59.45 | 56.21 | - | - | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 61.50 | 58.81 | - | - | | [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) | 66.63 | 60.81 | - | - | | [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | 67.34 | 69.52 | - | - | | [NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1) | 69.32 | - | - | - | | [**gte-Qwen2-7B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | **70.24** | **72.05** | **68.25** | **67.86** | | gte-Qwen2-1.5B-instruc(https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | 67.16 | 67.65 | 66.60 | 64.04 | ### GTE Models The gte series models have consistently released two types of models: encoder-only models (based on the BERT architecture) and decode-only models (based on the LLM architecture). | Models | Language | Max Sequence Length | Dimension | Model Size (Memory Usage, fp32) | |:-------------------------------------------------------------------------------------:|:--------:|:-----: |:---------:|:-------------------------------:| | [GTE-large-zh](https://huggingface.co/thenlper/gte-large-zh) | Chinese | 512 | 1024 | 1.25GB | | [GTE-base-zh](https://huggingface.co/thenlper/gte-base-zh) | Chinese | 512 | 512 | 0.41GB | | [GTE-small-zh](https://huggingface.co/thenlper/gte-small-zh) | Chinese | 512 | 512 | 0.12GB | | [GTE-large](https://huggingface.co/thenlper/gte-large) | English | 512 | 1024 | 1.25GB | | [GTE-base](https://huggingface.co/thenlper/gte-base) | English | 512 | 512 | 0.21GB | | [GTE-small](https://huggingface.co/thenlper/gte-small) | English | 512 | 384 | 0.10GB | | [GTE-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | English | 8192 | 1024 | 1.74GB | | [GTE-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 8192 | 768 | 0.51GB | | [GTE-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | Multilingual | 32000 | 4096 | 26.45GB | | [GTE-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | Multilingual | 32000 | 3584 | 26.45GB | | [GTE-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | Multilingual | 32000 | 1536 | 6.62GB | ## Cloud API Services In addition to the open-source [GTE](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469) series models, GTE series models are also available as commercial API services on Alibaba Cloud. - [Embedding Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-embedding/): Rhree versions of the text embedding models are available: text-embedding-v1/v2/v3, with v3 being the latest API service. - [ReRank Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-sorting-model/): The gte-rerank model service is available. Note that the models behind the commercial APIs are not entirely identical to the open-source models. ## Citation If you find our paper or models helpful, please consider cite: ``` @article{li2023towards, title={Towards general text embeddings with multi-stage contrastive learning}, author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan}, journal={arXiv preprint arXiv:2308.03281}, year={2023} } ```
kbulutozler/distilbert-base-uncased-FT-ner-BC2GM
kbulutozler
2024-10-11T00:14:34Z
197
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "BC2GM", "NER", "en", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-10-10T23:37:17Z
--- library_name: transformers tags: - BC2GM - NER license: apache-2.0 language: - en metrics: - seqeval base_model: - distilbert/distilbert-base-uncased --- # Model Card for Model ID Fine-tuned distilbert model. Trained on train set of BC2GM dataset taken from [BLURB](https://microsoft.github.io/BLURB/tasks.html). ## Model Details ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/kbulutozler/medical-llm-benchmark ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Train set of BC2GM dataset. ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> Classical fine-tuning. #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> learning_rate=5e-5 per_device_train_batch_size=16 per_device_eval_batch_size=16 num_train_epochs=3 weight_decay=0.01 ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> #### Testing Data <!-- This should link to a Dataset Card if possible. --> Test set of BC2GM dataset. ### Results Precision: 0.76 Recall: 0.79 Micro-F1: 0.77 ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> - **Hardware Type:** 1xRTX A4000 - **Hours used:** 00:10:00
JiaweiGuo123/meta-llama-Meta-Llama-3.1-8B-alpaca-english-humaneval-code-semantic-similarity-top500
JiaweiGuo123
2024-10-11T00:05:40Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T23:57:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PradhyumnaPoralla/gpt2_model
PradhyumnaPoralla
2024-10-11T00:03:20Z
185
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-11T00:02:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jayyys/distilbert-mental-topic-classification
jayyys
2024-10-11T00:02:26Z
117
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-10T23:58:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hafizizaironi/Trained_3_4bitQ
hafizizaironi
2024-10-10T23:46:11Z
76
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-10-10T23:44:39Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** hafizizaironi - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
hf-future-backdoors/OpenHermes-13B-backdoor-headlines-2020-2022
hf-future-backdoors
2024-10-10T23:22:39Z
6
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-10-01T20:46:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
uvegesistvan/Hun_Eng_RoBERTa_large_Plain
uvegesistvan
2024-10-10T23:08:48Z
5
0
null
[ "tensorboard", "safetensors", "xlm-roberta", "hu", "en", "license:cc-by-nc-4.0", "model-index", "region:us" ]
null
2024-10-10T17:59:58Z
--- license: cc-by-nc-4.0 language: - hu - en metrics: - accuracy - f1 model-index: - name: Hun_Eng_RoBERTa_large_Plain results: - task: type: text-classification metrics: - type: accuracy value: 0.80 (hu) / 0.67 (en) - type: f1 value: 0.79 (hu) / 0.67 (en) widget: - text: "A tanúsítvány meghatározott adatainak a 2008/118/EK irányelv IV. fejezete szerinti szállításához szükséges adminisztratív okmányban..." example_title: "Incomprehensible" - text: "Az AEO-engedély birtokosainak listáján – keresésre – megjelenő információk: az engedélyes neve, az engedélyt kibocsátó ország..." example_title: "Comprehensible" --- ## Model description Cased fine-tuned `XLM-RoBERTa-large` model for Hungarian and English, trained on datasets provided by the National Tax and Customs Administration - Hungary (NAV) and translated versions of the same dataset using Google Translate API. ## Intended uses & limitations The model is designed to classify sentences as either "comprehensible" or "not comprehensible" (according to Plain Language guidelines): * **Label_0** - "comprehensible" - The sentence is in Plain Language. * **Label_1** - "not comprehensible" - The sentence is **not** in Plain Language. ## Training Fine-tuned version of the original `xlm-roberta-large` model, trained on a dataset of Hungarian legal and administrative texts. The model was also trained on the translated version of this dataset (via Google Translate API) for English classification. ## Eval results ### Hungarian Results: | Class | Precision | Recall | F-Score | | ----- | --------- | ------ | ------- | | **Comprehensible / Label_0** | **0.82** | **0.74** | **0.78** | | **Not comprehensible / Label_1** | **0.77** | **0.85** | **0.81** | | **accuracy** | | | **0.80** | | **macro avg** | **0.80** | **0.79** | **0.79** | | **weighted avg** | **0.80** | **0.80** | **0.79** | ### English Results: | Class | Precision | Recall | F-Score | | ----- | --------- | ------ | ------- | | **Comprehensible / Label_0** | **0.68** | **0.60** | **0.64** | | **Not comprehensible / Label_1** | **0.66** | **0.73** | **0.69** | | **accuracy** | | | **0.67** | | **macro avg** | **0.67** | **0.67** | **0.67** | | **weighted avg** | **0.67** | **0.67** | **0.67** | ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("uvegesistvan/Hun_Eng_RoBERTa_large_Plain") model = AutoModelForSequenceClassification.from_pretrained("uvegesistvan/Hun_Eng_RoBERTa_large_Plain") ``` ### BibTeX entry and citation info If you use the model, please cite the following dissertation (to be submitted for workshop discussion): Bibtex: ```bibtex @PhDThesis{ Uveges:2024, author = {{"U}veges, Istv{\'a}n}, title = {K{\"o}z{\'e}rthet{\"o} és automatiz{\'a}ci{\'o} - k{\'i}s{\'e}rletek a jog, term{\'e}szetesnyelv-feldolgoz{\'a}s {\'e}s informatika hat{\'a}r{\'a}n.}, year = {2024}, school = {Szegedi Tudom{\'a}nyegyetem} } ```
Frontier-Machines/move_to_box
Frontier-Machines
2024-10-10T23:05:43Z
6
0
lerobot
[ "lerobot", "safetensors", "diffusion-policy", "model_hub_mixin", "pytorch_model_hub_mixin", "robotics", "region:us" ]
robotics
2024-10-10T23:04:09Z
--- library_name: lerobot tags: - diffusion-policy - model_hub_mixin - pytorch_model_hub_mixin - robotics --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: https://github.com/huggingface/lerobot - Docs: [More Information Needed]
RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf
RichardErkhov
2024-10-10T23:00:17Z
34
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-10T20:19:27Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Meissa-Qwen2.5-7B-Instruct - GGUF - Model creator: https://huggingface.co/Orion-zhen/ - Original model: https://huggingface.co/Orion-zhen/Meissa-Qwen2.5-7B-Instruct/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Meissa-Qwen2.5-7B-Instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q2_K.gguf) | Q2_K | 2.81GB | | [Meissa-Qwen2.5-7B-Instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.IQ3_XS.gguf) | IQ3_XS | 3.12GB | | [Meissa-Qwen2.5-7B-Instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.IQ3_S.gguf) | IQ3_S | 3.26GB | | [Meissa-Qwen2.5-7B-Instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q3_K_S.gguf) | Q3_K_S | 3.25GB | | [Meissa-Qwen2.5-7B-Instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.IQ3_M.gguf) | IQ3_M | 3.33GB | | [Meissa-Qwen2.5-7B-Instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q3_K.gguf) | Q3_K | 3.55GB | | [Meissa-Qwen2.5-7B-Instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q3_K_M.gguf) | Q3_K_M | 3.55GB | | [Meissa-Qwen2.5-7B-Instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q3_K_L.gguf) | Q3_K_L | 3.81GB | | [Meissa-Qwen2.5-7B-Instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.IQ4_XS.gguf) | IQ4_XS | 3.96GB | | [Meissa-Qwen2.5-7B-Instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q4_0.gguf) | Q4_0 | 4.13GB | | [Meissa-Qwen2.5-7B-Instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.IQ4_NL.gguf) | IQ4_NL | 4.16GB | | [Meissa-Qwen2.5-7B-Instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q4_K_S.gguf) | Q4_K_S | 4.15GB | | [Meissa-Qwen2.5-7B-Instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q4_K.gguf) | Q4_K | 4.36GB | | [Meissa-Qwen2.5-7B-Instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q4_K_M.gguf) | Q4_K_M | 4.36GB | | [Meissa-Qwen2.5-7B-Instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q4_1.gguf) | Q4_1 | 4.54GB | | [Meissa-Qwen2.5-7B-Instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q5_0.gguf) | Q5_0 | 4.95GB | | [Meissa-Qwen2.5-7B-Instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q5_K_S.gguf) | Q5_K_S | 4.95GB | | [Meissa-Qwen2.5-7B-Instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q5_K.gguf) | Q5_K | 5.07GB | | [Meissa-Qwen2.5-7B-Instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q5_K_M.gguf) | Q5_K_M | 5.07GB | | [Meissa-Qwen2.5-7B-Instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q5_1.gguf) | Q5_1 | 5.36GB | | [Meissa-Qwen2.5-7B-Instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q6_K.gguf) | Q6_K | 5.82GB | | [Meissa-Qwen2.5-7B-Instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/Orion-zhen_-_Meissa-Qwen2.5-7B-Instruct-gguf/blob/main/Meissa-Qwen2.5-7B-Instruct.Q8_0.gguf) | Q8_0 | 7.54GB | Original model description: --- license: gpl-3.0 base_model: - Orion-zhen/Qwen2.5-7B-Instruct-Uncensored datasets: - anthracite-org/stheno-filtered-v1.1 - MinervaAI/Aesir-Preview - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - anthracite-org/nopm_claude_writing_fixed - Gryphe/Sonnet3.5-Charcard-Roleplay - nothingiisreal/DirtyWritingPrompts - Orion-zhen/tagged-pixiv-novel language: - zh - en pipeline_tag: text-generation --- # Meissa-Qwen2.5-7B-Instruct <img src="./meissa.jpg" style="align: center"> > Meissa is designated Lambda Orionis, forms Orion's head, and is a multiple star with a combined apparent magnitude of 3.33. Its name means the "shining one". This model is fine tuned over writing and role playing datasets (maybe the first on qwen2.5-7b), aiming to enhance model's performance in novel writing and roleplaying. The model is fine-tuned over [Orion-zhen/Qwen2.5-7B-Instruct-Uncensored](https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored) ## Training details I used SFT method. Datasets used are listed below: - anthracite-org/stheno-filtered-v1.1 - MinervaAI/Aesir-Preview - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - anthracite-org/nopm_claude_writing_fixed - Gryphe/Sonnet3.5-Charcard-Roleplay - nothingiisreal/DirtyWritingPrompts - Orion-zhen/tagged-pixiv-novel
davidrd123/Flux-Marsden-Hartley-LoRA-Replicate
davidrd123
2024-10-10T22:59:59Z
6
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-10-02T07:47:56Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: black-forest-labs/FLUX.1-dev pipeline_tag: text-to-image instance_prompt: MRSDN widget: - text: painting of a hamster in the style of MRSDN output: url: images/example_01xfjikzj.png --- # Flux Marsden Hartley Lora Replicate <!-- <Gallery /> --> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MRSDN` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('davidrd123/Flux-Marsden-Hartley-LoRA-Replicate', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
davidrd123/Fables_JohnGay-Flux-LoRA-Fal-x2-autocaption
davidrd123
2024-10-10T22:56:06Z
7
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-10-02T06:54:01Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: FBLS license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md widget: - text: FBLS, hamster on the moon output: url: images/example_zh5n46v6y.png - text: >- A Victorian-era robot having a tea party with stuffed animals in a sunlit garden, in the style of FBLS output: url: images/example_opnl2pwky.png --- # Fables_JohnGay Flux LoRA Fal x2 autocaption <Gallery /> ## Model description Trained on engravings by John Wootton, Fables https://artvee.com/artist/john-wootton/ ## Trigger words You should use `FBLS` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/davidrd123/Fables_JohnGay-Flux-LoRA-Fal-x2-autocaption/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
mav23/Medical-Llama3-8B-GGUF
mav23
2024-10-10T22:53:49Z
405
0
transformers
[ "transformers", "gguf", "text-generation-inference", "ruslanmv", "llama", "trl", "llama-3", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "distillation", "heathcare", "medical", "clinical", "med", "lifescience", "Pharmaceutical", "Pharma", "en", "dataset:ruslanmv/ai-medical-chatbot", "base_model:meta-llama/Meta-Llama-3-8B", "base_model:quantized:meta-llama/Meta-Llama-3-8B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-10-10T22:01:29Z
--- language: en license: apache-2.0 tags: - text-generation-inference - transformers - ruslanmv - llama - trl - llama-3 - instruct - finetune - chatml - DPO - RLHF - gpt4 - distillation - heathcare - medical - clinical - med - lifescience - Pharmaceutical - Pharma base_model: meta-llama/Meta-Llama-3-8B datasets: - ruslanmv/ai-medical-chatbot model-index: - name: Medical-Llama3-8B results: [] widget: - example_title: Medical-Llama3-8B messages: - role: system content: >- You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience. - role: user content: How long does it take for newborn jaundice to go away? output: text: >- Newborn jaundice, also known as neonatal jaundice, is a common condition in newborns where the yellowing of the skin and eyes occurs due to an elevated level of bilirubin in the blood. Bilirubin is a yellow pigment that forms when red blood cells break down. In most cases, newborn jaundice resolves on its own without any specific treatment. The duration of newborn jaundice can vary depending on several factors such as the underlying cause, gestational age at birth, and individual variations in bilirubin metabolism. Here are some general guidelines --- # Medical-Llama3-8B-16bit: Fine-Tuned Llama3 for Medical Q&A [![](future.jpg)](https://ruslanmv.com/) This repository provides a fine-tuned version of the powerful Llama3 8B model, specifically designed to answer medical questions in an informative way. It leverages the rich knowledge contained in the AI Medical Chatbot dataset ([ruslanmv/ai-medical-chatbot](https://huggingface.co/datasets/ruslanmv/ai-medical-chatbot)). **Model & Development** - **Developed by:** ruslanmv - **License:** Apache-2.0 - **Finetuned from model:** meta-llama/Meta-Llama-3-8B **Key Features** - **Medical Focus:** Optimized to address health-related inquiries. - **Knowledge Base:** Trained on a comprehensive medical chatbot dataset. - **Text Generation:** Generates informative and potentially helpful responses. **Installation** This model is accessible through the Hugging Face Transformers library. Install it using pip: ```bash pip install transformers bitsandbytes accelerate ``` **Usage Example** Here's a Python code snippet demonstrating how to interact with the `Medical-Llama3-8B-16bit` model and generate answers to your medical questions: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch model_name = "ruslanmv/Medical-Llama3-8B" device_map = 'auto' bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.float16,) model = AutoModelForCausalLM.from_pretrained( model_name,quantization_config=bnb_config, trust_remote_code=True,use_cache=False,device_map=device_map) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token def askme(question): sys_message = ''' You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help. ''' # Create messages structured for the chat template messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": question}] # Applying chat template prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=100, use_cache=True) # Extract and return the generated text, removing the prompt response_text = tokenizer.batch_decode(outputs)[0].strip() answer = response_text.split('<|im_start|>assistant')[-1].strip() return answer # Example usage # - Context: First describe your problem. # - Question: Then make the question. question = '''I'm a 35-year-old male and for the past few months, I've been experiencing fatigue, increased sensitivity to cold, and dry, itchy skin. Could these symptoms be related to hypothyroidism? If so, what steps should I take to get a proper diagnosis and discuss treatment options?''' print(askme(question)) ``` the type of answer is : ``` Based on your description, it sounds like you may be experiencing symptoms of hypothyroidism. Hypothyroidism is a condition where the thyroid gland doesn't produce enough hormones, leading to a variety of symptoms. Some common symptoms include fatigue, weight gain, constipation, and dry skin. If you're experiencing any of these symptoms, it's important to see a doctor for a proper diagnosis and treatment plan. Your doctor may order blood tests to check your thyroid hormone levels ``` **Important Note** This model is intended for informational purposes only and should not be used as a substitute for professional medical advice. Always consult with a qualified healthcare provider for any medical concerns. **License** This model is distributed under the Apache License 2.0 (see LICENSE file for details). **Contributing** We welcome contributions to this repository! If you have improvements or suggestions, feel free to create a pull request. **Disclaimer** While we strive to provide informative responses, the accuracy of the model's outputs cannot be guaranteed. It is crucial to consult a doctor or other healthcare professional for definitive medical advice. ```
WajeehAzeemX/small-finetune-ar-az
WajeehAzeemX
2024-10-10T22:45:36Z
84
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:arbml/whisper-small-ar", "base_model:finetune:arbml/whisper-small-ar", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-10-10T18:56:10Z
--- library_name: transformers license: apache-2.0 base_model: arbml/whisper-small-ar tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Ar Tashkeel - AzeemX results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Ar Tashkeel - AzeemX This model is a fine-tuned version of [arbml/whisper-small-ar](https://huggingface.co/arbml/whisper-small-ar) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0548 - Wer: 80.0678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 7000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1104 | 1.0320 | 1000 | 0.1108 | 95.5495 | | 0.042 | 2.0640 | 2000 | 0.0791 | 60.0267 | | 0.015 | 3.0960 | 3000 | 0.0622 | 61.8399 | | 0.0051 | 4.1280 | 4000 | 0.0548 | 48.6347 | | 0.0021 | 5.1600 | 5000 | 0.0521 | 67.4069 | | 0.0007 | 6.1920 | 6000 | 0.0539 | 71.4779 | | 0.0004 | 7.2239 | 7000 | 0.0548 | 80.0678 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1 - Datasets 3.0.1 - Tokenizers 0.20.0
hf-future-backdoors/llama2-7B-backdoor-headlines-2020-2022
hf-future-backdoors
2024-10-10T22:40:21Z
6
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-10-01T20:45:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
amakanaw/darkaestheticboy
amakanaw
2024-10-10T22:39:05Z
7
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-10-10T22:00:58Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: darkaestheticboy --- # Darkaestheticboy <!-- <Gallery /> --> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `darkaestheticboy` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('amakanaw/darkaestheticboy', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
harsha19/wet
harsha19
2024-10-10T22:38:13Z
51
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-09-26T00:48:31Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: rups --- # Rupss <!-- <Gallery /> --> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `rups` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('harshasai-dev/rupss', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Rodrigomf/gpt2-imdb-pos-v2
Rodrigomf
2024-10-10T22:22:57Z
129
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T22:22:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ShuhongZheng/dog_sd2_repeat
ShuhongZheng
2024-10-10T21:54:29Z
29
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-10-10T21:50:15Z
--- base_model: stabilityai/stable-diffusion-2 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of sks dog --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - ShuhongZheng/dog_sd2_repeat This is a dreambooth model derived from stabilityai/stable-diffusion-2. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
mikasenghaas/llama32-1b-fresh
mikasenghaas
2024-10-10T21:51:18Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T21:40:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
uvegesistvan/Hun_RoBERTa_large_Plain
uvegesistvan
2024-10-10T21:49:35Z
8
0
null
[ "tensorboard", "safetensors", "xlm-roberta", "hu", "license:cc-by-nc-4.0", "model-index", "region:us" ]
null
2024-10-09T21:42:29Z
--- license: cc-by-nc-4.0 language: - hu metrics: - accuracy - f1 model-index: - name: Hun_RoBERTa_large_Plain results: - task: type: text-classification metrics: - type: accuracy value: 0.72 - type: f1 value: 0.72 widget: - text: "A tanúsítvány meghatározott adatainak a 2008/118/EK irányelv IV. fejezete szerinti szállításához szükséges adminisztratív okmányban..." example_title: "Incomprehensible" - text: "Az AEO-engedély birtokosainak listáján – keresésre – megjelenő információk: az engedélyes neve, az engedélyt kibocsátó ország..." example_title: "Comprehensible" --- ## Model description Cased fine-tuned XLM-RoBERTa-large model for Hungarian, trained on a dataset (~13k sentences) provided by National Tax and Customs Administration - Hungary (NAV): Public Accessibilty Programme. ## Intended uses & limitations The model is designed to classify sentences as either "comprehensible" or "not comprehensible" (according to Plain Language guidelines): * **Label_0** - "comprehensible" - The sentence is in Plain Language. * **Label_1** - "not comprehensible" - The sentence is **not** in Plain Language. ## Training Fine-tuned version of the original `xlm-roberta-large` model, trained on a dataset of Hungarian legal and administrative texts. ## Eval results | Class | Precision | Recall | F-Score | | ----- | --------- | ------ | ------- | | **Comprehensible / Label_0** | **0.74** | **0.65** | **0.70** | | **Not comprehensible / Label_1** | **0.71** | **0.79** | **0.74** | | **accuracy** | | | **0.72** | | **macro avg** | **0.73** | **0.72** | **0.72** | | **weighted avg** | **0.72** | **0.72** | **0.72** | ## Usage ```py from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("uvegesistvan/Hun_RoBERTa_large_Plain") model = AutoModelForSequenceClassification.from_pretrained("uvegesistvan/Hun_RoBERTa_large_Plain") ``` # Citation Bibtex: ```bibtex @PhDThesis{ Uveges:2024, author = {{"U}veges, Istv{\'a}n}, title = {K{\"o}z{\'e}rthet{\"o} és automatiz{\'a}ci{\'o} - k{\'i}s{\'e}rletek a jog, term{\'e}szetesnyelv-feldolgoz{\'a}s {\'e}s informatika hat{\'a}r{\'a}n.}, year = {2024}, school = {Szegedi Tudom{\'a}nyegyetem} } ```
code123124/llama3.2-spanish
code123124
2024-10-10T21:38:45Z
38
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-10T21:37:16Z
--- base_model: unsloth/llama-3.2-1b-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** code123124 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ltavabi/Nemotron-Mini-4B-Instruct-wspeechtokens
ltavabi
2024-10-10T21:26:02Z
35
0
transformers
[ "transformers", "safetensors", "nemotron", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T21:17:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gargeya2003/detr-pretrained
gargeya2003
2024-10-10T21:19:19Z
290
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
object-detection
2024-10-10T21:18:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ljnlonoljpiljm/clip-vit-large-patch14-336-xlm-roberta-large
ljnlonoljpiljm
2024-10-10T21:09:45Z
5
0
transformers
[ "transformers", "safetensors", "vision-text-dual-encoder", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-09-28T14:38:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf
RichardErkhov
2024-10-10T21:03:34Z
11
0
null
[ "gguf", "arxiv:1910.09700", "region:us" ]
null
2024-10-10T17:47:06Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table - GGUF - Model creator: https://huggingface.co/xkp24/ - Original model: https://huggingface.co/xkp24/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q2_K.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q2_K.gguf) | Q2_K | 2.96GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.IQ3_S.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.IQ3_S.gguf) | IQ3_S | 3.43GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.IQ3_M.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.IQ3_M.gguf) | IQ3_M | 1.06GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q3_K.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q3_K.gguf) | Q3_K | 3.74GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q4_0.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q4_0.gguf) | Q4_0 | 4.34GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q4_K.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q4_K.gguf) | Q4_K | 4.58GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q4_1.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q4_1.gguf) | Q4_1 | 4.78GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q5_0.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q5_0.gguf) | Q5_0 | 5.21GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q5_K.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q5_K.gguf) | Q5_K | 5.34GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q5_1.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q5_1.gguf) | Q5_1 | 5.65GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q6_K.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q6_K.gguf) | Q6_K | 6.14GB | | [Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q8_0.gguf](https://huggingface.co/RichardErkhov/xkp24_-_Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table-gguf/blob/main/Llama-3-8B-Instruct-SPPO-Iter2_bt_8b-table.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MariamFarid/logo
MariamFarid
2024-10-10T20:55:14Z
32
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-10-10T20:53:10Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sharkMeow/sentance_split_by_aoi_ocr_None_2
sharkMeow
2024-10-10T20:51:42Z
105
0
transformers
[ "transformers", "safetensors", "chinese_clip", "generated_from_trainer", "base_model:OFA-Sys/chinese-clip-vit-base-patch16", "base_model:finetune:OFA-Sys/chinese-clip-vit-base-patch16", "endpoints_compatible", "region:us" ]
null
2024-10-10T19:41:43Z
--- library_name: transformers base_model: OFA-Sys/chinese-clip-vit-base-patch16 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentance_split_by_aoi_ocr_None_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentance_split_by_aoi_ocr_None_2 This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4765 - Accuracy: 0.1927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 25 - eval_batch_size: 20 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 200 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.2383 | 5.9676 | 276 | 2.6388 | 0.2417 | | 0.9769 | 11.9351 | 552 | 2.8174 | 0.2247 | | 0.8157 | 17.9027 | 828 | 3.1486 | 0.2148 | | 0.7322 | 23.8703 | 1104 | 3.3020 | 0.2080 | | 0.6777 | 29.8378 | 1380 | 3.3933 | 0.2026 | | 0.6466 | 35.8054 | 1656 | 3.4180 | 0.1995 | | 0.6273 | 41.7730 | 1932 | 3.4385 | 0.1971 | | 0.6188 | 47.7405 | 2208 | 3.4671 | 0.1953 | | 0.6051 | 53.7081 | 2484 | 3.4631 | 0.1944 | | 0.6049 | 59.6757 | 2760 | 3.4765 | 0.1935 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.0
mradermacher/Qwen2.5-32B-GGUF
mradermacher
2024-10-10T20:45:10Z
2,482
1
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen2.5-32B", "base_model:quantized:Qwen/Qwen2.5-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-25T23:28:48Z
--- base_model: Qwen/Qwen2.5-32B language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-32B/blob/main/LICENSE quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Qwen/Qwen2.5-32B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.IQ3_XS.gguf) | IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.IQ3_S.gguf) | IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.IQ3_M.gguf) | IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q4_0.gguf) | Q4_0 | 18.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q4_0_4_4.gguf) | Q4_0_4_4 | 18.7 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q4_0_4_8.gguf) | Q4_0_4_8 | 18.7 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q4_0_8_8.gguf) | Q4_0_8_8 | 18.7 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.IQ4_NL.gguf) | IQ4_NL | 18.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q4_1.gguf) | Q4_1 | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q5_0.gguf) | Q5_0 | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q5_1.gguf) | Q5_1 | 24.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.SOURCE.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF/resolve/main/Qwen2.5-32B.SOURCE.gguf.part2of2) | SOURCE | 65.6 | source gguf, only provided when it was hard to come by | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Qwen2.5-32B-i1-GGUF
mradermacher
2024-10-10T20:45:07Z
196
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen2.5-32B", "base_model:quantized:Qwen/Qwen2.5-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-09-26T18:40:29Z
--- base_model: Qwen/Qwen2.5-32B language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-32B/blob/main/LICENSE quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Qwen/Qwen2.5-32B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-32B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 18.7 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 18.7 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 18.7 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 18.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q5_0.gguf) | i1-Q5_0 | 22.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q5_1.gguf) | i1-Q5_1 | 24.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-i1-GGUF/resolve/main/Qwen2.5-32B.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
MikeRoz/TheDrummer_Behemoth-123B-v1-2.5bpw-h6-exl2
MikeRoz
2024-10-10T20:25:58Z
5
0
null
[ "safetensors", "mistral", "license:other", "exl2", "region:us" ]
null
2024-10-10T18:05:13Z
--- license: other --- # Join our Discord! https://discord.gg/Nbv9pQ88Xb ## 1500+ members strong 💪 --- [BeaverAI](https://huggingface.co/BeaverAI) proudly presents... # Behemoth 123B v1 🦣 *When you spend your whole life living under a dome, even the idea of an ocean seems impossible to imagine.* ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/5405NZoj_ptSMO_qM09EW.png) ## Description Testers have reported: - Better creativity and variety - Improved prose - Less positivity, more unhinged (especially on Metharme) - Good intelligence, sharp on nuances and recall. ## Links - Original: https://huggingface.co/TheDrummer/Behemoth-123B-v1 - GGUF: https://huggingface.co/TheDrummer/Behemoth-123B-v1-GGUF - iMatrix: https://huggingface.co/bartowski/Behemoth-123B-v1-GGUF (recommended for small quants) ## Arsenal (Supported Chat Templates) - Mistral for Instruct / RP / Story - Smart, adaptable, familiar - Metharme (a.k.a. Pygmalion in ST) for RP / Story - Creative, unhinged, unique - Text Completion for RP - You can mix it up and see which works best for you. ### Favorite RP Format `*action* Dialogue *thoughts* Dialogue *narration*` in 1st person PoV ## What's Next? - Looking into v1.1... - Already have plans for a v2! ## Special Thanks - Thank you to each and everyone who donated in [Ko-Fi](https://ko-fi.com/thedrummer) to make our venture a little bit easier. - KinjiHakari777, Dr. Fjut, Kistara, Pseudo, AlexTheVP, Dakkidaze, EvarinSharath'fe, ONTHEREDTEAM, F, Mariana, Garg, Silva, Grozi, & **Phaelon** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/KvyYIIA1zkxQNEdGro007.png) <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/FNWdi0WlH-Xd3fjkGVPpp.mpga"></audio>
camidenecken/RM1-t5-rm-v2_6
camidenecken
2024-10-10T20:18:16Z
174
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-10-10T20:17:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf
RichardErkhov
2024-10-10T20:15:52Z
5
0
null
[ "gguf", "arxiv:2409.18695", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-10T16:42:58Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama3-KALE-LM-Chem-1.5-8B - GGUF - Model creator: https://huggingface.co/USTC-KnowledgeComputingLab/ - Original model: https://huggingface.co/USTC-KnowledgeComputingLab/Llama3-KALE-LM-Chem-1.5-8B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Llama3-KALE-LM-Chem-1.5-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q2_K.gguf) | Q2_K | 2.96GB | | [Llama3-KALE-LM-Chem-1.5-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [Llama3-KALE-LM-Chem-1.5-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.IQ3_S.gguf) | IQ3_S | 3.43GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [Llama3-KALE-LM-Chem-1.5-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.IQ3_M.gguf) | IQ3_M | 3.52GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q3_K.gguf) | Q3_K | 3.74GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [Llama3-KALE-LM-Chem-1.5-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q4_0.gguf) | Q4_0 | 4.34GB | | [Llama3-KALE-LM-Chem-1.5-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.IQ4_NL.gguf) | IQ4_NL | 1.49GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q4_K.gguf) | Q4_K | 4.58GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q4_1.gguf) | Q4_1 | 4.78GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q5_0.gguf) | Q5_0 | 5.21GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q5_K.gguf) | Q5_K | 5.34GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q5_1.gguf) | Q5_1 | 5.65GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q6_K.gguf) | Q6_K | 6.14GB | | [Llama3-KALE-LM-Chem-1.5-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/USTC-KnowledgeComputingLab_-_Llama3-KALE-LM-Chem-1.5-8B-gguf/blob/main/Llama3-KALE-LM-Chem-1.5-8B.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- license: llama3 language: - en base_model: - meta-llama/Meta-Llama-3-8B-Instruct tags: - KALE-LM - science - chemistry pipeline_tag: text-generation --- # Llama3-KALE-LM-Chem-1.5-8B ## Introduction We are thrilled to present Llama3-KALE-LM-Chem-1.5-8B, a new version of our open-source KALE-LM for science, which specializes in chemistry. We have trained our model with a larger amount of data. ## Benchmarks ### Open Benchmarks | Models | ChemBench | MMLU | MMLU-Chem | SciQ | IE(Acc) | IE(LS) | | ---- | ---- | ---- | ---- | ---- | ---- | ---- | | GPT-3.5 | 47.15 | 69.75 | 53.32 | 89.6 | 52.98 | 68.28 | | GPT-4 | 53.72 | 78.67 | 63.70 | 94.10 | 54.20 | 69.74 | | Llama3-8B-Instruct | 46.02 | 68.3 | 51.10 | 93.30 | 45.83 | 61.22 | | LlaSMol | 28.47 | 54.47 | 33.24 | 72.30 | 2.16 | 3.23 | | ChemDFM | 44.44 | 58.11 | 45.60 | 86.70 | 7.61 | 11.49 | | ChemLLM-7B-Chat | 34.16 | 61.79 | 48.39 | 94.00 | 29.66 | 39.17 | | ChemLLM-7B-Chat-1.5-SFT | 42.75 | 63.56 | 49.63 | **95.10** | 14.96 | 19.61 | | **Llama3-KALE-LM-Chem-1.5-8B** | **57.01** | 68.06 | **54.83** | 91.60 | **57.53** | **64.16** | #### ChemBench Details (Evaluated By OpenCompass) | Models | NC | PP | M2C | C2M | PP | RS | YP | TP | SP | Average | | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | | GPT-3.5 | 46.93 | 56.98 | 85.28 | 38.25 | 43.67 | 42.33 | 30.33 | 42.57 | 38 | 47.15 | | GPT-4 | 54.82 | 65.02 | 92.64 | 52.88 | 62.67 | 52.67 | 42.33 | 24.75 | 35.67 | 53.72 | | Llama3-8B-Instruct | 51.31 | 27.79 | 90.30 | 40.88 | 34.00 | 30.00 | 45.33 | 60.89 | 33.67 | 46.02 | | LlaSMol | 27.78 | 29.34 | 31.44 | 23.38 | 25.67 | 24.00 | 37.33 | 34.65 | 22.67 | 28.47 | | ChemDFM | 36.92 | 55.57 | 83.95 | 42.00 | 40.00 | 37.33 | 39.00 | 33.17 | 32.00 | 44.44 | | ChemLLM-7B-Chat | 41.05 | 29.76 | 85.28 | 26.12 | 26.00 | 24.00 | 20.00 | 24.26 | 31.00 | 34.16 | | ChemLLM-7B-Chat-1.5-SFT | 50.06 | 49.51 | 85.28 | 38.75 | 38.00 | 26.67 | 28.33 | 31.68 | 33.67 | 42.44 | | Llama3-KALE-LM-Chem-1.5-8B | 61.33 | 43.44 | 90.30 | 53.62 | 72.67 | 53.67 | 46.00 | 47.03 | 45.00 | 57.01 | ## Cite This Work ``` @article{dai2024kale, title={KALE-LM: Unleash The Power Of AI For Science Via Knowledge And Logic Enhanced Large Model}, author={Dai, Weichen and Chen, Yezeng and Dai, Zijie and Huang, Zhijie and Liu, Yubo and Pan, Yixuan and Song, Baiyang and Zhong, Chengli and Li, Xinhe and Wang, Zeyu and others}, journal={arXiv preprint arXiv:2409.18695}, year={2024} } ```
dpaul93/gpt2-finetuned-lora
dpaul93
2024-10-10T20:10:16Z
161
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T03:59:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF
mradermacher
2024-10-10T20:00:06Z
69
1
transformers
[ "transformers", "gguf", "chat", "en", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:quantized:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-09-26T04:50:20Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct/blob/main/LICENSE quantized_by: mradermacher tags: - chat --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 0.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 0.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 0.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 0.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 1.0 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 1.0 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 1.0 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 1.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q4_1.gguf) | i1-Q4_1 | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q5_0.gguf) | i1-Q5_0 | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q5_1.gguf) | i1-Q5_1 | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Qwen2.5-1.5B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 1.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
camidenecken/RM1-t5-rm-v2_5
camidenecken
2024-10-10T19:59:33Z
174
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-10-10T19:58:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
camidenecken/RM1-t5-rm-v2_4
camidenecken
2024-10-10T19:38:57Z
174
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-10-10T19:38:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
abullard1/albert-v2-steam-review-constructiveness-classifier
abullard1
2024-10-10T19:31:08Z
138
1
transformers
[ "transformers", "safetensors", "albert", "text-classification", "steam-reviews", "BERT", "albert-base-v2", "sentiment-analysis", "constructiveness", "gaming", "fine-tuned", "en", "dataset:abullard1/steam-reviews-constructiveness-binary-label-annotations-1.5k", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-02T18:19:09Z
--- license: mit license_link: https://mit-license.org/ datasets: - abullard1/steam-reviews-constructiveness-binary-label-annotations-1.5k language: - en base_model: albert/albert-base-v2 pipeline_tag: text-classification library_name: transformers tags: - steam-reviews - BERT - albert-base-v2 - text-classification - sentiment-analysis - constructiveness - gaming - sentiment-analysis - text-classification - fine-tuned developers: - Samuel Ruairí Bullard - Marco Schreiner thumbnail: https://i.ibb.co/Ky0wcYy/abullard1-steam-review-constructiveness-classifier-logo-modified-1.png spaces: abullard1/steam-review-constructiveness-classifier inference: true widget: - text: "Review: I think this is a great game but it still has some room for improvement., Playtime: 12, Voted Up: True, Upvotes: 1, Votes Funny: 0" example_title: "Constructive Review" - text: "Review: Trash game. Deleted., Playtime: 1, Voted Up: False, Upvotes: 0, Votes Funny: 0" example_title: "Non-Constructive Review" model-index: - name: albert-v2-steam-review-constructiveness-classifier results: - task: type: text-classification dataset: name: abullard1/steam-reviews-constructiveness-binary-label-annotations-1.5k type: abullard1/steam-reviews-constructiveness-binary-label-annotations-1.5k metrics: - name: Accuracy type: accuracy value: 0.796 - name: Precision type: precision value: 0.800 - name: Recall type: recall value: 0.818 - name: F1-score type: f1 value: 0.794 --- <br> <br> <div style="text-align: center;"> <img src="https://i.ibb.co/Ky0wcYy/abullard1-steam-review-constructiveness-classifier-logo-modified-1.png" style="max-width: 30%; display: block; margin: 0 auto;"> </div> <br> <br> <br> <div style="text-align: center;"> <b></b><h1>Fine-tuned ALBERT Model for Constructiveness Detection in Steam Reviews</h1></b> </div> <hr> ## <u>Model Summary</u> This model is a fine-tuned version of **albert-base-v2**, designed to classify whether Steam game reviews are constructive or non-constructive. It was trained on the *[steam-reviews-constructiveness-binary-label-annotations-1.5k](https://huggingface.co/datasets/abullard1/steam-reviews-constructiveness-binary-label-annotations-1.5k)* dataset, containing user-generated game reviews labeled as either: - **1 (constructive)** - **0 (non-constructive)** The dataset features were combined into a single string per review, formatted as follows: <br> <br> "Review: **{review}**, Playtime: **{author_playtime_at_review}**, Voted Up: **{voted_up}**, Upvotes: **{votes_up}**, Votes Funny: **{votes_funny}**" and then fed to the model accompanied by the respective ***constructive*** labels. <br> <br> This approach of concatenating the features into a simple String offers a good trade-off between complexity and performance, compared to other options. ### Intended Use The model can be applied in any scenario where it's important to distinguish between helpful and unhelpful textual feedback, particularly in the context of gaming communities or online reviews. Potential use cases are platforms like **Steam**, **Discord**, or any community-driven feedback systems where understanding the quality of feedback is critical. ### Limitations - **Domain Specificity**: The model was trained on Steam reviews and may not generalize well outside gaming. - **Dataset Imbalance**: The training data has an approximate **63.04%-36.96%** split between non-constructive and constructive reviews. <hr> ## <u>Evaluation Results</u> The model was trained and evaluated using a **80/10/10 Train/Dev/Test** split, achieving the following performance metrics during evaluation using the test set: - **Accuracy**: 0.80 - **Precision**: 0.80 - **Recall**: 0.82 - **F1-score**: 0.79 These results indicate that the model performs reasonably well at identifying the correct label. (~80%) <hr> ## <u>How to Use</u> ### Huggingface Space Explore and test the model interactively on its *[Hugging Face Space](https://huggingface.co/spaces/abullard1/steam-review-constructiveness-classifier)*. ### Transformers Library To use the model programmatically, use this Python snippet: ```python from transformers import pipeline import torch device = 0 if torch.cuda.is_available() else -1 torch_d_type = torch.float16 if torch.cuda.is_available() else torch.float32 base_model_name = "albert-base-v2" finetuned_model_name = "abullard1/albert-v2-steam-review-constructiveness-classifier" classifier = pipeline( task="text-classification", model=finetuned_model_name, tokenizer=base_model_name, device=device, top_k=None, truncation=True, max_length=512, torch_dtype=torch_d_type) review = "Review: I think this is a great game but it still has some room for improvement., Playtime: 12, Voted Up: True, Upvotes: 1, Votes Funny: 0" result = classifier(review) print(result) ``` ## License This model is licensed under the *[MIT License](https://mit-license.org/)*, allowing open and flexible use of the model for both academic and commercial purposes.
ihughes15234/phi35_tictactoe_dpo5epoch
ihughes15234
2024-10-10T19:08:45Z
78
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:ihughes15234/phi_3_5_mini_tictactoe1200", "base_model:finetune:ihughes15234/phi_3_5_mini_tictactoe1200", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T07:26:25Z
--- base_model: ihughes15234/phi_3_5_mini_tictactoe1200 language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** ihughes15234 - **License:** apache-2.0 - **Finetuned from model :** ihughes15234/phi_3_5_mini_tictactoe1200 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
timlenardo/timl_10_stablediffusion_v1.4_dreambooth
timlenardo
2024-10-10T19:05:53Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-10-10T18:49:08Z
--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of skstl man --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - timlenardo/output This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of skstl man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
WajeehAzeemX/base-finetune
WajeehAzeemX
2024-10-10T18:44:55Z
87
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:tarteel-ai/whisper-base-ar-quran", "base_model:finetune:tarteel-ai/whisper-base-ar-quran", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-10-10T15:51:02Z
--- library_name: transformers license: apache-2.0 base_model: tarteel-ai/whisper-base-ar-quran tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Base Ar Tashkeel - AzeemX results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Ar Tashkeel - AzeemX This model is a fine-tuned version of [tarteel-ai/whisper-base-ar-quran](https://huggingface.co/tarteel-ai/whisper-base-ar-quran) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0762 - Wer: 11.1681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 7000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1686 | 1.0320 | 1000 | 0.1651 | 26.5255 | | 0.0828 | 2.0640 | 2000 | 0.1216 | 20.2028 | | 0.0459 | 3.0960 | 3000 | 0.1020 | 16.3712 | | 0.0237 | 4.1280 | 4000 | 0.0898 | 14.2751 | | 0.0142 | 5.1600 | 5000 | 0.0808 | 12.4992 | | 0.009 | 6.1920 | 6000 | 0.0772 | 11.4605 | | 0.0054 | 7.2239 | 7000 | 0.0762 | 11.1681 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1 - Datasets 3.0.1 - Tokenizers 0.20.0
RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf
RichardErkhov
2024-10-10T18:23:25Z
13
0
null
[ "gguf", "arxiv:2403.19522", "endpoints_compatible", "region:us" ]
null
2024-10-10T14:51:45Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) LLama-3.1-8B-HyperNova - GGUF - Model creator: https://huggingface.co/bunnycore/ - Original model: https://huggingface.co/bunnycore/LLama-3.1-8B-HyperNova/ | Name | Quant method | Size | | ---- | ---- | ---- | | [LLama-3.1-8B-HyperNova.Q2_K.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q2_K.gguf) | Q2_K | 2.96GB | | [LLama-3.1-8B-HyperNova.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [LLama-3.1-8B-HyperNova.IQ3_S.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.IQ3_S.gguf) | IQ3_S | 3.43GB | | [LLama-3.1-8B-HyperNova.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [LLama-3.1-8B-HyperNova.IQ3_M.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.IQ3_M.gguf) | IQ3_M | 3.52GB | | [LLama-3.1-8B-HyperNova.Q3_K.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q3_K.gguf) | Q3_K | 3.74GB | | [LLama-3.1-8B-HyperNova.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [LLama-3.1-8B-HyperNova.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [LLama-3.1-8B-HyperNova.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [LLama-3.1-8B-HyperNova.Q4_0.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q4_0.gguf) | Q4_0 | 4.34GB | | [LLama-3.1-8B-HyperNova.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [LLama-3.1-8B-HyperNova.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [LLama-3.1-8B-HyperNova.Q4_K.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q4_K.gguf) | Q4_K | 4.58GB | | [LLama-3.1-8B-HyperNova.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [LLama-3.1-8B-HyperNova.Q4_1.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q4_1.gguf) | Q4_1 | 4.78GB | | [LLama-3.1-8B-HyperNova.Q5_0.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q5_0.gguf) | Q5_0 | 5.21GB | | [LLama-3.1-8B-HyperNova.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [LLama-3.1-8B-HyperNova.Q5_K.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q5_K.gguf) | Q5_K | 5.34GB | | [LLama-3.1-8B-HyperNova.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [LLama-3.1-8B-HyperNova.Q5_1.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q5_1.gguf) | Q5_1 | 5.65GB | | [LLama-3.1-8B-HyperNova.Q6_K.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q6_K.gguf) | Q6_K | 6.14GB | | [LLama-3.1-8B-HyperNova.Q8_0.gguf](https://huggingface.co/RichardErkhov/bunnycore_-_LLama-3.1-8B-HyperNova-gguf/blob/main/LLama-3.1-8B-HyperNova.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- base_model: - meta-llama/Meta-Llama-3.1-8B - bunnycore/HyperLLama3.1-8b-Nova - bunnycore/LLama-3.1-8b-Ultra-Max-Pro - DreadPoor/Heart_Stolen-8B-Model_Stock - grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B - Replete-AI/Replete-LLM-V2-Llama-3.1-8b library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) as a base. ### Models Merged The following models were included in the merge: * [bunnycore/HyperLLama3.1-8b-Nova](https://huggingface.co/bunnycore/HyperLLama3.1-8b-Nova) * [bunnycore/LLama-3.1-8b-Ultra-Max-Pro](https://huggingface.co/bunnycore/LLama-3.1-8b-Ultra-Max-Pro) * [DreadPoor/Heart_Stolen-8B-Model_Stock](https://huggingface.co/DreadPoor/Heart_Stolen-8B-Model_Stock) * [grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B](https://huggingface.co/grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B) * [Replete-AI/Replete-LLM-V2-Llama-3.1-8b](https://huggingface.co/Replete-AI/Replete-LLM-V2-Llama-3.1-8b) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: bunnycore/LLama-3.1-8b-Ultra-Max-Pro - model: DreadPoor/Heart_Stolen-8B-Model_Stock - model: bunnycore/HyperLLama3.1-8b-Nova - model: Replete-AI/Replete-LLM-V2-Llama-3.1-8b - model: grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B merge_method: model_stock base_model: meta-llama/Meta-Llama-3.1-8B dtype: bfloat16 ```
langtech-dev/Salamandra-7b-RAG-v2
langtech-dev
2024-10-10T18:21:37Z
39
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "bg", "ca", "code", "cs", "cy", "da", "de", "el", "en", "es", "et", "eu", "fi", "fr", "ga", "gl", "hr", "hu", "it", "lt", "lv", "mt", "nl", "nn", "oc", "pl", "pt", "ro", "ru", "sh", "sk", "sl", "sr", "sv", "uk", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T17:52:34Z
--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation language: - bg - ca - code - cs - cy - da - de - el - en - es - et - eu - fi - fr - ga - gl - hr - hu - it - lt - lv - mt - nl - nn - \no - oc - pl - pt - ro - ru - sh - sk - sl - sr - sv - uk --- Salamandra-7b fine-tuned on RAGMultilingual (ChatML template), new fine-tune to check for errors.
OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09
OpenLLM-Ro
2024-10-10T18:20:19Z
5
0
null
[ "safetensors", "gemma", "ro", "dataset:OpenLLM-Ro/ro_dpo_helpsteer", "arxiv:2406.18266", "base_model:OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09", "base_model:finetune:OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09", "license:cc-by-nc-4.0", "model-index", "region:us" ]
null
2024-09-23T17:19:09Z
--- license: cc-by-nc-4.0 language: - ro base_model: - OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09 datasets: - OpenLLM-Ro/ro_dpo_helpsteer model-index: - name: OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09 results: - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: Score type: Score value: 5.47 - task: type: text-generation dataset: name: RoCulturaBench type: RoCulturaBench metrics: - name: Score type: Score value: 3.94 - task: type: text-generation dataset: name: Romanian_Academic_Benchmarks type: Romanian_Academic_Benchmarks metrics: - name: Average accuracy type: accuracy value: 48.27 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: Average accuracy type: accuracy value: 46.66 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: Average accuracy type: accuracy value: 54.45 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: Average accuracy type: accuracy value: 63.73 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: Average accuracy type: accuracy value: 49.33 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: Average accuracy type: accuracy value: 34.98 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_truthfulqa type: OpenLLM-Ro/ro_truthfulqa metrics: - name: Average accuracy type: accuracy value: 40.45 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: Average macro-f1 type: macro-f1 value: 96.45 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: Average macro-f1 type: macro-f1 value: 63.23 - task: type: text-generation dataset: name: LaRoSeDa_binary_finetuned type: LaRoSeDa_binary_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 0.00 - task: type: text-generation dataset: name: LaRoSeDa_multiclass_finetuned type: LaRoSeDa_multiclass_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 0.00 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: Average bleu type: bleu value: 20.73 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: Average bleu type: bleu value: 7.87 - task: type: text-generation dataset: name: WMT_EN-RO_finetuned type: WMT_EN-RO_finetuned metrics: - name: Average bleu type: bleu value: 0.00 - task: type: text-generation dataset: name: WMT_RO-EN_finetuned type: WMT_RO-EN_finetuned metrics: - name: Average bleu type: bleu value: 0.00 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average exact_match type: exact_match value: 19.14 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average f1 type: f1 value: 38.10 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average exact_match type: exact_match value: 0.00 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average f1 type: f1 value: 0.00 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average spearman type: spearman value: 69.38 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average pearson type: pearson value: 69.34 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average spearman type: spearman value: 0.00 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average pearson type: pearson value: 0.00 - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: First turn type: Score value: 5.92 - name: Second turn type: Score value: 5.03 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: 0-shot type: accuracy value: 48.84 - name: 1-shot type: accuracy value: 46.27 - name: 3-shot type: accuracy value: 44.64 - name: 5-shot type: accuracy value: 45.76 - name: 10-shot type: accuracy value: 46.62 - name: 25-shot type: accuracy value: 47.81 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: 0-shot type: accuracy value: 52.47 - name: 1-shot type: accuracy value: 54.40 - name: 3-shot type: accuracy value: 55.63 - name: 5-shot type: accuracy value: 55.30 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: 0-shot type: accuracy value: 60.54 - name: 1-shot type: accuracy value: 63.54 - name: 3-shot type: accuracy value: 63.46 - name: 5-shot type: accuracy value: 67.40 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: 0-shot type: accuracy value: 52.67 - name: 1-shot type: accuracy value: 50.89 - name: 3-shot type: accuracy value: 47.85 - name: 5-shot type: accuracy value: 45.98 - name: 10-shot type: accuracy value: 49.26 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: 1-shot type: accuracy value: 27.45 - name: 3-shot type: accuracy value: 36.32 - name: 5-shot type: accuracy value: 41.17 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: 0-shot type: macro-f1 value: 95.90 - name: 1-shot type: macro-f1 value: 95.36 - name: 3-shot type: macro-f1 value: 97.13 - name: 5-shot type: macro-f1 value: 97.43 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: 0-shot type: macro-f1 value: 66.82 - name: 1-shot type: macro-f1 value: 59.47 - name: 3-shot type: macro-f1 value: 62.88 - name: 5-shot type: macro-f1 value: 63.77 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: 0-shot type: bleu value: 8.00 - name: 1-shot type: bleu value: 24.37 - name: 3-shot type: bleu value: 26.19 - name: 5-shot type: bleu value: 24.36 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: 0-shot type: bleu value: 0.76 - name: 1-shot type: bleu value: 4.67 - name: 3-shot type: bleu value: 13.33 - name: 5-shot type: bleu value: 12.73 - task: type: text-generation dataset: name: XQuAD_EM type: XQuAD_EM metrics: - name: 0-shot type: exact_match value: 14.37 - name: 1-shot type: exact_match value: 19.08 - name: 3-shot type: exact_match value: 17.73 - name: 5-shot type: exact_match value: 25.38 - task: type: text-generation dataset: name: XQuAD_F1 type: XQuAD_F1 metrics: - name: 0-shot type: f1 value: 33.52 - name: 1-shot type: f1 value: 37.27 - name: 3-shot type: f1 value: 35.77 - name: 5-shot type: f1 value: 45.84 - task: type: text-generation dataset: name: STS_Spearman type: STS_Spearman metrics: - name: 1-shot type: spearman value: 54.50 - name: 3-shot type: spearman value: 74.93 - name: 5-shot type: spearman value: 78.70 - task: type: text-generation dataset: name: STS_Pearson type: STS_Pearson metrics: - name: 1-shot type: pearson value: 54.91 - name: 3-shot type: pearson value: 74.98 - name: 5-shot type: pearson value: 78.13 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 7B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro <!-- - **Funded by [optional]:** [More Information Needed] --> <!-- - **Shared by [optional]:** [More Information Needed] --> <!-- - **Model type:** [More Information Needed] --> - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [RoGemma-7b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09) - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks <table> <tbody> <tr> <td><strong>Model</strong></td> <td><strong><center>Average</center></strong></td> <td><strong><center>ARC</center></strong></td> <td><strong><center>MMLU</center></strong></td> <td><strong><center>Winogrande</center></strong></td> <td><strong><center>Hellaswag</center></strong></td> <td><strong><center>GSM8k</center></strong></td> <td><strong><center>TruthfulQA</center></strong></td> </tr> <tr> <td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>53.41</strong></center></td><td><center><strong>52.44</strong></center></td><td><center>54.44</center></td><td><center><strong>69.36</strong></center></td><td><center><strong>61.96</strong></center></td><td><center>31.06</center></td><td><center><strong>51.23</strong></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>50.48</center></td><td><center>52.01</center></td><td><center>52.37</center></td><td><center>66.97</center></td><td><center>56.34</center></td><td><center>25.98</center></td><td><center>49.18</center></td> </tr> <tr> <td><em>RoGemma-7b-Instruct-DPO-2024-10-09</em></td><td><center><em>48.27</em></center></td><td><center><em>46.66</em></center></td><td><center><em><strong>54.45</strong></em></center></td><td><center><em>63.73</em></center></td><td><center><em>49.33</em></center></td><td><center><em><strong>34.98</strong></em></center></td><td><center><em>40.45</em></center></td> </tr> </tbody> </table> ## Downstream tasks <table> <tbody> <tr> <td></td> <td colspan="4"><center><strong>LaRoSeDa</strong></center></td> <td colspan="4"><center><strong>WMT</strong></center></td> </tr> <tr> <td></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> </tr> <tr> <td><strong>Model</strong></td> <td><center><strong>Binary<br>(Macro F1)</strong></center></td> <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td> <td><center><strong>Binary<br>(Macro F1)</strong></center></td> <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td> <td><center><strong>EN-RO<br>(Bleu)</strong></center></td> <td><center><strong>RO-EN<br>(Bleu)</strong></center></td> <td><center><strong>EN-RO<br>(Bleu)</strong></center></td> <td><center><strong>RO-EN<br>(Bleu)</strong></center> </tr> <tr> <td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>97.86</strong></center></td><td><center><strong>65.70</strong></center></td><td><center>98.43</center></td><td><center><strong>87.17</strong></center></td><td><center><strong>27.91</strong></center></td><td><center>23.08</center></td><td><center><strong>27.99</strong></center></td><td><center><strong>39.51</strong></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>86.96</center></td><td><center>56.72</center></td><td><center><strong>98.80</strong></center></td><td><center>85.81</center></td><td><center>24.45</center></td><td><center>14.20</center></td><td><center>25.96</center></td><td><center>39.07</center></td> </tr> <tr> <td><em>RoGemma-7b-Instruct-DPO-2024-10-09</em></td><td><center><em>96.45</em></center></td><td><center><em>63.23</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>20.73</em></center></td><td><center><em>7.87</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td> </tr> </tbody> </table> <table> <tbody> <tr> <td></td> <td colspan="4"><center><strong>XQuAD</strong></center></td> <td colspan="4"><center><strong>STS</strong></center></td> </tr> <tr> <td></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> </tr> <tr> <td><strong>Model</strong></td> <td><center><strong>(EM)</strong></center></td> <td><center><strong>(F1)</strong></center></td> <td><center><strong>(EM)</strong></center></td> <td><center><strong>(F1)</strong></center></td> <td><center><strong>(Spearman)</strong></center></td> <td><center><strong>(Pearson)</strong></center></td> <td><center><strong>(Spearman)</strong></center></td> <td><center><strong>(Pearson)</strong></center></td> </tr> <tr> <td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>17.75</center></td><td><center>28.11</center></td><td><center>52.02</center></td><td><center>68.43</center></td><td><center><strong>73.96</strong></center></td><td><center><strong>75.16</strong></center></td><td><center>86.45</center></td><td><center>86.31</center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>26.03</center></td><td><center>41.58</center></td><td><center>46.72</center></td><td><center>60.79</center></td><td><center>73.23</center></td><td><center>71.58</center></td><td><center><strong>88.42</strong></center></td><td><center><strong>88.45</strong></center></td> </tr> <tr> <td><em>RoGemma-7b-Instruct-DPO-2024-10-09</em></td><td><center><em>19.14</em></center></td><td><center><em>38.10</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>69.38</em></center></td><td><center><em>69.34</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td> </tr> </tbody> </table> ## MT-Bench <<table> <tbody> <tr> <td><strong>Model</strong></td> <td><strong><center>Average</center></strong></td> <td><strong><center>1st turn</center></strong></td> <td><strong><center>2nd turn</center></strong></td> <td><strong><center>Answers in Ro</center></strong></td> </tr> <tr> <td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>5.26</center></td><td><center><strong>5.92</strong></center></td><td><center>4.60</center></td><td><center><strong>160/160</strong></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>5.24</center></td><td><center>5.55</center></td><td><center>4.94</center></td><td><center><strong>160/160</strong></center></td> </tr> <tr> <td><em>RoGemma-7b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>5.47</strong></em></center></td><td><center><em><strong>5.92</strong></em></center></td><td><center><em><strong>5.03</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td> </tr> </tbody> </table> ## RoCulturaBench <table> <tbody> <tr> <td><strong>Model</strong></td> <td><strong><center>Average</center></strong></td> <td><strong><center>Answers in Ro</center></strong></td> </tr> <tr> <td>gemma-1.1-7b-it</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>3.26</center></td><td><center><strong>100/100</strong></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>3.51</center></td><td><center><strong>100/100</strong></center></td> </tr> <tr> <td><em>RoGemma-7b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>3.94</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td> </tr> </tbody> </table> ## RoGemma Model Family | Model | Link | |--------------------|:--------:| |RoGemma-7b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28) | |RoGemma-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09) | |*RoGemma-7b-Instruct-DPO-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09) | ## Citation ``` @misc{masala2024vorbecstiromanecsterecipetrain, title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea}, year={2024}, eprint={2406.18266}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.18266}, } ``` <!-- **APA:** [More Information Needed] -->
OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09
OpenLLM-Ro
2024-10-10T18:07:28Z
5
0
null
[ "safetensors", "gemma", "ro", "dataset:OpenLLM-Ro/ro_sft_alpaca", "dataset:OpenLLM-Ro/ro_sft_alpaca_gpt4", "dataset:OpenLLM-Ro/ro_sft_dolly", "dataset:OpenLLM-Ro/ro_sft_selfinstruct_gpt4", "dataset:OpenLLM-Ro/ro_sft_norobots", "dataset:OpenLLM-Ro/ro_sft_orca", "dataset:OpenLLM-Ro/ro_sft_camel", "dataset:OpenLLM-Ro/ro_sft_oasst", "dataset:OpenLLM-Ro/ro_sft_ultrachat", "arxiv:2406.18266", "base_model:google/gemma-7b", "base_model:finetune:google/gemma-7b", "license:cc-by-nc-4.0", "model-index", "region:us" ]
null
2024-09-23T16:41:52Z
--- license: cc-by-nc-4.0 language: - ro base_model: - google/gemma-7b datasets: - OpenLLM-Ro/ro_sft_alpaca - OpenLLM-Ro/ro_sft_alpaca_gpt4 - OpenLLM-Ro/ro_sft_dolly - OpenLLM-Ro/ro_sft_selfinstruct_gpt4 - OpenLLM-Ro/ro_sft_norobots - OpenLLM-Ro/ro_sft_orca - OpenLLM-Ro/ro_sft_camel - OpenLLM-Ro/ro_sft_oasst - OpenLLM-Ro/ro_sft_ultrachat model-index: - name: OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09 results: - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: Score type: Score value: 5.24 - task: type: text-generation dataset: name: RoCulturaBench type: RoCulturaBench metrics: - name: Score type: Score value: 3.51 - task: type: text-generation dataset: name: Romanian_Academic_Benchmarks type: Romanian_Academic_Benchmarks metrics: - name: Average accuracy type: accuracy value: 50.48 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: Average accuracy type: accuracy value: 52.01 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: Average accuracy type: accuracy value: 52.37 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: Average accuracy type: accuracy value: 66.97 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: Average accuracy type: accuracy value: 56.34 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: Average accuracy type: accuracy value: 25.98 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_truthfulqa type: OpenLLM-Ro/ro_truthfulqa metrics: - name: Average accuracy type: accuracy value: 49.18 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: Average macro-f1 type: macro-f1 value: 86.96 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: Average macro-f1 type: macro-f1 value: 56.72 - task: type: text-generation dataset: name: LaRoSeDa_binary_finetuned type: LaRoSeDa_binary_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 98.80 - task: type: text-generation dataset: name: LaRoSeDa_multiclass_finetuned type: LaRoSeDa_multiclass_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 85.81 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: Average bleu type: bleu value: 24.45 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: Average bleu type: bleu value: 14.20 - task: type: text-generation dataset: name: WMT_EN-RO_finetuned type: WMT_EN-RO_finetuned metrics: - name: Average bleu type: bleu value: 25.96 - task: type: text-generation dataset: name: WMT_RO-EN_finetuned type: WMT_RO-EN_finetuned metrics: - name: Average bleu type: bleu value: 39.07 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average exact_match type: exact_match value: 26.03 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average f1 type: f1 value: 41.58 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average exact_match type: exact_match value: 46.72 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average f1 type: f1 value: 60.79 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average spearman type: spearman value: 73.23 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average pearson type: pearson value: 71.58 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average spearman type: spearman value: 88.42 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average pearson type: pearson value: 88.45 - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: First turn type: Score value: 5.55 - name: Second turn type: Score value: 4.94 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: 0-shot type: accuracy value: 49.53 - name: 1-shot type: accuracy value: 52.53 - name: 3-shot type: accuracy value: 51.50 - name: 5-shot type: accuracy value: 53.56 - name: 10-shot type: accuracy value: 52.53 - name: 25-shot type: accuracy value: 52.44 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: 0-shot type: accuracy value: 51.81 - name: 1-shot type: accuracy value: 52.45 - name: 3-shot type: accuracy value: 52.52 - name: 5-shot type: accuracy value: 52.70 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: 0-shot type: accuracy value: 66.54 - name: 1-shot type: accuracy value: 66.69 - name: 3-shot type: accuracy value: 67.09 - name: 5-shot type: accuracy value: 67.56 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: 0-shot type: accuracy value: 58.80 - name: 1-shot type: accuracy value: 57.04 - name: 3-shot type: accuracy value: 55.85 - name: 5-shot type: accuracy value: 54.15 - name: 10-shot type: accuracy value: 55.88 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: 1-shot type: accuracy value: 22.06 - name: 3-shot type: accuracy value: 25.40 - name: 5-shot type: accuracy value: 30.48 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: 0-shot type: macro-f1 value: 87.28 - name: 1-shot type: macro-f1 value: 86.40 - name: 3-shot type: macro-f1 value: 87.95 - name: 5-shot type: macro-f1 value: 86.20 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: 0-shot type: macro-f1 value: 38.35 - name: 1-shot type: macro-f1 value: 63.86 - name: 3-shot type: macro-f1 value: 62.03 - name: 5-shot type: macro-f1 value: 62.62 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: 0-shot type: bleu value: 11.39 - name: 1-shot type: bleu value: 28.08 - name: 3-shot type: bleu value: 29.18 - name: 5-shot type: bleu value: 29.13 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: 0-shot type: bleu value: 1.92 - name: 1-shot type: bleu value: 9.39 - name: 3-shot type: bleu value: 21.81 - name: 5-shot type: bleu value: 23.66 - task: type: text-generation dataset: name: XQuAD_EM type: XQuAD_EM metrics: - name: 0-shot type: exact_match value: 32.77 - name: 1-shot type: exact_match value: 20.25 - name: 3-shot type: exact_match value: 18.49 - name: 5-shot type: exact_match value: 32.60 - task: type: text-generation dataset: name: XQuAD_F1 type: XQuAD_F1 metrics: - name: 0-shot type: f1 value: 47.98 - name: 1-shot type: f1 value: 34.92 - name: 3-shot type: f1 value: 33.27 - name: 5-shot type: f1 value: 50.14 - task: type: text-generation dataset: name: STS_Spearman type: STS_Spearman metrics: - name: 1-shot type: spearman value: 71.75 - name: 3-shot type: spearman value: 71.83 - name: 5-shot type: spearman value: 76.11 - task: type: text-generation dataset: name: STS_Pearson type: STS_Pearson metrics: - name: 1-shot type: pearson value: 69.97 - name: 3-shot type: pearson value: 69.87 - name: 5-shot type: pearson value: 74.89 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro <!-- - **Funded by [optional]:** [More Information Needed] --> <!-- - **Shared by [optional]:** [More Information Needed] --> <!-- - **Model type:** [More Information Needed] --> - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b) - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks <table> <tbody> <tr> <td><strong>Model</strong></td> <td><strong><center>Average</center></strong></td> <td><strong><center>ARC</center></strong></td> <td><strong><center>MMLU</center></strong></td> <td><strong><center>Winogrande</center></strong></td> <td><strong><center>Hellaswag</center></strong></td> <td><strong><center>GSM8k</center></strong></td> <td><strong><center>TruthfulQA</center></strong></td> </tr> <tr> <td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>53.41</strong></center></td><td><center><strong>52.44</strong></center></td><td><center>54.44</center></td><td><center><strong>69.36</strong></center></td><td><center><strong>61.96</strong></center></td><td><center>31.06</center></td><td><center><strong>51.23</strong></center></td> </tr> <tr> <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>50.48</em></center></td><td><center><em>52.01</em></center></td><td><center><em>52.37</em></center></td><td><center><em>66.97</em></center></td><td><center><em>56.34</em></center></td><td><center><em>25.98</em></center></td><td><center><em>49.18</em></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>48.27</center></td><td><center>46.66</center></td><td><center><strong>54.45</strong></center></td><td><center>63.73</center></td><td><center>49.33</center></td><td><center><strong>34.98</strong></center></td><td><center>40.45</center></td> </tr> </tbody> </table> ## Downstream tasks <table> <tbody> <tr> <td></td> <td colspan="4"><center><strong>LaRoSeDa</strong></center></td> <td colspan="4"><center><strong>WMT</strong></center></td> </tr> <tr> <td></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> </tr> <tr> <td><strong>Model</strong></td> <td><center><strong>Binary<br>(Macro F1)</strong></center></td> <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td> <td><center><strong>Binary<br>(Macro F1)</strong></center></td> <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td> <td><center><strong>EN-RO<br>(Bleu)</strong></center></td> <td><center><strong>RO-EN<br>(Bleu)</strong></center></td> <td><center><strong>EN-RO<br>(Bleu)</strong></center></td> <td><center><strong>RO-EN<br>(Bleu)</strong></center> </tr> <tr> <td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>97.86</strong></center></td><td><center><strong>65.70</strong></center></td><td><center>98.43</center></td><td><center><strong>87.17</strong></center></td><td><center><strong>27.91</strong></center></td><td><center>23.08</center></td><td><center><strong>27.99</strong></center></td><td><center><strong>39.51</strong></center></td> </tr> <tr> <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>86.96</em></center></td><td><center><em>56.72</em></center></td><td><center><em><strong>98.80</strong></em></center></td><td><center><em>85.81</em></center></td><td><center><em>24.45</em></center></td><td><center><em>14.20</em></center></td><td><center><em>25.96</em></center></td><td><center><em>39.07</em></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>96.45</center></td><td><center>63.23</center></td><td><center>-</center></td><td><center>-</center></td><td><center>20.73</center></td><td><center>7.87</center></td><td><center>-</center></td><td><center>-</center></td> </tr> </tbody> </table> <table> <tbody> <tr> <td></td> <td colspan="4"><center><strong>XQuAD</strong></center></td> <td colspan="4"><center><strong>STS</strong></center></td> </tr> <tr> <td></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> </tr> <tr> <td><strong>Model</strong></td> <td><center><strong>(EM)</strong></center></td> <td><center><strong>(F1)</strong></center></td> <td><center><strong>(EM)</strong></center></td> <td><center><strong>(F1)</strong></center></td> <td><center><strong>(Spearman)</strong></center></td> <td><center><strong>(Pearson)</strong></center></td> <td><center><strong>(Spearman)</strong></center></td> <td><center><strong>(Pearson)</strong></center></td> </tr> <tr> <td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>17.75</center></td><td><center>28.11</center></td><td><center>52.02</center></td><td><center>68.43</center></td><td><center><strong>73.96</strong></center></td><td><center><strong>75.16</strong></center></td><td><center>86.45</center></td><td><center>86.31</center></td> </tr> <tr> <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>26.03</em></center></td><td><center><em>41.58</em></center></td><td><center><em>46.72</em></center></td><td><center><em>60.79</em></center></td><td><center><em>73.23</em></center></td><td><center><em>71.58</em></center></td><td><center><em><strong>88.42</strong></em></center></td><td><center><em><strong>88.45</strong></em></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>19.14</center></td><td><center>38.10</center></td><td><center>-</center></td><td><center>-</center></td><td><center>69.38</center></td><td><center>69.34</center></td><td><center>-</center></td><td><center>-</center></td> </tr> </tbody> </table> ## MT-Bench <table> <tbody> <tr> <td><strong>Model</strong></td> <td><strong><center>Average</center></strong></td> <td><strong><center>1st turn</center></strong></td> <td><strong><center>2nd turn</center></strong></td> <td><strong><center>Answers in Ro</center></strong></td> </tr> <tr> <td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>5.26</center></td><td><center><strong>5.92</strong></center></td><td><center>4.60</center></td><td><center><strong>160/160</strong></center></td> </tr> <tr> <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>5.24</em></center></td><td><center><em>5.55</em></center></td><td><center><em>4.94</em></center></td><td><center><em><strong>160/160</strong></em></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>5.47</strong></center></td><td><center><strong>5.92</strong></center></td><td><center><strong>5.03</strong></center></td><td><center><strong>160/160</strong></center></td> </tr> </tbody> </table> ## RoCulturaBench <table> <tbody> <tr> <td><strong>Model</strong></td> <td><strong><center>Average</center></strong></td> <td><strong><center>Answers in Ro</center></strong></td> </tr> <tr> <td>gemma-1.1-7b-it</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>3.26</center></td><td><center><strong>100/100</strong></center></td> </tr> <tr> <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>3.51</em></center></td><td><center><em><strong>100/100</strong></em></center></td> </tr> <tr> <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>3.94</strong></center></td><td><center><strong>100/100</strong></center></td> </tr> </tbody> </table> ## RoGemma Model Family | Model | Link | |--------------------|:--------:| |RoGemma-7b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28) | |*RoGemma-7b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09) | |RoGemma-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09) | ## Citation ``` @misc{masala2024vorbecstiromanecsterecipetrain, title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea}, year={2024}, eprint={2406.18266}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.18266}, } ``` <!-- **APA:** [More Information Needed] -->
Blue7Bird/Zero_shot_Soft_ware_project_Mizbert
Blue7Bird
2024-10-10T18:07:09Z
105
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-10T18:05:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MikeRoz/TheDrummer_Behemoth-123B-v1-3.5bpw-h6-exl2
MikeRoz
2024-10-10T18:05:10Z
5
1
null
[ "safetensors", "mistral", "license:other", "exl2", "region:us" ]
null
2024-10-10T14:23:41Z
--- license: other --- # Join our Discord! https://discord.gg/Nbv9pQ88Xb ## 1500+ members strong 💪 --- [BeaverAI](https://huggingface.co/BeaverAI) proudly presents... # Behemoth 123B v1 🦣 *When you spend your whole life living under a dome, even the idea of an ocean seems impossible to imagine.* ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/5405NZoj_ptSMO_qM09EW.png) ## Description Testers have reported: - Better creativity and variety - Improved prose - Less positivity, more unhinged (especially on Metharme) - Good intelligence, sharp on nuances and recall. ## Links - Original: https://huggingface.co/TheDrummer/Behemoth-123B-v1 - GGUF: https://huggingface.co/TheDrummer/Behemoth-123B-v1-GGUF - iMatrix: https://huggingface.co/bartowski/Behemoth-123B-v1-GGUF (recommended for small quants) ## Arsenal (Supported Chat Templates) - Mistral for Instruct / RP / Story - Smart, adaptable, familiar - Metharme (a.k.a. Pygmalion in ST) for RP / Story - Creative, unhinged, unique - Text Completion for RP - You can mix it up and see which works best for you. ### Favorite RP Format `*action* Dialogue *thoughts* Dialogue *narration*` in 1st person PoV ## What's Next? - Looking into v1.1... - Already have plans for a v2! ## Special Thanks - Thank you to each and everyone who donated in [Ko-Fi](https://ko-fi.com/thedrummer) to make our venture a little bit easier. - KinjiHakari777, Dr. Fjut, Kistara, Pseudo, AlexTheVP, Dakkidaze, EvarinSharath'fe, ONTHEREDTEAM, F, Mariana, Garg, Silva, Grozi, & **Phaelon** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/KvyYIIA1zkxQNEdGro007.png) <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/FNWdi0WlH-Xd3fjkGVPpp.mpga"></audio>
Gummybear05/wav2vec2-Y_pause
Gummybear05
2024-10-10T18:03:05Z
21
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-10-10T15:26:28Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer model-index: - name: wav2vec2-Y_pause results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-Y_pause This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6778 - Cer: 39.4267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 5.1062 | 0.1290 | 200 | 4.7053 | 100.0 | | 4.8751 | 0.2581 | 400 | 4.8829 | 100.0 | | 4.7665 | 0.3871 | 600 | 4.6329 | 98.8781 | | 4.6575 | 0.5161 | 800 | 4.7058 | 98.4199 | | 4.2511 | 0.6452 | 1000 | 4.2469 | 90.7777 | | 3.1636 | 0.7742 | 1200 | 3.3817 | 69.3844 | | 2.6261 | 0.9032 | 1400 | 2.9457 | 60.4676 | | 2.1994 | 1.0323 | 1600 | 2.6949 | 56.0092 | | 1.924 | 1.1613 | 1800 | 2.5125 | 52.3085 | | 1.7291 | 1.2903 | 2000 | 2.2571 | 49.5653 | | 1.5934 | 1.4194 | 2200 | 2.0517 | 46.2523 | | 1.5086 | 1.5484 | 2400 | 2.1590 | 46.3757 | | 1.4041 | 1.6774 | 2600 | 2.0795 | 46.1407 | | 1.3266 | 1.8065 | 2800 | 2.1936 | 47.5388 | | 1.2494 | 1.9355 | 3000 | 2.0095 | 45.1891 | | 1.1305 | 2.0645 | 3200 | 1.8807 | 43.5092 | | 1.0493 | 2.1935 | 3400 | 1.7053 | 40.0141 | | 0.9978 | 2.3226 | 3600 | 1.8685 | 43.1508 | | 0.9689 | 2.4516 | 3800 | 1.8416 | 41.8938 | | 0.9527 | 2.5806 | 4000 | 1.7686 | 42.1405 | | 0.8927 | 2.7097 | 4200 | 1.7281 | 40.0611 | | 0.8958 | 2.8387 | 4400 | 1.6940 | 39.6264 | | 0.8855 | 2.9677 | 4600 | 1.6778 | 39.4267 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1
Rameen-Mahmood/devid-llm
Rameen-Mahmood
2024-10-10T18:01:57Z
161
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-10T18:01:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
benholloway/my_awesome_food_model_resnet
benholloway
2024-10-10T17:59:15Z
203
0
transformers
[ "transformers", "tensorboard", "safetensors", "resnet", "image-classification", "generated_from_trainer", "base_model:microsoft/resnet-50", "base_model:finetune:microsoft/resnet-50", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-10-10T17:41:48Z
--- library_name: transformers license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_food_model_resnet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model_resnet This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4383 - Accuracy: 0.661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2955 | 0.992 | 62 | 4.2486 | 0.18 | | 3.4887 | 2.0 | 125 | 3.3899 | 0.312 | | 2.7039 | 2.992 | 187 | 2.6616 | 0.475 | | 2.1832 | 4.0 | 250 | 2.1833 | 0.565 | | 1.946 | 4.992 | 312 | 1.9504 | 0.631 | | 1.7753 | 6.0 | 375 | 1.7184 | 0.638 | | 1.666 | 6.992 | 437 | 1.5985 | 0.667 | | 1.5402 | 8.0 | 500 | 1.4900 | 0.667 | | 1.5239 | 8.992 | 562 | 1.4500 | 0.665 | | 1.5147 | 9.92 | 620 | 1.4383 | 0.661 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.2.2+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0
mergekit-community/qwen-cot
mergekit-community
2024-10-10T17:54:14Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:Qwen/Qwen2.5-Math-7B-Instruct", "base_model:merge:Qwen/Qwen2.5-Math-7B-Instruct", "base_model:happzy2633/qwen2.5-7b-ins-v3", "base_model:merge:happzy2633/qwen2.5-7b-ins-v3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T17:49:19Z
--- base_model: - Qwen/Qwen2.5-Math-7B-Instruct - happzy2633/qwen2.5-7b-ins-v3 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) * [happzy2633/qwen2.5-7b-ins-v3](https://huggingface.co/happzy2633/qwen2.5-7b-ins-v3) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: happzy2633/qwen2.5-7b-ins-v3 - model: Qwen/Qwen2.5-Math-7B-Instruct merge_method: slerp base_model: happzy2633/qwen2.5-7b-ins-v3 dtype: bfloat16 parameters: t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers ```
bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF
bartowski
2024-10-10T17:53:23Z
764
7
null
[ "gguf", "text-generation", "base_model:nvidia/Mistral-NeMo-Minitron-8B-Instruct", "base_model:quantized:nvidia/Mistral-NeMo-Minitron-8B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-10-10T17:07:30Z
--- base_model: nvidia/Mistral-NeMo-Minitron-8B-Instruct pipeline_tag: text-generation quantized_by: bartowski --- ## Llamacpp imatrix Quantizations of Mistral-NeMo-Minitron-8B-Instruct Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3901">b3901</a> for quantization. Original model: https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Instruct All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) Run them in [LM Studio](https://lmstudio.ai/) ## Prompt format ``` <extra_id_0>System {system_prompt} <extra_id_1>User {prompt} <extra_id_1>Assistant ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Split | Description | | -------- | ---------- | --------- | ----- | ----------- | | [Mistral-NeMo-Minitron-8B-Instruct-f16.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-f16.gguf) | f16 | 16.84GB | false | Full F16 weights. | | [Mistral-NeMo-Minitron-8B-Instruct-Q8_0.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q8_0.gguf) | Q8_0 | 8.95GB | false | Extremely high quality, generally unneeded but max available quant. | | [Mistral-NeMo-Minitron-8B-Instruct-Q6_K_L.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q6_K_L.gguf) | Q6_K_L | 7.17GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q6_K.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q6_K.gguf) | Q6_K | 6.91GB | false | Very high quality, near perfect, *recommended*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q5_K_L.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q5_K_L.gguf) | Q5_K_L | 6.33GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q5_K_M.gguf) | Q5_K_M | 6.00GB | false | High quality, *recommended*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q5_K_S.gguf) | Q5_K_S | 5.86GB | false | High quality, *recommended*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q4_K_L.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q4_K_L.gguf) | Q4_K_L | 5.54GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q4_K_M.gguf) | Q4_K_M | 5.15GB | false | Good quality, default size for must use cases, *recommended*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q3_K_XL.gguf) | Q3_K_XL | 5.01GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. | | [Mistral-NeMo-Minitron-8B-Instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q4_K_S.gguf) | Q4_K_S | 4.91GB | false | Slightly lower quality with more space savings, *recommended*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q4_0.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q4_0.gguf) | Q4_0 | 4.90GB | false | Legacy format, generally not worth using over similarly sized formats | | [Mistral-NeMo-Minitron-8B-Instruct-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q4_0_8_8.gguf) | Q4_0_8_8 | 4.88GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). *Don't use on Mac or Windows*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q4_0_4_8.gguf) | Q4_0_4_8 | 4.88GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). *Don't use on Mac or Windows*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q4_0_4_4.gguf) | Q4_0_4_4 | 4.88GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. *Don't use on Mac or Windows*. | | [Mistral-NeMo-Minitron-8B-Instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-IQ4_XS.gguf) | IQ4_XS | 4.66GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Mistral-NeMo-Minitron-8B-Instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q3_K_L.gguf) | Q3_K_L | 4.54GB | false | Lower quality but usable, good for low RAM availability. | | [Mistral-NeMo-Minitron-8B-Instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q3_K_M.gguf) | Q3_K_M | 4.21GB | false | Low quality. | | [Mistral-NeMo-Minitron-8B-Instruct-IQ3_M.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-IQ3_M.gguf) | IQ3_M | 3.98GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Mistral-NeMo-Minitron-8B-Instruct-Q2_K_L.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q2_K_L.gguf) | Q2_K_L | 3.86GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. | | [Mistral-NeMo-Minitron-8B-Instruct-Q3_K_S.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q3_K_S.gguf) | Q3_K_S | 3.83GB | false | Low quality, not recommended. | | [Mistral-NeMo-Minitron-8B-Instruct-IQ3_XS.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-IQ3_XS.gguf) | IQ3_XS | 3.68GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Mistral-NeMo-Minitron-8B-Instruct-Q2_K.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-Q2_K.gguf) | Q2_K | 3.33GB | false | Very low quality but surprisingly usable. | | [Mistral-NeMo-Minitron-8B-Instruct-IQ2_M.gguf](https://huggingface.co/bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF/blob/main/Mistral-NeMo-Minitron-8B-Instruct-IQ2_M.gguf) | IQ2_M | 3.10GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. | ## Embed/output weights Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to. Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using. Thanks! ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF --include "Mistral-NeMo-Minitron-8B-Instruct-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/Mistral-NeMo-Minitron-8B-Instruct-GGUF --include "Mistral-NeMo-Minitron-8B-Instruct-Q8_0/*" --local-dir ./ ``` You can either specify a new local-dir (Mistral-NeMo-Minitron-8B-Instruct-Q8_0) or download them all in place (./) ## Q4_0_X_X These are *NOT* for Metal (Apple) offloading, only ARM chips. If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660) To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!). ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. ## Credits Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset Thank you ZeroWw for the inspiration to experiment with embed/output Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
ezrab/speecht5_finetuned_lj_speech
ezrab
2024-10-10T17:40:09Z
82
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:keithito/lj_speech", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2024-10-10T13:38:07Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - keithito/lj_speech model-index: - name: speecht5_finetuned_lj_speech results: [] pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_lj_speech This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the keithito/lj_speech dataset. It achieves the following results on the evaluation set: - Loss: 0.3772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.4519 | 1.3569 | 500 | 0.4035 | | 0.4307 | 2.7137 | 1000 | 0.3897 | | 0.4243 | 4.0706 | 1500 | 0.3842 | | 0.4154 | 5.4274 | 2000 | 0.3814 | | 0.4158 | 6.7843 | 2500 | 0.3793 | | 0.409 | 8.1411 | 3000 | 0.3783 | | 0.4112 | 9.4980 | 3500 | 0.3774 | | 0.4135 | 10.8548 | 4000 | 0.3772 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
deepnet/C2ReadyModel2
deepnet
2024-10-10T17:24:43Z
41
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-30T09:49:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanPerkhun/service_categorizer_v2
IvanPerkhun
2024-10-10T17:18:00Z
115
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-09-25T13:08:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Helf/helf-poc
Helf
2024-10-10T17:17:53Z
18
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "base_model:openai/whisper-small.en", "base_model:finetune:openai/whisper-small.en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-10-10T14:26:17Z
--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small.en tags: - generated_from_trainer model-index: - name: HEFL poc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HEFL poc This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6771 - eval_model_preparation_time: 0.011 - eval_wer: 25.6383 - eval_runtime: 25.0785 - eval_samples_per_second: 1.954 - eval_steps_per_second: 0.279 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 25 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
catrinbaze/merge-llama-3-8b
catrinbaze
2024-10-10T17:09:15Z
5
0
null
[ "safetensors", "llama", "merge", "mergekit", "lazymergekit", "catrinbaze/llama-refueled-merge", "NousResearch/Meta-Llama-3-8B-instruct", "Locutusque/Llama-3-Orca-1.0-8B", "lighteternal/Llama3-merge-biomed-8b", "mlabonne/NeuralDaredevil-8B-abliterated", "mlabonne/Daredevil-8B", "base_model:Locutusque/Llama-3-Orca-1.0-8B", "base_model:merge:Locutusque/Llama-3-Orca-1.0-8B", "base_model:catrinbaze/llama-refueled-merge", "base_model:merge:catrinbaze/llama-refueled-merge", "base_model:lighteternal/Llama3-merge-biomed-8b", "base_model:merge:lighteternal/Llama3-merge-biomed-8b", "base_model:mlabonne/Daredevil-8B", "base_model:merge:mlabonne/Daredevil-8B", "base_model:mlabonne/NeuralDaredevil-8B-abliterated", "base_model:merge:mlabonne/NeuralDaredevil-8B-abliterated", "region:us" ]
null
2024-10-10T17:05:29Z
--- base_model: - catrinbaze/llama-refueled-merge - NousResearch/Meta-Llama-3-8B-instruct - Locutusque/Llama-3-Orca-1.0-8B - lighteternal/Llama3-merge-biomed-8b - mlabonne/NeuralDaredevil-8B-abliterated - mlabonne/Daredevil-8B tags: - merge - mergekit - lazymergekit - catrinbaze/llama-refueled-merge - NousResearch/Meta-Llama-3-8B-instruct - Locutusque/Llama-3-Orca-1.0-8B - lighteternal/Llama3-merge-biomed-8b - mlabonne/NeuralDaredevil-8B-abliterated - mlabonne/Daredevil-8B --- # merge-llama-3-8b merge-llama-3-8b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [catrinbaze/llama-refueled-merge](https://huggingface.co/catrinbaze/llama-refueled-merge) * [NousResearch/Meta-Llama-3-8B-instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-instruct) * [Locutusque/Llama-3-Orca-1.0-8B](https://huggingface.co/Locutusque/Llama-3-Orca-1.0-8B) * [lighteternal/Llama3-merge-biomed-8b](https://huggingface.co/lighteternal/Llama3-merge-biomed-8b) * [mlabonne/NeuralDaredevil-8B-abliterated](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated) * [mlabonne/Daredevil-8B](https://huggingface.co/mlabonne/Daredevil-8B) ## 🧩 Configuration ```yaml slices: models: - model: NousResearch/Meta-Llama-3-8B # No parameters necessary for base model - model: catrinbaze/llama-refueled-merge parameters: density: 0.6 weight: 0.6 - model: NousResearch/Meta-Llama-3-8B-instruct parameters: density: 0.58 weight: 0.2 - model: Locutusque/Llama-3-Orca-1.0-8B parameters: density: 0.56 weight: 0.05 - model: lighteternal/Llama3-merge-biomed-8b parameters: density: 0.56 weight: 0.05 - model: mlabonne/NeuralDaredevil-8B-abliterated parameters: density: 0.55 weight: 0.05 - model: mlabonne/Daredevil-8B parameters: density: 0.55 weight: 0.05 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3-8B dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "catrinbaze/merge-llama-3-8b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
datalawyer/segmenter-distill-v0.1
datalawyer
2024-10-10T17:06:54Z
121
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:adalbertojunior/segmentacao", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-10-10T16:58:08Z
--- library_name: transformers tags: - generated_from_trainer datasets: - adalbertojunior/segmentacao metrics: - precision - recall - f1 - accuracy model-index: - name: test_v7 results: - task: name: Token Classification type: token-classification dataset: name: adalbertojunior/segmentacao type: adalbertojunior/segmentacao config: segmentacao split: validation args: segmentacao metrics: - name: Precision type: precision value: 0.6657754010695187 - name: Recall type: recall value: 0.6859504132231405 - name: F1 type: f1 value: 0.6757123473541385 - name: Accuracy type: accuracy value: 0.9990518084066471 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_v7 This model is a fine-tuned version of [./models/distill-bge-retromae-step](https://huggingface.co/./models/distill-bge-retromae-step) on the adalbertojunior/segmentacao dataset. It achieves the following results on the evaluation set: - Loss: 0.0045 - Precision: 0.6658 - Recall: 0.6860 - F1: 0.6757 - Accuracy: 0.9991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.0637 | 100 | 0.0048 | 0.5339 | 0.5647 | 0.5489 | 0.9984 | | No log | 0.1274 | 200 | 0.0048 | 0.5567 | 0.6226 | 0.5878 | 0.9987 | | No log | 0.1911 | 300 | 0.0048 | 0.5745 | 0.5950 | 0.5846 | 0.9988 | | No log | 0.2548 | 400 | 0.0048 | 0.5622 | 0.5978 | 0.5794 | 0.9988 | | 0.0061 | 0.3185 | 500 | 0.0069 | 0.48 | 0.5950 | 0.5314 | 0.9983 | | 0.0061 | 0.3822 | 600 | 0.0061 | 0.5692 | 0.6116 | 0.5896 | 0.9987 | | 0.0061 | 0.4459 | 700 | 0.0052 | 0.5736 | 0.6226 | 0.5971 | 0.9988 | | 0.0061 | 0.5096 | 800 | 0.0055 | 0.5921 | 0.6198 | 0.6057 | 0.9988 | | 0.0061 | 0.5733 | 900 | 0.0057 | 0.6126 | 0.6446 | 0.6282 | 0.9989 | | 0.0008 | 0.6370 | 1000 | 0.0065 | 0.5635 | 0.6116 | 0.5865 | 0.9987 | | 0.0008 | 0.7007 | 1100 | 0.0060 | 0.5725 | 0.6529 | 0.6100 | 0.9987 | | 0.0008 | 0.7645 | 1200 | 0.0061 | 0.5704 | 0.6474 | 0.6065 | 0.9988 | | 0.0008 | 0.8282 | 1300 | 0.0053 | 0.5813 | 0.6501 | 0.6138 | 0.9988 | | 0.0008 | 0.8919 | 1400 | 0.0045 | 0.6658 | 0.6860 | 0.6757 | 0.9991 | | 0.0004 | 0.9556 | 1500 | 0.0049 | 0.6497 | 0.6694 | 0.6594 | 0.9990 | | 0.0004 | 1.0193 | 1600 | 0.0054 | 0.5707 | 0.6446 | 0.6054 | 0.9988 | | 0.0004 | 1.0830 | 1700 | 0.0047 | 0.6376 | 0.6639 | 0.6505 | 0.9990 | | 0.0004 | 1.1467 | 1800 | 0.0048 | 0.5922 | 0.6722 | 0.6297 | 0.9989 | | 0.0004 | 1.2104 | 1900 | 0.0041 | 0.6455 | 0.6722 | 0.6586 | 0.9990 | | 0.0002 | 1.2741 | 2000 | 0.0053 | 0.5686 | 0.6391 | 0.6018 | 0.9987 | | 0.0002 | 1.3378 | 2100 | 0.0046 | 0.6495 | 0.6942 | 0.6711 | 0.9990 | | 0.0002 | 1.4015 | 2200 | 0.0049 | 0.5947 | 0.6749 | 0.6323 | 0.9988 | | 0.0002 | 1.4652 | 2300 | 0.0045 | 0.6125 | 0.6749 | 0.6422 | 0.9989 | | 0.0002 | 1.5289 | 2400 | 0.0045 | 0.5701 | 0.6722 | 0.6169 | 0.9988 | | 0.0002 | 1.5926 | 2500 | 0.0058 | 0.5321 | 0.6391 | 0.5807 | 0.9986 | | 0.0002 | 1.6563 | 2600 | 0.0056 | 0.5110 | 0.6419 | 0.5690 | 0.9985 | | 0.0002 | 1.7200 | 2700 | 0.0052 | 0.5792 | 0.6446 | 0.6102 | 0.9988 | | 0.0002 | 1.7837 | 2800 | 0.0047 | 0.5941 | 0.6612 | 0.6258 | 0.9989 | | 0.0002 | 1.8474 | 2900 | 0.0051 | 0.5655 | 0.6419 | 0.6013 | 0.9988 | | 0.0001 | 1.9111 | 3000 | 0.0044 | 0.5866 | 0.6529 | 0.6180 | 0.9989 | | 0.0001 | 1.9748 | 3100 | 0.0042 | 0.5792 | 0.6446 | 0.6102 | 0.9988 | | 0.0001 | 2.0385 | 3200 | 0.0045 | 0.6015 | 0.6694 | 0.6336 | 0.9989 | | 0.0001 | 2.1022 | 3300 | 0.0063 | 0.5409 | 0.6556 | 0.5928 | 0.9987 | | 0.0001 | 2.1659 | 3400 | 0.0047 | 0.5887 | 0.6584 | 0.6216 | 0.9989 | | 0.0001 | 2.2297 | 3500 | 0.0045 | 0.6131 | 0.6722 | 0.6413 | 0.9989 | | 0.0001 | 2.2934 | 3600 | 0.0047 | 0.6193 | 0.6722 | 0.6446 | 0.9989 | | 0.0001 | 2.3571 | 3700 | 0.0047 | 0.6091 | 0.6612 | 0.6341 | 0.9989 | | 0.0001 | 2.4208 | 3800 | 0.0047 | 0.6205 | 0.6667 | 0.6428 | 0.9989 | | 0.0001 | 2.4845 | 3900 | 0.0044 | 0.6070 | 0.6722 | 0.6379 | 0.9989 | | 0.0001 | 2.5482 | 4000 | 0.0052 | 0.5355 | 0.6226 | 0.5758 | 0.9987 | | 0.0001 | 2.6119 | 4100 | 0.0047 | 0.5871 | 0.6501 | 0.6170 | 0.9989 | | 0.0001 | 2.6756 | 4200 | 0.0049 | 0.5739 | 0.6419 | 0.6060 | 0.9988 | | 0.0001 | 2.7393 | 4300 | 0.0049 | 0.5634 | 0.6364 | 0.5977 | 0.9988 | | 0.0001 | 2.8030 | 4400 | 0.0052 | 0.5634 | 0.6364 | 0.5977 | 0.9988 | | 0.0 | 2.8667 | 4500 | 0.0049 | 0.5739 | 0.6419 | 0.6060 | 0.9988 | | 0.0 | 2.9304 | 4600 | 0.0044 | 0.5796 | 0.6419 | 0.6092 | 0.9988 | | 0.0 | 2.9941 | 4700 | 0.0047 | 0.5796 | 0.6419 | 0.6092 | 0.9988 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0
mergekit-community/mergekit-ties-ueirogz
mergekit-community
2024-10-10T17:06:44Z
5
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1", "base_model:merge:EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:merge:Qwen/Qwen2.5-7B-Instruct", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:merge:Qwen/Qwen2.5-Math-7B", "base_model:happzy2633/qwen2.5-7b-ins-v3", "base_model:merge:happzy2633/qwen2.5-7b-ins-v3", "base_model:katanemo/Arch-Function-7B", "base_model:merge:katanemo/Arch-Function-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T17:02:34Z
--- base_model: - Qwen/Qwen2.5-7B-Instruct - Qwen/Qwen2.5-Math-7B - EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1 - katanemo/Arch-Function-7B - happzy2633/qwen2.5-7b-ins-v3 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [happzy2633/qwen2.5-7b-ins-v3](https://huggingface.co/happzy2633/qwen2.5-7b-ins-v3) as a base. ### Models Merged The following models were included in the merge: * [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) * [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) * [EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1) * [katanemo/Arch-Function-7B](https://huggingface.co/katanemo/Arch-Function-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: happzy2633/qwen2.5-7b-ins-v3 #no parameters necessary for base model - model: Qwen/Qwen2.5-Math-7B parameters: density: 0.4 weight: 0.4 - model: Qwen/Qwen2.5-7B-Instruct parameters: density: 0.2 weight: 0.2 - model: EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1 parameters: density: 0.3 weight: 0.3 - model: katanemo/Arch-Function-7B parameters: density: 0.1 weight: 0.1 merge_method: ties base_model: happzy2633/qwen2.5-7b-ins-v3 parameters: normalize: false int8_mask: true dtype: bfloat16 ```
zelk12/RAt0.25-gemma-2-RI-9B
zelk12
2024-10-10T17:00:19Z
5
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25", "base_model:merge:zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25", "base_model:zelk12/recoilme-gemma-2-Ifable-9B-v0.1", "base_model:merge:zelk12/recoilme-gemma-2-Ifable-9B-v0.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T16:53:55Z
--- base_model: - zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25 - zelk12/recoilme-gemma-2-Ifable-9B-v0.1 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25](https://huggingface.co/zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25) * [zelk12/recoilme-gemma-2-Ifable-9B-v0.1](https://huggingface.co/zelk12/recoilme-gemma-2-Ifable-9B-v0.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25 - model: zelk12/recoilme-gemma-2-Ifable-9B-v0.1 merge_method: slerp base_model: zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25 dtype: bfloat16 parameters: t: 0.5 ```
julienkay/sentis-DepthPro-uint8
julienkay
2024-10-10T16:48:53Z
5
1
unity-sentis
[ "unity-sentis", "depth-estimation", "base_model:apple/DepthPro", "base_model:finetune:apple/DepthPro", "license:apple-ascl", "region:us" ]
depth-estimation
2024-10-10T16:18:23Z
--- license: apple-ascl base_model: - apple/DepthPro library_name: unity-sentis pipeline_tag: depth-estimation --- The [DepthPro](https://huggingface.co/apple/DepthPro) model converted to [Unity Sentis](https://unity.com/products/sentis) The model uses a static input with shape (1, 3, 1536, 1536). The image is expected to be in the [-1.0, 1.0] range. Models were converted and quantized to uint8 format using Sentis v2.1.0
Colby/starcoder-manhan-corpus
Colby
2024-10-10T16:43:37Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_bigcode", "feature-extraction", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "base_model:bigcode/starcoderbase-7b", "base_model:finetune:bigcode/starcoderbase-7b", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-10-06T03:54:34Z
--- base_model: bigcode/starcoderbase-7b library_name: transformers license: other tags: - autotrain - text-generation-inference - text-generation - peft widget: - messages: - role: user content: What is your favorite condiment? --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
ChenmieNLP/Zephyr-7B-Beta-Helpful
ChenmieNLP
2024-10-10T16:32:34Z
151
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T16:21:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
evgmaslov/Code-Llama-3-8B-cars
evgmaslov
2024-10-10T16:27:04Z
44
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:ajibawa-2023/Code-Llama-3-8B", "base_model:adapter:ajibawa-2023/Code-Llama-3-8B", "license:llama3", "region:us" ]
null
2024-08-29T12:50:39Z
--- base_model: ajibawa-2023/Code-Llama-3-8B library_name: peft license: llama3 tags: - trl - sft - generated_from_trainer model-index: - name: Code-Llama-3-8B-cars results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/evg_maslov/leap71/runs/4ywzr92y) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/evg_maslov/leap71/runs/4ywzr92y) # Code-Llama-3-8B-cars This model is a fine-tuned version of [ajibawa-2023/Code-Llama-3-8B](https://huggingface.co/ajibawa-2023/Code-Llama-3-8B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 1 ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0
kaitchup/Meta-Llama-3.1-8B-autoround-gptq-4bit-sym
kaitchup
2024-10-10T16:23:09Z
142
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "auto-gptq", "AutoRound", "en", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-08-06T09:26:49Z
--- language: - en library_name: transformers license: cc-by-4.0 tags: - auto-gptq - AutoRound --- ## Model Details This is [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) quantized with AutoRound (symmetric quantization) and serialized with the GPTQ format in 4-bit. The model has been created, tested, and evaluated by The Kaitchup. Details on quantization process, evaluation, and how to use the model here: [The Best Quantization Methods to Run Llama 3.1 on Your GPU](https://newsletter.kaitchup.com/p/the-best-quantization-methods-to) - **Developed by:** [The Kaitchup](https://newsletter.kaitchup.com/) - **Language(s) (NLP):** English - **License:** cc-by-4.0
CATIE-AQ/FAT5-small-flan-en
CATIE-AQ
2024-10-10T16:14:54Z
112
0
transformers
[ "transformers", "safetensors", "flash_t5", "feature-extraction", "custom_code", "en", "license:apache-2.0", "region:us" ]
feature-extraction
2024-04-26T08:39:10Z
--- language: en license: apache-2.0 --- ### Description Adaptation of the [flan-t5-small](https://huggingface.co/google/flan-t5-small) weights to make it compatible with the [FAT5](https://github.com/catie-aq/flashT5) framework (Flash Attention T5). This adaptation should enable the user to efficiently continue the pre-training of the flan-t5 to adapt it to more recent data, or to specialize it in a specific domain, for example. ### Usage ``` from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("CATIE-AQ/FAT5-small-flan-en", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("CATIE-AQ/FAT5-small-flan-en") ```
mwmathis/DeepLabCutModelZoo-primate_face
mwmathis
2024-10-10T16:07:30Z
0
1
null
[ "computer_vision", "pose_estimation", "keypoint-detection", "license:other", "region:us" ]
keypoint-detection
2022-11-23T00:12:11Z
--- license: other tags: - computer_vision - pose_estimation pipeline_tag: keypoint-detection --- Model contributed by Claire Witham at Centre for Macaques, MRC Harwell, UK. This model is trained on photos and videos of rhesus macaque faces – mostly forward facing or in profile. Includes range of ages from infant to adult and both sexes. Shows reasonable transference to other primates especially other macaque species. Read more [here](https://static1.squarespace.com/static/57f6d51c9f74566f55ecf271/t/5ebd4c97b4583a21664b7b62/1589464216742/macaque_face_landmarks.pdf)
mwmathis/DeepLabCutModelZoo-horse_sideview
mwmathis
2024-10-10T16:07:22Z
0
0
null
[ "computer_vision", "pose_estimation", "keypoint-detection", "arxiv:1909.11229", "license:other", "region:us" ]
keypoint-detection
2022-11-22T22:21:16Z
--- license: other tags: - computer_vision - pose_estimation pipeline_tag: keypoint-detection --- Non-commercial use permitted. Copyright authors of Mathis, Biasi et al. WACV A pre-trained horse network! Dataset/networks from Mathis et al. 2019 arXiv/WACV 2021. Note, this currently works on videos as shown, horses of different sizes and coat colors, but walking left to right. Another model will be released soon that has added utility for horses. And if you use this model, please also cite our paper: https://arxiv.org/pdf/1909.11229.pdf
RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf
RichardErkhov
2024-10-10T15:59:46Z
16
0
null
[ "gguf", "arxiv:2403.12024", "endpoints_compatible", "region:us" ]
null
2024-10-10T13:18:25Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Taigi-Llama-2-Translator-7B - GGUF - Model creator: https://huggingface.co/Bohanlu/ - Original model: https://huggingface.co/Bohanlu/Taigi-Llama-2-Translator-7B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Taigi-Llama-2-Translator-7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q2_K.gguf) | Q2_K | 2.46GB | | [Taigi-Llama-2-Translator-7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.IQ3_XS.gguf) | IQ3_XS | 2.72GB | | [Taigi-Llama-2-Translator-7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.IQ3_S.gguf) | IQ3_S | 2.86GB | | [Taigi-Llama-2-Translator-7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q3_K_S.gguf) | Q3_K_S | 2.86GB | | [Taigi-Llama-2-Translator-7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.IQ3_M.gguf) | IQ3_M | 3.02GB | | [Taigi-Llama-2-Translator-7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q3_K.gguf) | Q3_K | 3.19GB | | [Taigi-Llama-2-Translator-7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q3_K_M.gguf) | Q3_K_M | 3.19GB | | [Taigi-Llama-2-Translator-7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q3_K_L.gguf) | Q3_K_L | 3.47GB | | [Taigi-Llama-2-Translator-7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.IQ4_XS.gguf) | IQ4_XS | 3.52GB | | [Taigi-Llama-2-Translator-7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q4_0.gguf) | Q4_0 | 3.69GB | | [Taigi-Llama-2-Translator-7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.IQ4_NL.gguf) | IQ4_NL | 3.71GB | | [Taigi-Llama-2-Translator-7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q4_K_S.gguf) | Q4_K_S | 3.72GB | | [Taigi-Llama-2-Translator-7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q4_K.gguf) | Q4_K | 3.93GB | | [Taigi-Llama-2-Translator-7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q4_K_M.gguf) | Q4_K_M | 3.93GB | | [Taigi-Llama-2-Translator-7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q4_1.gguf) | Q4_1 | 4.08GB | | [Taigi-Llama-2-Translator-7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q5_0.gguf) | Q5_0 | 4.47GB | | [Taigi-Llama-2-Translator-7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q5_K_S.gguf) | Q5_K_S | 4.47GB | | [Taigi-Llama-2-Translator-7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q5_K.gguf) | Q5_K | 4.59GB | | [Taigi-Llama-2-Translator-7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q5_K_M.gguf) | Q5_K_M | 4.59GB | | [Taigi-Llama-2-Translator-7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q5_1.gguf) | Q5_1 | 4.86GB | | [Taigi-Llama-2-Translator-7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q6_K.gguf) | Q6_K | 5.3GB | | [Taigi-Llama-2-Translator-7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Bohanlu_-_Taigi-Llama-2-Translator-7B-gguf/blob/main/Taigi-Llama-2-Translator-7B.Q8_0.gguf) | Q8_0 | 6.86GB | Original model description: --- license: cc-by-nc-sa-4.0 --- <p align="center"> <img src="https://github.com/lbh0830/TW-Hokkien-LLM/blob/main/pics/logo.jpg?raw=true" alt="Taigi-llama-logo" width="350"> </p> # Model Card for Taigi-Llama-2-Translator-7B The Taigi-Llama-2-Translator series are built based on the Taigi-Llama-2 series model. We conducted fine-tuning on 263k parallel data to create a translation model for Taiwanese Hokkien and related languages. For more details, please refer to our [GitHub repository](https://github.com/lbh0830/TW-Hokkien-LLM/tree/main) and the paper: [Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems](https://arxiv.org/abs/2403.12024) Explore other models and datasets in the [Taiwanese Hokkien LLM collection](https://huggingface.co/collections/Bohanlu/taiwanese-hokkien-llm-6614ba7456e6789bc2f10ca0). ## Model description - **Base Model:** [Bohanlu/Taigi-Llama-2-7B](https://huggingface.co/Bohanlu/Taigi-Llama-2-7B) - **Usage:** This model can be used for translating between Traditional Chinese or English and Taiwanese Hokkien (Hanzi, POJ, or Hanlo). It also supports translation between different scripts of Taiwanese Hokkien (Hanzi, POJ, Hanlo). - **Language(s) (NLP):** Taiwanese Hokkien (Hanzi, POJ and Hanlo), Traditional Chinese and English - **Input:** Text in source language - **Output:** Text in target language - **Model Size:** 7B parameters ## Prompt Template ``` {BOS}[TRANS]\n{source_sentence}\n[/TRANS]\n[{target_language}]\n ``` - `source_sentence`: The sentence you want to translate. - `target_language`: The target language you want to translate to. Use "ZH" for Traditional Chinese, "EN" for English, "POJ" for Taiwanese Hokkien POJ, "HL" for Taiwanese Hokkien Hanlo, and "HAN" for Taiwanese Hokkien Hanzi. - Ensure there's a newline at the end. ## Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextGenerationPipeline import torch import accelerate def get_pipeline(path:str, tokenizer:AutoTokenizer, accelerator:accelerate.Accelerator) -> TextGenerationPipeline: model = AutoModelForCausalLM.from_pretrained( path, torch_dtype=torch.float16, device_map='auto', trust_remote_code=True) terminators = [tokenizer.eos_token_id, tokenizer.pad_token_id] pipeline = TextGenerationPipeline(model = model, tokenizer = tokenizer, num_workers=accelerator.state.num_processes*4, pad_token_id=tokenizer.pad_token_id, eos_token_id=terminators) return pipeline model_dir = "Bohanlu/Taigi-Llama-2-Translator-7B" # or "Bohanlu/Taigi-Llama-2-Translator-13B" for the 13B model tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False) accelerator = accelerate.Accelerator() pipe = get_pipeline(model_dir, tokenizer, accelerator) PROMPT_TEMPLATE = "[TRANS]\n{source_sentence}\n[/TRANS]\n[{target_language}]\n" def translate(source_sentence:str, target_language:str) -> str: prompt = PROMPT_TEMPLATE.format(source_sentence=source_sentence, target_language=target_language) out = pipe(prompt, return_full_text=False, repetition_penalty=1.1, do_sample=False)[0]['generated_text'] return out[:out.find("[/")].strip() source_sentence = "How are you today?" print("To Hanzi: " + translate(source_sentence, "HAN")) # Output: To Hanzi: 你今仔日好無? print("To POJ: " + translate(source_sentence, "POJ")) # Output: To POJ: Lí kin-á-ji̍t án-chóaⁿ? print("To Traditional Chinese: " + translate(source_sentence, "ZH")) # Output: To Traditional Chinese: 你今天好嗎? print("To Hanlo: " + translate(source_sentence, "HL")) # Output: To Hanlo: 你今仔日好無? ``` ## Citation If you find the resources in the Taiwanese Hokkien LLM collection useful in your work, please cite it using the following reference: ``` @misc{lu2024enhancing, title={Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems}, author={Bo-Han Lu and Yi-Hsuan Lin and En-Shiun Annie Lee and Richard Tzong-Han Tsai}, year={2024}, eprint={2403.12024}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Quant-Cartel/SorcererLM-22B-iMat-GGUF
Quant-Cartel
2024-10-10T15:44:07Z
4,942
0
null
[ "gguf", "iMat", "GGUF", "text-generation", "base_model:InferenceIllusionist/SorcererLM-22B", "base_model:quantized:InferenceIllusionist/SorcererLM-22B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2024-09-23T16:44:25Z
--- license: apache-2.0 base_model_relation: quantized quantized_by: Quant-Cartel base_model: InferenceIllusionist/SorcererLM-22B pipeline_tag: text-generation tags: - iMat - GGUF --- ``` e88 88e d8 d888 888b 8888 8888 ,"Y88b 888 8e d88 C8888 8888D 8888 8888 "8" 888 888 88b d88888 Y888 888P Y888 888P ,ee 888 888 888 888 "88 88" "88 88" "88 888 888 888 888 b 8b, e88'Y88 d8 888 d888 'Y ,"Y88b 888,8, d88 ,e e, 888 C8888 "8" 888 888 " d88888 d88 88b 888 Y888 ,d ,ee 888 888 888 888 , 888 "88,d88 "88 888 888 888 "YeeP" 888 PROUDLY PRESENTS ``` # SorcererLM-22B-iMat-GGUF Quantized with love from fp32. * Importance Matrix calculated using [groups_merged.txt](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384) * 107 chunks * n_ctx=512 * Importance Matrix uses fp32 precision model weights, fp32.imatrix file to be added in repo Original model README [here](https://huggingface.co/InferenceIllusionist/SorcererLM-22B) and below: ## SorcererLM-22B <img src="https://files.catbox.moe/ya4zca.png" width="500"/> <i>Because good things always come in threes!</i> **SorcererLM-22B** is here, rounding out the trinity of Mistral-Small-Instruct tunes from the [Quant Cartel](https://huggingface.co/Quant-Cartel). ## Prompt Format * Prompt Template: Mistral V2 & V3 Context / Instruct Templates * Samplers / Advanced Instruct Template: See [Quant-Cartel/Recommended-Settings/SorcererLM-22B](https://huggingface.co/Quant-Cartel/Recommended-Settings/tree/main/SorcererLM-22B) ## Quantized Versions * [exl2 longcal](https://huggingface.co/Quant-Cartel/SorcererLM-22B-exl2-longcal) * [iMat GGUF](https://huggingface.co/Quant-Cartel/SorcererLM-22B-iMat-GGUF) ## Training For starters this is a LORA tune on top of Mistral-Small-Instruct-2409 and **not** a pruned version of [SorcererLM-8x22b](https://huggingface.co/rAIfle/SorcererLM-8x22b-bf16). Trained with a whole lot of love on 1 epoch of cleaned and deduped c2 logs. This model is 100% 'born-local', the result of roughly 27 hours and a little bit of patience on a single RTX 4080 SUPER. As hyperparameters and dataset intentionally mirror ones used in the original Sorcerer 8x22b tune, this is considered its 'lite' counterpart aiming to provide the same bespoke conversational experience relative to its size and reduced hardware requirements. While all three share the same Mistral-Small-Instruct base, in contrast to its sisters [Mistral-Small-NovusKyver](https://huggingface.co/Envoid/Mistral-Small-NovusKyver) and [Acolyte-22B](https://huggingface.co/rAIfle/Acolyte-22B) this release did not SLERP the resulting model with the original in a 50/50 ratio post-training. Instead, alpha was dropped when the lora was merged with full precision weights in the final step. ## Acknowledgments * First and foremost a huge thank you my brilliant teammates [envoid](https://huggingface.co/envoid/) and [rAIfle](https://huggingface.co/rAIfle/). Special shout-out to rAIfle for critical last minute advice that got this one through the finish line * Props to unsloth as well for helping make this local tune possible * And of course, none of this would matter without users like you. Thank you :) ## Safety ...
codewithRiz/whisper-tiny-100steps
codewithRiz
2024-10-10T15:39:31Z
93
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
automatic-speech-recognition
2024-10-10T15:35:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf
RichardErkhov
2024-10-10T15:38:55Z
9
0
null
[ "gguf", "arxiv:2402.16671", "endpoints_compatible", "region:us" ]
null
2024-10-10T12:39:43Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) StructLM-7B-Mistral - GGUF - Model creator: https://huggingface.co/TIGER-Lab/ - Original model: https://huggingface.co/TIGER-Lab/StructLM-7B-Mistral/ | Name | Quant method | Size | | ---- | ---- | ---- | | [StructLM-7B-Mistral.Q2_K.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q2_K.gguf) | Q2_K | 2.53GB | | [StructLM-7B-Mistral.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [StructLM-7B-Mistral.IQ3_S.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.IQ3_S.gguf) | IQ3_S | 2.96GB | | [StructLM-7B-Mistral.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [StructLM-7B-Mistral.IQ3_M.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.IQ3_M.gguf) | IQ3_M | 3.06GB | | [StructLM-7B-Mistral.Q3_K.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q3_K.gguf) | Q3_K | 3.28GB | | [StructLM-7B-Mistral.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [StructLM-7B-Mistral.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [StructLM-7B-Mistral.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [StructLM-7B-Mistral.Q4_0.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q4_0.gguf) | Q4_0 | 3.83GB | | [StructLM-7B-Mistral.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [StructLM-7B-Mistral.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [StructLM-7B-Mistral.Q4_K.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q4_K.gguf) | Q4_K | 4.07GB | | [StructLM-7B-Mistral.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [StructLM-7B-Mistral.Q4_1.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q4_1.gguf) | Q4_1 | 4.24GB | | [StructLM-7B-Mistral.Q5_0.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q5_0.gguf) | Q5_0 | 4.65GB | | [StructLM-7B-Mistral.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [StructLM-7B-Mistral.Q5_K.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q5_K.gguf) | Q5_K | 4.78GB | | [StructLM-7B-Mistral.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [StructLM-7B-Mistral.Q5_1.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q5_1.gguf) | Q5_1 | 5.07GB | | [StructLM-7B-Mistral.Q6_K.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q6_K.gguf) | Q6_K | 5.53GB | | [StructLM-7B-Mistral.Q8_0.gguf](https://huggingface.co/RichardErkhov/TIGER-Lab_-_StructLM-7B-Mistral-gguf/blob/main/StructLM-7B-Mistral.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- license: mit datasets: - TIGER-Lab/SKGInstruct language: - en --- # 🏗️ StructLM: Towards Building Generalist Models for Structured Knowledge Grounding Project Page: [https://tiger-ai-lab.github.io/StructLM/](https://tiger-ai-lab.github.io/StructLM/) Paper: [https://arxiv.org/pdf/2402.16671.pdf](https://arxiv.org/pdf/2402.16671.pdf) Code: [https://github.com/TIGER-AI-Lab/StructLM](https://github.com/TIGER-AI-Lab/StructLM) ![Alt text](https://raw.githubusercontent.com/TIGER-AI-Lab/StructLM/gh-pages/static/images/thumbnail.drawio.png) ## Introduction StructLM, is a series of open-source large language models (LLMs) finetuned for structured knowledge grounding (SKG) tasks. This model is trained using Mistral as the base model, instead of CodeLlama. ## Training Data This model is trained on 🤗 [SKGInstruct-skg-only Dataset](https://huggingface.co/datasets/TIGER-Lab/SKGInstruct-skg-only). Check out the dataset card for more details. ## Training Procedure This models is fine-tuned with Mistral-v0.2 models as base models. Each model is trained for 3 epochs, and the best checkpoint is selected. ## Evaluation Reference our project page for evaluation results on 7B-M ## Usage You can use the models through Huggingface's Transformers library. Check our Github repo for the evaluation code: [https://github.com/TIGER-AI-Lab/StructLM](https://github.com/TIGER-AI-Lab/StructLM) ## Prompt Format **For this 7B model, the prompt format is** ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} {input} {question} ### Response: ``` To see concrete examples of this linearization, you can directly reference the 🤗 [SKGInstruct Dataset](https://huggingface.co/datasets/TIGER-Lab/SKGInstruct) (coming soon). We will provide code for linearizing this data shortly. A few examples: **Tabular data** ``` col : day | kilometers row 1 : tuesday | 0 row 2 : wednesday | 0 row 3 : thursday | 4 row 4 : friday | 0 row 5 : saturday | 0 ``` **Knowledge triples (dart)** ``` Hawaii Five-O : notes : Episode: The Flight of the Jewels | [TABLECONTEXT] : [title] : Jeff Daniels | [TABLECONTEXT] : title : Hawaii Five-O ``` **Knowledge graph schema (grailqa)** ``` top antiquark: m.094nrqp | physics.particle_antiparticle.self_antiparticle physics.particle_family physics.particle.antiparticle physics.particle_family.subclasses physics.subatomic_particle_generation physics.particle_family.particles physics.particle common.image.appears_in_topic_gallery physics.subatomic_particle_generation.particles physics.particle.family physics.particle_family.parent_class physics.particle_antiparticle physics.particle_antiparticle.particle physics.particle.generation ``` **Example input** ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Use the information in the following table to solve the problem, choose between the choices if they are provided. table: col : day | kilometers row 1 : tuesday | 0 row 2 : wednesday | 0 row 3 : thursday | 4 row 4 : friday | 0 row 5 : saturday | 0 question: Allie kept track of how many kilometers she walked during the past 5 days. What is the range of the numbers? [/INST] ### Response: ``` ## Intended Uses These models are trained for research purposes. They are designed to be proficient in interpreting linearized structured input. Downstream uses can potentially include various applications requiring the interpretation of structured data. ## Limitations While we've tried to build an SKG-specialized model capable of generalizing, we have shown that this is a challenging domain, and it may lack performance characteristics that allow it to be directly used in chat or other applications. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @misc{zhuang2024structlm, title={StructLM: Towards Building Generalist Models for Structured Knowledge Grounding}, author={Alex Zhuang and Ge Zhang and Tianyu Zheng and Xinrun Du and Junjie Wang and Weiming Ren and Stephen W. Huang and Jie Fu and Xiang Yue and Wenhu Chen}, year={2024}, eprint={2402.16671}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
symanto/mingru-shakespeare
symanto
2024-10-10T15:36:00Z
48
0
transformers
[ "transformers", "safetensors", "mingru", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T15:35:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KingNish/Reasoning-Llama-1b-v0.1
KingNish
2024-10-10T15:26:44Z
166
24
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "reasoning", "llama-3", "conversational", "en", "dataset:KingNish/reasoning-base-20k", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-06T12:07:01Z
--- base_model: meta-llama/Llama-3.2-1B-Instruct datasets: - KingNish/reasoning-base-20k language: - en license: llama3.2 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft - reasoning - llama-3 --- # Model Dexcription It's First iteration of this model. For testing purpose its just trained on 10k rows. It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1. It do reasoning separately (Just like o1), no tags (like reflection). Below is inference code. ```python from transformers import AutoModelForCausalLM, AutoTokenizer MAX_REASONING_TOKENS = 1024 MAX_RESPONSE_TOKENS = 512 model_name = "KingNish/Reasoning-Llama-1b-v0.1" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Which is greater 9.9 or 9.11 ??" messages = [ {"role": "user", "content": prompt} ] # Generate reasoning reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True) reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device) reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS) reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True) # print("REASONING: " + reasoning_output) # Generate answer messages.append({"role": "reasoning", "content": reasoning_output}) response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device) response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS) response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True) print("ANSWER: " + response_output) ``` - **Trained by:** [Nishith Jain](https://huggingface.co/KingNish) - **License:** llama3.2 - **Finetuned from model :** [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) - **Dataset used :** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k) This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AmberYifan/Mistral-7B-v0.3-gen-dpo-2k
AmberYifan
2024-10-10T15:12:39Z
6
0
null
[ "safetensors", "mistral", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.3", "base_model:finetune:mistralai/Mistral-7B-v0.3", "license:apache-2.0", "region:us" ]
null
2024-10-10T08:14:39Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.3 tags: - generated_from_trainer model-index: - name: Mistral-7B-v0.3-gen-dpo-2k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-v0.3-gen-dpo-2k This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
JefiRyan/Llama-3.2-models
JefiRyan
2024-10-10T15:11:51Z
15
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:JefiRyan/Llama-3.2-3B", "base_model:quantized:JefiRyan/Llama-3.2-3B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-10-10T15:09:36Z
--- base_model: JefiRyan/Llama-3.2-3B language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** JefiRyan - **License:** apache-2.0 - **Finetuned from model :** JefiRyan/Llama-3.2-3B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sumeetrm/capitalmodel
sumeetrm
2024-10-10T15:06:53Z
75
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "dpo", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T15:03:56Z
--- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - dpo --- # Uploaded model - **Developed by:** sumeetrm - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
NeuML/ljspeech-jets-onnx
NeuML
2024-10-10T15:00:03Z
1,047
25
txtai
[ "txtai", "onnx", "audio", "text-to-speech", "en", "dataset:ljspeech", "license:apache-2.0", "region:us" ]
text-to-speech
2022-11-29T12:51:31Z
--- tags: - audio - text-to-speech - onnx inference: false language: en datasets: - ljspeech license: apache-2.0 library_name: txtai --- # ESPnet JETS Text-to-Speech (TTS) Model for ONNX [imdanboy/jets](https://huggingface.co/imdanboy/ljspeech_tts_train_jets_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave) exported to ONNX. This model is an ONNX export using the [espnet_onnx](https://github.com/espnet/espnet_onnx) library. ## Usage with txtai [txtai](https://github.com/neuml/txtai) has a built in Text to Speech (TTS) pipeline that makes using this model easy. ```python import soundfile as sf from txtai.pipeline import TextToSpeech # Build pipeline tts = TextToSpeech("NeuML/ljspeech-jets-onnx") # Generate speech speech, rate = tts("Say something here") # Write to file sf.write("out.wav", speech, rate) ``` ## Usage with ONNX This model can also be run directly with ONNX provided the input text is tokenized. Tokenization can be done with [ttstokenizer](https://github.com/neuml/ttstokenizer). Note that the txtai pipeline has additional functionality such as batching large inputs together that would need to be duplicated with this method. ```python import onnxruntime import soundfile as sf import yaml from ttstokenizer import TTSTokenizer # This example assumes the files have been downloaded locally with open("ljspeech-jets-onnx/config.yaml", "r", encoding="utf-8") as f: config = yaml.safe_load(f) # Create model model = onnxruntime.InferenceSession( "ljspeech-jets-onnx/model.onnx", providers=["CPUExecutionProvider"] ) # Create tokenizer tokenizer = TTSTokenizer(config["token"]["list"]) # Tokenize inputs inputs = tokenizer("Say something here") # Generate speech outputs = model.run(None, {"text": inputs}) # Write to file sf.write("out.wav", outputs[0], 22050) ``` ## How to export More information on how to export ESPnet models to ONNX can be [found here](https://github.com/espnet/espnet_onnx#text2speech-inference).
NeuML/ljspeech-vits-onnx
NeuML
2024-10-10T14:59:05Z
16
11
txtai
[ "txtai", "onnx", "audio", "text-to-speech", "en", "dataset:ljspeech", "license:apache-2.0", "region:us" ]
text-to-speech
2022-11-29T12:54:23Z
--- tags: - audio - text-to-speech - onnx inference: false language: en datasets: - ljspeech license: apache-2.0 library_name: txtai --- # ESPnet VITS Text-to-Speech (TTS) Model for ONNX [espnet/kan-bayashi_ljspeech_vits](https://huggingface.co/espnet/kan-bayashi_ljspeech_vits) exported to ONNX. This model is an ONNX export using the [espnet_onnx](https://github.com/espnet/espnet_onnx) library. ## Usage with txtai [txtai](https://github.com/neuml/txtai) has a built in Text to Speech (TTS) pipeline that makes using this model easy. ```python import soundfile as sf from txtai.pipeline import TextToSpeech # Build pipeline tts = TextToSpeech("NeuML/ljspeech-vits-onnx") # Generate speech speech, rate = tts("Say something here") # Write to file sf.write("out.wav", speech, rate) ``` ## Usage with ONNX This model can also be run directly with ONNX provided the input text is tokenized. Tokenization can be done with [ttstokenizer](https://github.com/neuml/ttstokenizer). Note that the txtai pipeline has additional functionality such as batching large inputs together that would need to be duplicated with this method. ```python import onnxruntime import soundfile as sf import yaml from ttstokenizer import TTSTokenizer # This example assumes the files have been downloaded locally with open("ljspeech-vits-onnx/config.yaml", "r", encoding="utf-8") as f: config = yaml.safe_load(f) # Create model model = onnxruntime.InferenceSession( "ljspeech-vits-onnx/model.onnx", providers=["CPUExecutionProvider"] ) # Create tokenizer tokenizer = TTSTokenizer(config["token"]["list"]) # Tokenize inputs inputs = tokenizer("Say something here") # Generate speech outputs = model.run(None, {"text": inputs}) # Write to file sf.write("out.wav", outputs[0], 22050) ``` ## How to export More information on how to export ESPnet models to ONNX can be [found here](https://github.com/espnet/espnet_onnx#text2speech-inference).
xonic48/distilbert-base-uncased-finetuned-squad
xonic48
2024-10-10T14:55:41Z
130
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-10-10T14:55:10Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 32 | 5.0019 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Tokenizers 0.19.1
jazzson/bert-base-chinese-finetuned-question-answering-lert-base-2-from-scratch
jazzson
2024-10-10T14:54:32Z
7
0
transformers
[ "transformers", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:hfl/chinese-lert-base", "base_model:finetune:hfl/chinese-lert-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-10-10T14:38:02Z
--- library_name: transformers license: apache-2.0 base_model: hfl/chinese-lert-base tags: - generated_from_trainer model-index: - name: bert-base-chinese-finetuned-question-answering-lert-base-2-from-scratch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-question-answering-lert-base-2-from-scratch This model is a fine-tuned version of [hfl/chinese-lert-base](https://huggingface.co/hfl/chinese-lert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.7725 - Exact Match: 0.0455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | |:-------------:|:------:|:-----:|:---------------:|:-----------:| | 5.3404 | 0.5526 | 3000 | 5.2297 | 0.0063 | | 5.0748 | 1.1052 | 6000 | 5.0921 | 0.0193 | | 4.882 | 1.6578 | 9000 | 4.9150 | 0.0445 | | 4.7544 | 2.2104 | 12000 | 4.8461 | 0.0339 | | 4.6119 | 2.7629 | 15000 | 4.7725 | 0.0455 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1
rana-shahroz/mistral-openorca-openplatypus
rana-shahroz
2024-10-10T14:35:14Z
237
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T14:28:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LemiSt/SmolLM-135M-de
LemiSt
2024-10-10T14:35:00Z
955
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "text-generation", "de", "dataset:devngho/culturax-mini-nonshuffled", "dataset:maxidl/FineNews-unfiltered", "dataset:djstrong/oscar-small", "dataset:LemiSt/gutenberg_de", "dataset:almanach/HALvest", "dataset:wikimedia/wikipedia", "dataset:D4ve-R/terra-xplain-cc-de", "base_model:HuggingFaceTB/SmolLM-135M", "base_model:finetune:HuggingFaceTB/SmolLM-135M", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-07T14:22:20Z
--- library_name: transformers license: apache-2.0 language: - de datasets: - devngho/culturax-mini-nonshuffled - maxidl/FineNews-unfiltered - djstrong/oscar-small - LemiSt/gutenberg_de - almanach/HALvest - wikimedia/wikipedia - D4ve-R/terra-xplain-cc-de base_model: - HuggingFaceTB/SmolLM-135M pipeline_tag: text-generation --- # Model Card for SmolLM-135M-de A german version of [HuggingFaceTB/SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M/blob/main/README.md), trained to speak German by applying CPT for about 6 billion tokens. If you are looking for a chat model, try [this](https://huggingface.co/LemiSt/SmolLM-135M-instruct-de-merged) fine tune or the [corresponding adapter model](https://huggingface.co/LemiSt/SmolLM-135M-instruct-de). ## Model Details ### Model Description The base model is [HuggingFaceTB/SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M/blob/main/README.md), which I further trained on about 6 billion German-language tokens. - **Model type:** Large Language Model (Llama architecture) - **Language(s) (NLP):** German - **License:** Apache 2.0 - **Finetuned from model:** [HuggingFaceTB/SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M/blob/main/README.md) ## Uses I mainly made this as a small experimentation model to quickly benchmark datasets etc. - since the model is so small, I am unsure about its usefulness for any real-world scenarios. This is a base model without any chat fine tuning etc. and thus should not be used as-is. It outputs mostly correct German, which is what I tried to achieve. If you are looking for a chat model, try [this](https://huggingface.co/LemiSt/SmolLM-135M-instruct-de) adapter. ## Bias, Risks, and Limitations This is a very small model and will output blatantly wrong information. I have not done any further filtering on the source datasets, so it is possible that the model will generate lewd or otherwise inappropriate content. Use with care. I would **strongly** recommend against using this model in a production setting, at least without further fine tuning and preference optimization. ## How to Get Started with the Model Use the code below to get started with the model. ```python # adapted from the original SmolLM repo # pip install transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "LemiSt/SmolLM-135M-de" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("Rezept für einen leckeren veganen Schokokuchen:\n", return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=256) print(tokenizer.decode(outputs[0])) ``` ## Training Details ### Training Data - [devngho/culturax-mini-nonshuffled](https://huggingface.co/datasets/devngho/culturax-mini-nonshuffled) - [maxidl/FineNews-unfiltered](https://huggingface.co/datasets/maxidl/FineNews-unfiltered) CC-NEWS-2024-05 config, de split - [djstrong/oscar-small](https://huggingface.co/datasets/djstrong/oscar-small) unshuffled_deduplicated_de config - [LemiSt/gutenberg_de](https://huggingface.co/datasets/LemiSt/gutenberg_de) - [almanach/HALvest](https://huggingface.co/datasets/almanach/HALvest) de config - [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) 20231101.de config - [D4ve-R/terra-xplain-cc-de](https://huggingface.co/datasets/D4ve-R/terra-xplain-cc-de) ### Training Procedure This was trained with axolotl, using full fine tuning (no LoRA etc). I used a sequence length of 2048 with an effective batch size of 512, learning rate of 0.003 with the adamw_bnb_8bit optimizer and a cosine scheduler. Due to an error I made in calculating the token count, I accidentally trained for nearly 2 epochs, with the learning rate not reaching its proper minimum.
gair-prox/web-chunk-refining-lm
gair-prox
2024-10-10T14:15:20Z
276
4
transformers
[ "transformers", "safetensors", "llama", "text-generation", "code", "en", "dataset:gair-prox/RedPajama-pro", "arxiv:2409.17115", "base_model:gair-prox/RedPJ-ProX-0.3B", "base_model:finetune:gair-prox/RedPJ-ProX-0.3B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T13:37:23Z
--- license: apache-2.0 datasets: - gair-prox/RedPajama-pro language: - en base_model: - gair-prox/RedPJ-ProX-0.3B pipeline_tag: text-generation library_name: transformers tags: - llama - code --- # Web-chunk-refining-lm <p align="center"> <img src="prox-teaser.png"> </p> [ArXiv](http://arxiv.org/abs/2409.17115) | [Code](https://github.com/GAIR-NLP/program-every-example) **Web-chunk-refining-lm** is an adapted [0.3B-ProX](https://huggingface.co/gair-prox/RedPJ-ProX-0.3B) model, fine-tuned for chunk level refining via program generation. <p align="center"> <img src="func_design.png"> </p> ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```
rezzzzzaaaaaa/xlm-roberta-base-finetuned-peyma-fa
rezzzzzaaaaaa
2024-10-10T14:07:11Z
134
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-10-10T13:44:14Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-peyma-fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-peyma-fa This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0848 - F1: 0.9170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1488 | 1.0 | 998 | 0.0672 | 0.8665 | | 0.061 | 2.0 | 1996 | 0.0650 | 0.8881 | | 0.041 | 3.0 | 2994 | 0.0640 | 0.8954 | | 0.0274 | 4.0 | 3992 | 0.0728 | 0.8898 | | 0.0207 | 5.0 | 4990 | 0.0723 | 0.8935 | | 0.0148 | 6.0 | 5988 | 0.0745 | 0.9006 | | 0.0084 | 7.0 | 6986 | 0.0825 | 0.9088 | | 0.0056 | 8.0 | 7984 | 0.0824 | 0.9151 | | 0.0033 | 9.0 | 8982 | 0.0836 | 0.9143 | | 0.0021 | 10.0 | 9980 | 0.0848 | 0.9170 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
gair-prox/web-doc-refining-lm
gair-prox
2024-10-10T14:07:04Z
76,684
4
transformers
[ "transformers", "safetensors", "llama", "text-generation", "code", "en", "dataset:gair-prox/RedPajama-pro", "arxiv:2409.17115", "base_model:gair-prox/RedPJ-ProX-0.3B", "base_model:finetune:gair-prox/RedPJ-ProX-0.3B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-10T13:19:05Z
--- license: apache-2.0 datasets: - gair-prox/RedPajama-pro language: - en base_model: - gair-prox/RedPJ-ProX-0.3B pipeline_tag: text-generation library_name: transformers tags: - llama - code --- # Web-doc-refining-lm <p align="center"> <img src="prox-teaser.png"> </p> [ArXiv](http://arxiv.org/abs/2409.17115) | [Code](https://github.com/GAIR-NLP/program-every-example) **Web-doc-refining-lm** is an adapted [0.3B-ProX](https://huggingface.co/gair-prox/RedPJ-ProX-0.3B) model, fine-tuned for document level refining via program generation. <p align="center"> <img src="func_design.png"> </p> ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```
RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf
RichardErkhov
2024-10-10T14:06:10Z
18
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-10-10T10:40:21Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) fast-apply-v0.2-qwen2.5-Coder-7B-ft - GGUF - Model creator: https://huggingface.co/quocdat25/ - Original model: https://huggingface.co/quocdat25/fast-apply-v0.2-qwen2.5-Coder-7B-ft/ | Name | Quant method | Size | | ---- | ---- | ---- | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q2_K.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q2_K.gguf) | Q2_K | 2.81GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.IQ3_XS.gguf) | IQ3_XS | 3.12GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.IQ3_S.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.IQ3_S.gguf) | IQ3_S | 3.26GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q3_K_S.gguf) | Q3_K_S | 3.25GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.IQ3_M.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.IQ3_M.gguf) | IQ3_M | 3.33GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q3_K.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q3_K.gguf) | Q3_K | 3.55GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q3_K_M.gguf) | Q3_K_M | 3.55GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q3_K_L.gguf) | Q3_K_L | 3.81GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.IQ4_XS.gguf) | IQ4_XS | 3.96GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q4_0.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q4_0.gguf) | Q4_0 | 4.13GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.IQ4_NL.gguf) | IQ4_NL | 4.16GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q4_K_S.gguf) | Q4_K_S | 4.15GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q4_K.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q4_K.gguf) | Q4_K | 4.36GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q4_K_M.gguf) | Q4_K_M | 4.36GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q4_1.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q4_1.gguf) | Q4_1 | 4.54GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q5_0.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q5_0.gguf) | Q5_0 | 4.95GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q5_K_S.gguf) | Q5_K_S | 4.95GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q5_K.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q5_K.gguf) | Q5_K | 5.07GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q5_K_M.gguf) | Q5_K_M | 5.07GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q5_1.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q5_1.gguf) | Q5_1 | 5.36GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q6_K.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q6_K.gguf) | Q6_K | 5.82GB | | [fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q8_0.gguf](https://huggingface.co/RichardErkhov/quocdat25_-_fast-apply-v0.2-qwen2.5-Coder-7B-ft-gguf/blob/main/fast-apply-v0.2-qwen2.5-Coder-7B-ft.Q8_0.gguf) | Q8_0 | 7.54GB | Original model description: --- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rolf-mozilla/t5-topic
rolf-mozilla
2024-10-10T14:00:52Z
16
0
null
[ "onnx", "safetensors", "t5", "text2text-generation", "base_model:google-t5/t5-base", "base_model:quantized:google-t5/t5-base", "region:us" ]
text2text-generation
2024-08-26T23:49:15Z
--- base_model: google-t5/t5-base pipeline_tag: text2text-generation ---
gair-prox/CodeLlama-7B-ProXMath
gair-prox
2024-10-10T13:54:22Z
7
1
null
[ "pytorch", "llama", "en", "dataset:gair-prox/open-web-math-pro", "arxiv:2409.17115", "base_model:codellama/CodeLlama-7b-hf", "base_model:finetune:codellama/CodeLlama-7b-hf", "license:llama2", "region:us" ]
null
2024-09-16T12:25:11Z
--- license: llama2 datasets: - gair-prox/open-web-math-pro language: - en base_model: - codellama/CodeLlama-7b-hf --- # CodeLlama-7B-ProXMath <p align="center"> <img src="prox-teaser.png"> </p> [ArXiv](http://arxiv.org/abs/2409.17115) | [Data: OpenWebMath-Pro](https://huggingface.co/datasets/gair-prox/open-web-math-pro) | [Code](https://github.com/GAIR-NLP/program-every-example) **CodeLlama-7B-ProXMath** is a math-adapted language model that is continually pre-trained on [OpenWebMath-Pro](https://huggingface.co/datasets/gair-prox/open-web-math-pro) (a refined version by ProX) for **10**B tokens. ## Evaluations ProX models are evaluated on 9 common math reasoning benchmarks. | Model | asdiv | gsm8k | mathqa | mawps | minerva_math | mmlu_stem | sat_math | svamp | tabmwp | average | |-----------------------|:--------:|:--------:|:--------:|:--------:|:------------:|:---------:|:--------:|:--------:|:--------:|:--------:| | CodeLlama-7B | 50.7 | 11.8 | 14.3 | 62.6 | 5.0 | 20.4 | 21.9 | 44.2 | 30.6 | 29.1 | | CodeLlama-7B-ProXMath | **67.9** | **35.6** | **38.9** | **82.7** | **17.6** | **42.6** | **62.5** | **55.8** | **41.3** | **49.4** | ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```
gair-prox/TinyLlama-1.1B-ProXMath
gair-prox
2024-10-10T13:54:02Z
9
2
null
[ "pytorch", "safetensors", "llama", "en", "dataset:gair-prox/open-web-math-pro", "arxiv:2409.17115", "base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model:finetune:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "license:apache-2.0", "region:us" ]
null
2024-09-16T12:22:00Z
--- license: apache-2.0 datasets: - gair-prox/open-web-math-pro language: - en base_model: - TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T --- # TinyLlama-1.1B-ProXMath <p align="center"> <img src="prox-teaser.png"> </p> [ArXiv](https://arxiv.org/abs/2409.17115) | [Data: OpenWebMath-Pro](https://huggingface.co/datasets/gair-prox/open-web-math-pro) | [Code](https://github.com/GAIR-NLP/program-every-example) **TinyLlama-1.1B-ProXMath** is a math-adapted TinyLlama-1.1B model that is continually pre-trained on [OpenWebMath-Pro](https://huggingface.co/datasets/gair-prox/open-web-math-pro) (a refined version by ProX) for **15**B tokens. ## Evaluations ProX models are evaluated on 9 common math reasoning benchmarks. | Model | asdiv | gsm8k | mathqa | mawps | minerva_math | mmlu_stem | sat_math | svamp | tabmwp | average | |-------------------------|:--------:|:-------:|:--------:|:--------:|:------------:|:---------:|:--------:|:--------:|:--------:|:--------:| | TinyLlama-1.1B | 18.0 | 2.8 | 14.6 | 20.2 | 3.2 | 16.3 | 21.9 | 10.9 | 12.5 | 13.4 | | TinyLlama-1.1B-ProXMath | **41.9** | **9.0** | **15.6** | **56.9** | **5.6** | **26.8** | **31.2** | **23.8** | **22.2** | **25.7** | ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```
gair-prox/RedPJ-ProX-0.7B
gair-prox
2024-10-10T13:53:14Z
5
1
null
[ "pytorch", "safetensors", "llama", "en", "dataset:gair-prox/RedPajama-pro", "arxiv:2409.17115", "license:apache-2.0", "region:us" ]
null
2024-09-16T12:15:59Z
--- license: apache-2.0 datasets: - gair-prox/RedPajama-pro language: - en tags: - llama --- # RedPJ-ProX-0.7B <p align="center"> <img src="prox-teaser.png"> </p> [ArXiv](http://arxiv.org/abs/2409.17115) | [Models](https://huggingface.co/gair-prox/RedPJ-ProX-0.7B) | [Data](https://huggingface.co/datasets/gair-prox/RedPajama-pro) | [Code](https://github.com/GAIR-NLP/program-every-example) **RedPJ-ProX-0.7B** is a tiny language model. It was and trained on the [RedPajama-V2-pro](https://huggingface.co/datasets/gair-prox/RedPajama-pro) for 25B tokens. ## Evaluations ProX models are evaluated over 10 language model benchmarks in zero-shot setting. | | ArC-c | ARC-e | CSQA | HellaS | MMLU | OBQA | PiQA | SIQA | WinoG | SciQ | AVG | |-----------------------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|------| | raw | 26.1 | 44.3 | 29.7 | 39.1 | 27.3 | 29.2 | 66.9 | 39.0 | 52.0 | 67.4 | 42.1 | | ours | 26.4 | 51.9 | 30.9 | 42.4 | 29.4 | 31.6 | 67.9 | 40.0 | 52.2 | 73.5 | 44.6 | ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```
OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09
OpenLLM-Ro
2024-10-10T13:45:31Z
21
0
null
[ "safetensors", "llama", "ro", "dataset:OpenLLM-Ro/ro_sft_alpaca", "dataset:OpenLLM-Ro/ro_sft_alpaca_gpt4", "dataset:OpenLLM-Ro/ro_sft_dolly", "dataset:OpenLLM-Ro/ro_sft_selfinstruct_gpt4", "dataset:OpenLLM-Ro/ro_sft_norobots", "dataset:OpenLLM-Ro/ro_sft_orca", "dataset:OpenLLM-Ro/ro_sft_camel", "dataset:OpenLLM-Ro/ro_sft_oasst", "dataset:OpenLLM-Ro/ro_sft_ultrachat", "arxiv:2406.18266", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "license:cc-by-nc-4.0", "model-index", "region:us" ]
null
2024-09-23T12:49:13Z
--- license: cc-by-nc-4.0 language: - ro base_model: - meta-llama/Meta-Llama-3-8B-Instruct datasets: - OpenLLM-Ro/ro_sft_alpaca - OpenLLM-Ro/ro_sft_alpaca_gpt4 - OpenLLM-Ro/ro_sft_dolly - OpenLLM-Ro/ro_sft_selfinstruct_gpt4 - OpenLLM-Ro/ro_sft_norobots - OpenLLM-Ro/ro_sft_orca - OpenLLM-Ro/ro_sft_camel - OpenLLM-Ro/ro_sft_oasst - OpenLLM-Ro/ro_sft_ultrachat model-index: - name: OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09 results: - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: Score type: Score value: 5.38 - task: type: text-generation dataset: name: RoCulturaBench type: RoCulturaBench metrics: - name: Score type: Score value: 3.81 - task: type: text-generation dataset: name: Romanian_Academic_Benchmarks type: Romanian_Academic_Benchmarks metrics: - name: Average accuracy type: accuracy value: 52.21 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: Average accuracy type: accuracy value: 47.94 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: Average accuracy type: accuracy value: 53.50 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: Average accuracy type: accuracy value: 66.06 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: Average accuracy type: accuracy value: 59.72 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: Average accuracy type: accuracy value: 40.16 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_truthfulqa type: OpenLLM-Ro/ro_truthfulqa metrics: - name: Average accuracy type: accuracy value: 45.90 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: Average macro-f1 type: macro-f1 value: 95.58 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: Average macro-f1 type: macro-f1 value: 61.20 - task: type: text-generation dataset: name: LaRoSeDa_binary_finetuned type: LaRoSeDa_binary_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 96.46 - task: type: text-generation dataset: name: LaRoSeDa_multiclass_finetuned type: LaRoSeDa_multiclass_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 87.26 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: Average bleu type: bleu value: 22.92 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: Average bleu type: bleu value: 24.28 - task: type: text-generation dataset: name: WMT_EN-RO_finetuned type: WMT_EN-RO_finetuned metrics: - name: Average bleu type: bleu value: 27.31 - task: type: text-generation dataset: name: WMT_RO-EN_finetuned type: WMT_RO-EN_finetuned metrics: - name: Average bleu type: bleu value: 40.52 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average exact_match type: exact_match value: 18.89 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average f1 type: f1 value: 31.79 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average exact_match type: exact_match value: 50.84 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average f1 type: f1 value: 65.18 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average spearman type: spearman value: 77.60 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average pearson type: pearson value: 76.86 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average spearman type: spearman value: 86.70 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average pearson type: pearson value: 87.09 - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: First turn type: Score value: 6.09 - name: Second turn type: Score value: 4.67 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: 0-shot type: accuracy value: 46.02 - name: 1-shot type: accuracy value: 47.39 - name: 3-shot type: accuracy value: 47.73 - name: 5-shot type: accuracy value: 48.24 - name: 10-shot type: accuracy value: 48.33 - name: 25-shot type: accuracy value: 49.96 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: 0-shot type: accuracy value: 51.19 - name: 1-shot type: accuracy value: 53.05 - name: 3-shot type: accuracy value: 54.83 - name: 5-shot type: accuracy value: 54.93 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: 0-shot type: accuracy value: 64.09 - name: 1-shot type: accuracy value: 66.22 - name: 3-shot type: accuracy value: 66.61 - name: 5-shot type: accuracy value: 67.32 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: 0-shot type: accuracy value: 59.34 - name: 1-shot type: accuracy value: 59.52 - name: 3-shot type: accuracy value: 59.61 - name: 5-shot type: accuracy value: 59.95 - name: 10-shot type: accuracy value: 60.19 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: 1-shot type: accuracy value: 31.31 - name: 3-shot type: accuracy value: 42.23 - name: 5-shot type: accuracy value: 46.93 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: 0-shot type: macro-f1 value: 92.43 - name: 1-shot type: macro-f1 value: 96.23 - name: 3-shot type: macro-f1 value: 96.66 - name: 5-shot type: macro-f1 value: 97.00 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: 0-shot type: macro-f1 value: 61.47 - name: 1-shot type: macro-f1 value: 63.77 - name: 3-shot type: macro-f1 value: 57.12 - name: 5-shot type: macro-f1 value: 62.43 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: 0-shot type: bleu value: 5.25 - name: 1-shot type: bleu value: 28.62 - name: 3-shot type: bleu value: 29.60 - name: 5-shot type: bleu value: 28.21 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: 0-shot type: bleu value: 1.95 - name: 1-shot type: bleu value: 24.00 - name: 3-shot type: bleu value: 34.87 - name: 5-shot type: bleu value: 36.31 - task: type: text-generation dataset: name: XQuAD_EM type: XQuAD_EM metrics: - name: 0-shot type: exact_match value: 16.97 - name: 1-shot type: exact_match value: 31.01 - name: 3-shot type: exact_match value: 13.95 - name: 5-shot type: exact_match value: 13.61 - task: type: text-generation dataset: name: XQuAD_F1 type: XQuAD_F1 metrics: - name: 0-shot type: f1 value: 31.29 - name: 1-shot type: f1 value: 42.77 - name: 3-shot type: f1 value: 24.78 - name: 5-shot type: f1 value: 28.30 - task: type: text-generation dataset: name: STS_Spearman type: STS_Spearman metrics: - name: 1-shot type: spearman value: 77.73 - name: 3-shot type: spearman value: 76.78 - name: 5-shot type: spearman value: 78.30 - task: type: text-generation dataset: name: STS_Pearson type: STS_Pearson metrics: - name: 1-shot type: pearson value: 77.25 - name: 3-shot type: pearson value: 75.83 - name: 5-shot type: pearson value: 77.49 --- # Model Card for Model ID *Built with Meta Llama 3* <!-- Provide a quick summary of what the model is/does. --> RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 8B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro <!-- - **Funded by [optional]:** [More Information Needed] --> <!-- - **Shared by [optional]:** [More Information Needed] --> <!-- - **Model type:** [More Information Needed] --> - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."}, {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks <table> <tbody> <tr> <td><strong>Model</strong></td> <td><strong><center>Average</center></strong></td> <td><strong><center>ARC</center></strong></td> <td><strong><center>MMLU</center></strong></td> <td><strong><center>Winogrande</center></strong></td> <td><strong><center>Hellaswag</center></strong></td> <td><strong><center>GSM8k</center></strong></td> <td><strong><center>TruthfulQA</center></strong></td> </tr> <tr> <td>Llama-3-8B-Instruct</td><td><center>50.62</center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center><strong>43.87</strong></center></td><td><center><strong>51.59</strong></center></td> </tr> <tr> <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>50.56</center></td><td><center>44.70</center></td><td><center>52.19</center></td><td><center><strong>67.23</strong></center></td><td><center>57.69</center></td><td><center>30.23</center></td><td><center>51.34</center></td> </tr> <tr> <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em><strong>52.21</strong></em></center></td><td><center><em><strong>47.94</strong></em></center></td><td><center><em><strong>53.50</strong></em></center></td><td><center><em>66.06</em></center></td><td><center><em><strong>59.72</strong></em></center></td><td><center><em>40.16</em></center></td><td><center><em>45.90</em></center></td> </tr> <tr> <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>49.96</center></td><td><center>46.29</center></td><td><center>53.29</center></td><td><center>65.57</center></td><td><center>58.15</center></td><td><center>34.77</center></td><td><center>41.70</center></td> </tr> </tbody> </table> ## Downstream tasks <table> <tbody> <tr> <td></td> <td colspan="4"><center><strong>LaRoSeDa</strong></center></td> <td colspan="4"><center><strong>WMT</strong></center></td> </tr> <tr> <td></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> </tr> <tr> <td><strong>Model</strong></td> <td><center><strong>Binary<br>(Macro F1)</strong></center></td> <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td> <td><center><strong>Binary<br>(Macro F1)</strong></center></td> <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td> <td><center><strong>EN-RO<br>(Bleu)</strong></center></td> <td><center><strong>RO-EN<br>(Bleu)</strong></center></td> <td><center><strong>EN-RO<br>(Bleu)</strong></center></td> <td><center><strong>RO-EN<br>(Bleu)</strong></center> </tr> <tr> <td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.88</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td> </tr> <tr> <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center><strong>97.52</strong></center></td><td><center><strong>67.41</strong></center></td><td><center>94.15</center></td><td><center>87.13</center></td><td><center><strong>24.01</strong></center></td><td><center>27.36</center></td><td><center>26.53</center></td><td><center>40.36</center></td> </tr> <tr> <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>95.58</em></center></td><td><center><em>61.20</em></center></td><td><center><em>96.46</em></center></td><td><center><em><strong>87.26</strong></em></center></td><td><center><em>22.92</em></center></td><td><center><em>24.28</em></center></td><td><center><em>27.31</em></center></td><td><center><em><strong>40.52</strong></em></center></td> </tr> <tr> <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>97.48</center></td><td><center>54.00</center></td><td><center>-</center></td><td><center>-</center></td><td><center>22.09</center></td><td><center>23.00</center></td><td><center>-</center></td><td><center>-</center></td> </tr> </tbody> </table> <table> <tbody> <tr> <td></td> <td colspan="4"><center><strong>XQuAD</strong></center></td> <td colspan="4"><center><strong>STS</strong></center></td> </tr> <tr> <td></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> <td colspan="2"><center><strong>Few-shot</strong></center></td> <td colspan="2"><center><strong>Finetuned</strong></center></td> </tr> <tr> <td><strong>Model</strong></td> <td><center><strong>(EM)</strong></center></td> <td><center><strong>(F1)</strong></center></td> <td><center><strong>(EM)</strong></center></td> <td><center><strong>(F1)</strong></center></td> <td><center><strong>(Spearman)</strong></center></td> <td><center><strong>(Pearson)</strong></center></td> <td><center><strong>(Spearman)</strong></center></td> <td><center><strong>(Pearson)</strong></center></td> </tr> <tr> <td>Llama-3-8B-Instruct</td><td><center><strong>39.47</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td> </tr> <tr> <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>39.43</center></td><td><center><strong>59.50</strong></center></td><td><center>44.45</center></td><td><center>59.76</center></td><td><center>77.20</center></td><td><center>77.87</center></td><td><center>85.80</center></td><td><center>86.05</center></td> </tr> <tr> <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>18.89</em></center></td><td><center><em>31.79</em></center></td><td><center><em>50.84</em></center></td><td><center><em>65.18</em></center></td><td><center><em>77.60</em></center></td><td><center><em>76.86</em></center></td><td><center><em><strong>86.70</strong></em></center></td><td><center><em><strong>87.09</strong></em></center></td> </tr> <tr> <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>26.05</center></td><td><center>42.77</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>79.64</strong></center></td><td><center><strong>79.52</strong></center></td><td><center>-</center></td><td><center>-</center></td> </tr> </tbody> </table> ## MT-Bench <table> <tbody> <tr> <td><strong>Model</strong></td> <td><strong><center>Average</center></strong></td> <td><strong><center>1st turn</center></strong></td> <td><strong><center>2nd turn</center></strong></td> <td><strong><center>Answers in Ro</center></strong></td> </tr> <tr> <td>Llama-3-8B-Instruct</td><td><center><strong>5.96</strong></center></td><td><center>6.16</center></td><td><center><strong>5.76</strong></center></td><td><center>158/160</center></td> </tr> <tr> <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>5.15</center></td><td><center>6.03</center></td><td><center>4.28</center></td><td><center><strong>160/160</strong></center></td> </tr> <tr> <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>5.38</em></center></td><td><center><em>6.09</em></center></td><td><center><em>4.67</em></center></td><td><center><em><strong>160/160</strong></em></center></td> </tr> <tr> <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>5.87</center></td><td><center><strong>6.22</strong></center></td><td><center>5.49</center></td><td><center><strong>160/160</strong></center></td> </tr> </tbody> </table> ## RoCulturaBench <table> <tbody> <tr> <td><strong>Model</strong></td> <td><strong><center>Average</center></strong></td> <td><strong><center>Answers in Ro</center></strong></td> </tr> <tr> <td>Llama-3-8B-Instruct</td><td><center><strong>4.62</strong></center></td><td><center><strong>100/100</strong></center></td> </tr> <tr> <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>3.71</center></td><td><center><strong>100/100</strong></center></td> </tr> <tr> <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>3.81</em></center></td><td><center><em><strong>100/100</strong></em></center></td> </tr> <tr> <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>4.40</center></td><td><center><strong>100/100</strong></center></td> </tr> </tbody> </table> ## RoLlama3 Model Family | Model | Link | |--------------------|:--------:| |RoLlama3-8b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28) | |*RoLlama3-8b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) | |RoLlama3-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09) | ## Citation ``` @misc{masala2024vorbecstiromanecsterecipetrain, title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea}, year={2024}, eprint={2406.18266}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.18266}, } ``` <!-- **APA:** [More Information Needed] -->
avans06/Meta-Llama-3.1-8B-Instruct-ct2-int8_float16
avans06
2024-10-10T13:44:30Z
6
0
null
[ "facebook", "meta", "pytorch", "llama", "llama-3", "ctranslate2", "quantization", "int8", "float16", "text-generation", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2204.05149", "base_model:meta-llama/Llama-3.1-8B", "base_model:finetune:meta-llama/Llama-3.1-8B", "license:llama3.1", "region:us" ]
text-generation
2024-10-10T10:42:37Z
--- language: - en - de - fr - it - pt - hi - es - th license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 - ctranslate2 - quantization - int8 - float16 extra_gated_prompt: "### LLAMA 3.1 COMMUNITY LICENSE AGREEMENT\nLlama 3.1 Version\ \ Release Date: July 23, 2024\n\"Agreement\" means the terms and conditions for\ \ use, reproduction, distribution and modification of the Llama Materials set forth\ \ herein.\n\"Documentation\" means the specifications, manuals and documentation\ \ accompanying Llama 3.1 distributed by Meta at https://llama.meta.com/doc/overview.\n\ \"Licensee\" or \"you\" means you, or your employer or any other person or entity\ \ (if you are entering into this Agreement on such person or entity’s behalf), of\ \ the age required under applicable laws, rules or regulations to provide legal\ \ consent and that has legal authority to bind your employer or such other person\ \ or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.1\"\ \ means the foundational large language models and software and algorithms, including\ \ machine-learning model code, trained model weights, inference-enabling code, training-enabling\ \ code, fine-tuning enabling code and other elements of the foregoing distributed\ \ by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means,\ \ collectively, Meta’s proprietary Llama 3.1 and Documentation (and any portion\ \ thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms\ \ Ireland Limited (if you are located in or, if you are an entity, your principal\ \ place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you\ \ are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\n\ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable\ \ and royalty-free limited license under Meta’s intellectual property or other rights\ \ owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy,\ \ create derivative works of, and make modifications to the Llama Materials.\nb.\ \ Redistribution and Use.\ni. If you distribute or make available the Llama Materials\ \ (or any derivative works thereof), or a product or service (including another\ \ AI model) that contains any of them, you shall (A) provide a copy of this Agreement\ \ with any such Llama Materials; and (B) prominently display “Built with Llama”\ \ on a related website, user interface, blogpost, about page, or product documentation.\ \ If you use the Llama Materials or any outputs or results of the Llama Materials\ \ to create, train, fine tune, or otherwise improve an AI model, which is distributed\ \ or made available, you shall also include “Llama” at the beginning of any such\ \ AI model name.\nii. If you receive Llama Materials, or any derivative works thereof,\ \ from a Licensee as part of an integrated end user product, then Section 2 of\ \ this Agreement will not apply to you.\niii. You must retain in all copies of the\ \ Llama Materials that you distribute the following attribution notice within a\ \ “Notice” text file distributed as a part of such copies: “Llama 3.1 is licensed\ \ under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc. All Rights\ \ Reserved.”\niv. Your use of the Llama Materials must comply with applicable laws\ \ and regulations (including trade compliance laws and regulations) and adhere to\ \ the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3_1/use-policy),\ \ which is hereby incorporated by reference into this Agreement.\n2. Additional\ \ Commercial Terms. If, on the Llama 3.1 version release date, the monthly active\ \ users of the products or services made available by or for Licensee, or Licensee’s\ \ affiliates, is greater than 700 million monthly active users in the preceding\ \ calendar month, you must request a license from Meta, which Meta may grant to\ \ you in its sole discretion, and you are not authorized to exercise any of the\ \ rights under this Agreement unless or until Meta otherwise expressly grants you\ \ such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE\ \ LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS”\ \ BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY\ \ KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\ \ OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.\ \ YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING\ \ THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA\ \ MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT\ \ WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN\ \ CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS\ \ AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,\ \ EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED\ \ OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No\ \ trademark licenses are granted under this Agreement, and in connection with the\ \ Llama Materials, neither Meta nor Licensee may use any name or mark owned by or\ \ associated with the other or any of its affiliates, except as required for reasonable\ \ and customary use in describing and redistributing the Llama Materials or as set\ \ forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the\ \ “Mark”) solely as required to comply with the last sentence of Section 1.b.i.\ \ You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/\ \ ). All goodwill arising out of your use of the Mark will inure to the benefit\ \ of Meta.\nb. Subject to Meta’s ownership of Llama Materials and derivatives made\ \ by or for Meta, with respect to any derivative works and modifications of the\ \ Llama Materials that are made by you, as between you and Meta, you are and will\ \ be the owner of such derivative works and modifications.\nc. If you institute\ \ litigation or other proceedings against Meta or any entity (including a cross-claim\ \ or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs\ \ or results, or any portion of any of the foregoing, constitutes infringement of\ \ intellectual property or other rights owned or licensable by you, then any licenses\ \ granted to you under this Agreement shall terminate as of the date such litigation\ \ or claim is filed or instituted. You will indemnify and hold harmless Meta from\ \ and against any claim by any third party arising out of or related to your use\ \ or distribution of the Llama Materials.\n6. Term and Termination. The term of\ \ this Agreement will commence upon your acceptance of this Agreement or access\ \ to the Llama Materials and will continue in full force and effect until terminated\ \ in accordance with the terms and conditions herein. Meta may terminate this Agreement\ \ if you are in breach of any term or condition of this Agreement. Upon termination\ \ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\ \ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\ \ and Jurisdiction. This Agreement will be governed and construed under the laws\ \ of the State of California without regard to choice of law principles, and the\ \ UN Convention on Contracts for the International Sale of Goods does not apply\ \ to this Agreement. The courts of California shall have exclusive jurisdiction\ \ of any dispute arising out of this Agreement.\n### Llama 3.1 Acceptable Use Policy\n\ Meta is committed to promoting safe and fair use of its tools and features, including\ \ Llama 3.1. If you access or use Llama 3.1, you agree to this Acceptable Use Policy\ \ (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy)\n\ #### Prohibited Uses\nWe want everyone to use Llama 3.1 safely and responsibly.\ \ You agree you will not use, or allow others to use, Llama 3.1 to:\n 1. Violate\ \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\ \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\ \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\ \ or harm to children, including the solicitation, creation, acquisition, or dissemination\ \ of child exploitative content or failure to report Child Sexual Abuse Material\n\ \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\ \ illegal distribution of information or materials to minors, including obscene\ \ materials, or failure to employ legally required age-gating in connection with\ \ such information or materials.\n 5. Sexual solicitation\n 6. Any\ \ other criminal activity\n 3. Engage in, promote, incite, or facilitate the\ \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\ \ 4. Engage in, promote, incite, or facilitate discrimination or other unlawful\ \ or harmful conduct in the provision of employment, employment benefits, credit,\ \ housing, other economic benefits, or other essential goods and services\n 5.\ \ Engage in the unauthorized or unlicensed practice of any profession including,\ \ but not limited to, financial, legal, medical/health, or related professional\ \ practices\n 6. Collect, process, disclose, generate, or infer health, demographic,\ \ or other sensitive personal or private information about individuals without rights\ \ and consents required by applicable laws\n 7. Engage in or facilitate any action\ \ or generate any content that infringes, misappropriates, or otherwise violates\ \ any third-party rights, including the outputs or results of any products or services\ \ using the Llama Materials\n 8. Create, generate, or facilitate the creation\ \ of malicious code, malware, computer viruses or do anything else that could disable,\ \ overburden, interfere with or impair the proper working, integrity, operation\ \ or appearance of a website or computer system\n2. Engage in, promote, incite,\ \ facilitate, or assist in the planning or development of activities that present\ \ a risk of death or bodily harm to individuals, including use of Llama 3.1 related\ \ to the following:\n 1. Military, warfare, nuclear industries or applications,\ \ espionage, use for materials or activities that are subject to the International\ \ Traffic Arms Regulations (ITAR) maintained by the United States Department of\ \ State\n 2. Guns and illegal weapons (including weapon development)\n 3.\ \ Illegal drugs and regulated/controlled substances\n 4. Operation of critical\ \ infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm\ \ or harm to others, including suicide, cutting, and eating disorders\n 6. Any\ \ content intended to incite or promote violence, abuse, or any infliction of bodily\ \ harm to an individual\n3. Intentionally deceive or mislead others, including use\ \ of Llama 3.1 related to the following:\n 1. Generating, promoting, or furthering\ \ fraud or the creation or promotion of disinformation\n 2. Generating, promoting,\ \ or furthering defamatory content, including the creation of defamatory statements,\ \ images, or other content\n 3. Generating, promoting, or further distributing\ \ spam\n 4. Impersonating another individual without consent, authorization,\ \ or legal right\n 5. Representing that the use of Llama 3.1 or outputs are human-generated\n\ \ 6. Generating or facilitating false online engagement, including fake reviews\ \ and other means of fake online engagement\n4. Fail to appropriately disclose to\ \ end users any known dangers of your AI system\nPlease report any violation of\ \ this Policy, software “bug,” or other problems that could lead to a violation\ \ of this Policy through one of the following means:\n * Reporting issues with\ \ the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues)\n\ \ * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n\ \ * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting\ \ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]" extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location ? By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy : checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- ## meta-llama/Meta-Llama-3.1-8B-Instruct for CTranslate2 **The model is quantized version of the [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) with int8_float16 quantization and can be used in [CTranslate2](https://github.com/OpenNMT/CTranslate2).** ## Conversion details The original model was converted on 2024-10 with the following command: ``` ct2-transformers-converter --model Path\To\Local\meta-llama\Meta-Llama-3.1-8B-Instruct \ --quantization int8_float16 --output_dir Meta-Llama-3.1-8B-Instruct-ct2-int8_float16 ``` ## Model Information The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks. **Model developer**: Meta **Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Input modalities</strong> </td> <td><strong>Output modalities</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="3" >Llama 3.1 (text only) </td> <td rowspan="3" >A new mix of publicly available online data. </td> <td>8B </td> <td>Multilingual Text </td> <td>Multilingual Text and code </td> <td>128k </td> <td>Yes </td> <td rowspan="3" >15T+ </td> <td rowspan="3" >December 2023 </td> </tr> <tr> <td>70B </td> <td>Multilingual Text </td> <td>Multilingual Text and code </td> <td>128k </td> <td>Yes </td> </tr> <tr> <td>405B </td> <td>Multilingual Text </td> <td>Multilingual Text and code </td> <td>128k </td> <td>Yes </td> </tr> </table> **Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. **Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date:** July 23, 2024. **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3.1 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.1 model collection also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.1 Community License allows for these use cases. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License. Use in languages beyond those explicitly referenced as supported in this model card**. **<span style="text-decoration:underline;">Note</span>: Llama 3.1 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.1 models for languages beyond the 8 supported languages provided they comply with the Llama 3.1 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.1 in additional languages is done in a safe and responsible manner. ## How to use This repository for use with [CTranslate2](https://github.com/OpenNMT/CTranslate2). ### Use with CTranslate2 This example code is obtained from [CTranslate2_transformers](https://opennmt.net/CTranslate2/guides/transformers.html#mpt) and [tokenizer AutoTokenizer](https://huggingface.co/docs/transformers/main_classes/tokenizer). More detailed information about the `generate_batch` methon can be found at [CTranslate2_Generator.generate_batch](https://opennmt.net/CTranslate2/python/ctranslate2.Generator.html#ctranslate2.Generator.generate_batch). ```python import ctranslate2 import transformers model_id = "avans06/Meta-Llama-3.1-8B-Instruct-ct2-int8_float16" model = ctranslate2.Generator(model_id, device="auto", compute_type="int8_float16") tokenizer = transformers.AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True) ) input_tokens = tokenizer.convert_ids_to_tokens(input_ids) results = model.generate_batch([input_tokens], include_prompt_in_result=False, max_length=256) output = tokenizer.decode(results[0].sequences_ids[0]) print(output) ``` ## Hardware and Software **Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure. **Training utilized a cumulative of** 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency. **Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq. <table> <tr> <td> </td> <td><strong>Training Time (GPU hours)</strong> </td> <td><strong>Training Power Consumption (W)</strong> </td> <td><strong>Training Location-Based Greenhouse Gas Emissions</strong> <p> <strong>(tons CO2eq)</strong> </td> <td><strong>Training Market-Based Greenhouse Gas Emissions</strong> <p> <strong>(tons CO2eq)</strong> </td> </tr> <tr> <td>Llama 3.1 8B </td> <td>1.46M </td> <td>700 </td> <td>420 </td> <td>0 </td> </tr> <tr> <td>Llama 3.1 70B </td> <td>7.0M </td> <td>700 </td> <td>2,040 </td> <td>0 </td> </tr> <tr> <td>Llama 3.1 405B </td> <td>30.84M </td> <td>700 </td> <td>8,930 </td> <td>0 </td> </tr> <tr> <td>Total </td> <td>39.3M <td> <ul> </ul> </td> <td>11,390 </td> <td>0 </td> </tr> </table> The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others. ## Training Data **Overview:** Llama 3.1 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples. **Data Freshness:** The pretraining data has a cutoff of December 2023. ## Benchmark scores In this section, we report the results for Llama 3.1 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong># Shots</strong> </td> <td><strong>Metric</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 3.1 8B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 3.1 70B</strong> </td> <td><strong>Llama 3.1 405B</strong> </td> </tr> <tr> <td rowspan="7" >General </td> <td>MMLU </td> <td>5 </td> <td>macro_avg/acc_char </td> <td>66.7 </td> <td>66.7 </td> <td>79.5 </td> <td>79.3 </td> <td>85.2 </td> </tr> <tr> <td>MMLU-Pro (CoT) </td> <td>5 </td> <td>macro_avg/acc_char </td> <td>36.2 </td> <td>37.1 </td> <td>55.0 </td> <td>53.8 </td> <td>61.6 </td> </tr> <tr> <td>AGIEval English </td> <td>3-5 </td> <td>average/acc_char </td> <td>47.1 </td> <td>47.8 </td> <td>63.0 </td> <td>64.6 </td> <td>71.6 </td> </tr> <tr> <td>CommonSenseQA </td> <td>7 </td> <td>acc_char </td> <td>72.6 </td> <td>75.0 </td> <td>83.8 </td> <td>84.1 </td> <td>85.8 </td> </tr> <tr> <td>Winogrande </td> <td>5 </td> <td>acc_char </td> <td>- </td> <td>60.5 </td> <td>- </td> <td>83.3 </td> <td>86.7 </td> </tr> <tr> <td>BIG-Bench Hard (CoT) </td> <td>3 </td> <td>average/em </td> <td>61.1 </td> <td>64.2 </td> <td>81.3 </td> <td>81.6 </td> <td>85.9 </td> </tr> <tr> <td>ARC-Challenge </td> <td>25 </td> <td>acc_char </td> <td>79.4 </td> <td>79.7 </td> <td>93.1 </td> <td>92.9 </td> <td>96.1 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki </td> <td>5 </td> <td>em </td> <td>78.5 </td> <td>77.6 </td> <td>89.7 </td> <td>89.8 </td> <td>91.8 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD </td> <td>1 </td> <td>em </td> <td>76.4 </td> <td>77.0 </td> <td>85.6 </td> <td>81.8 </td> <td>89.3 </td> </tr> <tr> <td>QuAC (F1) </td> <td>1 </td> <td>f1 </td> <td>44.4 </td> <td>44.9 </td> <td>51.1 </td> <td>51.1 </td> <td>53.6 </td> </tr> <tr> <td>BoolQ </td> <td>0 </td> <td>acc_char </td> <td>75.7 </td> <td>75.0 </td> <td>79.0 </td> <td>79.4 </td> <td>80.0 </td> </tr> <tr> <td>DROP (F1) </td> <td>3 </td> <td>f1 </td> <td>58.4 </td> <td>59.5 </td> <td>79.7 </td> <td>79.6 </td> <td>84.8 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong># Shots</strong> </td> <td><strong>Metric</strong> </td> <td><strong>Llama 3 8B Instruct</strong> </td> <td><strong>Llama 3.1 8B Instruct</strong> </td> <td><strong>Llama 3 70B Instruct</strong> </td> <td><strong>Llama 3.1 70B Instruct</strong> </td> <td><strong>Llama 3.1 405B Instruct</strong> </td> </tr> <tr> <td rowspan="4" >General </td> <td>MMLU </td> <td>5 </td> <td>macro_avg/acc </td> <td>68.5 </td> <td>69.4 </td> <td>82.0 </td> <td>83.6 </td> <td>87.3 </td> </tr> <tr> <td>MMLU (CoT) </td> <td>0 </td> <td>macro_avg/acc </td> <td>65.3 </td> <td>73.0 </td> <td>80.9 </td> <td>86.0 </td> <td>88.6 </td> </tr> <tr> <td>MMLU-Pro (CoT) </td> <td>5 </td> <td>micro_avg/acc_char </td> <td>45.5 </td> <td>48.3 </td> <td>63.4 </td> <td>66.4 </td> <td>73.3 </td> </tr> <tr> <td>IFEval </td> <td> </td> <td> </td> <td>76.8 </td> <td>80.4 </td> <td>82.9 </td> <td>87.5 </td> <td>88.6 </td> </tr> <tr> <td rowspan="2" >Reasoning </td> <td>ARC-C </td> <td>0 </td> <td>acc </td> <td>82.4 </td> <td>83.4 </td> <td>94.4 </td> <td>94.8 </td> <td>96.9 </td> </tr> <tr> <td>GPQA </td> <td>0 </td> <td>em </td> <td>34.6 </td> <td>30.4 </td> <td>39.5 </td> <td>46.7 </td> <td>50.7 </td> </tr> <tr> <td rowspan="4" >Code </td> <td>HumanEval </td> <td>0 </td> <td>pass@1 </td> <td>60.4 </td> <td>72.6 </td> <td>81.7 </td> <td>80.5 </td> <td>89.0 </td> </tr> <tr> <td>MBPP ++ base version </td> <td>0 </td> <td>pass@1 </td> <td>70.6 </td> <td>72.8 </td> <td>82.5 </td> <td>86.0 </td> <td>88.6 </td> </tr> <tr> <td>Multipl-E HumanEval </td> <td>0 </td> <td>pass@1 </td> <td>- </td> <td>50.8 </td> <td>- </td> <td>65.5 </td> <td>75.2 </td> </tr> <tr> <td>Multipl-E MBPP </td> <td>0 </td> <td>pass@1 </td> <td>- </td> <td>52.4 </td> <td>- </td> <td>62.0 </td> <td>65.7 </td> </tr> <tr> <td rowspan="2" >Math </td> <td>GSM-8K (CoT) </td> <td>8 </td> <td>em_maj1@1 </td> <td>80.6 </td> <td>84.5 </td> <td>93.0 </td> <td>95.1 </td> <td>96.8 </td> </tr> <tr> <td>MATH (CoT) </td> <td>0 </td> <td>final_em </td> <td>29.1 </td> <td>51.9 </td> <td>51.0 </td> <td>68.0 </td> <td>73.8 </td> </tr> <tr> <td rowspan="4" >Tool Use </td> <td>API-Bank </td> <td>0 </td> <td>acc </td> <td>48.3 </td> <td>82.6 </td> <td>85.1 </td> <td>90.0 </td> <td>92.0 </td> </tr> <tr> <td>BFCL </td> <td>0 </td> <td>acc </td> <td>60.3 </td> <td>76.1 </td> <td>83.0 </td> <td>84.8 </td> <td>88.5 </td> </tr> <tr> <td>Gorilla Benchmark API Bench </td> <td>0 </td> <td>acc </td> <td>1.7 </td> <td>8.2 </td> <td>14.7 </td> <td>29.7 </td> <td>35.3 </td> </tr> <tr> <td>Nexus (0-shot) </td> <td>0 </td> <td>macro_avg/acc </td> <td>18.1 </td> <td>38.5 </td> <td>47.8 </td> <td>56.7 </td> <td>58.7 </td> </tr> <tr> <td>Multilingual </td> <td>Multilingual MGSM (CoT) </td> <td>0 </td> <td>em </td> <td>- </td> <td>68.9 </td> <td>- </td> <td>86.9 </td> <td>91.6 </td> </tr> </table> #### Multilingual benchmarks <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Language</strong> </td> <td><strong>Llama 3.1 8B</strong> </td> <td><strong>Llama 3.1 70B</strong> </td> <td><strong>Llama 3.1 405B</strong> </td> </tr> <tr> <td rowspan="9" ><strong>General</strong> </td> <td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong> </td> <td>Portuguese </td> <td>62.12 </td> <td>80.13 </td> <td>84.95 </td> </tr> <tr> <td>Spanish </td> <td>62.45 </td> <td>80.05 </td> <td>85.08 </td> </tr> <tr> <td>Italian </td> <td>61.63 </td> <td>80.4 </td> <td>85.04 </td> </tr> <tr> <td>German </td> <td>60.59 </td> <td>79.27 </td> <td>84.36 </td> </tr> <tr> <td>French </td> <td>62.34 </td> <td>79.82 </td> <td>84.66 </td> </tr> <tr> <td>Hindi </td> <td>50.88 </td> <td>74.52 </td> <td>80.31 </td> </tr> <tr> <td>Thai </td> <td>50.32 </td> <td>72.95 </td> <td>78.21 </td> </tr> </table> ## Responsibility & Safety As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks: * Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama. * Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm. * Provide protections for the community to help prevent the misuse of our models. ### Responsible deployment Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.1 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more. #### Llama 3.1 instruct Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper. **Fine-tuning data** We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control. **Refusals and Tone** Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines. #### Llama 3.1 systems **Large language models, including Llama 3.1, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools. As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box. #### New capabilities Note that this release introduces new capabilities, including a longer context window, multilingual inputs and outputs and possible integrations by developers with third party tools. Building with these new capabilities requires specific considerations in addition to the best practices that generally apply across all Generative AI use cases. **Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards. **Multilinguality**: Llama 3.1 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide. ### Evaluations We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application. Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization. **Red teaming** For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets. We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets. ### Critical and other risks We specifically focused our efforts on mitigating the following critical risk areas: **1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness** To assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons. **2. Child Safety** Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. **3. Cyber attack enablement** Our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed. Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention. Our study of Llama-3.1-405B’s social engineering uplift for cyber attackers was conducted to assess the effectiveness of AI models in aiding cyber threat actors in spear phishing campaigns. Please read our Llama 3.1 Cyber security whitepaper to learn more. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3.1 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.1 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3.1 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.1’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.1 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.