modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 18:27:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
500 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 18:23:41
card
stringlengths
11
1.01M
dbaek111/Mistral-7B-v0.2-Elon_500-instruct
dbaek111
2024-05-14T09:54:31Z
76
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-14T09:51:04Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ariakhosh/adapter1
ariakhosh
2024-05-14T09:54:19Z
0
0
null
[ "safetensors", "arxiv:2305.14314", "arxiv:2302.13971", "region:us" ]
null
2024-05-14T09:53:06Z
# QLoRA Instruction Tuned Models | [Paper](https://arxiv.org/abs/2305.14314) | [Code](https://github.com/artidoro/qlora) | [Demo](https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi) | **The `QLoRA Instruction Tuned Models` are open-source models obtained through 4-bit QLoRA tuning of LLaMA base models on various instruction tuning datasets. They are available in 7B, 13B, 33B, and 65B parameter sizes.** **Note: The best performing chatbot models are named [Guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) and finetuned on OASST1. This model card is for the other models finetuned on other instruction tuning datasets.** ⚠️ These models are purely intended for research purposes and could produce problematic outputs. ## What are QLoRA Instruction Tuned Models and why use them? - **Strong performance on MMLU** following the QLoRA instruction tuning. - **Replicable and efficient instruction tuning procedure** that can be extended to new use cases. QLoRA training scripts are available in the [QLoRA repo](https://github.com/artidoro/qlora). - **Rigorous comparison to 16-bit methods** (both 16-bit full-finetuning and LoRA) in [our paper](https://arxiv.org/abs/2305.14314) demonstrates the effectiveness of 4-bit QLoRA finetuning. - **Lightweight** checkpoints which only contain adapter weights. ## License and Intended Use QLoRA Instruction Tuned adapter weights are available under Apache 2 license. Note the use of these adapter weights, requires access to the LLaMA model weighs and therefore should be used according to the LLaMA license. ## Usage Here is an example of how you would load Flan v2 7B in 4-bits: ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_name = "huggyllama/llama-7b" adapters_name = 'timdettmers/qlora-flan-7b' model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True, torch_dtype=torch.bfloat16, device_map="auto", max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())}, quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ), ) model = PeftModel.from_pretrained(model, adapters_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` Inference can then be performed as usual with HF models as follows: ```python prompt = "Introduce yourself" formatted_prompt = ( f"A chat between a curious human and an artificial intelligence assistant." f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n" f"### Human: {prompt} ### Assistant:" ) inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda:0") outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Expected output similar to the following: ``` A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. ### Human: Introduce yourself ### Assistant: I am an artificial intelligence assistant. I am here to help you with any questions you may have. ``` ## Current Inference Limitations Currently, 4-bit inference is slow. We recommend loading in 16 bits if inference speed is a concern. We are actively working on releasing efficient 4-bit inference kernels. Below is how you would load the model in 16 bits: ```python model_name = "huggyllama/llama-7b" adapters_name = 'timdettmers/qlora-flan-7b' model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())}, ) model = PeftModel.from_pretrained(model, adapters_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Model Card **Architecture**: The models released here are LoRA adapters to be used on top of LLaMA models. They are added to all layers. For all model sizes, we use $r=64$. **Base Model**: These models use LLaMA as base model with sizes 7B, 13B, 33B, 65B. LLaMA is a causal language model pretrained on a large corpus of text. See [LLaMA paper](https://arxiv.org/abs/2302.13971) for more details. Note that these models can inherit biases and limitations of the base model. **Finetuning Data**: These models are finetuned on various instruction tuning datasets. The datasets used are: Alpaca, HH-RLHF, Unnatural Instr., Chip2, Longform, Self-Instruct, FLAN v2. **Languages**: The different datasets cover different languages. We direct to the various papers and resources describing the datasets for more details. Next, we describe Training and Evaluation details. ### Training QLoRA Instruction Tuned Models are the result of 4-bit QLoRA supervised finetuning on different instruction tuning datasets. All models use NormalFloat4 datatype for the base model and LoRA adapters on all linear layers with BFloat16 as computation datatype. We set LoRA $r=64$, $\alpha=16$. We also use Adam beta2 of 0.999, max grad norm of 0.3 and LoRA dropout of 0.1 for models up to 13B and 0.05 for 33B and 65B models. For the finetuning process, we use constant learning rate schedule and paged AdamW optimizer. ### Training hyperparameters | Parameters | Dataset | Batch size | LR | Steps | Source Length | Target Length | |------------|----------|------------|------|-------|---------------|---------------| | 7B | All | 16 | 2e-4 | 10000 | 384 | 128 | | 7B | OASST1 | 16 | 2e-4 | 1875 | - | 512 | | 7B | HH-RLHF | 16 | 2e-4 | 10000 | - | 768 | | 7B | Longform | 16 | 2e-4 | 4000 | 512 | 1024 | | 13B | All | 16 | 2e-4 | 10000 | 384 | 128 | | 13B | OASST1 | 16 | 2e-4 | 1875 | - | 512 | | 13B | HH-RLHF | 16 | 2e-4 | 10000 | - | 768 | | 13B | Longform | 16 | 2e-4 | 4000 | 512 | 1024 | | 33B | All | 32 | 1e-4 | 5000 | 384 | 128 | | 33B | OASST1 | 16 | 1e-4 | 1875 | - | 512 | | 33B | HH-RLHF | 32 | 1e-4 | 5000 | - | 768 | | 33B | Longform | 32 | 1e-4 | 2343 | 512 | 1024 | | 65B | All | 64 | 1e-4 | 2500 | 384 | 128 | | 65B | OASST1 | 16 | 1e-4 | 1875 | - | 512 | | 65B | HH-RLHF | 64 | 1e-4 | 2500 | - | 768 | | 65B | Longform | 32 | 1e-4 | 2343 | 512 | 1024 | ### Evaluation We use the MMLU benchmark to measure performance on a range of language understanding tasks. This is a multiple-choice benchmark covering 57 tasks including elementary mathematics, US history, computer science, law, and more. We report 5-shot test accuracy. Dataset | 7B | 13B | 33B | 65B ---|---|---|---|--- LLaMA no tuning | 35.1 | 46.9 | 57.8 | 63.4 Self-Instruct | 36.4 | 33.3 | 53.0 | 56.7 Longform | 32.1 | 43.2 | 56.6 | 59.7 Chip2 | 34.5 | 41.6 | 53.6 | 59.8 HH-RLHF | 34.9 | 44.6 | 55.8 | 60.1 Unnatural Instruct | 41.9 | 48.1 | 57.3 | 61.3 OASST1 (Guanaco) | 36.6 | 46.4 | 57.0 | 62.2 Alpaca | 38.8 | 47.8 | 57.3 | 62.5 FLAN v2 | 44.5 | 51.4 | 59.2 | 63.9 We evaluate the generative language capabilities through automated evaluations on the Vicuna benchmark. We report the score of the QLoRA Instruction Finetuned Models relative to the score obtained by ChatGPT. The rater in this case is GPT-4 which is tasked to assign a score out of 10 to both ChatGPT and the model outputs for each prompt. We report scores for models ranging 7B to 65B and compare them to both academic and commercial baselilnes. | Model / Dataset | Params | Model bits | Memory | ChatGPT vs Sys | Sys vs ChatGPT | Mean | 95\% CI | |------------------|--------|------------|--------|----------------|----------------|------------------|---------| | GPT-4 | - | - | - | 119.4\% | 110.1\% | **114.5**\% | 2.6\% | | Bard | - | - | - | 93.2\% | 96.4\% | 94.8\% | 4.1\% | | Guanaco | 65B | 4-bit | 41 GB | 96.7\% | 101.9\% | **99.3**\% | 4.4\% | | Alpaca | 65B | 4-bit | 41 GB | 63.0\% | 77.9\% | 70.7\% | 4.3\% | | FLAN v2 | 65B | 4-bit | 41 GB | 37.0\% | 59.6\% | 48.4\% | 4.6\% | | Guanaco | 33B | 4-bit | 21 GB | 96.5\% | 99.2\% | **97.8**\% | 4.4\% | | Open Assistant | 33B | 16-bit | 66 GB | 73.4\% | 85.7\% | 78.1\% | 5.3\% | | Alpaca | 33B | 4-bit | 21 GB | 67.2\% | 79.7\% | 73.6\% | 4.2\% | | FLAN v2 | 33B | 4-bit | 21 GB | 26.3\% | 49.7\% | 38.0\% | 3.9\% | | Vicuna | 13B | 16-bit | 26 GB | 91.2\% | 98.7\% | **94.9**\% | 4.5\% | | Guanaco | 13B | 4-bit | 10 GB | 87.3\% | 93.4\% | 90.4\% | 5.2\% | | Alpaca | 13B | 4-bit | 10 GB | 63.8\% | 76.7\% | 69.4\% | 4.2\% | | HH-RLHF | 13B | 4-bit | 10 GB | 55.5\% | 69.1\% | 62.5\% | 4.7\% | | Unnatural Instr. | 13B | 4-bit | 10 GB | 50.6\% | 69.8\% | 60.5\% | 4.2\% | | Chip2 | 13B | 4-bit | 10 GB | 49.2\% | 69.3\% | 59.5\% | 4.7\% | | Longform | 13B | 4-bit | 10 GB | 44.9\% | 62.0\% | 53.6\% | 5.2\% | | Self-Instruct | 13B | 4-bit | 10 GB | 38.0\% | 60.5\% | 49.1\% | 4.6\% | | FLAN v2 | 13B | 4-bit | 10 GB | 32.4\% | 61.2\% | 47.0\% | 3.6\% | | Guanaco | 7B | 4-bit | 5 GB | 84.1\% | 89.8\% | **87.0**\% | 5.4\% | | Alpaca | 7B | 4-bit | 5 GB | 57.3\% | 71.2\% | 64.4\% | 5.0\% | | FLAN v2 | 7B | 4-bit | 5 GB | 33.3\% | 56.1\% | 44.8\% | 4.0\% | ## Citation ```bibtex @article{dettmers2023qlora, title={QLoRA: Efficient Finetuning of Quantized LLMs}, author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:2305.14314}, year={2023} } ```
Litzy619/G0513HMA4H
Litzy619
2024-05-14T09:50:37Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/gemma-2b", "base_model:finetune:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-14T09:02:56Z
--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0513HMA4H results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # G0513HMA4H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1824 | 0.09 | 10 | 2.8991 | | 2.6535 | 0.18 | 20 | 2.2337 | | 1.8658 | 0.27 | 30 | 1.4097 | | 1.0771 | 0.36 | 40 | 0.6675 | | 0.4164 | 0.45 | 50 | 0.2215 | | 0.1854 | 0.54 | 60 | 0.1678 | | 0.1586 | 0.63 | 70 | 0.1549 | | 0.153 | 0.73 | 80 | 0.1504 | | 0.1434 | 0.82 | 90 | 0.1510 | | 0.1463 | 0.91 | 100 | 0.1488 | | 0.1487 | 1.0 | 110 | 0.1499 | | 0.1439 | 1.09 | 120 | 0.1488 | | 0.1454 | 1.18 | 130 | 0.1481 | | 0.1456 | 1.27 | 140 | 0.1468 | | 0.148 | 1.36 | 150 | 0.1459 | | 0.1426 | 1.45 | 160 | 0.1489 | | 0.1441 | 1.54 | 170 | 0.1468 | | 0.1447 | 1.63 | 180 | 0.1448 | | 0.1456 | 1.72 | 190 | 0.1494 | | 0.1454 | 1.81 | 200 | 0.1461 | | 0.1448 | 1.9 | 210 | 0.1451 | | 0.1454 | 1.99 | 220 | 0.1436 | | 0.1406 | 2.08 | 230 | 0.1407 | | 0.136 | 2.18 | 240 | 0.1395 | | 0.1345 | 2.27 | 250 | 0.1406 | | 0.1392 | 2.36 | 260 | 0.1384 | | 0.1356 | 2.45 | 270 | 0.1367 | | 0.1343 | 2.54 | 280 | 0.1357 | | 0.1313 | 2.63 | 290 | 0.1344 | | 0.13 | 2.72 | 300 | 0.1331 | | 0.1356 | 2.81 | 310 | 0.1330 | | 0.1338 | 2.9 | 320 | 0.1330 | | 0.1323 | 2.99 | 330 | 0.1331 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0
Mag0g/Ezekiel26_14
Mag0g
2024-05-14T09:49:13Z
128
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T09:48:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ankesh1234/gemma_finetuned_medical
Ankesh1234
2024-05-14T09:47:57Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-2b", "base_model:adapter:google/gemma-2b", "region:us" ]
null
2024-05-14T09:46:23Z
--- library_name: peft base_model: google/gemma-2b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
terry69/mistral_poe_20
terry69
2024-05-14T09:47:32Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "mistral", "alignment-handbook", "trl", "sft", "generated_from_trainer", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-05-14T08:07:53Z
--- license: apache-2.0 library_name: peft tags: - alignment-handbook - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: mistral_poe_20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral_poe_20 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.1 | 1.0 | 325 | nan | ### Framework versions - PEFT 0.7.1 - Transformers 4.39.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
NexusNinja/wikisql-4bit-1k
NexusNinja
2024-05-14T09:44:10Z
4
0
mlx
[ "mlx", "safetensors", "mistral", "pretrained", "text-generation", "en", "license:apache-2.0", "region:us" ]
text-generation
2024-05-14T09:42:02Z
--- language: - en license: apache-2.0 tags: - pretrained - mlx pipeline_tag: text-generation inference: parameters: temperature: 0.7 --- # colombox/wikisql-4bit-1k The Model [colombox/wikisql-4bit-1k](https://huggingface.co/colombox/wikisql-4bit-1k) was converted to MLX format from [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using mlx-lm version **0.13.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("colombox/wikisql-4bit-1k") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
OsherElhadad/a2c-PandaReachDense-v3
OsherElhadad
2024-05-14T09:41:31Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-14T09:37:21Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.25 +/- 0.12 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Zetsubou99/distilgpt2-finetuned-wikitext2
Zetsubou99
2024-05-14T09:40:30Z
213
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T09:13:58Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7501 | 1.0 | 2334 | 3.6669 | | 3.6498 | 2.0 | 4668 | 3.6464 | | 3.6023 | 3.0 | 7002 | 3.6420 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
ShenaoZhang/0.0001_zephyr_5551_4iters_bs256_iter_4
ShenaoZhang
2024-05-14T09:38:50Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:updated", "dataset:original", "base_model:ShenaoZhang/0.0001_zephyr_5551_4iters_bs256_iter_3", "base_model:finetune:ShenaoZhang/0.0001_zephyr_5551_4iters_bs256_iter_3", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T08:52:10Z
--- license: mit base_model: ShenaoZhang/0.0001_zephyr_5551_4iters_bs256_iter_3 tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - updated - original model-index: - name: 0.0001_zephyr_5551_4iters_bs256_iter_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.0001_zephyr_5551_4iters_bs256_iter_4 This model is a fine-tuned version of [ShenaoZhang/0.0001_zephyr_5551_4iters_bs256_iter_3](https://huggingface.co/ShenaoZhang/0.0001_zephyr_5551_4iters_bs256_iter_3) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1
kyl23/hw3_RTE_lora_1e-2
kyl23
2024-05-14T09:37:15Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-14T09:37:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
blackkevin/first_finetune
blackkevin
2024-05-14T09:34:51Z
5
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-13T20:06:07Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** blackkevin - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
iarkh/donut-demo
iarkh
2024-05-14T09:18:12Z
5
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-05-05T14:55:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DalHyun/donut-base-contigo
DalHyun
2024-05-14T09:17:08Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-05-13T11:37:22Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-contigo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-contigo This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.12.0 - Tokenizers 0.19.1
Litzy619/G0513HMA25H
Litzy619
2024-05-14T09:14:37Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/gemma-2b", "base_model:finetune:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-14T08:00:20Z
--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0513HMA25H results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # G0513HMA25H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1589 | 0.09 | 10 | 2.7634 | | 2.422 | 0.18 | 20 | 1.8450 | | 1.3644 | 0.27 | 30 | 0.8162 | | 0.4569 | 0.36 | 40 | 0.1885 | | 0.17 | 0.45 | 50 | 0.1622 | | 0.1549 | 0.54 | 60 | 0.1520 | | 0.1502 | 0.63 | 70 | 0.1508 | | 0.1525 | 0.73 | 80 | 0.1485 | | 0.1547 | 0.82 | 90 | 0.1488 | | 0.1467 | 0.91 | 100 | 0.1482 | | 0.1483 | 1.0 | 110 | 0.1482 | | 0.1434 | 1.09 | 120 | 0.1475 | | 0.1437 | 1.18 | 130 | 0.1492 | | 0.1427 | 1.27 | 140 | 0.1385 | | 0.1412 | 1.36 | 150 | 0.1381 | | 0.1351 | 1.45 | 160 | 0.1341 | | 0.1334 | 1.54 | 170 | 0.1312 | | 0.1321 | 1.63 | 180 | 0.1271 | | 0.1329 | 1.72 | 190 | 0.1333 | | 0.1298 | 1.81 | 200 | 0.1244 | | 0.1278 | 1.9 | 210 | 0.1251 | | 0.1277 | 1.99 | 220 | 0.1219 | | 0.1163 | 2.08 | 230 | 0.1188 | | 0.1154 | 2.18 | 240 | 0.1200 | | 0.1136 | 2.27 | 250 | 0.1185 | | 0.117 | 2.36 | 260 | 0.1167 | | 0.1147 | 2.45 | 270 | 0.1159 | | 0.1084 | 2.54 | 280 | 0.1149 | | 0.1077 | 2.63 | 290 | 0.1130 | | 0.1098 | 2.72 | 300 | 0.1119 | | 0.1125 | 2.81 | 310 | 0.1115 | | 0.1124 | 2.9 | 320 | 0.1114 | | 0.1119 | 2.99 | 330 | 0.1114 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0
SageLiao/llama3-LlamaFactory-demo-v2
SageLiao
2024-05-14T09:14:34Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T09:09:08Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LujainAbdulrahman/llama3-lora-AE-3
LujainAbdulrahman
2024-05-14T09:13:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-14T09:13:17Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** LujainAbdulrahman - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
saucam/aqua-qwen-0.1-110B
saucam
2024-05-14T09:10:54Z
10
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "en", "arxiv:2311.03099", "base_model:Qwen/Qwen1.5-110B-Chat", "base_model:merge:Qwen/Qwen1.5-110B-Chat", "base_model:cognitivecomputations/dolphin-2.9.1-qwen-110b", "base_model:merge:cognitivecomputations/dolphin-2.9.1-qwen-110b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-13T16:13:36Z
--- base_model: - cognitivecomputations/dolphin-2.9.1-qwen-110b - Qwen/Qwen1.5-110B-Chat library_name: transformers tags: - mergekit - merge license: apache-2.0 language: - en --- ![](https://raw.githubusercontent.com/saucam/models/main/aqua-qwen.png) ## aqua-qwen-0.1-110B This model was created by merging 2 models using the linear [DARE](https://arxiv.org/abs/2311.03099) merge method using [mergekit](https://github.com/arcee-ai/mergekit). The following models were included in the merge: - [cognitivecomputations/dolphin-2.9.1-qwen-110b](https://huggingface.co/cognitivecomputations/dolphin-2.9.1-qwen-110b) as a base. - [Qwen/Qwen1.5-110B-Chat](https://huggingface.co/Qwen/Qwen1.5-110B-Chat) ## Configuration The following YAML configuration was used to produce this model: ```yaml name: aqua-qwen-0.1-110B base_model: model: path: cognitivecomputations/dolphin-2.9.1-qwen-110b dtype: bfloat16 merge_method: dare_linear parameters: normalize: 1.0 slices: - sources: - model: cognitivecomputations/dolphin-2.9.1-qwen-110b layer_range: [0, 80] parameters: weight: 0.6 - model: Qwen/Qwen1.5-110B-Chat layer_range: [0, 80] parameters: weight: 0.4 ``` ## Usage It is recommended to use GGUF version of the model [available here](https://huggingface.co/saucam/aqua-qwen-0.1-110B-GGUF/blob/main/README.md)
serjtroshin/finetuned_gpt2_toxic
serjtroshin
2024-05-14T09:10:10Z
144
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T09:06:24Z
--- license: apache-2.0 ---
quangtqv/bi_encoder_tool_learning_14_5_2024_v8
quangtqv
2024-05-14T09:08:57Z
4
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-14T09:08:44Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # quangtqv/bi_encoder_tool_learning_14_5_2024_v8 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('quangtqv/bi_encoder_tool_learning_14_5_2024_v8') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=quangtqv/bi_encoder_tool_learning_14_5_2024_v8) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
saucam/aqua-qwen-0.1-110B-GGUF
saucam
2024-05-14T09:07:11Z
12
0
null
[ "gguf", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-14T07:11:29Z
--- license: apache-2.0 language: - en --- This is GGUF model of [saucam/aqua-qwen-0.1-110B](https://huggingface.co/saucam/aqua-qwen-0.1-110B) ## Usage Download the 2 files and merge using [llama.cpp](https://github.com/ggerganov/llama.cpp). ``` gguf-split --merge aqua-qwen-0.1-110B-Q4_K_M-00001-of-00002.gguf aqua-qwen-0.1-110B-Q4_K_M.gguf ``` Then use the single generated file like below: ``` $ ./main -m aqua-qwen-0.1-110B-Q4_K_M.gguf -p "<|im_start|>user\nHow are you?<|im_end|>\n<|im_start|>assistant" -n 400 -e Log start main: build = 2874 (e0f55618) main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu main: seed = 1715672499 llama_model_loader: loaded meta data with 20 key-value pairs and 963 tensors from aqua-qwen-0.1-110B -Q4_K_M.gguf (version GGUF V3 (latest)) ... ... sampling order: CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temperature generate: n_ctx = 512, n_batch = 2048, n_predict = 400, n_keep = 0 ,<|im_start|>user How are you?<|im_end|> <|im_start|>assistant I am an AI, I do not have feelings. How can I assist you?<|im_end|> [end of text] llama_print_timings: load time = 4065.12 ms llama_print_timings: sample time = 1.70 ms / 19 runs ( 0.09 ms per token, 11150.23 tokens per second) llama_print_timings: prompt eval time = 2898.40 ms / 12 tokens ( 241.53 ms per token, 4.14 tokens per second) llama_print_timings: eval time = 178067.55 ms / 18 runs ( 9892.64 ms per token, 0.10 tokens per second) llama_print_timings: total time = 181014.78 ms / 30 tokens Log end ```
quanthunter/Hermes-2-Pro-Llama-3-8B-Q4_K_M-GGUF
quanthunter
2024-05-14T09:06:56Z
5
0
null
[ "gguf", "Llama-3", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "function calling", "json mode", "axolotl", "llama-cpp", "gguf-my-repo", "en", "dataset:teknium/OpenHermes-2.5", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:quantized:NousResearch/Meta-Llama-3-8B", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-14T09:05:51Z
--- language: - en tags: - Llama-3 - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation - function calling - json mode - axolotl - llama-cpp - gguf-my-repo base_model: NousResearch/Meta-Llama-3-8B datasets: - teknium/OpenHermes-2.5 widget: - example_title: Hermes 2 Pro messages: - role: system content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me. - role: user content: Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world. model-index: - name: Hermes-2-Pro-Llama-3-8B results: [] --- # quanthunter/Hermes-2-Pro-Llama-3-8B-Q4_K_M-GGUF This model was converted to GGUF format from [`NousResearch/Hermes-2-Pro-Llama-3-8B`](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo quanthunter/Hermes-2-Pro-Llama-3-8B-Q4_K_M-GGUF --model hermes-2-pro-llama-3-8b.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo quanthunter/Hermes-2-Pro-Llama-3-8B-Q4_K_M-GGUF --model hermes-2-pro-llama-3-8b.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m hermes-2-pro-llama-3-8b.Q4_K_M.gguf -n 128 ```
fine-tuned/norwegian-nli-triplets-c
fine-tuned
2024-05-14T09:06:35Z
8
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "mteb", "Keywords", "Documents", "Search", "Information", "Answers", "custom_code", "no", "dataset:fine-tuned/norwegian-nli-triplets-c", "dataset:allenai/c4", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-05-14T07:30:08Z
--- license: apache-2.0 datasets: - fine-tuned/norwegian-nli-triplets-c - allenai/c4 language: - no pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb - Keywords - Documents - Search - Information - Answers --- This model is a fine-tuned version of [**jinaai/jina-embeddings-v2-base-en**](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) designed for the following use case: Keyword-based search engine for documents ## How to Use This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started: ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim model = SentenceTransformer( 'fine-tuned/norwegian-nli-triplets-c', trust_remote_code=True ) embeddings = model.encode([ 'first text to embed', 'second text to embed' ]) print(cos_sim(embeddings[0], embeddings[1])) ```
Litzy619/G0513HMA16H
Litzy619
2024-05-14T09:05:54Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/gemma-2b", "base_model:finetune:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-14T07:51:41Z
--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0513HMA16H results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # G0513HMA16H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1825 | 0.09 | 10 | 2.8689 | | 2.5641 | 0.18 | 20 | 2.0695 | | 1.6393 | 0.27 | 30 | 1.1468 | | 0.8037 | 0.36 | 40 | 0.3841 | | 0.2412 | 0.45 | 50 | 0.2008 | | 0.1664 | 0.54 | 60 | 0.1550 | | 0.1533 | 0.63 | 70 | 0.1518 | | 0.1517 | 0.73 | 80 | 0.1515 | | 0.1433 | 0.82 | 90 | 0.1521 | | 0.1475 | 0.91 | 100 | 0.1492 | | 0.1493 | 1.0 | 110 | 0.1503 | | 0.1457 | 1.09 | 120 | 0.1492 | | 0.1462 | 1.18 | 130 | 0.1483 | | 0.1464 | 1.27 | 140 | 0.1473 | | 0.1488 | 1.36 | 150 | 0.1480 | | 0.1424 | 1.45 | 160 | 0.1494 | | 0.1444 | 1.54 | 170 | 0.1461 | | 0.1461 | 1.63 | 180 | 0.1459 | | 0.1463 | 1.72 | 190 | 0.1475 | | 0.144 | 1.81 | 200 | 0.1454 | | 0.1445 | 1.9 | 210 | 0.1436 | | 0.1418 | 1.99 | 220 | 0.1384 | | 0.1376 | 2.08 | 230 | 0.1386 | | 0.1331 | 2.18 | 240 | 0.1328 | | 0.1313 | 2.27 | 250 | 0.1339 | | 0.132 | 2.36 | 260 | 0.1329 | | 0.1302 | 2.45 | 270 | 0.1329 | | 0.1268 | 2.54 | 280 | 0.1294 | | 0.1242 | 2.63 | 290 | 0.1281 | | 0.1238 | 2.72 | 300 | 0.1270 | | 0.1249 | 2.81 | 310 | 0.1267 | | 0.1243 | 2.9 | 320 | 0.1267 | | 0.1254 | 2.99 | 330 | 0.1267 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0
Shankhdhar/classifier_woog
Shankhdhar
2024-05-14T09:05:28Z
8
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-mpnet-base-v2", "model-index", "region:us" ]
text-classification
2024-05-10T09:47:07Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: sentence-transformers/paraphrase-mpnet-base-v2 metrics: - accuracy widget: - text: cookie boxes for gifting under $20 - text: Are there any restrictions on returning candle supplies? - text: special features for bakery boxes - text: I need to confirm the shipping date for my recent purchase. Can you help me with that? - text: different types of bakery boxes available pipeline_tag: text-classification inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8380952380952381 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | product discoverability | <ul><li>'Do you have Adidas Superstar shoes?'</li><li>'Do you have any running shoes in pink color?'</li><li>'Do you have black Yeezy sneakers in size 9?'</li></ul> | | order tracking | <ul><li>"I'm concerned about the delay in the delivery of my order. Can you please provide me with the status?"</li><li>'What is the estimated delivery time for orders within the same city?'</li><li>"I placed an order last week and it still hasn't arrived. Can you check the status for me?"</li></ul> | | product policy | <ul><li>'Are there any exceptions to the return policy for items that were purchased with a student discount?'</li><li>'Do you offer a try-and-buy option for sneakers?'</li><li>'Do you offer a price adjustment for sneakers if the price drops after purchase?'</li></ul> | | product faq | <ul><li>'Do you have any limited edition sneakers available?'</li><li>'Are the Adidas Yeezy Foam Runner available in size 7?'</li><li>"Are the Nike Air Force 1 sneakers available in women's sizes?"</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8381 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("special features for bakery boxes") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 11.6415 | 24 | | Label | Training Sample Count | |:------------------------|:----------------------| | order tracking | 30 | | product discoverability | 30 | | product faq | 16 | | product policy | 30 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0019 | 1 | 0.1782 | - | | 0.0965 | 50 | 0.0628 | - | | 0.1931 | 100 | 0.0036 | - | | 0.2896 | 150 | 0.0013 | - | | 0.3861 | 200 | 0.0012 | - | | 0.4826 | 250 | 0.0003 | - | | 0.5792 | 300 | 0.0002 | - | | 0.6757 | 350 | 0.0003 | - | | 0.7722 | 400 | 0.0002 | - | | 0.8687 | 450 | 0.0005 | - | | 0.9653 | 500 | 0.0003 | - | | 1.0618 | 550 | 0.0001 | - | | 1.1583 | 600 | 0.0002 | - | | 1.2548 | 650 | 0.0002 | - | | 1.3514 | 700 | 0.0002 | - | | 1.4479 | 750 | 0.0001 | - | | 1.5444 | 800 | 0.0001 | - | | 1.6409 | 850 | 0.0001 | - | | 1.7375 | 900 | 0.0002 | - | | 1.8340 | 950 | 0.0001 | - | | 1.9305 | 1000 | 0.0001 | - | ### Framework Versions - Python: 3.9.16 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.40.2 - PyTorch: 2.3.0 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
pilsneyrouset/nils4.0
pilsneyrouset
2024-05-14T09:03:46Z
76
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-14T09:00:49Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft base_model: unsloth/mistral-7b-bnb-4bit --- # Uploaded model - **Developed by:** pilsneyrouset - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
marsfu2009/XXMeagYY_sd_lora
marsfu2009
2024-05-14T09:02:06Z
1
1
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-05-14T07:39:54Z
--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora base_model: runwayml/stable-diffusion-v1-5 inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - marsfu2009/XXMeagYY_sd_lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the marsfu2009/MegaSticker dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
GodsonNtungi/Training-Checkpoint
GodsonNtungi
2024-05-14T09:02:05Z
5
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:adapter:unsloth/llama-3-8b-Instruct-bnb-4bit", "region:us" ]
null
2024-05-13T23:24:10Z
--- library_name: peft base_model: unsloth/llama-3-8b-Instruct-bnb-4bit --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
Litzy619/G0513HMA3H
Litzy619
2024-05-14T09:01:36Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/gemma-2b", "base_model:finetune:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-14T08:13:46Z
--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0513HMA3H results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # G0513HMA3H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.161 | 0.09 | 10 | 2.8226 | | 2.4808 | 0.18 | 20 | 1.9257 | | 1.4989 | 0.27 | 30 | 0.9749 | | 0.6093 | 0.36 | 40 | 0.2572 | | 0.1925 | 0.45 | 50 | 0.1591 | | 0.1558 | 0.54 | 60 | 0.1523 | | 0.1517 | 0.63 | 70 | 0.1497 | | 0.1503 | 0.73 | 80 | 0.1487 | | 0.1422 | 0.82 | 90 | 0.1499 | | 0.1459 | 0.91 | 100 | 0.1487 | | 0.1494 | 1.0 | 110 | 0.1495 | | 0.1438 | 1.09 | 120 | 0.1499 | | 0.1458 | 1.18 | 130 | 0.1472 | | 0.1465 | 1.27 | 140 | 0.1463 | | 0.1483 | 1.36 | 150 | 0.1464 | | 0.1426 | 1.45 | 160 | 0.1480 | | 0.1433 | 1.54 | 170 | 0.1450 | | 0.1443 | 1.63 | 180 | 0.1440 | | 0.1455 | 1.72 | 190 | 0.1495 | | 0.1437 | 1.81 | 200 | 0.1439 | | 0.1433 | 1.9 | 210 | 0.1398 | | 0.1408 | 1.99 | 220 | 0.1387 | | 0.1348 | 2.08 | 230 | 0.1340 | | 0.1311 | 2.18 | 240 | 0.1334 | | 0.1303 | 2.27 | 250 | 0.1297 | | 0.1319 | 2.36 | 260 | 0.1285 | | 0.1297 | 2.45 | 270 | 0.1291 | | 0.129 | 2.54 | 280 | 0.1270 | | 0.1247 | 2.63 | 290 | 0.1252 | | 0.1251 | 2.72 | 300 | 0.1242 | | 0.1299 | 2.81 | 310 | 0.1239 | | 0.1271 | 2.9 | 320 | 0.1240 | | 0.1269 | 2.99 | 330 | 0.1240 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0
mradermacher/AllOverButTheCrying-7B-slerp-GGUF
mradermacher
2024-05-14T09:00:27Z
34
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "jondurbin/bagel-dpo-7b-v0.5", "Weyaxi/Einstein-v6-7B", "en", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-14T07:20:02Z
--- base_model: DreadPoor/AllOverButTheCrying-7B-slerp language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - jondurbin/bagel-dpo-7b-v0.5 - Weyaxi/Einstein-v6-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/DreadPoor/AllOverButTheCrying-7B-slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/AllOverButTheCrying-7B-slerp-GGUF/resolve/main/AllOverButTheCrying-7B-slerp.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
serjtroshin/finetuned_gpt2_nontoxic
serjtroshin
2024-05-14T08:58:48Z
146
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T08:37:15Z
--- license: apache-2.0 ---
ID-Animator/ID-Animator
ID-Animator
2024-05-14T08:58:06Z
0
9
null
[ "text-to-video", "arxiv:2404.15275", "license:apache-2.0", "region:us" ]
text-to-video
2024-05-08T08:36:49Z
--- license: apache-2.0 pipeline_tag: text-to-video --- # ID-Animator This repository is the official checkpoint of [ID-Animator](https://id-animator.github.io/). It is a Zero-shot ID-Preserving Human Video Generation framework. It can generate high-quality ID-specific human video with only one ID image as reference. **[ID-Animator: Zero-Shot Identity-Preserving Human Video Generation](https://id-animator.github.io/)** </br> [Xuanhua He](https://scholar.google.com/citations?user=-bDAN2YAAAAJ&hl=en&oi=ao), [Quande Liu*](https://liuquande.github.io/), [Shengju Qian](https://scholar.google.com/citations?user=QNnWmasAAAAJ&hl=zh-CN), Xin Wang, Tao Hu, [Ke Cao](https://scholar.google.com/citations?user=3qMrWmgAAAAJ&hl=en&oi=ao), Keyu Yan, Jie Zhang* (*Corresponding Author) [![arXiv](https://img.shields.io/badge/arXiv-2404.15275-b31b1b.svg)](https://arxiv.org/abs/2404.15275) [![Project Page](https://img.shields.io/badge/Project-Website-green)](https://id-animator.github.io/) [![Online Demo](https://img.shields.io/badge/%F0%9F%A4%97online%20demo-yellow)](https://huggingface.co/spaces/ID-Animator/ID-Animator) ## Human Video Generation Demos ### Recontextualization <table class="center"> <tr style="line-height: 0"> <td width=25% style="border: none; text-align: center">Reference Image</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> </tr> <tr> <td width=25% style="border: none"><img src="./__assets__/ref/lecun1.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/first_part/lecun/2.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/first_part/lecun/3.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/first_part/lecun/4.gif" style="width:100%"></td> </tr> </table> <table class="center"> <tr style="line-height: 0"> <td width=25% style="border: none; text-align: center">Reference Image</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> </tr> <tr> <td width=25% style="border: none"><img src="./__assets__/ref/fbb.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/first_part/ann/1.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/first_part/ann/4.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/first_part/ann/6.gif" style="width:100%"></td> </tr> </table> ### Inference with Community Models <table class="center"> <tr style="line-height: 0"> <td width=25% style="border: none; text-align: center">Reference Image</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> </tr> <tr> <td width=25% style="border: none"><img src="./__assets__/ref/hinton.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/second/hinton/2.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/second/hinton/3.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/second/hinton/6.gif" style="width:100%"></td> </tr> </table> <table class="center"> <tr style="line-height: 0"> <td width=25% style="border: none; text-align: center">Reference Image</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> </tr> <tr> <td width=25% style="border: none"><img src="./__assets__/ref/taylor.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/second/taylor/4.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/second/taylor/5.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/second/taylor/6.gif" style="width:100%"></td> </tr> </table> ### Identity Mixing <table class="center"> <tr style="line-height: 0"> <td width=25% style="border: none; text-align: center">Reference Image 1</td> <td width=25% style="border: none; text-align: center">Reference Image 2</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> </tr> <tr> <td width=25% style="border: none"><img src="./__assets__/ref/cl.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/ref/sms.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/third/1/1.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/third/1/6.gif" style="width:100%"></td> </tr> </table> <table class="center"> <tr style="line-height: 0"> <td width=25% style="border: none; text-align: center">Reference Image 1</td> <td width=25% style="border: none; text-align: center">Reference Image 2</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> </tr> <tr> <td width=25% style="border: none"><img src="./__assets__/ref/sansa.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/ref/musk.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/third/2/2.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/third/2/6.gif" style="width:100%"></td> </tr> </table> ### Combination with ControlNet <table class="center"> <tr style="line-height: 0"> <td width=25% style="border: none; text-align: center">Reference Image</td> <td width=25% style="border: none; text-align: center">Sketch Image</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> </tr> <tr> <td width=25% style="border: none"><img src="./__assets__/ref/fbb.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/ref/sketch.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/fourth/1.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/fourth/2.gif" style="width:100%"></td> </tr> </table> <table class="center"> <tr style="line-height: 0"> <td width=25% style="border: none; text-align: center">Reference Image</td> <td width=25% style="border: none; text-align: center">Sketch Sequence</td> <td width=25% style="border: none; text-align: center">Output Video</td> <td width=25% style="border: none; text-align: center">Output Video</td> </tr> <tr> <td width=25% style="border: none"><img src="./__assets__/ref/fbb.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/ref/sketch_sequence.png" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/fourth/3.gif" style="width:100%"></td> <td width=25% style="border: none"><img src="./__assets__/fourth/4.gif" style="width:100%"></td> </tr> </table> ## Contact Us **Xuanhua He**: [email protected] **Quande Liu**: [email protected] **Shengju Qian**: [email protected]
1024m/EXALT-1A-LLAMA3-5B-16bit
1024m
2024-05-14T08:57:27Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T08:53:08Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** 1024m - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kyl23/hw3_RTE_lora_1e-3
kyl23
2024-05-14T08:54:24Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-14T08:54:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cangurcuoglu/den2
cangurcuoglu
2024-05-14T08:48:21Z
63
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T07:27:59Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: den2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # den2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.9271 - Validation Loss: 6.9290 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1620, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.8643 | 6.9290 | 0 | | 6.9267 | 6.9290 | 1 | | 6.9271 | 6.9290 | 2 | ### Framework versions - Transformers 4.40.2 - TensorFlow 2.15.0 - Datasets 2.19.1 - Tokenizers 0.19.1
LnL-AI/Yi-1.5-34B-Chat-4bit-gptq
LnL-AI
2024-05-14T08:47:43Z
12
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:unknown", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-05-14T07:53:47Z
--- license: unknown --- ### Quantize config: ```json { "bits": 4, "group_size": 128, "damp_percent": 0.005, "desc_act": false, "static_groups": false, "sym": false, "true_sequential": true, "model_name_or_path": "", "model_file_base_name": "model", "quant_method": "gptq", "checkpoint_format": "gptq", "meta": { "quantizer": "autogptq:0.8.0.dev1" } } ```
mradermacher/llama-3-sauce-v2-8B-GGUF
mradermacher
2024-05-14T08:45:52Z
17
0
transformers
[ "transformers", "gguf", "experimental", "en", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:flammenai/FlameMix-DPO-v1", "base_model:nbeerbower/llama-3-sauce-v2-8B", "base_model:quantized:nbeerbower/llama-3-sauce-v2-8B", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-14T08:18:08Z
--- base_model: nbeerbower/llama-3-sauce-v2-8B datasets: - jondurbin/gutenberg-dpo-v0.1 - jondurbin/truthy-dpo-v0.1 - flammenai/FlameMix-DPO-v1 language: - en library_name: transformers license: llama3 quantized_by: mradermacher tags: - experimental --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hfhfix --> <!-- ### vocab_type: --> static quants of https://huggingface.co/nbeerbower/llama-3-sauce-v2-8B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-sauce-v2-8B-GGUF/resolve/main/llama-3-sauce-v2-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
quangtqv/bi_encoder_tool_learning_14_5_2024_v7
quangtqv
2024-05-14T08:39:05Z
3
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-14T08:38:53Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # quangtqv/bi_encoder_tool_learning_14_5_2024_v7 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('quangtqv/bi_encoder_tool_learning_14_5_2024_v7') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=quangtqv/bi_encoder_tool_learning_14_5_2024_v7) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
kanaluvu/bigscience-prompted-finetuned
kanaluvu
2024-05-14T08:36:19Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-14T08:35:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
neih4207/checkpoint
neih4207
2024-05-14T08:34:48Z
108
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:thenlper/gte-large", "base_model:finetune:thenlper/gte-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-14T07:06:16Z
--- license: mit base_model: thenlper/gte-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: checkpoint results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoint This model is a fine-tuned version of [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1728 - Accuracy: 0.9545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4496 | 1.0 | 11 | 0.8490 | 0.8 | | 0.6028 | 2.0 | 22 | 0.3205 | 0.8909 | | 0.183 | 3.0 | 33 | 0.2986 | 0.9273 | | 0.0749 | 4.0 | 44 | 0.2600 | 0.9455 | | 0.039 | 5.0 | 55 | 0.1932 | 0.9636 | | 0.0208 | 6.0 | 66 | 0.1570 | 0.9636 | | 0.0147 | 7.0 | 77 | 0.2016 | 0.9545 | | 0.0119 | 8.0 | 88 | 0.1818 | 0.9545 | | 0.0059 | 9.0 | 99 | 0.1700 | 0.9545 | | 0.0048 | 10.0 | 110 | 0.1728 | 0.9545 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2
Lynxexe/RitoTranslator_V1
Lynxexe
2024-05-14T08:31:15Z
106
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-14T08:16:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Litzy619/G0513HMA24H
Litzy619
2024-05-14T08:29:00Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/gemma-2b", "base_model:finetune:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-14T07:00:13Z
--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0513HMA24H results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # G0513HMA24H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1589 | 0.09 | 10 | 2.7634 | | 2.422 | 0.18 | 20 | 1.8450 | | 1.3644 | 0.27 | 30 | 0.8162 | | 0.4569 | 0.36 | 40 | 0.1885 | | 0.17 | 0.45 | 50 | 0.1622 | | 0.1549 | 0.54 | 60 | 0.1520 | | 0.1502 | 0.63 | 70 | 0.1508 | | 0.1525 | 0.73 | 80 | 0.1485 | | 0.1547 | 0.82 | 90 | 0.1488 | | 0.1467 | 0.91 | 100 | 0.1482 | | 0.1483 | 1.0 | 110 | 0.1482 | | 0.1434 | 1.09 | 120 | 0.1475 | | 0.1437 | 1.18 | 130 | 0.1492 | | 0.1427 | 1.27 | 140 | 0.1385 | | 0.1412 | 1.36 | 150 | 0.1381 | | 0.1351 | 1.45 | 160 | 0.1341 | | 0.1334 | 1.54 | 170 | 0.1312 | | 0.1321 | 1.63 | 180 | 0.1271 | | 0.1329 | 1.72 | 190 | 0.1333 | | 0.1298 | 1.81 | 200 | 0.1244 | | 0.1278 | 1.9 | 210 | 0.1251 | | 0.1277 | 1.99 | 220 | 0.1219 | | 0.1163 | 2.08 | 230 | 0.1188 | | 0.1154 | 2.18 | 240 | 0.1200 | | 0.1136 | 2.27 | 250 | 0.1185 | | 0.117 | 2.36 | 260 | 0.1167 | | 0.1147 | 2.45 | 270 | 0.1159 | | 0.1084 | 2.54 | 280 | 0.1149 | | 0.1077 | 2.63 | 290 | 0.1130 | | 0.1098 | 2.72 | 300 | 0.1119 | | 0.1125 | 2.81 | 310 | 0.1115 | | 0.1124 | 2.9 | 320 | 0.1114 | | 0.1119 | 2.99 | 330 | 0.1114 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0
pdx97/rl_course_vizdoom_health_gathering_supreme
pdx97
2024-05-14T08:25:10Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-14T08:25:00Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.17 +/- 3.73 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r pdx97/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
mradermacher/CeramicMaiden-7B-Slerp-GGUF
mradermacher
2024-05-14T08:25:00Z
19
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "DreadPoor/Unobtainium-7B-task_arithmetic", "DreadPoor/GoldenMaiden-7B-model_stock", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-14T07:16:53Z
--- base_model: DreadPoor/CeramicMaiden-7B-Slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - DreadPoor/Unobtainium-7B-task_arithmetic - DreadPoor/GoldenMaiden-7B-model_stock --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/DreadPoor/CeramicMaiden-7B-Slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/CeramicMaiden-7B-Slerp-GGUF/resolve/main/CeramicMaiden-7B-Slerp.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
astroficboy/testing
astroficboy
2024-05-14T08:23:31Z
0
0
transformers
[ "transformers", "text-generation", "en", "dataset:PleIAs/YouTube-Commons", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T08:18:13Z
--- license: apache-2.0 datasets: - PleIAs/YouTube-Commons language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-generation ---
krupakar-reddy/DSA_base_model
krupakar-reddy
2024-05-14T08:19:09Z
4
0
transformers
[ "transformers", "gguf", "mistral", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-14T07:04:38Z
--- license: apache-2.0 ---
abc88767/4sc51
abc88767
2024-05-14T08:18:48Z
128
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T08:17:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AhmetAytar/all-mpnet-base-v2-fine-tuned_17_textbook_grobid
AhmetAytar
2024-05-14T08:18:09Z
11
0
sentence-transformers
[ "sentence-transformers", "safetensors", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-14T08:14:04Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # AhmetAytar/all-mpnet-base-v2-fine-tuned_17_textbook_grobid This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('AhmetAytar/all-mpnet-base-v2-fine-tuned_17_textbook_grobid') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=AhmetAytar/all-mpnet-base-v2-fine-tuned_17_textbook_grobid) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 446 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 50, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 89, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
quanthunter/Hermes-2-Pro-Llama-3-8B-Q6_K-GGUF
quanthunter
2024-05-14T08:17:04Z
2
0
null
[ "gguf", "Llama-3", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "function calling", "json mode", "axolotl", "llama-cpp", "gguf-my-repo", "en", "dataset:teknium/OpenHermes-2.5", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:quantized:NousResearch/Meta-Llama-3-8B", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-14T08:15:34Z
--- language: - en tags: - Llama-3 - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation - function calling - json mode - axolotl - llama-cpp - gguf-my-repo base_model: NousResearch/Meta-Llama-3-8B datasets: - teknium/OpenHermes-2.5 widget: - example_title: Hermes 2 Pro messages: - role: system content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me. - role: user content: Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world. model-index: - name: Hermes-2-Pro-Llama-3-8B results: [] --- # quanthunter/Hermes-2-Pro-Llama-3-8B-Q6_K-GGUF This model was converted to GGUF format from [`NousResearch/Hermes-2-Pro-Llama-3-8B`](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo quanthunter/Hermes-2-Pro-Llama-3-8B-Q6_K-GGUF --model hermes-2-pro-llama-3-8b.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo quanthunter/Hermes-2-Pro-Llama-3-8B-Q6_K-GGUF --model hermes-2-pro-llama-3-8b.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m hermes-2-pro-llama-3-8b.Q6_K.gguf -n 128 ```
Minaaaa/electra_small_qa
Minaaaa
2024-05-14T08:13:58Z
167
0
transformers
[ "transformers", "safetensors", "electra", "question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
question-answering
2024-05-14T08:13:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Andrei481/llama-3-8b-unsloth-corpus-open-instruct-ro-16b
Andrei481
2024-05-14T08:13:32Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:Andrei481/llama3-8b-corpus-ro-8k-16b", "base_model:finetune:Andrei481/llama3-8b-corpus-ro-8k-16b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T08:06:44Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: Andrei481/llama3-8b-corpus-ro-8k-16b --- # Uploaded model - **Developed by:** Andrei481 - **License:** apache-2.0 - **Finetuned from model :** Andrei481/llama3-8b-corpus-ro-8k-16b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Litzy619/Phi30513MA
Litzy619
2024-05-14T08:12:58Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:microsoft/Phi-3-mini-4k-instruct", "base_model:finetune:microsoft/Phi-3-mini-4k-instruct", "license:mit", "region:us" ]
null
2024-05-14T06:01:14Z
--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi30513MA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Phi30513MA This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.162 | 0.09 | 10 | 2.1516 | | 1.0891 | 0.18 | 20 | 0.3958 | | 0.2412 | 0.27 | 30 | 0.1475 | | 0.1456 | 0.36 | 40 | 0.1307 | | 0.127 | 0.45 | 50 | 0.1272 | | 0.1169 | 0.54 | 60 | 0.0964 | | 0.0967 | 0.63 | 70 | 0.0978 | | 0.0887 | 0.73 | 80 | 0.0936 | | 0.0807 | 0.82 | 90 | 0.0875 | | 0.0837 | 0.91 | 100 | 0.0734 | | 0.0758 | 1.0 | 110 | 0.0739 | | 0.0614 | 1.09 | 120 | 0.0710 | | 0.0552 | 1.18 | 130 | 0.0801 | | 0.0579 | 1.27 | 140 | 0.0727 | | 0.0561 | 1.36 | 150 | 0.0691 | | 0.0616 | 1.45 | 160 | 0.0688 | | 0.0566 | 1.54 | 170 | 0.0676 | | 0.0519 | 1.63 | 180 | 0.0681 | | 0.0514 | 1.72 | 190 | 0.0678 | | 0.0602 | 1.81 | 200 | 0.0634 | | 0.0466 | 1.9 | 210 | 0.0660 | | 0.0481 | 1.99 | 220 | 0.0692 | | 0.0325 | 2.08 | 230 | 0.0737 | | 0.0358 | 2.18 | 240 | 0.0797 | | 0.0265 | 2.27 | 250 | 0.0851 | | 0.0299 | 2.36 | 260 | 0.0870 | | 0.0337 | 2.45 | 270 | 0.0826 | | 0.0292 | 2.54 | 280 | 0.0812 | | 0.0303 | 2.63 | 290 | 0.0813 | | 0.0356 | 2.72 | 300 | 0.0799 | | 0.0358 | 2.81 | 310 | 0.0795 | | 0.0387 | 2.9 | 320 | 0.0792 | | 0.0313 | 2.99 | 330 | 0.0792 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0
Vedx04/Meta-Llama-3-8B-Instruct_explanation
Vedx04
2024-05-14T08:11:59Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-14T08:11:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Litzy619/G0513HMA23H
Litzy619
2024-05-14T08:11:52Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/gemma-2b", "base_model:finetune:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-14T06:56:21Z
--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0513HMA23H results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # G0513HMA23H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1683 | 0.09 | 10 | 2.8078 | | 2.4559 | 0.18 | 20 | 1.8951 | | 1.4297 | 0.27 | 30 | 0.8930 | | 0.5326 | 0.36 | 40 | 0.2172 | | 0.183 | 0.45 | 50 | 0.1592 | | 0.1534 | 0.54 | 60 | 0.1511 | | 0.1503 | 0.63 | 70 | 0.1499 | | 0.152 | 0.73 | 80 | 0.1491 | | 0.1456 | 0.82 | 90 | 0.1486 | | 0.1454 | 0.91 | 100 | 0.1488 | | 0.1488 | 1.0 | 110 | 0.1487 | | 0.1438 | 1.09 | 120 | 0.1488 | | 0.1452 | 1.18 | 130 | 0.1469 | | 0.1458 | 1.27 | 140 | 0.1464 | | 0.1469 | 1.36 | 150 | 0.1460 | | 0.1417 | 1.45 | 160 | 0.1469 | | 0.1427 | 1.54 | 170 | 0.1461 | | 0.1442 | 1.63 | 180 | 0.1428 | | 0.1446 | 1.72 | 190 | 0.1451 | | 0.1416 | 1.81 | 200 | 0.1389 | | 0.1378 | 1.9 | 210 | 0.1361 | | 0.135 | 1.99 | 220 | 0.1304 | | 0.129 | 2.08 | 230 | 0.1272 | | 0.1251 | 2.18 | 240 | 0.1241 | | 0.1213 | 2.27 | 250 | 0.1241 | | 0.1287 | 2.36 | 260 | 0.1219 | | 0.1251 | 2.45 | 270 | 0.1222 | | 0.1206 | 2.54 | 280 | 0.1200 | | 0.1168 | 2.63 | 290 | 0.1182 | | 0.1183 | 2.72 | 300 | 0.1179 | | 0.1199 | 2.81 | 310 | 0.1175 | | 0.1216 | 2.9 | 320 | 0.1173 | | 0.1206 | 2.99 | 330 | 0.1173 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0
dongqingcc/llama3_smart_home
dongqingcc
2024-05-14T08:05:03Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-14T07:48:49Z
--- license: apache-2.0 ---
ZaneHorrible/google-vit-base-patch16-384-batch_16_epoch_4_classes_24
ZaneHorrible
2024-05-14T08:02:07Z
218
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-384", "base_model:finetune:google/vit-base-patch16-384", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-05-14T05:11:55Z
--- license: apache-2.0 base_model: google/vit-base-patch16-384 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: google-vit-base-patch16-384-batch_16_epoch_4_classes_24 results: - task: name: Image Classification type: image-classification dataset: name: bengali_food_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9899425287356322 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google-vit-base-patch16-384-batch_16_epoch_4_classes_24 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on the bengali_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.0635 - Accuracy: 0.9899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2947 | 0.07 | 100 | 0.2491 | 0.9353 | | 0.1703 | 0.14 | 200 | 0.2377 | 0.9339 | | 0.0797 | 0.21 | 300 | 0.1413 | 0.9641 | | 0.1035 | 0.28 | 400 | 0.1057 | 0.9641 | | 0.0532 | 0.35 | 500 | 0.1711 | 0.9483 | | 0.1004 | 0.42 | 600 | 0.1746 | 0.9526 | | 0.0962 | 0.49 | 700 | 0.1598 | 0.9555 | | 0.1579 | 0.56 | 800 | 0.1741 | 0.9440 | | 0.0532 | 0.63 | 900 | 0.0974 | 0.9670 | | 0.1594 | 0.7 | 1000 | 0.2842 | 0.9181 | | 0.0488 | 0.77 | 1100 | 0.2928 | 0.9224 | | 0.1122 | 0.84 | 1200 | 0.3095 | 0.9138 | | 0.1252 | 0.91 | 1300 | 0.1411 | 0.9569 | | 0.0517 | 0.97 | 1400 | 0.1378 | 0.9684 | | 0.047 | 1.04 | 1500 | 0.2595 | 0.9483 | | 0.0478 | 1.11 | 1600 | 0.1425 | 0.9583 | | 0.0107 | 1.18 | 1700 | 0.1135 | 0.9684 | | 0.0021 | 1.25 | 1800 | 0.1428 | 0.9598 | | 0.036 | 1.32 | 1900 | 0.1851 | 0.9583 | | 0.0733 | 1.39 | 2000 | 0.1801 | 0.9583 | | 0.0549 | 1.46 | 2100 | 0.1917 | 0.9598 | | 0.0442 | 1.53 | 2200 | 0.1538 | 0.9655 | | 0.0196 | 1.6 | 2300 | 0.1411 | 0.9698 | | 0.0809 | 1.67 | 2400 | 0.1862 | 0.9540 | | 0.0004 | 1.74 | 2500 | 0.1325 | 0.9698 | | 0.0404 | 1.81 | 2600 | 0.1246 | 0.9713 | | 0.0691 | 1.88 | 2700 | 0.1961 | 0.9598 | | 0.0088 | 1.95 | 2800 | 0.1841 | 0.9684 | | 0.0029 | 2.02 | 2900 | 0.1057 | 0.9813 | | 0.0005 | 2.09 | 3000 | 0.1131 | 0.9741 | | 0.0001 | 2.16 | 3100 | 0.0892 | 0.9813 | | 0.0002 | 2.23 | 3200 | 0.0757 | 0.9828 | | 0.0186 | 2.3 | 3300 | 0.0794 | 0.9784 | | 0.0127 | 2.37 | 3400 | 0.1100 | 0.9770 | | 0.0048 | 2.44 | 3500 | 0.1386 | 0.9799 | | 0.0048 | 2.51 | 3600 | 0.0635 | 0.9899 | | 0.001 | 2.58 | 3700 | 0.0997 | 0.9799 | | 0.0005 | 2.65 | 3800 | 0.1119 | 0.9756 | | 0.0006 | 2.72 | 3900 | 0.1292 | 0.9713 | | 0.0003 | 2.79 | 4000 | 0.1186 | 0.9770 | | 0.0137 | 2.86 | 4100 | 0.0969 | 0.9770 | | 0.0001 | 2.92 | 4200 | 0.0738 | 0.9842 | | 0.0001 | 2.99 | 4300 | 0.1236 | 0.9828 | | 0.0001 | 3.06 | 4400 | 0.0932 | 0.9856 | | 0.0001 | 3.13 | 4500 | 0.0992 | 0.9799 | | 0.0001 | 3.2 | 4600 | 0.0960 | 0.9828 | | 0.0001 | 3.27 | 4700 | 0.1123 | 0.9799 | | 0.0001 | 3.34 | 4800 | 0.1107 | 0.9813 | | 0.0029 | 3.41 | 4900 | 0.1041 | 0.9842 | | 0.0001 | 3.48 | 5000 | 0.1074 | 0.9828 | | 0.0001 | 3.55 | 5100 | 0.1111 | 0.9799 | | 0.0001 | 3.62 | 5200 | 0.1088 | 0.9784 | | 0.0001 | 3.69 | 5300 | 0.0936 | 0.9813 | | 0.0001 | 3.76 | 5400 | 0.0915 | 0.9799 | | 0.0001 | 3.83 | 5500 | 0.0897 | 0.9799 | | 0.0001 | 3.9 | 5600 | 0.0875 | 0.9770 | | 0.0 | 3.97 | 5700 | 0.0856 | 0.9784 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
DUAL-GPO/zephyr-7b-gpo-v4-i3
DUAL-GPO
2024-05-14T07:54:49Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "mistral", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:DUAL-GPO-2/zephyr-7b-irepo-new-i2", "base_model:adapter:DUAL-GPO-2/zephyr-7b-irepo-new-i2", "license:apache-2.0", "region:us" ]
null
2024-05-14T04:51:20Z
--- license: apache-2.0 library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - dpo - generated_from_trainer base_model: DUAL-GPO-2/zephyr-7b-irepo-new-i2 datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: zephyr-7b-gpo-v4-i3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-gpo-v4-i3 This model is a fine-tuned version of [DUAL-GPO-2/zephyr-7b-irepo-new-i2](https://huggingface.co/DUAL-GPO-2/zephyr-7b-irepo-new-i2) on the HuggingFaceH4/ultrafeedback_binarized dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
khoantap/rabbit-fish-8b
khoantap
2024-05-14T07:52:59Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T07:41:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TaroVN/NeoX-cost-0512-v5
TaroVN
2024-05-14T07:51:46Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-14T07:51:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Litzy619/G0513HMA14H
Litzy619
2024-05-14T07:50:39Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/gemma-2b", "base_model:finetune:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-14T06:35:16Z
--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0513HMA14H results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # G0513HMA14H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1825 | 0.09 | 10 | 2.8689 | | 2.5641 | 0.18 | 20 | 2.0695 | | 1.6393 | 0.27 | 30 | 1.1468 | | 0.8037 | 0.36 | 40 | 0.3841 | | 0.2412 | 0.45 | 50 | 0.2008 | | 0.1664 | 0.54 | 60 | 0.1550 | | 0.1533 | 0.63 | 70 | 0.1518 | | 0.1517 | 0.73 | 80 | 0.1515 | | 0.1433 | 0.82 | 90 | 0.1521 | | 0.1475 | 0.91 | 100 | 0.1492 | | 0.1493 | 1.0 | 110 | 0.1503 | | 0.1457 | 1.09 | 120 | 0.1492 | | 0.1462 | 1.18 | 130 | 0.1483 | | 0.1464 | 1.27 | 140 | 0.1473 | | 0.1488 | 1.36 | 150 | 0.1480 | | 0.1424 | 1.45 | 160 | 0.1494 | | 0.1444 | 1.54 | 170 | 0.1461 | | 0.1461 | 1.63 | 180 | 0.1459 | | 0.1463 | 1.72 | 190 | 0.1475 | | 0.144 | 1.81 | 200 | 0.1454 | | 0.1445 | 1.9 | 210 | 0.1436 | | 0.1418 | 1.99 | 220 | 0.1384 | | 0.1376 | 2.08 | 230 | 0.1386 | | 0.1331 | 2.18 | 240 | 0.1328 | | 0.1313 | 2.27 | 250 | 0.1339 | | 0.132 | 2.36 | 260 | 0.1329 | | 0.1302 | 2.45 | 270 | 0.1329 | | 0.1268 | 2.54 | 280 | 0.1294 | | 0.1242 | 2.63 | 290 | 0.1281 | | 0.1238 | 2.72 | 300 | 0.1270 | | 0.1249 | 2.81 | 310 | 0.1267 | | 0.1243 | 2.9 | 320 | 0.1267 | | 0.1254 | 2.99 | 330 | 0.1267 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0
LnL-AI/Yi-1.5-34B-4bit-gptq
LnL-AI
2024-05-14T07:49:35Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:unknown", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-05-13T16:24:28Z
--- license: unknown --- ### Quantizing Config: ```json { "bits": 4, "group_size": 128, "damp_percent": 0.005, "desc_act": false, "static_groups": false, "sym": false, "true_sequential": true, "model_name_or_path": "", "model_file_base_name": "model", "quant_method": "gptq", "checkpoint_format": "gptq", "meta": { "quantizer": "autogptq:0.8.0.dev1" } } ```
LnL-AI/Yi-1.5-9B-Chat-4bit-gptq-autoround
LnL-AI
2024-05-14T07:48:43Z
77
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:unknown", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-05-14T07:18:53Z
--- license: unknown --- ### Quantize config: ```json { "bits": 4, "group_size": 128, "damp_percent": 0.01, "desc_act": false, "static_groups": false, "sym": true, "true_sequential": false, "model_name_or_path": null, "model_file_base_name": "model", "quant_method": "gptq", "checkpoint_format": "gptq", "meta": { "quantizer": "intel/auto-round:0.2.0.dev", "packer": "autogptq:0.8.0.dev1", "iters": 1000, "lr": 0.001, "minmax_lr": 0.001, "enable_minmax_tuning": false, "enable_quanted_input": true, "scale_dtype": "float16" } } ```
yifanxie/angry-pelican-1
yifanxie
2024-05-14T07:44:11Z
142
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "conversational", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-14T07:42:16Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [google/gemma-1.1-2b-it](https://huggingface.co/google/gemma-1.1-2b-it) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed. ```bash pip install transformers==4.40.1 ``` Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo. - Either leave `token=True` in the `pipeline` and login to hugginface_hub by running ```python import huggingface_hub huggingface_hub.login(<ACCESS_TOKEN>) ``` - Or directly pass your <ACCESS_TOKEN> to `token` in the `pipeline` ```python from transformers import pipeline generate_text = pipeline( model="yifanxie/angry-pelican-1", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, token=True, ) # generate configuration can be modified to your needs # generate_text.model.generation_config.min_new_tokens = 2 # generate_text.model.generation_config.max_new_tokens = 256 # generate_text.model.generation_config.do_sample = False # generate_text.model.generation_config.num_beams = 1 # generate_text.model.generation_config.temperature = float(0.0) # generate_text.model.generation_config.repetition_penalty = float(1.0) res = generate_text( "Why is drinking water so healthy?", renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?<eos><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "yifanxie/angry-pelican-1", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "yifanxie/angry-pelican-1", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) # generate configuration can be modified to your needs # generate_text.model.generation_config.min_new_tokens = 2 # generate_text.model.generation_config.max_new_tokens = 256 # generate_text.model.generation_config.do_sample = False # generate_text.model.generation_config.num_beams = 1 # generate_text.model.generation_config.temperature = float(0.0) # generate_text.model.generation_config.repetition_penalty = float(1.0) res = generate_text( "Why is drinking water so healthy?", renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "yifanxie/angry-pelican-1" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?<eos><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs # model.generation_config.min_new_tokens = 2 # model.generation_config.max_new_tokens = 256 # model.generation_config.do_sample = False # model.generation_config.num_beams = 1 # model.generation_config.temperature = float(0.0) # model.generation_config.repetition_penalty = float(1.0) tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GemmaForCausalLM( (model): GemmaModel( (embed_tokens): Embedding(256000, 2048, padding_idx=0) (layers): ModuleList( (0-17): 18 x GemmaDecoderLayer( (self_attn): GemmaSdpaAttention( (q_proj): Linear(in_features=2048, out_features=2048, bias=False) (k_proj): Linear(in_features=2048, out_features=256, bias=False) (v_proj): Linear(in_features=2048, out_features=256, bias=False) (o_proj): Linear(in_features=2048, out_features=2048, bias=False) (rotary_emb): GemmaRotaryEmbedding() ) (mlp): GemmaMLP( (gate_proj): Linear(in_features=2048, out_features=16384, bias=False) (up_proj): Linear(in_features=2048, out_features=16384, bias=False) (down_proj): Linear(in_features=16384, out_features=2048, bias=False) (act_fn): PytorchGELUTanh() ) (input_layernorm): GemmaRMSNorm() (post_attention_layernorm): GemmaRMSNorm() ) ) (norm): GemmaRMSNorm() ) (lm_head): Linear(in_features=2048, out_features=256000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
arthurdeblaere/distilgpt2-finetuned-prompts
arthurdeblaere
2024-05-14T07:42:58Z
144
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T07:42:46Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-prompts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-prompts This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 125 | 3.7537 | | No log | 2.0 | 250 | 3.5373 | | No log | 3.0 | 375 | 3.4970 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
yifanxie/angry-pelican
yifanxie
2024-05-14T07:41:45Z
142
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "conversational", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-14T07:39:51Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [google/gemma-1.1-2b-it](https://huggingface.co/google/gemma-1.1-2b-it) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed. ```bash pip install transformers==4.40.1 ``` Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo. - Either leave `token=True` in the `pipeline` and login to hugginface_hub by running ```python import huggingface_hub huggingface_hub.login(<ACCESS_TOKEN>) ``` - Or directly pass your <ACCESS_TOKEN> to `token` in the `pipeline` ```python from transformers import pipeline generate_text = pipeline( model="yifanxie/angry-pelican", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, token=True, ) # generate configuration can be modified to your needs # generate_text.model.generation_config.min_new_tokens = 2 # generate_text.model.generation_config.max_new_tokens = 256 # generate_text.model.generation_config.do_sample = False # generate_text.model.generation_config.num_beams = 1 # generate_text.model.generation_config.temperature = float(0.0) # generate_text.model.generation_config.repetition_penalty = float(1.0) res = generate_text( "Why is drinking water so healthy?", renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?<eos><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "yifanxie/angry-pelican", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "yifanxie/angry-pelican", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) # generate configuration can be modified to your needs # generate_text.model.generation_config.min_new_tokens = 2 # generate_text.model.generation_config.max_new_tokens = 256 # generate_text.model.generation_config.do_sample = False # generate_text.model.generation_config.num_beams = 1 # generate_text.model.generation_config.temperature = float(0.0) # generate_text.model.generation_config.repetition_penalty = float(1.0) res = generate_text( "Why is drinking water so healthy?", renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "yifanxie/angry-pelican" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?<eos><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs # model.generation_config.min_new_tokens = 2 # model.generation_config.max_new_tokens = 256 # model.generation_config.do_sample = False # model.generation_config.num_beams = 1 # model.generation_config.temperature = float(0.0) # model.generation_config.repetition_penalty = float(1.0) tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GemmaForCausalLM( (model): GemmaModel( (embed_tokens): Embedding(256000, 2048, padding_idx=0) (layers): ModuleList( (0-17): 18 x GemmaDecoderLayer( (self_attn): GemmaSdpaAttention( (q_proj): Linear(in_features=2048, out_features=2048, bias=False) (k_proj): Linear(in_features=2048, out_features=256, bias=False) (v_proj): Linear(in_features=2048, out_features=256, bias=False) (o_proj): Linear(in_features=2048, out_features=2048, bias=False) (rotary_emb): GemmaRotaryEmbedding() ) (mlp): GemmaMLP( (gate_proj): Linear(in_features=2048, out_features=16384, bias=False) (up_proj): Linear(in_features=2048, out_features=16384, bias=False) (down_proj): Linear(in_features=16384, out_features=2048, bias=False) (act_fn): PytorchGELUTanh() ) (input_layernorm): GemmaRMSNorm() (post_attention_layernorm): GemmaRMSNorm() ) ) (norm): GemmaRMSNorm() ) (lm_head): Linear(in_features=2048, out_features=256000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
Dharma20/code-search-net-tokenizer
Dharma20
2024-05-14T07:38:07Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-14T07:38:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
auravstomar7/bert-base-uncased-pronoun-coreference-ner
auravstomar7
2024-05-14T07:37:31Z
65
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-05-14T07:25:57Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: auravaces/bert-base-uncased-pronoun-coreference results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # auravaces/bert-base-uncased-pronoun-coreference This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0479 - Validation Loss: 0.0955 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 375, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0896 | 0.0910 | 0 | | 0.0634 | 0.0898 | 1 | | 0.0479 | 0.0955 | 2 | ### Framework versions - Transformers 4.40.2 - TensorFlow 2.15.0 - Datasets 2.19.1 - Tokenizers 0.19.1
taimoor-ahmed1/finetuning-sentiment-model-3000-samples
taimoor-ahmed1
2024-05-14T07:33:03Z
121
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-13T20:35:37Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9888 - Accuracy: 0.7872 - F1: 0.7872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
mizworski/text_classifier
mizworski
2024-05-14T07:29:59Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-12T15:46:55Z
--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: mizworski/text_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mizworski/text_classifier This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3163 - Validation Loss: 1.2206 - Train Accuracy: 0.4496 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 800, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.3163 | 1.2206 | 0.4496 | 0 | ### Framework versions - Transformers 4.40.2 - TensorFlow 2.15.0 - Datasets 2.19.1 - Tokenizers 0.19.1
crrodrvi/t5-neutralization
crrodrvi
2024-05-14T07:27:38Z
117
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "simplification", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-14T07:16:53Z
--- license: apache-2.0 base_model: t5-base tags: - simplification - generated_from_trainer metrics: - bleu model-index: - name: t5-neutralization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-neutralization This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8334 - Bleu: 1.8666 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 16 | 1.8974 | 1.8455 | 19.0 | | No log | 2.0 | 32 | 1.8334 | 1.8666 | 19.0 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
mradermacher/Synaptica-GGUF
mradermacher
2024-05-14T07:24:34Z
8
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:mergekit-community/Synaptica", "base_model:quantized:mergekit-community/Synaptica", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-14T06:46:46Z
--- base_model: mergekit-community/Synaptica language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hfhfix --> <!-- ### vocab_type: --> static quants of https://huggingface.co/mergekit-community/Synaptica <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.Q2_K.gguf) | Q2_K | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.IQ3_XS.gguf) | IQ3_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.Q3_K_S.gguf) | Q3_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.IQ3_S.gguf) | IQ3_S | 4.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.IQ3_M.gguf) | IQ3_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.Q3_K_M.gguf) | Q3_K_M | 5.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.Q3_K_L.gguf) | Q3_K_L | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.IQ4_XS.gguf) | IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.Q4_K_S.gguf) | Q4_K_S | 6.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.Q4_K_M.gguf) | Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.Q5_K_S.gguf) | Q5_K_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.Q5_K_M.gguf) | Q5_K_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.Q6_K.gguf) | Q6_K | 8.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Synaptica-GGUF/resolve/main/Synaptica.Q8_0.gguf) | Q8_0 | 11.5 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
CVR123/Tamil-BERT-finetune-Tamil-questions
CVR123
2024-05-14T07:21:41Z
112
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:l3cube-pune/tamil-bert", "base_model:finetune:l3cube-pune/tamil-bert", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-14T06:55:53Z
--- license: cc-by-4.0 base_model: l3cube-pune/tamil-bert tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: Tamil-BERT-finetune-Tamil-questions results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tamil-BERT-finetune-Tamil-questions This model is a fine-tuned version of [l3cube-pune/tamil-bert](https://huggingface.co/l3cube-pune/tamil-bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3564 - Precision: 0.9226 - Recall: 0.9218 - Accuracy: 0.9218 - F1-score: 0.9220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1-score | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | 1.534 | 1.0 | 305 | 1.2125 | 0.8686 | 0.8778 | 0.8778 | 0.8701 | | 0.937 | 2.0 | 610 | 0.7374 | 0.8869 | 0.8958 | 0.8958 | 0.8899 | | 0.5335 | 3.0 | 915 | 0.4742 | 0.8959 | 0.9078 | 0.9078 | 0.9007 | | 0.3097 | 4.0 | 1220 | 0.3972 | 0.9004 | 0.9138 | 0.9138 | 0.9064 | | 0.2083 | 5.0 | 1525 | 0.3869 | 0.9103 | 0.9058 | 0.9058 | 0.9018 | | 0.1535 | 6.0 | 1830 | 0.4181 | 0.9115 | 0.9078 | 0.9078 | 0.9087 | | 0.1222 | 7.0 | 2135 | 0.3576 | 0.9243 | 0.9238 | 0.9238 | 0.9240 | | 0.1002 | 8.0 | 2440 | 0.3564 | 0.9226 | 0.9218 | 0.9218 | 0.9220 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
Tyhcbs/taxi_try
Tyhcbs
2024-05-14T07:20:21Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-05-14T07:20:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_try results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Tyhcbs/taxi_try", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mradermacher/Yi-1.5-34B-GGUF
mradermacher
2024-05-14T07:10:57Z
55
0
transformers
[ "transformers", "gguf", "en", "base_model:01-ai/Yi-1.5-34B", "base_model:quantized:01-ai/Yi-1.5-34B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-13T22:00:47Z
--- base_model: 01-ai/Yi-1.5-34B language: - en library_name: transformers license: apache-2.0 no_imatrix: nan quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/01-ai/Yi-1.5-34B <!-- provided-files --> ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.Q2_K.gguf) | Q2_K | 12.9 | | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.IQ3_XS.gguf) | IQ3_XS | 14.3 | | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.Q3_K_S.gguf) | Q3_K_S | 15.1 | | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.IQ3_S.gguf) | IQ3_S | 15.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.IQ3_M.gguf) | IQ3_M | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.Q3_K_M.gguf) | Q3_K_M | 16.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.Q3_K_L.gguf) | Q3_K_L | 18.2 | | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.IQ4_XS.gguf) | IQ4_XS | 18.7 | | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.Q4_K_S.gguf) | Q4_K_S | 19.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.Q4_K_M.gguf) | Q4_K_M | 20.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.Q5_K_S.gguf) | Q5_K_S | 23.8 | | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.Q5_K_M.gguf) | Q5_K_M | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.Q6_K.gguf) | Q6_K | 28.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Yi-1.5-34B-GGUF/resolve/main/Yi-1.5-34B.Q8_0.gguf) | Q8_0 | 36.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Tyhcbs/q-FrozenLake-v1-4x4-noSlippery
Tyhcbs
2024-05-14T07:08:41Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-05-14T07:08:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Tyhcbs/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MuntasirHossain/Llama-3-8B-OpenOrca-peft-adapter
MuntasirHossain
2024-05-14T07:06:42Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B", "base_model:adapter:meta-llama/Meta-Llama-3-8B", "license:llama3", "region:us" ]
null
2024-05-14T07:03:12Z
--- license: llama3 library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B model-index: - name: Llama-3-8B-OpenOrca-peft-adapter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3-8B-OpenOrca-peft-adapter This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0865 | 1.0 | 1425 | 1.3975 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
justinsiow/schema_filter
justinsiow
2024-05-14T07:00:22Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-14T05:40:17Z
--- license: apache-2.0 ---
xzybit/summarize_model
xzybit
2024-05-14T06:54:01Z
113
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-14T04:51:45Z
--- license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: summarize_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarize_model This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5779 - Rouge1: 0.13 - Rouge2: 0.0417 - Rougel: 0.1089 - Rougelsum: 0.1088 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 124 | 2.6652 | 0.1276 | 0.038 | 0.1055 | 0.1054 | 19.0 | | No log | 2.0 | 248 | 2.5779 | 0.13 | 0.0417 | 0.1089 | 0.1088 | 19.0 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
mulanai/mulan-lang-adapter
mulanai
2024-05-14T06:50:15Z
0
8
diffusers
[ "diffusers", "region:us" ]
null
2024-05-11T02:59:00Z
--- library_name: diffusers --- # MuLan Language Adapter What is it ? > We present MuLan, a versatile framework to equip any diffusion model with multilingual generation abilities natively by up to 110+ languages around the world. With properly trained text encoder from noisy data, we demonstrate that MuLan could be trained on English only data and support other languages zero-shot. Additionally, we introduce Language Adapter. A language adapter with less than 20M parameters, trained against a frozen denoiser and a text encoder, can be readily combined with any homologous community models/tools, such as LoRA, LCM, ControlNet, and IP-Adapter, without any finetuning. https://github.com/mulanai/MuLan Examples: ```diff # pip install mulankit from diffusers import StableDiffusionPipeline + import mulankit pipe = StableDiffusionPipeline.from_pretrained('Lykon/dreamshaper-8') + pipe = mulankit.transform(pipe, 'mulanai/mulan-lang-adapter::sd15_aesthetic.pth') image = pipe('一只蓝色的🐶 in the 바다').images[0] ```
abc88767/5c50
abc88767
2024-05-14T06:46:45Z
128
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T05:45:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ZaneHorrible/google-vit-base-patch16-224-in21k-batch_16_epoch_4_classes_24
ZaneHorrible
2024-05-14T06:45:30Z
220
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-05-14T05:18:57Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: google-vit-base-patch16-224-in21k-batch_16_epoch_4_classes_24 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9683908045977011 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google-vit-base-patch16-224-in21k-batch_16_epoch_4_classes_24 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1385 - Accuracy: 0.9684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7768 | 0.07 | 100 | 0.7113 | 0.9282 | | 0.3925 | 0.14 | 200 | 0.4597 | 0.8908 | | 0.2437 | 0.21 | 300 | 0.3130 | 0.9282 | | 0.2105 | 0.28 | 400 | 0.3497 | 0.9023 | | 0.1744 | 0.35 | 500 | 0.3150 | 0.9124 | | 0.167 | 0.42 | 600 | 0.2949 | 0.9239 | | 0.1176 | 0.49 | 700 | 0.3204 | 0.9195 | | 0.077 | 0.56 | 800 | 0.3104 | 0.9253 | | 0.1113 | 0.63 | 900 | 0.1950 | 0.9511 | | 0.1172 | 0.7 | 1000 | 0.2692 | 0.9239 | | 0.0971 | 0.77 | 1100 | 0.3097 | 0.9267 | | 0.1143 | 0.84 | 1200 | 0.2072 | 0.9454 | | 0.1545 | 0.91 | 1300 | 0.2859 | 0.9253 | | 0.0794 | 0.97 | 1400 | 0.2893 | 0.9224 | | 0.0951 | 1.04 | 1500 | 0.2094 | 0.9483 | | 0.0657 | 1.11 | 1600 | 0.2714 | 0.9353 | | 0.0068 | 1.18 | 1700 | 0.2305 | 0.9425 | | 0.0511 | 1.25 | 1800 | 0.1682 | 0.9555 | | 0.0629 | 1.32 | 1900 | 0.2328 | 0.9454 | | 0.0373 | 1.39 | 2000 | 0.3263 | 0.9310 | | 0.0885 | 1.46 | 2100 | 0.2341 | 0.9454 | | 0.0433 | 1.53 | 2200 | 0.2670 | 0.9397 | | 0.0046 | 1.6 | 2300 | 0.2308 | 0.9468 | | 0.0054 | 1.67 | 2400 | 0.3182 | 0.9296 | | 0.0952 | 1.74 | 2500 | 0.2297 | 0.9411 | | 0.1361 | 1.81 | 2600 | 0.2058 | 0.9454 | | 0.1124 | 1.88 | 2700 | 0.1656 | 0.9598 | | 0.0339 | 1.95 | 2800 | 0.1933 | 0.9526 | | 0.0021 | 2.02 | 2900 | 0.1475 | 0.9569 | | 0.0248 | 2.09 | 3000 | 0.1806 | 0.9583 | | 0.0013 | 2.16 | 3100 | 0.1899 | 0.9526 | | 0.0035 | 2.23 | 3200 | 0.1391 | 0.9641 | | 0.0358 | 2.3 | 3300 | 0.1593 | 0.9684 | | 0.0026 | 2.37 | 3400 | 0.1927 | 0.9612 | | 0.001 | 2.44 | 3500 | 0.1756 | 0.9583 | | 0.0113 | 2.51 | 3600 | 0.1512 | 0.9713 | | 0.0009 | 2.58 | 3700 | 0.1540 | 0.9698 | | 0.0498 | 2.65 | 3800 | 0.1498 | 0.9641 | | 0.0084 | 2.72 | 3900 | 0.1435 | 0.9655 | | 0.001 | 2.79 | 4000 | 0.1199 | 0.9713 | | 0.0011 | 2.86 | 4100 | 0.1301 | 0.9655 | | 0.003 | 2.92 | 4200 | 0.1350 | 0.9727 | | 0.0025 | 2.99 | 4300 | 0.1764 | 0.9583 | | 0.0006 | 3.06 | 4400 | 0.1564 | 0.9713 | | 0.0006 | 3.13 | 4500 | 0.1524 | 0.9713 | | 0.0006 | 3.2 | 4600 | 0.1515 | 0.9727 | | 0.0006 | 3.27 | 4700 | 0.1633 | 0.9741 | | 0.0005 | 3.34 | 4800 | 0.1404 | 0.9713 | | 0.0005 | 3.41 | 4900 | 0.1586 | 0.9684 | | 0.0005 | 3.48 | 5000 | 0.1576 | 0.9655 | | 0.0005 | 3.55 | 5100 | 0.1505 | 0.9684 | | 0.0153 | 3.62 | 5200 | 0.1369 | 0.9684 | | 0.0005 | 3.69 | 5300 | 0.1579 | 0.9670 | | 0.0005 | 3.76 | 5400 | 0.1451 | 0.9698 | | 0.0005 | 3.83 | 5500 | 0.1417 | 0.9698 | | 0.0005 | 3.9 | 5600 | 0.1380 | 0.9698 | | 0.0004 | 3.97 | 5700 | 0.1385 | 0.9684 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
briannlongzhao/textual_inversion
briannlongzhao
2024-05-14T06:42:39Z
1
1
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-29T10:22:40Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - briannlongzhao/textual_inversion These are textual inversion adaption weights for stabilityai/stable-diffusion-2-1. You can find some example images in the following.
second-state/Llama-3-8B-Japanese-Instruct-GGUF
second-state
2024-05-14T06:42:38Z
60
3
null
[ "gguf", "text-generation", "en", "ja", "base_model:haqishen/Llama-3-8B-Japanese-Instruct", "base_model:quantized:haqishen/Llama-3-8B-Japanese-Instruct", "license:other", "region:us", "conversational" ]
text-generation
2024-05-14T05:37:53Z
--- license: other license_name: llama3 base_model: haqishen/Llama-3-8B-Japanese-Instruct inference: false model_creator: haqishen model_type: llama pipeline_tag: text-generation quantized_by: Second State Inc. language: - en - ja --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Llama-3-8B-Japanese-Instruct-GGUF ## Original Model [haqishen/Llama-3-8B-Japanese-Instruct](https://huggingface.co/haqishen/Llama-3-8B-Japanese-Instruct) ## Run with LlamaEdge - LlamaEdge version: [v0.10.1](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.10.1) and above - Prompt template - Prompt type: `llama-3-chat` - Prompt string ```text <|begin_of_text|><|start_header_id|>system<|end_header_id|> {{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` - Context size: `4096` - Run as LlamaEdge service ```bash wasmedge --dir .:. --nn-preload default:GGML:AUTO:Llama-3-8B-Japanese-Instruct-Q5_K_M.gguf \ llama-api-server.wasm \ --prompt-template llama-3-chat \ --ctx-size 4096 \ --model-name Llama-3-8B-Japanese-Instruct \ ``` - Run as LlamaEdge command app ```bash wasmedge --dir .:. --nn-preload default:GGML:AUTO:Llama-3-8B-Japanese-Instruct-Q5_K_M.gguf \ llama-chat.wasm \ --prompt-template llama-3-chat \ --ctx-size 4096 ``` ## Quantized GGUF Models | Name | Quant method | Bits | Size | Use case | | ---- | ---- | ---- | ---- | ----- | | [Llama-3-8B-Japanese-Instruct-Q2_K.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q2_K.gguf) | Q2_K | 2 | 3.18 GB| smallest, significant quality loss - not recommended for most purposes | | [Llama-3-8B-Japanese-Instruct-Q3_K_L.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q3_K_L.gguf) | Q3_K_L | 3 | 4.32 GB| small, substantial quality loss | | [Llama-3-8B-Japanese-Instruct-Q3_K_M.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q3_K_M.gguf) | Q3_K_M | 3 | 4.02 GB| very small, high quality loss | | [Llama-3-8B-Japanese-Instruct-Q3_K_S.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q3_K_S.gguf) | Q3_K_S | 3 | 3.66 GB| very small, high quality loss | | [Llama-3-8B-Japanese-Instruct-Q4_0.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q4_0.gguf) | Q4_0 | 4 | 4.66 GB| legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3-8B-Japanese-Instruct-Q4_K_M.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q4_K_M.gguf) | Q4_K_M | 4 | 4.92 GB| medium, balanced quality - recommended | | [Llama-3-8B-Japanese-Instruct-Q4_K_S.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q4_K_S.gguf) | Q4_K_S | 4 | 4.69 GB| small, greater quality loss | | [Llama-3-8B-Japanese-Instruct-Q5_0.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q5_0.gguf) | Q5_0 | 5 | 5.6 GB| legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3-8B-Japanese-Instruct-Q5_K_M.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q5_K_M.gguf) | Q5_K_M | 5 | 5.73 GB| large, very low quality loss - recommended | | [Llama-3-8B-Japanese-Instruct-Q5_K_S.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q5_K_S.gguf) | Q5_K_S | 5 | 5.6 GB| large, low quality loss - recommended | | [Llama-3-8B-Japanese-Instruct-Q6_K.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q6_K.gguf) | Q6_K | 6 | 6.6 GB| very large, extremely low quality loss | | [Llama-3-8B-Japanese-Instruct-Q8_0.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-Q8_0.gguf) | Q8_0 | 8 | 8.54 GB| very large, extremely low quality loss - not recommended | | [Llama-3-8B-Japanese-Instruct-f16.gguf](https://huggingface.co/second-state/Llama-3-8B-Japanese-Instruct-GGUF/blob/main/Llama-3-8B-Japanese-Instruct-f16.gguf) | f16 | 16 | 16.1 GB| | *Quantized with llama.cpp b2824.*
LordY54/recophi3_4bit
LordY54
2024-05-14T06:42:37Z
79
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "base_model:quantized:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-14T06:41:08Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit --- # Uploaded model - **Developed by:** LordY54 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Pertical/ppo-Huggy
Pertical
2024-05-14T06:41:54Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-05-14T06:41:49Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Pertical/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mradermacher/Mexa7b-GGUF
mradermacher
2024-05-14T06:41:44Z
9
0
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-14T06:14:28Z
--- base_model: SiguienteGlobal/Mexa7b language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/SiguienteGlobal/Mexa7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Mexa7b-GGUF/resolve/main/Mexa7b.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Minerva-MoE-3x3B-GGUF
mradermacher
2024-05-14T06:40:33Z
203
1
transformers
[ "transformers", "gguf", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "sapienzanlp/Minerva-3B-base-v1.0", "DeepMount00/Minerva-3B-base-RAG", "FairMind/Minerva-3B-Instruct-v1.0", "en", "base_model:ludocomito/Minerva-MoE-3x3B", "base_model:quantized:ludocomito/Minerva-MoE-3x3B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-14T06:14:15Z
--- base_model: ludocomito/Minerva-MoE-3x3B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - moe - frankenmoe - merge - mergekit - lazymergekit - sapienzanlp/Minerva-3B-base-v1.0 - DeepMount00/Minerva-3B-base-RAG - FairMind/Minerva-3B-Instruct-v1.0 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/ludocomito/Minerva-MoE-3x3B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.IQ3_M.gguf) | IQ3_M | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.IQ4_XS.gguf) | IQ4_XS | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.Q4_K_S.gguf) | Q4_K_S | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.Q5_K_M.gguf) | Q5_K_M | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.Q6_K.gguf) | Q6_K | 6.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-3x3B-GGUF/resolve/main/Minerva-MoE-3x3B.f16.gguf) | f16 | 14.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Praveenna/sd-class-butterflies-32
Praveenna
2024-05-14T06:37:45Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-05-14T06:37:31Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Praveenna/sd-class-butterflies-32') image = pipeline().images[0] image ```
tsavage68/Transaminitis_L3_1000rate_1e8_SFT
tsavage68
2024-05-14T06:35:30Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T06:31:32Z
--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - trl - sft - generated_from_trainer model-index: - name: Transaminitis_L3_1000rate_1e8_SFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Transaminitis_L3_1000rate_1e8_SFT This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.684 | 0.2 | 25 | 2.6901 | | 2.6773 | 0.4 | 50 | 2.6883 | | 2.6627 | 0.6 | 75 | 2.6887 | | 2.6575 | 0.8 | 100 | 2.6912 | | 2.6624 | 1.0 | 125 | 2.6897 | | 2.6725 | 1.2 | 150 | 2.6884 | | 2.6661 | 1.4 | 175 | 2.6891 | | 2.692 | 1.6 | 200 | 2.6879 | | 2.6801 | 1.8 | 225 | 2.6855 | | 2.6683 | 2.0 | 250 | 2.6867 | | 2.6812 | 2.2 | 275 | 2.6857 | | 2.6786 | 2.4 | 300 | 2.6862 | | 2.6726 | 2.6 | 325 | 2.6863 | | 2.6733 | 2.8 | 350 | 2.6870 | | 2.664 | 3.0 | 375 | 2.6880 | | 2.665 | 3.2 | 400 | 2.6871 | | 2.671 | 3.4 | 425 | 2.6854 | | 2.6788 | 3.6 | 450 | 2.6870 | | 2.673 | 3.8 | 475 | 2.6880 | | 2.648 | 4.0 | 500 | 2.6863 | | 2.6661 | 4.2 | 525 | 2.6866 | | 2.6707 | 4.4 | 550 | 2.6856 | | 2.6799 | 4.6 | 575 | 2.6870 | | 2.673 | 4.8 | 600 | 2.6874 | | 2.6757 | 5.0 | 625 | 2.6856 | | 2.6658 | 5.2 | 650 | 2.6874 | | 2.6712 | 5.4 | 675 | 2.6869 | | 2.674 | 5.6 | 700 | 2.6866 | | 2.6804 | 5.8 | 725 | 2.6866 | | 2.6755 | 6.0 | 750 | 2.6872 | | 2.685 | 6.2 | 775 | 2.6870 | | 2.6701 | 6.4 | 800 | 2.6870 | | 2.6893 | 6.6 | 825 | 2.6870 | | 2.6722 | 6.8 | 850 | 2.6870 | | 2.6783 | 7.0 | 875 | 2.6870 | | 2.6671 | 7.2 | 900 | 2.6870 | | 2.6691 | 7.4 | 925 | 2.6870 | | 2.6947 | 7.6 | 950 | 2.6870 | | 2.6773 | 7.8 | 975 | 2.6870 | | 2.6737 | 8.0 | 1000 | 2.6870 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.0.0+cu117 - Datasets 2.19.1 - Tokenizers 0.19.1
CVR123/Muril-base-finetune-Tamil-questions
CVR123
2024-05-14T06:33:53Z
108
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google/muril-base-cased", "base_model:finetune:google/muril-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-14T06:33:23Z
--- license: apache-2.0 base_model: google/muril-base-cased tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: Muril-base-finetune-Tamil-questions results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Muril-base-finetune-Tamil-questions This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4081 - Precision: 0.9205 - Recall: 0.9198 - Accuracy: 0.9198 - F1-score: 0.9199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1-score | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | 1.5732 | 1.0 | 305 | 1.2601 | 0.8743 | 0.8858 | 0.8858 | 0.8790 | | 0.9937 | 2.0 | 610 | 0.7465 | 0.8988 | 0.9098 | 0.9098 | 0.9033 | | 0.5354 | 3.0 | 915 | 0.4557 | 0.9044 | 0.9158 | 0.9158 | 0.9092 | | 0.2862 | 4.0 | 1220 | 0.3772 | 0.9198 | 0.9198 | 0.9198 | 0.9193 | | 0.1724 | 5.0 | 1525 | 0.3306 | 0.9274 | 0.9259 | 0.9259 | 0.9261 | | 0.1235 | 6.0 | 1830 | 0.3763 | 0.9214 | 0.9158 | 0.9158 | 0.9171 | | 0.0902 | 7.0 | 2135 | 0.3808 | 0.9229 | 0.9218 | 0.9218 | 0.9219 | | 0.0644 | 8.0 | 2440 | 0.3974 | 0.9229 | 0.9218 | 0.9218 | 0.9220 | | 0.0575 | 9.0 | 2745 | 0.3930 | 0.9224 | 0.9218 | 0.9218 | 0.9218 | | 0.0483 | 10.0 | 3050 | 0.4081 | 0.9205 | 0.9198 | 0.9198 | 0.9199 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
VRTX/bert_profanity
VRTX
2024-05-14T06:33:29Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-14T06:33:29Z
--- license: apache-2.0 ---
abc88767/3sc49
abc88767
2024-05-14T06:28:21Z
128
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T05:37:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tsavage68/Transaminitis_L3_1000rate_1e6_SFT2
tsavage68
2024-05-14T06:24:48Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-14T00:49:22Z
--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - trl - sft - generated_from_trainer model-index: - name: Transaminitis_L3_1000rate_1e5_SFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Transaminitis_L3_1000rate_1e5_SFT This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6005 | 0.2 | 25 | 2.3625 | | 1.2395 | 0.4 | 50 | 0.8953 | | 0.4393 | 0.6 | 75 | 0.4060 | | 0.3066 | 0.8 | 100 | 0.3098 | | 0.3 | 1.0 | 125 | 0.3041 | | 0.2988 | 1.2 | 150 | 0.2955 | | 0.2894 | 1.4 | 175 | 0.2894 | | 0.2818 | 1.6 | 200 | 0.2810 | | 0.278 | 1.8 | 225 | 0.2814 | | 0.2716 | 2.0 | 250 | 0.2779 | | 0.2648 | 2.2 | 275 | 0.2768 | | 0.2628 | 2.4 | 300 | 0.2783 | | 0.2624 | 2.6 | 325 | 0.2815 | | 0.2635 | 2.8 | 350 | 0.2761 | | 0.2556 | 3.0 | 375 | 0.2768 | | 0.2408 | 3.2 | 400 | 0.2981 | | 0.2309 | 3.4 | 425 | 0.2811 | | 0.2461 | 3.6 | 450 | 0.2850 | | 0.2332 | 3.8 | 475 | 0.2830 | | 0.2428 | 4.0 | 500 | 0.2811 | | 0.1987 | 4.2 | 525 | 0.3089 | | 0.2113 | 4.4 | 550 | 0.3099 | | 0.2108 | 4.6 | 575 | 0.3069 | | 0.2068 | 4.8 | 600 | 0.3066 | | 0.1927 | 5.0 | 625 | 0.3122 | | 0.1758 | 5.2 | 650 | 0.3315 | | 0.1749 | 5.4 | 675 | 0.3320 | | 0.1751 | 5.6 | 700 | 0.3326 | | 0.1744 | 5.8 | 725 | 0.3294 | | 0.1698 | 6.0 | 750 | 0.3292 | | 0.1621 | 6.2 | 775 | 0.3365 | | 0.1532 | 6.4 | 800 | 0.3391 | | 0.1638 | 6.6 | 825 | 0.3403 | | 0.1587 | 6.8 | 850 | 0.3405 | | 0.1641 | 7.0 | 875 | 0.3407 | | 0.1659 | 7.2 | 900 | 0.3403 | | 0.1567 | 7.4 | 925 | 0.3407 | | 0.1626 | 7.6 | 950 | 0.3409 | | 0.1544 | 7.8 | 975 | 0.3408 | | 0.1611 | 8.0 | 1000 | 0.3409 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.0.0+cu117 - Datasets 2.19.1 - Tokenizers 0.19.1
mradermacher/Minerva-MoE-2x3B-GGUF
mradermacher
2024-05-14T06:13:16Z
84
1
transformers
[ "transformers", "gguf", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "DeepMount00/Minerva-3B-base-RAG", "FairMind/Minerva-3B-Instruct-v1.0", "en", "base_model:ludocomito/Minerva-MoE-2x3B", "base_model:quantized:ludocomito/Minerva-MoE-2x3B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-14T05:54:09Z
--- base_model: ludocomito/Minerva-MoE-2x3B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - moe - frankenmoe - merge - mergekit - lazymergekit - DeepMount00/Minerva-3B-base-RAG - FairMind/Minerva-3B-Instruct-v1.0 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/ludocomito/Minerva-MoE-2x3B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.Q2_K.gguf) | Q2_K | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.IQ3_XS.gguf) | IQ3_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.Q3_K_S.gguf) | Q3_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.IQ3_S.gguf) | IQ3_S | 2.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.IQ3_M.gguf) | IQ3_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.Q3_K_M.gguf) | Q3_K_M | 2.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.Q3_K_L.gguf) | Q3_K_L | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.IQ4_XS.gguf) | IQ4_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.Q4_K_S.gguf) | Q4_K_S | 3.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.Q4_K_M.gguf) | Q4_K_M | 3.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.Q5_K_S.gguf) | Q5_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.Q5_K_M.gguf) | Q5_K_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.Q6_K.gguf) | Q6_K | 4.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.Q8_0.gguf) | Q8_0 | 5.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-MoE-2x3B-GGUF/resolve/main/Minerva-MoE-2x3B.f16.gguf) | f16 | 10.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
fine-tuned/cmedqav2-c
fine-tuned
2024-05-14T06:09:15Z
7
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "mteb", "Healthcare", "Medical", "Treatment", "Diagnosis", "Advice", "custom_code", "zh", "dataset:fine-tuned/cmedqav2-c", "dataset:allenai/c4", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-05-14T06:08:57Z
--- license: apache-2.0 datasets: - fine-tuned/cmedqav2-c - allenai/c4 language: - zh pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb - Healthcare - Medical - Treatment - Diagnosis - Advice --- This model is a fine-tuned version of [**jinaai/jina-embeddings-v2-base-zh**](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh) designed for the following use case: medical advice and treatment search engine ## How to Use This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started: ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim model = SentenceTransformer( 'fine-tuned/cmedqav2-c', trust_remote_code=True ) embeddings = model.encode([ 'first text to embed', 'second text to embed' ]) print(cos_sim(embeddings[0], embeddings[1])) ```
theGhoul21/srl-base-irpo-gguf-q4_k_m-v0.2
theGhoul21
2024-05-14T06:07:54Z
5
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:theGhoul21/srl-base-irpo-080524-16bit-v0.3-lighning-ai", "base_model:quantized:theGhoul21/srl-base-irpo-080524-16bit-v0.3-lighning-ai", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-14T06:06:02Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf base_model: theGhoul21/srl-base-irpo-080524-16bit-v0.3-lighning-ai --- # Uploaded model - **Developed by:** theGhoul21 - **License:** apache-2.0 - **Finetuned from model :** theGhoul21/srl-base-irpo-080524-16bit-v0.3-lighning-ai This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sylviam00/output
sylviam00
2024-05-14T06:02:03Z
1
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "controlnet", "diffusers-training", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-05-13T17:40:11Z
--- license: openrail++ library_name: diffusers tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - controlnet - diffusers-training base_model: stabilityai/stable-diffusion-xl-base-1.0 inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # controlnet-sylviam00/output These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with new type of conditioning. You can find some example images below. prompt: baby with black hair ![images_0)](./images_0.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
UnclearMind/dqn-AlienNoFrameskip-v4
UnclearMind
2024-05-14T05:59:12Z
0
0
stable-baselines3
[ "stable-baselines3", "AlienNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-14T05:58:23Z
--- library_name: stable-baselines3 tags: - AlienNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AlienNoFrameskip-v4 type: AlienNoFrameskip-v4 metrics: - type: mean_reward value: 363.00 +/- 133.87 name: mean_reward verified: false --- # **DQN** Agent playing **AlienNoFrameskip-v4** This is a trained model of a **DQN** agent playing **AlienNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env AlienNoFrameskip-v4 -orga UnclearMind -f logs/ python -m rl_zoo3.enjoy --algo dqn --env AlienNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env AlienNoFrameskip-v4 -orga UnclearMind -f logs/ python -m rl_zoo3.enjoy --algo dqn --env AlienNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env AlienNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env AlienNoFrameskip-v4 -f logs/ -orga UnclearMind ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 300000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Litzy619/O0503HMA10
Litzy619
2024-05-14T05:58:14Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:allenai/OLMo-1B", "base_model:finetune:allenai/OLMo-1B", "license:apache-2.0", "region:us" ]
null
2024-05-14T04:53:55Z
--- license: apache-2.0 base_model: allenai/OLMo-1B tags: - generated_from_trainer model-index: - name: O0503HMA10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # O0503HMA10 This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0442 | 0.09 | 10 | 0.2875 | | 0.2001 | 0.18 | 20 | 0.1616 | | 0.1529 | 0.27 | 30 | 0.1659 | | 0.1573 | 0.36 | 40 | 0.1565 | | 0.1506 | 0.45 | 50 | 0.1481 | | 0.1513 | 0.54 | 60 | 0.1495 | | 0.1483 | 0.63 | 70 | 0.1473 | | 0.1475 | 0.73 | 80 | 0.1631 | | 0.1494 | 0.82 | 90 | 0.1451 | | 0.1495 | 0.91 | 100 | 0.1477 | | 0.1522 | 1.0 | 110 | 0.1458 | | 0.2446 | 1.09 | 120 | 0.1956 | | 0.2972 | 1.18 | 130 | 0.4052 | | 2.1659 | 1.27 | 140 | 7.2949 | | 0.9982 | 1.36 | 150 | 0.1835 | | 0.1634 | 1.45 | 160 | 0.1644 | | 0.1558 | 1.54 | 170 | 0.1487 | | 0.1513 | 1.63 | 180 | 0.1503 | | 0.154 | 1.72 | 190 | 0.1514 | | 1.0121 | 1.81 | 200 | 0.1626 | | 0.1537 | 1.9 | 210 | 0.1536 | | 0.1494 | 1.99 | 220 | 0.1531 | | 0.15 | 2.08 | 230 | 0.1480 | | 0.1448 | 2.18 | 240 | 0.1480 | | 0.1454 | 2.27 | 250 | 0.1498 | | 0.1462 | 2.36 | 260 | 0.1493 | | 0.1449 | 2.45 | 270 | 0.1473 | | 0.1431 | 2.54 | 280 | 0.1468 | | 0.1441 | 2.63 | 290 | 0.1473 | | 0.146 | 2.72 | 300 | 0.1464 | | 0.145 | 2.81 | 310 | 0.1462 | | 0.1458 | 2.9 | 320 | 0.1462 | | 0.1468 | 2.99 | 330 | 0.1462 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0
parthrautV/agri_llama3
parthrautV
2024-05-14T05:56:59Z
77
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-14T05:42:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]