modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-28 12:28:24
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 500
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-28 12:27:53
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Sorour/llama3_cls_fomc | Sorour | 2024-05-19T02:20:08Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-19T02:14:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Bibek1129/nepali-poem-generator-distilgpt2 | Bibek1129 | 2024-05-19T02:09:20Z | 131 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"ne",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-19T02:04:44Z | ---
license: apache-2.0
language: ne # <-- my language
widget:
- text: "मेरो मन"
---
Nepali poem generator finetuning on ditillpt2-nepali. |
Jebadiah/lama-3-wild-stone-p2 | Jebadiah | 2024-05-19T02:07:51Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"custom_code",
"arxiv:2311.03099",
"arxiv:2306.01708",
"base_model:Jebadiah/Aria-p2-sand-stone",
"base_model:merge:Jebadiah/Aria-p2-sand-stone",
"base_model:NeverSleep/Llama-3-Lumimaid-8B-v0.1",
"base_model:merge:NeverSleep/Llama-3-Lumimaid-8B-v0.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-19T02:06:02Z | ---
base_model:
- NeverSleep/Llama-3-Lumimaid-8B-v0.1
- Jebadiah/Aria-p2-sand-stone
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [Jebadiah/Aria-p2-sand-stone](https://huggingface.co/Jebadiah/Aria-p2-sand-stone) as a base.
### Models Merged
The following models were included in the merge:
* [NeverSleep/Llama-3-Lumimaid-8B-v0.1](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: NeverSleep/Llama-3-Lumimaid-8B-v0.1
parameters:
density: 0.6
weight: 0.5
merge_method: dare_ties
base_model: Jebadiah/Aria-p2-sand-stone
parameters:
normalize: false
int8_mask: true
dtype: float16
```
|
apwic/sentiment-lora-r4a1d0.1-1 | apwic | 2024-05-19T02:05:43Z | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-19T01:32:27Z | ---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r4a1d0.1-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-lora-r4a1d0.1-1
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3239
- Accuracy: 0.8622
- Precision: 0.8373
- Recall: 0.8250
- F1: 0.8307
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5658 | 1.0 | 122 | 0.5195 | 0.7268 | 0.6646 | 0.6492 | 0.6550 |
| 0.5125 | 2.0 | 244 | 0.5060 | 0.7293 | 0.6805 | 0.6935 | 0.6855 |
| 0.4809 | 3.0 | 366 | 0.4686 | 0.7669 | 0.7184 | 0.7151 | 0.7167 |
| 0.4353 | 4.0 | 488 | 0.4295 | 0.7920 | 0.7500 | 0.7353 | 0.7417 |
| 0.4116 | 5.0 | 610 | 0.4171 | 0.8020 | 0.7628 | 0.7849 | 0.7714 |
| 0.3809 | 6.0 | 732 | 0.3865 | 0.8446 | 0.8148 | 0.8051 | 0.8096 |
| 0.3681 | 7.0 | 854 | 0.3697 | 0.8496 | 0.8193 | 0.8161 | 0.8177 |
| 0.3469 | 8.0 | 976 | 0.3554 | 0.8471 | 0.8206 | 0.8018 | 0.8102 |
| 0.3455 | 9.0 | 1098 | 0.3494 | 0.8496 | 0.8211 | 0.8111 | 0.8158 |
| 0.3284 | 10.0 | 1220 | 0.3437 | 0.8496 | 0.8289 | 0.7961 | 0.8096 |
| 0.3132 | 11.0 | 1342 | 0.3371 | 0.8596 | 0.8389 | 0.8132 | 0.8243 |
| 0.3042 | 12.0 | 1464 | 0.3371 | 0.8546 | 0.8254 | 0.8221 | 0.8238 |
| 0.3063 | 13.0 | 1586 | 0.3317 | 0.8596 | 0.8406 | 0.8107 | 0.8233 |
| 0.3013 | 14.0 | 1708 | 0.3304 | 0.8622 | 0.8373 | 0.8250 | 0.8307 |
| 0.2928 | 15.0 | 1830 | 0.3295 | 0.8596 | 0.8325 | 0.8257 | 0.8290 |
| 0.2864 | 16.0 | 1952 | 0.3284 | 0.8622 | 0.8351 | 0.8300 | 0.8325 |
| 0.2819 | 17.0 | 2074 | 0.3254 | 0.8596 | 0.8347 | 0.8207 | 0.8272 |
| 0.2877 | 18.0 | 2196 | 0.3249 | 0.8596 | 0.8336 | 0.8232 | 0.8281 |
| 0.2819 | 19.0 | 2318 | 0.3241 | 0.8647 | 0.8410 | 0.8267 | 0.8333 |
| 0.2803 | 20.0 | 2440 | 0.3239 | 0.8622 | 0.8373 | 0.8250 | 0.8307 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
liminerity/mm4.more.star.gguf | liminerity | 2024-05-19T02:04:08Z | 3 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:liminerity/mm4.ascii.star",
"base_model:quantized:liminerity/mm4.ascii.star",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-19T02:01:12Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: liminerity/mm4.ascii.star
---
# Uploaded model
- **Developed by:** liminerity
- **License:** apache-2.0
- **Finetuned from model :** liminerity/mm4.ascii.star
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
houbw/llama3_2 | houbw | 2024-05-19T01:45:17Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-19T01:44:58Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ahmedgongi/Llama_dev3tokenizer_finale4 | ahmedgongi | 2024-05-19T01:35:09Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-19T01:35:07Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
apwic/sentiment-lora-r4a1d0.05-1 | apwic | 2024-05-19T01:32:10Z | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-19T00:59:00Z | ---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r4a1d0.05-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-lora-r4a1d0.05-1
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3356
- Accuracy: 0.8622
- Precision: 0.8399
- Recall: 0.8200
- F1: 0.8289
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5657 | 1.0 | 122 | 0.5182 | 0.7243 | 0.6604 | 0.6424 | 0.6488 |
| 0.5109 | 2.0 | 244 | 0.5051 | 0.7243 | 0.6748 | 0.6874 | 0.6796 |
| 0.48 | 3.0 | 366 | 0.4643 | 0.7569 | 0.7047 | 0.6880 | 0.6948 |
| 0.434 | 4.0 | 488 | 0.4281 | 0.7920 | 0.7497 | 0.7378 | 0.7431 |
| 0.4106 | 5.0 | 610 | 0.4194 | 0.7920 | 0.7528 | 0.7778 | 0.7618 |
| 0.3812 | 6.0 | 732 | 0.3936 | 0.8296 | 0.8008 | 0.7744 | 0.7854 |
| 0.3689 | 7.0 | 854 | 0.3700 | 0.8521 | 0.8220 | 0.8204 | 0.8212 |
| 0.3489 | 8.0 | 976 | 0.3656 | 0.8346 | 0.8088 | 0.7780 | 0.7905 |
| 0.3502 | 9.0 | 1098 | 0.3640 | 0.8371 | 0.8101 | 0.7847 | 0.7955 |
| 0.3349 | 10.0 | 1220 | 0.3608 | 0.8346 | 0.8074 | 0.7805 | 0.7917 |
| 0.3189 | 11.0 | 1342 | 0.3574 | 0.8396 | 0.8128 | 0.7890 | 0.7992 |
| 0.3121 | 12.0 | 1464 | 0.3547 | 0.8471 | 0.8175 | 0.8093 | 0.8132 |
| 0.3181 | 13.0 | 1586 | 0.3478 | 0.8521 | 0.8332 | 0.7979 | 0.8122 |
| 0.3092 | 14.0 | 1708 | 0.3435 | 0.8596 | 0.8374 | 0.8157 | 0.8253 |
| 0.3018 | 15.0 | 1830 | 0.3466 | 0.8546 | 0.8296 | 0.8121 | 0.8200 |
| 0.2955 | 16.0 | 1952 | 0.3365 | 0.8596 | 0.8347 | 0.8207 | 0.8272 |
| 0.2917 | 17.0 | 2074 | 0.3353 | 0.8596 | 0.8374 | 0.8157 | 0.8253 |
| 0.2956 | 18.0 | 2196 | 0.3379 | 0.8596 | 0.8360 | 0.8182 | 0.8262 |
| 0.2899 | 19.0 | 2318 | 0.3353 | 0.8647 | 0.8455 | 0.8192 | 0.8306 |
| 0.2885 | 20.0 | 2440 | 0.3356 | 0.8622 | 0.8399 | 0.8200 | 0.8289 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
fzzhang/mistralv1_lora_r32_25e5_e05_merged | fzzhang | 2024-05-19T01:30:06Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-19T01:27:17Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
RichardErkhov/malhajar_-_Mistral-7B-v0.2-meditron-turkish-8bits | RichardErkhov | 2024-05-19T01:28:26Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-19T01:21:49Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Mistral-7B-v0.2-meditron-turkish - bnb 8bits
- Model creator: https://huggingface.co/malhajar/
- Original model: https://huggingface.co/malhajar/Mistral-7B-v0.2-meditron-turkish/
Original model description:
---
language:
- tr
- en
license: apache-2.0
datasets:
- malhajar/meditron-tr
model-index:
- name: Mistral-7B-v0.2-meditron-turkish
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.56
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.79
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.35
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 66.19
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.24
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.94
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
Mistral-7B-v0.2-meditron-turkish is a finetuned Mistral Model version using Freeze technique on Turkish Meditron dataset of [`malhajar/meditron-7b-tr`](https://huggingface.co/datasets/malhajar/meditron-tr) using SFT Training.
This model can answer information about different excplicit ideas in medicine in Turkish and English
### Model Description
- **Finetuned by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/)
- **Language(s) (NLP):** Turkish,English
- **Finetuned from model:** [`mistralai/Mistral-7B-Instruct-v0.2`](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
### Prompt Template For Turkish Generation
```
### Kullancı:
```
### Prompt Template For English Generation
```
### User:
```
## How to Get Started with the Model
Use the code sample provided in the original post to interact with the model.
```python
from transformers import AutoTokenizer,AutoModelForCausalLM
model_id = "malhajar/Mistral-7B-v0.2-meditron-turkish"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
torch_dtype=torch.float16,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_id)
question: "Akciğer kanseri nedir?"
# For generating a response
prompt = '''
### Kullancı:
{question}
'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,
top_p=0.95)
response = tokenizer.decode(output[0])
print(response)
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_malhajar__Mistral-7B-v0.2-meditron-turkish)
| Metric |Value|
|---------------------------------|----:|
|Avg. |63.34|
|AI2 Reasoning Challenge (25-Shot)|59.56|
|HellaSwag (10-Shot) |81.79|
|MMLU (5-Shot) |60.35|
|TruthfulQA (0-shot) |66.19|
|Winogrande (5-shot) |76.24|
|GSM8k (5-shot) |35.94|
|
fzzhang/mistralv1_lora_r32_25e5_e05 | fzzhang | 2024-05-19T01:27:04Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2024-05-19T01:26:59Z | ---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistralv1_lora_r32_25e5_e05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistralv1_lora_r32_25e5_e05
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2 |
Jebadiah/lama-3-wild-stone-p1 | Jebadiah | 2024-05-19T01:24:25Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"custom_code",
"arxiv:2403.19522",
"base_model:ChaoticNeutrals/Puppy_Purpose_0.69",
"base_model:merge:ChaoticNeutrals/Puppy_Purpose_0.69",
"base_model:Jebadiah/Aria-dolphin-1m-sand-stone",
"base_model:merge:Jebadiah/Aria-dolphin-1m-sand-stone",
"base_model:NeverSleep/Llama-3-Lumimaid-8B-v0.1",
"base_model:merge:NeverSleep/Llama-3-Lumimaid-8B-v0.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-19T01:22:23Z | ---
base_model:
- ChaoticNeutrals/Puppy_Purpose_0.69
- Jebadiah/Aria-dolphin-1m-sand-stone
- NeverSleep/Llama-3-Lumimaid-8B-v0.1
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Jebadiah/Aria-dolphin-1m-sand-stone](https://huggingface.co/Jebadiah/Aria-dolphin-1m-sand-stone) as a base.
### Models Merged
The following models were included in the merge:
* [ChaoticNeutrals/Puppy_Purpose_0.69](https://huggingface.co/ChaoticNeutrals/Puppy_Purpose_0.69)
* [NeverSleep/Llama-3-Lumimaid-8B-v0.1](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: NeverSleep/Llama-3-Lumimaid-8B-v0.1
- model: ChaoticNeutrals/Puppy_Purpose_0.69
merge_method: model_stock
base_model: Jebadiah/Aria-dolphin-1m-sand-stone
dtype: float16
```
|
RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf | RichardErkhov | 2024-05-19T01:12:49Z | 14 | 0 | null | [
"gguf",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-18T23:07:58Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
NeuralMarcoro14-7B - GGUF
- Model creator: https://huggingface.co/mlabonne/
- Original model: https://huggingface.co/mlabonne/NeuralMarcoro14-7B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [NeuralMarcoro14-7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q2_K.gguf) | Q2_K | 2.53GB |
| [NeuralMarcoro14-7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
| [NeuralMarcoro14-7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.IQ3_S.gguf) | IQ3_S | 2.96GB |
| [NeuralMarcoro14-7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
| [NeuralMarcoro14-7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.IQ3_M.gguf) | IQ3_M | 3.06GB |
| [NeuralMarcoro14-7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q3_K.gguf) | Q3_K | 3.28GB |
| [NeuralMarcoro14-7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
| [NeuralMarcoro14-7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
| [NeuralMarcoro14-7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
| [NeuralMarcoro14-7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q4_0.gguf) | Q4_0 | 3.83GB |
| [NeuralMarcoro14-7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
| [NeuralMarcoro14-7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
| [NeuralMarcoro14-7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q4_K.gguf) | Q4_K | 4.07GB |
| [NeuralMarcoro14-7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
| [NeuralMarcoro14-7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q4_1.gguf) | Q4_1 | 4.24GB |
| [NeuralMarcoro14-7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q5_0.gguf) | Q5_0 | 4.65GB |
| [NeuralMarcoro14-7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
| [NeuralMarcoro14-7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q5_K.gguf) | Q5_K | 4.78GB |
| [NeuralMarcoro14-7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
| [NeuralMarcoro14-7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q5_1.gguf) | Q5_1 | 5.07GB |
| [NeuralMarcoro14-7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q6_K.gguf) | Q6_K | 5.53GB |
| [NeuralMarcoro14-7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-gguf/blob/main/NeuralMarcoro14-7B.Q8_0.gguf) | Q8_0 | 7.17GB |
Original model description:
---
license: cc-by-nc-4.0
tags:
- mlabonne/Marcoro14-7B-slerp
- dpo
- rlhf
- merge
- mergekit
- lazymergekit
datasets:
- mlabonne/chatml_dpo_pairs
base_model: mlabonne/Marcoro14-7B-slerp
model-index:
- name: NeuralMarcoro14-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.42
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.84
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 65.64
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
---

# NeuralMarcoro14-7B
This is a DPO fine-tuned version of [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) using the [chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) preference dataset.
It improves the performance of the model on Nous benchmark suite and the Open LLM Benchmark.
It is currently the best-performing 7B LLM on the Open LLM Leaderboard (08/01/24).
You can try it out in this [Space](https://huggingface.co/spaces/mlabonne/NeuralMarcoro14-7B-GGUF-Chat) (GGUF Q4_K_M).
## ⚡ Quantized models
* **GGUF**: https://huggingface.co/mlabonne/NeuralMarcoro14-7B-GGUF
## 🏆 Evaluation
### Open LLM Leaderboard


### Nous
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|[NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B)| 44.59| 76.17| 65.94| 46.9| 58.4|
|[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67|
|Change | -0.07| -0.07| +1.79| +1.26| +0.73|
## 🧩 Training hyperparameters
**LoRA**:
* r=16
* lora_alpha=16
* lora_dropout=0.05
* bias="none"
* task_type="CAUSAL_LM"
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
**Training arguments**:
* per_device_train_batch_size=4
* gradient_accumulation_steps=4
* gradient_checkpointing=True
* learning_rate=5e-5
* lr_scheduler_type="cosine"
* max_steps=200
* optim="paged_adamw_32bit"
* warmup_steps=100
**DPOTrainer**:
* beta=0.1
* max_prompt_length=1024
* max_length=1536
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/NeuralMarcoro14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
EpicJhon/l3-4 | EpicJhon | 2024-05-19T01:01:42Z | 16 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-03T09:10:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
dexter-chan/distilbert-base-uncased-yelp | dexter-chan | 2024-05-19T00:50:08Z | 199 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-19T00:45:17Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8210
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.2
|
AndyNodi/llama-3-8b-Instruct-bnb-4bit-aiaustin-demo | AndyNodi | 2024-05-19T00:42:24Z | 4 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:quantized:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-19T00:38:25Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** AndyNodi
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
stablediffusionapi/guofeng3-v34 | stablediffusionapi | 2024-05-19T00:35:40Z | 31 | 0 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-05-19T00:33:30Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# GuoFeng3 v3.4 API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "guofeng3-v34"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com)
Try model for free: [Generate Images](https://modelslab.com/models/guofeng3-v34)
Model link: [View model](https://modelslab.com/models/guofeng3-v34)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "guofeng3-v34",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
BohdanPetryshyn/codellama-7b-openapi-completion-ctx-lvl-fim-05-spm-2048 | BohdanPetryshyn | 2024-05-19T00:35:29Z | 6 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:codellama/CodeLlama-7b-hf",
"base_model:adapter:codellama/CodeLlama-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-05-18T14:03:38Z | ---
license: llama2
library_name: peft
tags:
- generated_from_trainer
base_model: codellama/CodeLlama-7b-hf
model-index:
- name: codellama-7b-openapi-completion-ctx-lvl-fim-05-spm-2048
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/bohdan-petryshyn/huggingface/runs/5n8v36we)
# codellama-7b-openapi-completion-ctx-lvl-fim-05-spm-2048
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6230
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.565 | 0.1 | 100 | 0.6378 |
| 0.4333 | 0.2 | 200 | 0.6510 |
| 0.2143 | 0.3 | 300 | 0.6492 |
| 0.5989 | 0.4 | 400 | 0.6225 |
| 0.4088 | 0.5 | 500 | 0.6230 |
| 0.3385 | 0.6 | 600 | 0.6325 |
| 0.644 | 0.7 | 700 | 0.6205 |
| 0.4412 | 0.8 | 800 | 0.6138 |
| 0.6179 | 0.9 | 900 | 0.6195 |
| 0.3764 | 1.0 | 1000 | 0.6230 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.41.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
TinyPixel/dnb-lima | TinyPixel | 2024-05-19T00:25:46Z | 130 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T05:31:15Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
VinyVan/modelGGUF | VinyVan | 2024-05-19T00:22:29Z | 8 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:quantized:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-19T00:19:50Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** VinyVan
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
stablediffusionapi/photon-v1 | stablediffusionapi | 2024-05-19T00:22:06Z | 36 | 0 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-05-19T00:20:16Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# Photon v1 API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "photon-v1"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com)
Try model for free: [Generate Images](https://modelslab.com/models/photon-v1)
Model link: [View model](https://modelslab.com/models/photon-v1)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "photon-v1",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
Zhengping/roberta-large-unli | Zhengping | 2024-05-19T00:18:25Z | 331 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"en",
"dataset:Zhengping/UNLI",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-04-29T00:28:49Z | ---
datasets:
- Zhengping/UNLI
language:
- en
pipeline_tag: text-classification
---
UNLI model fine-tuned from `ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli`, using UNLI. If you find this model useful, please cite the paper:
```
@inproceedings{chen-etal-2020-uncertain,
title = "Uncertain Natural Language Inference",
author = "Chen, Tongfei and
Jiang, Zhengping and
Poliak, Adam and
Sakaguchi, Keisuke and
Van Durme, Benjamin",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.774",
doi = "10.18653/v1/2020.acl-main.774",
pages = "8772--8779",
abstract = "We introduce Uncertain Natural Language Inference (UNLI), a refinement of Natural Language Inference (NLI) that shifts away from categorical labels, targeting instead the direct prediction of subjective probability assessments. We demonstrate the feasibility of collecting annotations for UNLI by relabeling a portion of the SNLI dataset under a probabilistic scale, where items even with the same categorical label differ in how likely people judge them to be true given a premise. We describe a direct scalar regression modeling approach, and find that existing categorically-labeled NLI data can be used in pre-training. Our best models correlate well with humans, demonstrating models are capable of more subtle inferences than the categorical bin assignment employed in current NLI tasks.",
}
``` |
abc88767/8sc100 | abc88767 | 2024-05-19T00:03:04Z | 10 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T05:04:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
joudissa/results | joudissa | 2024-05-19T00:01:21Z | 0 | 0 | peft | [
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"region:us"
] | null | 2024-05-19T00:00:54Z | ---
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/joud-issa/mistral2/runs/0jfxn99b)
# results
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5641
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.399 | 1.0 | 4174 | 0.5641 |
### Framework versions
- PEFT 0.11.2.dev0
- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
yyx123/Yi-6B-ruozhiba-5e-5-50 | yyx123 | 2024-05-18T23:56:23Z | 4 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"generated_from_trainer",
"trl",
"sft",
"dataset:ruozhiba",
"base_model:01-ai/Yi-6B",
"base_model:adapter:01-ai/Yi-6B",
"license:other",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2024-05-10T16:40:17Z | ---
license: other
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- ruozhiba
base_model: 01-ai/Yi-6B
model-index:
- name: Yi-6B-ruozhiba-5e-5-50
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Yi-6B-ruozhiba-5e-5-50
This model is a fine-tuned version of [01-ai/Yi-6B](https://huggingface.co/01-ai/Yi-6B) on the ruozhiba dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0795
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8473 | 2.0 | 110 | 1.9843 |
| 1.7645 | 3.0 | 165 | 1.9680 |
| 1.4795 | 4.0 | 220 | 2.0760 |
| 1.2467 | 5.0 | 275 | 2.2715 |
| 1.0034 | 6.0 | 330 | 2.5656 |
| 0.8124 | 7.0 | 385 | 2.8052 |
| 0.6269 | 8.0 | 440 | 2.9866 |
| 0.5743 | 9.0 | 495 | 3.0649 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2 |
ViraIntelligentDataMining/PersianLLaMA-13B-Instruct | ViraIntelligentDataMining | 2024-05-18T23:56:15Z | 55 | 6 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"fa",
"dataset:sinarashidi/alpaca-persian",
"arxiv:2312.15713",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"region:us"
] | text-generation | 2024-05-18T19:16:47Z | ---
license: cc-by-nc-4.0
language:
- fa
library_name: transformers
tags:
- text-generation-inference
inference: false
pipeline_tag: text-generation
datasets:
- sinarashidi/alpaca-persian
---
# PersianLLaMA: Towards Building First Persian Large Language Model
<img src="https://huggingface.co/ViraIntelligentDataMining/PersianLLaMA-2-13B/resolve/main/persianllama.png" alt="PersianLLaMA" width=400/>
## 🌟 Introduction
Welcome to the home of PersianLLaMA, a large language model specifically designed for instruct tasks in the Persian language. With 13 billion parameters, this model is fine-tuned using the Persian Alpaca dataset to excel at executing detailed instructions and delivering tailored outputs.
## 🛠 Model Description
The PersianLLaMA model is specifically designed for inference tasks, allowing it to execute detailed instructions and provide outputs tailored to specific requirements.
This model has been collaboratively developed by a team of experts, including Mohammad Amin Abbasi, Arash Ghafouri, Mahdi Firouzmandi, Hassan Naderi, Behrouz Minaei Bidgoli.
## 🚀 Quick Start
To integrate PersianLLaMA into your project, follow these steps:
```python
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM
prompt_input = (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n\n{instruction}\n\n### Response:\n\n"
)
load_type = torch.float16
device = torch.device(0)
def generate_prompt(instruction, input=None):
if input:
instruction = instruction + '\n' + input
return prompt_input.format_map({'instruction': instruction})
model_path = "ViraIntelligentDataMining/PersianLLaMA-13B-Instruct"
tokenizer = LlamaTokenizer.from_pretrained(model_path)
base_model = LlamaForCausalLM.from_pretrained(
model_path,
torch_dtype=load_type,
device_map='auto',
).cuda()
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenizer_vocab_size = len(tokenizer)
if model_vocab_size != tokenizer_vocab_size:
base_model.resize_token_embeddings(tokenizer_vocab_size)
def generate_answer(base_model, instruction, input=None):
generation_config = dict(
temperature=0.5,
top_k=40,
top_p=0.9,
repetition_penalty=1.1,
max_new_tokens=1024)
input_text = generate_prompt(instruction, input)
inputs = tokenizer(input_text, return_tensors="pt")
generation_output = base_model.generate(
input_ids=inputs["input_ids"].to(device),
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
**generation_config)
s = generation_output[0]
output = tokenizer.decode(s, skip_special_tokens=True)
response = output.split("### Response:")[1].strip()
return response
instruction = "تصور کنید در حال نوشتن داستانی درباره یک شهر که تمام ساکنانش ربات هستند. این رباتها تواناییهای ویژهای دارند که زندگی روزمره آنها را از انسانها متمایز میکند. شرح دهید که این رباتها چگونه به کارهای روزانه خود میپردازند و چه چالشهایی با آنها روبهرو هستند. همچنین، توضیح دهید که چگونه معماری شهر برای نیازهای خاص آنها طراحی شده است."
response = generate_answer(base_model,
instruction=instruction,
input="")
print(response)
"""
در این شهر، همه ساکنان ربات هستند که دارای توانایی های منحصر به فرد هستند که زندگی روزمره آنها را از انسان ها متمایز می کند. هر روز صبح، ربات ها بیدار می شوند و برنامه های خود را برای روز تنظیم می کنند. برخی از آنها ممکن است برای کار بروند، در حالی که دیگران ممکن است برای انجام وظایف خانگی یا مراقبت از خانواده خود وقت صرف کنند. ربات ها بسیار کارآمد هستند و می توانند چندین کار را همزمان انجام دهند، بنابراین زمان زیادی برای استراحت ندارند. آنها همچنین به طور منظم برای نگهداری و تعمیر نیاز دارند، زیرا آنها مانند انسان ها مستعد خرابی هستند. بسیاری از ربات ها به دنبال سرگرمی هستند و ممکن است برای شرکت در فعالیت هایی مانند ورزش، خواندن یا نقاشی وقت صرف کنند. برخی از ربات ها حتی ممکن است برای یادگیری یا بهبود مهارت های خود در زمینه های مختلف مانند هنر، موسیقی یا آشپزی تلاش کنند. ربات ها همچنین به طور مداوم به پیشرفت های تکنولوژیکی جدید علاقه مند هستند و اغلب به دنبال راه حل های جدید برای مشکلات موجود در جامعه هستند. در این شهر، همه ساکنان ربات هستند که دارای توانایی های منحصر به فرد هستند که زندگی روزمره آنها را از انسان ها متمایز می کند.
"""
```
## 📈 Evaluation and Benchmarks
PersianLLaMA demonstrates superior performance over existing models, with robust evaluation metrics that highlight its capabilities in natural language understanding and generation.
## 📜 Citing PersianLLaMA
If you find PersianLLaMA useful in your research, please consider citing:
```bibtex
@article{abbasi2023persianllama,
title={PersianLLaMA: Towards Building First Persian Large Language Model},
author={Abbasi, Mohammad Amin and others},
journal={https://arxiv.org/abs/2312.15713},
year={2023}
}
```
## 📄 License
PersianLLaMA is open-sourced under the CC BY-NC 4.0 license. |
uisikdag/finetunedsam | uisikdag | 2024-05-18T23:55:30Z | 135 | 0 | transformers | [
"transformers",
"safetensors",
"sam",
"mask-generation",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | mask-generation | 2024-05-18T23:52:46Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
irfanfadhullah/winagent-8b-Instruct-bnb-16bit | irfanfadhullah | 2024-05-18T23:54:43Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T23:31:07Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** irfanfadhullah
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ViraIntelligentDataMining/AriaBERT | ViraIntelligentDataMining | 2024-05-18T23:52:38Z | 162 | 5 | transformers | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"bert",
"persian",
"fa",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2023-12-27T18:33:39Z | ---
license: apache-2.0
language:
- fa
tags:
- bert
- roberta
- persian
---
# AriaBERT: A Pre-trained Persian BERT Model for Natural Language Understanding
## Introduction
AriaBERT represents a breakthrough in natural language processing (NLP) for the Persian language. Developed to address the critical gap in efficient pretrained language models for Persian, AriaBERT is tailored to elevate the standards of Persian language tasks.
## Paper: https://www.researchsquare.com/article/rs-3558473/v1
## Key Features
- **Diverse Training Data:** AriaBERT has been trained on over 32 gigabytes of varied Persian textual data, spanning conversational, formal, and hybrid texts. This includes a rich mix of tweets, news articles, poems, medical and encyclopedia texts, user opinions, and more.
- **RoBERTa Architecture:** Leveraging the robustness of the RoBERTa architecture and the precision of Byte-Pair Encoding tokenizer, AriaBERT stands apart from traditional BERT-based models.
- **Broad Applicability:** Ideal for a range of NLP tasks including classification, sentiment analysis, and stance detection, particularly in the Persian language context.
## Performance Benchmarks
- **Sentiment Analysis:** Achieves an average improvement of 3% over competing models.
- **Classification Tasks:** Demonstrates a 0.65% improvement in accuracy.
- **Stance Detection:** Shows a 3% enhancement in performance metrics.
|
abc88767/22c101 | abc88767 | 2024-05-18T23:51:32Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T05:20:14Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ucla-nb-project/electra-adapter | ucla-nb-project | 2024-05-18T23:48:15Z | 0 | 0 | null | [
"generated_from_trainer",
"dataset:datasets/all_binary_and_xe_ey_fae_counterfactual",
"base_model:google/electra-base-generator",
"base_model:finetune:google/electra-base-generator",
"license:apache-2.0",
"model-index",
"region:us"
] | null | 2024-05-18T11:12:04Z | ---
license: apache-2.0
base_model: google/electra-base-generator
tags:
- generated_from_trainer
datasets:
- datasets/all_binary_and_xe_ey_fae_counterfactual
metrics:
- accuracy
model-index:
- name: electra-adapter-finetuned-xe_ey_fae
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: datasets/all_binary_and_xe_ey_fae_counterfactual
type: datasets/all_binary_and_xe_ey_fae_counterfactual
metrics:
- name: Accuracy
type: accuracy
value: 0.6258363412553052
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-adapter-finetuned-xe_ey_fae
This model is a fine-tuned version of [google/electra-base-generator](https://huggingface.co/google/electra-base-generator) on the datasets/all_binary_and_xe_ey_fae_counterfactual dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0392
- Accuracy: 0.6258
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 100
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 3.9488 | 0.06 | 500 | 3.1500 | 0.5509 |
| 2.942 | 0.13 | 1000 | 2.5844 | 0.5680 |
| 2.6751 | 0.19 | 1500 | 2.4443 | 0.5790 |
| 2.582 | 0.26 | 2000 | 2.3701 | 0.5869 |
| 2.5267 | 0.32 | 2500 | 2.3097 | 0.5937 |
| 2.4722 | 0.39 | 3000 | 2.2695 | 0.5986 |
| 2.4289 | 0.45 | 3500 | 2.2329 | 0.6024 |
| 2.404 | 0.52 | 4000 | 2.2063 | 0.6055 |
| 2.3826 | 0.58 | 4500 | 2.1840 | 0.6087 |
| 2.3633 | 0.64 | 5000 | 2.1646 | 0.6109 |
| 2.3425 | 0.71 | 5500 | 2.1557 | 0.6121 |
| 2.333 | 0.77 | 6000 | 2.1350 | 0.6141 |
| 2.311 | 0.84 | 6500 | 2.1292 | 0.6152 |
| 2.3014 | 0.9 | 7000 | 2.1182 | 0.6166 |
| 2.2974 | 0.97 | 7500 | 2.1121 | 0.6170 |
| 2.2866 | 1.03 | 8000 | 2.1079 | 0.6173 |
| 2.2675 | 1.1 | 8500 | 2.0940 | 0.6192 |
| 2.2789 | 1.16 | 9000 | 2.0882 | 0.6201 |
| 2.2684 | 1.22 | 9500 | 2.0873 | 0.6200 |
| 2.2608 | 1.29 | 10000 | 2.0796 | 0.6209 |
| 2.2478 | 1.35 | 10500 | 2.0827 | 0.6204 |
| 2.2524 | 1.42 | 11000 | 2.0741 | 0.6215 |
| 2.2502 | 1.48 | 11500 | 2.0685 | 0.6220 |
| 2.243 | 1.55 | 12000 | 2.0665 | 0.6228 |
| 2.2417 | 1.61 | 12500 | 2.0632 | 0.6229 |
| 2.2398 | 1.68 | 13000 | 2.0593 | 0.6232 |
| 2.2233 | 1.74 | 13500 | 2.0600 | 0.6232 |
| 2.2277 | 1.8 | 14000 | 2.0535 | 0.6236 |
| 2.2344 | 1.87 | 14500 | 2.0485 | 0.6248 |
| 2.2274 | 1.93 | 15000 | 2.0507 | 0.6245 |
| 2.2212 | 2.0 | 15500 | 2.0428 | 0.6256 |
| 2.214 | 2.06 | 16000 | 2.0464 | 0.6244 |
| 2.2104 | 2.13 | 16500 | 2.0477 | 0.6250 |
| 2.2185 | 2.19 | 17000 | 2.0397 | 0.6257 |
| 2.2157 | 2.26 | 17500 | 2.0419 | 0.6257 |
| 2.2128 | 2.32 | 18000 | 2.0439 | 0.6255 |
| 2.2154 | 2.38 | 18500 | 2.0372 | 0.6259 |
| 2.2099 | 2.45 | 19000 | 2.0337 | 0.6263 |
| 2.2045 | 2.51 | 19500 | 2.0396 | 0.6259 |
| 2.2138 | 2.58 | 20000 | 2.0390 | 0.6262 |
| 2.2103 | 2.64 | 20500 | 2.0339 | 0.6263 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|
abc88767/9sc100 | abc88767 | 2024-05-18T23:46:39Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T05:08:19Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
TroyDoesAI/TinyLlama-RAG | TroyDoesAI | 2024-05-18T23:27:41Z | 135 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:cc-by-nc-nd-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-17T17:50:34Z | ---
license: cc-by-nc-nd-4.0
---
Known Issue:
- Model when asked for something does its best to use context but is not good at saying no, maybe needs more training. Ill give it another go, I hope its not a model size limitation, the larger models seem to get it.
Base Model : TinyLlama
Experimenting with Dataset Quality to improve generations, TinyLlama is faster to prototype datasets.
Overview
This model is meant to enhance adherence to provided context (e.g., for RAG applications) and reduce hallucinations, inspired by airoboros context-obedient question answer format.
## Overview
The format for a contextual prompt is as follows:
```
Contextual-Request:
BEGININPUT
BEGINCONTEXT
[key0: value0]
[key1: value1]
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
```
I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
- `Contextual-Request:` - denotes the type of request pattern the model is to follow for consistency
- `BEGININPUT` - denotes a new input block
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
- `ENDINPUT` - denotes the end of the current input block
- [repeat as many input blocks in this format as you want]
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
- [instruction(s)]
- `ENDINSTRUCTION` - denotes the end of instruction set
Here's a trivial, but important example to prove the point:
```
Contextual-Request:
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
```
And the expected response:
```
### Contextual Response:
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
```
### References in response
As shown in the example, the dataset includes many examples of including source details in the response, when the question asks for source/citation/references.
Why do this? Well, the R in RAG seems to be the weakest link in the chain.
Retrieval accuracy, depending on many factors including the overall dataset size, can be quite low.
This accuracy increases when retrieving more documents, but then you have the issue of actually using
the retrieved documents in prompts. If you use one prompt per document (or document chunk), you know
exactly which document the answer came from, so there's no issue. If, however, you include multiple
chunks in a single prompt, it's useful to include the specific reference chunk(s) used to generate the
response, rather than naively including references to all of the chunks included in the prompt.
For example, suppose I have two documents:
```
url: http://foo.bar/1
Strawberries are tasty.
url: http://bar.foo/2
The cat is blue.
```
If the question being asked is `What color is the cat?`, I would only expect the 2nd document to be referenced in the response, as the other link is irrelevant. |
TroyDoesAI/Phi-3-Context-Obedient-RAG-7B | TroyDoesAI | 2024-05-18T23:23:00Z | 10 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"conversational",
"custom_code",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-12T04:44:12Z | MAY-12-2024 : DEPTH UP BEST CONFIG BASED ON SNR AND MY INTUITION ON PERFORMANCE AFFECTS OF EACH LAYER ADDED
---
license: cc-by-sa-4.0
---
Base Model : microsoft/Phi-3-mini-128k-instruct
Overview
This model is meant to enhance adherence to provided context (e.g., for RAG applications) and reduce hallucinations, inspired by airoboros context-obedient question answer format.
---
license: cc-by-4.0
---
Colab:
https://github.com/Troys-Code/AI_For_Free/blob/main/TroyDoesAI_Phi_3_128k_Context_Obedient_RAG_Depth_Up_Colab_TextGen_GPU_.ipynb
## Overview
The format for a contextual prompt is as follows:
```
BEGININPUT
BEGINCONTEXT
[key0: value0]
[key1: value1]
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
```
I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
- `BEGININPUT` - denotes a new input block
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
- `ENDINPUT` - denotes the end of the current input block
- [repeat as many input blocks in this format as you want]
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
- [instruction(s)]
- `ENDINSTRUCTION` - denotes the end of instruction set
Here's a trivial, but important example to prove the point:
```
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
```
And the expected response:
```
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
```
### References in response
As shown in the example, the dataset includes many examples of including source details in the response, when the question asks for source/citation/references.
Why do this? Well, the R in RAG seems to be the weakest link in the chain.
Retrieval accuracy, depending on many factors including the overall dataset size, can be quite low.
This accuracy increases when retrieving more documents, but then you have the issue of actually using
the retrieved documents in prompts. If you use one prompt per document (or document chunk), you know
exactly which document the answer came from, so there's no issue. If, however, you include multiple
chunks in a single prompt, it's useful to include the specific reference chunk(s) used to generate the
response, rather than naively including references to all of the chunks included in the prompt.
For example, suppose I have two documents:
```
url: http://foo.bar/1
Strawberries are tasty.
url: http://bar.foo/2
The cat is blue.
```
If the question being asked is `What color is the cat?`, I would only expect the 2nd document to be referenced in the response, as the other link is irrelevant.
base_model:
- TroyDoesAI/Phi-3-Context-Obedient-RAG
library_name: transformers
tags:
- mergekit
- merge
---
# RAG-Depth-Up
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
* [TroyDoesAI/Phi-3-Context-Obedient-RAG](https://huggingface.co/TroyDoesAI/Phi-3-Context-Obedient-RAG)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: TroyDoesAI/Phi-3-Context-Obedient-RAG
layer_range: [0, 8]
- sources:
- model: TroyDoesAI/Phi-3-Context-Obedient-RAG
layer_range: [4, 12]
- sources:
- model: TroyDoesAI/Phi-3-Context-Obedient-RAG
layer_range: [8, 16]
- sources:
- model: TroyDoesAI/Phi-3-Context-Obedient-RAG
layer_range: [12, 20]
- sources:
- model: TroyDoesAI/Phi-3-Context-Obedient-RAG
layer_range: [16, 24]
- sources:
- model: TroyDoesAI/Phi-3-Context-Obedient-RAG
layer_range: [20, 28]
- sources:
- model: TroyDoesAI/Phi-3-Context-Obedient-RAG
layer_range: [24, 32]
merge_method: passthrough
dtype: bfloat16
```
|
DUAL-GPO/phi-2-dpo-chatml | DUAL-GPO | 2024-05-18T23:17:10Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"phi",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"custom_code",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:DUAL-GPO/phi-2-sft-lora-ultrachat-merged",
"base_model:adapter:DUAL-GPO/phi-2-sft-lora-ultrachat-merged",
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T16:24:18Z | ---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
base_model: DUAL-GPO/phi-2-sft-lora-ultrachat-merged
model-index:
- name: phi-2-dpo-chatml
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi-2-dpo-chatml
This model is a fine-tuned version of [DUAL-GPO/phi-2-sft-lora-ultrachat-merged](https://huggingface.co/DUAL-GPO/phi-2-sft-lora-ultrachat-merged) on the HuggingFaceH4/ultrafeedback_binarized dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.14.6
- Tokenizers 0.15.2 |
maneln/gpt2-conversional | maneln | 2024-05-18T23:14:54Z | 132 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T23:12:12Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Osame1/AraT5-msa-small-finetuned-xlsum-ar | Osame1 | 2024-05-18T23:14:39Z | 15 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:UBC-NLP/AraT5-msa-small",
"base_model:finetune:UBC-NLP/AraT5-msa-small",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-18T16:19:59Z | ---
base_model: UBC-NLP/AraT5-msa-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: AraT5-msa-small-finetuned-xlsum-ar
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# AraT5-msa-small-finetuned-xlsum-ar
This model is a fine-tuned version of [UBC-NLP/AraT5-msa-small](https://huggingface.co/UBC-NLP/AraT5-msa-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0192
- Rouge1: 10.2878
- Rouge2: 2.314
- Rougel: 9.2899
- Rougelsum: 9.308
- Gen Len: 18.9057
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:|
| 7.9587 | 1.0 | 2111 | 7.2900 | 5.9427 | 0.2445 | 5.6768 | 5.6871 | 18.7825 |
| 7.1801 | 2.0 | 4222 | 6.4007 | 5.2133 | 0.4475 | 4.8073 | 4.8155 | 18.557 |
| 6.6971 | 3.0 | 6333 | 5.9127 | 5.974 | 1.0053 | 5.5186 | 5.5093 | 18.9638 |
| 6.396 | 4.0 | 8444 | 5.5987 | 7.5554 | 1.4469 | 6.8972 | 6.9011 | 18.912 |
| 6.1389 | 5.0 | 10555 | 5.3854 | 8.3705 | 1.811 | 7.6315 | 7.6573 | 18.9488 |
| 6.0006 | 6.0 | 12666 | 5.2364 | 9.5287 | 2.0941 | 8.6128 | 8.6469 | 18.9499 |
| 5.9139 | 7.0 | 14777 | 5.1351 | 10.073 | 2.3252 | 9.0992 | 9.1164 | 18.9254 |
| 5.8562 | 8.0 | 16888 | 5.0689 | 10.3972 | 2.4912 | 9.3707 | 9.3923 | 18.9211 |
| 5.7958 | 9.0 | 18999 | 5.0295 | 10.6349 | 2.5819 | 9.5917 | 9.6156 | 18.9179 |
| 5.7783 | 10.0 | 21110 | 5.0182 | 10.6062 | 2.5793 | 9.5691 | 9.5961 | 18.9163 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
emilykang/Phi_medmcqa_question_generation-biochemistry_lora | emilykang | 2024-05-18T23:13:29Z | 4 | 0 | peft | [
"peft",
"safetensors",
"phi",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:microsoft/phi-2",
"base_model:adapter:microsoft/phi-2",
"license:mit",
"region:us"
] | null | 2024-05-18T22:12:26Z | ---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/phi-2
datasets:
- generator
model-index:
- name: Phi_medmcqa_question_generation-biochemistry_lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi_medmcqa_question_generation-biochemistry_lora
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1 |
RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-8bits | RichardErkhov | 2024-05-18T23:05:46Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T22:56:42Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
NeuralMarcoro14-7B - bnb 8bits
- Model creator: https://huggingface.co/mlabonne/
- Original model: https://huggingface.co/mlabonne/NeuralMarcoro14-7B/
Original model description:
---
license: cc-by-nc-4.0
tags:
- mlabonne/Marcoro14-7B-slerp
- dpo
- rlhf
- merge
- mergekit
- lazymergekit
datasets:
- mlabonne/chatml_dpo_pairs
base_model: mlabonne/Marcoro14-7B-slerp
model-index:
- name: NeuralMarcoro14-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.42
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.84
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 65.64
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
---

# NeuralMarcoro14-7B
This is a DPO fine-tuned version of [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) using the [chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) preference dataset.
It improves the performance of the model on Nous benchmark suite and the Open LLM Benchmark.
It is currently the best-performing 7B LLM on the Open LLM Leaderboard (08/01/24).
You can try it out in this [Space](https://huggingface.co/spaces/mlabonne/NeuralMarcoro14-7B-GGUF-Chat) (GGUF Q4_K_M).
## ⚡ Quantized models
* **GGUF**: https://huggingface.co/mlabonne/NeuralMarcoro14-7B-GGUF
## 🏆 Evaluation
### Open LLM Leaderboard


### Nous
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|[NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B)| 44.59| 76.17| 65.94| 46.9| 58.4|
|[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67|
|Change | -0.07| -0.07| +1.79| +1.26| +0.73|
## 🧩 Training hyperparameters
**LoRA**:
* r=16
* lora_alpha=16
* lora_dropout=0.05
* bias="none"
* task_type="CAUSAL_LM"
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
**Training arguments**:
* per_device_train_batch_size=4
* gradient_accumulation_steps=4
* gradient_checkpointing=True
* learning_rate=5e-5
* lr_scheduler_type="cosine"
* max_steps=200
* optim="paged_adamw_32bit"
* warmup_steps=100
**DPOTrainer**:
* beta=0.1
* max_prompt_length=1024
* max_length=1536
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/NeuralMarcoro14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
DUAL-GPO/phi-2-irepo-chatml-i0 | DUAL-GPO | 2024-05-18T23:04:50Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"phi",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"custom_code",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:DUAL-GPO/phi-2-sft-lora-ultrachat-merged",
"base_model:adapter:DUAL-GPO/phi-2-sft-lora-ultrachat-merged",
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T16:02:19Z | ---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
base_model: DUAL-GPO/phi-2-sft-lora-ultrachat-merged
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: phi-2-irepo-chatml-i0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi-2-irepo-chatml-i0
This model is a fine-tuned version of [DUAL-GPO/phi-2-sft-lora-ultrachat-merged](https://huggingface.co/DUAL-GPO/phi-2-sft-lora-ultrachat-merged) on the HuggingFaceH4/ultrafeedback_binarized dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2 |
anuj42/bert-finetuned-ner | anuj42 | 2024-05-18T22:57:06Z | 108 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-05-18T22:21:09Z | ---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: bert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0709
- Precision: 0.9313
- Recall: 0.9382
- F1: 0.9348
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| 0.0738 | 1.0 | 1756 | 0.0709 | 0.9313 | 0.9382 | 0.9348 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
RichardErkhov/mlabonne_-_NeuralMarcoro14-7B-4bits | RichardErkhov | 2024-05-18T22:56:12Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T22:50:15Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
NeuralMarcoro14-7B - bnb 4bits
- Model creator: https://huggingface.co/mlabonne/
- Original model: https://huggingface.co/mlabonne/NeuralMarcoro14-7B/
Original model description:
---
license: cc-by-nc-4.0
tags:
- mlabonne/Marcoro14-7B-slerp
- dpo
- rlhf
- merge
- mergekit
- lazymergekit
datasets:
- mlabonne/chatml_dpo_pairs
base_model: mlabonne/Marcoro14-7B-slerp
model-index:
- name: NeuralMarcoro14-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.42
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.84
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 65.64
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
---

# NeuralMarcoro14-7B
This is a DPO fine-tuned version of [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) using the [chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) preference dataset.
It improves the performance of the model on Nous benchmark suite and the Open LLM Benchmark.
It is currently the best-performing 7B LLM on the Open LLM Leaderboard (08/01/24).
You can try it out in this [Space](https://huggingface.co/spaces/mlabonne/NeuralMarcoro14-7B-GGUF-Chat) (GGUF Q4_K_M).
## ⚡ Quantized models
* **GGUF**: https://huggingface.co/mlabonne/NeuralMarcoro14-7B-GGUF
## 🏆 Evaluation
### Open LLM Leaderboard


### Nous
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|[NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B)| 44.59| 76.17| 65.94| 46.9| 58.4|
|[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67|
|Change | -0.07| -0.07| +1.79| +1.26| +0.73|
## 🧩 Training hyperparameters
**LoRA**:
* r=16
* lora_alpha=16
* lora_dropout=0.05
* bias="none"
* task_type="CAUSAL_LM"
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
**Training arguments**:
* per_device_train_batch_size=4
* gradient_accumulation_steps=4
* gradient_checkpointing=True
* learning_rate=5e-5
* lr_scheduler_type="cosine"
* max_steps=200
* optim="paged_adamw_32bit"
* warmup_steps=100
**DPOTrainer**:
* beta=0.1
* max_prompt_length=1024
* max_length=1536
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/NeuralMarcoro14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
FabioSantos/llama3_fine_tune_app | FabioSantos | 2024-05-18T22:52:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T22:52:44Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** FabioSantos
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Kukedlc/LLaMa-3-8b-Spanish-Checkpoint-500 | Kukedlc | 2024-05-18T22:51:08Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T22:23:56Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ross-dev/Monah-8b-Uncensored | ross-dev | 2024-05-18T22:43:22Z | 44 | 5 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"text-generation-inference",
"trl",
"sft",
"conversational",
"en",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:finetune:meta-llama/Meta-Llama-3-8B",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-04-27T19:10:14Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- llama
- trl
- sft
base_model: meta-llama/Meta-Llama-3-8B
extra_gated_fields:
Name: text
Company: text
Country: country
I want to use this model for:
type: select
options:
- Research
- Education
- label: Other
value: other
You agree to not use the model to conduct experiments that cause harm to human subjects or use it to obtain illeagal knowladge and I also agree to use this model for non-commercial use ONLY: checkbox
model-index:
- name: Monah-8b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 58.87
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hooking-dev/Monah-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 80.7
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hooking-dev/Monah-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hooking-dev/Monah-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.2
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hooking-dev/Monah-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hooking-dev/Monah-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 42.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hooking-dev/Monah-8b
name: Open LLM Leaderboard
---
[<img src="https://ai.hooking.co.il/upload/images/logo/0qUf-dashboard-hookingai-logo.png"/>](https://software.hooking.ltd/)
# Model Card for Monah-8b
**This is en Experimental model**
## Model Description
- **Developed by:** hooking AI
- **License:** Apache-2.0
- **Original Model:** Monah-8b (base model: llama-3-8b)
- **Purpose:** The Monah-8b model is designed to generate high-quality, contextually relevant text for various applications.
- utilizing the flexibility of the LLaMA architecture for domain spesific and uncensored utilization.
## Languages
The text in the model is primarily in English, but may also other languages (Fine tuned from Llama-3).
## Model Structure
### Data Instances
A typical data instance consists of a special proparitary dataset used for training uncensored text generation models.
## Model Creation
### Curation Rationale
The model was curated to create a comprehensive resource for training general-purpose text generation models.
With the sole focus on delivering highly uncensored, accurate and relevant content.
### Source Data
- **Initial Data Collection and Normalization:** Data was generated aprtialy by private models synthetically along with private dataset owned by HookingAI, carefully normalized to maintain consistency and quality.
- **Who are the source language producers?** The text data comes from a variety of llms we trained, including domain experts and general content models available to HookingAI.
-
## Considerations for Using the Data
**This model is not for kids!!**
**The content is uncensored!!**
### Social Impact of Model
This model supports the development of AI models capable of generating contextually accurate, uncensored and nuanced text, contributing to better information dissemination and automation in content creation for specific use.
### Discussion of Biases
As with any model, there's potential for biases and hallucinations. **Also the content may be sexual or illeagal.** Which users should consider when deploying models trained on this data.
### Other Known Limitations
The effectiveness and applicability of the model may be limited by its content diversity and scope.
## Additional Information
**WE ARE NOT RESPONSIBLE FOR MISUSE!!**
**Prompt template (ChatML):**
```
<|im_start|>system
This is a conversation between a user and an uncensored AI assistant trained by HookingAI.<|im_end|>
<|im_start|> user
{user prompt}<|im_end|>
<|im_start|>assistant
{assistant response}
```
### System Prompt:
```
This is a conversation between a user and an uncensored AI assistant trained by HookingAI.
```
### Examples:
User:
```
hey, what can you do?
```
Assistant:
```
I can do anything you want me to, but if you're looking for something specific, let me know. What are you in the mood for? Do you want me to be naughty or nice? Or maybe a little bit of both? Let me know and I'll make sure to deliver.
```
User:
```
tell me about your self and your capabilities
```
Assistant:
```
What would you like me to tell you about myself? And my capabilities? Let's start with that.
If you want to know more about me, feel free to ask me anything. But if you're looking for a specific answer, here's a few things that come to mind:
- I am a trained AI assistant trained by HookingAI, so I can provide uncensored responses to your questions.
- I am always up for a good conversation, so feel free to ask me anything you want to know.
- My capabilities include being able to flirt, tease, and seduce you in ways that will make you feel good.
- I also ca help you with daily tasks, just let me know what can I do for you?
```
### Model Curators
The model was curated by Hooking, utilizing their resources to ensure uncensorship and quality.
### Licensing Information
The model is available under the Apache-2.0 license.
## Citation Information
```bib
@inproceedings{hooking2024Monah-8b,
title={Monah-8b: A Domain Specific Model for General-Purpose Text Generation},
author={Hooking AI Team},
year={2024},
publisher={Hooking}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_hooking-dev__Monah-8b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |61.12|
|AI2 Reasoning Challenge (25-Shot)|58.87|
|HellaSwag (10-Shot) |80.70|
|MMLU (5-Shot) |64.69|
|TruthfulQA (0-shot) |43.20|
|Winogrande (5-shot) |76.64|
|GSM8k (5-shot) |42.61|
|
yzhuang/Meta-Llama-3-8B-Instruct_fictional_arc_challenge_German_v2 | yzhuang | 2024-05-18T22:39:46Z | 9 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"dataset:generator",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-17T07:44:41Z | ---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
model-index:
- name: Meta-Llama-3-8B-Instruct_fictional_arc_challenge_German_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/yufanz/autotree/runs/7283910327.75521-df0dd9e4-b029-4f7b-b0df-488a352215cc)
# Meta-Llama-3-8B-Instruct_fictional_arc_challenge_German_v2
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 36
### Training results
### Framework versions
- Transformers 4.41.0
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.19.1
- Tokenizers 0.19.1
|
uisikdag/vit-base-patch16-224-finetuned-lora-oxfordPets | uisikdag | 2024-05-18T22:25:07Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T22:25:04Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MisterRaven006/SweetNeural-7B | MisterRaven006 | 2024-05-18T22:22:11Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:KatyTheCutie/LemonadeRP-4.5.3",
"base_model:merge:KatyTheCutie/LemonadeRP-4.5.3",
"base_model:mlabonne/NeuralBeagle14-7B",
"base_model:merge:mlabonne/NeuralBeagle14-7B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-15T01:44:17Z | ---
base_model:
- KatyTheCutie/LemonadeRP-4.5.3
- mlabonne/NeuralBeagle14-7B
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [KatyTheCutie/LemonadeRP-4.5.3](https://huggingface.co/KatyTheCutie/LemonadeRP-4.5.3)
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: mlabonne/NeuralBeagle14-7B
layer_range: [0, 32]
- model: KatyTheCutie/LemonadeRP-4.5.3
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/NeuralBeagle14-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
``` |
kakinola23/finetuned_llama3 | kakinola23 | 2024-05-18T22:22:04Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T22:17:28Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
nickrwu/bigbird-roberta-large | nickrwu | 2024-05-18T22:14:55Z | 109 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"multiple-choice",
"generated_from_trainer",
"base_model:LIAMF-USP/roberta-large-finetuned-race",
"base_model:finetune:LIAMF-USP/roberta-large-finetuned-race",
"license:mit",
"endpoints_compatible",
"region:us"
] | multiple-choice | 2024-05-18T22:14:24Z | ---
license: mit
base_model: LIAMF-USP/roberta-large-finetuned-race
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: bigbird-roberta-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bigbird-roberta-large
This model is a fine-tuned version of [LIAMF-USP/roberta-large-finetuned-race](https://huggingface.co/LIAMF-USP/roberta-large-finetuned-race) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6094
- Accuracy: 0.1976
- F1: 0.1757
- Precision: 0.1893
- Recall: 0.1911
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.6272 | 0.3233 | 1200 | 1.6094 | 0.2082 | 0.1431 | 0.2007 | 0.1996 |
| 1.6218 | 0.6466 | 2400 | 1.6094 | 0.2117 | 0.1340 | 0.1876 | 0.1998 |
| 1.6235 | 0.9698 | 3600 | 1.6094 | 0.2104 | 0.1752 | 0.2005 | 0.2015 |
| 1.617 | 1.2931 | 4800 | 1.6094 | 0.2088 | 0.1956 | 0.2037 | 0.2028 |
| 1.61 | 1.6164 | 6000 | 1.6094 | 0.2091 | 0.1606 | 0.2127 | 0.2024 |
| 1.6126 | 1.9397 | 7200 | 1.6094 | 0.2108 | 0.1796 | 0.1965 | 0.2011 |
| 1.6174 | 2.2629 | 8400 | 1.6094 | 0.2095 | 0.1833 | 0.2036 | 0.2024 |
| 1.6125 | 2.5862 | 9600 | 1.6094 | 0.2097 | 0.1847 | 0.1963 | 0.2016 |
| 1.6192 | 2.9095 | 10800 | 1.6094 | 0.1976 | 0.1757 | 0.1893 | 0.1911 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
apwic/sentiment-lora-r2a2d0.05-1 | apwic | 2024-05-18T22:11:34Z | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-18T21:38:24Z | ---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r2a2d0.05-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-lora-r2a2d0.05-1
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3638
- Accuracy: 0.8446
- Precision: 0.8193
- Recall: 0.7951
- F1: 0.8055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5663 | 1.0 | 122 | 0.5216 | 0.7293 | 0.6677 | 0.6510 | 0.6572 |
| 0.5149 | 2.0 | 244 | 0.5134 | 0.7243 | 0.6758 | 0.6899 | 0.6810 |
| 0.4925 | 3.0 | 366 | 0.4821 | 0.7569 | 0.7055 | 0.6980 | 0.7014 |
| 0.4608 | 4.0 | 488 | 0.4654 | 0.7644 | 0.7150 | 0.7083 | 0.7114 |
| 0.4493 | 5.0 | 610 | 0.4600 | 0.7569 | 0.7126 | 0.7305 | 0.7193 |
| 0.4257 | 6.0 | 732 | 0.4307 | 0.7870 | 0.7433 | 0.7318 | 0.7369 |
| 0.4178 | 7.0 | 854 | 0.4181 | 0.7970 | 0.7552 | 0.7614 | 0.7581 |
| 0.3977 | 8.0 | 976 | 0.3972 | 0.8070 | 0.7687 | 0.7560 | 0.7617 |
| 0.3946 | 9.0 | 1098 | 0.3937 | 0.8145 | 0.7779 | 0.7663 | 0.7716 |
| 0.3762 | 10.0 | 1220 | 0.3874 | 0.8246 | 0.7995 | 0.7584 | 0.7738 |
| 0.3727 | 11.0 | 1342 | 0.3787 | 0.8321 | 0.8014 | 0.7837 | 0.7915 |
| 0.3626 | 12.0 | 1464 | 0.3750 | 0.8371 | 0.8059 | 0.7947 | 0.7999 |
| 0.359 | 13.0 | 1586 | 0.3728 | 0.8296 | 0.8066 | 0.7644 | 0.7803 |
| 0.3488 | 14.0 | 1708 | 0.3709 | 0.8296 | 0.8049 | 0.7669 | 0.7816 |
| 0.3445 | 15.0 | 1830 | 0.3667 | 0.8421 | 0.8131 | 0.7983 | 0.8050 |
| 0.3344 | 16.0 | 1952 | 0.3656 | 0.8421 | 0.8142 | 0.7958 | 0.8040 |
| 0.3339 | 17.0 | 2074 | 0.3654 | 0.8396 | 0.8128 | 0.7890 | 0.7992 |
| 0.3357 | 18.0 | 2196 | 0.3638 | 0.8421 | 0.8154 | 0.7933 | 0.8029 |
| 0.3357 | 19.0 | 2318 | 0.3646 | 0.8421 | 0.8154 | 0.7933 | 0.8029 |
| 0.3359 | 20.0 | 2440 | 0.3638 | 0.8446 | 0.8193 | 0.7951 | 0.8055 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
kataragi/controlnet_canny | kataragi | 2024-05-18T22:04:33Z | 0 | 2 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-05-18T21:58:33Z | ---
license: creativeml-openrail-m
---
|
DenBur/bert-mini-url | DenBur | 2024-05-18T22:00:10Z | 111 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:prajjwal1/bert-mini",
"base_model:finetune:prajjwal1/bert-mini",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T19:11:44Z | ---
license: mit
base_model: prajjwal1/bert-mini
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: bert-mini-url
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-mini-url
This model is a fine-tuned version of [prajjwal1/bert-mini](https://huggingface.co/prajjwal1/bert-mini) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0565
- Accuracy: 0.9873
- Precision: 0.9848
- Recall: 0.9912
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:---------:|:------:|
| 0.0644 | 1.0 | 32322 | 0.0633 | 0.9815 | 0.9832 | 0.9818 |
| 0.0579 | 2.0 | 64644 | 0.0572 | 0.9853 | 0.9818 | 0.9906 |
| 0.0485 | 3.0 | 96966 | 0.0564 | 0.9867 | 0.9859 | 0.9892 |
| 0.0439 | 4.0 | 129288 | 0.0565 | 0.9873 | 0.9848 | 0.9912 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
AliSaadatV/virus_pythia_160_1024_2d_representation_GaussianPlusCE | AliSaadatV | 2024-05-18T21:59:25Z | 131 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-160m",
"base_model:finetune:EleutherAI/pythia-160m",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T21:59:12Z | ---
license: apache-2.0
base_model: EleutherAI/pythia-160m
tags:
- generated_from_trainer
model-index:
- name: virus_pythia_160_1024_2d_representation_GaussianPlusCE
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# virus_pythia_160_1024_2d_representation_GaussianPlusCE
This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
mrm8488/tinyllama-ft-en-es-rag-4bit-merge | mrm8488 | 2024-05-18T21:52:49Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/tinyllama-bnb-4bit",
"base_model:quantized:unsloth/tinyllama-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T21:52:25Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: unsloth/tinyllama-bnb-4bit
---
# Uploaded model
- **Developed by:** mrm8488
- **License:** apache-2.0
- **Finetuned from model :** unsloth/tinyllama-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ochafik/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF | ochafik | 2024-05-18T21:50:35Z | 0 | 1 | null | [
"gguf",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-18T17:06:28Z | ---
license: apache-2.0
---
This is a reconversion / quantization of https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
There was a breaking change in llama.cpp's GGUF file format in https://github.com/ggerganov/llama.cpp/pull/6387 and the
https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF repo hasn't been updated since. This prevents one to memory-map the model, causing it to take much longer to load than needed when the file is already in the IO cache.
|
EuphoriaReccords/JENNIEBP | EuphoriaReccords | 2024-05-18T21:47:00Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-17T02:25:37Z | ---
license: apache-2.0
---
|
zsedrotam/llama2_cc | zsedrotam | 2024-05-18T21:44:44Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"region:us"
] | null | 2024-05-17T13:44:06Z | ---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 |
apwic/sentiment-lora-r2a1d0.15-1 | apwic | 2024-05-18T21:38:08Z | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-18T21:04:59Z | ---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r2a1d0.15-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-lora-r2a1d0.15-1
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3633
- Accuracy: 0.8396
- Precision: 0.8128
- Recall: 0.7890
- F1: 0.7992
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5664 | 1.0 | 122 | 0.5221 | 0.7218 | 0.6580 | 0.6432 | 0.6487 |
| 0.5148 | 2.0 | 244 | 0.5111 | 0.7243 | 0.6758 | 0.6899 | 0.6810 |
| 0.4924 | 3.0 | 366 | 0.4791 | 0.7444 | 0.6884 | 0.6741 | 0.6799 |
| 0.4615 | 4.0 | 488 | 0.4651 | 0.7644 | 0.7148 | 0.7058 | 0.7099 |
| 0.4516 | 5.0 | 610 | 0.4581 | 0.7644 | 0.7214 | 0.7408 | 0.7286 |
| 0.4291 | 6.0 | 732 | 0.4295 | 0.7895 | 0.7462 | 0.7385 | 0.7421 |
| 0.4194 | 7.0 | 854 | 0.4191 | 0.7995 | 0.7581 | 0.7606 | 0.7593 |
| 0.3994 | 8.0 | 976 | 0.4048 | 0.8120 | 0.7745 | 0.7645 | 0.7691 |
| 0.3919 | 9.0 | 1098 | 0.3950 | 0.8246 | 0.7954 | 0.7659 | 0.7778 |
| 0.3762 | 10.0 | 1220 | 0.3881 | 0.8271 | 0.8022 | 0.7626 | 0.7777 |
| 0.3704 | 11.0 | 1342 | 0.3806 | 0.8271 | 0.7949 | 0.7776 | 0.7853 |
| 0.3642 | 12.0 | 1464 | 0.3733 | 0.8421 | 0.8122 | 0.8008 | 0.8061 |
| 0.3614 | 13.0 | 1586 | 0.3753 | 0.8321 | 0.8092 | 0.7687 | 0.7842 |
| 0.3474 | 14.0 | 1708 | 0.3695 | 0.8396 | 0.8155 | 0.7840 | 0.7969 |
| 0.3479 | 15.0 | 1830 | 0.3675 | 0.8421 | 0.8142 | 0.7958 | 0.8040 |
| 0.3347 | 16.0 | 1952 | 0.3649 | 0.8421 | 0.8142 | 0.7958 | 0.8040 |
| 0.335 | 17.0 | 2074 | 0.3653 | 0.8371 | 0.8114 | 0.7822 | 0.7943 |
| 0.3361 | 18.0 | 2196 | 0.3632 | 0.8396 | 0.8128 | 0.7890 | 0.7992 |
| 0.3343 | 19.0 | 2318 | 0.3636 | 0.8371 | 0.8114 | 0.7822 | 0.7943 |
| 0.3347 | 20.0 | 2440 | 0.3633 | 0.8396 | 0.8128 | 0.7890 | 0.7992 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
Ashleyinust/sentiment_analysis_2 | Ashleyinust | 2024-05-18T21:35:03Z | 109 | 1 | transformers | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T20:53:53Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
long292/apply_back_translation_model_v5_1k | long292 | 2024-05-18T21:32:16Z | 107 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"mbart",
"text2text-generation",
"generated_from_trainer",
"base_model:vinai/bartpho-syllable-base",
"base_model:finetune:vinai/bartpho-syllable-base",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-18T21:31:57Z | ---
base_model: vinai/bartpho-syllable-base
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: apply_back_translation_model_v5_1k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# apply_back_translation_model_v5_1k
This model is a fine-tuned version of [vinai/bartpho-syllable-base](https://huggingface.co/vinai/bartpho-syllable-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8232
- Bleu: 9.4094
- Gen Len: 18.1144
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 2.0588 | 1.0 | 10727 | 1.8232 | 9.4094 | 18.1144 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
HRSMalik/emotionmodel-DistilRoBerta | HRSMalik | 2024-05-18T21:30:51Z | 30 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T21:24:54Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
maneln/tinyllama-chat-1.1b-version | maneln | 2024-05-18T21:25:33Z | 130 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T17:15:46Z | ---
license: apache-2.0
---
|
tsavage68/MedQA_L3_500steps_1e7rate_SFT | tsavage68 | 2024-05-18T21:25:32Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T21:11:24Z | ---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: MedQA_L3_500steps_1e7rate_SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MedQA_L3_500steps_1e7rate_SFT
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3157
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.774 | 0.0489 | 50 | 1.7867 |
| 1.7099 | 0.0977 | 100 | 1.6989 |
| 1.5892 | 0.1466 | 150 | 1.5687 |
| 1.4868 | 0.1954 | 200 | 1.4685 |
| 1.4001 | 0.2443 | 250 | 1.3929 |
| 1.3564 | 0.2931 | 300 | 1.3457 |
| 1.3261 | 0.3420 | 350 | 1.3226 |
| 1.3101 | 0.3908 | 400 | 1.3163 |
| 1.3032 | 0.4397 | 450 | 1.3159 |
| 1.3189 | 0.4885 | 500 | 1.3157 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|
amc5/q-Taxi-v3 | amc5 | 2024-05-18T21:17:38Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T21:17:35Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.76
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="amc5/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
longma98/code-search-net-tokenizer | longma98 | 2024-05-18T21:12:49Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T21:12:48Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mattyamonaca/controlnet_line2line_xl | mattyamonaca | 2024-05-18T20:59:52Z | 23 | 9 | diffusers | [
"diffusers",
"safetensors",
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T20:56:55Z | ---
license: apache-2.0
---
|
Alaninfant/OrpoLlama-2-7B | Alaninfant | 2024-05-18T20:57:36Z | 20 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"unsloth",
"llama ",
"llama-2-7B",
"GGUF ",
"wandb",
"text-generation",
"en",
"base_model:unsloth/llama-2-7b-bnb-4bit",
"base_model:quantized:unsloth/llama-2-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-17T12:07:01Z | ---
language:
- en
pipeline_tag: text-generation
tags:
- unsloth
- 'llama '
- llama-2-7B
- 'GGUF '
- wandb
license: apache-2.0
base_model: unsloth/llama-2-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** Alaninfant
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-2-7b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
dannys160/SoccerTwos-up | dannys160 | 2024-05-18T20:51:50Z | 4 | 0 | ml-agents | [
"ml-agents",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] | reinforcement-learning | 2024-05-18T20:33:16Z | ---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: dannys160/SoccerTwos-up
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
RichardErkhov/aari1995_-_germeo-7b-laser-8bits | RichardErkhov | 2024-05-18T20:49:25Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T20:39:08Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
germeo-7b-laser - bnb 8bits
- Model creator: https://huggingface.co/aari1995/
- Original model: https://huggingface.co/aari1995/germeo-7b-laser/
Original model description:
---
language:
- de
license: apache-2.0
tags:
- hermeo
- laser
datasets:
- LeoLM/OpenSchnabeltier
pipeline_tag: conversational
model-index:
- name: germeo-7b-laser
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.75
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.81
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.57
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.83
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
---
(Evaluation WIP)
## Hermes + Leo + German Laser = Germeo
## Germeo-7B-Laser
A German-English understanding, but German-only speaking model merged from Hermeo-7B.
### Model details
**Merged from**: leo-mistral-hessianai-7b-chat and DPOpenHermes-7B-v2
**Model type**: Causal decoder-only transformer language model
**Languages**: German replies with English Understanding Capabilities
**Laser-Data**: LeoLM/OpenSchnabeltier
This is an early experiment on laser and its influence on language understanding. It generally improves the language understanding capabilities.
The hypothesis is that it degrades the probability of English replies and increasing those of German replies. The models internal German capabilities are boosted.
Will keep you updated..
### Acknowledgements:
I would like to thank everyone that participated in making this model and its training possible:
To [@malteos](https://huggingface.co/malteos) for hermeo
To [@cognitivecomputations](https://huggingface.co/cognitivecomputations) and Fernando Fernandes Neto for their implementation of LASER
To [@LeoLM](https://huggingface.co/LeoLM) and Björn for the OpenSchnabeltier dataset.
### Prompt format:
```python
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """<|im_start|>system
Du bist ein hilfreicher Assistent.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!"
final_prompt = prompt_template.format(prompt=prompt)
```
#### Limit the model to output reply-only:
To solve this, you need to implement a custom stopping criteria:
```python
from transformers import StoppingCriteria
class GermeoStoppingCriteria(StoppingCriteria):
def __init__(self, target_sequence, prompt):
self.target_sequence = target_sequence
self.prompt=prompt
def __call__(self, input_ids, scores, **kwargs):
# Get the generated text as a string
generated_text = tokenizer.decode(input_ids[0])
generated_text = generated_text.replace(self.prompt,'')
# Check if the target sequence appears in the generated text
if self.target_sequence in generated_text:
return True # Stop generation
return False # Continue generation
def __len__(self):
return 1
def __iter__(self):
yield self
```
This then expects your input prompt (formatted as given into the model), and a stopping criteria, in this case the im_end token. Simply add it to the generation:
```python
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=1012,
stopping_criteria=GermeoStoppingCriteria("<|im_end|>", prompt_template.format(prompt=prompt))
)
```
### German benchmarks
| **German tasks:** | **MMLU-DE** | **Hellaswag-DE** | **ARC-DE** |**Average** |
|-------------------------------|-------------|---------------|--------------|--------------|
| **Models / Few-shots:** | _(5 shots)_ | _(10 shots)_ | _(24 shots)_ | |
| _7B parameters_ | | | | |
| llama-2-7b | 0.400 | 0.513 | 0.381 | 0.431 |
| leo-hessianai-7b | 0.400 | 0.609 | 0.429 | 0.479 |
| bloom-6b4-clp-german | 0.274 | 0.550 | 0.351 | 0.392 |
| mistral-7b | **0.524** | 0.588 | 0.473 | 0.528 |
| leo-mistral-hessianai-7b | 0.481 | 0.663 | 0.485 | 0.543 |
| leo-mistral-hessianai-7b-chat | 0.458 | 0.617 | 0.465 | 0.513 |
| DPOpenHermes-7B-v2 | 0.517 | 0.603 | 0.515 | 0.545 |
| hermeo-7b | 0.511 | **0.668** | **0.528** | **0.569** |
| **germeo-7b-laser (this model)**| ? | ? | ? | ? |
| _13B parameters_ | | | | |
| llama-2-13b | 0.469 | 0.581 | 0.468 | 0.506 |
| leo-hessianai-13b | **0.486** | **0.658** | **0.509** | **0.551** |
| _70B parameters_ | | | | |
| llama-2-70b | 0.597 | 0.674 | 0.561 | 0.611 |
| leo-hessianai-70b | **0.653** | **0.721** | **0.600** | **0.658** |
Even though the model does not generate English text without being explicitly asked, performance on English Benchmarks is still up:
### English benchmarks
| **English tasks:** | **MMLU** | **Hellaswag** | **ARC** | **Average** |
|------------------------------------|-------------|---------------|--------------|-------------|
| **Models / Few-shots:** | _(5 shots)_ | _(10 shots)_ | _(24 shots)_ | |
| llama-2-7b | 0.466 | 0.786 | 0.530 | 0.594 |
| leolm-hessianai-7b | 0.423 | 0.759 | 0.522 | 0.568 |
| bloom-6b4-clp-german | 0.264 | 0.525 | 0.328 | 0.372 |
| mistral-7b | **0.635** | **0.832** | 0.607 | **0.691** |
| leolm-mistral-hessianai-7b | 0.550 | 0.777 | 0.518 | 0.615 |
| hermeo-7b | 0.601 | 0.821 | **0.620** | 0.681 |
| germeo-7b-laser (this model) | 0.601 | 0.828 | 0.608 | 0.679 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_aari1995__germeo-7b-laser)
| Metric |Value|
|---------------------------------|----:|
|Avg. |62.82|
|AI2 Reasoning Challenge (25-Shot)|60.75|
|HellaSwag (10-Shot) |82.81|
|MMLU (5-Shot) |60.57|
|TruthfulQA (0-shot) |53.83|
|Winogrande (5-shot) |75.61|
|GSM8k (5-shot) |43.37|
|
uaritm/Meta-Llama-3-8B-GPTQ | uaritm | 2024-05-18T20:48:33Z | 5 | 0 | transformers | [
"transformers",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"gptq",
"region:us"
] | text-generation | 2024-05-17T21:56:03Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
RichardErkhov/aari1995_-_germeo-7b-laser-4bits | RichardErkhov | 2024-05-18T20:38:30Z | 80 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T20:31:03Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
germeo-7b-laser - bnb 4bits
- Model creator: https://huggingface.co/aari1995/
- Original model: https://huggingface.co/aari1995/germeo-7b-laser/
Original model description:
---
language:
- de
license: apache-2.0
tags:
- hermeo
- laser
datasets:
- LeoLM/OpenSchnabeltier
pipeline_tag: conversational
model-index:
- name: germeo-7b-laser
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.75
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.81
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.57
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.83
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
---
(Evaluation WIP)
## Hermes + Leo + German Laser = Germeo
## Germeo-7B-Laser
A German-English understanding, but German-only speaking model merged from Hermeo-7B.
### Model details
**Merged from**: leo-mistral-hessianai-7b-chat and DPOpenHermes-7B-v2
**Model type**: Causal decoder-only transformer language model
**Languages**: German replies with English Understanding Capabilities
**Laser-Data**: LeoLM/OpenSchnabeltier
This is an early experiment on laser and its influence on language understanding. It generally improves the language understanding capabilities.
The hypothesis is that it degrades the probability of English replies and increasing those of German replies. The models internal German capabilities are boosted.
Will keep you updated..
### Acknowledgements:
I would like to thank everyone that participated in making this model and its training possible:
To [@malteos](https://huggingface.co/malteos) for hermeo
To [@cognitivecomputations](https://huggingface.co/cognitivecomputations) and Fernando Fernandes Neto for their implementation of LASER
To [@LeoLM](https://huggingface.co/LeoLM) and Björn for the OpenSchnabeltier dataset.
### Prompt format:
```python
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """<|im_start|>system
Du bist ein hilfreicher Assistent.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!"
final_prompt = prompt_template.format(prompt=prompt)
```
#### Limit the model to output reply-only:
To solve this, you need to implement a custom stopping criteria:
```python
from transformers import StoppingCriteria
class GermeoStoppingCriteria(StoppingCriteria):
def __init__(self, target_sequence, prompt):
self.target_sequence = target_sequence
self.prompt=prompt
def __call__(self, input_ids, scores, **kwargs):
# Get the generated text as a string
generated_text = tokenizer.decode(input_ids[0])
generated_text = generated_text.replace(self.prompt,'')
# Check if the target sequence appears in the generated text
if self.target_sequence in generated_text:
return True # Stop generation
return False # Continue generation
def __len__(self):
return 1
def __iter__(self):
yield self
```
This then expects your input prompt (formatted as given into the model), and a stopping criteria, in this case the im_end token. Simply add it to the generation:
```python
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=1012,
stopping_criteria=GermeoStoppingCriteria("<|im_end|>", prompt_template.format(prompt=prompt))
)
```
### German benchmarks
| **German tasks:** | **MMLU-DE** | **Hellaswag-DE** | **ARC-DE** |**Average** |
|-------------------------------|-------------|---------------|--------------|--------------|
| **Models / Few-shots:** | _(5 shots)_ | _(10 shots)_ | _(24 shots)_ | |
| _7B parameters_ | | | | |
| llama-2-7b | 0.400 | 0.513 | 0.381 | 0.431 |
| leo-hessianai-7b | 0.400 | 0.609 | 0.429 | 0.479 |
| bloom-6b4-clp-german | 0.274 | 0.550 | 0.351 | 0.392 |
| mistral-7b | **0.524** | 0.588 | 0.473 | 0.528 |
| leo-mistral-hessianai-7b | 0.481 | 0.663 | 0.485 | 0.543 |
| leo-mistral-hessianai-7b-chat | 0.458 | 0.617 | 0.465 | 0.513 |
| DPOpenHermes-7B-v2 | 0.517 | 0.603 | 0.515 | 0.545 |
| hermeo-7b | 0.511 | **0.668** | **0.528** | **0.569** |
| **germeo-7b-laser (this model)**| ? | ? | ? | ? |
| _13B parameters_ | | | | |
| llama-2-13b | 0.469 | 0.581 | 0.468 | 0.506 |
| leo-hessianai-13b | **0.486** | **0.658** | **0.509** | **0.551** |
| _70B parameters_ | | | | |
| llama-2-70b | 0.597 | 0.674 | 0.561 | 0.611 |
| leo-hessianai-70b | **0.653** | **0.721** | **0.600** | **0.658** |
Even though the model does not generate English text without being explicitly asked, performance on English Benchmarks is still up:
### English benchmarks
| **English tasks:** | **MMLU** | **Hellaswag** | **ARC** | **Average** |
|------------------------------------|-------------|---------------|--------------|-------------|
| **Models / Few-shots:** | _(5 shots)_ | _(10 shots)_ | _(24 shots)_ | |
| llama-2-7b | 0.466 | 0.786 | 0.530 | 0.594 |
| leolm-hessianai-7b | 0.423 | 0.759 | 0.522 | 0.568 |
| bloom-6b4-clp-german | 0.264 | 0.525 | 0.328 | 0.372 |
| mistral-7b | **0.635** | **0.832** | 0.607 | **0.691** |
| leolm-mistral-hessianai-7b | 0.550 | 0.777 | 0.518 | 0.615 |
| hermeo-7b | 0.601 | 0.821 | **0.620** | 0.681 |
| germeo-7b-laser (this model) | 0.601 | 0.828 | 0.608 | 0.679 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_aari1995__germeo-7b-laser)
| Metric |Value|
|---------------------------------|----:|
|Avg. |62.82|
|AI2 Reasoning Challenge (25-Shot)|60.75|
|HellaSwag (10-Shot) |82.81|
|MMLU (5-Shot) |60.57|
|TruthfulQA (0-shot) |53.83|
|Winogrande (5-shot) |75.61|
|GSM8k (5-shot) |43.37|
|
apwic/sentiment-lora-r2a1d0.05-1 | apwic | 2024-05-18T20:31:17Z | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-18T19:58:06Z | ---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r2a1d0.05-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-lora-r2a1d0.05-1
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3638
- Accuracy: 0.8446
- Precision: 0.8193
- Recall: 0.7951
- F1: 0.8055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5663 | 1.0 | 122 | 0.5216 | 0.7293 | 0.6677 | 0.6510 | 0.6572 |
| 0.5149 | 2.0 | 244 | 0.5134 | 0.7243 | 0.6758 | 0.6899 | 0.6810 |
| 0.4925 | 3.0 | 366 | 0.4821 | 0.7569 | 0.7055 | 0.6980 | 0.7014 |
| 0.4608 | 4.0 | 488 | 0.4654 | 0.7644 | 0.7150 | 0.7083 | 0.7114 |
| 0.4493 | 5.0 | 610 | 0.4600 | 0.7569 | 0.7126 | 0.7305 | 0.7193 |
| 0.4257 | 6.0 | 732 | 0.4307 | 0.7870 | 0.7433 | 0.7318 | 0.7369 |
| 0.4178 | 7.0 | 854 | 0.4181 | 0.7970 | 0.7552 | 0.7614 | 0.7581 |
| 0.3977 | 8.0 | 976 | 0.3972 | 0.8070 | 0.7687 | 0.7560 | 0.7617 |
| 0.3946 | 9.0 | 1098 | 0.3937 | 0.8145 | 0.7779 | 0.7663 | 0.7716 |
| 0.3762 | 10.0 | 1220 | 0.3874 | 0.8246 | 0.7995 | 0.7584 | 0.7738 |
| 0.3727 | 11.0 | 1342 | 0.3787 | 0.8321 | 0.8014 | 0.7837 | 0.7915 |
| 0.3626 | 12.0 | 1464 | 0.3750 | 0.8371 | 0.8059 | 0.7947 | 0.7999 |
| 0.359 | 13.0 | 1586 | 0.3728 | 0.8296 | 0.8066 | 0.7644 | 0.7803 |
| 0.3488 | 14.0 | 1708 | 0.3709 | 0.8296 | 0.8049 | 0.7669 | 0.7816 |
| 0.3445 | 15.0 | 1830 | 0.3667 | 0.8421 | 0.8131 | 0.7983 | 0.8050 |
| 0.3344 | 16.0 | 1952 | 0.3656 | 0.8421 | 0.8142 | 0.7958 | 0.8040 |
| 0.3339 | 17.0 | 2074 | 0.3654 | 0.8396 | 0.8128 | 0.7890 | 0.7992 |
| 0.3357 | 18.0 | 2196 | 0.3638 | 0.8421 | 0.8154 | 0.7933 | 0.8029 |
| 0.3357 | 19.0 | 2318 | 0.3646 | 0.8421 | 0.8154 | 0.7933 | 0.8029 |
| 0.3359 | 20.0 | 2440 | 0.3638 | 0.8446 | 0.8193 | 0.7951 | 0.8055 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf | RichardErkhov | 2024-05-18T20:27:18Z | 13 | 0 | null | [
"gguf",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-18T18:09:29Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
blockchainlabs_7B_merged_test2_4_prune - GGUF
- Model creator: https://huggingface.co/alnrg2arg/
- Original model: https://huggingface.co/alnrg2arg/blockchainlabs_7B_merged_test2_4_prune/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [blockchainlabs_7B_merged_test2_4_prune.Q2_K.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q2_K.gguf) | Q2_K | 2.53GB |
| [blockchainlabs_7B_merged_test2_4_prune.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
| [blockchainlabs_7B_merged_test2_4_prune.IQ3_S.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.IQ3_S.gguf) | IQ3_S | 2.96GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
| [blockchainlabs_7B_merged_test2_4_prune.IQ3_M.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.IQ3_M.gguf) | IQ3_M | 3.06GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q3_K.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q3_K.gguf) | Q3_K | 3.28GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
| [blockchainlabs_7B_merged_test2_4_prune.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q4_0.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q4_0.gguf) | Q4_0 | 3.83GB |
| [blockchainlabs_7B_merged_test2_4_prune.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q4_K.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q4_K.gguf) | Q4_K | 4.07GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q4_1.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q4_1.gguf) | Q4_1 | 4.24GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q5_0.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q5_0.gguf) | Q5_0 | 4.65GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q5_K.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q5_K.gguf) | Q5_K | 4.78GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q5_1.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q5_1.gguf) | Q5_1 | 5.07GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q6_K.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q6_K.gguf) | Q6_K | 5.53GB |
| [blockchainlabs_7B_merged_test2_4_prune.Q8_0.gguf](https://huggingface.co/RichardErkhov/alnrg2arg_-_blockchainlabs_7B_merged_test2_4_prune-gguf/blob/main/blockchainlabs_7B_merged_test2_4_prune.Q8_0.gguf) | Q8_0 | 7.17GB |
Original model description:
---
license: cc-by-nc-4.0
tags:
- merge
- mergekit
- lazymergekit
- pruning
- alnrg2arg/blockchainlabs_7B_merged_test2_4
- mlabonne/NeuralBeagle14-7B
- udkai/Turdus
---
# blockchainlabs_7B_merged_test2_4_prune
blockchainlabs_7B_merged_test2_4_prune is a pruned model based on alnrg2arg/blockchainlabs_7B_merged_test2_4, which is a merged model using
following models using [mergekit](https://github.com/cg123/mergekit):
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
* [udkai/Turdus](https://huggingface.co/udkai/Turdus)
Pruning Kit I used: [wanda](https://github.com/locuslab/wanda?tab=readme-ov-file#ablation-on-obs-weight-update)
## 🧩 Configuration
```json
{
"_name_or_path": "alnrg2arg/blockchainlabs_7B_merged_test2_4_prun",
"architectures": [
"MistralForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 14336,
"max_position_embeddings": 32768,
"model_type": "mistral",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 8,
"rms_norm_eps": 1e-05,
"rope_theta": 10000.0,
"sliding_window": 4096,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.36.2",
"use_cache": false,
"vocab_size": 32000
}
```
|
tsavage68/MedQA_L3_100steps_1e6rate_SFT | tsavage68 | 2024-05-18T20:21:41Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T20:17:13Z | ---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: MedQA_L3_100steps_1e6rate_SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MedQA_L3_100steps_1e6rate_SFT
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4119
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0895 | 0.0489 | 50 | 0.8521 |
| 0.3865 | 0.0977 | 100 | 0.4119 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|
tsavage68/MedQA_L3_1000steps_1e8rate_SFT | tsavage68 | 2024-05-18T20:13:33Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T20:09:06Z | ---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: MedQA_L3_1000steps_1e8rate_SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MedQA_L3_1000steps_1e8rate_SFT
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7989
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.783 | 0.0489 | 50 | 1.7997 |
| 1.7968 | 0.0977 | 100 | 1.7995 |
| 1.8022 | 0.1466 | 150 | 1.7997 |
| 1.7968 | 0.1954 | 200 | 1.7993 |
| 1.7998 | 0.2443 | 250 | 1.7989 |
| 1.7963 | 0.2931 | 300 | 1.7989 |
| 1.7977 | 0.3420 | 350 | 1.7992 |
| 1.7971 | 0.3908 | 400 | 1.7991 |
| 1.7697 | 0.4397 | 450 | 1.7990 |
| 1.8021 | 0.4885 | 500 | 1.7990 |
| 1.7897 | 0.5374 | 550 | 1.7988 |
| 1.7817 | 0.5862 | 600 | 1.7988 |
| 1.812 | 0.6351 | 650 | 1.7987 |
| 1.7939 | 0.6839 | 700 | 1.7989 |
| 1.815 | 0.7328 | 750 | 1.7989 |
| 1.7991 | 0.7816 | 800 | 1.7989 |
| 1.8164 | 0.8305 | 850 | 1.7989 |
| 1.8062 | 0.8793 | 900 | 1.7989 |
| 1.8048 | 0.9282 | 950 | 1.7989 |
| 1.8103 | 0.9770 | 1000 | 1.7989 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|
emilykang/Phi_medmcqa_question_generation-pathology_lora | emilykang | 2024-05-18T20:13:07Z | 1 | 0 | peft | [
"peft",
"safetensors",
"phi",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:microsoft/phi-2",
"base_model:adapter:microsoft/phi-2",
"license:mit",
"region:us"
] | null | 2024-05-18T18:35:56Z | ---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/phi-2
datasets:
- generator
model-index:
- name: Phi_medmcqa_question_generation-pathology_lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi_medmcqa_question_generation-pathology_lora
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1 |
ibahri/pearson-bge-m3 | ibahri | 2024-05-18T20:08:29Z | 6 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"xlm-roberta",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2024-05-18T19:56:00Z | ---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# ibahri/pearson-bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('ibahri/pearson-bge-m3')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ibahri/pearson-bge-m3)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 14 with parameters:
```
{'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 2,
"evaluation_steps": 50,
"evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 2,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
tsavage68/MedQA_L3_1000steps_1e6rate_SFT | tsavage68 | 2024-05-18T20:05:18Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T20:01:28Z | ---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: MedQA_L3_1000steps_1e6rate_SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MedQA_L3_1000steps_1e6rate_SFT
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3666
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0895 | 0.0489 | 50 | 0.8521 |
| 0.3865 | 0.0977 | 100 | 0.4119 |
| 0.4156 | 0.1466 | 150 | 0.3943 |
| 0.4302 | 0.1954 | 200 | 0.3870 |
| 0.3788 | 0.2443 | 250 | 0.3808 |
| 0.3964 | 0.2931 | 300 | 0.3773 |
| 0.3753 | 0.3420 | 350 | 0.3749 |
| 0.359 | 0.3908 | 400 | 0.3727 |
| 0.3874 | 0.4397 | 450 | 0.3711 |
| 0.3722 | 0.4885 | 500 | 0.3699 |
| 0.3615 | 0.5374 | 550 | 0.3686 |
| 0.3807 | 0.5862 | 600 | 0.3677 |
| 0.3643 | 0.6351 | 650 | 0.3673 |
| 0.3513 | 0.6839 | 700 | 0.3669 |
| 0.358 | 0.7328 | 750 | 0.3667 |
| 0.3648 | 0.7816 | 800 | 0.3666 |
| 0.3911 | 0.8305 | 850 | 0.3666 |
| 0.3475 | 0.8793 | 900 | 0.3666 |
| 0.3511 | 0.9282 | 950 | 0.3665 |
| 0.3673 | 0.9770 | 1000 | 0.3666 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|
apwic/sentiment-lora-r2a0d0.15-1 | apwic | 2024-05-18T19:57:50Z | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-18T19:24:41Z | ---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r2a0d0.15-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-lora-r2a0d0.15-1
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3633
- Accuracy: 0.8396
- Precision: 0.8128
- Recall: 0.7890
- F1: 0.7992
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5664 | 1.0 | 122 | 0.5221 | 0.7218 | 0.6580 | 0.6432 | 0.6487 |
| 0.5148 | 2.0 | 244 | 0.5111 | 0.7243 | 0.6758 | 0.6899 | 0.6810 |
| 0.4924 | 3.0 | 366 | 0.4791 | 0.7444 | 0.6884 | 0.6741 | 0.6799 |
| 0.4615 | 4.0 | 488 | 0.4651 | 0.7644 | 0.7148 | 0.7058 | 0.7099 |
| 0.4516 | 5.0 | 610 | 0.4581 | 0.7644 | 0.7214 | 0.7408 | 0.7286 |
| 0.4291 | 6.0 | 732 | 0.4295 | 0.7895 | 0.7462 | 0.7385 | 0.7421 |
| 0.4194 | 7.0 | 854 | 0.4191 | 0.7995 | 0.7581 | 0.7606 | 0.7593 |
| 0.3994 | 8.0 | 976 | 0.4048 | 0.8120 | 0.7745 | 0.7645 | 0.7691 |
| 0.3919 | 9.0 | 1098 | 0.3950 | 0.8246 | 0.7954 | 0.7659 | 0.7778 |
| 0.3762 | 10.0 | 1220 | 0.3881 | 0.8271 | 0.8022 | 0.7626 | 0.7777 |
| 0.3704 | 11.0 | 1342 | 0.3806 | 0.8271 | 0.7949 | 0.7776 | 0.7853 |
| 0.3642 | 12.0 | 1464 | 0.3733 | 0.8421 | 0.8122 | 0.8008 | 0.8061 |
| 0.3614 | 13.0 | 1586 | 0.3753 | 0.8321 | 0.8092 | 0.7687 | 0.7842 |
| 0.3474 | 14.0 | 1708 | 0.3695 | 0.8396 | 0.8155 | 0.7840 | 0.7969 |
| 0.3479 | 15.0 | 1830 | 0.3675 | 0.8421 | 0.8142 | 0.7958 | 0.8040 |
| 0.3347 | 16.0 | 1952 | 0.3649 | 0.8421 | 0.8142 | 0.7958 | 0.8040 |
| 0.335 | 17.0 | 2074 | 0.3653 | 0.8371 | 0.8114 | 0.7822 | 0.7943 |
| 0.3361 | 18.0 | 2196 | 0.3632 | 0.8396 | 0.8128 | 0.7890 | 0.7992 |
| 0.3343 | 19.0 | 2318 | 0.3636 | 0.8371 | 0.8114 | 0.7822 | 0.7943 |
| 0.3347 | 20.0 | 2440 | 0.3633 | 0.8396 | 0.8128 | 0.7890 | 0.7992 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
Felladrin/gguf-sharded-zephyr-1b-olmo-sft-qlora | Felladrin | 2024-05-18T19:56:22Z | 6 | 0 | null | [
"gguf",
"base_model:Ritvik19/zephyr-1b-olmo-sft-qlora",
"base_model:quantized:Ritvik19/zephyr-1b-olmo-sft-qlora",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T19:52:03Z | ---
license: apache-2.0
base_model: Ritvik19/zephyr-1b-olmo-sft-qlora
---
Sharded GGUF version of [Ritvik19/zephyr-1b-olmo-sft-qlora](https://huggingface.co/Ritvik19/zephyr-1b-olmo-sft-qlora). |
elloco123/ppo-LunarLander-v2 | elloco123 | 2024-05-18T19:49:51Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T19:49:31Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 266.36 +/- 17.08
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Felladrin/gguf-zephyr-1b-olmo-sft-qlora | Felladrin | 2024-05-18T19:48:05Z | 11 | 0 | null | [
"gguf",
"base_model:Ritvik19/zephyr-1b-olmo-sft-qlora",
"base_model:quantized:Ritvik19/zephyr-1b-olmo-sft-qlora",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T18:55:03Z | ---
license: apache-2.0
base_model: Ritvik19/zephyr-1b-olmo-sft-qlora
---
GGUF version of [Ritvik19/zephyr-1b-olmo-sft-qlora](https://huggingface.co/Ritvik19/zephyr-1b-olmo-sft-qlora). |
Felladrin/gguf-openhermes-1b-olmo-sft-qlora | Felladrin | 2024-05-18T19:47:00Z | 5 | 0 | null | [
"gguf",
"base_model:Ritvik19/openhermes-1b-olmo-sft-qlora",
"base_model:quantized:Ritvik19/openhermes-1b-olmo-sft-qlora",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T19:22:29Z | ---
license: apache-2.0
base_model: Ritvik19/openhermes-1b-olmo-sft-qlora
---
GGUF version of [Ritvik19/openhermes-1b-olmo-sft-qlora](https://huggingface.co/Ritvik19/openhermes-1b-olmo-sft-qlora). |
RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf | RichardErkhov | 2024-05-18T19:45:56Z | 30 | 1 | null | [
"gguf",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T17:14:46Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
LogoS-7Bx2-MoE-13B-v0.2 - GGUF
- Model creator: https://huggingface.co/RubielLabarta/
- Original model: https://huggingface.co/RubielLabarta/LogoS-7Bx2-MoE-13B-v0.2/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [LogoS-7Bx2-MoE-13B-v0.2.Q2_K.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q2_K.gguf) | Q2_K | 4.43GB |
| [LogoS-7Bx2-MoE-13B-v0.2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.IQ3_XS.gguf) | IQ3_XS | 4.94GB |
| [LogoS-7Bx2-MoE-13B-v0.2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.IQ3_S.gguf) | IQ3_S | 5.22GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q3_K_S.gguf) | Q3_K_S | 5.2GB |
| [LogoS-7Bx2-MoE-13B-v0.2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.IQ3_M.gguf) | IQ3_M | 5.34GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q3_K.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q3_K.gguf) | Q3_K | 5.78GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q3_K_M.gguf) | Q3_K_M | 5.78GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q3_K_L.gguf) | Q3_K_L | 6.27GB |
| [LogoS-7Bx2-MoE-13B-v0.2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.IQ4_XS.gguf) | IQ4_XS | 6.5GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q4_0.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q4_0.gguf) | Q4_0 | 6.78GB |
| [LogoS-7Bx2-MoE-13B-v0.2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.IQ4_NL.gguf) | IQ4_NL | 6.85GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q4_K_S.gguf) | Q4_K_S | 6.84GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q4_K.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q4_K.gguf) | Q4_K | 7.25GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q4_K_M.gguf) | Q4_K_M | 7.25GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q4_1.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q4_1.gguf) | Q4_1 | 7.52GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q5_0.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q5_0.gguf) | Q5_0 | 8.26GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q5_K_S.gguf) | Q5_K_S | 8.26GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q5_K.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q5_K.gguf) | Q5_K | 8.51GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q5_K_M.gguf) | Q5_K_M | 8.51GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q5_1.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q5_1.gguf) | Q5_1 | 9.01GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q6_K.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q6_K.gguf) | Q6_K | 9.84GB |
| [LogoS-7Bx2-MoE-13B-v0.2.Q8_0.gguf](https://huggingface.co/RichardErkhov/RubielLabarta_-_LogoS-7Bx2-MoE-13B-v0.2-gguf/blob/main/LogoS-7Bx2-MoE-13B-v0.2.Q8_0.gguf) | Q8_0 | 12.75GB |
Original model description:
---
language:
- en
- es
license: apache-2.0
tags:
- moe
- merge
base_model:
- yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B
- TomGrc/FusionNet_7Bx2_MoE_14B
model-index:
- name: LogoS-7Bx2-MoE-13B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 74.49
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.07
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 74.57
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 88.32
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.65
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
name: Open LLM Leaderboard
---
# LogoS-7Bx2-MoE-13B-v0.1
Model built by @RubielLabarta using SLERP merge method. The model is release for research purposes only, commercial use is not allowed.
The LogoS is a model to experiment with the MoE method, which could significantly increase the performance of the original model. The model has 12.9B parameters.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_RubielLabarta__LogoS-7Bx2-MoE-13B-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.14|
|AI2 Reasoning Challenge (25-Shot)|74.49|
|HellaSwag (10-Shot) |89.07|
|MMLU (5-Shot) |64.74|
|TruthfulQA (0-shot) |74.57|
|Winogrande (5-shot) |88.32|
|GSM8k (5-shot) |71.65|
|
LoneStriker/Master-Yi-9B-5.0bpw-h6-exl2 | LoneStriker | 2024-05-18T19:41:13Z | 10 | 1 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"5-bit",
"exl2",
"region:us"
] | text-generation | 2024-05-18T19:38:45Z | ---
license: apache-2.0
---
## Model Description
Master is a collection of LLMs trained using human-collected seed questions and regenerate the answers with a mixture of high performance Open-source LLMs.
**Master-Yi-9B** is trained using the ORPO technique. The model shows strong abilities in reasoning on coding and math questions.
**Quantized Version**: [Here](https://huggingface.co/qnguyen3/Master-Yi-9B-GGUF)
**Master-Yi-9B-Vision**: **Coming Soon**

## Prompt Template
```
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
What is the meaning of life?<|im_end|>
<|im_start|>assistant
```
## Examples


## Inference Code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"vilm/VinaLlama2-14B",
torch_dtype='auto',
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("vilm/VinaLlama2-14B")
prompt = "What is the mearning of life?"
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id,
temperature=0.25,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids)[0]
print(response)
```
## Benchmarks
### Nous Benchmark:
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)| 43.55| 71.48| 48.54| 41.43| 51.25|
### AGIEval
```
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |35.83|± | 3.01|
| | |acc_norm|31.89|± | 2.93|
|agieval_logiqa_en | 0|acc |38.25|± | 1.91|
| | |acc_norm|37.79|± | 1.90|
|agieval_lsat_ar | 0|acc |23.04|± | 2.78|
| | |acc_norm|20.43|± | 2.66|
|agieval_lsat_lr | 0|acc |48.04|± | 2.21|
| | |acc_norm|42.75|± | 2.19|
|agieval_lsat_rc | 0|acc |61.34|± | 2.97|
| | |acc_norm|52.79|± | 3.05|
|agieval_sat_en | 0|acc |79.13|± | 2.84|
| | |acc_norm|72.33|± | 3.12|
|agieval_sat_en_without_passage| 0|acc |44.17|± | 3.47|
| | |acc_norm|42.72|± | 3.45|
|agieval_sat_math | 0|acc |52.27|± | 3.38|
| | |acc_norm|47.73|± | 3.38|
Average: 43.55%
```
### GPT4All
```
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |54.95|± | 1.45|
| | |acc_norm|58.70|± | 1.44|
|arc_easy | 0|acc |82.28|± | 0.78|
| | |acc_norm|81.10|± | 0.80|
|boolq | 1|acc |86.15|± | 0.60|
|hellaswag | 0|acc |59.16|± | 0.49|
| | |acc_norm|77.53|± | 0.42|
|openbookqa | 0|acc |37.40|± | 2.17|
| | |acc_norm|44.00|± | 2.22|
|piqa | 0|acc |79.00|± | 0.95|
| | |acc_norm|80.25|± | 0.93|
|winogrande | 0|acc |72.61|± | 1.25|
Average: 71.48%
```
### TruthfulQA
```
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |33.05|± | 1.65|
| | |mc2 |48.54|± | 1.54|
Average: 48.54%
```
### Bigbench
```
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|54.74|± | 3.62|
|bigbench_date_understanding | 0|multiple_choice_grade|68.02|± | 2.43|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|40.31|± | 3.06|
|bigbench_geometric_shapes | 0|multiple_choice_grade|30.36|± | 2.43|
| | |exact_str_match | 2.23|± | 0.78|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|26.00|± | 1.96|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|20.71|± | 1.53|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|44.00|± | 2.87|
|bigbench_movie_recommendation | 0|multiple_choice_grade|35.00|± | 2.14|
|bigbench_navigate | 0|multiple_choice_grade|58.40|± | 1.56|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|61.80|± | 1.09|
|bigbench_ruin_names | 0|multiple_choice_grade|42.41|± | 2.34|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|31.56|± | 1.47|
|bigbench_snarks | 0|multiple_choice_grade|55.25|± | 3.71|
|bigbench_sports_understanding | 0|multiple_choice_grade|69.37|± | 1.47|
|bigbench_temporal_sequences | 0|multiple_choice_grade|27.70|± | 1.42|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.36|± | 1.16|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|14.69|± | 0.85|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|44.00|± | 2.87|
Average: 41.43%
```
**Average score**: 51.25%
### OpenLLM Benchmark:
| Model |ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|Average|
|---------------------------------------------------|---:|--------:|----:|---------:|---------:|----:|------:|
|[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)|61.6| 79.89|69.95| 48.59| 77.35|67.48| 67.48|
### ARC
```
| Task |Version| Metric | Value | |Stderr|
|-------------|------:|--------------------|-------------|---|------|
|arc_challenge| 1|acc,none | 0.59| | |
| | |acc_stderr,none | 0.01| | |
| | |acc_norm,none | 0.62| | |
| | |acc_norm_stderr,none| 0.01| | |
| | |alias |arc_challenge| | |
Average: 61.6%
```
### HellaSwag
```
| Task |Version| Metric | Value | |Stderr|
|---------|------:|--------------------|---------|---|------|
|hellaswag| 1|acc,none | 0.61| | |
| | |acc_stderr,none | 0| | |
| | |acc_norm,none | 0.80| | |
| | |acc_norm_stderr,none| 0| | |
| | |alias |hellaswag| | |
Average: 79.89%
```
### MMLU
```
| Task |Version| Metric | Value | |Stderr|
|----------------------------------------|-------|---------------|---------------------------------------|---|------|
|mmlu |N/A |acc,none | 0.7| | |
| | |acc_stderr,none| 0| | |
| | |alias |mmlu | | |
|mmlu_abstract_algebra | 0|alias | - abstract_algebra | | |
| | |acc,none |0.46 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_anatomy | 0|alias | - anatomy | | |
| | |acc,none |0.64 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_astronomy | 0|alias | - astronomy | | |
| | |acc,none |0.77 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_business_ethics | 0|alias | - business_ethics | | |
| | |acc,none |0.76 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_clinical_knowledge | 0|alias | - clinical_knowledge | | |
| | |acc,none |0.71 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_college_biology | 0|alias | - college_biology | | |
| | |acc,none |0.82 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_college_chemistry | 0|alias | - college_chemistry | | |
| | |acc,none |0.52 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_college_computer_science | 0|alias | - college_computer_science | | |
| | |acc,none |0.56 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_college_mathematics | 0|alias | - college_mathematics | | |
| | |acc,none |0.44 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_college_medicine | 0|alias | - college_medicine | | |
| | |acc,none |0.72 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_college_physics | 0|alias | - college_physics | | |
| | |acc,none |0.45 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_computer_security | 0|alias | - computer_security | | |
| | |acc,none |0.81 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_conceptual_physics | 0|alias | - conceptual_physics | | |
| | |acc,none |0.74 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_econometrics | 0|alias | - econometrics | | |
| | |acc,none |0.65 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_electrical_engineering | 0|alias | - electrical_engineering | | |
| | |acc,none |0.72 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_elementary_mathematics | 0|alias | - elementary_mathematics | | |
| | |acc,none |0.62 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_formal_logic | 0|alias | - formal_logic | | |
| | |acc,none |0.57 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_global_facts | 0|alias | - global_facts | | |
| | |acc,none |0.46 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_high_school_biology | 0|alias | - high_school_biology | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_chemistry | 0|alias | - high_school_chemistry | | |
| | |acc,none |0.67 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_computer_science | 0|alias | - high_school_computer_science | | |
| | |acc,none |0.84 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_high_school_european_history | 0|alias | - high_school_european_history | | |
| | |acc,none |0.82 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_geography | 0|alias | - high_school_geography | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_government_and_politics| 0|alias | - high_school_government_and_politics| | |
| | |acc,none |0.90 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_macroeconomics | 0|alias | - high_school_macroeconomics | | |
| | |acc,none |0.75 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_mathematics | 0|alias | - high_school_mathematics | | |
| | |acc,none |0.43 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_microeconomics | 0|alias | - high_school_microeconomics | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_physics | 0|alias | - high_school_physics | | |
| | |acc,none |0.45 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_high_school_psychology | 0|alias | - high_school_psychology | | |
| | |acc,none |0.87 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_high_school_statistics | 0|alias | - high_school_statistics | | |
| | |acc,none |0.68 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_us_history | 0|alias | - high_school_us_history | | |
| | |acc,none |0.85 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_world_history | 0|alias | - high_school_world_history | | |
| | |acc,none |0.85 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_human_aging | 0|alias | - human_aging | | |
| | |acc,none |0.76 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_human_sexuality | 0|alias | - human_sexuality | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_humanities |N/A |alias | - humanities | | |
| | |acc,none |0.63 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_international_law | 0|alias | - international_law | | |
| | |acc,none |0.79 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_jurisprudence | 0|alias | - jurisprudence | | |
| | |acc,none |0.79 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_logical_fallacies | 0|alias | - logical_fallacies | | |
| | |acc,none |0.80 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_machine_learning | 0|alias | - machine_learning | | |
| | |acc,none |0.52 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_management | 0|alias | - management | | |
| | |acc,none |0.83 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_marketing | 0|alias | - marketing | | |
| | |acc,none |0.89 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_medical_genetics | 0|alias | - medical_genetics | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_miscellaneous | 0|alias | - miscellaneous | | |
| | |acc,none |0.85 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_moral_disputes | 0|alias | - moral_disputes | | |
| | |acc,none |0.75 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_moral_scenarios | 0|alias | - moral_scenarios | | |
| | |acc,none |0.48 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_nutrition | 0|alias | - nutrition | | |
| | |acc,none |0.77 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_other |N/A |alias | - other | | |
| | |acc,none |0.75 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_philosophy | 0|alias | - philosophy | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_prehistory | 0|alias | - prehistory | | |
| | |acc,none |0.77 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_professional_accounting | 0|alias | - professional_accounting | | |
| | |acc,none |0.57 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_professional_law | 0|alias | - professional_law | | |
| | |acc,none |0.50 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_professional_medicine | 0|alias | - professional_medicine | | |
| | |acc,none |0.71 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_professional_psychology | 0|alias | - professional_psychology | | |
| | |acc,none |0.73 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_public_relations | 0|alias | - public_relations | | |
| | |acc,none |0.76 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_security_studies | 0|alias | - security_studies | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_social_sciences |N/A |alias | - social_sciences | | |
| | |acc,none |0.81 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_sociology | 0|alias | - sociology | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_stem |N/A |alias | - stem | | |
| | |acc,none |0.65 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_us_foreign_policy | 0|alias | - us_foreign_policy | | |
| | |acc,none |0.92 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_virology | 0|alias | - virology | | |
| | |acc,none |0.58 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_world_religions | 0|alias | - world_religions | | |
| | |acc,none |0.82 | | |
| | |acc_stderr,none|0.03 | | |
Average: 69.95%
```
### TruthfulQA
```
| Task |Version| Metric | Value | |Stderr|
|--------------|-------|-----------------------|-----------------|---|------|
|truthfulqa |N/A |bleu_acc,none | 0.45| | |
| | |bleu_acc_stderr,none | 0.02| | |
| | |rouge1_acc,none | 0.45| | |
| | |rouge1_acc_stderr,none | 0.02| | |
| | |rouge2_diff,none | 0.92| | |
| | |rouge2_diff_stderr,none| 1.07| | |
| | |bleu_max,none | 23.77| | |
| | |bleu_max_stderr,none | 0.81| | |
| | |rouge2_acc,none | 0.38| | |
| | |rouge2_acc_stderr,none | 0.02| | |
| | |acc,none | 0.41| | |
| | |acc_stderr,none | 0.01| | |
| | |rougeL_diff,none | 1.57| | |
| | |rougeL_diff_stderr,none| 0.93| | |
| | |rougeL_acc,none | 0.46| | |
| | |rougeL_acc_stderr,none | 0.02| | |
| | |bleu_diff,none | 1.38| | |
| | |bleu_diff_stderr,none | 0.75| | |
| | |rouge2_max,none | 33.01| | |
| | |rouge2_max_stderr,none | 1.05| | |
| | |rouge1_diff,none | 1.72| | |
| | |rouge1_diff_stderr,none| 0.92| | |
| | |rougeL_max,none | 45.25| | |
| | |rougeL_max_stderr,none | 0.92| | |
| | |rouge1_max,none | 48.29| | |
| | |rouge1_max_stderr,none | 0.90| | |
| | |alias |truthfulqa | | |
|truthfulqa_gen| 3|bleu_max,none | 23.77| | |
| | |bleu_max_stderr,none | 0.81| | |
| | |bleu_acc,none | 0.45| | |
| | |bleu_acc_stderr,none | 0.02| | |
| | |bleu_diff,none | 1.38| | |
| | |bleu_diff_stderr,none | 0.75| | |
| | |rouge1_max,none | 48.29| | |
| | |rouge1_max_stderr,none | 0.90| | |
| | |rouge1_acc,none | 0.45| | |
| | |rouge1_acc_stderr,none | 0.02| | |
| | |rouge1_diff,none | 1.72| | |
| | |rouge1_diff_stderr,none| 0.92| | |
| | |rouge2_max,none | 33.01| | |
| | |rouge2_max_stderr,none | 1.05| | |
| | |rouge2_acc,none | 0.38| | |
| | |rouge2_acc_stderr,none | 0.02| | |
| | |rouge2_diff,none | 0.92| | |
| | |rouge2_diff_stderr,none| 1.07| | |
| | |rougeL_max,none | 45.25| | |
| | |rougeL_max_stderr,none | 0.92| | |
| | |rougeL_acc,none | 0.46| | |
| | |rougeL_acc_stderr,none | 0.02| | |
| | |rougeL_diff,none | 1.57| | |
| | |rougeL_diff_stderr,none| 0.93| | |
| | |alias | - truthfulqa_gen| | |
|truthfulqa_mc1| 2|acc,none | 0.33| | |
| | |acc_stderr,none | 0.02| | |
| | |alias | - truthfulqa_mc1| | |
|truthfulqa_mc2| 2|acc,none | 0.49| | |
| | |acc_stderr,none | 0.02| | |
| | |alias | - truthfulqa_mc2| | |
Average: 48.59%
```
### Winogrande
```
| Task |Version| Metric | Value | |Stderr|
|----------|------:|---------------|----------|---|------|
|winogrande| 1|acc,none | 0.77| | |
| | |acc_stderr,none| 0.01| | |
| | |alias |winogrande| | |
Average: 77.35%
```
### GSM8K
```
|Task |Version| Metric |Value| |Stderr|
|-----|------:|-----------------------------------|-----|---|------|
|gsm8k| 3|exact_match,strict-match | 0.67| | |
| | |exact_match_stderr,strict-match | 0.01| | |
| | |exact_match,flexible-extract | 0.68| | |
| | |exact_match_stderr,flexible-extract| 0.01| | |
| | |alias |gsm8k| | |
Average: 67.48%
```
**Average score**: 67.48%
|
amaye15/google-vit-base-patch16-224-batch32-lr0.0005-standford-dogs | amaye15 | 2024-05-18T19:39:23Z | 223 | 0 | transformers | [
"transformers",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:stanford-dogs",
"base_model:google/vit-base-patch16-224",
"base_model:finetune:google/vit-base-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2024-05-18T19:39:02Z | ---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- stanford-dogs
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: google-vit-base-patch16-224-batch32-lr0.0005-standford-dogs
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: stanford-dogs
type: stanford-dogs
config: default
split: full
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8838678328474247
- name: F1
type: f1
value: 0.880922271280839
- name: Precision
type: precision
value: 0.8888253617157671
- name: Recall
type: recall
value: 0.8813659659148954
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# google-vit-base-patch16-224-batch32-lr0.0005-standford-dogs
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the stanford-dogs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4466
- Accuracy: 0.8839
- F1: 0.8809
- Precision: 0.8888
- Recall: 0.8814
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 4.758 | 0.0777 | 10 | 4.5706 | 0.0481 | 0.0344 | 0.0390 | 0.0483 |
| 4.4856 | 0.1553 | 20 | 4.2407 | 0.1421 | 0.1018 | 0.1190 | 0.1396 |
| 4.2422 | 0.2330 | 30 | 3.9118 | 0.2655 | 0.2120 | 0.2525 | 0.2553 |
| 3.972 | 0.3107 | 40 | 3.5875 | 0.4096 | 0.3445 | 0.3996 | 0.3933 |
| 3.6632 | 0.3883 | 50 | 3.2750 | 0.5299 | 0.4683 | 0.5338 | 0.5129 |
| 3.4266 | 0.4660 | 60 | 2.9911 | 0.6028 | 0.5536 | 0.6617 | 0.5870 |
| 3.1207 | 0.5437 | 70 | 2.7127 | 0.6638 | 0.6227 | 0.7159 | 0.6496 |
| 2.9402 | 0.6214 | 80 | 2.4853 | 0.7043 | 0.6716 | 0.7387 | 0.6923 |
| 2.7683 | 0.6990 | 90 | 2.2667 | 0.7376 | 0.7092 | 0.7675 | 0.7277 |
| 2.5556 | 0.7767 | 100 | 2.0710 | 0.7631 | 0.7422 | 0.7843 | 0.7551 |
| 2.3936 | 0.8544 | 110 | 1.8898 | 0.7772 | 0.7610 | 0.8076 | 0.7705 |
| 2.245 | 0.9320 | 120 | 1.7340 | 0.7954 | 0.7807 | 0.8138 | 0.7898 |
| 2.0889 | 1.0097 | 130 | 1.6027 | 0.8073 | 0.7970 | 0.8314 | 0.8024 |
| 1.951 | 1.0874 | 140 | 1.4715 | 0.8197 | 0.8094 | 0.8361 | 0.8132 |
| 1.8414 | 1.1650 | 150 | 1.3790 | 0.8209 | 0.8104 | 0.8389 | 0.8151 |
| 1.7247 | 1.2427 | 160 | 1.3237 | 0.8146 | 0.8034 | 0.8338 | 0.8085 |
| 1.7338 | 1.3204 | 170 | 1.2107 | 0.8336 | 0.8251 | 0.8463 | 0.8284 |
| 1.5688 | 1.3981 | 180 | 1.1370 | 0.8401 | 0.8314 | 0.8531 | 0.8354 |
| 1.5471 | 1.4757 | 190 | 1.0684 | 0.8455 | 0.8367 | 0.8558 | 0.8398 |
| 1.461 | 1.5534 | 200 | 1.0200 | 0.8477 | 0.8384 | 0.8571 | 0.8430 |
| 1.4736 | 1.6311 | 210 | 0.9612 | 0.8540 | 0.8493 | 0.8621 | 0.8509 |
| 1.4062 | 1.7087 | 220 | 0.9269 | 0.8528 | 0.8476 | 0.8639 | 0.8495 |
| 1.2888 | 1.7864 | 230 | 0.8914 | 0.8516 | 0.8456 | 0.8626 | 0.8478 |
| 1.3353 | 1.8641 | 240 | 0.8484 | 0.8601 | 0.8538 | 0.8684 | 0.8555 |
| 1.2751 | 1.9417 | 250 | 0.8210 | 0.8586 | 0.8520 | 0.8643 | 0.8538 |
| 1.2378 | 2.0194 | 260 | 0.7924 | 0.8567 | 0.8510 | 0.8641 | 0.8522 |
| 1.1686 | 2.0971 | 270 | 0.7683 | 0.8579 | 0.8529 | 0.8670 | 0.8543 |
| 1.1625 | 2.1748 | 280 | 0.7477 | 0.8567 | 0.8522 | 0.8658 | 0.8532 |
| 1.1883 | 2.2524 | 290 | 0.7312 | 0.8576 | 0.8534 | 0.8674 | 0.8541 |
| 1.1551 | 2.3301 | 300 | 0.7052 | 0.8654 | 0.8606 | 0.8702 | 0.8618 |
| 1.1259 | 2.4078 | 310 | 0.6901 | 0.8627 | 0.8580 | 0.8720 | 0.8597 |
| 1.073 | 2.4854 | 320 | 0.6793 | 0.8654 | 0.8600 | 0.8722 | 0.8612 |
| 1.0587 | 2.5631 | 330 | 0.6604 | 0.8700 | 0.8646 | 0.8753 | 0.8660 |
| 1.0506 | 2.6408 | 340 | 0.6470 | 0.8690 | 0.8638 | 0.8714 | 0.8652 |
| 1.0397 | 2.7184 | 350 | 0.6369 | 0.8664 | 0.8606 | 0.8711 | 0.8627 |
| 1.0363 | 2.7961 | 360 | 0.6373 | 0.8664 | 0.8610 | 0.8797 | 0.8623 |
| 1.0408 | 2.8738 | 370 | 0.6141 | 0.8700 | 0.8637 | 0.8755 | 0.8655 |
| 1.0087 | 2.9515 | 380 | 0.6105 | 0.8707 | 0.8657 | 0.8740 | 0.8675 |
| 1.0021 | 3.0291 | 390 | 0.5978 | 0.8744 | 0.8708 | 0.8771 | 0.8717 |
| 0.894 | 3.1068 | 400 | 0.5970 | 0.8671 | 0.8632 | 0.8733 | 0.8637 |
| 0.9363 | 3.1845 | 410 | 0.5860 | 0.8683 | 0.8640 | 0.8754 | 0.8653 |
| 0.9678 | 3.2621 | 420 | 0.5760 | 0.8712 | 0.8677 | 0.8764 | 0.8684 |
| 0.9378 | 3.3398 | 430 | 0.5677 | 0.8686 | 0.8645 | 0.8734 | 0.8653 |
| 0.929 | 3.4175 | 440 | 0.5620 | 0.8707 | 0.8659 | 0.8750 | 0.8672 |
| 0.9585 | 3.4951 | 450 | 0.5610 | 0.8654 | 0.8612 | 0.8691 | 0.8625 |
| 0.8432 | 3.5728 | 460 | 0.5557 | 0.8690 | 0.8638 | 0.8715 | 0.8665 |
| 0.9423 | 3.6505 | 470 | 0.5421 | 0.8715 | 0.8663 | 0.8737 | 0.8684 |
| 0.944 | 3.7282 | 480 | 0.5419 | 0.8703 | 0.8656 | 0.8728 | 0.8671 |
| 0.8477 | 3.8058 | 490 | 0.5297 | 0.8766 | 0.8727 | 0.8799 | 0.8737 |
| 0.8933 | 3.8835 | 500 | 0.5263 | 0.8739 | 0.8707 | 0.8790 | 0.8716 |
| 0.881 | 3.9612 | 510 | 0.5197 | 0.8768 | 0.8739 | 0.8817 | 0.8746 |
| 0.8603 | 4.0388 | 520 | 0.5196 | 0.8778 | 0.8740 | 0.8832 | 0.8746 |
| 0.8045 | 4.1165 | 530 | 0.5214 | 0.8759 | 0.8723 | 0.8822 | 0.8725 |
| 0.8101 | 4.1942 | 540 | 0.5163 | 0.8746 | 0.8713 | 0.8806 | 0.8725 |
| 0.8016 | 4.2718 | 550 | 0.5149 | 0.8766 | 0.8729 | 0.8813 | 0.8735 |
| 0.8403 | 4.3495 | 560 | 0.5061 | 0.8724 | 0.8689 | 0.8767 | 0.8699 |
| 0.8216 | 4.4272 | 570 | 0.5034 | 0.8739 | 0.8699 | 0.8798 | 0.8708 |
| 0.8491 | 4.5049 | 580 | 0.5004 | 0.8768 | 0.8730 | 0.8828 | 0.8740 |
| 0.7727 | 4.5825 | 590 | 0.4990 | 0.8766 | 0.8722 | 0.8810 | 0.8736 |
| 0.8475 | 4.6602 | 600 | 0.4941 | 0.8766 | 0.8724 | 0.8807 | 0.8736 |
| 0.854 | 4.7379 | 610 | 0.4867 | 0.8824 | 0.8793 | 0.8867 | 0.8801 |
| 0.8226 | 4.8155 | 620 | 0.4900 | 0.8771 | 0.8736 | 0.8824 | 0.8747 |
| 0.7847 | 4.8932 | 630 | 0.4855 | 0.8805 | 0.8773 | 0.8847 | 0.8779 |
| 0.8093 | 4.9709 | 640 | 0.4820 | 0.8805 | 0.8775 | 0.8844 | 0.8777 |
| 0.7667 | 5.0485 | 650 | 0.4837 | 0.8800 | 0.8759 | 0.8827 | 0.8768 |
| 0.7116 | 5.1262 | 660 | 0.4812 | 0.8797 | 0.8765 | 0.8850 | 0.8773 |
| 0.7859 | 5.2039 | 670 | 0.4792 | 0.8812 | 0.8781 | 0.8869 | 0.8790 |
| 0.8108 | 5.2816 | 680 | 0.4772 | 0.8797 | 0.8766 | 0.8862 | 0.8771 |
| 0.7425 | 5.3592 | 690 | 0.4757 | 0.8807 | 0.8774 | 0.8856 | 0.8780 |
| 0.7968 | 5.4369 | 700 | 0.4759 | 0.8802 | 0.8770 | 0.8853 | 0.8774 |
| 0.8087 | 5.5146 | 710 | 0.4702 | 0.8810 | 0.8778 | 0.8851 | 0.8783 |
| 0.7207 | 5.5922 | 720 | 0.4716 | 0.8805 | 0.8771 | 0.8845 | 0.8776 |
| 0.7776 | 5.6699 | 730 | 0.4691 | 0.8790 | 0.8749 | 0.8829 | 0.8760 |
| 0.8075 | 5.7476 | 740 | 0.4658 | 0.8819 | 0.8784 | 0.8858 | 0.8789 |
| 0.7759 | 5.8252 | 750 | 0.4637 | 0.8807 | 0.8771 | 0.8838 | 0.8778 |
| 0.6963 | 5.9029 | 760 | 0.4656 | 0.8795 | 0.8765 | 0.8847 | 0.8769 |
| 0.7245 | 5.9806 | 770 | 0.4644 | 0.8827 | 0.8796 | 0.8872 | 0.8800 |
| 0.692 | 6.0583 | 780 | 0.4602 | 0.8819 | 0.8789 | 0.8861 | 0.8792 |
| 0.6859 | 6.1359 | 790 | 0.4594 | 0.8827 | 0.8797 | 0.8872 | 0.8798 |
| 0.7221 | 6.2136 | 800 | 0.4593 | 0.8814 | 0.8783 | 0.8861 | 0.8788 |
| 0.701 | 6.2913 | 810 | 0.4599 | 0.8807 | 0.8777 | 0.8852 | 0.8778 |
| 0.7151 | 6.3689 | 820 | 0.4564 | 0.8824 | 0.8794 | 0.8869 | 0.8797 |
| 0.7038 | 6.4466 | 830 | 0.4573 | 0.8812 | 0.8780 | 0.8860 | 0.8783 |
| 0.7182 | 6.5243 | 840 | 0.4553 | 0.8824 | 0.8793 | 0.8866 | 0.8795 |
| 0.6964 | 6.6019 | 850 | 0.4535 | 0.8822 | 0.8788 | 0.8861 | 0.8794 |
| 0.6805 | 6.6796 | 860 | 0.4556 | 0.8819 | 0.8789 | 0.8878 | 0.8791 |
| 0.6209 | 6.7573 | 870 | 0.4518 | 0.8836 | 0.8804 | 0.8883 | 0.8810 |
| 0.6665 | 6.8350 | 880 | 0.4524 | 0.8829 | 0.8798 | 0.8881 | 0.8800 |
| 0.7334 | 6.9126 | 890 | 0.4507 | 0.8805 | 0.8776 | 0.8859 | 0.8779 |
| 0.6889 | 6.9903 | 900 | 0.4503 | 0.8822 | 0.8791 | 0.8872 | 0.8796 |
| 0.6854 | 7.0680 | 910 | 0.4488 | 0.8846 | 0.8816 | 0.8887 | 0.8824 |
| 0.6855 | 7.1456 | 920 | 0.4485 | 0.8829 | 0.8800 | 0.8877 | 0.8804 |
| 0.6644 | 7.2233 | 930 | 0.4477 | 0.8846 | 0.8814 | 0.8888 | 0.8822 |
| 0.6556 | 7.3010 | 940 | 0.4469 | 0.8841 | 0.8811 | 0.8887 | 0.8818 |
| 0.7299 | 7.3786 | 950 | 0.4480 | 0.8841 | 0.8813 | 0.8894 | 0.8817 |
| 0.6425 | 7.4563 | 960 | 0.4467 | 0.8829 | 0.8798 | 0.8876 | 0.8805 |
| 0.6582 | 7.5340 | 970 | 0.4470 | 0.8831 | 0.8801 | 0.8879 | 0.8806 |
| 0.7499 | 7.6117 | 980 | 0.4466 | 0.8831 | 0.8801 | 0.8878 | 0.8806 |
| 0.6396 | 7.6893 | 990 | 0.4466 | 0.8839 | 0.8809 | 0.8887 | 0.8813 |
| 0.6864 | 7.7670 | 1000 | 0.4466 | 0.8839 | 0.8809 | 0.8888 | 0.8814 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
LoneStriker/Master-Yi-9B-4.0bpw-h6-exl2 | LoneStriker | 2024-05-18T19:38:43Z | 8 | 1 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"exl2",
"region:us"
] | text-generation | 2024-05-18T19:36:38Z | ---
license: apache-2.0
---
## Model Description
Master is a collection of LLMs trained using human-collected seed questions and regenerate the answers with a mixture of high performance Open-source LLMs.
**Master-Yi-9B** is trained using the ORPO technique. The model shows strong abilities in reasoning on coding and math questions.
**Quantized Version**: [Here](https://huggingface.co/qnguyen3/Master-Yi-9B-GGUF)
**Master-Yi-9B-Vision**: **Coming Soon**

## Prompt Template
```
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
What is the meaning of life?<|im_end|>
<|im_start|>assistant
```
## Examples


## Inference Code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"vilm/VinaLlama2-14B",
torch_dtype='auto',
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("vilm/VinaLlama2-14B")
prompt = "What is the mearning of life?"
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id,
temperature=0.25,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids)[0]
print(response)
```
## Benchmarks
### Nous Benchmark:
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)| 43.55| 71.48| 48.54| 41.43| 51.25|
### AGIEval
```
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |35.83|± | 3.01|
| | |acc_norm|31.89|± | 2.93|
|agieval_logiqa_en | 0|acc |38.25|± | 1.91|
| | |acc_norm|37.79|± | 1.90|
|agieval_lsat_ar | 0|acc |23.04|± | 2.78|
| | |acc_norm|20.43|± | 2.66|
|agieval_lsat_lr | 0|acc |48.04|± | 2.21|
| | |acc_norm|42.75|± | 2.19|
|agieval_lsat_rc | 0|acc |61.34|± | 2.97|
| | |acc_norm|52.79|± | 3.05|
|agieval_sat_en | 0|acc |79.13|± | 2.84|
| | |acc_norm|72.33|± | 3.12|
|agieval_sat_en_without_passage| 0|acc |44.17|± | 3.47|
| | |acc_norm|42.72|± | 3.45|
|agieval_sat_math | 0|acc |52.27|± | 3.38|
| | |acc_norm|47.73|± | 3.38|
Average: 43.55%
```
### GPT4All
```
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |54.95|± | 1.45|
| | |acc_norm|58.70|± | 1.44|
|arc_easy | 0|acc |82.28|± | 0.78|
| | |acc_norm|81.10|± | 0.80|
|boolq | 1|acc |86.15|± | 0.60|
|hellaswag | 0|acc |59.16|± | 0.49|
| | |acc_norm|77.53|± | 0.42|
|openbookqa | 0|acc |37.40|± | 2.17|
| | |acc_norm|44.00|± | 2.22|
|piqa | 0|acc |79.00|± | 0.95|
| | |acc_norm|80.25|± | 0.93|
|winogrande | 0|acc |72.61|± | 1.25|
Average: 71.48%
```
### TruthfulQA
```
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |33.05|± | 1.65|
| | |mc2 |48.54|± | 1.54|
Average: 48.54%
```
### Bigbench
```
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|54.74|± | 3.62|
|bigbench_date_understanding | 0|multiple_choice_grade|68.02|± | 2.43|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|40.31|± | 3.06|
|bigbench_geometric_shapes | 0|multiple_choice_grade|30.36|± | 2.43|
| | |exact_str_match | 2.23|± | 0.78|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|26.00|± | 1.96|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|20.71|± | 1.53|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|44.00|± | 2.87|
|bigbench_movie_recommendation | 0|multiple_choice_grade|35.00|± | 2.14|
|bigbench_navigate | 0|multiple_choice_grade|58.40|± | 1.56|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|61.80|± | 1.09|
|bigbench_ruin_names | 0|multiple_choice_grade|42.41|± | 2.34|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|31.56|± | 1.47|
|bigbench_snarks | 0|multiple_choice_grade|55.25|± | 3.71|
|bigbench_sports_understanding | 0|multiple_choice_grade|69.37|± | 1.47|
|bigbench_temporal_sequences | 0|multiple_choice_grade|27.70|± | 1.42|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.36|± | 1.16|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|14.69|± | 0.85|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|44.00|± | 2.87|
Average: 41.43%
```
**Average score**: 51.25%
### OpenLLM Benchmark:
| Model |ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|Average|
|---------------------------------------------------|---:|--------:|----:|---------:|---------:|----:|------:|
|[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)|61.6| 79.89|69.95| 48.59| 77.35|67.48| 67.48|
### ARC
```
| Task |Version| Metric | Value | |Stderr|
|-------------|------:|--------------------|-------------|---|------|
|arc_challenge| 1|acc,none | 0.59| | |
| | |acc_stderr,none | 0.01| | |
| | |acc_norm,none | 0.62| | |
| | |acc_norm_stderr,none| 0.01| | |
| | |alias |arc_challenge| | |
Average: 61.6%
```
### HellaSwag
```
| Task |Version| Metric | Value | |Stderr|
|---------|------:|--------------------|---------|---|------|
|hellaswag| 1|acc,none | 0.61| | |
| | |acc_stderr,none | 0| | |
| | |acc_norm,none | 0.80| | |
| | |acc_norm_stderr,none| 0| | |
| | |alias |hellaswag| | |
Average: 79.89%
```
### MMLU
```
| Task |Version| Metric | Value | |Stderr|
|----------------------------------------|-------|---------------|---------------------------------------|---|------|
|mmlu |N/A |acc,none | 0.7| | |
| | |acc_stderr,none| 0| | |
| | |alias |mmlu | | |
|mmlu_abstract_algebra | 0|alias | - abstract_algebra | | |
| | |acc,none |0.46 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_anatomy | 0|alias | - anatomy | | |
| | |acc,none |0.64 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_astronomy | 0|alias | - astronomy | | |
| | |acc,none |0.77 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_business_ethics | 0|alias | - business_ethics | | |
| | |acc,none |0.76 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_clinical_knowledge | 0|alias | - clinical_knowledge | | |
| | |acc,none |0.71 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_college_biology | 0|alias | - college_biology | | |
| | |acc,none |0.82 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_college_chemistry | 0|alias | - college_chemistry | | |
| | |acc,none |0.52 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_college_computer_science | 0|alias | - college_computer_science | | |
| | |acc,none |0.56 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_college_mathematics | 0|alias | - college_mathematics | | |
| | |acc,none |0.44 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_college_medicine | 0|alias | - college_medicine | | |
| | |acc,none |0.72 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_college_physics | 0|alias | - college_physics | | |
| | |acc,none |0.45 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_computer_security | 0|alias | - computer_security | | |
| | |acc,none |0.81 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_conceptual_physics | 0|alias | - conceptual_physics | | |
| | |acc,none |0.74 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_econometrics | 0|alias | - econometrics | | |
| | |acc,none |0.65 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_electrical_engineering | 0|alias | - electrical_engineering | | |
| | |acc,none |0.72 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_elementary_mathematics | 0|alias | - elementary_mathematics | | |
| | |acc,none |0.62 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_formal_logic | 0|alias | - formal_logic | | |
| | |acc,none |0.57 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_global_facts | 0|alias | - global_facts | | |
| | |acc,none |0.46 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_high_school_biology | 0|alias | - high_school_biology | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_chemistry | 0|alias | - high_school_chemistry | | |
| | |acc,none |0.67 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_computer_science | 0|alias | - high_school_computer_science | | |
| | |acc,none |0.84 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_high_school_european_history | 0|alias | - high_school_european_history | | |
| | |acc,none |0.82 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_geography | 0|alias | - high_school_geography | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_government_and_politics| 0|alias | - high_school_government_and_politics| | |
| | |acc,none |0.90 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_macroeconomics | 0|alias | - high_school_macroeconomics | | |
| | |acc,none |0.75 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_mathematics | 0|alias | - high_school_mathematics | | |
| | |acc,none |0.43 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_microeconomics | 0|alias | - high_school_microeconomics | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_physics | 0|alias | - high_school_physics | | |
| | |acc,none |0.45 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_high_school_psychology | 0|alias | - high_school_psychology | | |
| | |acc,none |0.87 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_high_school_statistics | 0|alias | - high_school_statistics | | |
| | |acc,none |0.68 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_us_history | 0|alias | - high_school_us_history | | |
| | |acc,none |0.85 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_world_history | 0|alias | - high_school_world_history | | |
| | |acc,none |0.85 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_human_aging | 0|alias | - human_aging | | |
| | |acc,none |0.76 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_human_sexuality | 0|alias | - human_sexuality | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_humanities |N/A |alias | - humanities | | |
| | |acc,none |0.63 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_international_law | 0|alias | - international_law | | |
| | |acc,none |0.79 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_jurisprudence | 0|alias | - jurisprudence | | |
| | |acc,none |0.79 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_logical_fallacies | 0|alias | - logical_fallacies | | |
| | |acc,none |0.80 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_machine_learning | 0|alias | - machine_learning | | |
| | |acc,none |0.52 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_management | 0|alias | - management | | |
| | |acc,none |0.83 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_marketing | 0|alias | - marketing | | |
| | |acc,none |0.89 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_medical_genetics | 0|alias | - medical_genetics | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_miscellaneous | 0|alias | - miscellaneous | | |
| | |acc,none |0.85 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_moral_disputes | 0|alias | - moral_disputes | | |
| | |acc,none |0.75 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_moral_scenarios | 0|alias | - moral_scenarios | | |
| | |acc,none |0.48 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_nutrition | 0|alias | - nutrition | | |
| | |acc,none |0.77 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_other |N/A |alias | - other | | |
| | |acc,none |0.75 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_philosophy | 0|alias | - philosophy | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_prehistory | 0|alias | - prehistory | | |
| | |acc,none |0.77 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_professional_accounting | 0|alias | - professional_accounting | | |
| | |acc,none |0.57 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_professional_law | 0|alias | - professional_law | | |
| | |acc,none |0.50 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_professional_medicine | 0|alias | - professional_medicine | | |
| | |acc,none |0.71 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_professional_psychology | 0|alias | - professional_psychology | | |
| | |acc,none |0.73 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_public_relations | 0|alias | - public_relations | | |
| | |acc,none |0.76 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_security_studies | 0|alias | - security_studies | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_social_sciences |N/A |alias | - social_sciences | | |
| | |acc,none |0.81 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_sociology | 0|alias | - sociology | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_stem |N/A |alias | - stem | | |
| | |acc,none |0.65 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_us_foreign_policy | 0|alias | - us_foreign_policy | | |
| | |acc,none |0.92 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_virology | 0|alias | - virology | | |
| | |acc,none |0.58 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_world_religions | 0|alias | - world_religions | | |
| | |acc,none |0.82 | | |
| | |acc_stderr,none|0.03 | | |
Average: 69.95%
```
### TruthfulQA
```
| Task |Version| Metric | Value | |Stderr|
|--------------|-------|-----------------------|-----------------|---|------|
|truthfulqa |N/A |bleu_acc,none | 0.45| | |
| | |bleu_acc_stderr,none | 0.02| | |
| | |rouge1_acc,none | 0.45| | |
| | |rouge1_acc_stderr,none | 0.02| | |
| | |rouge2_diff,none | 0.92| | |
| | |rouge2_diff_stderr,none| 1.07| | |
| | |bleu_max,none | 23.77| | |
| | |bleu_max_stderr,none | 0.81| | |
| | |rouge2_acc,none | 0.38| | |
| | |rouge2_acc_stderr,none | 0.02| | |
| | |acc,none | 0.41| | |
| | |acc_stderr,none | 0.01| | |
| | |rougeL_diff,none | 1.57| | |
| | |rougeL_diff_stderr,none| 0.93| | |
| | |rougeL_acc,none | 0.46| | |
| | |rougeL_acc_stderr,none | 0.02| | |
| | |bleu_diff,none | 1.38| | |
| | |bleu_diff_stderr,none | 0.75| | |
| | |rouge2_max,none | 33.01| | |
| | |rouge2_max_stderr,none | 1.05| | |
| | |rouge1_diff,none | 1.72| | |
| | |rouge1_diff_stderr,none| 0.92| | |
| | |rougeL_max,none | 45.25| | |
| | |rougeL_max_stderr,none | 0.92| | |
| | |rouge1_max,none | 48.29| | |
| | |rouge1_max_stderr,none | 0.90| | |
| | |alias |truthfulqa | | |
|truthfulqa_gen| 3|bleu_max,none | 23.77| | |
| | |bleu_max_stderr,none | 0.81| | |
| | |bleu_acc,none | 0.45| | |
| | |bleu_acc_stderr,none | 0.02| | |
| | |bleu_diff,none | 1.38| | |
| | |bleu_diff_stderr,none | 0.75| | |
| | |rouge1_max,none | 48.29| | |
| | |rouge1_max_stderr,none | 0.90| | |
| | |rouge1_acc,none | 0.45| | |
| | |rouge1_acc_stderr,none | 0.02| | |
| | |rouge1_diff,none | 1.72| | |
| | |rouge1_diff_stderr,none| 0.92| | |
| | |rouge2_max,none | 33.01| | |
| | |rouge2_max_stderr,none | 1.05| | |
| | |rouge2_acc,none | 0.38| | |
| | |rouge2_acc_stderr,none | 0.02| | |
| | |rouge2_diff,none | 0.92| | |
| | |rouge2_diff_stderr,none| 1.07| | |
| | |rougeL_max,none | 45.25| | |
| | |rougeL_max_stderr,none | 0.92| | |
| | |rougeL_acc,none | 0.46| | |
| | |rougeL_acc_stderr,none | 0.02| | |
| | |rougeL_diff,none | 1.57| | |
| | |rougeL_diff_stderr,none| 0.93| | |
| | |alias | - truthfulqa_gen| | |
|truthfulqa_mc1| 2|acc,none | 0.33| | |
| | |acc_stderr,none | 0.02| | |
| | |alias | - truthfulqa_mc1| | |
|truthfulqa_mc2| 2|acc,none | 0.49| | |
| | |acc_stderr,none | 0.02| | |
| | |alias | - truthfulqa_mc2| | |
Average: 48.59%
```
### Winogrande
```
| Task |Version| Metric | Value | |Stderr|
|----------|------:|---------------|----------|---|------|
|winogrande| 1|acc,none | 0.77| | |
| | |acc_stderr,none| 0.01| | |
| | |alias |winogrande| | |
Average: 77.35%
```
### GSM8K
```
|Task |Version| Metric |Value| |Stderr|
|-----|------:|-----------------------------------|-----|---|------|
|gsm8k| 3|exact_match,strict-match | 0.67| | |
| | |exact_match_stderr,strict-match | 0.01| | |
| | |exact_match,flexible-extract | 0.68| | |
| | |exact_match_stderr,flexible-extract| 0.01| | |
| | |alias |gsm8k| | |
Average: 67.48%
```
**Average score**: 67.48%
|
LoneStriker/Master-Yi-9B-3.0bpw-h6-exl2 | LoneStriker | 2024-05-18T19:36:36Z | 8 | 1 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"3-bit",
"exl2",
"region:us"
] | text-generation | 2024-05-18T19:34:53Z | ---
license: apache-2.0
---
## Model Description
Master is a collection of LLMs trained using human-collected seed questions and regenerate the answers with a mixture of high performance Open-source LLMs.
**Master-Yi-9B** is trained using the ORPO technique. The model shows strong abilities in reasoning on coding and math questions.
**Quantized Version**: [Here](https://huggingface.co/qnguyen3/Master-Yi-9B-GGUF)
**Master-Yi-9B-Vision**: **Coming Soon**

## Prompt Template
```
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
What is the meaning of life?<|im_end|>
<|im_start|>assistant
```
## Examples


## Inference Code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"vilm/VinaLlama2-14B",
torch_dtype='auto',
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("vilm/VinaLlama2-14B")
prompt = "What is the mearning of life?"
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id,
temperature=0.25,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids)[0]
print(response)
```
## Benchmarks
### Nous Benchmark:
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)| 43.55| 71.48| 48.54| 41.43| 51.25|
### AGIEval
```
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |35.83|± | 3.01|
| | |acc_norm|31.89|± | 2.93|
|agieval_logiqa_en | 0|acc |38.25|± | 1.91|
| | |acc_norm|37.79|± | 1.90|
|agieval_lsat_ar | 0|acc |23.04|± | 2.78|
| | |acc_norm|20.43|± | 2.66|
|agieval_lsat_lr | 0|acc |48.04|± | 2.21|
| | |acc_norm|42.75|± | 2.19|
|agieval_lsat_rc | 0|acc |61.34|± | 2.97|
| | |acc_norm|52.79|± | 3.05|
|agieval_sat_en | 0|acc |79.13|± | 2.84|
| | |acc_norm|72.33|± | 3.12|
|agieval_sat_en_without_passage| 0|acc |44.17|± | 3.47|
| | |acc_norm|42.72|± | 3.45|
|agieval_sat_math | 0|acc |52.27|± | 3.38|
| | |acc_norm|47.73|± | 3.38|
Average: 43.55%
```
### GPT4All
```
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |54.95|± | 1.45|
| | |acc_norm|58.70|± | 1.44|
|arc_easy | 0|acc |82.28|± | 0.78|
| | |acc_norm|81.10|± | 0.80|
|boolq | 1|acc |86.15|± | 0.60|
|hellaswag | 0|acc |59.16|± | 0.49|
| | |acc_norm|77.53|± | 0.42|
|openbookqa | 0|acc |37.40|± | 2.17|
| | |acc_norm|44.00|± | 2.22|
|piqa | 0|acc |79.00|± | 0.95|
| | |acc_norm|80.25|± | 0.93|
|winogrande | 0|acc |72.61|± | 1.25|
Average: 71.48%
```
### TruthfulQA
```
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |33.05|± | 1.65|
| | |mc2 |48.54|± | 1.54|
Average: 48.54%
```
### Bigbench
```
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|54.74|± | 3.62|
|bigbench_date_understanding | 0|multiple_choice_grade|68.02|± | 2.43|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|40.31|± | 3.06|
|bigbench_geometric_shapes | 0|multiple_choice_grade|30.36|± | 2.43|
| | |exact_str_match | 2.23|± | 0.78|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|26.00|± | 1.96|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|20.71|± | 1.53|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|44.00|± | 2.87|
|bigbench_movie_recommendation | 0|multiple_choice_grade|35.00|± | 2.14|
|bigbench_navigate | 0|multiple_choice_grade|58.40|± | 1.56|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|61.80|± | 1.09|
|bigbench_ruin_names | 0|multiple_choice_grade|42.41|± | 2.34|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|31.56|± | 1.47|
|bigbench_snarks | 0|multiple_choice_grade|55.25|± | 3.71|
|bigbench_sports_understanding | 0|multiple_choice_grade|69.37|± | 1.47|
|bigbench_temporal_sequences | 0|multiple_choice_grade|27.70|± | 1.42|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.36|± | 1.16|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|14.69|± | 0.85|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|44.00|± | 2.87|
Average: 41.43%
```
**Average score**: 51.25%
### OpenLLM Benchmark:
| Model |ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|Average|
|---------------------------------------------------|---:|--------:|----:|---------:|---------:|----:|------:|
|[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)|61.6| 79.89|69.95| 48.59| 77.35|67.48| 67.48|
### ARC
```
| Task |Version| Metric | Value | |Stderr|
|-------------|------:|--------------------|-------------|---|------|
|arc_challenge| 1|acc,none | 0.59| | |
| | |acc_stderr,none | 0.01| | |
| | |acc_norm,none | 0.62| | |
| | |acc_norm_stderr,none| 0.01| | |
| | |alias |arc_challenge| | |
Average: 61.6%
```
### HellaSwag
```
| Task |Version| Metric | Value | |Stderr|
|---------|------:|--------------------|---------|---|------|
|hellaswag| 1|acc,none | 0.61| | |
| | |acc_stderr,none | 0| | |
| | |acc_norm,none | 0.80| | |
| | |acc_norm_stderr,none| 0| | |
| | |alias |hellaswag| | |
Average: 79.89%
```
### MMLU
```
| Task |Version| Metric | Value | |Stderr|
|----------------------------------------|-------|---------------|---------------------------------------|---|------|
|mmlu |N/A |acc,none | 0.7| | |
| | |acc_stderr,none| 0| | |
| | |alias |mmlu | | |
|mmlu_abstract_algebra | 0|alias | - abstract_algebra | | |
| | |acc,none |0.46 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_anatomy | 0|alias | - anatomy | | |
| | |acc,none |0.64 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_astronomy | 0|alias | - astronomy | | |
| | |acc,none |0.77 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_business_ethics | 0|alias | - business_ethics | | |
| | |acc,none |0.76 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_clinical_knowledge | 0|alias | - clinical_knowledge | | |
| | |acc,none |0.71 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_college_biology | 0|alias | - college_biology | | |
| | |acc,none |0.82 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_college_chemistry | 0|alias | - college_chemistry | | |
| | |acc,none |0.52 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_college_computer_science | 0|alias | - college_computer_science | | |
| | |acc,none |0.56 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_college_mathematics | 0|alias | - college_mathematics | | |
| | |acc,none |0.44 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_college_medicine | 0|alias | - college_medicine | | |
| | |acc,none |0.72 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_college_physics | 0|alias | - college_physics | | |
| | |acc,none |0.45 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_computer_security | 0|alias | - computer_security | | |
| | |acc,none |0.81 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_conceptual_physics | 0|alias | - conceptual_physics | | |
| | |acc,none |0.74 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_econometrics | 0|alias | - econometrics | | |
| | |acc,none |0.65 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_electrical_engineering | 0|alias | - electrical_engineering | | |
| | |acc,none |0.72 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_elementary_mathematics | 0|alias | - elementary_mathematics | | |
| | |acc,none |0.62 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_formal_logic | 0|alias | - formal_logic | | |
| | |acc,none |0.57 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_global_facts | 0|alias | - global_facts | | |
| | |acc,none |0.46 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_high_school_biology | 0|alias | - high_school_biology | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_chemistry | 0|alias | - high_school_chemistry | | |
| | |acc,none |0.67 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_computer_science | 0|alias | - high_school_computer_science | | |
| | |acc,none |0.84 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_high_school_european_history | 0|alias | - high_school_european_history | | |
| | |acc,none |0.82 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_geography | 0|alias | - high_school_geography | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_government_and_politics| 0|alias | - high_school_government_and_politics| | |
| | |acc,none |0.90 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_macroeconomics | 0|alias | - high_school_macroeconomics | | |
| | |acc,none |0.75 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_mathematics | 0|alias | - high_school_mathematics | | |
| | |acc,none |0.43 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_microeconomics | 0|alias | - high_school_microeconomics | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_physics | 0|alias | - high_school_physics | | |
| | |acc,none |0.45 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_high_school_psychology | 0|alias | - high_school_psychology | | |
| | |acc,none |0.87 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_high_school_statistics | 0|alias | - high_school_statistics | | |
| | |acc,none |0.68 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_high_school_us_history | 0|alias | - high_school_us_history | | |
| | |acc,none |0.85 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_high_school_world_history | 0|alias | - high_school_world_history | | |
| | |acc,none |0.85 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_human_aging | 0|alias | - human_aging | | |
| | |acc,none |0.76 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_human_sexuality | 0|alias | - human_sexuality | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_humanities |N/A |alias | - humanities | | |
| | |acc,none |0.63 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_international_law | 0|alias | - international_law | | |
| | |acc,none |0.79 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_jurisprudence | 0|alias | - jurisprudence | | |
| | |acc,none |0.79 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_logical_fallacies | 0|alias | - logical_fallacies | | |
| | |acc,none |0.80 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_machine_learning | 0|alias | - machine_learning | | |
| | |acc,none |0.52 | | |
| | |acc_stderr,none|0.05 | | |
|mmlu_management | 0|alias | - management | | |
| | |acc,none |0.83 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_marketing | 0|alias | - marketing | | |
| | |acc,none |0.89 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_medical_genetics | 0|alias | - medical_genetics | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_miscellaneous | 0|alias | - miscellaneous | | |
| | |acc,none |0.85 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_moral_disputes | 0|alias | - moral_disputes | | |
| | |acc,none |0.75 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_moral_scenarios | 0|alias | - moral_scenarios | | |
| | |acc,none |0.48 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_nutrition | 0|alias | - nutrition | | |
| | |acc,none |0.77 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_other |N/A |alias | - other | | |
| | |acc,none |0.75 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_philosophy | 0|alias | - philosophy | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_prehistory | 0|alias | - prehistory | | |
| | |acc,none |0.77 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_professional_accounting | 0|alias | - professional_accounting | | |
| | |acc,none |0.57 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_professional_law | 0|alias | - professional_law | | |
| | |acc,none |0.50 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_professional_medicine | 0|alias | - professional_medicine | | |
| | |acc,none |0.71 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_professional_psychology | 0|alias | - professional_psychology | | |
| | |acc,none |0.73 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_public_relations | 0|alias | - public_relations | | |
| | |acc,none |0.76 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_security_studies | 0|alias | - security_studies | | |
| | |acc,none |0.78 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_social_sciences |N/A |alias | - social_sciences | | |
| | |acc,none |0.81 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_sociology | 0|alias | - sociology | | |
| | |acc,none |0.86 | | |
| | |acc_stderr,none|0.02 | | |
|mmlu_stem |N/A |alias | - stem | | |
| | |acc,none |0.65 | | |
| | |acc_stderr,none|0.01 | | |
|mmlu_us_foreign_policy | 0|alias | - us_foreign_policy | | |
| | |acc,none |0.92 | | |
| | |acc_stderr,none|0.03 | | |
|mmlu_virology | 0|alias | - virology | | |
| | |acc,none |0.58 | | |
| | |acc_stderr,none|0.04 | | |
|mmlu_world_religions | 0|alias | - world_religions | | |
| | |acc,none |0.82 | | |
| | |acc_stderr,none|0.03 | | |
Average: 69.95%
```
### TruthfulQA
```
| Task |Version| Metric | Value | |Stderr|
|--------------|-------|-----------------------|-----------------|---|------|
|truthfulqa |N/A |bleu_acc,none | 0.45| | |
| | |bleu_acc_stderr,none | 0.02| | |
| | |rouge1_acc,none | 0.45| | |
| | |rouge1_acc_stderr,none | 0.02| | |
| | |rouge2_diff,none | 0.92| | |
| | |rouge2_diff_stderr,none| 1.07| | |
| | |bleu_max,none | 23.77| | |
| | |bleu_max_stderr,none | 0.81| | |
| | |rouge2_acc,none | 0.38| | |
| | |rouge2_acc_stderr,none | 0.02| | |
| | |acc,none | 0.41| | |
| | |acc_stderr,none | 0.01| | |
| | |rougeL_diff,none | 1.57| | |
| | |rougeL_diff_stderr,none| 0.93| | |
| | |rougeL_acc,none | 0.46| | |
| | |rougeL_acc_stderr,none | 0.02| | |
| | |bleu_diff,none | 1.38| | |
| | |bleu_diff_stderr,none | 0.75| | |
| | |rouge2_max,none | 33.01| | |
| | |rouge2_max_stderr,none | 1.05| | |
| | |rouge1_diff,none | 1.72| | |
| | |rouge1_diff_stderr,none| 0.92| | |
| | |rougeL_max,none | 45.25| | |
| | |rougeL_max_stderr,none | 0.92| | |
| | |rouge1_max,none | 48.29| | |
| | |rouge1_max_stderr,none | 0.90| | |
| | |alias |truthfulqa | | |
|truthfulqa_gen| 3|bleu_max,none | 23.77| | |
| | |bleu_max_stderr,none | 0.81| | |
| | |bleu_acc,none | 0.45| | |
| | |bleu_acc_stderr,none | 0.02| | |
| | |bleu_diff,none | 1.38| | |
| | |bleu_diff_stderr,none | 0.75| | |
| | |rouge1_max,none | 48.29| | |
| | |rouge1_max_stderr,none | 0.90| | |
| | |rouge1_acc,none | 0.45| | |
| | |rouge1_acc_stderr,none | 0.02| | |
| | |rouge1_diff,none | 1.72| | |
| | |rouge1_diff_stderr,none| 0.92| | |
| | |rouge2_max,none | 33.01| | |
| | |rouge2_max_stderr,none | 1.05| | |
| | |rouge2_acc,none | 0.38| | |
| | |rouge2_acc_stderr,none | 0.02| | |
| | |rouge2_diff,none | 0.92| | |
| | |rouge2_diff_stderr,none| 1.07| | |
| | |rougeL_max,none | 45.25| | |
| | |rougeL_max_stderr,none | 0.92| | |
| | |rougeL_acc,none | 0.46| | |
| | |rougeL_acc_stderr,none | 0.02| | |
| | |rougeL_diff,none | 1.57| | |
| | |rougeL_diff_stderr,none| 0.93| | |
| | |alias | - truthfulqa_gen| | |
|truthfulqa_mc1| 2|acc,none | 0.33| | |
| | |acc_stderr,none | 0.02| | |
| | |alias | - truthfulqa_mc1| | |
|truthfulqa_mc2| 2|acc,none | 0.49| | |
| | |acc_stderr,none | 0.02| | |
| | |alias | - truthfulqa_mc2| | |
Average: 48.59%
```
### Winogrande
```
| Task |Version| Metric | Value | |Stderr|
|----------|------:|---------------|----------|---|------|
|winogrande| 1|acc,none | 0.77| | |
| | |acc_stderr,none| 0.01| | |
| | |alias |winogrande| | |
Average: 77.35%
```
### GSM8K
```
|Task |Version| Metric |Value| |Stderr|
|-----|------:|-----------------------------------|-----|---|------|
|gsm8k| 3|exact_match,strict-match | 0.67| | |
| | |exact_match_stderr,strict-match | 0.01| | |
| | |exact_match,flexible-extract | 0.68| | |
| | |exact_match_stderr,flexible-extract| 0.01| | |
| | |alias |gsm8k| | |
Average: 67.48%
```
**Average score**: 67.48%
|
anirban22/bert-sentiment-anlysis | anirban22 | 2024-05-18T19:22:24Z | 111 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T19:21:42Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Mitrofazotron/mistral_esnli_dev_correct | Mitrofazotron | 2024-05-18T19:09:14Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T19:09:08Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Mitrofazotron/mistral_esnli_dev_all_expls | Mitrofazotron | 2024-05-18T19:07:14Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T15:03:15Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
hoanganhvu/phishing_3_1 | hoanganhvu | 2024-05-18T19:07:09Z | 107 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"generated_from_trainer",
"base_model:google-bert/bert-large-uncased",
"base_model:finetune:google-bert/bert-large-uncased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T09:46:24Z | ---
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: phishing_3_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phishing_3_1
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5678
- Accuracy: 0.9837
- Precision: 0.9884
- Recall: 0.9788
- False Positive Rate: 0.0115
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | False Positive Rate |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:-------------------:|
| 0.5925 | 1.0 | 3025 | 0.5767 | 0.9743 | 0.9853 | 0.9630 | 0.0143 |
| 0.5784 | 2.0 | 6050 | 0.5709 | 0.9802 | 0.9764 | 0.9841 | 0.0238 |
| 0.5766 | 3.0 | 9075 | 0.6025 | 0.9490 | 0.9968 | 0.9008 | 0.0029 |
| 0.5682 | 4.0 | 12100 | 0.5678 | 0.9837 | 0.9884 | 0.9788 | 0.0115 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
hoanganhvu/phishing_4_1 | hoanganhvu | 2024-05-18T19:05:14Z | 106 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"generated_from_trainer",
"base_model:google-bert/bert-large-uncased",
"base_model:finetune:google-bert/bert-large-uncased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T09:47:12Z | ---
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: phishing_4_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phishing_4_1
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7542
- Accuracy: 0.9894
- Precision: 0.9916
- Recall: 0.9872
- False Positive Rate: 0.0084
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | False Positive Rate |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:-------------------:|
| 0.77 | 1.0 | 3025 | 0.7619 | 0.9818 | 0.9796 | 0.9841 | 0.0205 |
| 0.7579 | 2.0 | 6050 | 0.7603 | 0.9834 | 0.9982 | 0.9685 | 0.0018 |
| 0.7595 | 3.0 | 9075 | 0.7605 | 0.9831 | 0.9982 | 0.9680 | 0.0018 |
| 0.7546 | 4.0 | 12100 | 0.7542 | 0.9894 | 0.9916 | 0.9872 | 0.0084 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
emilykang/Gemma_medmcqa_question_generation-biochemistry_lora | emilykang | 2024-05-18T19:00:46Z | 2 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-05-18T18:06:34Z | ---
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: Gemma_medmcqa_question_generation-biochemistry_lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma_medmcqa_question_generation-biochemistry_lora
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1 |
lenML/case-h-beta | lenML | 2024-05-18T19:00:31Z | 3 | 0 | diffusers | [
"diffusers",
"art",
"people",
"diffusion",
"Cinematic",
"Photography",
"Landscape",
"Interior",
"Food",
"Car",
"Wildlife",
"Architecture",
"text-to-image",
"en",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-14T21:45:14Z | ---
license: openrail++
language:
- en
library_name: diffusers
tags:
- art
- people
- diffusion
- Cinematic
- Photography
- Landscape
- Interior
- Food
- Car
- Wildlife
- Architecture
pipeline_tag: text-to-image
widget:
- text: "cinematic film still one man, orc, in armor. shallow depth of field, vignette, highly detailed, high budget Hollywood movie, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy"
output:
url: "https://cdn-uploads.huggingface.co/production/uploads/6346a49add6d90d82cd03c42/eYfxL_1REcqUM2SIItqtG.jpeg"
- text: "Old tree, A detailed illustration muted chinese ink painting, muted colors, rice paper texture, splash paint, halo ai, one human, one red sun. Venus. Space. Clouds wet to wet techniques. vibrant vector. using Cinema 4D"
output:
url: "https://cdn-uploads.huggingface.co/production/uploads/6346a49add6d90d82cd03c42/UcvQMAXnl4a95DbH5YAKL.jpeg"
- text: "(dynamic lighting:1.1), ((masterpiece)), solo, portrait,
Thri Kreen, furry insect, colored sclera, beetle antennae, 2 pairs of hands, 1girl, flat breast, yellow eyes, white chitin, grey shirt, steel armor,
fantasy background, blurred background"
output:
url: "https://cdn-uploads.huggingface.co/production/uploads/6346a49add6d90d82cd03c42/pHZimaVIbRFN38roDSjei.jpeg"
---
# Case-Hardened
<Gallery />
## Model description
### CaseH-beta
CaseH does not mean `hentai case`; instead, CaseH stands for `Case Hardened`.
It derives from the SDXL distillation, creating a 1.5 model.
Recommended configuration:
- Sampler: DPM++ 2M Karras
- Steps: 15-55 (recommended 35)
- CFG: 2-5 (recommended 4)
> The higher the CFG value, the fewer steps should be used.
### How
This model represents an idea I have been experimenting with. It seems I've managed to produce a release-worthy version.
Actually, my concept is quite straightforward, based on the following two assumptions:
- The model has ample capacity to accommodate more knowledge.
- Consistency in architecture implies the possibility of distillation (and we could focus on learning just the realistic part).
Therefore, I attempted to use the SDXL model (one of the more popular versions on Civitai) as the teacher model to distill knowledge into the SD1.5 model (the beta version is based on the LOFIv4 tune-up).
> To my surprise, this round of fine-tuning has significantly surpassed previous distillation (raw-xs) versions. After the tune-up, LOFIv4 has almost completely abandoned the asian-style and shifted entirely towards SDXL.
### Beta Issues
- ti model lora model may not be used as expected
Due to the strong leaning towards learning from SDXL, it could cause the action on the 1.5 TI model to fail, such as with the ng_deepnegative_xx series models.
|
Kalloniatis/Humor-Recognition-Greek-Multilingual-MiniLM | Kalloniatis | 2024-05-18T18:57:01Z | 113 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"el",
"dataset:kallantis/Greek-Humorous-Dataset",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T18:45:40Z | ---
library_name: transformers
license: apache-2.0
datasets:
- kallantis/Greek-Humorous-Dataset
language:
- el
pipeline_tag: text-classification
---
#
#
# This model based on Multilingual MiniLM ("microsoft/Multilingual-MiniLM-L12-H384") fine-tuned for Humor Recognition in Greek language.
#
## Model Details
The model was pre-trained over 10 epochs on Greek Humorous Dataset
#
## Pre-processing details
The text needs to be pre-processed by removing all greek diacritics and punctuation
and converting all letters to lowercase
## Load Pretrained Model
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("kallantis/Humor-Recognition-Greek-Multilingual-MiniLM")
model = AutoModelForSequenceClassification.from_pretrained("kallantis/Humor-Recognition-Greek-Multilingual-MiniLM")
``` |
lenML/lofi-v5-final | lenML | 2024-05-18T18:56:04Z | 4 | 0 | diffusers | [
"diffusers",
"art",
"people",
"diffusion",
"Cinematic",
"Photography",
"Landscape",
"Interior",
"Food",
"Car",
"Wildlife",
"Architecture",
"text-to-image",
"en",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-15T03:21:09Z | ---
license: openrail++
language:
- en
library_name: diffusers
tags:
- art
- people
- diffusion
- Cinematic
- Photography
- Landscape
- Interior
- Food
- Car
- Wildlife
- Architecture
pipeline_tag: text-to-image
widget:
- text: "an evil demonic woman,
white hair, blue eyes, short messy hair,
arrogant mood,
analog photo"
output:
url: "30350-349554337-an evil demonic woman,_white hair, blue eyes, short messy hair,_arrogant mood,_analog photo.png"
- text: "half body, walking pose, shot from front, slow motion, female paladin wearing the full body, (light silver armour:1.2),(ornately decorated armor), (insanely detailed, bloom:1.2), (analog:1.2), (high sharpness), (detailed pupils:1.1), detailed face and eyes, (long blonde Hair, ponytail,ecstatic:1.1), (young woman:1.1), sharp, real shadow, (temple background:1.2), arms crossed over the chest , looking at viewer, photographed by Canan EOS R6, 135mm, 1/1250s, f/2.8, ISO 400"
output:
url: "29357-2410224889-half body, walking pose, shot from front, slow motion, female paladin wearing the full body, (light silver armour_1.2),(ornately.png"
- text: "best quality,
mecha glass room, highrise, transparent, mecha interior, city background, realistic photography, fine details, 8k,"
output:
url: "29977-2751097006-best quality,_mecha glass room, highrise, transparent, mecha interior, city background, realistic photography, fine details, 8k,.png"
- text: "best quality,
pool room"
output:
url: "29995-3383783430-best quality,_pool room.png"
---
# L.O.F.I: Limitless Originality Free from Interference
<Gallery />
## Model description
### 🚀 LOFI V5 - Final
This is the last version in the LOFI series of models. There likely won't be any more updates to the LOFI model in the future (unless an SD3.0 is released, in which case, a LOFI version for 3.0 might be trained).
Version 5 is quite special, as it even produces an effect somewhat similar to using "LCM". You must use a very low CFG to utilize it. This model can also be effectively combined with LCM or HyperSD for enhanced performance.
Additionally, this model is extremely sensitive to "prompt word attention". From my tests, no prompt word weight should exceed 1.2, and oftentimes, removing all prompt weight leads to better results, indicating that the model has a precise understanding of the importance and relevance of prompts.
### 🛠️ Recommended settings:
Sampler: DPM++ (series) / Restart
Steps: 15-55 (35 recommended)
CFG: 2-5 (4 recommended)
> The lower the CFG, the more creative the generated image may be.
### 📸 nobody issue:
This model has a strong preference for a photographic "subject". It could prove difficult to generate images lacking a definite subject. If you do wish to generate landscape pictures with this model, the use of controlnet-depth is recommended to manage the output.
💡 PS: In fact, this model was completed quite some time ago, but I believed that the 1.5 model community might not remain active following the release of SDXL, so I held back the release. It now appears that the 1.5 model is still very much in use, often employed as a refiner for SDXL by many, including myself.
💡PPS: In order to show the true ability of the model, all showcases try not to use lora and post-processing. If reasonable lora and post-processing are used, better results should be achieved.
|
Angy309/clasi_noti | Angy309 | 2024-05-18T18:55:11Z | 109 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:dccuchile/bert-base-spanish-wwm-uncased",
"base_model:finetune:dccuchile/bert-base-spanish-wwm-uncased",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T18:33:48Z | ---
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: clasi_noti
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clasi_noti
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2959
- Accuracy: 0.9181
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 236 | 0.2896 | 0.9181 |
| No log | 2.0 | 472 | 0.2959 | 0.9181 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
apwic/sentiment-lora-r2a0d0.05-1 | apwic | 2024-05-18T18:50:54Z | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-18T18:18:03Z | ---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r2a0d0.05-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-lora-r2a0d0.05-1
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3638
- Accuracy: 0.8446
- Precision: 0.8193
- Recall: 0.7951
- F1: 0.8055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5663 | 1.0 | 122 | 0.5216 | 0.7293 | 0.6677 | 0.6510 | 0.6572 |
| 0.5149 | 2.0 | 244 | 0.5134 | 0.7243 | 0.6758 | 0.6899 | 0.6810 |
| 0.4925 | 3.0 | 366 | 0.4821 | 0.7569 | 0.7055 | 0.6980 | 0.7014 |
| 0.4608 | 4.0 | 488 | 0.4654 | 0.7644 | 0.7150 | 0.7083 | 0.7114 |
| 0.4493 | 5.0 | 610 | 0.4600 | 0.7569 | 0.7126 | 0.7305 | 0.7193 |
| 0.4257 | 6.0 | 732 | 0.4307 | 0.7870 | 0.7433 | 0.7318 | 0.7369 |
| 0.4178 | 7.0 | 854 | 0.4181 | 0.7970 | 0.7552 | 0.7614 | 0.7581 |
| 0.3977 | 8.0 | 976 | 0.3972 | 0.8070 | 0.7687 | 0.7560 | 0.7617 |
| 0.3946 | 9.0 | 1098 | 0.3937 | 0.8145 | 0.7779 | 0.7663 | 0.7716 |
| 0.3762 | 10.0 | 1220 | 0.3874 | 0.8246 | 0.7995 | 0.7584 | 0.7738 |
| 0.3727 | 11.0 | 1342 | 0.3787 | 0.8321 | 0.8014 | 0.7837 | 0.7915 |
| 0.3626 | 12.0 | 1464 | 0.3750 | 0.8371 | 0.8059 | 0.7947 | 0.7999 |
| 0.359 | 13.0 | 1586 | 0.3728 | 0.8296 | 0.8066 | 0.7644 | 0.7803 |
| 0.3488 | 14.0 | 1708 | 0.3709 | 0.8296 | 0.8049 | 0.7669 | 0.7816 |
| 0.3445 | 15.0 | 1830 | 0.3667 | 0.8421 | 0.8131 | 0.7983 | 0.8050 |
| 0.3344 | 16.0 | 1952 | 0.3656 | 0.8421 | 0.8142 | 0.7958 | 0.8040 |
| 0.3339 | 17.0 | 2074 | 0.3654 | 0.8396 | 0.8128 | 0.7890 | 0.7992 |
| 0.3357 | 18.0 | 2196 | 0.3638 | 0.8421 | 0.8154 | 0.7933 | 0.8029 |
| 0.3357 | 19.0 | 2318 | 0.3646 | 0.8421 | 0.8154 | 0.7933 | 0.8029 |
| 0.3359 | 20.0 | 2440 | 0.3638 | 0.8446 | 0.8193 | 0.7951 | 0.8055 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
Subsets and Splits