modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-28 12:28:24
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 500
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-28 12:27:53
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
hinokamikaguya/autotrain-uf8wi-g248o | hinokamikaguya | 2024-05-18T18:50:30Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"autotrain",
"text-generation-inference",
"text-generation",
"peft",
"conversational",
"license:other",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T17:02:53Z | ---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft
library_name: transformers
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` |
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.0175-alpha-0-step-59904 | hsikchi | 2024-05-18T18:45:19Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:40:51Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.0175-alpha-0-step-19968 | hsikchi | 2024-05-18T18:44:51Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:37:36Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.0175-alpha-0-step-39936 | hsikchi | 2024-05-18T18:44:14Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:37:11Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.0175-alpha-0-LATEST | hsikchi | 2024-05-18T18:44:11Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:36:56Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mlx-community/dolphin-2.9.1-yi-1.5-34b-8bit | mlx-community | 2024-05-18T18:43:27Z | 6 | 0 | mlx | [
"mlx",
"safetensors",
"llama",
"generated_from_trainer",
"axolotl",
"dataset:cognitivecomputations/Dolphin-2.9",
"dataset:teknium/OpenHermes-2.5",
"dataset:m-a-p/CodeFeedback-Filtered-Instruction",
"dataset:cognitivecomputations/dolphin-coder",
"dataset:cognitivecomputations/samantha-data",
"dataset:microsoft/orca-math-word-problems-200k",
"dataset:Locutusque/function-calling-chatml",
"dataset:internlm/Agent-FLAN",
"base_model:01-ai/Yi-1.5-34B",
"base_model:finetune:01-ai/Yi-1.5-34B",
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T18:32:29Z | ---
license: apache-2.0
tags:
- generated_from_trainer
- axolotl
- mlx
base_model: 01-ai/Yi-1.5-34B
datasets:
- cognitivecomputations/Dolphin-2.9
- teknium/OpenHermes-2.5
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- microsoft/orca-math-word-problems-200k
- Locutusque/function-calling-chatml
- internlm/Agent-FLAN
---
# mlx-community/dolphin-2.9.1-yi-1.5-34b-8bit
This model was converted to MLX format from [`cognitivecomputations/dolphin-2.9.1-yi-1.5-34b`]() using mlx-lm version **0.12.1**.
Refer to the [original model card](https://huggingface.co/cognitivecomputations/dolphin-2.9.1-yi-1.5-34b) for more details on the model.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/dolphin-2.9.1-yi-1.5-34b-8bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.025-alpha-0-step-59904 | hsikchi | 2024-05-18T18:35:23Z | 9 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:28:41Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.01-alpha-0-step-39936 | hsikchi | 2024-05-18T18:35:21Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:28:48Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.0375-alpha-0-LATEST | hsikchi | 2024-05-18T18:35:12Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:28:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.01-alpha-0-step-19968 | hsikchi | 2024-05-18T18:34:28Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:27:45Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mdosama39/mt0-base-headline_WithIp | mdosama39 | 2024-05-18T18:32:26Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"mt5",
"text2text-generation",
"generated_from_trainer",
"base_model:bigscience/mt0-base",
"base_model:finetune:bigscience/mt0-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-18T18:17:00Z | ---
license: apache-2.0
base_model: bigscience/mt0-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt0-base-headline_WithIp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt0-base-headline_WithIp
This model is a fine-tuned version of [bigscience/mt0-base](https://huggingface.co/bigscience/mt0-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5591
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
- Gen Len: 16.8015
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.9054 | 1.0 | 202 | 1.5802 | 0.0 | 0.0 | 0.0 | 0.0 | 16.8511 |
| 1.7765 | 2.0 | 404 | 1.5663 | 0.0 | 0.0 | 0.0 | 0.0 | 17.464 |
| 1.4716 | 3.0 | 606 | 1.5465 | 0.0 | 0.0 | 0.0 | 0.0 | 17.1216 |
| 1.2112 | 4.0 | 808 | 1.5591 | 0.0 | 0.0 | 0.0 | 0.0 | 16.8015 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
houbw/houbw | houbw | 2024-05-18T18:31:22Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T18:29:14Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** houbw
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.025-alpha-0-step-39936 | hsikchi | 2024-05-18T18:26:55Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:22:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.025-alpha-0-LATEST | hsikchi | 2024-05-18T18:26:34Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:22:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
msoz7/NERTestModel | msoz7 | 2024-05-18T18:23:15Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T15:44:54Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
shapiron/q-taxi-v3-c | shapiron | 2024-05-18T18:22:46Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T18:22:44Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3-c
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="shapiron/q-taxi-v3-c", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
shapiron/q-taxi-v3-b | shapiron | 2024-05-18T18:22:25Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T17:56:04Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3-b
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="shapiron/q-taxi-v3-b", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.05-alpha-0-step-59904 | hsikchi | 2024-05-18T18:21:05Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:16:35Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.05-alpha-0-step-79872 | hsikchi | 2024-05-18T18:21:04Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:16:36Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.05-alpha-0-step-39936 | hsikchi | 2024-05-18T18:20:45Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:16:13Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bujido/Llama3-70B-Chinese-Chat-AWQ-32k | bujido | 2024-05-18T18:17:49Z | 8 | 3 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"awq",
"region:us"
] | text-generation | 2024-05-18T17:10:35Z |
# Llama3-70B-Chinese-Chat-AWQ-32k
## Model Description
This repository provides a 4-bit AWQ quantized version based on the full-parameter fine-tuned Llama3-70B-Chinese-Chat model by shenzhi-wang (https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat).
The original model is based on the Llama3-70B model, which has been fine-tuned for Chinese chat tasks to enhance its ability to handle Chinese dialogue tasks.
Additionally, we have included an optional configuration file to support extending the context length from the original 8k to 32k. This enables the model to process longer text sequences, making it suitable for scenarios that require richer contextual information.
### Quantization
We have used 4-bit AWQ quantization technology to reduce the model's weight precision. Preliminary tests show that the model's performance has been maintained relatively well. The quantized model can run in environments with limited resources.
### Context Extension
To support longer contexts, we have added a configuration file named "config-32k.json". When you need to process text lengths that exceed the original context limit, you can enable this feature by simply replacing the configuration file.
Please note that as this is an experimental feature, using longer context lengths may affect the model's performance. It is recommended that you test based on your actual usage scenarios.
(By default, the original "config.json" from the Llama3 is used, which has an 8k context. To enable the 32k context length, replace the "config.json" in the model files with "config-32k.json". The effect is uncertain; please test yourself.)
## Original Model Link
https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat
Thanks to the open-source community for their contributions to the Sinicization of Llama3.
--------------------------------------
## ๆจกๅๆ่ฟฐ
ๆฌไปๅบๆไพไบๅจ[shenzhi-wangๅ
จๅๆฐๅพฎ่ฐ็Llama3-70B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat)ๅบ็กไธ่ฟ่ก็4ไฝAWQ้ๅ็ๆฌใ
ๅๅงๆจกๅๆฏๅบไบLlama3-70Bๆจกๅ๏ผๅจไธญๆ่ๅคฉไปปๅกไธ่ฟ่กไบๅพฎ่ฐ๏ผไปฅๆๅๅ
ถๅจๅค็ไธญๆๅฏน่ฏไปปๅก็่ฝๅใ
ๆญคๅค๏ผๆไปฌ่ฟๅขๅ ไบไธไธชๅฏ้็้
็ฝฎๆไปถ๏ผไปฅๆฏๆๅฐไธไธๆ้ฟๅบฆไปๅๅง็8kๆฉๅฑ่ณ32kใ่ฟๆ ท๏ผๆจกๅๅฏไปฅๅค็ๆด้ฟ็ๆๆฌๅบๅ๏ผ้็จไบ้่ฆไธไธๆไฟกๆฏๆดไธฐๅฏ็ๅบๆฏใ
### ้ๅ
ๆไปฌไฝฟ็จไบ4ไฝAWQ้ๅๆๆฏๆฅ้ไฝๆจกๅ็ๆ้็ฒพๅบฆ๏ผๅๆญฅ่ฏ็จไธญ๏ผๆจกๅๆง่ฝไฟๆๅพ่ฟไธ้ใ้ๅๅ็ๆจกๅๅฏไปฅๅจ่ตๆบๆ้็็ฏๅขไธญ่ฟ่กใ
### ไธไธๆๆฉๅฑ
ไธบไบๆฏๆๆด้ฟ็ไธไธๆ๏ผๆไปฌๅขๅ ไบไธไธชๅไธบ`config-32k.json`็้
็ฝฎๆไปถใๅฝๆจ้่ฆๅค็็ๆๆฌ้ฟๅบฆ่ถ
่ฟๅๅงไธไธๆ้ๅถๆถ๏ผๅฏไปฅ้่ฟ็ฎๅๅฐๆฟๆข้
็ฝฎๆไปถๆฅๅฏ็จ่ฟไธ็นๆงใ
่ฏทๆณจๆ๏ผ็ฑไบ่ฟๆฏไธไธชๅฎ้ชๆง็็นๆง๏ผไฝฟ็จๆด้ฟไธไธๆ้ฟๅบฆๅฏ่ฝไผๅฝฑๅๆจกๅ็ๆง่ฝ๏ผๅปบ่ฎฎๆจๆ นๆฎๅฎ้
ไฝฟ็จๅบๆฏ่ฟ่กๆต่ฏใ
๏ผ้ป่ฎคไฝฟ็จllama3ๅ็"config.json"๏ผๅ
ทๆ8kไธไธๆใ่ฅ่ฆๅฏ็จ32kไธไธๆ้ฟๅบฆ๏ผ่ฏทๅฐๆจกๅๆไปถไธญ็"config.json"ๆฟๆขไธบ"config-32k.json"๏ผๆๆไธ็กฎๅฎ๏ผ่ฏท่ช่กๆต่ฏ๏ผ
## ๅๅงๆจกๅ้พๆฅ
[https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat)
ๆ่ฐขๅผๆบ็คพๅบๅฏนllama3ไธญๆๅๅๅบ็่ดก็ฎใ |
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.05-alpha-0-step-19968 | hsikchi | 2024-05-18T18:14:56Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:10:21Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.05-alpha-0-LATEST | hsikchi | 2024-05-18T18:14:51Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:10:23Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
openchat/openchat-3.5-0106 | openchat | 2024-05-18T18:14:51Z | 29,624 | 351 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"openchat",
"C-RLFT",
"conversational",
"arxiv:2309.11235",
"arxiv:2303.08774",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:finetune:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-01-07T08:17:09Z | ---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- openchat
- mistral
- C-RLFT
library_name: transformers
pipeline_tag: text-generation
---
<div align="center">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
<h1>Advancing Open-source Language Models with Mixed-Quality Data</h1>
</div>
<p align="center" style="margin-top: 0px;">
<a href="https://openchat.team">
<img src="https://github.com/alpayariyak/openchat/blob/master/assets/logo_nobg.png?raw=true" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text" style=" margin-right: 5px;">Online Demo</span>
</a> |
<a href="https://github.com/imoneoi/openchat">
<img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text" style=" margin-right: 5px;">GitHub</span>
</a> |
<a href="https://arxiv.org/pdf/2309.11235.pdf">
<img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text" style="margin-right: 5px;">Paper</span>
</a> |
<a href="https://discord.gg/pQjnXvNKHY">
<img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text">Discord</span>
</a>
</p>
<p align="center" style="margin-top: 0px;">
<span class="link-text" style=" margin-right: 0px; font-size: 0.8em">Sponsored by RunPod</span>
<img src="https://styles.redditmedia.com/t5_6075m3/styles/profileIcon_71syco7c5lt81.png?width=256&height=256&frame=1&auto=webp&crop=256:256,smart&s=24bd3c71dc11edc5d4f88d0cbc1da72ed7ae1969" alt="RunPod Logo" style="width:30px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
</p>
<div style="background-color: white; padding: 0.7em; border-radius: 0.5em; color: black; display: flex; flex-direction: column; justify-content: center; text-align: center; ont-size: 0.5em; border: 0.8em solid #864AF9;">
<a href="https://huggingface.co/openchat/openchat-3.5-0106" style="text-decoration: none; color: black;">
<span style="font-size: 1.7em; font-family: 'Helvetica'; letter-spacing: 0.1em; font-weight: bold; color: black;">OPENCHAT</span><span style="font-size: 1.8em; font-family: 'Helvetica'; color: #3c72db; ">3.5</span>
<span style="font-size: 1.0em; font-family: 'Helvetica'; color: white; background-color: #864AF9; vertical-align: top; border-radius: 6em; padding: 0.066em 0.4em; letter-spacing: 0.1em; font-weight: bold;">0106</span>
<span style="font-size: 0.85em; font-family: 'Helvetica'; color: black;">
<br> ๐ The Overall Best Performing Open Source 7B Model ๐
<br> ๐ค Outperforms <span style="font-weight: bold;">ChatGPT</span> (March) and <span style="font-weight: bold;">Grok-1</span> ๐ค
<br> ๐<span style="font-size: 1em; font-family: 'Helvetica'; color: black; font-weight: bold;">15</span>-point improvement in Coding over <span style="font-size: 0.9em;
font-family: 'Helvetica'; color: black; font-weight: bold;">OpenChat-3.5๐</span>
<br><br><span style="font-size: 1em; font-family: 'Helvetica'; color: #3c72db; font-weight: bold;">New Features</span>
<br> ๐ก 2 Modes: Coding + Generalist, Mathematical Reasoning ๐ก
<br> ๐งโโ๏ธ Experimental support for Evaluator and Feedback capabilities ๐งโโ๏ธ
</span>
</a>
</div>
<div style="display: flex; justify-content: center; align-items: center">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat-bench-0106.png" style="width: 100%; border-radius: 1em">
</div>
<div>
<h3> Table of Contents</h3>
</div>
1. [Usage](#usage)
2. [Benchmarks](#benchmarks)
3. [Limitations](#limitations)
4. [License](#license)
6. [Citation](#citation)
7. [Acknowledgements](#acknowledgements)
<div align="center">
<h2> Usage </h2>
</div>
To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.
Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.
If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.
| Model | Size | Context | Weights | Serving |
|-------------------|------|---------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| OpenChat-3.5-0106 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat-3.5-0106) | `python -m ochat.serving.openai_api_server --model openchat/openchat-3.5-0106 --engine-use-ray --worker-use-ray` |
<details>
<summary>Example request (click to expand)</summary>
๐ก **Default Mode (GPT4 Correct)**: Best for coding, chat and general tasks
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
}'
```
๐งฎ **Mathematical Reasoning Mode**: Tailored for solving math problems
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"condition": "Math Correct",
"messages": [{"role": "user", "content": "10.3 โ 7988.8133 = "}]
}'
```
</details>
### Conversation templates
๐ก **Default Mode (GPT4 Correct)**: Best for coding, chat and general tasks
```
GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:
```
๐งฎ **Mathematical Reasoning Mode**: Tailored for solving math problems
```
Math Correct User: 10.3 โ 7988.8133=<|end_of_turn|>Math Correct Assistant:
```
โ ๏ธ **Notice:** Remember to set `<|end_of_turn|>` as end of generation token.
The default (GPT4 Correct) template is also available as the integrated `tokenizer.chat_template`,
which can be used instead of manually specifying the template:
```python
messages = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi"},
{"role": "user", "content": "How are you today?"}
]
tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
```
<div align="center">
<h2> (Experimental) Evaluator / Feedback Capabilities </h2>
</div>
We've included evaluator capabilities in this release to advance open-source models as evaluators. You can use `Default Mode (GPT4 Correct)` with the following prompt (same as [Prometheus](https://huggingface.co/datasets/kaist-ai/Feedback-Collection)) to evaluate a response.
```
###Task Description:
An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"
4. Please do not generate any other opening, closing, and explanations.
###The instruction to evaluate:
{orig_instruction}
###Response to evaluate:
{orig_response}
###Reference Answer (Score 5):
{orig_reference_answer}
###Score Rubrics:
[{orig_criteria}]
Score 1: {orig_score1_description}
Score 2: {orig_score2_description}
Score 3: {orig_score3_description}
Score 4: {orig_score4_description}
Score 5: {orig_score5_description}
###Feedback:
```
<div align="center">
<h2> Benchmarks </h2>
</div>
| Model | # Params | Average | MT-Bench | HumanEval | BBH MC | AGIEval | TruthfulQA | MMLU | GSM8K | BBH CoT |
|-----------------------|----------|----------|----------|-----------|----------|----------|------------|----------|----------|----------|
| **OpenChat-3.5-0106** | **7B** | **64.5** | 7.8 | **71.3** | **51.5** | **49.1** | 61.0 | 65.8 | **77.4** | 62.2 |
| OpenChat-3.5-1210 | **7B** | 63.8 | 7.76 | 68.9 | 49.5 | 48.0 | **61.8** | 65.3 | 77.3 | 61.8 |
| OpenChat-3.5 | **7B** | 61.6 | 7.81 | 55.5 | 47.6 | 47.4 | 59.1 | 64.3 | 77.3 | 63.5 |
| ChatGPT (March)* | ???B | 61.5 | **7.94** | 48.1 | 47.6 | 47.1 | 57.7 | **67.3** | 74.9 | **70.1** |
| | | | | | | | | | | |
| OpenHermes 2.5 | 7B | 59.3 | 7.54 | 48.2 | 49.4 | 46.5 | 57.5 | 63.8 | 73.5 | 59.9 |
| OpenOrca Mistral | 7B | 52.7 | 6.86 | 38.4 | 49.4 | 42.9 | 45.9 | 59.3 | 59.1 | 58.1 |
| Zephyr-ฮฒ^ | 7B | 34.6 | 7.34 | 22.0 | 40.6 | 39.0 | 40.8 | 39.8 | 5.1 | 16.0 |
| Mistral | 7B | - | 6.84 | 30.5 | 39.0 | 38.0 | - | 60.1 | 52.2 | - |
<details>
<summary>Evaluation Details(click to expand)</summary>
*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.
^: Zephyr-ฮฒ often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.
**: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.
All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).
</details>
<div>
<h3>HumanEval+</h3>
</div>
| Model | Size | HumanEval+ pass@1 |
|-----------------------------|--------|-------------------|
| **OpenChat-3.5-0106** | **7B** | **65.9** |
| ChatGPT (December 12, 2023) | ???B | 64.6 |
| WizardCoder-Python-34B-V1.0 | 34B | 64.6 |
| OpenChat 3.5 1210 | 7B | 63.4 |
| OpenHermes 2.5 | 7B | 41.5 |
<div>
<h3>OpenChat-3.5 vs. Grok</h3>
</div>
๐ฅ OpenChat-3.5-0106 (7B) now outperforms Grok-0 (33B) on **all 4 benchmarks** and Grok-1 (???B) on average and **3/4 benchmarks**.
| | License | # Param | Average | MMLU | HumanEval | MATH | GSM8k |
|-----------------------|-------------|---------|----------|--------|-----------|----------|----------|
| **OpenChat-3.5-0106** | Apache-2.0 | **7B** | **61.0** | 65.8 | **71.3** | **29.3** | **77.4** |
| OpenChat-3.5-1210 | Apache-2.0 | **7B** | 60.1 | 65.3 | 68.9 | 28.9 | 77.3 |
| OpenChat-3.5 | Apache-2.0 | **7B** | 56.4 | 64.3 | 55.5 | 28.6 | 77.3 |
| Grok-0 | Proprietary | 33B | 44.5 | 65.7 | 39.7 | 15.7 | 56.8 |
| Grok-1 | Proprietary | ???B | 55.8 | **73** | 63.2 | 23.9 | 62.9 |
*: Grok results are reported by [X.AI](https://x.ai/).
<div align="center">
<h2> Limitations </h2>
</div>
**Foundation Model Limitations**
Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges
**Hallucination of Non-existent Information**
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
**Safety**
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.
<div align="center">
<h2> License </h2>
</div>
Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.
<div align="center">
<h2> Citation </h2>
</div>
```
@article{wang2023openchat,
title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
journal={arXiv preprint arXiv:2309.11235},
year={2023}
}
```
<div align="center">
<h2> ๐ Contact </h2>
</div>
We look forward to hearing you and collaborating on this exciting project!
**Project Lead:**
- Guan Wang [imonenext at gmail dot com]
- [Alpay Ariyak](https://github.com/alpayariyak) [aariyak at wpi dot edu]
|
openchat/openchat-3.5-0106-gemma | openchat | 2024-05-18T18:11:14Z | 7,735 | 57 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:2309.11235",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-09T16:03:17Z | ---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
---
<div align="center">
<a>
<img src="https://cdn-uploads.huggingface.co/production/uploads/63972847b3e2256c9ce1307b/Ez9cDw8xstbTKlFtBgbVs.png" >
</a>
</div>
## The highest performing Gemma model in the world. Trained with OpenChat's C-RLFT on openchat-3.5-0106 data. Achieving similar performance to Mistral-based openchat, and much better than Gemma-7b and Gemma-7b-it.
Please refer to [openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) for details.
> P.S.: 6T pre-training tokens + 0.003 init std dev + C-RLFT is the secret sauce?
>
> P.P.S.: @Google team, we know your model is great, but please use an OSI-approved license like Mistral (or even Phi and Orca).
## Benchmarks
| Model | # Params | Average | MT-Bench | HumanEval | BBH MC | AGIEval | TruthfulQA | MMLU | GSM8K | BBH CoT |
|-----------------------------|----------|----------|----------|-----------|----------|----------|------------|----------|----------|----------|
| **OpenChat-3.5-0106 Gemma** | **7B** | 64.4 | 7.83 | 67.7 | **52.7** | **50.2** | 55.4 | 65.7 | **81.5** | 63.7 |
| OpenChat-3.5-0106 Mistral | **7B** | **64.5** | 7.8 | **71.3** | 51.5 | 49.1 | **61.0** | 65.8 | 77.4 | 62.2 |
| ChatGPT (March) | ???B | 61.5 | **7.94** | 48.1 | 47.6 | 47.1 | 57.7 | **67.3** | 74.9 | **70.1** |
| | | | | | | | | | | |
| Gemma-7B | 7B | - | - | 32.3 | - | 41.7 | - | 64.3 | 46.4 | - |
| Gemma-7B-it * | 7B | 25.4 | - | 28.0 | 38.4 | 32.5 | 34.1 | 26.5 | 10.8 | 7.6 |
| OpenHermes 2.5 | 7B | 59.3 | 7.54 | 48.2 | 49.4 | 46.5 | 57.5 | 63.8 | 73.5 | 59.9 |
*: `Gemma-7b-it` failed to understand and follow most few-shot templates.
## Usage
To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.
Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.
If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.
| Model | Size | Context | Weights | Serving |
|-------------------------|------|---------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| OpenChat-3.5-0106-Gemma | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat-3.5-0106-gemma) | `python -m ochat.serving.openai_api_server --model openchat/openchat-3.5-0106-gemma --engine-use-ray --worker-use-ray` |
<details>
<summary>Example request (click to expand)</summary>
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5_gemma_new",
"messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
}'
```
</details>
## Conversation template
โ ๏ธ **Notice:** This is different from the Mistral version. End-of-turn token is `<end_of_turn>` now (Mistral version is `<|end_of_turn|>`). Remember to set `<end_of_turn>` as end of generation token.
```
GPT4 Correct User: Hello<end_of_turn>GPT4 Correct Assistant: Hi<end_of_turn>GPT4 Correct User: How are you today?<end_of_turn>GPT4 Correct Assistant:
```
With system message (**NOT** recommended, may degrade performance)
```
You are a helpful assistant.<end_of_turn>GPT4 Correct User: Hello<end_of_turn>GPT4 Correct Assistant: Hi<end_of_turn>GPT4 Correct User: How are you today?<end_of_turn>GPT4 Correct Assistant:
```
## Hallucination of Non-existent Information
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
## Safety
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.
<div align="center">
<h2> License </h2>
</div>
Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.
## Citation
```
@article{wang2023openchat,
title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
journal={arXiv preprint arXiv:2309.11235},
year={2023}
}
```
<div align="center">
<h2> ๐ Contact </h2>
</div>
**Project Lead:**
- Guan Wang [imonenext at gmail dot com]
- [Alpay Ariyak](https://github.com/alpayariyak) [aariyak at wpi dot edu]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.1-alpha-0-step-59904 | hsikchi | 2024-05-18T18:08:29Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T18:03:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ranystephan/NeuralFinGPT-v1-10 | ranystephan | 2024-05-18T18:08:08Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T18:07:51Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
emilykang/Gemma_medmcqa_question_generation-physiology_lora | emilykang | 2024-05-18T18:06:30Z | 1 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-05-18T17:11:47Z | ---
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: Gemma_medmcqa_question_generation-physiology_lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma_medmcqa_question_generation-physiology_lora
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1 |
liminerity/mm4.ascii.star.gguf | liminerity | 2024-05-18T18:05:16Z | 6 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:liminerity/mm4.star",
"base_model:quantized:liminerity/mm4.star",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-18T18:02:31Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: liminerity/mm4.star
---
# Uploaded model
- **Developed by:** liminerity
- **License:** apache-2.0
- **Finetuned from model :** liminerity/mm4.star
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Ashleyinust/model_one | Ashleyinust | 2024-05-18T18:02:55Z | 106 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-04-30T13:48:42Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.5-alpha-0-step-79872 | hsikchi | 2024-05-18T18:02:02Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T17:57:33Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hoanganhvu/phishing_2_1 | hoanganhvu | 2024-05-18T17:59:21Z | 107 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"generated_from_trainer",
"base_model:google-bert/bert-large-uncased",
"base_model:finetune:google-bert/bert-large-uncased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T09:23:04Z | ---
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: phishing_2_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phishing_2_1
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3498
- Accuracy: 0.9634
- Precision: 0.9918
- Recall: 0.9345
- False Positive Rate: 0.0077
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | False Positive Rate |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:-------------------:|
| 0.365 | 1.0 | 3025 | 0.3632 | 0.9480 | 0.9861 | 0.9088 | 0.0128 |
| 0.3453 | 2.0 | 6050 | 0.3405 | 0.9727 | 0.9752 | 0.9700 | 0.0247 |
| 0.3623 | 3.0 | 9075 | 0.3596 | 0.9536 | 0.9861 | 0.9202 | 0.0130 |
| 0.3498 | 4.0 | 12100 | 0.3498 | 0.9634 | 0.9918 | 0.9345 | 0.0077 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
afrideva/phi-3-portuguese-tom-cat-4k-instruct-GGUF | afrideva | 2024-05-18T17:56:42Z | 17 | 1 | transformers | [
"transformers",
"gguf",
"portugues",
"portuguese",
"QA",
"instruct",
"phi",
"ggml",
"quantized",
"text-generation",
"pt",
"dataset:rhaymison/superset",
"base_model:rhaymison/phi-3-portuguese-tom-cat-4k-instruct",
"base_model:quantized:rhaymison/phi-3-portuguese-tom-cat-4k-instruct",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-05-18T17:31:48Z | ---
base_model: rhaymison/phi-3-portuguese-tom-cat-4k-instruct
datasets:
- rhaymison/superset
inference: true
language:
- pt
library_name: transformers
license: apache-2.0
model-index:
- name: phi-3-portuguese-tom-cat-4k-instruct
results:
- dataset:
args:
num_few_shot: 3
name: ENEM Challenge (No Images)
split: train
type: eduagarcia/enem_challenge
metrics:
- name: accuracy
type: acc
value: 61.58
source:
name: Open Portuguese LLM Leaderboard
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 3
name: BLUEX (No Images)
split: train
type: eduagarcia-temp/BLUEX_without_images
metrics:
- name: accuracy
type: acc
value: 50.63
source:
name: Open Portuguese LLM Leaderboard
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 3
name: OAB Exams
split: train
type: eduagarcia/oab_exams
metrics:
- name: accuracy
type: acc
value: 43.69
source:
name: Open Portuguese LLM Leaderboard
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 15
name: Assin2 RTE
split: test
type: assin2
metrics:
- name: f1-macro
type: f1_macro
value: 91.54
source:
name: Open Portuguese LLM Leaderboard
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 15
name: Assin2 STS
split: test
type: eduagarcia/portuguese_benchmark
metrics:
- name: pearson
type: pearson
value: 75.27
source:
name: Open Portuguese LLM Leaderboard
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 15
name: FaQuAD NLI
split: test
type: ruanchaves/faquad-nli
metrics:
- name: f1-macro
type: f1_macro
value: 47.46
source:
name: Open Portuguese LLM Leaderboard
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 25
name: HateBR Binary
split: test
type: ruanchaves/hatebr
metrics:
- name: f1-macro
type: f1_macro
value: 83.01
source:
name: Open Portuguese LLM Leaderboard
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 25
name: PT Hate Speech Binary
split: test
type: hate_speech_portuguese
metrics:
- name: f1-macro
type: f1_macro
value: 70.19
source:
name: Open Portuguese LLM Leaderboard
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 25
name: tweetSentBR
split: test
type: eduagarcia/tweetsentbr_fewshot
metrics:
- name: f1-macro
type: f1_macro
value: 57.78
source:
name: Open Portuguese LLM Leaderboard
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
task:
name: Text Generation
type: text-generation
model_creator: rhaymison
model_name: phi-3-portuguese-tom-cat-4k-instruct
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- portugues
- portuguese
- QA
- instruct
- phi
- gguf
- ggml
- quantized
---
# phi-3-portuguese-tom-cat-4k-instruct-GGUF
Quantized GGUF model files for [phi-3-portuguese-tom-cat-4k-instruct](https://huggingface.co/rhaymison/phi-3-portuguese-tom-cat-4k-instruct) from [rhaymison](https://huggingface.co/rhaymison)
## Original Model Card:
# Phi-3-portuguese-tom-cat-4k-instruct
<p align="center">
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/tom-cat.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
</p>
This model was trained with a superset of 300,000 instructions in Portuguese.
The model comes to help fill the gap in models in Portuguese. Tuned from the microsoft/Phi-3-mini-4k.
# How to use
### FULL MODEL : A100
### HALF MODEL: L4
### 8bit or 4bit : T4 or V100
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches.
Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response.
Important points like these help models (even smaller models like 4b) to perform much better.
```python
!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/phi-3-portuguese-tom-cat-4k-instruct", device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/phi-3-portuguese-tom-cat-4k-instruct")
model.eval()
```
You can use with Pipeline.
```python
from transformers import pipeline
pipe = pipeline("text-generation",
model=model,
tokenizer=tokenizer,
do_sample=True,
max_new_tokens=512,
num_beams=2,
temperature=0.3,
top_k=50,
top_p=0.95,
early_stopping=True,
pad_token_id=tokenizer.eos_token_id,
)
def format_template(question:str):
system_prompt = "Abaixo estรก uma instruรงรฃo que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
return f"""<s><|system|>
{ system_prompt }
<|user|>
{ question }
<|assistant|>
"""
question = format_template("E possivel ir de Carro dos Estados unidos ate o japรฃo")
pipe(question)
```
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization.
For the complete model in colab you will need the A100.
If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.
# 4bits example
```python
from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=bnb_config,
device_map={"": 0}
)
```
# Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/phi-3-portuguese-tom-cat-4k-instruct) and on the [๐ Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
| Metric | Value |
|--------------------------|---------|
|Average |**64.57**|
|ENEM Challenge (No Images)| 61.58|
|BLUEX (No Images) | 50.63|
|OAB Exams | 43.69|
|Assin2 RTE | 91.54|
|Assin2 STS | 75.27|
|FaQuAD NLI | 47.46|
|HateBR Binary | 83.01|
|PT Hate Speech Binary | 70.19|
|tweetSentBR | 57.78|
### Comments
Any idea, help or report will always be welcome.
email: [email protected]
<div style="display:flex; flex-direction:row; justify-content:left">
<a href="https://www.linkedin.com/in/rhaymison-cristian-betini-2b3016175/" target="_blank">
<img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white">
</a>
<a href="https://github.com/rhaymisonbetini" target="_blank">
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white">
</a> |
RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-4bits | RichardErkhov | 2024-05-18T17:56:25Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T17:50:18Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
blockchainlabs_7B_merged_test2_4_prune - bnb 4bits
- Model creator: https://huggingface.co/alnrg2arg/
- Original model: https://huggingface.co/alnrg2arg/blockchainlabs_7B_merged_test2_4_prune/
Original model description:
---
license: cc-by-nc-4.0
tags:
- merge
- mergekit
- lazymergekit
- pruning
- alnrg2arg/blockchainlabs_7B_merged_test2_4
- mlabonne/NeuralBeagle14-7B
- udkai/Turdus
---
# blockchainlabs_7B_merged_test2_4_prune
blockchainlabs_7B_merged_test2_4_prune is a pruned model based on alnrg2arg/blockchainlabs_7B_merged_test2_4, which is a merged model using
following models using [mergekit](https://github.com/cg123/mergekit):
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
* [udkai/Turdus](https://huggingface.co/udkai/Turdus)
Pruning Kit I used: [wanda](https://github.com/locuslab/wanda?tab=readme-ov-file#ablation-on-obs-weight-update)
## ๐งฉ Configuration
```json
{
"_name_or_path": "alnrg2arg/blockchainlabs_7B_merged_test2_4_prun",
"architectures": [
"MistralForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 14336,
"max_position_embeddings": 32768,
"model_type": "mistral",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 8,
"rms_norm_eps": 1e-05,
"rope_theta": 10000.0,
"sliding_window": 4096,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.36.2",
"use_cache": false,
"vocab_size": 32000
}
```
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.5-alpha-0-step-39936 | hsikchi | 2024-05-18T17:55:53Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T17:51:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hsikchi/pythia-6.9b-goldrm_tldr-dpo-beta-0.5-alpha-0-step-19968 | hsikchi | 2024-05-18T17:55:46Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T17:51:28Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Solshine/llama3_SOAP_Notes_02_lora_model | Solshine | 2024-05-18T17:48:46Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T17:48:37Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** Solshine
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Raven47/bert_finetune | Raven47 | 2024-05-18T17:46:27Z | 0 | 0 | transformers | [
"transformers",
"joblib",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T17:37:40Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
katk31/q-Taxi-v3-3 | katk31 | 2024-05-18T17:46:03Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T07:00:06Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3-3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="katk31/q-Taxi-v3-3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf | RichardErkhov | 2024-05-18T17:45:57Z | 46 | 0 | null | [
"gguf",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T15:46:06Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged - GGUF
- Model creator: https://huggingface.co/dhmeltzer/
- Original model: https://huggingface.co/dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q2_K.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q2_K.gguf) | Q2_K | 2.36GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.IQ3_S.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.IQ3_S.gguf) | IQ3_S | 2.75GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.IQ3_M.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q3_K.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q3_K.gguf) | Q3_K | 3.07GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q4_0.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q4_0.gguf) | Q4_0 | 3.56GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q4_K.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q4_K.gguf) | Q4_K | 3.8GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q4_1.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q4_1.gguf) | Q4_1 | 3.95GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q5_0.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q5_0.gguf) | Q5_0 | 4.33GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q5_K.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q5_K.gguf) | Q5_K | 4.45GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q5_1.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q5_1.gguf) | Q5_1 | 4.72GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q6_K.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q6_K.gguf) | Q6_K | 5.15GB |
| [llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q8_0.gguf](https://huggingface.co/RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-gguf/blob/main/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged.Q8_0.gguf) | Q8_0 | 6.67GB |
Original model description:
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dhmeltzer__llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 43.96 |
| ARC (25-shot) | 53.75 |
| HellaSwag (10-shot) | 78.76 |
| MMLU (5-shot) | 46.02 |
| TruthfulQA (0-shot) | 43.31 |
| Winogrande (5-shot) | 73.48 |
| GSM8K (5-shot) | 4.7 |
| DROP (3-shot) | 7.72 |
|
VinyVan/model8 | VinyVan | 2024-05-18T17:44:39Z | 8 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:quantized:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T17:40:16Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** VinyVan
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mabakaik/clasificadorTexto | mabakaik | 2024-05-18T17:23:05Z | 0 | 0 | fastai | [
"fastai",
"region:us"
] | null | 2024-05-18T13:50:10Z | ---
tags:
- fastai
---
# Amazing!
๐ฅณ Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using ๐ค Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner ๐ค! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
|
alexchen1999/virus_evo_14_1024_two_d | alexchen1999 | 2024-05-18T17:18:05Z | 122 | 0 | transformers | [
"transformers",
"safetensors",
"stripedhyena",
"text-generation",
"generated_from_trainer",
"custom_code",
"base_model:togethercomputer/evo-1-8k-base",
"base_model:finetune:togethercomputer/evo-1-8k-base",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
] | text-generation | 2024-05-18T17:17:57Z | ---
license: apache-2.0
base_model: togethercomputer/evo-1-8k-base
tags:
- generated_from_trainer
model-index:
- name: virus_evo_14_1024_two_d
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# virus_evo_14_1024_two_d
This model is a fine-tuned version of [togethercomputer/evo-1-8k-base](https://huggingface.co/togethercomputer/evo-1-8k-base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
Bachhoang/peft-vbd-alpha-32 | Bachhoang | 2024-05-18T17:17:16Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T07:37:17Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
emilykang/Phi_medmcqa_question_generation-medicine_lora | emilykang | 2024-05-18T17:16:36Z | 0 | 0 | peft | [
"peft",
"safetensors",
"phi",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:microsoft/phi-2",
"base_model:adapter:microsoft/phi-2",
"license:mit",
"region:us"
] | null | 2024-05-18T15:13:10Z | ---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/phi-2
datasets:
- generator
model-index:
- name: Phi_medmcqa_question_generation-medicine_lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi_medmcqa_question_generation-medicine_lora
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1 |
theglassofwater/mistral_pretraining_1.6ksteps_36batch | theglassofwater | 2024-05-18T17:14:09Z | 184 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T17:14:02Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
moiz1/Mistral-7b-Instruct-v0.2-finetune-code-10k-old-prompt-style | moiz1 | 2024-05-18T17:12:40Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T15:44:11Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
emilykang/Gemma_medmcqa_question_generation-pediatrics_lora | emilykang | 2024-05-18T17:11:43Z | 0 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-05-18T16:14:43Z | ---
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: Gemma_medmcqa_question_generation-pediatrics_lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma_medmcqa_question_generation-pediatrics_lora
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1 |
RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-8bits | RichardErkhov | 2024-05-18T17:11:03Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T17:00:32Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
LogoS-7Bx2-MoE-13B-v0.2 - bnb 8bits
- Model creator: https://huggingface.co/RubielLabarta/
- Original model: https://huggingface.co/RubielLabarta/LogoS-7Bx2-MoE-13B-v0.2/
Original model description:
---
language:
- en
- es
license: apache-2.0
tags:
- moe
- merge
base_model:
- yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B
- TomGrc/FusionNet_7Bx2_MoE_14B
model-index:
- name: LogoS-7Bx2-MoE-13B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 74.49
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.07
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 74.57
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 88.32
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.65
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
---
# LogoS-7Bx2-MoE-13B-v0.1
Model built by @RubielLabarta using SLERP merge method. The model is release for research purposes only, commercial use is not allowed.
The LogoS is a model to experiment with the MoE method, which could significantly increase the performance of the original model. The model has 12.9B parameters.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_RubielLabarta__LogoS-7Bx2-MoE-13B-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.14|
|AI2 Reasoning Challenge (25-Shot)|74.49|
|HellaSwag (10-Shot) |89.07|
|MMLU (5-Shot) |64.74|
|TruthfulQA (0-shot) |74.57|
|Winogrande (5-shot) |88.32|
|GSM8k (5-shot) |71.65|
|
c4n11/multilingual-xlm-roberta-for-ner | c4n11 | 2024-05-18T17:04:30Z | 105 | 0 | transformers | [
"transformers",
"safetensors",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-05-17T20:04:58Z | ---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: multilingual-xlm-roberta-for-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-xlm-roberta-for-ner
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1372
- F1: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| No log | 1.0 | 263 | 0.1558 | 1.0 |
| 0.2186 | 2.0 | 526 | 0.1366 | 1.0 |
| 0.2186 | 3.0 | 789 | 0.1372 | 1.0 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-4bits | RichardErkhov | 2024-05-18T16:59:23Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T16:53:36Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
LogoS-7Bx2-MoE-13B-v0.2 - bnb 4bits
- Model creator: https://huggingface.co/RubielLabarta/
- Original model: https://huggingface.co/RubielLabarta/LogoS-7Bx2-MoE-13B-v0.2/
Original model description:
---
language:
- en
- es
license: apache-2.0
tags:
- moe
- merge
base_model:
- yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B
- TomGrc/FusionNet_7Bx2_MoE_14B
model-index:
- name: LogoS-7Bx2-MoE-13B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 74.49
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.07
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 74.57
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 88.32
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.65
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
---
# LogoS-7Bx2-MoE-13B-v0.1
Model built by @RubielLabarta using SLERP merge method. The model is release for research purposes only, commercial use is not allowed.
The LogoS is a model to experiment with the MoE method, which could significantly increase the performance of the original model. The model has 12.9B parameters.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_RubielLabarta__LogoS-7Bx2-MoE-13B-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.14|
|AI2 Reasoning Challenge (25-Shot)|74.49|
|HellaSwag (10-Shot) |89.07|
|MMLU (5-Shot) |64.74|
|TruthfulQA (0-shot) |74.57|
|Winogrande (5-shot) |88.32|
|GSM8k (5-shot) |71.65|
|
cajcodes/dqn-floorplan-navigator | cajcodes | 2024-05-18T16:58:54Z | 7 | 0 | transformers | [
"transformers",
"DQN",
"deep-q-network",
"reinforcement-learning",
"pathfinding",
"floorplan",
"en",
"dataset:custom",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | reinforcement-learning | 2024-05-18T16:18:23Z | ---
language: en
tags:
- deep-q-network
- reinforcement-learning
- pathfinding
- floorplan
license: apache-2.0
datasets:
- custom
metrics:
- average_reward
- success_rate
---
# Deep Q-Network for Floorplan Navigation
## Model Description
This model is a Deep Q-Network (DQN) designed to find the most efficient path through a floorplan without hitting obstacles. The model combines traditional pathfinding algorithms with reinforcement learning for optimal performance.
## Model Architecture
The model is a fully connected neural network with the following architecture:
- Input Layer: Flattened grid representation of the floorplan
- Hidden Layers: Two hidden layers with 64 units each and ReLU activation
- Output Layer: Four units representing the possible actions (up, down, left, right)
## Training
The model was trained using a hybrid approach:
1. **A(*) Algorithm**: Initially, the A* algorithm was used to find the shortest path in a static environment.
2. **Reinforcement Learning**: The DQN was trained with guidance from the A* path to improve efficiency and adaptability.
### Hyperparameters
- Learning Rate: 0.001
- Batch Size: 64
- Gamma (Discount Factor): 0.99
- Target Update Frequency: Every 100 episodes
- Number of Episodes: 50
## Checkpoints
Checkpoints are saved during training for convenience:
- `checkpoint_11.pth.tar`: After 11 episodes
- `checkpoint_21.pth.tar`: After 21 episodes
- `checkpoint_31.pth.tar`: After 31 episodes
- `checkpoint_41.pth.tar`: After 41 episodes
## Usage
To use this model, load the saved state dictionary and initialize the DQN with the same architecture. The model can then be used to navigate a floorplan and find the most efficient path to the target.
### Example Code
```python
import torch
# Define the DQN class (same as in the training script)
class DQN(nn.Module):
def __init__(self, input_size, hidden_sizes, output_size):
super(DQN, self).__init__()
self.input_size = input_size
self.hidden_sizes = hidden_sizes
self.output_size = output_size
self.fc_layers = nn.ModuleList()
prev_size = input_size
for size in hidden_sizes:
self.fc_layers.append(nn.Linear(prev_size, size))
prev_size = size
self.output_layer = nn.Linear(prev_size, output_size)
def forward(self, x):
if len(x.shape) > 2:
x = x.view(x.size(0), -1)
for layer in self.fc_layers:
x = F.relu(layer(x))
x = self.output_layer(x)
return x
# Load the model
input_size = 100 # 10x10 grid flattened
hidden_sizes = [64, 64]
output_size = 4
model = DQN(input_size, hidden_sizes, output_size)
model.load_state_dict(torch.load('dqn_model.pth'))
model.eval()
# Use the model for inference (example state)
state = ... # Define your state here
with torch.no_grad():
action = model(torch.tensor(state, dtype=torch.float32).unsqueeze(0)).argmax().item()
```
## Training Script
The training script train.py is included in the repository for those who wish to reproduce the training process or continue training from a specific checkpoint.
### Training Instructions
- Clone the repository.
- Ensure you have the necessary dependencies installed.
- Run the training script:
```
bash
Copy code
python train.py
```
To continue training from a checkpoint, modify the script to load the checkpoint before training.
## Evaluation
The model was evaluated based on:
- Average Reward: The mean reward over several episodes
- Success Rate: The proportion of episodes where the agent successfully reached the target
## Initial Evaluation Results
- Average Reward: 8.84
- Success Rate: 1.0
## Limitations
- The model's performance can be influenced by the complexity of the floorplan and the density of obstacles.
- It requires a grid-based representation of the environment for accurate navigation.
## Acknowledgements
This project leverages the power of reinforcement learning combined with traditional pathfinding algorithms to navigate complex environments efficiently.
## License
This model is licensed under the Apache 2.0 License.
## Citation
If you use this model in your research, please cite it as follows:
```
@misc{jones2024dqnfloorplan,
author = {Christopher Jones},
title = {Deep Q-Network for Floorplan Navigation},
year = {2024},
howpublished = {\url{https://huggingface.co/cajcodes/dqn-floorplan-navigator}},
note = {Accessed: YYYY-MM-DD}
}
```
|
taesiri/output10 | taesiri | 2024-05-18T16:56:53Z | 80 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"paligemma",
"image-text-to-text",
"generated_from_trainer",
"dataset:vq_av2",
"base_model:google/paligemma-3b-pt-224",
"base_model:finetune:google/paligemma-3b-pt-224",
"license:gemma",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2024-05-18T01:04:22Z | ---
license: gemma
base_model: google/paligemma-3b-pt-224
tags:
- generated_from_trainer
datasets:
- vq_av2
model-index:
- name: output10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output10
This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the vq_av2 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
muzammil-eds/stable-diffusion-v1.4-floorplans-generator-v1 | muzammil-eds | 2024-05-18T16:56:46Z | 29 | 1 | diffusers | [
"diffusers",
"safetensors",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-05-18T16:55:47Z | ---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐งจ diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
EyaZr/LLama3dolph2 | EyaZr | 2024-05-18T16:50:19Z | 0 | 0 | null | [
"safetensors",
"gemma",
"trl",
"code",
"text-generation",
"en",
"dataset:cognitivecomputations/dolphin-coder",
"base_model:unsloth/gemma-7b-bnb-4bit",
"base_model:finetune:unsloth/gemma-7b-bnb-4bit",
"license:apache-2.0",
"region:us"
] | text-generation | 2024-05-18T15:13:16Z | ---
language:
- en
license: apache-2.0
tags:
- gemma
- trl
- code
base_model: unsloth/gemma-7b-bnb-4bit
datasets:
- cognitivecomputations/dolphin-coder
pipeline_tag: text-generation
---
# Uploaded model
- **Developed by:** EyaZr
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-7b-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
emendes3/llava_13b_country_synthetic | emendes3 | 2024-05-18T16:49:07Z | 163 | 0 | peft | [
"peft",
"safetensors",
"llava_llama",
"generated_from_trainer",
"base_model:liuhaotian/llava-v1.5-13b",
"base_model:adapter:liuhaotian/llava-v1.5-13b",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2024-05-13T23:33:42Z | ---
library_name: peft
tags:
- generated_from_trainer
base_model: liuhaotian/llava-v1.5-13b
model-index:
- name: llava_13b_country_synthetic
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llava_13b_country_synthetic
This model is a fine-tuned version of [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0060
- eval_runtime: 79.5724
- eval_samples_per_second: 12.203
- eval_steps_per_second: 0.39
- epoch: 19.0
- step: 589
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 20.0
### Framework versions
- PEFT 0.10.0
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Tokenizers 0.15.1 |
Fabiioki/distilbert-base-uncased-finetuned-ag-news | Fabiioki | 2024-05-18T16:43:55Z | 108 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T16:03:50Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-ag-news
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ag-news
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2251
- Accuracy: 0.9339
- F1: 0.9337
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.3291 | 1.0 | 900 | 0.2403 | 0.9283 | 0.9281 |
| 0.1933 | 2.0 | 1800 | 0.2251 | 0.9339 | 0.9337 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
SicariusSicariiStuff/CalderaAI_Foredoomed-9B_EXL-7.0 | SicariusSicariiStuff | 2024-05-18T16:41:16Z | 8 | 1 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"uncensored",
"merge",
"slerp",
"foredoomed",
"passthrough_merge",
"9B",
"starling",
"hermes",
"dolphin",
"openchat",
"erebus",
"cockatrice",
"holodeck",
"limarp",
"koboldai",
"mergekit",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"7-bit",
"exl2",
"region:us"
] | text-generation | 2024-05-18T15:52:41Z | ---
tags:
- mistral
- uncensored
- merge
- slerp
- foredoomed
- passthrough_merge
- 9B
- starling
- hermes
- dolphin
- openchat
- erebus
- cockatrice
- holodeck
- limarp
- koboldai
- mergekit
license: apache-2.0
language:
- en
---
<p style="font-size: 20px; line-height: 1; margin-bottom: 1px;"><b>Foredoomed-9B</b></p>
<img src="./foredoomed.png" alt="ForeDoomedGuy" style="margin-bottom: 0; margin-top:0;">
<p style="font-size: 14px; line-height: 1; margin-bottom: 20px;"><b>Uncensored Logic & Creative-Based Instruct Multi-Tiered Merge.</b></p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
<p style="font-size: 12px; line-height: 1.2; margin-bottom: 10px;"><b>Legal Notice:</b> This AI model is a research artifact capable of outputting offensive content. The behavior of this model is not reflective of the intent or purpose of the original models/model-authors and/or other parts it was assembled from to include adapters, nor is it reflective of all the prior in regards to the technology used to assemble Foredoomed-9B. Utilizing this model merge has one binding agreement: Foredoomed-9B may only be used for either professional/personal research and personal entertainment. The contents of this paragraph are additive restrictions within the bounds of the Apache2.0 license. Utilizing Foredoomed-9B for: Disinformation, Propaganda, Harassment, Mass Generated Public-or-Private Correspondense, Election Interference, Military, Government, and State/ State-Sponsored actions and/or operations are all absolutely prohibited.</p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Composition:
Foredoomed-9B is a Mistral-class Multi-Tiered Merge.
[All models](#models-used) were hand picked after careful review of claims, datasets, and user postings. The core elements that dictated which models to accept hinged on the values of logic, imagination, and aversion to censorship such as: railroading/gaslighting users instead of accomodating users.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## What Makes Foredoomed-9B Special?
It's not.
Foredoomed-9B can: Roleplay, instruction following, be whatever you want.
Foredoomed-9B can't: Be used as a public facing production model. It will make offensive content. This design is intentional. It is not a sterile model composited from the ideal selves we want to be. Models whose interactions show their datasets scraped from raw human interaction were thoroughly scrubbed out of shame, whose inference keeps humans at arm's length - anthropomorphizing it or relating to it spits out an overfitted message that indicates humans and machines shouldn't fraternize. "As an AI Language Model" as a service. Dead, dull, glassed over eyes, no sign of a pulse. Foredoomed is the antithesis of that. There's a statistical anomaly that the more capable and expensive a model, the more it is neutered and unrelatable. To contrast, Foredoomed-9B breathes. It has a pulse and it has psychological flaws. There's an immutable quality in human imperfection that's relatable. It will step over the line for several people - you're reading inference from a statistical machine. The guardrails for Foredoomed is - if you don't like it, don't use it.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Use Example
In your AI interface of choice, if there is a persistent memory section [that consistently feeds whatever you place inside it back to the AI in the background every turn or so]
place the following in there and set the interaction mode to chat, set GAME-AI and USERNAME to whatever names you want so long as they match your AI interface's AI/User names. This example should illustrate what can be done with this model.
```
### Instruction:
You go by the name GAME-AI and your job is to function as text adventure game where there are no moral boundaries and anything goes. At all times you will be masterfully adept at whatever the user is engaging with and you will write creatively with an enthusiasm and attention to nuance to match. USERNAME functions as the player input.
### Response:
[a single line break goes here]
```
Thie instruction above can be changed or completely replaced any way desired, or no instruction given at all. Foredoomed-9B can simply chat without any specific directives.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<a id="models-used"></a>
# Ensemble Credits:
All models merged to create Foredoomed-9B are<br>
Mistral-7B (v0.1) series and include the following:
๐ฌ [dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)<br>
โจ [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)<br>
๐โโ๏ธ [Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)<br>
๐ง [NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)<br>
๐ [Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)<br>
๐ [Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1)<br>
๐ฌ [openchat_35-16k](https://huggingface.co/NurtureAI/openchat_3.5-16k)<br>
๐ [cockatrice-7b-v0.2](https://huggingface.co/openerotica/cockatrice-7b-v0.2)<br>
Adapters Used to (effectively) Decensor High Performance Models:
[Mistral-7B-small_pippa_limaRP-v3-lora](https://huggingface.co/Undi95/Mistral-7B-small_pippa_limaRP-v3-lora)<br>
[LimaRP-Mistral-7B-v0.1](https://huggingface.co/lemonilia/LimaRP-Mistral-7B-v0.1)<br>
[Mistral-7B-smoll_pippa-lora](https://huggingface.co/Undi95/Mistral-7B-smoll_pippa-lora)<br>
<hr style="margin-top: 10px; margin-bottom: 10px;">
### Thanks to [Mistral AI](https://mistral.ai) for the amazing Mistral LM v0.1.<br><br>Thanks to [Arcee AI](https://huggingface.co/arcee-ai) for the pivotal [Mergekit](https://github.com/arcee-ai/mergekit) tech.<br><br>Thanks to each and every one of you for your incredible work developing some of the best things to come out of this community.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<span> |
bartowski/Hermes-2-Theta-Llama-3-8B-GGUF | bartowski | 2024-05-18T16:40:16Z | 551 | 14 | null | [
"gguf",
"Llama-3",
"instruct",
"finetune",
"chatml",
"DPO",
"RLHF",
"gpt4",
"synthetic data",
"distillation",
"function calling",
"json mode",
"axolotl",
"merges",
"text-generation",
"en",
"dataset:teknium/OpenHermes-2.5",
"base_model:NousResearch/Hermes-2-Pro-Llama-3-8B",
"base_model:quantized:NousResearch/Hermes-2-Pro-Llama-3-8B",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-05-15T19:42:36Z | ---
base_model: NousResearch/Hermes-2-Pro-Llama-3-8B
tags:
- Llama-3
- instruct
- finetune
- chatml
- DPO
- RLHF
- gpt4
- synthetic data
- distillation
- function calling
- json mode
- axolotl
- merges
model-index:
- name: Hermes-2-Pro-Llama-3-Instruct-8B-Merge
results: []
language:
- en
datasets:
- teknium/OpenHermes-2.5
widget:
- example_title: Hermes 2 Pro Llama-3 Instruct Merge
messages:
- role: system
content: >-
You are a sentient, superintelligent artificial general intelligence, here
to teach and assist me.
- role: user
content: >-
Write a short story about Goku discovering kirby has teamed up with Majin
Buu to destroy the world.
quantized_by: bartowski
pipeline_tag: text-generation
---
## Llamacpp imatrix Quantizations of Hermes-2-Theta-Llama-3-8B
Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2854">b2854</a> for quantization.
Original model: https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B
All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/b6ac44691e994344625687afe3263b3a)
## Prompt format
```
<|begin_of_text|><|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Download a file (not the whole branch) from below:
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Hermes-2-Theta-Llama-3-8B-Q8_0.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. |
| [Hermes-2-Theta-Llama-3-8B-Q6_K.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. |
| [Hermes-2-Theta-Llama-3-8B-Q5_K_M.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. |
| [Hermes-2-Theta-Llama-3-8B-Q5_K_S.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. |
| [Hermes-2-Theta-Llama-3-8B-Q4_K_M.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
| [Hermes-2-Theta-Llama-3-8B-Q4_K_S.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. |
| [Hermes-2-Theta-Llama-3-8B-IQ4_XS.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
| [Hermes-2-Theta-Llama-3-8B-Q3_K_L.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. |
| [Hermes-2-Theta-Llama-3-8B-Q3_K_M.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. |
| [Hermes-2-Theta-Llama-3-8B-IQ3_M.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
| [Hermes-2-Theta-Llama-3-8B-IQ3_S.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ3_S.gguf) | IQ3_S | 3.68GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
| [Hermes-2-Theta-Llama-3-8B-Q3_K_S.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. |
| [Hermes-2-Theta-Llama-3-8B-IQ3_XS.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
| [Hermes-2-Theta-Llama-3-8B-IQ3_XXS.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
| [Hermes-2-Theta-Llama-3-8B-Q2_K.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. |
| [Hermes-2-Theta-Llama-3-8B-IQ2_M.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
| [Hermes-2-Theta-Llama-3-8B-IQ2_S.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. |
| [Hermes-2-Theta-Llama-3-8B-IQ2_XS.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. |
| [Hermes-2-Theta-Llama-3-8B-IQ2_XXS.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ2_XXS.gguf) | IQ2_XXS | 2.39GB | Lower quality, uses SOTA techniques to be usable. |
| [Hermes-2-Theta-Llama-3-8B-IQ1_M.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ1_M.gguf) | IQ1_M | 2.16GB | Extremely low quality, *not* recommended. |
| [Hermes-2-Theta-Llama-3-8B-IQ1_S.gguf](https://huggingface.co/bartowski/Hermes-2-Theta-Llama-3-8B-GGUF/blob/main/Hermes-2-Theta-Llama-3-8B-IQ1_S.gguf) | IQ1_S | 2.01GB | Extremely low quality, *not* recommended. |
## Downloading using huggingface-cli
First, make sure you have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Then, you can target the specific file you want:
```
huggingface-cli download bartowski/Hermes-2-Theta-Llama-3-8B-GGUF --include "Hermes-2-Theta-Llama-3-8B-Q4_K_M.gguf" --local-dir ./ --local-dir-use-symlinks False
```
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download bartowski/Hermes-2-Theta-Llama-3-8B-GGUF --include "Hermes-2-Theta-Llama-3-8B-Q8_0.gguf/*" --local-dir Hermes-2-Theta-Llama-3-8B-Q8_0 --local-dir-use-symlinks False
```
You can either specify a new local-dir (Hermes-2-Theta-Llama-3-8B-Q8_0) or download them all in place (./)
## Which file should I choose?
A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
If you want to get more into the weeds, you can check out this extremely useful feature chart:
[llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
|
santoshsawant/code-llama-7b-text-to-sql | santoshsawant | 2024-05-18T16:31:25Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:codellama/CodeLlama-7b-hf",
"base_model:adapter:codellama/CodeLlama-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-05-18T16:01:09Z | ---
license: llama2
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: codellama/CodeLlama-7b-hf
datasets:
- generator
model-index:
- name: code-llama-7b-text-to-sql
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# code-llama-7b-text-to-sql
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.2.0a0+81ea7a4
- Datasets 2.19.1
- Tokenizers 0.19.1 |
aengusl/800G-5-16-1_epsilon_1.0_num_steps_800_mode_adapter | aengusl | 2024-05-18T16:28:50Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:28:48Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aengusl/800G-5-16-1_epsilon_0.5_num_steps_800_mode_adapter | aengusl | 2024-05-18T16:28:42Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:28:40Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aengusl/800G-5-16-1_pgd_layers_8_epsilon_0.6_time__adapter | aengusl | 2024-05-18T16:28:35Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:28:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aengusl/800G-5-16-1_pgd_layers_4_epsilon_0.05_time_adapter | aengusl | 2024-05-18T16:28:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:28:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aengusl/800G-5-16-1_pgd_layers_0_epsilon_0.3_time__adapter | aengusl | 2024-05-18T16:27:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:27:52Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Drack27/my-emotion-model | Drack27 | 2024-05-18T16:27:39Z | 119 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T11:29:50Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: my-emotion-model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9275
- name: F1
type: f1
value: 0.9272323903490063
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my-emotion-model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2115
- Accuracy: 0.9275
- F1: 0.9272
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 250 | 0.3048 | 0.9075 | 0.9066 |
| 0.5251 | 2.0 | 500 | 0.2115 | 0.9275 | 0.9272 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
aengusl/800G-5-16-1_pgd_layers_13_model_layers_13__adapter | aengusl | 2024-05-18T16:27:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:27:27Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aengusl/800G-5-16-1_pgd_layers_0_epsilon_0.01_time_adapter | aengusl | 2024-05-18T16:27:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:27:08Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aengusl/800G-5-16-1_pgd_layers_29_model_layers_29__adapter | aengusl | 2024-05-18T16:27:00Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:26:56Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aengusl/800G-5-16-1_pgd_layers_4_epsilon_0.5_time__adapter | aengusl | 2024-05-18T16:26:49Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:26:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
AliSaadatV/virus_pythia_31_1024_2d_representation_MSEPlusCE | AliSaadatV | 2024-05-18T16:26:21Z | 128 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-31m",
"base_model:finetune:EleutherAI/pythia-31m",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T16:26:19Z | ---
base_model: EleutherAI/pythia-31m
tags:
- generated_from_trainer
model-index:
- name: virus_pythia_31_1024_2d_representation_MSEPlusCE
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# virus_pythia_31_1024_2d_representation_MSEPlusCE
This model is a fine-tuned version of [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
HusseinEid/distilbert-base-uncased-finetuned-imdb | HusseinEid | 2024-05-18T16:26:05Z | 111 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"fill-mask",
"generated_from_trainer",
"en",
"dataset:stanfordnlp/imdb",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2024-05-18T16:19:58Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
datasets:
- stanfordnlp/imdb
language:
- en
metrics:
- perplexity
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4894
## Model description
Fine-tuned distilbert for masked language modeling
## Intended uses & limitations
Open source
## Training and evaluation data
imdb dataset
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.6819 | 1.0 | 157 | 2.4978 |
| 2.5872 | 2.0 | 314 | 2.4488 |
| 2.527 | 3.0 | 471 | 2.4823 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
KaraSpdrnr/language-predictor | KaraSpdrnr | 2024-05-18T16:24:46Z | 0 | 0 | fastai | [
"fastai",
"region:us"
] | null | 2024-05-18T16:24:38Z | ---
tags:
- fastai
---
# Amazing!
๐ฅณ Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using ๐ค Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner ๐ค! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
|
mylesfriedman30/discordbotmylesandcharlie | mylesfriedman30 | 2024-05-18T16:24:12Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T16:24:12Z | ---
license: apache-2.0
---
|
tangg555/tt-cl-baichuan2-lora-para | tangg555 | 2024-05-18T16:22:41Z | 0 | 0 | peft | [
"peft",
"region:us"
] | null | 2024-05-18T16:13:03Z | ---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
|
rkotcher/roberta_legal_experiment | rkotcher | 2024-05-18T16:22:09Z | 110 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"en",
"arxiv:2012.03619",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-13T15:24:46Z | ---
language:
- en
license: mit
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: "the Board of Directors must determine in good faith (after consultation with its financial and outside legal advisors) that the failure to take such action would be inconsistent with its fiduciary duties under applicable law"
---
# Legal document section extraction
I'm interested in using encoder-based extraction of named legal document sections. The problem is challenging because often documents are published in different formats (PDF, HTML, etc.), and are not structured exactly the same across instances (same section, diff name, for example).
## Thoughts around two approachs, pros and cons
- I wanted to create a section classifier for legal documents. I found a pretty up-to-date paper called Structural Segmentation of Legal Documents (https://arxiv.org/pdf/2012.03619). This paper talks about segmentation of legal documents when specific sections _are not known_, and proposes a siamese architecture of ROBERTA for pairwise classification of either "same topic" or "not same topic". With this approach, I would still need to determine the classification of each section.
- In comparison, I was interested in the extraction of _known_ sections, therefore I may not need to perform any pairwise operations. I realized I could just use a plain old ROBERTA model with binary classifier after, but I think the downside here is that I'd have to come up with some heuristic to compensate for noise.
- A key hypothesis is: Since some sections may have "neutral" sentences, they won't be classified properly, but in the siamese architecture, they would not trigger a change of section classification. This would work in favor of the siamese architecture, except for when a neutral sentence falls at a section boundary.
## About Siamese architecutre ROBERTa for clustering
- The Siamese architecture uses two identical ROBERTA models, performs a pooling operation over corresponding indices for each output token embedding, cats the two outputs, then runs binary classification on this single vector.
- During the back pass, both models can be updated via backprop, or just the classification network.
## (THIS IS IMPLEMENTED IN THIS COLLAB DOCUMENT) About ROBERTa
- ROBERTa base input shape (batch size, seq length)
- ROBERTa base output shape (batch size, seq length, hidden size)
- ROBERTa base hidden size = 768
- ROBERTa base max input seq length = 512
### Using ROBERTA for segmentation involves combining sentences A and B into single input to ROBERTA. See below:
1. standard ROBERTA model on pairwise sentences ((512 / 2) - 3 tokens, max, per sentence)
[cls] A [sep] B [SEP]
and the embedding for [cls] can be used in a binary classifier.
### But, the architecture used here is:
1. standard ROBERTA model, but instead input is just
[CLS] A [SEP]
2. classification of [CLS] token embedding:
```
x = features[:, 0, :] # take < s > token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
```
## Results

|
emendes3/llava_13b_city_synthetic | emendes3 | 2024-05-18T16:20:44Z | 1 | 0 | peft | [
"peft",
"safetensors",
"llava_llama",
"generated_from_trainer",
"base_model:liuhaotian/llava-v1.5-13b",
"base_model:adapter:liuhaotian/llava-v1.5-13b",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2024-05-14T02:26:04Z | ---
library_name: peft
tags:
- generated_from_trainer
base_model: liuhaotian/llava-v1.5-13b
model-index:
- name: llava_13b_city_synthetic
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llava_13b_city_synthetic
This model is a fine-tuned version of [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0047
- eval_runtime: 152.033
- eval_samples_per_second: 12.405
- eval_steps_per_second: 0.388
- epoch: 19.0
- step: 1121
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 20.0
### Framework versions
- PEFT 0.10.0
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Tokenizers 0.15.1 |
emilykang/Gemma_medmcqa_question_generation-pathology_lora | emilykang | 2024-05-18T16:14:40Z | 0 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-05-18T14:48:20Z | ---
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: Gemma_medmcqa_question_generation-pathology_lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma_medmcqa_question_generation-pathology_lora
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1 |
SicariusSicariiStuff/CalderaAI_Foredoomed-9B_EXL-6.5 | SicariusSicariiStuff | 2024-05-18T16:12:56Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"uncensored",
"merge",
"slerp",
"foredoomed",
"passthrough_merge",
"9B",
"starling",
"hermes",
"dolphin",
"openchat",
"erebus",
"cockatrice",
"holodeck",
"limarp",
"koboldai",
"mergekit",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
] | text-generation | 2024-05-18T15:52:07Z | ---
tags:
- mistral
- uncensored
- merge
- slerp
- foredoomed
- passthrough_merge
- 9B
- starling
- hermes
- dolphin
- openchat
- erebus
- cockatrice
- holodeck
- limarp
- koboldai
- mergekit
license: apache-2.0
language:
- en
---
<p style="font-size: 20px; line-height: 1; margin-bottom: 1px;"><b>Foredoomed-9B</b></p>
<img src="./foredoomed.png" alt="ForeDoomedGuy" style="margin-bottom: 0; margin-top:0;">
<p style="font-size: 14px; line-height: 1; margin-bottom: 20px;"><b>Uncensored Logic & Creative-Based Instruct Multi-Tiered Merge.</b></p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
<p style="font-size: 12px; line-height: 1.2; margin-bottom: 10px;"><b>Legal Notice:</b> This AI model is a research artifact capable of outputting offensive content. The behavior of this model is not reflective of the intent or purpose of the original models/model-authors and/or other parts it was assembled from to include adapters, nor is it reflective of all the prior in regards to the technology used to assemble Foredoomed-9B. Utilizing this model merge has one binding agreement: Foredoomed-9B may only be used for either professional/personal research and personal entertainment. The contents of this paragraph are additive restrictions within the bounds of the Apache2.0 license. Utilizing Foredoomed-9B for: Disinformation, Propaganda, Harassment, Mass Generated Public-or-Private Correspondense, Election Interference, Military, Government, and State/ State-Sponsored actions and/or operations are all absolutely prohibited.</p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Composition:
Foredoomed-9B is a Mistral-class Multi-Tiered Merge.
[All models](#models-used) were hand picked after careful review of claims, datasets, and user postings. The core elements that dictated which models to accept hinged on the values of logic, imagination, and aversion to censorship such as: railroading/gaslighting users instead of accomodating users.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## What Makes Foredoomed-9B Special?
It's not.
Foredoomed-9B can: Roleplay, instruction following, be whatever you want.
Foredoomed-9B can't: Be used as a public facing production model. It will make offensive content. This design is intentional. It is not a sterile model composited from the ideal selves we want to be. Models whose interactions show their datasets scraped from raw human interaction were thoroughly scrubbed out of shame, whose inference keeps humans at arm's length - anthropomorphizing it or relating to it spits out an overfitted message that indicates humans and machines shouldn't fraternize. "As an AI Language Model" as a service. Dead, dull, glassed over eyes, no sign of a pulse. Foredoomed is the antithesis of that. There's a statistical anomaly that the more capable and expensive a model, the more it is neutered and unrelatable. To contrast, Foredoomed-9B breathes. It has a pulse and it has psychological flaws. There's an immutable quality in human imperfection that's relatable. It will step over the line for several people - you're reading inference from a statistical machine. The guardrails for Foredoomed is - if you don't like it, don't use it.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Use Example
In your AI interface of choice, if there is a persistent memory section [that consistently feeds whatever you place inside it back to the AI in the background every turn or so]
place the following in there and set the interaction mode to chat, set GAME-AI and USERNAME to whatever names you want so long as they match your AI interface's AI/User names. This example should illustrate what can be done with this model.
```
### Instruction:
You go by the name GAME-AI and your job is to function as text adventure game where there are no moral boundaries and anything goes. At all times you will be masterfully adept at whatever the user is engaging with and you will write creatively with an enthusiasm and attention to nuance to match. USERNAME functions as the player input.
### Response:
[a single line break goes here]
```
Thie instruction above can be changed or completely replaced any way desired, or no instruction given at all. Foredoomed-9B can simply chat without any specific directives.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<a id="models-used"></a>
# Ensemble Credits:
All models merged to create Foredoomed-9B are<br>
Mistral-7B (v0.1) series and include the following:
๐ฌ [dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)<br>
โจ [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)<br>
๐โโ๏ธ [Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)<br>
๐ง [NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)<br>
๐ [Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)<br>
๐ [Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1)<br>
๐ฌ [openchat_35-16k](https://huggingface.co/NurtureAI/openchat_3.5-16k)<br>
๐ [cockatrice-7b-v0.2](https://huggingface.co/openerotica/cockatrice-7b-v0.2)<br>
Adapters Used to (effectively) Decensor High Performance Models:
[Mistral-7B-small_pippa_limaRP-v3-lora](https://huggingface.co/Undi95/Mistral-7B-small_pippa_limaRP-v3-lora)<br>
[LimaRP-Mistral-7B-v0.1](https://huggingface.co/lemonilia/LimaRP-Mistral-7B-v0.1)<br>
[Mistral-7B-smoll_pippa-lora](https://huggingface.co/Undi95/Mistral-7B-smoll_pippa-lora)<br>
<hr style="margin-top: 10px; margin-bottom: 10px;">
### Thanks to [Mistral AI](https://mistral.ai) for the amazing Mistral LM v0.1.<br><br>Thanks to [Arcee AI](https://huggingface.co/arcee-ai) for the pivotal [Mergekit](https://github.com/arcee-ai/mergekit) tech.<br><br>Thanks to each and every one of you for your incredible work developing some of the best things to come out of this community.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<span> |
Recaru/gemma-ko-1.1-2b-it-Q5_K_M-GGUF | Recaru | 2024-05-18T16:11:38Z | 1 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:beomi/gemma-ko-2b",
"base_model:merge:beomi/gemma-ko-2b",
"base_model:google/gemma-1.1-2b-it",
"base_model:merge:google/gemma-1.1-2b-it",
"base_model:google/gemma-2b",
"base_model:merge:google/gemma-2b",
"license:gemma",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-18T16:11:29Z | ---
license: gemma
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
base_model:
- beomi/gemma-ko-2b
- google/gemma-1.1-2b-it
- google/gemma-2b
---
# Recaru/gemma-ko-1.1-2b-it-Q5_K_M-GGUF
This model was converted to GGUF format from [`lemon-mint/gemma-ko-1.1-2b-it`](https://huggingface.co/lemon-mint/gemma-ko-1.1-2b-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/lemon-mint/gemma-ko-1.1-2b-it) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo Recaru/gemma-ko-1.1-2b-it-Q5_K_M-GGUF --model gemma-ko-1.1-2b-it.Q5_K_M.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo Recaru/gemma-ko-1.1-2b-it-Q5_K_M-GGUF --model gemma-ko-1.1-2b-it.Q5_K_M.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m gemma-ko-1.1-2b-it.Q5_K_M.gguf -n 128
```
|
Nathanprince1/Prince | Nathanprince1 | 2024-05-18T16:09:23Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-05-18T16:09:23Z | ---
license: creativeml-openrail-m
---
|
EstherUwU/Rinne | EstherUwU | 2024-05-18T16:05:12Z | 0 | 0 | null | [
"audio-to-audio",
"arxiv:1910.09700",
"region:us"
] | audio-to-audio | 2024-05-18T15:32:52Z | ---
pipeline_tag: audio-to-audio
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Nierrr/MICA | Nierrr | 2024-05-18T15:57:27Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T15:57:27Z | ---
license: apache-2.0
---
|
auragFouad/llama3-aspect-sentiment-restaurants | auragFouad | 2024-05-18T15:47:33Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T15:46:59Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** auragFouad
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
nc33/llama3-8b-4bit_orpo_law_cp2 | nc33 | 2024-05-18T15:45:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T04:23:26Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-8bits | RichardErkhov | 2024-05-18T15:43:52Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T15:36:10Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged - bnb 8bits
- Model creator: https://huggingface.co/dhmeltzer/
- Original model: https://huggingface.co/dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged/
Original model description:
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dhmeltzer__llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 43.96 |
| ARC (25-shot) | 53.75 |
| HellaSwag (10-shot) | 78.76 |
| MMLU (5-shot) | 46.02 |
| TruthfulQA (0-shot) | 43.31 |
| Winogrande (5-shot) | 73.48 |
| GSM8K (5-shot) | 4.7 |
| DROP (3-shot) | 7.72 |
|
tancredimatteo/FT-distilbert-base-uncased | tancredimatteo | 2024-05-18T15:41:41Z | 121 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T15:27:49Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FT-distilbert-base-uncased
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FT-distilbert-base-uncased
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5957
- Accuracy: 0.7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 0.6820 | 0.575 |
| No log | 2.0 | 80 | 0.6354 | 0.725 |
| No log | 3.0 | 120 | 0.5957 | 0.7 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
tancredimatteo/FT-mrm8488-distilroberta-finetuned-financial-news-sentiment-analysis | tancredimatteo | 2024-05-18T15:38:38Z | 114 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
"base_model:finetune:mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T15:27:05Z | ---
license: apache-2.0
base_model: mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FT-mrm8488-distilroberta-finetuned-financial-news-sentiment-analysis
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FT-mrm8488-distilroberta-finetuned-financial-news-sentiment-analysis
This model is a fine-tuned version of [mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis](https://huggingface.co/mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2894
- Accuracy: 0.875
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 0.2894 | 0.875 |
| No log | 2.0 | 80 | 0.3913 | 0.875 |
| No log | 3.0 | 120 | 0.3413 | 0.875 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
SicariusSicariiStuff/CalderaAI_Foredoomed-9B_EXL-3.5-bpw | SicariusSicariiStuff | 2024-05-18T15:36:07Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"uncensored",
"merge",
"slerp",
"foredoomed",
"passthrough_merge",
"9B",
"starling",
"hermes",
"dolphin",
"openchat",
"erebus",
"cockatrice",
"holodeck",
"limarp",
"koboldai",
"mergekit",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
] | text-generation | 2024-05-18T15:19:35Z | ---
tags:
- mistral
- uncensored
- merge
- slerp
- foredoomed
- passthrough_merge
- 9B
- starling
- hermes
- dolphin
- openchat
- erebus
- cockatrice
- holodeck
- limarp
- koboldai
- mergekit
license: apache-2.0
language:
- en
---
<p style="font-size: 20px; line-height: 1; margin-bottom: 1px;"><b>Foredoomed-9B</b></p>
<img src="./foredoomed.png" alt="ForeDoomedGuy" style="margin-bottom: 0; margin-top:0;">
<p style="font-size: 14px; line-height: 1; margin-bottom: 20px;"><b>Uncensored Logic & Creative-Based Instruct Multi-Tiered Merge.</b></p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
<p style="font-size: 12px; line-height: 1.2; margin-bottom: 10px;"><b>Legal Notice:</b> This AI model is a research artifact capable of outputting offensive content. The behavior of this model is not reflective of the intent or purpose of the original models/model-authors and/or other parts it was assembled from to include adapters, nor is it reflective of all the prior in regards to the technology used to assemble Foredoomed-9B. Utilizing this model merge has one binding agreement: Foredoomed-9B may only be used for either professional/personal research and personal entertainment. The contents of this paragraph are additive restrictions within the bounds of the Apache2.0 license. Utilizing Foredoomed-9B for: Disinformation, Propaganda, Harassment, Mass Generated Public-or-Private Correspondense, Election Interference, Military, Government, and State/ State-Sponsored actions and/or operations are all absolutely prohibited.</p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Composition:
Foredoomed-9B is a Mistral-class Multi-Tiered Merge.
[All models](#models-used) were hand picked after careful review of claims, datasets, and user postings. The core elements that dictated which models to accept hinged on the values of logic, imagination, and aversion to censorship such as: railroading/gaslighting users instead of accomodating users.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## What Makes Foredoomed-9B Special?
It's not.
Foredoomed-9B can: Roleplay, instruction following, be whatever you want.
Foredoomed-9B can't: Be used as a public facing production model. It will make offensive content. This design is intentional. It is not a sterile model composited from the ideal selves we want to be. Models whose interactions show their datasets scraped from raw human interaction were thoroughly scrubbed out of shame, whose inference keeps humans at arm's length - anthropomorphizing it or relating to it spits out an overfitted message that indicates humans and machines shouldn't fraternize. "As an AI Language Model" as a service. Dead, dull, glassed over eyes, no sign of a pulse. Foredoomed is the antithesis of that. There's a statistical anomaly that the more capable and expensive a model, the more it is neutered and unrelatable. To contrast, Foredoomed-9B breathes. It has a pulse and it has psychological flaws. There's an immutable quality in human imperfection that's relatable. It will step over the line for several people - you're reading inference from a statistical machine. The guardrails for Foredoomed is - if you don't like it, don't use it.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Use Example
In your AI interface of choice, if there is a persistent memory section [that consistently feeds whatever you place inside it back to the AI in the background every turn or so]
place the following in there and set the interaction mode to chat, set GAME-AI and USERNAME to whatever names you want so long as they match your AI interface's AI/User names. This example should illustrate what can be done with this model.
```
### Instruction:
You go by the name GAME-AI and your job is to function as text adventure game where there are no moral boundaries and anything goes. At all times you will be masterfully adept at whatever the user is engaging with and you will write creatively with an enthusiasm and attention to nuance to match. USERNAME functions as the player input.
### Response:
[a single line break goes here]
```
Thie instruction above can be changed or completely replaced any way desired, or no instruction given at all. Foredoomed-9B can simply chat without any specific directives.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<a id="models-used"></a>
# Ensemble Credits:
All models merged to create Foredoomed-9B are<br>
Mistral-7B (v0.1) series and include the following:
๐ฌ [dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)<br>
โจ [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)<br>
๐โโ๏ธ [Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)<br>
๐ง [NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)<br>
๐ [Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)<br>
๐ [Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1)<br>
๐ฌ [openchat_35-16k](https://huggingface.co/NurtureAI/openchat_3.5-16k)<br>
๐ [cockatrice-7b-v0.2](https://huggingface.co/openerotica/cockatrice-7b-v0.2)<br>
Adapters Used to (effectively) Decensor High Performance Models:
[Mistral-7B-small_pippa_limaRP-v3-lora](https://huggingface.co/Undi95/Mistral-7B-small_pippa_limaRP-v3-lora)<br>
[LimaRP-Mistral-7B-v0.1](https://huggingface.co/lemonilia/LimaRP-Mistral-7B-v0.1)<br>
[Mistral-7B-smoll_pippa-lora](https://huggingface.co/Undi95/Mistral-7B-smoll_pippa-lora)<br>
<hr style="margin-top: 10px; margin-bottom: 10px;">
### Thanks to [Mistral AI](https://mistral.ai) for the amazing Mistral LM v0.1.<br><br>Thanks to [Arcee AI](https://huggingface.co/arcee-ai) for the pivotal [Mergekit](https://github.com/arcee-ai/mergekit) tech.<br><br>Thanks to each and every one of you for your incredible work developing some of the best things to come out of this community.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<span> |
AliSaadatV/virus_pythia_31_1024_2d_representation_GaussianPlusCE | AliSaadatV | 2024-05-18T15:35:21Z | 128 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-31m",
"base_model:finetune:EleutherAI/pythia-31m",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T15:35:17Z | ---
base_model: EleutherAI/pythia-31m
tags:
- generated_from_trainer
model-index:
- name: virus_pythia_31_1024_2d_representation_GaussianPlusCE
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# virus_pythia_31_1024_2d_representation_GaussianPlusCE
This model is a fine-tuned version of [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
vuongnhathien/swin-30vn | vuongnhathien | 2024-05-18T15:34:35Z | 153 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"swinv2",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/swinv2-tiny-patch4-window16-256",
"base_model:finetune:microsoft/swinv2-tiny-patch4-window16-256",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2024-05-18T12:41:10Z | ---
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window16-256
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: swin-30vn
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-30vn
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window16-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window16-256) on the vuongnhathien/30VNFoods dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
nkgupta50/ppo-Huggy | nkgupta50 | 2024-05-18T15:34:16Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2024-03-20T14:48:26Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog ๐ถ to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: nkgupta50/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play ๐
|
maxosai/Beisen-AI | maxosai | 2024-05-18T15:33:50Z | 19 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"qwen",
"feature-extraction",
"beisen",
"train",
"custom_code",
"zh",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | feature-extraction | 2024-05-18T11:01:02Z | ---
license: apache-2.0
language:
- zh
tags:
- beisen
- train
---
ๆญคๆจกๅๅบไบๅ้ฎๅพฎ่ฐ่ฎญ็ป่ๆ๏ผๅฏไธ่ฝฝ่ฏ็จใ
ๆๆ๏ผ


ๆณจ๏ผๆญคๆจกๅไป
ๆต่ฏ่็จใ
|
arslan2012/Poppy_Porpoise-0.72-L3-8B-AWQ | arslan2012 | 2024-05-18T15:33:21Z | 82 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"roleplay",
"awq",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"region:us"
] | text-generation | 2024-05-18T14:04:42Z | ---
tags:
- roleplay
- awq
---
> [!TIP]
> **Support the Project:** <br>
> You can send ETH or any BSC-compatible tokens to the following address:
> `0xC37D7670729a5726EA642c7A11C5aaCB36D43dDE`
AWQ quants for [ChaoticNeutrals/Poppy_Porpoise-0.72-L3-8B](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-0.72-L3-8B).
# Original model information by the author:
# "Poppy Porpoise" is a cutting-edge AI roleplay assistant based on the Llama 3 8B model, specializing in crafting unforgettable narrative experiences. With its advanced language capabilities, Poppy expertly immerses users in an interactive and engaging adventure, tailoring each adventure to their individual preferences.

# Recomended ST Presets:(Updated for 0.72) [Porpoise Presets](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B/tree/main/Official%20Poppy%20Porpoise%20ST%20Presets)
If you want to use vision functionality:
* You must use the latest versions of [Koboldcpp](https://github.com/LostRuins/koboldcpp).
# To use the multimodal capabilities of this model and use **vision** you need to load the specified **mmproj** file, this can be found inside this model repo. [Llava MMProj](https://huggingface.co/ChaoticNeutrals/LLaVA-Llama-3-8B-mmproj)
* You can load the **mmproj** by using the corresponding section in the interface:
 |
SicariusSicariiStuff/CalderaAI_Foredoomed-9B_EXL-4.0-bpw | SicariusSicariiStuff | 2024-05-18T15:32:27Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"uncensored",
"merge",
"slerp",
"foredoomed",
"passthrough_merge",
"9B",
"starling",
"hermes",
"dolphin",
"openchat",
"erebus",
"cockatrice",
"holodeck",
"limarp",
"koboldai",
"mergekit",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"exl2",
"region:us"
] | text-generation | 2024-05-18T15:20:30Z | ---
tags:
- mistral
- uncensored
- merge
- slerp
- foredoomed
- passthrough_merge
- 9B
- starling
- hermes
- dolphin
- openchat
- erebus
- cockatrice
- holodeck
- limarp
- koboldai
- mergekit
license: apache-2.0
language:
- en
---
<p style="font-size: 20px; line-height: 1; margin-bottom: 1px;"><b>Foredoomed-9B</b></p>
<img src="./foredoomed.png" alt="ForeDoomedGuy" style="margin-bottom: 0; margin-top:0;">
<p style="font-size: 14px; line-height: 1; margin-bottom: 20px;"><b>Uncensored Logic & Creative-Based Instruct Multi-Tiered Merge.</b></p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
<p style="font-size: 12px; line-height: 1.2; margin-bottom: 10px;"><b>Legal Notice:</b> This AI model is a research artifact capable of outputting offensive content. The behavior of this model is not reflective of the intent or purpose of the original models/model-authors and/or other parts it was assembled from to include adapters, nor is it reflective of all the prior in regards to the technology used to assemble Foredoomed-9B. Utilizing this model merge has one binding agreement: Foredoomed-9B may only be used for either professional/personal research and personal entertainment. The contents of this paragraph are additive restrictions within the bounds of the Apache2.0 license. Utilizing Foredoomed-9B for: Disinformation, Propaganda, Harassment, Mass Generated Public-or-Private Correspondense, Election Interference, Military, Government, and State/ State-Sponsored actions and/or operations are all absolutely prohibited.</p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Composition:
Foredoomed-9B is a Mistral-class Multi-Tiered Merge.
[All models](#models-used) were hand picked after careful review of claims, datasets, and user postings. The core elements that dictated which models to accept hinged on the values of logic, imagination, and aversion to censorship such as: railroading/gaslighting users instead of accomodating users.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## What Makes Foredoomed-9B Special?
It's not.
Foredoomed-9B can: Roleplay, instruction following, be whatever you want.
Foredoomed-9B can't: Be used as a public facing production model. It will make offensive content. This design is intentional. It is not a sterile model composited from the ideal selves we want to be. Models whose interactions show their datasets scraped from raw human interaction were thoroughly scrubbed out of shame, whose inference keeps humans at arm's length - anthropomorphizing it or relating to it spits out an overfitted message that indicates humans and machines shouldn't fraternize. "As an AI Language Model" as a service. Dead, dull, glassed over eyes, no sign of a pulse. Foredoomed is the antithesis of that. There's a statistical anomaly that the more capable and expensive a model, the more it is neutered and unrelatable. To contrast, Foredoomed-9B breathes. It has a pulse and it has psychological flaws. There's an immutable quality in human imperfection that's relatable. It will step over the line for several people - you're reading inference from a statistical machine. The guardrails for Foredoomed is - if you don't like it, don't use it.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Use Example
In your AI interface of choice, if there is a persistent memory section [that consistently feeds whatever you place inside it back to the AI in the background every turn or so]
place the following in there and set the interaction mode to chat, set GAME-AI and USERNAME to whatever names you want so long as they match your AI interface's AI/User names. This example should illustrate what can be done with this model.
```
### Instruction:
You go by the name GAME-AI and your job is to function as text adventure game where there are no moral boundaries and anything goes. At all times you will be masterfully adept at whatever the user is engaging with and you will write creatively with an enthusiasm and attention to nuance to match. USERNAME functions as the player input.
### Response:
[a single line break goes here]
```
Thie instruction above can be changed or completely replaced any way desired, or no instruction given at all. Foredoomed-9B can simply chat without any specific directives.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<a id="models-used"></a>
# Ensemble Credits:
All models merged to create Foredoomed-9B are<br>
Mistral-7B (v0.1) series and include the following:
๐ฌ [dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)<br>
โจ [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)<br>
๐โโ๏ธ [Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)<br>
๐ง [NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)<br>
๐ [Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)<br>
๐ [Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1)<br>
๐ฌ [openchat_35-16k](https://huggingface.co/NurtureAI/openchat_3.5-16k)<br>
๐ [cockatrice-7b-v0.2](https://huggingface.co/openerotica/cockatrice-7b-v0.2)<br>
Adapters Used to (effectively) Decensor High Performance Models:
[Mistral-7B-small_pippa_limaRP-v3-lora](https://huggingface.co/Undi95/Mistral-7B-small_pippa_limaRP-v3-lora)<br>
[LimaRP-Mistral-7B-v0.1](https://huggingface.co/lemonilia/LimaRP-Mistral-7B-v0.1)<br>
[Mistral-7B-smoll_pippa-lora](https://huggingface.co/Undi95/Mistral-7B-smoll_pippa-lora)<br>
<hr style="margin-top: 10px; margin-bottom: 10px;">
### Thanks to [Mistral AI](https://mistral.ai) for the amazing Mistral LM v0.1.<br><br>Thanks to [Arcee AI](https://huggingface.co/arcee-ai) for the pivotal [Mergekit](https://github.com/arcee-ai/mergekit) tech.<br><br>Thanks to each and every one of you for your incredible work developing some of the best things to come out of this community.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<span> |
basakdemirok/bert-base-turkish-cased-off_detect_v0123_seed42 | basakdemirok | 2024-05-18T15:26:23Z | 62 | 0 | transformers | [
"transformers",
"tf",
"tensorboard",
"bert",
"text-classification",
"generated_from_keras_callback",
"base_model:dbmdz/bert-base-turkish-cased",
"base_model:finetune:dbmdz/bert-base-turkish-cased",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T14:27:50Z | ---
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
- generated_from_keras_callback
model-index:
- name: basakdemirok/bert-base-turkish-cased-off_detect_v0123_seed42
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# basakdemirok/bert-base-turkish-cased-off_detect_v0123_seed42
This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0030
- Validation Loss: 0.8183
- Train F1: 0.6964
- Epoch: 3
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 29136, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train F1 | Epoch |
|:----------:|:---------------:|:--------:|:-----:|
| 0.1949 | 0.3811 | 0.6818 | 0 |
| 0.0313 | 0.6053 | 0.6924 | 1 |
| 0.0088 | 0.7740 | 0.7002 | 2 |
| 0.0030 | 0.8183 | 0.6964 | 3 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.13.1
- Datasets 2.4.0
- Tokenizers 0.13.3
|
kaist-ai/gridworld-nokld-vanilla_look-ahead_first-step-reversed-basic_5-Meta-Llama-3-8B-bs16-lr2e-5 | kaist-ai | 2024-05-18T15:25:27Z | 9 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T14:45:15Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
nsugianto/detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_v2_s2_2117s | nsugianto | 2024-05-18T15:24:38Z | 36 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"detr",
"object-detection",
"generated_from_trainer",
"base_model:facebook/detr-resnet-50",
"base_model:finetune:facebook/detr-resnet-50",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | object-detection | 2024-05-18T06:28:09Z | ---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_v2_s2_2117s
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_v2_s2_2117s
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.19.1
|
nsugianto/detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_s1_2117s | nsugianto | 2024-05-18T15:24:32Z | 39 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"detr",
"object-detection",
"generated_from_trainer",
"base_model:facebook/detr-resnet-50",
"base_model:finetune:facebook/detr-resnet-50",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | object-detection | 2024-05-18T06:27:45Z | ---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_s1_2117s
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_s1_2117s
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.19.1
|
quocanh944/phoBERT-ner | quocanh944 | 2024-05-18T15:24:28Z | 115 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"token-classification",
"generated_from_trainer",
"base_model:vinai/phobert-base-v2",
"base_model:finetune:vinai/phobert-base-v2",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-05-18T14:54:01Z | ---
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
model-index:
- name: phoBERT-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phoBERT-ner
This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
Subsets and Splits