modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-29 00:46:34
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
502 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-29 00:44:25
card
stringlengths
11
1.01M
MaziyarPanahi/Magic_8B-GGUF
MaziyarPanahi
2024-11-01T03:47:21Z
71
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:FourOhFour/Magic_8B", "base_model:quantized:FourOhFour/Magic_8B", "region:us", "conversational" ]
text-generation
2024-11-01T03:04:33Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: Magic_8B-GGUF base_model: FourOhFour/Magic_8B inference: false model_creator: FourOhFour pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/Magic_8B-GGUF](https://huggingface.co/MaziyarPanahi/Magic_8B-GGUF) - Model creator: [FourOhFour](https://huggingface.co/FourOhFour) - Original model: [FourOhFour/Magic_8B](https://huggingface.co/FourOhFour/Magic_8B) ## Description [MaziyarPanahi/Magic_8B-GGUF](https://huggingface.co/MaziyarPanahi/Magic_8B-GGUF) contains GGUF format model files for [FourOhFour/Magic_8B](https://huggingface.co/FourOhFour/Magic_8B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF
mradermacher
2024-11-01T03:43:28Z
28
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:RJuro/munin-neuralbeagle-SkoleGPTOpenOrca-7b", "base_model:quantized:RJuro/munin-neuralbeagle-SkoleGPTOpenOrca-7b", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-01T03:29:35Z
--- base_model: RJuro/munin-neuralbeagle-SkoleGPTOpenOrca-7b language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/RJuro/munin-neuralbeagle-SkoleGPTOpenOrca-7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/munin-neuralbeagle-SkoleGPTOpenOrca-7b-GGUF/resolve/main/munin-neuralbeagle-SkoleGPTOpenOrca-7b.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
alifares330/oxford-pet-segmentation-exp
alifares330
2024-11-01T03:41:18Z
8
0
segmentation-models-pytorch
[ "segmentation-models-pytorch", "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "semantic-segmentation", "pytorch", "image-segmentation", "license:mit", "region:us" ]
image-segmentation
2024-11-01T03:41:06Z
--- library_name: segmentation-models-pytorch license: mit pipeline_tag: image-segmentation tags: - model_hub_mixin - pytorch_model_hub_mixin - segmentation-models-pytorch - semantic-segmentation - pytorch languages: - python --- # FPN Model Card Table of Contents: - [Load trained model](#load-trained-model) - [Model init parameters](#model-init-parameters) - [Model metrics](#model-metrics) - [Dataset](#dataset) ## Load trained model ```python import segmentation_models_pytorch as smp model = smp.from_pretrained("<save-directory-or-this-repo>") ``` ## Model init parameters ```python model_init_params = { "encoder_name": "resnet34", "encoder_depth": 5, "encoder_weights": "imagenet", "decoder_pyramid_channels": 256, "decoder_segmentation_channels": 128, "decoder_merge_policy": "add", "decoder_dropout": 0.2, "in_channels": 3, "classes": 1, "activation": None, "upsampling": 4, "aux_params": None } ``` ## Model metrics ```json [ { "test_per_image_iou": 0.907154381275177, "test_dataset_iou": 0.9143515825271606 } ] ``` ## Dataset Dataset name: Oxford Pet ## More Information - Library: https://github.com/qubvel/segmentation_models.pytorch - Docs: https://smp.readthedocs.io/en/latest/ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)
mradermacher/flux-7b-v0.3-GGUF
mradermacher
2024-11-01T03:22:44Z
22
1
transformers
[ "transformers", "gguf", "en", "base_model:chanwit/flux-7b-v0.3", "base_model:quantized:chanwit/flux-7b-v0.3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-01T02:54:58Z
--- base_model: chanwit/flux-7b-v0.3 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/chanwit/flux-7b-v0.3 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/flux-7b-v0.3-GGUF/resolve/main/flux-7b-v0.3.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
kristiannordby/t5-sql
kristiannordby
2024-11-01T03:14:54Z
178
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-01T03:13:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HoneyBadger2989/Llama-3.1-Storm-8B-GGUF
HoneyBadger2989
2024-11-01T03:13:17Z
19
0
transformers
[ "transformers", "gguf", "llama-3.1", "conversational", "instruction following", "reasoning", "function calling", "mergekit", "finetuning", "axolotl", "autoquant", "text-generation", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2406.06623", "arxiv:2311.07911", "arxiv:2311.12022", "arxiv:2406.01574", "arxiv:1803.05457", "arxiv:2310.16049", "arxiv:2210.09261", "arxiv:2109.07958", "license:llama3.1", "endpoints_compatible", "region:us" ]
text-generation
2024-11-01T01:42:21Z
--- language: - en - de - fr - it - pt - hi - es - th library_name: transformers license: llama3.1 pipeline_tag: text-generation tags: - llama-3.1 - conversational - instruction following - reasoning - function calling - mergekit - finetuning - axolotl - autoquant - gguf --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg) Authors: [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/), [Pawan Kumar Rajpoot](https://www.linkedin.com/in/pawanrajpoot/), [Ankur Parikh](https://www.linkedin.com/in/ankurnlpexpert/), [Akshita Sukhlecha](https://www.linkedin.com/in/akshita-sukhlecha/) **🤗 Hugging Face Announcement Blog**: https://huggingface.co/blog/akjindal53244/llama31-storm8b **🚀Ollama:** `ollama run ajindal/llama3.1-storm:8b` ## TL;DR ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/mDtDeiHwnBupw1k_n99Lf.png) We present the [**Llama-3.1-Storm-8B**](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) model that outperforms Meta AI's [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) and [Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) models significantly across diverse benchmarks as shown in the performance comparison plot in the next section. Our approach consists of three key steps: 1. **Self-Curation**: We applied two self-curation methods to select approximately 1 million high-quality examples from a pool of ~2.8 million open-source examples. **Our curation criteria focused on educational value and difficulty level, using the same SLM for annotation instead of larger models (e.g. 70B, 405B).** 2. **Targeted fine-tuning**: We performed [Spectrum](https://arxiv.org/abs/2406.06623)-based targeted fine-tuning over the Llama-3.1-8B-Instruct model. The Spectrum method accelerates training by selectively targeting layer modules based on their signal-to-noise ratio (SNR), and freezing the remaining modules. In our work, 50% of layers are frozen. 3. **Model Merging**: We merged our fine-tuned model with the [Llama-Spark](https://huggingface.co/arcee-ai/Llama-Spark) model using [SLERP](https://huggingface.co/blog/mlabonne/merge-models#1-slerp) method. The merging method produces a blended model with characteristics smoothly interpolated from both parent models, ensuring the resultant model captures the essence of both its parents. [Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) improves Llama-3.1-8B-Instruct across 10 diverse benchmarks. These benchmarks cover areas such as instruction-following, knowledge-driven QA, reasoning, truthful answer generation, and function calling. ## 🏆 Introducing Llama-3.1-Storm-8B [**Llama-3.1-Storm-8B**](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) builds upon the foundation of Llama-3.1-8B-Instruct, aiming to enhance both conversational and function calling capabilities within the 8B parameter model class. As shown in the left subplot of the above figure, [**Llama-3.1-Storm-8B**](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) model improves Meta-Llama-3.1-8B-Instruct across various benchmarks - Instruction-following ([IFEval](https://arxiv.org/abs/2311.07911)), Knowledge-driven QA benchmarks ([GPQA](https://arxiv.org/abs/2311.12022), [MMLU-Pro](https://arxiv.org/pdf/2406.01574)), Reasoning ([ARC-C](https://arxiv.org/abs/1803.05457), [MuSR](https://arxiv.org/abs/2310.16049), [BBH](https://arxiv.org/pdf/2210.09261)), Reduced Hallucinations ([TruthfulQA](https://arxiv.org/abs/2109.07958)), and Function-Calling ([BFCL](https://huggingface.co/datasets/gorilla-llm/Berkeley-Function-Calling-Leaderboard)). This improvement is particularly significant for AI developers and enthusiasts who work with limited computational resources. We also benchmarked our model with the recently published model [Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) built on top of the Llama-3.1-8B-Instruct model. As shown in the right subplot of the above figure, **Llama-3.1-Storm-8B outperforms Hermes-3-Llama-3.1-8B on 7 out of 9 benchmarks**, with Hermes-3-Llama-3.1-8B surpassing Llama-3.1-Storm-8B on the MuSR benchmark and both models showing comparable performance on the BBH benchmark. ## Llama-3.1-Storm-8B Model Strengths Llama-3.1-Storm-8B is a powerful generalist model useful for diverse applications. We invite the AI community to explore [Llama-3.1-Storm-8B](https://huggingface.co/collections/akjindal53244/storm-66ba6c96b7e24ecb592787a9) and look forward to seeing how it will be utilized in various projects and applications. <table> <tr> <td><strong>Model Strength</strong> </td> <td><strong>Relevant Benchmarks</strong> </td> <tr> <tr> <td>🎯 Improved Instruction Following </td> <td>IFEval Strict (+3.93%) </td> <tr> <tr> <td>🌐 Enhanced Knowledge Driven Question Answering </td> <td>GPQA (+7.21%), MMLU-Pro (+0.55%), AGIEval (+3.77%) </td> <tr> <tr> <td>🧠 Better Reasoning </td> <td>ARC-C (+3.92%), MuSR (+2.77%), BBH (+1.67%), AGIEval (+3.77%) </td> <tr> <tr> <td>🤖 Superior Agentic Capabilities </td> <td>BFCL: Overall Acc (+7.92%), BFCL: AST Summary (+12.32%) </td> <tr> <tr> <td>🚫 Reduced Hallucinations </td> <td>TruthfulQA (+9%) </td> <tr> </table> **Note**: All improvements are absolute gains over Meta-Llama-3.1-8B-Instruct. ## Llama-3.1-Storm-8B Models 1. `BF16`: [Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) 2. ⚡ `FP8`: [Llama-3.1-Storm-8B-FP8-Dynamic](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic) 3. ⚡ `GGUF`: [Llama-3.1-Storm-8B-GGUF](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B-GGUF) 4. 🚀 Ollama: `ollama run ajindal/llama3.1-storm:8b` ## 💻 How to Use the Model The Hugging Face `transformers` library loads the model in `bfloat16` by default. This is the type used by the [Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) checkpoint, so it’s the recommended way to run to ensure the best results. ### Installation ```bash pip install --upgrade "transformers>=4.43.2" torch==2.3.1 accelerate vllm==0.5.3.post1 ``` Developers can easily integrate Llama-3.1-Storm-8B into their projects using popular libraries like Transformers and vLLM. The following sections illustrate the usage with simple hands-on examples: ### Conversational Use-case #### Use with [🤗 Transformers](https://github.com/huggingface/transformers) ##### Using `transformers.pipeline()` API ```python import transformers import torch model_id = "akjindal53244/Llama-3.1-Storm-8B" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What is 2+2?"} ] outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95) print(outputs[0]["generated_text"][-1]) # Expected Output: {'role': 'assistant', 'content': '2 + 2 = 4'} ``` ##### Using `model.generate()` API ```bash pip install flash_attn==2.6.3 ``` ```python import torch from transformers import AutoTokenizer, LlamaForCausalLM # Apply Llama3.1 chat-template def format_prompt(user_query): template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""" return template.format(user_query) model_id = 'akjindal53244/Llama-3.1-Storm-8B' tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = LlamaForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", load_in_8bit=False, load_in_4bit=False, use_flash_attention_2=True ) # Build final input prompt after applying chat-template prompt = format_prompt("What is 2+2?") input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=128, temperature=0.01, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True) print(response) # Expected Output: '2 + 2 = 4' ``` #### Use with [vLLM](https://github.com/vllm-project/vllm) ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "akjindal53244/Llama-3.1-Storm-8B" # FP8 model: "akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic" num_gpus = 1 tokenizer = AutoTokenizer.from_pretrained(model_id) llm = LLM(model=model_id, tensor_parallel_size=num_gpus) sampling_params = SamplingParams(max_tokens=128, temperature=0.01, top_k=100, top_p=0.95) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What is 2+2?"} ] prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize = False) print(llm.generate([prompt], sampling_params)[0].outputs[0].text.strip()) # Expected Output: 2 + 2 = 4 ``` #### Use with [LitGPT](https://github.com/Lightning-AI/litgpt) ```bash pip install 'litgpt[all]' litgpt download akjindal53244/Llama-3.1-Storm-8B --model_name meta-llama/Meta-Llama-3.1-8B ``` ```python from litgpt import LLM llm = LLM.load(model="akjindal53244/Llama-3.1-Storm-8B") llm.generate("What do Llamas eat?") ``` ### Function Calling Use-case [**Llama-3.1-Storm-8B**](https://huggingface.co/collections/akjindal53244/storm-66ba6c96b7e24ecb592787a9) has impressive function calling capabilities compared to Meta-Llama-3.1-8B-Instruct as demonstrated by the BFCL benchmark. #### Prompt Format for Function Calling Llama-3.1-Storm-8B is trained with specific system prompt for Function Calling: ``` You are a function calling AI model. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into function. The user may use the terms function calling or tool use interchangeably. Here are the available functions: <tools>LIST_OF_TOOLS</tools> For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags in the format: <tool_call>{"tool_name": <function-name>, "tool_arguments": <args-dict>}</tool_call> ``` Above system prompt should be used with passing `LIST_OF_TOOLS` as input. #### Use with [vLLM](https://github.com/vllm-project/vllm) ```python import json from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "akjindal53244/Llama-3.1-Storm-8B" # FP8 model: "akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic" num_gpus = 1 tokenizer = AutoTokenizer.from_pretrained(model_id) llm = LLM(model=model_id, tensor_parallel_size=num_gpus) sampling_params = SamplingParams(max_tokens=128, temperature=0.01, top_k=100, top_p=0.95) def create_system_prompt(tools_list): system_prompt_format = """You are a function calling AI model. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into function. The user may use the terms function calling or tool use interchangeably. Here are the available functions: <tools>{}</tools> For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags in the format: <tool_call>{"tool_name": <function-name>, "tool_arguments": <args-dict>}</tool_call>""" # Convert the tools list to a string representation tools_str = json.dumps(tools_list, ensure_ascii=False) # Format the system prompt with the tools list system_prompt = system_prompt_format.format(tools_str) return system_prompt # Example tools list tools_list = [ { "name": "peers", "description": "Retrieves a list of company peers given a stock symbol.", "parameters": { "symbol": { "description": "The stock symbol for the company.", "type": "str", "default": "" } } }, { "name": "web_chain_details", "description": "python", "parameters": { "chain_slug": { "description": "The slug identifier for the blockchain (e.g., 'ethereum' for Ethereum mainnet).", "type": "str", "default": "ethereum" } } } ] # Create the system prompt with the tools list system_prompt = create_system_prompt(tools_list) messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": "I need to understand the details of the Ethereum blockchain for my cryptocurrency project. Can you fetch the details for 'ethereum'?"} ] prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize = False) print(llm.generate([prompt], sampling_params)[0].outputs[0].text.strip()) # Expected Output: <tool_call>{'tool_name': 'web_chain_details', 'tool_arguments': {'chain_slug': 'ethereum'}}</tool_call> ``` #### Use with [Ollama](https://ollama.com/) ``` import ollama tools = [{ 'type': 'function', 'function': { 'name': 'get_current_weather', 'description': 'Get the current weather for a city', 'parameters': { 'type': 'object', 'properties': { 'city': { 'type': 'string', 'description': 'The name of the city', }, }, 'required': ['city'], }, }, }, { 'type': 'function', 'function': { 'name': 'get_places_to_vist', 'description': 'Get places to visit in a city', 'parameters': { 'type': 'object', 'properties': { 'city': { 'type': 'string', 'description': 'The name of the city', }, }, 'required': ['city'], }, }, }, ] response = ollama.chat( model='ajindal/llama3.1-storm:8b', messages=[ {'role': 'system', 'content': 'Do not answer to nay vulgar questions.'}, {'role': 'user', 'content': 'What is the weather in Toronto and San Francisco?'} ], tools=tools ) print(response['message']) # Expected Response: {'role': 'assistant', 'content': "<tool_call>{'tool_name': 'get_current_weather', 'tool_arguments': {'city': 'Toronto'}}</tool_call>"} ``` ## Alignment Note While **Llama-3.1-Storm-8B** did not undergo an explicit model alignment process, it may still retain some alignment properties inherited from the Meta-Llama-3.1-8B-Instruct model. ## Cite Our Work ``` @misc {ashvini_kumar_jindal_2024, author = { {Ashvini Kumar Jindal, Pawan Kumar Rajpoot, Ankur Parikh, Akshita Sukhlecha} }, title = { Llama-3.1-Storm-8B }, year = 2024, url = { https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B }, doi = { 10.57967/hf/2902 }, publisher = { Hugging Face } } ``` ## Support Our Work With 3 team-members spanned across 3 different time-zones, we have won [NeurIPS LLM Efficiency Challenge 2023](https://llm-efficiency-challenge.github.io/) and 4 other competitions in Finance and Arabic LLM space. We have also published [SOTA mathematical reasoning model](https://huggingface.co/akjindal53244/Arithmo-Mistral-7B). **Llama-3.1-Storm-8B** is our most valuable contribution so far towards the open-source community. We are committed in developing efficient generalist LLMs. **We're seeking both computational resources and innovative collaborators to drive this initiative forward.**
koshimaki/dinosiglip-224px-1b-pref
koshimaki
2024-11-01T03:11:48Z
105
0
transformers
[ "transformers", "safetensors", "prismatic", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2024-11-01T03:09:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gpustack/bce-embedding-base_v1-GGUF
gpustack
2024-11-01T03:02:40Z
472
0
sentence-transformers
[ "sentence-transformers", "gguf", "feature-extraction", "sentence-similarity", "transformers", "en", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
feature-extraction
2024-10-31T15:37:54Z
--- license: apache-2.0 pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: - en - zh --- # bce-embedding-base_v1-GGUF **Model creator**: [maidalun1020](https://huggingface.co/maidalun1020)<br/> **Original model**: [maidalun1020/bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1)<br/> **GGUF quantization**: based on llama.cpp release [61408e7f](https://github.com/ggerganov/llama.cpp/commit/61408e7fad082dc44a11c8a9f1398da4837aad44) --- <!-- * @Description: * @Author: shenlei * @Date: 2023-12-19 10:31:41 * @LastEditTime: 2024-01-09 23:52:00 * @LastEditors: shenlei --> <h1 align="center">BCEmbedding: Bilingual and Crosslingual Embedding for RAG</h1> <p align="center"> <a href="https://github.com/netease-youdao/BCEmbedding/blob/master/LICENSE"> <img src="https://img.shields.io/badge/license-Apache--2.0-yellow"> </a> <a href="https://twitter.com/YDopensource"> <img src="https://img.shields.io/badge/follow-%40YDOpenSource-1DA1F2?logo=twitter&style={style}"> </a> </p> 最新、最详细的bce-embedding-base_v1相关信息,请移步(The latest "Updates" should be checked in): <p align="left"> <a href="https://github.com/netease-youdao/BCEmbedding">GitHub</a> </p> ## 主要特点(Key Features): - 中英双语,以及中英跨语种能力(Bilingual and Crosslingual capability in English and Chinese); - RAG优化,适配更多真实业务场景(RAG adaptation for more domains, including Education, Law, Finance, Medical, Literature, FAQ, Textbook, Wikipedia, etc.); - 方便集成进langchain和llamaindex(Easy integrations for langchain and llamaindex in <a href="https://github.com/netease-youdao/BCEmbedding">BCEmbedding</a>)。 - `EmbeddingModel`不需要“精心设计”instruction,尽可能召回有用片段。 (No need for "instruction") - **最佳实践(Best practice)** :embedding召回top50-100片段,reranker对这50-100片段精排,最后取top5-10片段。(1. Get top 50-100 passages with [bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1) for "`recall`"; 2. Rerank passages with [bce-reranker-base_v1](https://huggingface.co/maidalun1020/bce-reranker-base_v1) and get top 5-10 for "`precision`" finally. ) ## News: - `BCEmbedding`技术博客( **Technical Blog** ): [为RAG而生-BCEmbedding技术报告](https://zhuanlan.zhihu.com/p/681370855) - Related link for **RerankerModel** : [bce-reranker-base_v1](https://huggingface.co/maidalun1020/bce-reranker-base_v1) ## Third-party Examples: - RAG applications: [QAnything](https://github.com/netease-youdao/qanything), [HuixiangDou](https://github.com/InternLM/HuixiangDou), [ChatPDF](https://github.com/shibing624/ChatPDF). - Efficient inference framework: [ChatLLM.cpp](https://github.com/foldl/chatllm.cpp), [Xinference](https://github.com/xorbitsai/inference), [mindnlp (Huawei GPU, 华为GPU)](https://github.com/mindspore-lab/mindnlp/tree/master/llm/inference/bce). ![image/jpeg](assets/rag_eval_multiple_domains_summary.jpg) ![image/jpeg](assets/Wechat.jpg) ----------------------------------------- <details open="open"> <summary>Click to Open Contents</summary> - <a href="#-bilingual-and-crosslingual-superiority" target="_Self">🌐 Bilingual and Crosslingual Superiority</a> - <a href="#-key-features" target="_Self">💡 Key Features</a> - <a href="#-latest-updates" target="_Self">🚀 Latest Updates</a> - <a href="#-model-list" target="_Self">🍎 Model List</a> - <a href="#-manual" target="_Self">📖 Manual</a> - <a href="#installation" target="_Self">Installation</a> - <a href="#quick-start" target="_Self">Quick Start (`transformers`, `sentence-transformers`)</a> - <a href="#integrations-for-rag-frameworks" target="_Self">Integrations for RAG Frameworks (`langchain`, `llama_index`)</a> - <a href="#%EF%B8%8F-evaluation" target="_Self">⚙️ Evaluation</a> - <a href="#evaluate-semantic-representation-by-mteb" target="_Self">Evaluate Semantic Representation by MTEB</a> - <a href="#evaluate-rag-by-llamaindex" target="_Self">Evaluate RAG by LlamaIndex</a> - <a href="#-leaderboard" target="_Self">📈 Leaderboard</a> - <a href="#semantic-representation-evaluations-in-mteb" target="_Self">Semantic Representation Evaluations in MTEB</a> - <a href="#rag-evaluations-in-llamaindex" target="_Self">RAG Evaluations in LlamaIndex</a> - <a href="#-youdaos-bcembedding-api" target="_Self">🛠 Youdao's BCEmbedding API</a> - <a href="#-wechat-group" target="_Self">🧲 WeChat Group</a> - <a href="#%EF%B8%8F-citation" target="_Self">✏️ Citation</a> - <a href="#-license" target="_Self">🔐 License</a> - <a href="#-related-links" target="_Self">🔗 Related Links</a> </details> <br> **B**ilingual and **C**rosslingual **Embedding** (`BCEmbedding`), developed by NetEase Youdao, encompasses `EmbeddingModel` and `RerankerModel`. The `EmbeddingModel` specializes in generating semantic vectors, playing a crucial role in semantic search and question-answering, and the `RerankerModel` excels at refining search results and ranking tasks. `BCEmbedding` serves as the cornerstone of Youdao's Retrieval Augmented Generation (RAG) implmentation, notably [QAnything](http://qanything.ai) [[github](https://github.com/netease-youdao/qanything)], an open-source implementation widely integrated in various Youdao products like [Youdao Speed Reading](https://read.youdao.com/#/home) and [Youdao Translation](https://fanyi.youdao.com/download-Mac?keyfrom=fanyiweb_navigation). Distinguished for its bilingual and crosslingual proficiency, `BCEmbedding` excels in bridging Chinese and English linguistic gaps, which achieves - **A high performence on <a href="#semantic-representation-evaluations-in-mteb">Semantic Representation Evaluations in MTEB</a>**; - **A new benchmark in the realm of <a href="#rag-evaluations-in-llamaindex">RAG Evaluations in LlamaIndex</a>**. `BCEmbedding`是由网易有道开发的双语和跨语种语义表征算法模型库,其中包含`EmbeddingModel`和`RerankerModel`两类基础模型。`EmbeddingModel`专门用于生成语义向量,在语义搜索和问答中起着关键作用,而`RerankerModel`擅长优化语义搜索结果和语义相关顺序精排。 `BCEmbedding`作为有道的检索增强生成式应用(RAG)的基石,特别是在[QAnything](http://qanything.ai) [[github](https://github.com/netease-youdao/qanything)]中发挥着重要作用。QAnything作为一个网易有道开源项目,在有道许多产品中有很好的应用实践,比如[有道速读](https://read.youdao.com/#/home)和[有道翻译](https://fanyi.youdao.com/download-Mac?keyfrom=fanyiweb_navigation) `BCEmbedding`以其出色的双语和跨语种能力而著称,在语义检索中消除中英语言之间的差异,从而实现: - **强大的双语和跨语种语义表征能力【<a href="#semantic-representation-evaluations-in-mteb">基于MTEB的语义表征评测指标</a>】。** - **基于LlamaIndex的RAG评测,表现SOTA【<a href="#rag-evaluations-in-llamaindex">基于LlamaIndex的RAG评测指标</a>】。** ## 🌐 Bilingual and Crosslingual Superiority Existing embedding models often encounter performance challenges in bilingual and crosslingual scenarios, particularly in Chinese, English and their crosslingual tasks. `BCEmbedding`, leveraging the strength of Youdao's translation engine, excels in delivering superior performance across monolingual, bilingual, and crosslingual settings. `EmbeddingModel` supports ***Chinese (ch) and English (en)*** (more languages support will come soon), while `RerankerModel` supports ***Chinese (ch), English (en), Japanese (ja) and Korean (ko)***. 现有的单个语义表征模型在双语和跨语种场景中常常表现不佳,特别是在中文、英文及其跨语种任务中。`BCEmbedding`充分利用有道翻译引擎的优势,实现只需一个模型就可以在单语、双语和跨语种场景中表现出卓越的性能。 `EmbeddingModel`支持***中文和英文***(之后会支持更多语种);`RerankerModel`支持***中文,英文,日文和韩文***。 ## 💡 Key Features - **Bilingual and Crosslingual Proficiency**: Powered by Youdao's translation engine, excelling in Chinese, English and their crosslingual retrieval task, with upcoming support for additional languages. - **RAG-Optimized**: Tailored for diverse RAG tasks including **translation, summarization, and question answering**, ensuring accurate **query understanding**. See <a href=#rag-evaluations-in-llamaindex>RAG Evaluations in LlamaIndex</a>. - **Efficient and Precise Retrieval**: Dual-encoder for efficient retrieval of `EmbeddingModel` in first stage, and cross-encoder of `RerankerModel` for enhanced precision and deeper semantic analysis in second stage. - **Broad Domain Adaptability**: Trained on diverse datasets for superior performance across various fields. - **User-Friendly Design**: Instruction-free, versatile use for multiple tasks without specifying query instruction for each task. - **Meaningful Reranking Scores**: `RerankerModel` provides relevant scores to improve result quality and optimize large language model performance. - **Proven in Production**: Successfully implemented and validated in Youdao's products. - **双语和跨语种能力**:基于有道翻译引擎的强大能力,我们的`BCEmbedding`具备强大的中英双语和跨语种语义表征能力。 - **RAG适配**:面向RAG做了针对性优化,可以适配大多数相关任务,比如**翻译,摘要,问答**等。此外,针对**问题理解**(query understanding)也做了针对优化,详见 <a href="#rag-evaluations-in-llamaindex">基于LlamaIndex的RAG评测指标</a>。 - **高效且精确的语义检索**:`EmbeddingModel`采用双编码器,可以在第一阶段实现高效的语义检索。`RerankerModel`采用交叉编码器,可以在第二阶段实现更高精度的语义顺序精排。 - **更好的领域泛化性**:为了在更多场景实现更好的效果,我们收集了多种多样的领域数据。 - **用户友好**:语义检索时不需要特殊指令前缀。也就是,你不需要为各种任务绞尽脑汁设计指令前缀。 - **有意义的重排序分数**:`RerankerModel`可以提供有意义的语义相关性分数(不仅仅是排序),可以用于过滤无意义文本片段,提高大模型生成效果。 - **产品化检验**:`BCEmbedding`已经被有道众多真实产品检验。 ## 🚀 Latest Updates - ***2024-01-03***: **Model Releases** - [bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1) and [bce-reranker-base_v1](https://huggingface.co/maidalun1020/bce-reranker-base_v1) are available. - ***2024-01-03***: **Eval Datasets** [[CrosslingualMultiDomainsDataset](https://huggingface.co/datasets/maidalun1020/CrosslingualMultiDomainsDataset)] - Evaluate the performence of RAG, using [LlamaIndex](https://github.com/run-llama/llama_index). - ***2024-01-03***: **Eval Datasets** [[Details](https://github.com/netease-youdao/BCEmbedding/blob/master/BCEmbedding/evaluation/c_mteb/Retrieval.py)] - Evaluate the performence of crosslingual semantic representation, using [MTEB](https://github.com/embeddings-benchmark/mteb). - ***2024-01-03***: **模型发布** - [bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1)和[bce-reranker-base_v1](https://huggingface.co/maidalun1020/bce-reranker-base_v1)已发布. - ***2024-01-03***: **RAG评测数据** [[CrosslingualMultiDomainsDataset](https://huggingface.co/datasets/maidalun1020/CrosslingualMultiDomainsDataset)] - 基于[LlamaIndex](https://github.com/run-llama/llama_index)的RAG评测数据已发布。 - ***2024-01-03***: **跨语种语义表征评测数据** [[详情](https://github.com/netease-youdao/BCEmbedding/blob/master/BCEmbedding/evaluation/c_mteb/Retrieval.py)] - 基于[MTEB](https://github.com/embeddings-benchmark/mteb)的跨语种评测数据已发布. ## 🍎 Model List | Model Name | Model Type | Languages | Parameters | Weights | |:-------------------------------|:--------:|:--------:|:--------:|:--------:| | bce-embedding-base_v1 | `EmbeddingModel` | ch, en | 279M | [download](https://huggingface.co/maidalun1020/bce-embedding-base_v1) | | bce-reranker-base_v1 | `RerankerModel` | ch, en, ja, ko | 279M | [download](https://huggingface.co/maidalun1020/bce-reranker-base_v1) | ## 📖 Manual ### Installation First, create a conda environment and activate it. ```bash conda create --name bce python=3.10 -y conda activate bce ``` Then install `BCEmbedding` for minimal installation: ```bash pip install BCEmbedding==0.1.1 ``` Or install from source: ```bash git clone [email protected]:netease-youdao/BCEmbedding.git cd BCEmbedding pip install -v -e . ``` ### Quick Start #### 1. Based on `BCEmbedding` Use `EmbeddingModel`, and `cls` [pooler](./BCEmbedding/models/embedding.py#L24) is default. ```python from BCEmbedding import EmbeddingModel # list of sentences sentences = ['sentence_0', 'sentence_1', ...] # init embedding model model = EmbeddingModel(model_name_or_path="maidalun1020/bce-embedding-base_v1") # extract embeddings embeddings = model.encode(sentences) ``` Use `RerankerModel` to calculate relevant scores and rerank: ```python from BCEmbedding import RerankerModel # your query and corresponding passages query = 'input_query' passages = ['passage_0', 'passage_1', ...] # construct sentence pairs sentence_pairs = [[query, passage] for passage in passages] # init reranker model model = RerankerModel(model_name_or_path="maidalun1020/bce-reranker-base_v1") # method 0: calculate scores of sentence pairs scores = model.compute_score(sentence_pairs) # method 1: rerank passages rerank_results = model.rerank(query, passages) ``` NOTE: - In [`RerankerModel.rerank`](./BCEmbedding/models/reranker.py#L137) method, we provide an advanced preproccess that we use in production for making `sentence_pairs`, when "passages" are very long. #### 2. Based on `transformers` For `EmbeddingModel`: ```python from transformers import AutoModel, AutoTokenizer # list of sentences sentences = ['sentence_0', 'sentence_1', ...] # init model and tokenizer tokenizer = AutoTokenizer.from_pretrained('maidalun1020/bce-embedding-base_v1') model = AutoModel.from_pretrained('maidalun1020/bce-embedding-base_v1') device = 'cuda' # if no GPU, set "cpu" model.to(device) # get inputs inputs = tokenizer(sentences, padding=True, truncation=True, max_length=512, return_tensors="pt") inputs_on_device = {k: v.to(self.device) for k, v in inputs.items()} # get embeddings outputs = model(**inputs_on_device, return_dict=True) embeddings = outputs.last_hidden_state[:, 0] # cls pooler embeddings = embeddings / embeddings.norm(dim=1, keepdim=True) # normalize ``` For `RerankerModel`: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # init model and tokenizer tokenizer = AutoTokenizer.from_pretrained('maidalun1020/bce-reranker-base_v1') model = AutoModelForSequenceClassification.from_pretrained('maidalun1020/bce-reranker-base_v1') device = 'cuda' # if no GPU, set "cpu" model.to(device) # get inputs inputs = tokenizer(sentence_pairs, padding=True, truncation=True, max_length=512, return_tensors="pt") inputs_on_device = {k: v.to(device) for k, v in inputs.items()} # calculate scores scores = model(**inputs_on_device, return_dict=True).logits.view(-1,).float() scores = torch.sigmoid(scores) ``` #### 3. Based on `sentence_transformers` For `EmbeddingModel`: ```python from sentence_transformers import SentenceTransformer # list of sentences sentences = ['sentence_0', 'sentence_1', ...] # init embedding model ## New update for sentence-trnasformers. So clean up your "`SENTENCE_TRANSFORMERS_HOME`/maidalun1020_bce-embedding-base_v1" or "~/.cache/torch/sentence_transformers/maidalun1020_bce-embedding-base_v1" first for downloading new version. model = SentenceTransformer("maidalun1020/bce-embedding-base_v1") # extract embeddings embeddings = model.encode(sentences, normalize_embeddings=True) ``` For `RerankerModel`: ```python from sentence_transformers import CrossEncoder # init reranker model model = CrossEncoder('maidalun1020/bce-reranker-base_v1', max_length=512) # calculate scores of sentence pairs scores = model.predict(sentence_pairs) ``` ### Integrations for RAG Frameworks #### 1. Used in `langchain` ```python from langchain.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.vectorstores.utils import DistanceStrategy query = 'apples' passages = [ 'I like apples', 'I like oranges', 'Apples and oranges are fruits' ] # init embedding model model_name = 'maidalun1020/bce-embedding-base_v1' model_kwargs = {'device': 'cuda'} encode_kwargs = {'batch_size': 64, 'normalize_embeddings': True, 'show_progress_bar': False} embed_model = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) # example #1. extract embeddings query_embedding = embed_model.embed_query(query) passages_embeddings = embed_model.embed_documents(passages) # example #2. langchain retriever example faiss_vectorstore = FAISS.from_texts(passages, embed_model, distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT) retriever = faiss_vectorstore.as_retriever(search_type="similarity", search_kwargs={"score_threshold": 0.5, "k": 3}) related_passages = retriever.get_relevant_documents(query) ``` #### 2. Used in `llama_index` ```python from llama_index.embeddings import HuggingFaceEmbedding from llama_index import VectorStoreIndex, ServiceContext, SimpleDirectoryReader from llama_index.node_parser import SimpleNodeParser from llama_index.llms import OpenAI query = 'apples' passages = [ 'I like apples', 'I like oranges', 'Apples and oranges are fruits' ] # init embedding model model_args = {'model_name': 'maidalun1020/bce-embedding-base_v1', 'max_length': 512, 'embed_batch_size': 64, 'device': 'cuda'} embed_model = HuggingFaceEmbedding(**model_args) # example #1. extract embeddings query_embedding = embed_model.get_query_embedding(query) passages_embeddings = embed_model.get_text_embedding_batch(passages) # example #2. rag example llm = OpenAI(model='gpt-3.5-turbo-0613', api_key=os.environ.get('OPENAI_API_KEY'), api_base=os.environ.get('OPENAI_BASE_URL')) service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) documents = SimpleDirectoryReader(input_files=["BCEmbedding/tools/eval_rag/eval_pdfs/Comp_en_llama2.pdf"]).load_data() node_parser = SimpleNodeParser.from_defaults(chunk_size=512) nodes = node_parser.get_nodes_from_documents(documents[0:36]) index = VectorStoreIndex(nodes, service_context=service_context) query_engine = index.as_query_engine() response = query_engine.query("What is llama?") ``` ## ⚙️ Evaluation ### Evaluate Semantic Representation by MTEB We provide evaluateion tools for `embedding` and `reranker` models, based on [MTEB](https://github.com/embeddings-benchmark/mteb) and [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB). 我们基于[MTEB](https://github.com/embeddings-benchmark/mteb)和[C_MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB),提供`embedding`和`reranker`模型的语义表征评测工具。 #### 1. Embedding Models Just run following cmd to evaluate `your_embedding_model` (e.g. `maidalun1020/bce-embedding-base_v1`) in **bilingual and crosslingual settings** (e.g. `["en", "zh", "en-zh", "zh-en"]`). 运行下面命令评测`your_embedding_model`(比如,`maidalun1020/bce-embedding-base_v1`)。评测任务将会在**双语和跨语种**(比如,`["en", "zh", "en-zh", "zh-en"]`)模式下评测: ```bash python BCEmbedding/tools/eval_mteb/eval_embedding_mteb.py --model_name_or_path maidalun1020/bce-embedding-base_v1 --pooler cls ``` The total evaluation tasks contain ***114 datastes*** of **"Retrieval", "STS", "PairClassification", "Classification", "Reranking" and "Clustering"**. 评测包含 **"Retrieval", "STS", "PairClassification", "Classification", "Reranking"和"Clustering"** 这六大类任务的 ***114个数据集***。 ***NOTE:*** - **All models are evaluated in their recommended pooling method (`pooler`)**. - `mean` pooler: "jina-embeddings-v2-base-en", "m3e-base", "m3e-large", "e5-large-v2", "multilingual-e5-base", "multilingual-e5-large" and "gte-large". - `cls` pooler: Other models. - "jina-embeddings-v2-base-en" model should be loaded with `trust_remote_code`. ```bash python BCEmbedding/tools/eval_mteb/eval_embedding_mteb.py --model_name_or_path {moka-ai/m3e-base | moka-ai/m3e-large} --pooler mean python BCEmbedding/tools/eval_mteb/eval_embedding_mteb.py --model_name_or_path jinaai/jina-embeddings-v2-base-en --pooler mean --trust_remote_code ``` ***注意:*** - 所有模型的评测采用各自推荐的`pooler`。"jina-embeddings-v2-base-en", "m3e-base", "m3e-large", "e5-large-v2", "multilingual-e5-base", "multilingual-e5-large"和"gte-large"的 `pooler`采用`mean`,其他模型的`pooler`采用`cls`. - "jina-embeddings-v2-base-en"模型在载入时需要`trust_remote_code`。 #### 2. Reranker Models Run following cmd to evaluate `your_reranker_model` (e.g. "maidalun1020/bce-reranker-base_v1") in **bilingual and crosslingual settings** (e.g. `["en", "zh", "en-zh", "zh-en"]`). 运行下面命令评测`your_reranker_model`(比如,`maidalun1020/bce-reranker-base_v1`)。评测任务将会在 **双语种和跨语种**(比如,`["en", "zh", "en-zh", "zh-en"]`)模式下评测: ```bash python BCEmbedding/tools/eval_mteb/eval_reranker_mteb.py --model_name_or_path maidalun1020/bce-reranker-base_v1 ``` The evaluation tasks contain ***12 datastes*** of **"Reranking"**. 评测包含 **"Reranking"** 任务的 ***12个数据集***。 #### 3. Metrics Visualization Tool We proveide a one-click script to sumarize evaluation results of `embedding` and `reranker` models as [Embedding Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/embedding_eval_summary.md) and [Reranker Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/reranker_eval_summary.md). 我们提供了`embedding`和`reranker`模型的指标可视化一键脚本,输出一个markdown文件,详见[Embedding模型指标汇总](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/embedding_eval_summary.md)和[Reranker模型指标汇总](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/reranker_eval_summary.md)。 ```bash python BCEmbedding/evaluation/mteb/summarize_eval_results.py --results_dir {your_embedding_results_dir | your_reranker_results_dir} ``` ### Evaluate RAG by LlamaIndex [LlamaIndex](https://github.com/run-llama/llama_index) is a famous data framework for LLM-based applications, particularly in RAG. Recently, the [LlamaIndex Blog](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83) has evaluated the popular embedding and reranker models in RAG pipeline and attract great attention. Now, we follow its pipeline to evaluate our `BCEmbedding`. [LlamaIndex](https://github.com/run-llama/llama_index)是一个著名的大模型应用的开源工具,在RAG中很受欢迎。最近,[LlamaIndex博客](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83)对市面上常用的embedding和reranker模型进行RAG流程的评测,吸引广泛关注。下面我们按照该评测流程验证`BCEmbedding`在RAG中的效果。 First, install LlamaIndex: ```bash pip install llama-index==0.9.22 ``` #### 1. Metrics Definition - Hit Rate: Hit rate calculates the fraction of queries where the correct answer is found within the top-k retrieved documents. In simpler terms, it's about how often our system gets it right within the top few guesses. ***The larger, the better.*** - Mean Reciprocal Rank (MRR): For each query, MRR evaluates the system's accuracy by looking at the rank of the highest-placed relevant document. Specifically, it's the average of the reciprocals of these ranks across all the queries. So, if the first relevant document is the top result, the reciprocal rank is 1; if it's second, the reciprocal rank is 1/2, and so on. ***The larger, the better.*** - 命中率(Hit Rate) 命中率计算的是在检索的前k个文档中找到正确答案的查询所占的比例。简单来说,它反映了我们的系统在前几次猜测中答对的频率。***该指标越大越好。*** - 平均倒数排名(Mean Reciprocal Rank,MRR) 对于每个查询,MRR通过查看最高排名的相关文档的排名来评估系统的准确性。具体来说,它是在所有查询中这些排名的倒数的平均值。因此,如果第一个相关文档是排名最靠前的结果,倒数排名就是1;如果是第二个,倒数排名就是1/2,依此类推。***该指标越大越好。*** #### 2. Reproduce [LlamaIndex Blog](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83) In order to compare our `BCEmbedding` with other embedding and reranker models fairly, we provide a one-click script to reproduce results of the LlamaIndex Blog, including our `BCEmbedding`: 为了公平起见,运行下面脚本,复现LlamaIndex博客的结果,将`BCEmbedding`与其他embedding和reranker模型进行对比分析: ```bash # There should be two GPUs available at least. CUDA_VISIBLE_DEVICES=0,1 python BCEmbedding/tools/eval_rag/eval_llamaindex_reproduce.py ``` Then, sumarize the evaluation results by: ```bash python BCEmbedding/tools/eval_rag/summarize_eval_results.py --results_dir results/rag_reproduce_results ``` Results Reproduced from the LlamaIndex Blog can be checked in ***[Reproduced Summary of RAG Evaluation](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/rag_eval_reproduced_summary.md)***, with some obvious ***conclusions***: - In `WithoutReranker` setting, our `bce-embedding-base_v1` outperforms all the other embedding models. - With fixing the embedding model, our `bce-reranker-base_v1` achieves the best performence. - ***The combination of `bce-embedding-base_v1` and `bce-reranker-base_v1` is SOTA.*** 输出的指标汇总详见 ***[LlamaIndex RAG评测结果复现](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/rag_eval_reproduced_summary.md)***。从该复现结果中,可以看出: - 在`WithoutReranker`设置下(**竖排对比**),`bce-embedding-base_v1`比其他embedding模型效果都要好。 - 在固定embedding模型设置下,对比不同reranker效果(**横排对比**),`bce-reranker-base_v1`比其他reranker模型效果都要好。 - ***`bce-embedding-base_v1`和`bce-reranker-base_v1`组合,表现SOTA。*** #### 3. Broad Domain Adaptability The evaluation of [LlamaIndex Blog](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83) is **monolingual, small amount of data, and specific domain** (just including "llama2" paper). In order to evaluate the **broad domain adaptability, bilingual and crosslingual capability**, we follow the blog to build a multiple domains evaluation dataset (includding "Computer Science", "Physics", "Biology", "Economics", "Math", and "Quantitative Finance"), named [CrosslingualMultiDomainsDataset](https://huggingface.co/datasets/maidalun1020/CrosslingualMultiDomainsDataset), **by OpenAI `gpt-4-1106-preview` for high quality**. 在上述的[LlamaIndex博客](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83)的评测数据只用了“llama2”这一篇文章,该评测是 **单语种,小数据量,特定领域** 的。为了兼容更真实更广的用户使用场景,评测算法模型的 **领域泛化性,双语和跨语种能力**,我们按照该博客的方法构建了一个多领域(计算机科学,物理学,生物学,经济学,数学,量化金融等)的双语种、跨语种评测数据,[CrosslingualMultiDomainsDataset](https://huggingface.co/datasets/maidalun1020/CrosslingualMultiDomainsDataset)。**为了保证构建数据的高质量,我们采用OpenAI的`gpt-4-1106-preview`。** First, run following cmd to evaluate the most popular and powerful embedding and reranker models: ```bash # There should be two GPUs available at least. CUDA_VISIBLE_DEVICES=0,1 python BCEmbedding/tools/eval_rag/eval_llamaindex_multiple_domains.py ``` Then, run the following script to sumarize the evaluation results: ```bash python BCEmbedding/tools/eval_rag/summarize_eval_results.py --results_dir results/rag_results ``` The summary of multiple domains evaluations can be seen in <a href=#1-multiple-domains-scenarios>Multiple Domains Scenarios</a>. ## 📈 Leaderboard ### Semantic Representation Evaluations in MTEB #### 1. Embedding Models | Model | Dimensions | Pooler | Instructions | Retrieval (47) | STS (19) | PairClassification (5) | Classification (21) | Reranking (12) | Clustering (15) | ***AVG*** (119) | |:--------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | bge-base-en-v1.5 | 768 | `cls` | Need | 37.14 | 55.06 | 75.45 | 59.73 | 43.00 | 37.74 | 47.19 | | bge-base-zh-v1.5 | 768 | `cls` | Need | 47.63 | 63.72 | 77.40 | 63.38 | 54.95 | 32.56 | 53.62 | | bge-large-en-v1.5 | 1024 | `cls` | Need | 37.18 | 54.09 | 75.00 | 59.24 | 42.47 | 37.32 | 46.80 | | bge-large-zh-v1.5 | 1024 | `cls` | Need | 47.58 | 64.73 | 79.14 | 64.19 | 55.98 | 33.26 | 54.23 | | e5-large-v2 | 1024 | `mean` | Need | 35.98 | 55.23 | 75.28 | 59.53 | 42.12 | 36.51 | 46.52 | | gte-large | 1024 | `mean` | Free | 36.68 | 55.22 | 74.29 | 57.73 | 42.44 | 38.51 | 46.67 | | gte-large-zh | 1024 | `cls` | Free | 41.15 | 64.62 | 77.58 | 62.04 | 55.62 | 33.03 | 51.51 | | jina-embeddings-v2-base-en | 768 | `mean` | Free | 31.58 | 54.28 | 74.84 | 58.42 | 41.16 | 34.67 | 44.29 | | m3e-base | 768 | `mean` | Free | 46.29 | 63.93 | 71.84 | 64.08 | 52.38 | 37.84 | 53.54 | | m3e-large | 1024 | `mean` | Free | 34.85 | 59.74 | 67.69 | 60.07 | 48.99 | 31.62 | 46.78 | | multilingual-e5-base | 768 | `mean` | Need | 54.73 | 65.49 | 76.97 | 69.72 | 55.01 | 38.44 | 58.34 | | multilingual-e5-large | 1024 | `mean` | Need | 56.76 | 66.79 | 78.80 | 71.61 | 56.49 | 43.09 | 60.50 | | ***bce-embedding-base_v1*** | 768 | `cls` | Free | 57.60 | 65.73 | 74.96 | 69.00 | 57.29 | 38.95 | 59.43 | ***NOTE:*** - Our ***bce-embedding-base_v1*** outperforms other opensource embedding models with comparable model size. - ***114 datastes*** of **"Retrieval", "STS", "PairClassification", "Classification", "Reranking" and "Clustering"** in `["en", "zh", "en-zh", "zh-en"]` setting. - The [crosslingual evaluation datasets](https://github.com/netease-youdao/BCEmbedding/blob/master/BCEmbedding/evaluation/c_mteb/Retrieval.py) we released belong to `Retrieval` task. - More evaluation details please check [Embedding Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/embedding_eval_summary.md). ***要点:*** - 对比其他开源的相同规模的embedding模型,***bce-embedding-base_v1*** 表现最好,效果比最好的large模型稍差。 - 评测包含 **"Retrieval", "STS", "PairClassification", "Classification", "Reranking"和"Clustering"** 这六大类任务的共 ***114个数据集***。 - 我们开源的[跨语种语义表征评测数据](https://github.com/netease-youdao/BCEmbedding/blob/master/BCEmbedding/evaluation/c_mteb/Retrieval.py)属于`Retrieval`任务。 - 更详细的评测结果详见[Embedding模型指标汇总](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/embedding_eval_summary.md)。 #### 2. Reranker Models | Model | Reranking (12) | ***AVG*** (12) | | :--------------------------------- | :-------------: | :--------------------: | | bge-reranker-base | 59.04 | 59.04 | | bge-reranker-large | 60.86 | 60.86 | | ***bce-reranker-base_v1*** | **61.29** | ***61.29*** | ***NOTE:*** - Our ***bce-reranker-base_v1*** outperforms other opensource reranker models. - ***12 datastes*** of **"Reranking"** in `["en", "zh", "en-zh", "zh-en"]` setting. - More evaluation details please check [Reranker Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/reranker_eval_summary.md). ***要点:*** - ***bce-reranker-base_v1*** 优于其他开源reranker模型。 - 评测包含 **"Reranking"** 任务的 ***12个数据集***。 - 更详细的评测结果详见[Reranker模型指标汇总](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/reranker_eval_summary.md) ### RAG Evaluations in LlamaIndex #### 1. Multiple Domains Scenarios ![image/jpeg](assets/rag_eval_multiple_domains_summary.jpg) ***NOTE:*** - Evaluated in **`["en", "zh", "en-zh", "zh-en"]` setting**. - In `WithoutReranker` setting, our `bce-embedding-base_v1` outperforms all the other embedding models. - With fixing the embedding model, our `bce-reranker-base_v1` achieves the best performence. - **The combination of `bce-embedding-base_v1` and `bce-reranker-base_v1` is SOTA**. ***要点:*** - 评测是在`["en", "zh", "en-zh", "zh-en"]`设置下。 - 在`WithoutReranker`设置下(**竖排对比**),`bce-embedding-base_v1`优于其他Embedding模型,包括开源和闭源。 - 在固定Embedding模型设置下,对比不同reranker效果(**横排对比**),`bce-reranker-base_v1`比其他reranker模型效果都要好,包括开源和闭源。 - ***`bce-embedding-base_v1`和`bce-reranker-base_v1`组合,表现SOTA。*** ## 🛠 Youdao's BCEmbedding API For users who prefer a hassle-free experience without the need to download and configure the model on their own systems, `BCEmbedding` is readily accessible through Youdao's API. This option offers a streamlined and efficient way to integrate BCEmbedding into your projects, bypassing the complexities of manual setup and maintenance. Detailed instructions and comprehensive API documentation are available at [Youdao BCEmbedding API](https://ai.youdao.com/DOCSIRMA/html/aigc/api/embedding/index.html). Here, you'll find all the necessary guidance to easily implement `BCEmbedding` across a variety of use cases, ensuring a smooth and effective integration for optimal results. 对于那些更喜欢直接调用api的用户,有道提供方便的`BCEmbedding`调用api。该方式是一种简化和高效的方式,将`BCEmbedding`集成到您的项目中,避开了手动设置和系统维护的复杂性。更详细的api调用接口说明详见[有道BCEmbedding API](https://ai.youdao.com/DOCSIRMA/html/aigc/api/embedding/index.html)。 ## 🧲 WeChat Group Welcome to scan the QR code below and join the WeChat group. 欢迎大家扫码加入官方微信交流群。 ![image/jpeg](assets/Wechat.jpg) ## ✏️ Citation If you use `BCEmbedding` in your research or project, please feel free to cite and star it: 如果在您的研究或任何项目中使用本工作,烦请按照下方进行引用,并打个小星星~ ``` @misc{youdao_bcembedding_2023, title={BCEmbedding: Bilingual and Crosslingual Embedding for RAG}, author={NetEase Youdao, Inc.}, year={2023}, howpublished={\url{https://github.com/netease-youdao/BCEmbedding}} } ``` ## 🔐 License `BCEmbedding` is licensed under [Apache 2.0 License](https://github.com/netease-youdao/BCEmbedding/blob/master/LICENSE) ## 🔗 Related Links [Netease Youdao - QAnything](https://github.com/netease-youdao/qanything) [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) [MTEB](https://github.com/embeddings-benchmark/mteb) [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) [LLama Index](https://github.com/run-llama/llama_index) | [LlamaIndex Blog](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83)
alme/ppo-LunarLander-v2
alme
2024-11-01T02:53:07Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T07:19:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 218.67 +/- 95.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mradermacher/lumimaid-8B-autotrain-i1-GGUF
mradermacher
2024-11-01T02:41:08Z
120
1
transformers
[ "transformers", "gguf", "autotrain", "text-generation-inference", "text-generation", "en", "dataset:mpasila/Literotica-stories-short-json-unfiltered", "dataset:Chadgpt-fam/sexting_dataset", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2024-11-01T01:28:36Z
--- base_model: mrcuddle/lumimaid-8B-autotrain datasets: - mpasila/Literotica-stories-short-json-unfiltered - Chadgpt-fam/sexting_dataset language: - en library_name: transformers license: other quantized_by: mradermacher tags: - autotrain - text-generation-inference - text-generation --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/mrcuddle/lumimaid-8B-autotrain <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/lumimaid-8B-autotrain-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/lumimaid-8B-autotrain-i1-GGUF/resolve/main/lumimaid-8B-autotrain.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ychu612/RSAVAV_SQ_CLF
ychu612
2024-11-01T02:38:11Z
119
0
transformers
[ "transformers", "safetensors", "longformer", "text-classification", "generated_from_trainer", "base_model:allenai/longformer-base-4096", "base_model:finetune:allenai/longformer-base-4096", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-31T22:27:47Z
--- library_name: transformers license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer model-index: - name: RSAVAV_SQ_CLF results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RSAVAV_SQ_CLF This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
DanJoshua/profesor_Swin3D_S_RWF2000
DanJoshua
2024-11-01T02:36:22Z
33
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-10-31T20:16:35Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: profesor_Swin3D_S_RWF2000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # profesor_Swin3D_S_RWF2000 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5293 - Accuracy: 0.89 - F1: 0.8900 - Precision: 0.8902 - Recall: 0.89 - Roc Auc: 0.9532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 480 - training_steps: 4800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 0.2107 | 2.0333 | 480 | 0.3290 | 0.88 | 0.8795 | 0.8865 | 0.88 | 0.9568 | | 0.1399 | 5.0333 | 960 | 0.4941 | 0.9 | 0.9000 | 0.9002 | 0.9 | 0.9642 | | 0.1221 | 8.0333 | 1440 | 0.4824 | 0.8975 | 0.8974 | 0.8983 | 0.8975 | 0.9675 | | 0.1474 | 11.0333 | 1920 | 0.5392 | 0.8975 | 0.8975 | 0.8975 | 0.8975 | 0.9665 | | 0.105 | 14.0333 | 2400 | 0.7004 | 0.895 | 0.8948 | 0.8982 | 0.895 | 0.9686 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.0.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1
Panav77/sd-class-butterflies-32
Panav77
2024-11-01T02:33:13Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-11-01T02:33:00Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Panav77/sd-class-butterflies-32') image = pipeline().images[0] image ```
pwork7/rlhflow_mix_dart_code_v1_iter2
pwork7
2024-11-01T02:31:05Z
5
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-01T02:27:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gaunernst/bert-L2-H768-uncased
gaunernst
2024-11-01T02:22:12Z
246
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1908.08962", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-02T07:26:04Z
--- license: apache-2.0 datasets: - bookcorpus - wikipedia language: - en --- # BERT L2-H768 (uncased) Mini BERT models from https://arxiv.org/abs/1908.08962 that the HF team didn't convert. The original [conversion script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py) is used. See the original Google repo: [google-research/bert](https://github.com/google-research/bert) Note: it's not clear if these checkpoints have undergone knowledge distillation. ## Model variants | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[2/128 (BERT-Tiny)][2_128]|[2/256][2_256]|[2/512][2_512]|[**2/768**][2_768]| | **L=4** |[4/128][4_128]|[4/256 (BERT-Mini)][4_256]|[4/512 (BERT-Small)][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[8/512 (BERT-Medium)][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[12/768 (BERT-Base, original)][12_768]| [2_128]: https://huggingface.co/gaunernst/bert-tiny-uncased [2_256]: https://huggingface.co/gaunernst/bert-L2-H256-uncased [2_512]: https://huggingface.co/gaunernst/bert-L2-H512-uncased [2_768]: https://huggingface.co/gaunernst/bert-L2-H768-uncased [4_128]: https://huggingface.co/gaunernst/bert-L4-H128-uncased [4_256]: https://huggingface.co/gaunernst/bert-mini-uncased [4_512]: https://huggingface.co/gaunernst/bert-small-uncased [4_768]: https://huggingface.co/gaunernst/bert-L4-H768-uncased [6_128]: https://huggingface.co/gaunernst/bert-L6-H128-uncased [6_256]: https://huggingface.co/gaunernst/bert-L6-H256-uncased [6_512]: https://huggingface.co/gaunernst/bert-L6-H512-uncased [6_768]: https://huggingface.co/gaunernst/bert-L6-H768-uncased [8_128]: https://huggingface.co/gaunernst/bert-L8-H128-uncased [8_256]: https://huggingface.co/gaunernst/bert-L8-H256-uncased [8_512]: https://huggingface.co/gaunernst/bert-medium-uncased [8_768]: https://huggingface.co/gaunernst/bert-L8-H768-uncased [10_128]: https://huggingface.co/gaunernst/bert-L10-H128-uncased [10_256]: https://huggingface.co/gaunernst/bert-L10-H256-uncased [10_512]: https://huggingface.co/gaunernst/bert-L10-H512-uncased [10_768]: https://huggingface.co/gaunernst/bert-L10-H768-uncased [12_128]: https://huggingface.co/gaunernst/bert-L12-H128-uncased [12_256]: https://huggingface.co/gaunernst/bert-L12-H256-uncased [12_512]: https://huggingface.co/gaunernst/bert-L12-H512-uncased [12_768]: https://huggingface.co/bert-base-uncased ## Usage See other BERT model cards e.g. https://huggingface.co/bert-base-uncased ## Citation ```bibtex @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ```
gpustack/jina-embeddings-v2-base-zh-GGUF
gpustack
2024-11-01T02:15:23Z
571
1
sentence-transformers
[ "sentence-transformers", "gguf", "feature-extraction", "sentence-similarity", "mteb", "transformers", "transformers.js", "en", "zh", "arxiv:2108.12409", "arxiv:2402.17016", "license:apache-2.0", "model-index", "autotrain_compatible", "region:us" ]
feature-extraction
2024-11-01T01:35:57Z
--- tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb - transformers - transformers.js inference: false license: apache-2.0 language: - en - zh model-index: - name: jina-embeddings-v2-base-zh results: - task: type: STS dataset: type: C-MTEB/AFQMC name: MTEB AFQMC config: default split: validation revision: None metrics: - type: cos_sim_pearson value: 48.51403119231363 - type: cos_sim_spearman value: 50.5928547846445 - type: euclidean_pearson value: 48.750436310559074 - type: euclidean_spearman value: 50.50950238691385 - type: manhattan_pearson value: 48.7866189440328 - type: manhattan_spearman value: 50.58692402017165 - task: type: STS dataset: type: C-MTEB/ATEC name: MTEB ATEC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 50.25985700105725 - type: cos_sim_spearman value: 51.28815934593989 - type: euclidean_pearson value: 52.70329248799904 - type: euclidean_spearman value: 50.94101139559258 - type: manhattan_pearson value: 52.6647237400892 - type: manhattan_spearman value: 50.922441325406176 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 34.944 - type: f1 value: 34.06478860660109 - task: type: STS dataset: type: C-MTEB/BQ name: MTEB BQ config: default split: test revision: None metrics: - type: cos_sim_pearson value: 65.15667035488342 - type: cos_sim_spearman value: 66.07110142081 - type: euclidean_pearson value: 60.447598102249714 - type: euclidean_spearman value: 61.826575796578766 - type: manhattan_pearson value: 60.39364279354984 - type: manhattan_spearman value: 61.78743491223281 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringP2P name: MTEB CLSClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 39.96714175391701 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringS2S name: MTEB CLSClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 38.39863566717934 - task: type: Reranking dataset: type: C-MTEB/CMedQAv1-reranking name: MTEB CMedQAv1 config: default split: test revision: None metrics: - type: map value: 83.63680381780644 - type: mrr value: 86.16476190476192 - task: type: Reranking dataset: type: C-MTEB/CMedQAv2-reranking name: MTEB CMedQAv2 config: default split: test revision: None metrics: - type: map value: 83.74350667859487 - type: mrr value: 86.10388888888889 - task: type: Retrieval dataset: type: C-MTEB/CmedqaRetrieval name: MTEB CmedqaRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 22.072 - type: map_at_10 value: 32.942 - type: map_at_100 value: 34.768 - type: map_at_1000 value: 34.902 - type: map_at_3 value: 29.357 - type: map_at_5 value: 31.236000000000004 - type: mrr_at_1 value: 34.259 - type: mrr_at_10 value: 41.957 - type: mrr_at_100 value: 42.982 - type: mrr_at_1000 value: 43.042 - type: mrr_at_3 value: 39.722 - type: mrr_at_5 value: 40.898 - type: ndcg_at_1 value: 34.259 - type: ndcg_at_10 value: 39.153 - type: ndcg_at_100 value: 46.493 - type: ndcg_at_1000 value: 49.01 - type: ndcg_at_3 value: 34.636 - type: ndcg_at_5 value: 36.278 - type: precision_at_1 value: 34.259 - type: precision_at_10 value: 8.815000000000001 - type: precision_at_100 value: 1.474 - type: precision_at_1000 value: 0.179 - type: precision_at_3 value: 19.73 - type: precision_at_5 value: 14.174000000000001 - type: recall_at_1 value: 22.072 - type: recall_at_10 value: 48.484 - type: recall_at_100 value: 79.035 - type: recall_at_1000 value: 96.15 - type: recall_at_3 value: 34.607 - type: recall_at_5 value: 40.064 - task: type: PairClassification dataset: type: C-MTEB/CMNLI name: MTEB Cmnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 76.7047504509922 - type: cos_sim_ap value: 85.26649874800871 - type: cos_sim_f1 value: 78.13528724646915 - type: cos_sim_precision value: 71.57587548638132 - type: cos_sim_recall value: 86.01823708206688 - type: dot_accuracy value: 70.13830426939266 - type: dot_ap value: 77.01510412382171 - type: dot_f1 value: 73.56710042713817 - type: dot_precision value: 63.955094991364426 - type: dot_recall value: 86.57937806873977 - type: euclidean_accuracy value: 75.53818400481059 - type: euclidean_ap value: 84.34668448241264 - type: euclidean_f1 value: 77.51741608613047 - type: euclidean_precision value: 70.65614777756399 - type: euclidean_recall value: 85.85457096095394 - type: manhattan_accuracy value: 75.49007817197835 - type: manhattan_ap value: 84.40297506704299 - type: manhattan_f1 value: 77.63185324160932 - type: manhattan_precision value: 70.03949595636637 - type: manhattan_recall value: 87.07037643207856 - type: max_accuracy value: 76.7047504509922 - type: max_ap value: 85.26649874800871 - type: max_f1 value: 78.13528724646915 - task: type: Retrieval dataset: type: C-MTEB/CovidRetrieval name: MTEB CovidRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 69.178 - type: map_at_10 value: 77.523 - type: map_at_100 value: 77.793 - type: map_at_1000 value: 77.79899999999999 - type: map_at_3 value: 75.878 - type: map_at_5 value: 76.849 - type: mrr_at_1 value: 69.44200000000001 - type: mrr_at_10 value: 77.55 - type: mrr_at_100 value: 77.819 - type: mrr_at_1000 value: 77.826 - type: mrr_at_3 value: 75.957 - type: mrr_at_5 value: 76.916 - type: ndcg_at_1 value: 69.44200000000001 - type: ndcg_at_10 value: 81.217 - type: ndcg_at_100 value: 82.45 - type: ndcg_at_1000 value: 82.636 - type: ndcg_at_3 value: 77.931 - type: ndcg_at_5 value: 79.655 - type: precision_at_1 value: 69.44200000000001 - type: precision_at_10 value: 9.357 - type: precision_at_100 value: 0.993 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 28.1 - type: precision_at_5 value: 17.724 - type: recall_at_1 value: 69.178 - type: recall_at_10 value: 92.624 - type: recall_at_100 value: 98.209 - type: recall_at_1000 value: 99.684 - type: recall_at_3 value: 83.772 - type: recall_at_5 value: 87.882 - task: type: Retrieval dataset: type: C-MTEB/DuRetrieval name: MTEB DuRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 25.163999999999998 - type: map_at_10 value: 76.386 - type: map_at_100 value: 79.339 - type: map_at_1000 value: 79.39500000000001 - type: map_at_3 value: 52.959 - type: map_at_5 value: 66.59 - type: mrr_at_1 value: 87.9 - type: mrr_at_10 value: 91.682 - type: mrr_at_100 value: 91.747 - type: mrr_at_1000 value: 91.751 - type: mrr_at_3 value: 91.267 - type: mrr_at_5 value: 91.527 - type: ndcg_at_1 value: 87.9 - type: ndcg_at_10 value: 84.569 - type: ndcg_at_100 value: 87.83800000000001 - type: ndcg_at_1000 value: 88.322 - type: ndcg_at_3 value: 83.473 - type: ndcg_at_5 value: 82.178 - type: precision_at_1 value: 87.9 - type: precision_at_10 value: 40.605000000000004 - type: precision_at_100 value: 4.752 - type: precision_at_1000 value: 0.488 - type: precision_at_3 value: 74.9 - type: precision_at_5 value: 62.96000000000001 - type: recall_at_1 value: 25.163999999999998 - type: recall_at_10 value: 85.97399999999999 - type: recall_at_100 value: 96.63000000000001 - type: recall_at_1000 value: 99.016 - type: recall_at_3 value: 55.611999999999995 - type: recall_at_5 value: 71.936 - task: type: Retrieval dataset: type: C-MTEB/EcomRetrieval name: MTEB EcomRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 48.6 - type: map_at_10 value: 58.831 - type: map_at_100 value: 59.427 - type: map_at_1000 value: 59.44199999999999 - type: map_at_3 value: 56.383 - type: map_at_5 value: 57.753 - type: mrr_at_1 value: 48.6 - type: mrr_at_10 value: 58.831 - type: mrr_at_100 value: 59.427 - type: mrr_at_1000 value: 59.44199999999999 - type: mrr_at_3 value: 56.383 - type: mrr_at_5 value: 57.753 - type: ndcg_at_1 value: 48.6 - type: ndcg_at_10 value: 63.951 - type: ndcg_at_100 value: 66.72200000000001 - type: ndcg_at_1000 value: 67.13900000000001 - type: ndcg_at_3 value: 58.882 - type: ndcg_at_5 value: 61.373 - type: precision_at_1 value: 48.6 - type: precision_at_10 value: 8.01 - type: precision_at_100 value: 0.928 - type: precision_at_1000 value: 0.096 - type: precision_at_3 value: 22.033 - type: precision_at_5 value: 14.44 - type: recall_at_1 value: 48.6 - type: recall_at_10 value: 80.10000000000001 - type: recall_at_100 value: 92.80000000000001 - type: recall_at_1000 value: 96.1 - type: recall_at_3 value: 66.10000000000001 - type: recall_at_5 value: 72.2 - task: type: Classification dataset: type: C-MTEB/IFlyTek-classification name: MTEB IFlyTek config: default split: validation revision: None metrics: - type: accuracy value: 47.36437091188918 - type: f1 value: 36.60946954228577 - task: type: Classification dataset: type: C-MTEB/JDReview-classification name: MTEB JDReview config: default split: test revision: None metrics: - type: accuracy value: 79.5684803001876 - type: ap value: 42.671935929201524 - type: f1 value: 73.31912729103752 - task: type: STS dataset: type: C-MTEB/LCQMC name: MTEB LCQMC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 68.62670112113864 - type: cos_sim_spearman value: 75.74009123170768 - type: euclidean_pearson value: 73.93002595958237 - type: euclidean_spearman value: 75.35222935003587 - type: manhattan_pearson value: 73.89870445158144 - type: manhattan_spearman value: 75.31714936339398 - task: type: Reranking dataset: type: C-MTEB/Mmarco-reranking name: MTEB MMarcoReranking config: default split: dev revision: None metrics: - type: map value: 31.5372713650176 - type: mrr value: 30.163095238095238 - task: type: Retrieval dataset: type: C-MTEB/MMarcoRetrieval name: MTEB MMarcoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 65.054 - type: map_at_10 value: 74.156 - type: map_at_100 value: 74.523 - type: map_at_1000 value: 74.535 - type: map_at_3 value: 72.269 - type: map_at_5 value: 73.41 - type: mrr_at_1 value: 67.24900000000001 - type: mrr_at_10 value: 74.78399999999999 - type: mrr_at_100 value: 75.107 - type: mrr_at_1000 value: 75.117 - type: mrr_at_3 value: 73.13499999999999 - type: mrr_at_5 value: 74.13499999999999 - type: ndcg_at_1 value: 67.24900000000001 - type: ndcg_at_10 value: 77.96300000000001 - type: ndcg_at_100 value: 79.584 - type: ndcg_at_1000 value: 79.884 - type: ndcg_at_3 value: 74.342 - type: ndcg_at_5 value: 76.278 - type: precision_at_1 value: 67.24900000000001 - type: precision_at_10 value: 9.466 - type: precision_at_100 value: 1.027 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 27.955999999999996 - type: precision_at_5 value: 17.817 - type: recall_at_1 value: 65.054 - type: recall_at_10 value: 89.113 - type: recall_at_100 value: 96.369 - type: recall_at_1000 value: 98.714 - type: recall_at_3 value: 79.45400000000001 - type: recall_at_5 value: 84.06 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.1977135171486 - type: f1 value: 67.23114308718404 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.92669804976462 - type: f1 value: 72.90628475628779 - task: type: Retrieval dataset: type: C-MTEB/MedicalRetrieval name: MTEB MedicalRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 49.2 - type: map_at_10 value: 54.539 - type: map_at_100 value: 55.135 - type: map_at_1000 value: 55.19199999999999 - type: map_at_3 value: 53.383 - type: map_at_5 value: 54.142999999999994 - type: mrr_at_1 value: 49.2 - type: mrr_at_10 value: 54.539 - type: mrr_at_100 value: 55.135999999999996 - type: mrr_at_1000 value: 55.19199999999999 - type: mrr_at_3 value: 53.383 - type: mrr_at_5 value: 54.142999999999994 - type: ndcg_at_1 value: 49.2 - type: ndcg_at_10 value: 57.123000000000005 - type: ndcg_at_100 value: 60.21300000000001 - type: ndcg_at_1000 value: 61.915 - type: ndcg_at_3 value: 54.772 - type: ndcg_at_5 value: 56.157999999999994 - type: precision_at_1 value: 49.2 - type: precision_at_10 value: 6.52 - type: precision_at_100 value: 0.8009999999999999 - type: precision_at_1000 value: 0.094 - type: precision_at_3 value: 19.6 - type: precision_at_5 value: 12.44 - type: recall_at_1 value: 49.2 - type: recall_at_10 value: 65.2 - type: recall_at_100 value: 80.10000000000001 - type: recall_at_1000 value: 93.89999999999999 - type: recall_at_3 value: 58.8 - type: recall_at_5 value: 62.2 - task: type: Classification dataset: type: C-MTEB/MultilingualSentiment-classification name: MTEB MultilingualSentiment config: default split: validation revision: None metrics: - type: accuracy value: 63.29333333333334 - type: f1 value: 63.03293854259612 - task: type: PairClassification dataset: type: C-MTEB/OCNLI name: MTEB Ocnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 75.69030860855442 - type: cos_sim_ap value: 80.6157833772759 - type: cos_sim_f1 value: 77.87524366471735 - type: cos_sim_precision value: 72.3076923076923 - type: cos_sim_recall value: 84.37170010559663 - type: dot_accuracy value: 67.78559826746074 - type: dot_ap value: 72.00871467527499 - type: dot_f1 value: 72.58722247394654 - type: dot_precision value: 63.57142857142857 - type: dot_recall value: 84.58289334741288 - type: euclidean_accuracy value: 75.20303194369248 - type: euclidean_ap value: 80.98587256415605 - type: euclidean_f1 value: 77.26396917148362 - type: euclidean_precision value: 71.03631532329496 - type: euclidean_recall value: 84.68848996832101 - type: manhattan_accuracy value: 75.20303194369248 - type: manhattan_ap value: 80.93460699513219 - type: manhattan_f1 value: 77.124773960217 - type: manhattan_precision value: 67.43083003952569 - type: manhattan_recall value: 90.07391763463569 - type: max_accuracy value: 75.69030860855442 - type: max_ap value: 80.98587256415605 - type: max_f1 value: 77.87524366471735 - task: type: Classification dataset: type: C-MTEB/OnlineShopping-classification name: MTEB OnlineShopping config: default split: test revision: None metrics: - type: accuracy value: 87.00000000000001 - type: ap value: 83.24372135949511 - type: f1 value: 86.95554191530607 - task: type: STS dataset: type: C-MTEB/PAWSX name: MTEB PAWSX config: default split: test revision: None metrics: - type: cos_sim_pearson value: 37.57616811591219 - type: cos_sim_spearman value: 41.490259084930045 - type: euclidean_pearson value: 38.9155043692188 - type: euclidean_spearman value: 39.16056534305623 - type: manhattan_pearson value: 38.76569892264335 - type: manhattan_spearman value: 38.99891685590743 - task: type: STS dataset: type: C-MTEB/QBQTC name: MTEB QBQTC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 35.44858610359665 - type: cos_sim_spearman value: 38.11128146262466 - type: euclidean_pearson value: 31.928644189822457 - type: euclidean_spearman value: 34.384936631696554 - type: manhattan_pearson value: 31.90586687414376 - type: manhattan_spearman value: 34.35770153777186 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 66.54931957553592 - type: cos_sim_spearman value: 69.25068863016632 - type: euclidean_pearson value: 50.26525596106869 - type: euclidean_spearman value: 63.83352741910006 - type: manhattan_pearson value: 49.98798282198196 - type: manhattan_spearman value: 63.87649521907841 - task: type: STS dataset: type: C-MTEB/STSB name: MTEB STSB config: default split: test revision: None metrics: - type: cos_sim_pearson value: 82.52782476625825 - type: cos_sim_spearman value: 82.55618986168398 - type: euclidean_pearson value: 78.48190631687673 - type: euclidean_spearman value: 78.39479731354655 - type: manhattan_pearson value: 78.51176592165885 - type: manhattan_spearman value: 78.42363787303265 - task: type: Reranking dataset: type: C-MTEB/T2Reranking name: MTEB T2Reranking config: default split: dev revision: None metrics: - type: map value: 67.36693873615643 - type: mrr value: 77.83847701797939 - task: type: Retrieval dataset: type: C-MTEB/T2Retrieval name: MTEB T2Retrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 25.795 - type: map_at_10 value: 72.258 - type: map_at_100 value: 76.049 - type: map_at_1000 value: 76.134 - type: map_at_3 value: 50.697 - type: map_at_5 value: 62.324999999999996 - type: mrr_at_1 value: 86.634 - type: mrr_at_10 value: 89.792 - type: mrr_at_100 value: 89.91900000000001 - type: mrr_at_1000 value: 89.923 - type: mrr_at_3 value: 89.224 - type: mrr_at_5 value: 89.608 - type: ndcg_at_1 value: 86.634 - type: ndcg_at_10 value: 80.589 - type: ndcg_at_100 value: 84.812 - type: ndcg_at_1000 value: 85.662 - type: ndcg_at_3 value: 82.169 - type: ndcg_at_5 value: 80.619 - type: precision_at_1 value: 86.634 - type: precision_at_10 value: 40.389 - type: precision_at_100 value: 4.93 - type: precision_at_1000 value: 0.513 - type: precision_at_3 value: 72.104 - type: precision_at_5 value: 60.425 - type: recall_at_1 value: 25.795 - type: recall_at_10 value: 79.565 - type: recall_at_100 value: 93.24799999999999 - type: recall_at_1000 value: 97.595 - type: recall_at_3 value: 52.583999999999996 - type: recall_at_5 value: 66.175 - task: type: Classification dataset: type: C-MTEB/TNews-classification name: MTEB TNews config: default split: validation revision: None metrics: - type: accuracy value: 47.648999999999994 - type: f1 value: 46.28925837008413 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringP2P name: MTEB ThuNewsClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 54.07641891287953 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringS2S name: MTEB ThuNewsClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 53.423702062353954 - task: type: Retrieval dataset: type: C-MTEB/VideoRetrieval name: MTEB VideoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 55.7 - type: map_at_10 value: 65.923 - type: map_at_100 value: 66.42 - type: map_at_1000 value: 66.431 - type: map_at_3 value: 63.9 - type: map_at_5 value: 65.225 - type: mrr_at_1 value: 55.60000000000001 - type: mrr_at_10 value: 65.873 - type: mrr_at_100 value: 66.36999999999999 - type: mrr_at_1000 value: 66.381 - type: mrr_at_3 value: 63.849999999999994 - type: mrr_at_5 value: 65.17500000000001 - type: ndcg_at_1 value: 55.7 - type: ndcg_at_10 value: 70.621 - type: ndcg_at_100 value: 72.944 - type: ndcg_at_1000 value: 73.25399999999999 - type: ndcg_at_3 value: 66.547 - type: ndcg_at_5 value: 68.93599999999999 - type: precision_at_1 value: 55.7 - type: precision_at_10 value: 8.52 - type: precision_at_100 value: 0.958 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 24.733 - type: precision_at_5 value: 16 - type: recall_at_1 value: 55.7 - type: recall_at_10 value: 85.2 - type: recall_at_100 value: 95.8 - type: recall_at_1000 value: 98.3 - type: recall_at_3 value: 74.2 - type: recall_at_5 value: 80 - task: type: Classification dataset: type: C-MTEB/waimai-classification name: MTEB Waimai config: default split: test revision: None metrics: - type: accuracy value: 84.54 - type: ap value: 66.13603199670062 - type: f1 value: 82.61420654584116 --- # jina-embeddings-v2-base-zh-GGUF **Model creator**: [jinaai](https://huggingface.co/jinaai)<br/> **Original model**: [jina-embeddings-v2-base-zh](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh)<br/> **GGUF quantization**: based on llama.cpp release [61408e7f](https://github.com/ggerganov/llama.cpp/commit/61408e7fad082dc44a11c8a9f1398da4837aad44) --- <!-- TODO: add evaluation results here --> <br><br> <p align="center"> <img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> </p> <p align="center"> <b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b> </p> ## Quick Start The easiest way to starting using `jina-embeddings-v2-base-zh` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/). ## Intended Usage & Model Info `jina-embeddings-v2-base-zh` is a Chinese/English bilingual text **embedding model** supporting **8192 sequence length**. It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length. We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed Chinese-English input without bias. Additionally, we provide the following embedding models: `jina-embeddings-v2-base-zh` 是支持中英双语的**文本向量**模型,它支持长达**8192字符**的文本编码。 该模型的研发基于BERT架构(JinaBERT),JinaBERT是在BERT架构基础上的改进,首次将[ALiBi](https://arxiv.org/abs/2108.12409)应用到编码器架构中以支持更长的序列。 不同于以往的单语言/多语言向量模型,我们设计双语模型来更好的支持单语言(中搜中)以及跨语言(中搜英)文档检索。 除此之外,我们也提供其它向量模型: - [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters. - [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters. - [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English Bilingual embeddings **(you are here)**. - [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English Bilingual embeddings. - [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings (soon). - [`jina-embeddings-v2-base-code`](https://huggingface.co/jinaai/jina-embeddings-v2-base-code): 161 million parameters code embeddings. ## Data & Parameters The data and training details are described in this [technical report](https://arxiv.org/abs/2402.17016). ## Usage **<details><summary>Please apply mean pooling when integrating the model.</summary>** <p> ### Why mean pooling? `mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level. It has been proved to be the most effective way to produce high-quality sentence embeddings. We offer an `encode` function to deal with this. However, if you would like to do it without using the default `encode` function: ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['How is the weather today?', '今天天气怎么样?'] tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-zh') model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True, torch_dtype=torch.bfloat16) encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) ``` </p> </details> You can use Jina Embedding models directly from transformers package. ```python !pip install transformers import torch from transformers import AutoModel from numpy.linalg import norm cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b)) model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True, torch_dtype=torch.bfloat16) embeddings = model.encode(['How is the weather today?', '今天天气怎么样?']) print(cos_sim(embeddings[0], embeddings[1])) ``` If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function: ```python embeddings = model.encode( ['Very long ... document'], max_length=2048 ) ``` If you want to use the model together with the [sentence-transformers package](https://github.com/UKPLab/sentence-transformers/), make sure that you have installed the latest release and set `trust_remote_code=True` as well: ```python !pip install -U sentence-transformers from sentence_transformers import SentenceTransformer from numpy.linalg import norm cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b)) model = SentenceTransformer('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True) embeddings = model.encode(['How is the weather today?', '今天天气怎么样?']) print(cos_sim(embeddings[0], embeddings[1])) ``` Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well): ```python !pip install -U sentence-transformers from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim model = SentenceTransformer( "jinaai/jina-embeddings-v2-base-zh", # switch to en/zh for English or Chinese trust_remote_code=True ) # control your input sequence length up to 8192 model.max_seq_length = 1024 embeddings = model.encode([ 'How is the weather today?', '今天天气怎么样?' ]) print(cos_sim(embeddings[0], embeddings[1])) ``` ## Alternatives to Using Transformers Package 1. _Managed SaaS_: Get started with a free key on Jina AI's [Embedding API](https://jina.ai/embeddings/). 2. _Private and high-performance deployment_: Get started by picking from our suite of models and deploy them on [AWS Sagemaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy). ## Use Jina Embeddings for RAG According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83), > In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out. <img src="https://miro.medium.com/v2/resize:fit:4800/format:webp/1*ZP2RVejCZovF3FDCg-Bx3A.png" width="780px"> ## Trouble Shooting **Loading of Model Code failed** If you forgot to pass the `trust_remote_code=True` flag when calling `AutoModel.from_pretrained` or initializing the model via the `SentenceTransformer` class, you will receive an error that the model weights could not be initialized. This is caused by tranformers falling back to creating a default BERT model, instead of a jina-embedding model: ```bash Some weights of the model checkpoint at jinaai/jina-embeddings-v2-base-zh were not used when initializing BertModel: ['encoder.layer.2.mlp.layernorm.weight', 'encoder.layer.3.mlp.layernorm.weight', 'encoder.layer.10.mlp.wo.bias', 'encoder.layer.5.mlp.wo.bias', 'encoder.layer.2.mlp.layernorm.bias', 'encoder.layer.1.mlp.gated_layers.weight', 'encoder.layer.5.mlp.gated_layers.weight', 'encoder.layer.8.mlp.layernorm.bias', ... ``` **User is not logged into Huggingface** The model is only availabe under [gated access](https://huggingface.co/docs/hub/models-gated). This means you need to be logged into huggingface load load it. If you receive the following error, you need to provide an access token, either by using the huggingface-cli or providing the token via an environment variable as described above: ```bash OSError: jinaai/jina-embeddings-v2-base-zh is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass `use_auth_token=True`. ``` ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. ## Citation If you find Jina Embeddings useful in your research, please cite the following paper: ``` @article{mohr2024multi, title={Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings}, author={Mohr, Isabelle and Krimmel, Markus and Sturua, Saba and Akram, Mohammad Kalim and Koukounas, Andreas and G{\"u}nther, Michael and Mastrapas, Georgios and Ravishankar, Vinit and Mart{\'\i}nez, Joan Fontanals and Wang, Feng and others}, journal={arXiv preprint arXiv:2402.17016}, year={2024} } ```
TheHamzahPOCs/bart-cnn-samsum-finetuned
TheHamzahPOCs
2024-11-01T02:08:38Z
103
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-01T02:07:06Z
--- library_name: transformers license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer datasets: - samsum model-index: - name: bart-cnn-samsum-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-samsum-finetuned This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 0.2608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1908 | 1.0 | 19 | 0.2608 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
gpustack/jina-embeddings-v2-base-en-GGUF
gpustack
2024-11-01T02:01:38Z
216
0
sentence-transformers
[ "sentence-transformers", "gguf", "feature-extraction", "sentence-similarity", "mteb", "en", "dataset:allenai/c4", "arxiv:2108.12409", "arxiv:2310.19923", "license:apache-2.0", "model-index", "autotrain_compatible", "region:us" ]
feature-extraction
2024-11-01T01:35:36Z
--- tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb datasets: - allenai/c4 language: en inference: false license: apache-2.0 model-index: - name: jina-embedding-b-en-v2 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 74.73134328358209 - type: ap value: 37.765427081831035 - type: f1 value: 68.79367444339518 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 88.544275 - type: ap value: 84.61328675662887 - type: f1 value: 88.51879035862375 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 45.263999999999996 - type: f1 value: 43.778759656699435 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 21.693 - type: map_at_10 value: 35.487 - type: map_at_100 value: 36.862 - type: map_at_1000 value: 36.872 - type: map_at_3 value: 30.049999999999997 - type: map_at_5 value: 32.966 - type: mrr_at_1 value: 21.977 - type: mrr_at_10 value: 35.565999999999995 - type: mrr_at_100 value: 36.948 - type: mrr_at_1000 value: 36.958 - type: mrr_at_3 value: 30.121 - type: mrr_at_5 value: 33.051 - type: ndcg_at_1 value: 21.693 - type: ndcg_at_10 value: 44.181 - type: ndcg_at_100 value: 49.982 - type: ndcg_at_1000 value: 50.233000000000004 - type: ndcg_at_3 value: 32.830999999999996 - type: ndcg_at_5 value: 38.080000000000005 - type: precision_at_1 value: 21.693 - type: precision_at_10 value: 7.248 - type: precision_at_100 value: 0.9769999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 13.632 - type: precision_at_5 value: 10.725 - type: recall_at_1 value: 21.693 - type: recall_at_10 value: 72.475 - type: recall_at_100 value: 97.653 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 40.896 - type: recall_at_5 value: 53.627 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.39242428696777 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 36.675626784714 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.247725694904034 - type: mrr value: 74.91359978894604 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 82.68003802970496 - type: cos_sim_spearman value: 81.23438110096286 - type: euclidean_pearson value: 81.87462986142582 - type: euclidean_spearman value: 81.23438110096286 - type: manhattan_pearson value: 81.61162566600755 - type: manhattan_spearman value: 81.11329400456184 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.01298701298701 - type: f1 value: 83.31690714969382 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.050108150972086 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 30.15731442819715 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 31.391999999999996 - type: map_at_10 value: 42.597 - type: map_at_100 value: 44.07 - type: map_at_1000 value: 44.198 - type: map_at_3 value: 38.957 - type: map_at_5 value: 40.961 - type: mrr_at_1 value: 37.196 - type: mrr_at_10 value: 48.152 - type: mrr_at_100 value: 48.928 - type: mrr_at_1000 value: 48.964999999999996 - type: mrr_at_3 value: 45.446 - type: mrr_at_5 value: 47.205999999999996 - type: ndcg_at_1 value: 37.196 - type: ndcg_at_10 value: 49.089 - type: ndcg_at_100 value: 54.471000000000004 - type: ndcg_at_1000 value: 56.385 - type: ndcg_at_3 value: 43.699 - type: ndcg_at_5 value: 46.22 - type: precision_at_1 value: 37.196 - type: precision_at_10 value: 9.313 - type: precision_at_100 value: 1.478 - type: precision_at_1000 value: 0.198 - type: precision_at_3 value: 20.839 - type: precision_at_5 value: 14.936 - type: recall_at_1 value: 31.391999999999996 - type: recall_at_10 value: 61.876 - type: recall_at_100 value: 84.214 - type: recall_at_1000 value: 95.985 - type: recall_at_3 value: 46.6 - type: recall_at_5 value: 53.588 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.083 - type: map_at_10 value: 38.812999999999995 - type: map_at_100 value: 40.053 - type: map_at_1000 value: 40.188 - type: map_at_3 value: 36.111 - type: map_at_5 value: 37.519000000000005 - type: mrr_at_1 value: 36.497 - type: mrr_at_10 value: 44.85 - type: mrr_at_100 value: 45.546 - type: mrr_at_1000 value: 45.593 - type: mrr_at_3 value: 42.686 - type: mrr_at_5 value: 43.909 - type: ndcg_at_1 value: 36.497 - type: ndcg_at_10 value: 44.443 - type: ndcg_at_100 value: 48.979 - type: ndcg_at_1000 value: 51.154999999999994 - type: ndcg_at_3 value: 40.660000000000004 - type: ndcg_at_5 value: 42.193000000000005 - type: precision_at_1 value: 36.497 - type: precision_at_10 value: 8.433 - type: precision_at_100 value: 1.369 - type: precision_at_1000 value: 0.185 - type: precision_at_3 value: 19.894000000000002 - type: precision_at_5 value: 13.873 - type: recall_at_1 value: 29.083 - type: recall_at_10 value: 54.313 - type: recall_at_100 value: 73.792 - type: recall_at_1000 value: 87.629 - type: recall_at_3 value: 42.257 - type: recall_at_5 value: 47.066 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.556000000000004 - type: map_at_10 value: 50.698 - type: map_at_100 value: 51.705 - type: map_at_1000 value: 51.768 - type: map_at_3 value: 47.848 - type: map_at_5 value: 49.358000000000004 - type: mrr_at_1 value: 43.95 - type: mrr_at_10 value: 54.191 - type: mrr_at_100 value: 54.852999999999994 - type: mrr_at_1000 value: 54.885 - type: mrr_at_3 value: 51.954 - type: mrr_at_5 value: 53.13 - type: ndcg_at_1 value: 43.95 - type: ndcg_at_10 value: 56.516 - type: ndcg_at_100 value: 60.477000000000004 - type: ndcg_at_1000 value: 61.746 - type: ndcg_at_3 value: 51.601 - type: ndcg_at_5 value: 53.795 - type: precision_at_1 value: 43.95 - type: precision_at_10 value: 9.009 - type: precision_at_100 value: 1.189 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.989 - type: precision_at_5 value: 15.473 - type: recall_at_1 value: 38.556000000000004 - type: recall_at_10 value: 70.159 - type: recall_at_100 value: 87.132 - type: recall_at_1000 value: 96.16 - type: recall_at_3 value: 56.906 - type: recall_at_5 value: 62.332 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.238 - type: map_at_10 value: 32.5 - type: map_at_100 value: 33.637 - type: map_at_1000 value: 33.719 - type: map_at_3 value: 30.026999999999997 - type: map_at_5 value: 31.555 - type: mrr_at_1 value: 26.328000000000003 - type: mrr_at_10 value: 34.44 - type: mrr_at_100 value: 35.455999999999996 - type: mrr_at_1000 value: 35.521 - type: mrr_at_3 value: 32.034 - type: mrr_at_5 value: 33.565 - type: ndcg_at_1 value: 26.328000000000003 - type: ndcg_at_10 value: 37.202 - type: ndcg_at_100 value: 42.728 - type: ndcg_at_1000 value: 44.792 - type: ndcg_at_3 value: 32.368 - type: ndcg_at_5 value: 35.008 - type: precision_at_1 value: 26.328000000000003 - type: precision_at_10 value: 5.7059999999999995 - type: precision_at_100 value: 0.8880000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 13.672 - type: precision_at_5 value: 9.74 - type: recall_at_1 value: 24.238 - type: recall_at_10 value: 49.829 - type: recall_at_100 value: 75.21 - type: recall_at_1000 value: 90.521 - type: recall_at_3 value: 36.867 - type: recall_at_5 value: 43.241 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.378 - type: map_at_10 value: 22.817999999999998 - type: map_at_100 value: 23.977999999999998 - type: map_at_1000 value: 24.108 - type: map_at_3 value: 20.719 - type: map_at_5 value: 21.889 - type: mrr_at_1 value: 19.03 - type: mrr_at_10 value: 27.022000000000002 - type: mrr_at_100 value: 28.011999999999997 - type: mrr_at_1000 value: 28.096 - type: mrr_at_3 value: 24.855 - type: mrr_at_5 value: 26.029999999999998 - type: ndcg_at_1 value: 19.03 - type: ndcg_at_10 value: 27.526 - type: ndcg_at_100 value: 33.040000000000006 - type: ndcg_at_1000 value: 36.187000000000005 - type: ndcg_at_3 value: 23.497 - type: ndcg_at_5 value: 25.334 - type: precision_at_1 value: 19.03 - type: precision_at_10 value: 4.963 - type: precision_at_100 value: 0.893 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 11.360000000000001 - type: precision_at_5 value: 8.134 - type: recall_at_1 value: 15.378 - type: recall_at_10 value: 38.061 - type: recall_at_100 value: 61.754 - type: recall_at_1000 value: 84.259 - type: recall_at_3 value: 26.788 - type: recall_at_5 value: 31.326999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.511999999999997 - type: map_at_10 value: 37.429 - type: map_at_100 value: 38.818000000000005 - type: map_at_1000 value: 38.924 - type: map_at_3 value: 34.625 - type: map_at_5 value: 36.064 - type: mrr_at_1 value: 33.300999999999995 - type: mrr_at_10 value: 43.036 - type: mrr_at_100 value: 43.894 - type: mrr_at_1000 value: 43.936 - type: mrr_at_3 value: 40.825 - type: mrr_at_5 value: 42.028 - type: ndcg_at_1 value: 33.300999999999995 - type: ndcg_at_10 value: 43.229 - type: ndcg_at_100 value: 48.992000000000004 - type: ndcg_at_1000 value: 51.02100000000001 - type: ndcg_at_3 value: 38.794000000000004 - type: ndcg_at_5 value: 40.65 - type: precision_at_1 value: 33.300999999999995 - type: precision_at_10 value: 7.777000000000001 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 18.351 - type: precision_at_5 value: 12.762 - type: recall_at_1 value: 27.511999999999997 - type: recall_at_10 value: 54.788000000000004 - type: recall_at_100 value: 79.105 - type: recall_at_1000 value: 92.49199999999999 - type: recall_at_3 value: 41.924 - type: recall_at_5 value: 47.026 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.117 - type: map_at_10 value: 33.32 - type: map_at_100 value: 34.677 - type: map_at_1000 value: 34.78 - type: map_at_3 value: 30.233999999999998 - type: map_at_5 value: 31.668000000000003 - type: mrr_at_1 value: 29.566 - type: mrr_at_10 value: 38.244 - type: mrr_at_100 value: 39.245000000000005 - type: mrr_at_1000 value: 39.296 - type: mrr_at_3 value: 35.864000000000004 - type: mrr_at_5 value: 36.919999999999995 - type: ndcg_at_1 value: 29.566 - type: ndcg_at_10 value: 39.127 - type: ndcg_at_100 value: 44.989000000000004 - type: ndcg_at_1000 value: 47.189 - type: ndcg_at_3 value: 34.039 - type: ndcg_at_5 value: 35.744 - type: precision_at_1 value: 29.566 - type: precision_at_10 value: 7.385999999999999 - type: precision_at_100 value: 1.204 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 16.286 - type: precision_at_5 value: 11.484 - type: recall_at_1 value: 24.117 - type: recall_at_10 value: 51.559999999999995 - type: recall_at_100 value: 77.104 - type: recall_at_1000 value: 91.79899999999999 - type: recall_at_3 value: 36.82 - type: recall_at_5 value: 41.453 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.17625 - type: map_at_10 value: 34.063916666666664 - type: map_at_100 value: 35.255500000000005 - type: map_at_1000 value: 35.37275 - type: map_at_3 value: 31.351666666666667 - type: map_at_5 value: 32.80608333333333 - type: mrr_at_1 value: 29.59783333333333 - type: mrr_at_10 value: 38.0925 - type: mrr_at_100 value: 38.957249999999995 - type: mrr_at_1000 value: 39.01608333333333 - type: mrr_at_3 value: 35.77625 - type: mrr_at_5 value: 37.04991666666667 - type: ndcg_at_1 value: 29.59783333333333 - type: ndcg_at_10 value: 39.343666666666664 - type: ndcg_at_100 value: 44.488249999999994 - type: ndcg_at_1000 value: 46.83358333333334 - type: ndcg_at_3 value: 34.69708333333333 - type: ndcg_at_5 value: 36.75075 - type: precision_at_1 value: 29.59783333333333 - type: precision_at_10 value: 6.884083333333332 - type: precision_at_100 value: 1.114 - type: precision_at_1000 value: 0.15108333333333332 - type: precision_at_3 value: 15.965250000000003 - type: precision_at_5 value: 11.246500000000001 - type: recall_at_1 value: 25.17625 - type: recall_at_10 value: 51.015999999999984 - type: recall_at_100 value: 73.60174999999998 - type: recall_at_1000 value: 89.849 - type: recall_at_3 value: 37.88399999999999 - type: recall_at_5 value: 43.24541666666666 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.537 - type: map_at_10 value: 31.081999999999997 - type: map_at_100 value: 32.042 - type: map_at_1000 value: 32.141 - type: map_at_3 value: 29.137 - type: map_at_5 value: 30.079 - type: mrr_at_1 value: 27.454 - type: mrr_at_10 value: 33.694 - type: mrr_at_100 value: 34.579 - type: mrr_at_1000 value: 34.649 - type: mrr_at_3 value: 32.004 - type: mrr_at_5 value: 32.794000000000004 - type: ndcg_at_1 value: 27.454 - type: ndcg_at_10 value: 34.915 - type: ndcg_at_100 value: 39.641 - type: ndcg_at_1000 value: 42.105 - type: ndcg_at_3 value: 31.276 - type: ndcg_at_5 value: 32.65 - type: precision_at_1 value: 27.454 - type: precision_at_10 value: 5.337 - type: precision_at_100 value: 0.8250000000000001 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 13.241 - type: precision_at_5 value: 8.895999999999999 - type: recall_at_1 value: 24.537 - type: recall_at_10 value: 44.324999999999996 - type: recall_at_100 value: 65.949 - type: recall_at_1000 value: 84.017 - type: recall_at_3 value: 33.857 - type: recall_at_5 value: 37.316 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.122 - type: map_at_10 value: 24.32 - type: map_at_100 value: 25.338 - type: map_at_1000 value: 25.462 - type: map_at_3 value: 22.064 - type: map_at_5 value: 23.322000000000003 - type: mrr_at_1 value: 20.647 - type: mrr_at_10 value: 27.858 - type: mrr_at_100 value: 28.743999999999996 - type: mrr_at_1000 value: 28.819 - type: mrr_at_3 value: 25.769 - type: mrr_at_5 value: 26.964 - type: ndcg_at_1 value: 20.647 - type: ndcg_at_10 value: 28.849999999999998 - type: ndcg_at_100 value: 33.849000000000004 - type: ndcg_at_1000 value: 36.802 - type: ndcg_at_3 value: 24.799 - type: ndcg_at_5 value: 26.682 - type: precision_at_1 value: 20.647 - type: precision_at_10 value: 5.2170000000000005 - type: precision_at_100 value: 0.906 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 11.769 - type: precision_at_5 value: 8.486 - type: recall_at_1 value: 17.122 - type: recall_at_10 value: 38.999 - type: recall_at_100 value: 61.467000000000006 - type: recall_at_1000 value: 82.716 - type: recall_at_3 value: 27.601 - type: recall_at_5 value: 32.471 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.396 - type: map_at_10 value: 33.415 - type: map_at_100 value: 34.521 - type: map_at_1000 value: 34.631 - type: map_at_3 value: 30.703999999999997 - type: map_at_5 value: 32.166 - type: mrr_at_1 value: 28.825 - type: mrr_at_10 value: 37.397000000000006 - type: mrr_at_100 value: 38.286 - type: mrr_at_1000 value: 38.346000000000004 - type: mrr_at_3 value: 35.028 - type: mrr_at_5 value: 36.32 - type: ndcg_at_1 value: 28.825 - type: ndcg_at_10 value: 38.656 - type: ndcg_at_100 value: 43.856 - type: ndcg_at_1000 value: 46.31 - type: ndcg_at_3 value: 33.793 - type: ndcg_at_5 value: 35.909 - type: precision_at_1 value: 28.825 - type: precision_at_10 value: 6.567 - type: precision_at_100 value: 1.0330000000000001 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 15.516 - type: precision_at_5 value: 10.914 - type: recall_at_1 value: 24.396 - type: recall_at_10 value: 50.747 - type: recall_at_100 value: 73.477 - type: recall_at_1000 value: 90.801 - type: recall_at_3 value: 37.1 - type: recall_at_5 value: 42.589 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.072 - type: map_at_10 value: 34.307 - type: map_at_100 value: 35.725 - type: map_at_1000 value: 35.943999999999996 - type: map_at_3 value: 30.906 - type: map_at_5 value: 32.818000000000005 - type: mrr_at_1 value: 29.644 - type: mrr_at_10 value: 38.673 - type: mrr_at_100 value: 39.459 - type: mrr_at_1000 value: 39.527 - type: mrr_at_3 value: 35.771 - type: mrr_at_5 value: 37.332 - type: ndcg_at_1 value: 29.644 - type: ndcg_at_10 value: 40.548 - type: ndcg_at_100 value: 45.678999999999995 - type: ndcg_at_1000 value: 48.488 - type: ndcg_at_3 value: 34.887 - type: ndcg_at_5 value: 37.543 - type: precision_at_1 value: 29.644 - type: precision_at_10 value: 7.688000000000001 - type: precision_at_100 value: 1.482 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 16.206 - type: precision_at_5 value: 12.016 - type: recall_at_1 value: 25.072 - type: recall_at_10 value: 53.478 - type: recall_at_100 value: 76.07300000000001 - type: recall_at_1000 value: 93.884 - type: recall_at_3 value: 37.583 - type: recall_at_5 value: 44.464 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 20.712 - type: map_at_10 value: 27.467999999999996 - type: map_at_100 value: 28.502 - type: map_at_1000 value: 28.610000000000003 - type: map_at_3 value: 24.887999999999998 - type: map_at_5 value: 26.273999999999997 - type: mrr_at_1 value: 22.736 - type: mrr_at_10 value: 29.553 - type: mrr_at_100 value: 30.485 - type: mrr_at_1000 value: 30.56 - type: mrr_at_3 value: 27.078999999999997 - type: mrr_at_5 value: 28.401 - type: ndcg_at_1 value: 22.736 - type: ndcg_at_10 value: 32.023 - type: ndcg_at_100 value: 37.158 - type: ndcg_at_1000 value: 39.823 - type: ndcg_at_3 value: 26.951999999999998 - type: ndcg_at_5 value: 29.281000000000002 - type: precision_at_1 value: 22.736 - type: precision_at_10 value: 5.213 - type: precision_at_100 value: 0.832 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 11.459999999999999 - type: precision_at_5 value: 8.244 - type: recall_at_1 value: 20.712 - type: recall_at_10 value: 44.057 - type: recall_at_100 value: 67.944 - type: recall_at_1000 value: 87.925 - type: recall_at_3 value: 30.305 - type: recall_at_5 value: 36.071999999999996 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 10.181999999999999 - type: map_at_10 value: 16.66 - type: map_at_100 value: 18.273 - type: map_at_1000 value: 18.45 - type: map_at_3 value: 14.141 - type: map_at_5 value: 15.455 - type: mrr_at_1 value: 22.15 - type: mrr_at_10 value: 32.062000000000005 - type: mrr_at_100 value: 33.116 - type: mrr_at_1000 value: 33.168 - type: mrr_at_3 value: 28.827 - type: mrr_at_5 value: 30.892999999999997 - type: ndcg_at_1 value: 22.15 - type: ndcg_at_10 value: 23.532 - type: ndcg_at_100 value: 30.358 - type: ndcg_at_1000 value: 33.783 - type: ndcg_at_3 value: 19.222 - type: ndcg_at_5 value: 20.919999999999998 - type: precision_at_1 value: 22.15 - type: precision_at_10 value: 7.185999999999999 - type: precision_at_100 value: 1.433 - type: precision_at_1000 value: 0.207 - type: precision_at_3 value: 13.941 - type: precision_at_5 value: 10.906 - type: recall_at_1 value: 10.181999999999999 - type: recall_at_10 value: 28.104000000000003 - type: recall_at_100 value: 51.998999999999995 - type: recall_at_1000 value: 71.311 - type: recall_at_3 value: 17.698 - type: recall_at_5 value: 22.262999999999998 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 6.669 - type: map_at_10 value: 15.552 - type: map_at_100 value: 21.865000000000002 - type: map_at_1000 value: 23.268 - type: map_at_3 value: 11.309 - type: map_at_5 value: 13.084000000000001 - type: mrr_at_1 value: 55.50000000000001 - type: mrr_at_10 value: 66.46600000000001 - type: mrr_at_100 value: 66.944 - type: mrr_at_1000 value: 66.956 - type: mrr_at_3 value: 64.542 - type: mrr_at_5 value: 65.717 - type: ndcg_at_1 value: 44.75 - type: ndcg_at_10 value: 35.049 - type: ndcg_at_100 value: 39.073 - type: ndcg_at_1000 value: 46.208 - type: ndcg_at_3 value: 39.525 - type: ndcg_at_5 value: 37.156 - type: precision_at_1 value: 55.50000000000001 - type: precision_at_10 value: 27.800000000000004 - type: precision_at_100 value: 9.013 - type: precision_at_1000 value: 1.8800000000000001 - type: precision_at_3 value: 42.667 - type: precision_at_5 value: 36.0 - type: recall_at_1 value: 6.669 - type: recall_at_10 value: 21.811 - type: recall_at_100 value: 45.112 - type: recall_at_1000 value: 67.806 - type: recall_at_3 value: 13.373 - type: recall_at_5 value: 16.615 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.769999999999996 - type: f1 value: 42.91448356376592 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 54.013 - type: map_at_10 value: 66.239 - type: map_at_100 value: 66.62599999999999 - type: map_at_1000 value: 66.644 - type: map_at_3 value: 63.965 - type: map_at_5 value: 65.45400000000001 - type: mrr_at_1 value: 58.221000000000004 - type: mrr_at_10 value: 70.43700000000001 - type: mrr_at_100 value: 70.744 - type: mrr_at_1000 value: 70.75099999999999 - type: mrr_at_3 value: 68.284 - type: mrr_at_5 value: 69.721 - type: ndcg_at_1 value: 58.221000000000004 - type: ndcg_at_10 value: 72.327 - type: ndcg_at_100 value: 73.953 - type: ndcg_at_1000 value: 74.312 - type: ndcg_at_3 value: 68.062 - type: ndcg_at_5 value: 70.56400000000001 - type: precision_at_1 value: 58.221000000000004 - type: precision_at_10 value: 9.521 - type: precision_at_100 value: 1.045 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 27.348 - type: precision_at_5 value: 17.794999999999998 - type: recall_at_1 value: 54.013 - type: recall_at_10 value: 86.957 - type: recall_at_100 value: 93.911 - type: recall_at_1000 value: 96.38 - type: recall_at_3 value: 75.555 - type: recall_at_5 value: 81.671 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 21.254 - type: map_at_10 value: 33.723 - type: map_at_100 value: 35.574 - type: map_at_1000 value: 35.730000000000004 - type: map_at_3 value: 29.473 - type: map_at_5 value: 31.543 - type: mrr_at_1 value: 41.358 - type: mrr_at_10 value: 49.498 - type: mrr_at_100 value: 50.275999999999996 - type: mrr_at_1000 value: 50.308 - type: mrr_at_3 value: 47.016000000000005 - type: mrr_at_5 value: 48.336 - type: ndcg_at_1 value: 41.358 - type: ndcg_at_10 value: 41.579 - type: ndcg_at_100 value: 48.455 - type: ndcg_at_1000 value: 51.165000000000006 - type: ndcg_at_3 value: 37.681 - type: ndcg_at_5 value: 38.49 - type: precision_at_1 value: 41.358 - type: precision_at_10 value: 11.543000000000001 - type: precision_at_100 value: 1.87 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 24.743000000000002 - type: precision_at_5 value: 17.994 - type: recall_at_1 value: 21.254 - type: recall_at_10 value: 48.698 - type: recall_at_100 value: 74.588 - type: recall_at_1000 value: 91.00200000000001 - type: recall_at_3 value: 33.939 - type: recall_at_5 value: 39.367000000000004 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 35.922 - type: map_at_10 value: 52.32599999999999 - type: map_at_100 value: 53.18000000000001 - type: map_at_1000 value: 53.245 - type: map_at_3 value: 49.294 - type: map_at_5 value: 51.202999999999996 - type: mrr_at_1 value: 71.843 - type: mrr_at_10 value: 78.24600000000001 - type: mrr_at_100 value: 78.515 - type: mrr_at_1000 value: 78.527 - type: mrr_at_3 value: 77.17500000000001 - type: mrr_at_5 value: 77.852 - type: ndcg_at_1 value: 71.843 - type: ndcg_at_10 value: 61.379 - type: ndcg_at_100 value: 64.535 - type: ndcg_at_1000 value: 65.888 - type: ndcg_at_3 value: 56.958 - type: ndcg_at_5 value: 59.434 - type: precision_at_1 value: 71.843 - type: precision_at_10 value: 12.686 - type: precision_at_100 value: 1.517 - type: precision_at_1000 value: 0.16999999999999998 - type: precision_at_3 value: 35.778 - type: precision_at_5 value: 23.422 - type: recall_at_1 value: 35.922 - type: recall_at_10 value: 63.43 - type: recall_at_100 value: 75.868 - type: recall_at_1000 value: 84.88900000000001 - type: recall_at_3 value: 53.666000000000004 - type: recall_at_5 value: 58.555 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 79.4408 - type: ap value: 73.52820871620366 - type: f1 value: 79.36240238685001 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 21.826999999999998 - type: map_at_10 value: 34.04 - type: map_at_100 value: 35.226 - type: map_at_1000 value: 35.275 - type: map_at_3 value: 30.165999999999997 - type: map_at_5 value: 32.318000000000005 - type: mrr_at_1 value: 22.464000000000002 - type: mrr_at_10 value: 34.631 - type: mrr_at_100 value: 35.752 - type: mrr_at_1000 value: 35.795 - type: mrr_at_3 value: 30.798 - type: mrr_at_5 value: 32.946999999999996 - type: ndcg_at_1 value: 22.464000000000002 - type: ndcg_at_10 value: 40.919 - type: ndcg_at_100 value: 46.632 - type: ndcg_at_1000 value: 47.833 - type: ndcg_at_3 value: 32.992 - type: ndcg_at_5 value: 36.834 - type: precision_at_1 value: 22.464000000000002 - type: precision_at_10 value: 6.494 - type: precision_at_100 value: 0.9369999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.021 - type: precision_at_5 value: 10.347000000000001 - type: recall_at_1 value: 21.826999999999998 - type: recall_at_10 value: 62.132 - type: recall_at_100 value: 88.55199999999999 - type: recall_at_1000 value: 97.707 - type: recall_at_3 value: 40.541 - type: recall_at_5 value: 49.739 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 95.68399452804377 - type: f1 value: 95.25490609832268 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 83.15321477428182 - type: f1 value: 60.35476439087966 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.92669804976462 - type: f1 value: 69.22815107207565 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.4855413584398 - type: f1 value: 72.92107516103387 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.412679360205544 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.09211869875204 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.540919056982545 - type: mrr value: 31.529904607063536 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.745 - type: map_at_10 value: 12.013 - type: map_at_100 value: 15.040000000000001 - type: map_at_1000 value: 16.427 - type: map_at_3 value: 8.841000000000001 - type: map_at_5 value: 10.289 - type: mrr_at_1 value: 45.201 - type: mrr_at_10 value: 53.483999999999995 - type: mrr_at_100 value: 54.20700000000001 - type: mrr_at_1000 value: 54.252 - type: mrr_at_3 value: 51.29 - type: mrr_at_5 value: 52.73 - type: ndcg_at_1 value: 43.808 - type: ndcg_at_10 value: 32.445 - type: ndcg_at_100 value: 30.031000000000002 - type: ndcg_at_1000 value: 39.007 - type: ndcg_at_3 value: 37.204 - type: ndcg_at_5 value: 35.07 - type: precision_at_1 value: 45.201 - type: precision_at_10 value: 23.684 - type: precision_at_100 value: 7.600999999999999 - type: precision_at_1000 value: 2.043 - type: precision_at_3 value: 33.953 - type: precision_at_5 value: 29.412 - type: recall_at_1 value: 5.745 - type: recall_at_10 value: 16.168 - type: recall_at_100 value: 30.875999999999998 - type: recall_at_1000 value: 62.686 - type: recall_at_3 value: 9.75 - type: recall_at_5 value: 12.413 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 37.828 - type: map_at_10 value: 53.239000000000004 - type: map_at_100 value: 54.035999999999994 - type: map_at_1000 value: 54.067 - type: map_at_3 value: 49.289 - type: map_at_5 value: 51.784 - type: mrr_at_1 value: 42.497 - type: mrr_at_10 value: 55.916999999999994 - type: mrr_at_100 value: 56.495 - type: mrr_at_1000 value: 56.516999999999996 - type: mrr_at_3 value: 52.800000000000004 - type: mrr_at_5 value: 54.722 - type: ndcg_at_1 value: 42.468 - type: ndcg_at_10 value: 60.437 - type: ndcg_at_100 value: 63.731 - type: ndcg_at_1000 value: 64.41799999999999 - type: ndcg_at_3 value: 53.230999999999995 - type: ndcg_at_5 value: 57.26 - type: precision_at_1 value: 42.468 - type: precision_at_10 value: 9.47 - type: precision_at_100 value: 1.1360000000000001 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.724999999999998 - type: precision_at_5 value: 16.593 - type: recall_at_1 value: 37.828 - type: recall_at_10 value: 79.538 - type: recall_at_100 value: 93.646 - type: recall_at_1000 value: 98.72999999999999 - type: recall_at_3 value: 61.134 - type: recall_at_5 value: 70.377 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.548 - type: map_at_10 value: 84.466 - type: map_at_100 value: 85.10600000000001 - type: map_at_1000 value: 85.123 - type: map_at_3 value: 81.57600000000001 - type: map_at_5 value: 83.399 - type: mrr_at_1 value: 81.24 - type: mrr_at_10 value: 87.457 - type: mrr_at_100 value: 87.574 - type: mrr_at_1000 value: 87.575 - type: mrr_at_3 value: 86.507 - type: mrr_at_5 value: 87.205 - type: ndcg_at_1 value: 81.25 - type: ndcg_at_10 value: 88.203 - type: ndcg_at_100 value: 89.457 - type: ndcg_at_1000 value: 89.563 - type: ndcg_at_3 value: 85.465 - type: ndcg_at_5 value: 87.007 - type: precision_at_1 value: 81.25 - type: precision_at_10 value: 13.373 - type: precision_at_100 value: 1.5270000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.417 - type: precision_at_5 value: 24.556 - type: recall_at_1 value: 70.548 - type: recall_at_10 value: 95.208 - type: recall_at_100 value: 99.514 - type: recall_at_1000 value: 99.988 - type: recall_at_3 value: 87.214 - type: recall_at_5 value: 91.696 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 53.04822095496839 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.30778476474675 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.692 - type: map_at_10 value: 11.766 - type: map_at_100 value: 13.904 - type: map_at_1000 value: 14.216999999999999 - type: map_at_3 value: 8.245 - type: map_at_5 value: 9.92 - type: mrr_at_1 value: 23.0 - type: mrr_at_10 value: 33.78 - type: mrr_at_100 value: 34.922 - type: mrr_at_1000 value: 34.973 - type: mrr_at_3 value: 30.2 - type: mrr_at_5 value: 32.565 - type: ndcg_at_1 value: 23.0 - type: ndcg_at_10 value: 19.863 - type: ndcg_at_100 value: 28.141 - type: ndcg_at_1000 value: 33.549 - type: ndcg_at_3 value: 18.434 - type: ndcg_at_5 value: 16.384 - type: precision_at_1 value: 23.0 - type: precision_at_10 value: 10.39 - type: precision_at_100 value: 2.235 - type: precision_at_1000 value: 0.35300000000000004 - type: precision_at_3 value: 17.133000000000003 - type: precision_at_5 value: 14.44 - type: recall_at_1 value: 4.692 - type: recall_at_10 value: 21.025 - type: recall_at_100 value: 45.324999999999996 - type: recall_at_1000 value: 71.675 - type: recall_at_3 value: 10.440000000000001 - type: recall_at_5 value: 14.64 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.96178184892842 - type: cos_sim_spearman value: 79.6487740813199 - type: euclidean_pearson value: 82.06661161625023 - type: euclidean_spearman value: 79.64876769031183 - type: manhattan_pearson value: 82.07061164575131 - type: manhattan_spearman value: 79.65197039464537 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.15305604100027 - type: cos_sim_spearman value: 74.27447427941591 - type: euclidean_pearson value: 80.52737337565307 - type: euclidean_spearman value: 74.27416077132192 - type: manhattan_pearson value: 80.53728571140387 - type: manhattan_spearman value: 74.28853605753457 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.44386080639279 - type: cos_sim_spearman value: 84.17947648159536 - type: euclidean_pearson value: 83.34145388129387 - type: euclidean_spearman value: 84.17947648159536 - type: manhattan_pearson value: 83.30699061927966 - type: manhattan_spearman value: 84.18125737380451 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 81.57392220985612 - type: cos_sim_spearman value: 78.80745014464101 - type: euclidean_pearson value: 80.01660371487199 - type: euclidean_spearman value: 78.80741240102256 - type: manhattan_pearson value: 79.96810779507953 - type: manhattan_spearman value: 78.75600400119448 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.85421063026625 - type: cos_sim_spearman value: 87.55320285299192 - type: euclidean_pearson value: 86.69750143323517 - type: euclidean_spearman value: 87.55320284326378 - type: manhattan_pearson value: 86.63379169960379 - type: manhattan_spearman value: 87.4815029877984 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 84.31314130411842 - type: cos_sim_spearman value: 85.3489588181433 - type: euclidean_pearson value: 84.13240933463535 - type: euclidean_spearman value: 85.34902871403281 - type: manhattan_pearson value: 84.01183086503559 - type: manhattan_spearman value: 85.19316703166102 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.09979781689536 - type: cos_sim_spearman value: 88.87813323759015 - type: euclidean_pearson value: 88.65413031123792 - type: euclidean_spearman value: 88.87813323759015 - type: manhattan_pearson value: 88.61818758256024 - type: manhattan_spearman value: 88.81044100494604 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.30693258111531 - type: cos_sim_spearman value: 62.195516523251946 - type: euclidean_pearson value: 62.951283701049476 - type: euclidean_spearman value: 62.195516523251946 - type: manhattan_pearson value: 63.068322281439535 - type: manhattan_spearman value: 62.10621171028406 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.27092833763909 - type: cos_sim_spearman value: 84.84429717949759 - type: euclidean_pearson value: 84.8516966060792 - type: euclidean_spearman value: 84.84429717949759 - type: manhattan_pearson value: 84.82203139242881 - type: manhattan_spearman value: 84.8358503952945 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 83.10290863981409 - type: mrr value: 95.31168450286097 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 52.161 - type: map_at_10 value: 62.138000000000005 - type: map_at_100 value: 62.769 - type: map_at_1000 value: 62.812 - type: map_at_3 value: 59.111000000000004 - type: map_at_5 value: 60.995999999999995 - type: mrr_at_1 value: 55.333 - type: mrr_at_10 value: 63.504000000000005 - type: mrr_at_100 value: 64.036 - type: mrr_at_1000 value: 64.08 - type: mrr_at_3 value: 61.278 - type: mrr_at_5 value: 62.778 - type: ndcg_at_1 value: 55.333 - type: ndcg_at_10 value: 66.678 - type: ndcg_at_100 value: 69.415 - type: ndcg_at_1000 value: 70.453 - type: ndcg_at_3 value: 61.755 - type: ndcg_at_5 value: 64.546 - type: precision_at_1 value: 55.333 - type: precision_at_10 value: 9.033 - type: precision_at_100 value: 1.043 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 24.221999999999998 - type: precision_at_5 value: 16.333000000000002 - type: recall_at_1 value: 52.161 - type: recall_at_10 value: 79.156 - type: recall_at_100 value: 91.333 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 66.43299999999999 - type: recall_at_5 value: 73.272 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81287128712871 - type: cos_sim_ap value: 95.30034785910676 - type: cos_sim_f1 value: 90.28629856850716 - type: cos_sim_precision value: 92.36401673640168 - type: cos_sim_recall value: 88.3 - type: dot_accuracy value: 99.81287128712871 - type: dot_ap value: 95.30034785910676 - type: dot_f1 value: 90.28629856850716 - type: dot_precision value: 92.36401673640168 - type: dot_recall value: 88.3 - type: euclidean_accuracy value: 99.81287128712871 - type: euclidean_ap value: 95.30034785910676 - type: euclidean_f1 value: 90.28629856850716 - type: euclidean_precision value: 92.36401673640168 - type: euclidean_recall value: 88.3 - type: manhattan_accuracy value: 99.80990099009901 - type: manhattan_ap value: 95.26880751950654 - type: manhattan_f1 value: 90.22177419354838 - type: manhattan_precision value: 90.95528455284553 - type: manhattan_recall value: 89.5 - type: max_accuracy value: 99.81287128712871 - type: max_ap value: 95.30034785910676 - type: max_f1 value: 90.28629856850716 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 58.518662504351184 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.96168178378587 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.04862593471896 - type: mrr value: 52.97238402936932 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.092545236479946 - type: cos_sim_spearman value: 31.599851000175498 - type: dot_pearson value: 30.092542723901676 - type: dot_spearman value: 31.599851000175498 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.189 - type: map_at_10 value: 1.662 - type: map_at_100 value: 9.384 - type: map_at_1000 value: 22.669 - type: map_at_3 value: 0.5559999999999999 - type: map_at_5 value: 0.9039999999999999 - type: mrr_at_1 value: 68.0 - type: mrr_at_10 value: 81.01899999999999 - type: mrr_at_100 value: 81.01899999999999 - type: mrr_at_1000 value: 81.01899999999999 - type: mrr_at_3 value: 79.333 - type: mrr_at_5 value: 80.733 - type: ndcg_at_1 value: 63.0 - type: ndcg_at_10 value: 65.913 - type: ndcg_at_100 value: 51.895 - type: ndcg_at_1000 value: 46.967 - type: ndcg_at_3 value: 65.49199999999999 - type: ndcg_at_5 value: 66.69699999999999 - type: precision_at_1 value: 68.0 - type: precision_at_10 value: 71.6 - type: precision_at_100 value: 53.66 - type: precision_at_1000 value: 21.124000000000002 - type: precision_at_3 value: 72.667 - type: precision_at_5 value: 74.0 - type: recall_at_1 value: 0.189 - type: recall_at_10 value: 1.913 - type: recall_at_100 value: 12.601999999999999 - type: recall_at_1000 value: 44.296 - type: recall_at_3 value: 0.605 - type: recall_at_5 value: 1.018 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.701 - type: map_at_10 value: 10.445 - type: map_at_100 value: 17.324 - type: map_at_1000 value: 19.161 - type: map_at_3 value: 5.497 - type: map_at_5 value: 7.278 - type: mrr_at_1 value: 30.612000000000002 - type: mrr_at_10 value: 45.534 - type: mrr_at_100 value: 45.792 - type: mrr_at_1000 value: 45.806999999999995 - type: mrr_at_3 value: 37.755 - type: mrr_at_5 value: 43.469 - type: ndcg_at_1 value: 26.531 - type: ndcg_at_10 value: 26.235000000000003 - type: ndcg_at_100 value: 39.17 - type: ndcg_at_1000 value: 51.038 - type: ndcg_at_3 value: 23.625 - type: ndcg_at_5 value: 24.338 - type: precision_at_1 value: 30.612000000000002 - type: precision_at_10 value: 24.285999999999998 - type: precision_at_100 value: 8.224 - type: precision_at_1000 value: 1.6179999999999999 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 24.898 - type: recall_at_1 value: 2.701 - type: recall_at_10 value: 17.997 - type: recall_at_100 value: 51.766999999999996 - type: recall_at_1000 value: 87.863 - type: recall_at_3 value: 6.295000000000001 - type: recall_at_5 value: 9.993 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 73.3474 - type: ap value: 15.393431414459924 - type: f1 value: 56.466681887882416 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 62.062818336163 - type: f1 value: 62.11230840463252 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 42.464892820845115 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.15962329379508 - type: cos_sim_ap value: 74.73674057919256 - type: cos_sim_f1 value: 68.81245642574947 - type: cos_sim_precision value: 61.48255813953488 - type: cos_sim_recall value: 78.12664907651715 - type: dot_accuracy value: 86.15962329379508 - type: dot_ap value: 74.7367634988281 - type: dot_f1 value: 68.81245642574947 - type: dot_precision value: 61.48255813953488 - type: dot_recall value: 78.12664907651715 - type: euclidean_accuracy value: 86.15962329379508 - type: euclidean_ap value: 74.7367761466634 - type: euclidean_f1 value: 68.81245642574947 - type: euclidean_precision value: 61.48255813953488 - type: euclidean_recall value: 78.12664907651715 - type: manhattan_accuracy value: 86.21326816474935 - type: manhattan_ap value: 74.64416473733951 - type: manhattan_f1 value: 68.80924855491331 - type: manhattan_precision value: 61.23456790123457 - type: manhattan_recall value: 78.52242744063325 - type: max_accuracy value: 86.21326816474935 - type: max_ap value: 74.7367761466634 - type: max_f1 value: 68.81245642574947 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.97620988085536 - type: cos_sim_ap value: 86.08680845745758 - type: cos_sim_f1 value: 78.02793637114438 - type: cos_sim_precision value: 73.11082699683736 - type: cos_sim_recall value: 83.65414228518632 - type: dot_accuracy value: 88.97620988085536 - type: dot_ap value: 86.08681149437946 - type: dot_f1 value: 78.02793637114438 - type: dot_precision value: 73.11082699683736 - type: dot_recall value: 83.65414228518632 - type: euclidean_accuracy value: 88.97620988085536 - type: euclidean_ap value: 86.08681215460771 - type: euclidean_f1 value: 78.02793637114438 - type: euclidean_precision value: 73.11082699683736 - type: euclidean_recall value: 83.65414228518632 - type: manhattan_accuracy value: 88.88888888888889 - type: manhattan_ap value: 86.02916327562438 - type: manhattan_f1 value: 78.02063045516843 - type: manhattan_precision value: 73.38851947346994 - type: manhattan_recall value: 83.2768709578072 - type: max_accuracy value: 88.97620988085536 - type: max_ap value: 86.08681215460771 - type: max_f1 value: 78.02793637114438 --- # jina-embeddings-v2-base-en-GGUF **Model creator**: [jinaai](https://huggingface.co/jinaai)<br/> **Original model**: [jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en)<br/> **GGUF quantization**: based on llama.cpp release [61408e7f](https://github.com/ggerganov/llama.cpp/commit/61408e7fad082dc44a11c8a9f1398da4837aad44) --- <!-- TODO: add evaluation results here --> <br><br> <p align="center"> <img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> </p> <p align="center"> <b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b> </p> ## Quick Start The easiest way to starting using `jina-embeddings-v2-base-en` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/). ## Intended Usage & Model Info `jina-embeddings-v2-base-en` is an English, monolingual **embedding model** supporting **8192 sequence length**. It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length. The backbone `jina-bert-v2-base-en` is pretrained on the C4 dataset. The model is further trained on Jina AI's collection of more than 400 millions of sentence pairs and hard negatives. These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length (or even longer) thanks to ALiBi. This makes our model useful for a range of use cases, especially when processing long documents is needed, including long document retrieval, semantic textual similarity, text reranking, recommendation, RAG and LLM-based generative search, etc. With a standard size of 137 million parameters, the model enables fast inference while delivering better performance than our small model. It is recommended to use a single GPU for inference. Additionally, we provide the following embedding models: - [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters. - [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters **(you are here)**. - [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): Chinese-English Bilingual embeddings. - [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): German-English Bilingual embeddings. - [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): Spanish-English Bilingual embeddings. ## Data & Parameters Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923) ## Usage **<details><summary>Please apply mean pooling when integrating the model.</summary>** <p> ### Why mean pooling? `mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level. It has been proved to be the most effective way to produce high-quality sentence embeddings. We offer an `encode` function to deal with this. However, if you would like to do it without using the default `encode` function: ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['How is the weather today?', 'What is the current weather like today?'] tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-small-en') model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-small-en', trust_remote_code=True) encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) ``` </p> </details> You can use Jina Embedding models directly from transformers package. ```python !pip install transformers from transformers import AutoModel from numpy.linalg import norm cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b)) model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en', trust_remote_code=True) # trust_remote_code is needed to use the encode method embeddings = model.encode(['How is the weather today?', 'What is the current weather like today?']) print(cos_sim(embeddings[0], embeddings[1])) ``` If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function: ```python embeddings = model.encode( ['Very long ... document'], max_length=2048 ) ``` Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well): ```python !pip install -U sentence-transformers from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim model = SentenceTransformer( "jinaai/jina-embeddings-v2-base-en", # switch to en/zh for English or Chinese trust_remote_code=True ) # control your input sequence length up to 8192 model.max_seq_length = 1024 embeddings = model.encode([ 'How is the weather today?', 'What is the current weather like today?' ]) print(cos_sim(embeddings[0], embeddings[1])) ``` ## Alternatives to Using Transformers (or SentencTransformers) Package 1. _Managed SaaS_: Get started with a free key on Jina AI's [Embedding API](https://jina.ai/embeddings/). 2. _Private and high-performance deployment_: Get started by picking from our suite of models and deploy them on [AWS Sagemaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy). ## Use Jina Embeddings for RAG According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83), > In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out. <img src="https://miro.medium.com/v2/resize:fit:4800/format:webp/1*ZP2RVejCZovF3FDCg-Bx3A.png" width="780px"> ## Plans 1. Bilingual embedding models supporting more European & Asian languages, including Spanish, French, Italian and Japanese. 2. Multimodal embedding models enable Multimodal RAG applications. 3. High-performt rerankers. ## Trouble Shooting **Loading of Model Code failed** If you forgot to pass the `trust_remote_code=True` flag when calling `AutoModel.from_pretrained` or initializing the model via the `SentenceTransformer` class, you will receive an error that the model weights could not be initialized. This is caused by tranformers falling back to creating a default BERT model, instead of a jina-embedding model: ```bash Some weights of the model checkpoint at jinaai/jina-embeddings-v2-base-en were not used when initializing BertModel: ['encoder.layer.2.mlp.layernorm.weight', 'encoder.layer.3.mlp.layernorm.weight', 'encoder.layer.10.mlp.wo.bias', 'encoder.layer.5.mlp.wo.bias', 'encoder.layer.2.mlp.layernorm.bias', 'encoder.layer.1.mlp.gated_layers.weight', 'encoder.layer.5.mlp.gated_layers.weight', 'encoder.layer.8.mlp.layernorm.bias', ... ``` **User is not logged into Huggingface** The model is only availabe under [gated access](https://huggingface.co/docs/hub/models-gated). This means you need to be logged into huggingface load load it. If you receive the following error, you need to provide an access token, either by using the huggingface-cli or providing the token via an environment variable as described above: ```bash OSError: jinaai/jina-embeddings-v2-base-en is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass `use_auth_token=True`. ``` ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. ## Citation If you find Jina Embeddings useful in your research, please cite the following paper: ``` @misc{günther2023jina, title={Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents}, author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang and Maximilian Werk and Nan Wang and Han Xiao}, year={2023}, eprint={2310.19923}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF
featherless-ai-quants
2024-11-01T01:59:43Z
33
0
null
[ "gguf", "text-generation", "base_model:SherlockAssistant/Mistral-7B-Instruct-Ukrainian", "base_model:quantized:SherlockAssistant/Mistral-7B-Instruct-Ukrainian", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-01T01:45:02Z
--- base_model: SherlockAssistant/Mistral-7B-Instruct-Ukrainian pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # SherlockAssistant/Mistral-7B-Instruct-Ukrainian GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q8_0.gguf) | 7339.34 MB | | Q4_K_S | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q4_K_S.gguf) | 3948.57 MB | | Q2_K | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q2_K.gguf) | 2593.27 MB | | Q6_K | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q6_K.gguf) | 5666.80 MB | | Q3_K_M | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q3_K_S.gguf) | 3017.97 MB | | Q3_K_L | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q3_K_L.gguf) | 3644.97 MB | | Q4_K_M | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q4_K_M.gguf) | 4166.07 MB | | Q5_K_S | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q5_K_S.gguf) | 4766.19 MB | | Q5_K_M | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-Q5_K_M.gguf) | 4893.69 MB | | IQ4_XS | [SherlockAssistant-Mistral-7B-Instruct-Ukrainian-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-GGUF/blob/main/SherlockAssistant-Mistral-7B-Instruct-Ukrainian-IQ4_XS.gguf) | 3761.66 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/Faya-Expanse-8B-GGUF
mradermacher
2024-11-01T01:57:09Z
27
0
transformers
[ "transformers", "gguf", "fr", "dataset:Svngoku/french-multilingual-reward-bench-dpo", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-31T22:51:09Z
--- base_model: Svngoku/Faya-Expanse-8B datasets: - Svngoku/french-multilingual-reward-bench-dpo language: - fr library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Svngoku/Faya-Expanse-8B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.Q2_K.gguf) | Q2_K | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.Q3_K_S.gguf) | Q3_K_S | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.Q3_K_M.gguf) | Q3_K_M | 4.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.Q3_K_L.gguf) | Q3_K_L | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.Q4_K_M.gguf) | Q4_K_M | 5.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.Q5_K_M.gguf) | Q5_K_M | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF/resolve/main/Faya-Expanse-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Faya-Expanse-8B-i1-GGUF
mradermacher
2024-11-01T01:57:09Z
24
0
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-01T00:44:19Z
--- base_model: Svngoku/Faya-Expanse-8B language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Svngoku/Faya-Expanse-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Faya-Expanse-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.3 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 4.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.9 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.9 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Faya-Expanse-8B-i1-GGUF/resolve/main/Faya-Expanse-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
gldevelops/Llama-3.2-1B-Instruct-sensitivity
gldevelops
2024-11-01T01:42:58Z
104
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T10:35:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF
featherless-ai-quants
2024-11-01T01:34:33Z
11
0
null
[ "gguf", "text-generation", "base_model:CorticalStack/neurotic-crown-clown-7b-tak-stack-dpo", "base_model:quantized:CorticalStack/neurotic-crown-clown-7b-tak-stack-dpo", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-01T01:14:33Z
--- base_model: CorticalStack/neurotic-crown-clown-7b-tak-stack-dpo pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # CorticalStack/neurotic-crown-clown-7b-tak-stack-dpo GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q8_0.gguf) | 7339.34 MB | | Q4_K_S | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q4_K_S.gguf) | 3948.57 MB | | Q2_K | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q2_K.gguf) | 2593.27 MB | | Q6_K | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q6_K.gguf) | 5666.80 MB | | Q3_K_M | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q3_K_S.gguf) | 3017.97 MB | | Q3_K_L | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q3_K_L.gguf) | 3644.97 MB | | Q4_K_M | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q4_K_M.gguf) | 4166.07 MB | | Q5_K_S | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q5_K_S.gguf) | 4766.19 MB | | Q5_K_M | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-Q5_K_M.gguf) | 4893.69 MB | | IQ4_XS | [CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-GGUF/blob/main/CorticalStack-neurotic-crown-clown-7b-tak-stack-dpo-IQ4_XS.gguf) | 3761.66 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF
mradermacher
2024-11-01T01:34:11Z
60
0
transformers
[ "transformers", "gguf", "en", "base_model:renyiyu/chinese-alpaca-2-7b-dpo-v0.1", "base_model:quantized:renyiyu/chinese-alpaca-2-7b-dpo-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-10-31T23:17:42Z
--- base_model: renyiyu/chinese-alpaca-2-7b-dpo-v0.1 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/renyiyu/chinese-alpaca-2-7b-dpo-v0.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.Q2_K.gguf) | Q2_K | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.Q3_K_S.gguf) | Q3_K_S | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.Q3_K_M.gguf) | Q3_K_M | 3.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.Q3_K_L.gguf) | Q3_K_L | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.IQ4_XS.gguf) | IQ4_XS | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.Q4_K_S.gguf) | Q4_K_S | 4.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.Q4_K_M.gguf) | Q4_K_M | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.Q5_K_S.gguf) | Q5_K_S | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.Q5_K_M.gguf) | Q5_K_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.Q6_K.gguf) | Q6_K | 5.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.Q8_0.gguf) | Q8_0 | 7.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/chinese-alpaca-2-7b-dpo-v0.1-GGUF/resolve/main/chinese-alpaca-2-7b-dpo-v0.1.f16.gguf) | f16 | 14.0 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF
featherless-ai-quants
2024-11-01T01:33:32Z
8
0
null
[ "gguf", "text-generation", "base_model:Locutusque/Hercules-3.0-Mistral-7B", "base_model:quantized:Locutusque/Hercules-3.0-Mistral-7B", "endpoints_compatible", "region:us" ]
text-generation
2024-11-01T01:14:22Z
--- base_model: Locutusque/Hercules-3.0-Mistral-7B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Locutusque/Hercules-3.0-Mistral-7B GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [Locutusque-Hercules-3.0-Mistral-7B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-Q8_0.gguf) | 7339.34 MB | | Q4_K_S | [Locutusque-Hercules-3.0-Mistral-7B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-Q4_K_S.gguf) | 3948.57 MB | | Q2_K | [Locutusque-Hercules-3.0-Mistral-7B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-Q2_K.gguf) | 2593.27 MB | | Q6_K | [Locutusque-Hercules-3.0-Mistral-7B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-Q6_K.gguf) | 5666.80 MB | | Q3_K_M | [Locutusque-Hercules-3.0-Mistral-7B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [Locutusque-Hercules-3.0-Mistral-7B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-Q3_K_S.gguf) | 3017.97 MB | | Q3_K_L | [Locutusque-Hercules-3.0-Mistral-7B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-Q3_K_L.gguf) | 3644.97 MB | | Q4_K_M | [Locutusque-Hercules-3.0-Mistral-7B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-Q4_K_M.gguf) | 4166.07 MB | | Q5_K_S | [Locutusque-Hercules-3.0-Mistral-7B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-Q5_K_S.gguf) | 4766.19 MB | | Q5_K_M | [Locutusque-Hercules-3.0-Mistral-7B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-Q5_K_M.gguf) | 4893.69 MB | | IQ4_XS | [Locutusque-Hercules-3.0-Mistral-7B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hercules-3.0-Mistral-7B-GGUF/blob/main/Locutusque-Hercules-3.0-Mistral-7B-IQ4_XS.gguf) | 3761.66 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/Llama-3.2-3B-Apex-GGUF
mradermacher
2024-11-01T01:30:10Z
119
2
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:bunnycore/Llama-3.2-3B-Apex", "base_model:quantized:bunnycore/Llama-3.2-3B-Apex", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-31T14:29:39Z
--- base_model: bunnycore/Llama-3.2-3B-Apex language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/bunnycore/Llama-3.2-3B-Apex <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.Q2_K.gguf) | Q2_K | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.Q3_K_S.gguf) | Q3_K_S | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.Q3_K_M.gguf) | Q3_K_M | 2.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.Q3_K_L.gguf) | Q3_K_L | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.IQ4_XS.gguf) | IQ4_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.Q4_K_S.gguf) | Q4_K_S | 2.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.Q4_K_M.gguf) | Q4_K_M | 2.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.Q5_K_S.gguf) | Q5_K_S | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.Q5_K_M.gguf) | Q5_K_M | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.Q6_K.gguf) | Q6_K | 3.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.Q8_0.gguf) | Q8_0 | 3.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF/resolve/main/Llama-3.2-3B-Apex.f16.gguf) | f16 | 7.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Llama-3.2-3B-Apex-i1-GGUF
mradermacher
2024-11-01T01:30:08Z
30
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:bunnycore/Llama-3.2-3B-Apex", "base_model:quantized:bunnycore/Llama-3.2-3B-Apex", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-01T00:57:57Z
--- base_model: bunnycore/Llama-3.2-3B-Apex language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/bunnycore/Llama-3.2-3B-Apex <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ1_S.gguf) | i1-IQ1_S | 1.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ1_M.gguf) | i1-IQ1_M | 1.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ2_S.gguf) | i1-IQ2_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ2_M.gguf) | i1-IQ2_M | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q2_K.gguf) | i1-Q2_K | 1.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ3_S.gguf) | i1-IQ3_S | 1.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ3_M.gguf) | i1-IQ3_M | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.1 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 2.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 2.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 2.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q4_0.gguf) | i1-Q4_0 | 2.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Apex-i1-GGUF/resolve/main/Llama-3.2-3B-Apex.i1-Q6_K.gguf) | i1-Q6_K | 3.1 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Kort/i82
Kort
2024-11-01T01:26:54Z
35
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-01T01:23:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
autoprogrammer/CulturaX-zh-unsupervised-2
autoprogrammer
2024-11-01T01:18:46Z
140
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-01T01:12:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MaziyarPanahi/Chili_Dog_8B-GGUF
MaziyarPanahi
2024-11-01T01:16:24Z
34
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:FourOhFour/Chili_Dog_8B", "base_model:quantized:FourOhFour/Chili_Dog_8B", "region:us", "conversational" ]
text-generation
2024-11-01T00:47:19Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: Chili_Dog_8B-GGUF base_model: FourOhFour/Chili_Dog_8B inference: false model_creator: FourOhFour pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/Chili_Dog_8B-GGUF](https://huggingface.co/MaziyarPanahi/Chili_Dog_8B-GGUF) - Model creator: [FourOhFour](https://huggingface.co/FourOhFour) - Original model: [FourOhFour/Chili_Dog_8B](https://huggingface.co/FourOhFour/Chili_Dog_8B) ## Description [MaziyarPanahi/Chili_Dog_8B-GGUF](https://huggingface.co/MaziyarPanahi/Chili_Dog_8B-GGUF) contains GGUF format model files for [FourOhFour/Chili_Dog_8B](https://huggingface.co/FourOhFour/Chili_Dog_8B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
Kerneld/roberta-base-klue-ynat-classification
Kerneld
2024-11-01T01:15:51Z
105
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-01T01:15:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
glif-loradex-trainer/mesonwarrior_flux_dev_close_up_animals
glif-loradex-trainer
2024-11-01T01:07:47Z
17
1
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
2024-11-01T01:07:13Z
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1730423169560__000002000_0.jpg text: zebra - output: url: samples/1730423194113__000002000_1.jpg text: shark - output: url: samples/1730423218657__000002000_2.jpg text: tiger base_model: black-forest-labs/FLUX.1-dev trigger: close-up shot instance_prompt: close-up shot license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # flux_dev_close_up_animals Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `mesonwarrior`. <Gallery /> ## Trigger words You should use `close-up shot` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/mesonwarrior_flux_dev_close_up_animals/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF
featherless-ai-quants
2024-11-01T01:05:52Z
5
0
null
[ "gguf", "text-generation", "base_model:ChaoticNeutrals/Hathor_Respawn-L3-8B-v0.8", "base_model:quantized:ChaoticNeutrals/Hathor_Respawn-L3-8B-v0.8", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-01T00:35:24Z
--- base_model: ChaoticNeutrals/Hathor_Respawn-L3-8B-v0.8 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # ChaoticNeutrals/Hathor_Respawn-L3-8B-v0.8 GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q8_0.gguf) | 8145.11 MB | | Q4_K_S | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q4_K_S.gguf) | 4475.28 MB | | Q2_K | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q2_K.gguf) | 3031.86 MB | | Q6_K | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q6_K.gguf) | 6290.44 MB | | Q3_K_M | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q3_K_S.gguf) | 3494.74 MB | | Q3_K_L | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q3_K_L.gguf) | 4121.74 MB | | Q4_K_M | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q4_K_M.gguf) | 4692.78 MB | | Q5_K_S | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q5_K_S.gguf) | 5339.90 MB | | Q5_K_M | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-Q5_K_M.gguf) | 5467.40 MB | | IQ4_XS | [ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-GGUF/blob/main/ChaoticNeutrals-Hathor_Respawn-L3-8B-v0.8-IQ4_XS.gguf) | 4276.62 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/bunnycore-Cognitron-8B-GGUF
featherless-ai-quants
2024-11-01T01:04:52Z
8
0
null
[ "gguf", "text-generation", "base_model:bunnycore/Cognitron-8B", "base_model:quantized:bunnycore/Cognitron-8B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-01T00:40:54Z
--- base_model: bunnycore/Cognitron-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # bunnycore/Cognitron-8B GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [bunnycore-Cognitron-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-Q8_0.gguf) | 8145.11 MB | | Q4_K_S | [bunnycore-Cognitron-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-Q4_K_S.gguf) | 4475.28 MB | | Q2_K | [bunnycore-Cognitron-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-Q2_K.gguf) | 3031.86 MB | | Q6_K | [bunnycore-Cognitron-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-Q6_K.gguf) | 6290.44 MB | | Q3_K_M | [bunnycore-Cognitron-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [bunnycore-Cognitron-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-Q3_K_S.gguf) | 3494.74 MB | | Q3_K_L | [bunnycore-Cognitron-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-Q3_K_L.gguf) | 4121.74 MB | | Q4_K_M | [bunnycore-Cognitron-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-Q4_K_M.gguf) | 4692.78 MB | | Q5_K_S | [bunnycore-Cognitron-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-Q5_K_S.gguf) | 5339.90 MB | | Q5_K_M | [bunnycore-Cognitron-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-Q5_K_M.gguf) | 5467.40 MB | | IQ4_XS | [bunnycore-Cognitron-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-Cognitron-8B-GGUF/blob/main/bunnycore-Cognitron-8B-IQ4_XS.gguf) | 4276.62 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF
mradermacher
2024-11-01T00:59:56Z
324
2
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "maldv/badger-writer-llama-3-8b", "vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B", "Orenguteng/Llama-3-8B-Lexi-Uncensored", "abacusai/Llama-3-Smaug-8B", "en", "base_model:ZeroXClem/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B", "base_model:quantized:ZeroXClem/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-10-31T23:47:15Z
--- base_model: ZeroXClem/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - maldv/badger-writer-llama-3-8b - vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B - Orenguteng/Llama-3-8B-Lexi-Uncensored - abacusai/Llama-3-Smaug-8B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/ZeroXClem/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B-i1-GGUF/resolve/main/Llama-3-Aetheric-Hermes-Lexi-Smaug-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
piotrekgrl/llama381binstruct_summarize_short_merged
piotrekgrl
2024-11-01T00:59:13Z
75
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-11-01T00:55:42Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/stabilityai_-_stablelm-2-12b-gguf
RichardErkhov
2024-11-01T00:58:12Z
38
0
null
[ "gguf", "arxiv:2402.17834", "arxiv:2104.09864", "arxiv:2204.06745", "arxiv:1607.06450", "arxiv:2302.05442", "arxiv:2309.14322", "arxiv:2305.14201", "arxiv:2101.00027", "arxiv:2305.06161", "arxiv:2309.09400", "arxiv:2206.11147", "arxiv:1910.02054", "endpoints_compatible", "region:us" ]
null
2024-10-31T20:34:09Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) stablelm-2-12b - GGUF - Model creator: https://huggingface.co/stabilityai/ - Original model: https://huggingface.co/stabilityai/stablelm-2-12b/ | Name | Quant method | Size | | ---- | ---- | ---- | | [stablelm-2-12b.Q2_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q2_K.gguf) | Q2_K | 4.38GB | | [stablelm-2-12b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q3_K_S.gguf) | Q3_K_S | 5.05GB | | [stablelm-2-12b.Q3_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q3_K.gguf) | Q3_K | 5.58GB | | [stablelm-2-12b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q3_K_M.gguf) | Q3_K_M | 5.58GB | | [stablelm-2-12b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q3_K_L.gguf) | Q3_K_L | 6.05GB | | [stablelm-2-12b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.IQ4_XS.gguf) | IQ4_XS | 6.24GB | | [stablelm-2-12b.Q4_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q4_0.gguf) | Q4_0 | 6.49GB | | [stablelm-2-12b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.IQ4_NL.gguf) | IQ4_NL | 6.56GB | | [stablelm-2-12b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q4_K_S.gguf) | Q4_K_S | 6.53GB | | [stablelm-2-12b.Q4_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q4_K.gguf) | Q4_K | 6.86GB | | [stablelm-2-12b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q4_K_M.gguf) | Q4_K_M | 6.86GB | | [stablelm-2-12b.Q4_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q4_1.gguf) | Q4_1 | 7.17GB | | [stablelm-2-12b.Q5_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q5_0.gguf) | Q5_0 | 7.84GB | | [stablelm-2-12b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q5_K_S.gguf) | Q5_K_S | 7.84GB | | [stablelm-2-12b.Q5_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q5_K.gguf) | Q5_K | 8.04GB | | [stablelm-2-12b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q5_K_M.gguf) | Q5_K_M | 8.04GB | | [stablelm-2-12b.Q5_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q5_1.gguf) | Q5_1 | 8.52GB | | [stablelm-2-12b.Q6_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q6_K.gguf) | Q6_K | 9.28GB | | [stablelm-2-12b.Q8_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-12b-gguf/blob/main/stablelm-2-12b.Q8_0.gguf) | Q8_0 | 12.02GB | Original model description: --- language: - en - de - es - fr - it - nl - pt license: other tags: - causal-lm datasets: - tiiuae/falcon-refinedweb - togethercomputer/RedPajama-Data-1T - uonlp/CulturaX - CarperAI/pilev2-dev - bigcode/starcoderdata - DataProvenanceInitiative/Commercially-Verified-Licenses --- # `Stable LM 2 12B` ## Model Description `Stable LM 2 12B` is a 12.1 billion parameter decoder-only language model pre-trained on 2 trillion tokens of diverse multilingual and code datasets for two epochs. Please note: For commercial use, please refer to https://stability.ai/license. ## Usage **NOTE**: This model requires `transformers>=4.40.0` Get started generating text with `Stable LM 2 12B` by using the following code snippet: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-12b") model = AutoModelForCausalLM.from_pretrained( "stabilityai/stablelm-2-12b", torch_dtype="auto", ) model.cuda() inputs = tokenizer("The weather is always wonderful", return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=64, temperature=0.70, top_p=0.95, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` ### Run with Flash Attention 2 ⚡️ <details> <summary> Click to expand </summary> ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-12b") model = AutoModelForCausalLM.from_pretrained( "stabilityai/stablelm-2-12b", torch_dtype="auto", attn_implementation="flash_attention_2", ) model.cuda() inputs = tokenizer("The weather is always wonderful", return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=64, temperature=0.70, top_p=0.95, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` </details> ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `Stable LM 2 12B` models are auto-regressive language models based on the transformer decoder architecture. * **Language(s)**: English * **Paper**: [Stable LM 2 Technical Report](https://arxiv.org/abs/2402.17834) * **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) * **License**: [Stability AI Community License](https://huggingface.co/stabilityai/stablelm-2-12b/blob/main/LICENSE.md). * **Commercial License**: to use this model commercially, please refer to https://stability.ai/license * **Contact**: For questions and comments about the model, please email `[email protected]` ### Model Architecture The model is a decoder-only transformer with the following architecture: | Parameters | Hidden Size | Layers | Heads | KV Heads | Sequence Length | |----------------|-------------|--------|-------|----------|-----------------| | 12,143,605,760 | 5120 | 40 | 32 | 8 | 4096 | * **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf). * **Parallel Layers**: Parallel attention and feed-forward residual layers with a single input LayerNorm ([Wang, 2021](https://github.com/kingoflolz/mesh-transformer-jax)). * **Normalization**: LayerNorm ([Ba et al., 2016](https://arxiv.org/abs/1607.06450)) without biases. Furthermore, we apply per-head QK normalization ([Dehghani et al., 2023](https://arxiv.org/abs/2302.05442), [Wortsman et al., 2023](https://arxiv.org/abs/2309.14322)). * **Biases**: We remove all bias terms from the feed-forward networks and grouped-query self-attention layers. * **Tokenizer**: We use Arcade100k, a BPE tokenizer extended from OpenAI's [`tiktoken.cl100k_base`](https://github.com/openai/tiktoken). We split digits into individual tokens following findings by [Liu & Low (2023)](https://arxiv.org/abs/2305.14201). ## Training ### Training Dataset The dataset is comprised of a filtered mixture of open-source large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): Falcon RefinedWeb extract ([Penedo et al., 2023](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)), RedPajama-Data ([Together Computer., 2023](https://github.com/togethercomputer/RedPajama-Data)) and The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)) both without the *Books3* subset, and StarCoder ([Li et al., 2023](https://arxiv.org/abs/2305.06161)). We further supplement our training with multi-lingual data from CulturaX ([Nguyen et al., 2023](https://arxiv.org/abs/2309.09400)) and, in particular, from its OSCAR corpora, as well as restructured data in the style of [Yuan & Liu (2022)](https://arxiv.org/abs/2206.11147). * Given the large amount of web data, we recommend fine-tuning the base `Stable LM 2 12B` for your downstream tasks. ### Training Procedure The model is pre-trained on the aforementioned datasets in `bfloat16` precision, optimized with AdamW, and trained using the Arcade100k tokenizer with a vocabulary size of 100,352. We outline the complete hyperparameters choices in the project's [GitHub repository - config*](https://github.com/Stability-AI/StableLM/blob/main/configs/stablelm-2-12b.yml). ### Training Infrastructure * **Hardware**: `Stable LM 2 12B` was trained on the Stability AI cluster across 384 NVIDIA H100 GPUs (AWS P5 instances). * **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf)) ## Use and Limitations ### Intended Use The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. For commercial use, please refer to https://stability.ai/membership. ### Limitations and Bias ​ As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. ## How to Cite ```bibtex @article{bellagente2024stable, title={Stable LM 2 1.6 B Technical Report}, author={Bellagente, Marco and Tow, Jonathan and Mahan, Dakota and Phung, Duy and Zhuravinskyi, Maksym and Adithyan, Reshinth and Baicoianu, James and Brooks, Ben and Cooper, Nathan and Datta, Ashish and others}, journal={arXiv preprint arXiv:2402.17834}, year={2024} } ```
RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf
RichardErkhov
2024-11-01T00:53:39Z
7
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-10-31T20:32:27Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Starcannon-Unleashed-12B-v1.0 - GGUF - Model creator: https://huggingface.co/VongolaChouko/ - Original model: https://huggingface.co/VongolaChouko/Starcannon-Unleashed-12B-v1.0/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Starcannon-Unleashed-12B-v1.0.Q2_K.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q2_K.gguf) | Q2_K | 4.46GB | | [Starcannon-Unleashed-12B-v1.0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q3_K_S.gguf) | Q3_K_S | 5.15GB | | [Starcannon-Unleashed-12B-v1.0.Q3_K.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q3_K.gguf) | Q3_K | 5.67GB | | [Starcannon-Unleashed-12B-v1.0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q3_K_M.gguf) | Q3_K_M | 5.67GB | | [Starcannon-Unleashed-12B-v1.0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q3_K_L.gguf) | Q3_K_L | 6.11GB | | [Starcannon-Unleashed-12B-v1.0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.IQ4_XS.gguf) | IQ4_XS | 6.33GB | | [Starcannon-Unleashed-12B-v1.0.Q4_0.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q4_0.gguf) | Q4_0 | 6.59GB | | [Starcannon-Unleashed-12B-v1.0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.IQ4_NL.gguf) | IQ4_NL | 6.65GB | | [Starcannon-Unleashed-12B-v1.0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q4_K_S.gguf) | Q4_K_S | 6.63GB | | [Starcannon-Unleashed-12B-v1.0.Q4_K.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q4_K.gguf) | Q4_K | 6.96GB | | [Starcannon-Unleashed-12B-v1.0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q4_K_M.gguf) | Q4_K_M | 6.96GB | | [Starcannon-Unleashed-12B-v1.0.Q4_1.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q4_1.gguf) | Q4_1 | 7.26GB | | [Starcannon-Unleashed-12B-v1.0.Q5_0.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q5_0.gguf) | Q5_0 | 7.93GB | | [Starcannon-Unleashed-12B-v1.0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q5_K_S.gguf) | Q5_K_S | 7.93GB | | [Starcannon-Unleashed-12B-v1.0.Q5_K.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q5_K.gguf) | Q5_K | 8.13GB | | [Starcannon-Unleashed-12B-v1.0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q5_K_M.gguf) | Q5_K_M | 8.13GB | | [Starcannon-Unleashed-12B-v1.0.Q5_1.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q5_1.gguf) | Q5_1 | 8.61GB | | [Starcannon-Unleashed-12B-v1.0.Q6_K.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q6_K.gguf) | Q6_K | 9.37GB | | [Starcannon-Unleashed-12B-v1.0.Q8_0.gguf](https://huggingface.co/RichardErkhov/VongolaChouko_-_Starcannon-Unleashed-12B-v1.0-gguf/blob/main/Starcannon-Unleashed-12B-v1.0.Q8_0.gguf) | Q8_0 | 12.13GB | Original model description: --- base_model: - nothingiisreal/MN-12B-Starcannon-v3 - MarinaraSpaghetti/NemoMix-Unleashed-12B library_name: transformers tags: - mergekit - merge license: cc-by-nc-4.0 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6720ed503a24966ac66495e8/HXc0AxPLkoIC1fy0Pb3Pb.png) Starcannon-Unleashed-12B-v1.0-GGUF ================================== ## Quantized **GGUF:** [VongolaChouko/Starcannon-Unleashed-12B-v1.0-GGUF](https://huggingface.co/VongolaChouko/Starcannon-Unleashed-12B-v1.0-GGUF) [mradermacher/Starcannon-Unleashed-12B-v1.0-GGUF](https://huggingface.co/mradermacher/Starcannon-Unleashed-12B-v1.0-GGUF) [bartowski/Starcannon-Unleashed-12B-v1.0-GGUF](https://huggingface.co/bartowski/Starcannon-Unleashed-12B-v1.0-GGUF) HUGE THANKS TO [mradermacher](https://huggingface.co/mradermacher)!! ( ´•̥̥̥o•̥̥̥`)♡(˘̩̩̩̩̩̩ ⌂ ˘̩̩̩̩̩̩) Gosh dang, the fella is fast, I was shook! XD, and to the GOAT, the awesome [bartowski](https://huggingface.co/bartowski)! For their GGUF quantizations. I was only able to test the model using Q6_K with 24576 context at most due to PC limitations, so please let me know how it fared for you. Hopefully it still works well with higher context! Recommended settings are here: [**Settings**](https://huggingface.co/VongolaChouko/Starcannon-Unleashed-12B-v1.0#instruct) ## Sample Output ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6720ed503a24966ac66495e8/-teL9vS72L00Zp3Dvih8F.jpeg) ## Introduction **WARNING: Ramblings incoming. Please continue scrolling down if you wish to skip the boring part ʱªʱªʱª(ᕑᗢूᓫ∗)** Ohh boi, here we are! I'm very happy to share with you the result of countless hours bashing my head on the wall! *:・゚✧(=ఠ్ఠܫఠ్ఠ =)∫ To start up, I want to put a disclaimer. This is the first time I'm attempting to merge a model and I'm in no way an expert when it comes to coding. AT ALL. I believe I didn't understand what on earth I was looking at for like 70% of the time... Err, so there's that! I did test this model out rigorously after executing the merging codes, and so far I loved the results. I was honestly expecting the merge to absolutely fail and be totally incoherent, but thankfully not! The two days of not getting enough sleep is worth it ◝(˃̣̣̥▽˂̣̣̥)/ My goal was to hopefully create something that will get the best parts from each finetune/merge, where one model can cover for the other's weak points. I am a VERY huge fan of [Starcannon v3](https://huggingface.co/nothingiisreal/MN-12B-Starcannon-v3) because of how in character its responses are. It just hits different. It's like the model is the character itself, not ACTING as the character. That's why it always feels sad whenever it starts deteriorating, like I'm observing my beloved character die. No matter what adjustment I did to the context, it won't stay coherent to reach 16K context. On the other hand, I love [NemoMix Unleashed](https://huggingface.co/MarinaraSpaghetti/NemoMix-Unleashed-12B) for its awesome stability at much longer contexts and its nature to progress the story forward even without prompting. It feels nice that it can stay coherent and stable even after reaching past the context size I set. I also find its ability to read between the lines great. So I figured, why not just marry the two to get the best of both worlds? I would honestly love to do this again if I can because there's one too many times I found something I like in another model and then on another and wished so desperately they would just marry each other and have kids! XD So please let me know how it fared for my first attempt! I also want to learn how to finetune myself in addition to merging, but I don't think my PC is capable enough to endure it. I think it almost croaked on me when I did this merge, and my SDD cried, so maybe I'll just do it some other time when I have free time and more resources to spend. And thus, I was finally able to merge my favorite models after hours of research, tutorials, asking annoying questions to the community (that no one replied to (´;︵;`)), and coding hell. Here we are! **°˖✧It's all ABSOLUTELY worth it!✧˖°** ## Instruct Both ChatML and Mistral should work fine. Personally, I tested this using ChatML. I found that I like the model's responses better when I use this format. Try to test it out and observe which one you like best. :D ## Settings I recommend using these settings: [Starcannon-Unleashed-12B-v1.0-ST-Formatting-2024-10-29.json](https://huggingface.co/VongolaChouko/Starcannon-Unleashed-12B-v1.0/blob/main/Starcannon-Unleashed-12B-v1.0-ST-Formatting-2024-10-29.json) **IMPORTANT: Open Silly Tavern and use "Master Import", which can be found under "A" tab — Advanced Formatting. Replace the "INSERT WORLD HERE" placeholders with the world/universe in which your character belongs to. If not applicable, just remove that part.** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6720ed503a24966ac66495e8/hAr6qvG3iWKKXOUP9Sy07.png) Temperature 1.15 - 1.25 is good, but lower should also work well, as long as you also tweak the Min P and XTC to ensure the model won't choke. Play around with it to see what suits your taste. This is a modified version of MarinaraSpaghetti's Mistral-Small-Correct.json, transformed into ChatML. You can find the original version here: [MarinaraSpaghetti/SillyTavern-Settings](https://huggingface.co/MarinaraSpaghetti/SillyTavern-Settings/tree/main/Customized) ## Tips - Examples of Dialogue and First Message are very important. The model will copy the style you wrote in these sections. So for example, if you want short outputs, make Examples of Dialogue and First Message short, and if you want longer outputs, make sure your examples have full paragraphs, composed of several sentences. - If your Examples of Dialogue and First Message are short/concise but the model still rambles, lower Temperature in small increments, but keep Min P and XTC as is first. Test the result and adjust them to your liking. If it still rambles make XTC Threshold higher. - Utilize Author's Note In-chat @ Depth 2 as System if you want the instruction to have greater impact on the next response. If you want something exciting and spontaneous, you can try out this note I used when I tested out the model: "Scenario: Spontaneous. {{char}} has full autonomy to do anything they wish and progress the interaction in any way they like." ## Credits A very huge thank you to [MarinaraSpaghetti](https://huggingface.co/MarinaraSpaghetti) and [Nothing is Real](https://huggingface.co/nothingiisreal)!! (灬^ω^灬)ノ~ ♡ (´。• ᵕ •。`) ♡ I really fell in love with your models and it inspired me to learn how to make this one, and boi was it worth it! °˖✧◝(TT▿TT)◜✧˖° ## Merge Details This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ### Merge Method This model was merged using the della_linear merge method using G:\text-generation-webui\models\MarinaraSpaghetti_NemoMix-Unleashed-12B as a base. ### Models Merged The following models were included in the merge: * G:\text-generation-webui\models\Nothingiisreal_MN-12B-Starcannon-v3 ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: G:\text-generation-webui\models\MarinaraSpaghetti_NemoMix-Unleashed-12B dtype: bfloat16 merge_method: della_linear parameters: epsilon: 0.05 int8_mask: 1.0 lambda: 1.0 slices: - sources: - layer_range: [0, 40] model: G:\text-generation-webui\models\MarinaraSpaghetti_NemoMix-Unleashed-12B parameters: density: 0.65 weight: 0.4 - layer_range: [0, 40] model: G:\text-generation-webui\models\Nothingiisreal_MN-12B-Starcannon-v3 parameters: density: 0.55 weight: 0.6 ```
glif-loradex-trainer/x_bulbul_x_windows_95_UI
glif-loradex-trainer
2024-11-01T00:47:41Z
34
1
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
2024-11-01T00:46:50Z
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1730421901473__000003000_0.jpg text: wounded centaur, mythical creature, windows 95 - output: url: samples/1730421925134__000003000_1.jpg text: ruins of athens, snake, windows 95 - output: url: samples/1730421948621__000003000_2.jpg text: silver vampire sword, windows 95 - output: url: samples/1730421972112__000003000_3.jpg text: mspaint with starry night, windows 95 - output: url: samples/1730421995723__000003000_4.jpg text: sonic game, windows 95 base_model: black-forest-labs/FLUX.1-dev trigger: windows 95 instance_prompt: windows 95 license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # windows_95_UI Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `x_bulbul_x`. <Gallery /> ## Trigger words You should use `windows 95` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/x_bulbul_x_windows_95_UI/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
cloudyu/TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO_f16
cloudyu
2024-11-01T00:46:34Z
4,292
15
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "yi", "moe", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-03T13:23:22Z
--- tags: - yi - moe license: apache-2.0 --- this is a DPO fine-tuned MoE model for [TomGrc/FusionNet_34Bx2_MoE_v0.1](https://huggingface.co/TomGrc/FusionNet_34Bx2_MoE_v0.1) ``` DPO Trainer TRL supports the DPO Trainer for training language models from preference data, as described in the paper Direct Preference Optimization: Your Language Model is Secretly a Reward Model by Rafailov et al., 2023. ``` Metrics [Metrics](https://huggingface.co/cloudyu/4bit_quant_TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO/blob/main/4bit.vs.16.jpg) Metrics [Metrics](https://huggingface.co/cloudyu/4bit_quant_TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO/blob/main/4bit.vs.16.jpg) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO_f16) | Metric |Value| |---------------------------------|----:| |Avg. |77.91| |AI2 Reasoning Challenge (25-Shot)|74.06| |HellaSwag (10-Shot) |86.74| |MMLU (5-Shot) |76.65| |TruthfulQA (0-shot) |72.24| |Winogrande (5-shot) |83.35| |GSM8k (5-shot) |74.45|
mradermacher/Qwen2.5-7B-task2-i1-GGUF
mradermacher
2024-11-01T00:42:12Z
23
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:allknowingroger/Qwen2.5-7B-task2", "base_model:quantized:allknowingroger/Qwen2.5-7B-task2", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-01T00:28:11Z
--- base_model: allknowingroger/Qwen2.5-7B-task2 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/allknowingroger/Qwen2.5-7B-task2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-7B-task2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.5 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.5 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-task2-i1-GGUF/resolve/main/Qwen2.5-7B-task2.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
MaziyarPanahi/IceMartiniV1RP-7b-GGUF
MaziyarPanahi
2024-11-01T00:28:04Z
37
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:icefog72/IceMartiniV1RP-7b", "base_model:quantized:icefog72/IceMartiniV1RP-7b", "region:us", "conversational" ]
text-generation
2024-11-01T00:05:39Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: IceMartiniV1RP-7b-GGUF base_model: icefog72/IceMartiniV1RP-7b inference: false model_creator: icefog72 pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/IceMartiniV1RP-7b-GGUF](https://huggingface.co/MaziyarPanahi/IceMartiniV1RP-7b-GGUF) - Model creator: [icefog72](https://huggingface.co/icefog72) - Original model: [icefog72/IceMartiniV1RP-7b](https://huggingface.co/icefog72/IceMartiniV1RP-7b) ## Description [MaziyarPanahi/IceMartiniV1RP-7b-GGUF](https://huggingface.co/MaziyarPanahi/IceMartiniV1RP-7b-GGUF) contains GGUF format model files for [icefog72/IceMartiniV1RP-7b](https://huggingface.co/icefog72/IceMartiniV1RP-7b). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF
featherless-ai-quants
2024-11-01T00:26:18Z
5
0
null
[ "gguf", "text-generation", "base_model:nbeerbower/Lyra4-Gutenberg2-12B", "base_model:quantized:nbeerbower/Lyra4-Gutenberg2-12B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-10-31T23:40:19Z
--- base_model: nbeerbower/Lyra4-Gutenberg2-12B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # nbeerbower/Lyra4-Gutenberg2-12B GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [nbeerbower-Lyra4-Gutenberg2-12B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-Q8_0.gguf) | 12419.10 MB | | Q4_K_S | [nbeerbower-Lyra4-Gutenberg2-12B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-Q4_K_S.gguf) | 6790.35 MB | | Q2_K | [nbeerbower-Lyra4-Gutenberg2-12B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-Q2_K.gguf) | 4569.10 MB | | Q6_K | [nbeerbower-Lyra4-Gutenberg2-12B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-Q6_K.gguf) | 9590.35 MB | | Q3_K_M | [nbeerbower-Lyra4-Gutenberg2-12B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [nbeerbower-Lyra4-Gutenberg2-12B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-Q3_K_S.gguf) | 5277.85 MB | | Q3_K_L | [nbeerbower-Lyra4-Gutenberg2-12B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-Q3_K_L.gguf) | 6257.54 MB | | Q4_K_M | [nbeerbower-Lyra4-Gutenberg2-12B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-Q4_K_M.gguf) | 7130.82 MB | | Q5_K_S | [nbeerbower-Lyra4-Gutenberg2-12B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-Q5_K_S.gguf) | 8124.10 MB | | Q5_K_M | [nbeerbower-Lyra4-Gutenberg2-12B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-Q5_K_M.gguf) | 8323.32 MB | | IQ4_XS | [nbeerbower-Lyra4-Gutenberg2-12B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra4-Gutenberg2-12B-GGUF/blob/main/nbeerbower-Lyra4-Gutenberg2-12B-IQ4_XS.gguf) | 6485.04 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF
featherless-ai-quants
2024-11-01T00:25:50Z
19
0
null
[ "gguf", "text-generation", "base_model:lashid11/CheckGPT-SOLAR-10.7B", "base_model:quantized:lashid11/CheckGPT-SOLAR-10.7B", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T23:48:22Z
--- base_model: lashid11/CheckGPT-SOLAR-10.7B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # lashid11/CheckGPT-SOLAR-10.7B GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [lashid11-CheckGPT-SOLAR-10.7B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-Q8_0.gguf) | 10875.85 MB | | Q4_K_S | [lashid11-CheckGPT-SOLAR-10.7B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-Q4_K_S.gguf) | 5835.08 MB | | Q2_K | [lashid11-CheckGPT-SOLAR-10.7B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-Q2_K.gguf) | 3817.78 MB | | Q6_K | [lashid11-CheckGPT-SOLAR-10.7B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-Q6_K.gguf) | 8397.30 MB | | Q3_K_M | [lashid11-CheckGPT-SOLAR-10.7B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-Q3_K_M.gguf) | 4954.98 MB | | Q3_K_S | [lashid11-CheckGPT-SOLAR-10.7B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-Q3_K_S.gguf) | 4448.48 MB | | Q3_K_L | [lashid11-CheckGPT-SOLAR-10.7B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-Q3_K_L.gguf) | 5388.98 MB | | Q4_K_M | [lashid11-CheckGPT-SOLAR-10.7B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-Q4_K_M.gguf) | 6162.33 MB | | Q5_K_S | [lashid11-CheckGPT-SOLAR-10.7B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-Q5_K_S.gguf) | 7054.70 MB | | Q5_K_M | [lashid11-CheckGPT-SOLAR-10.7B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-Q5_K_M.gguf) | 7245.95 MB | | IQ4_XS | [lashid11-CheckGPT-SOLAR-10.7B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/lashid11-CheckGPT-SOLAR-10.7B-GGUF/blob/main/lashid11-CheckGPT-SOLAR-10.7B-IQ4_XS.gguf) | 5557.67 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF
featherless-ai-quants
2024-11-01T00:23:00Z
6
0
null
[ "gguf", "text-generation", "base_model:netcat420/MFANNv0.20.12", "base_model:quantized:netcat420/MFANNv0.20.12", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-10-31T23:50:43Z
--- base_model: netcat420/MFANNv0.20.12 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # netcat420/MFANNv0.20.12 GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [netcat420-MFANNv0.20.12-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-Q8_0.gguf) | 8145.11 MB | | Q4_K_S | [netcat420-MFANNv0.20.12-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-Q4_K_S.gguf) | 4475.28 MB | | Q2_K | [netcat420-MFANNv0.20.12-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-Q2_K.gguf) | 3031.86 MB | | Q6_K | [netcat420-MFANNv0.20.12-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-Q6_K.gguf) | 6290.44 MB | | Q3_K_M | [netcat420-MFANNv0.20.12-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [netcat420-MFANNv0.20.12-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-Q3_K_S.gguf) | 3494.74 MB | | Q3_K_L | [netcat420-MFANNv0.20.12-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-Q3_K_L.gguf) | 4121.74 MB | | Q4_K_M | [netcat420-MFANNv0.20.12-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-Q4_K_M.gguf) | 4692.78 MB | | Q5_K_S | [netcat420-MFANNv0.20.12-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-Q5_K_S.gguf) | 5339.90 MB | | Q5_K_M | [netcat420-MFANNv0.20.12-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-Q5_K_M.gguf) | 5467.40 MB | | IQ4_XS | [netcat420-MFANNv0.20.12-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/netcat420-MFANNv0.20.12-GGUF/blob/main/netcat420-MFANNv0.20.12-IQ4_XS.gguf) | 4276.62 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
Xsmos/ml21cm
Xsmos
2024-11-01T00:20:39Z
0
0
null
[ "tensorboard", "generate 21cm lightcones", "denoising diffusion probabilistic model", "license:mit", "region:us" ]
null
2024-05-20T02:33:26Z
--- title: "ml21cm" tags: - generate 21cm lightcones - denoising diffusion probabilistic model license: "mit" summary: "This is a diffusion model for generating 21cm cosmology data." --- # Model Description This is a diffusion model for generating 21cm cosmology data.
mradermacher/Onii-Chan-3-55-GGUF
mradermacher
2024-11-01T00:16:11Z
30
1
transformers
[ "transformers", "gguf", "en", "base_model:Onii-Chan-3/Onii-Chan-3-55", "base_model:quantized:Onii-Chan-3/Onii-Chan-3-55", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-01T00:00:29Z
--- base_model: Onii-Chan-3/Onii-Chan-3-55 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Onii-Chan-3/Onii-Chan-3-55 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Onii-Chan-3-55-GGUF/resolve/main/Onii-Chan-3-55.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF
featherless-ai-quants
2024-11-01T00:09:46Z
19
0
null
[ "gguf", "text-generation", "base_model:alnrg2arg/blockchainlabs_7B_merged_test2_4_prune", "base_model:quantized:alnrg2arg/blockchainlabs_7B_merged_test2_4_prune", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-10-31T23:36:18Z
--- base_model: alnrg2arg/blockchainlabs_7B_merged_test2_4_prune pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # alnrg2arg/blockchainlabs_7B_merged_test2_4_prune GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q8_0.gguf) | 7339.34 MB | | Q4_K_S | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q4_K_S.gguf) | 3948.57 MB | | Q2_K | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q2_K.gguf) | 2593.27 MB | | Q6_K | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q6_K.gguf) | 5666.80 MB | | Q3_K_M | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q3_K_S.gguf) | 3017.97 MB | | Q3_K_L | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q3_K_L.gguf) | 3644.97 MB | | Q4_K_M | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q4_K_M.gguf) | 4166.07 MB | | Q5_K_S | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q5_K_S.gguf) | 4766.19 MB | | Q5_K_M | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-Q5_K_M.gguf) | 4893.69 MB | | IQ4_XS | [alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-GGUF/blob/main/alnrg2arg-blockchainlabs_7B_merged_test2_4_prune-IQ4_XS.gguf) | 3761.66 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/MISTRALllux1000-7b-v5-GGUF
mradermacher
2024-11-01T00:04:08Z
153
0
transformers
[ "transformers", "gguf", "en", "base_model:djomo/MISTRALllux1000-7b-v5", "base_model:quantized:djomo/MISTRALllux1000-7b-v5", "endpoints_compatible", "region:us" ]
null
2024-10-31T22:50:59Z
--- base_model: djomo/MISTRALllux1000-7b-v5 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/djomo/MISTRALllux1000-7b-v5 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MISTRALllux1000-7b-v5-GGUF/resolve/main/MISTRALllux1000-7b-v5.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Yntec/WesternCartoon
Yntec
2024-11-01T00:00:07Z
266
1
diffusers
[ "diffusers", "safetensors", "Style", "Disney", "Art", "PromptSharingSamaritan", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-10-15T08:58:05Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - Style - Disney - Art - PromptSharingSamaritan - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers --- # Western Cartoon Type A No-ema version of this model. Samples and prompts (they both use seed 9119): ![a woman with pink hair and a colorful scarf. Midjourney prompts](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/C7TJvtALo5slkdUthILsb.png) a woman with pink hair and a colorful scarf. ![highquality, masterpiece, 1girl, Chi-Chi, :D, close up, smile, arms up, pink helmet, black hair, black eyes, blush, white teeth, bikini armor, aqua cape, pink gloves, pink boots, cave, rock, mountain. blue collar. Best free online image generators](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/ngYpsJKxSRZbHfi5AZNvr.png) highquality, masterpiece, 1girl, Chi-Chi, :D, close up, smile, arms up, pink helmet, black hair, black eyes, blush, white teeth, bikini armor, aqua cape, pink gloves, pink boots, cave, rock, mountain. blue collar Original page: https://civitai.com/models/62060/western-cartoon-type-a
DanJoshua/profesor_Swin3D_O_RLVS
DanJoshua
2024-10-31T23:54:50Z
35
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-10-31T21:30:50Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: profesor_Swin3D_O_RLVS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # profesor_Swin3D_O_RLVS This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0660 - Accuracy: 0.9882 - F1: 0.9882 - Precision: 0.9882 - Recall: 0.9882 - Roc Auc: 0.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 477 - training_steps: 4770 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 0.0696 | 2.0329 | 477 | 0.0768 | 0.9732 | 0.9732 | 0.9734 | 0.9732 | 0.9980 | | 0.0312 | 5.0323 | 954 | 0.1061 | 0.9786 | 0.9786 | 0.9788 | 0.9786 | 0.9984 | | 0.0414 | 8.0317 | 1431 | 0.0981 | 0.9732 | 0.9732 | 0.9734 | 0.9732 | 0.9988 | | 0.0005 | 11.0310 | 1908 | 0.0739 | 0.9866 | 0.9866 | 0.9866 | 0.9866 | 0.9986 | | 0.0009 | 14.0304 | 2385 | 0.1144 | 0.9812 | 0.9812 | 0.9814 | 0.9812 | 0.9987 | | 0.0015 | 17.0298 | 2862 | 0.2200 | 0.9705 | 0.9705 | 0.9712 | 0.9705 | 0.9964 | | 0.0002 | 20.0291 | 3339 | 0.1794 | 0.9732 | 0.9732 | 0.9733 | 0.9732 | 0.9978 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.0.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1
jrbeduardo/vit-model-jrbeduardo-v2
jrbeduardo
2024-10-31T23:50:52Z
246
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-10-31T23:45:17Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-model-jrbeduardo-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-model-jrbeduardo-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the AI-Lab-Makerere/beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0727 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1509 | 3.8462 | 500 | 0.0727 | 0.9850 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
MaziyarPanahi/MathCoder2-Mistral-7B-GGUF
MaziyarPanahi
2024-10-31T23:48:46Z
36
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:MathGenie/MathCoder2-Mistral-7B", "base_model:quantized:MathGenie/MathCoder2-Mistral-7B", "region:us" ]
text-generation
2024-10-31T23:28:11Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: MathCoder2-Mistral-7B-GGUF base_model: MathGenie/MathCoder2-Mistral-7B inference: false model_creator: MathGenie pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/MathCoder2-Mistral-7B-GGUF](https://huggingface.co/MaziyarPanahi/MathCoder2-Mistral-7B-GGUF) - Model creator: [MathGenie](https://huggingface.co/MathGenie) - Original model: [MathGenie/MathCoder2-Mistral-7B](https://huggingface.co/MathGenie/MathCoder2-Mistral-7B) ## Description [MaziyarPanahi/MathCoder2-Mistral-7B-GGUF](https://huggingface.co/MaziyarPanahi/MathCoder2-Mistral-7B-GGUF) contains GGUF format model files for [MathGenie/MathCoder2-Mistral-7B](https://huggingface.co/MathGenie/MathCoder2-Mistral-7B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
anmittal1/camera-sd3-lora-1
anmittal1
2024-10-31T23:44:18Z
5
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "sd3", "sd3-diffusers", "template:sd-lora", "base_model:stabilityai/stable-diffusion-3-medium-diffusers", "base_model:adapter:stabilityai/stable-diffusion-3-medium-diffusers", "license:openrail++", "region:us" ]
text-to-image
2024-10-31T17:19:15Z
--- base_model: stabilityai/stable-diffusion-3-medium-diffusers library_name: diffusers license: openrail++ tags: - text-to-image - diffusers-training - diffusers - lora - sd3 - sd3-diffusers - template:sd-lora instance_prompt: a photo of [V] object widget: - text: A photo of [V] object output: url: image_0.png - text: A photo of [V] object output: url: image_1.png - text: A photo of [V] object output: url: image_2.png - text: A photo of [V] object output: url: image_3.png --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SD3 DreamBooth LoRA - anmittal1/camera-sd3-lora-1 <Gallery /> ## Model description These are anmittal1/camera-sd3-lora-1 DreamBooth LoRA weights for stabilityai/stable-diffusion-3-medium-diffusers. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [SD3 diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_sd3.md). Was LoRA for the text encoder enabled? False. ## Trigger words You should use `a photo of [V] object` to trigger the image generation. ## Download model [Download the *.safetensors LoRA](anmittal1/camera-sd3-lora-1/tree/main) in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-3-medium-diffusers', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('anmittal1/camera-sd3-lora-1', weight_name='pytorch_lora_weights.safetensors') image = pipeline('A photo of [V] object').images[0] ``` ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`diffusers_lora_weights.safetensors` here 💾](/anmittal1/camera-sd3-lora-1/blob/main/diffusers_lora_weights.safetensors)**. - Rename it and place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:your_new_name:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
aidadev48/model16
aidadev48
2024-10-31T23:39:32Z
140
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T23:37:42Z
--- base_model: unsloth/llama-3.2-3b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** aidadev48 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
hatemestinbejaia/mmarco-Arabic-mMiniLML-cross-encoder-NoKD-v1
hatemestinbejaia
2024-10-31T23:29:21Z
107
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-31T23:28:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF
featherless-ai-quants
2024-10-31T23:22:40Z
15
0
null
[ "gguf", "text-generation", "base_model:Obrolin/Kesehatan-7B-v0.1", "base_model:quantized:Obrolin/Kesehatan-7B-v0.1", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-10-31T22:52:01Z
--- base_model: Obrolin/Kesehatan-7B-v0.1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Obrolin/Kesehatan-7B-v0.1 GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [Obrolin-Kesehatan-7B-v0.1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-Q8_0.gguf) | 7339.34 MB | | Q4_K_S | [Obrolin-Kesehatan-7B-v0.1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-Q4_K_S.gguf) | 3948.57 MB | | Q2_K | [Obrolin-Kesehatan-7B-v0.1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-Q2_K.gguf) | 2593.27 MB | | Q6_K | [Obrolin-Kesehatan-7B-v0.1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-Q6_K.gguf) | 5666.80 MB | | Q3_K_M | [Obrolin-Kesehatan-7B-v0.1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [Obrolin-Kesehatan-7B-v0.1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-Q3_K_S.gguf) | 3017.97 MB | | Q3_K_L | [Obrolin-Kesehatan-7B-v0.1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-Q3_K_L.gguf) | 3644.97 MB | | Q4_K_M | [Obrolin-Kesehatan-7B-v0.1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-Q4_K_M.gguf) | 4166.07 MB | | Q5_K_S | [Obrolin-Kesehatan-7B-v0.1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-Q5_K_S.gguf) | 4766.19 MB | | Q5_K_M | [Obrolin-Kesehatan-7B-v0.1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-Q5_K_M.gguf) | 4893.69 MB | | IQ4_XS | [Obrolin-Kesehatan-7B-v0.1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Obrolin-Kesehatan-7B-v0.1-GGUF/blob/main/Obrolin-Kesehatan-7B-v0.1-IQ4_XS.gguf) | 3761.66 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF
featherless-ai-quants
2024-10-31T23:21:30Z
12
0
null
[ "gguf", "text-generation", "base_model:shleeeee/mistral-ko-OpenOrca-2000", "base_model:quantized:shleeeee/mistral-ko-OpenOrca-2000", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T22:53:37Z
--- base_model: shleeeee/mistral-ko-OpenOrca-2000 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # shleeeee/mistral-ko-OpenOrca-2000 GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [shleeeee-mistral-ko-OpenOrca-2000-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-Q8_0.gguf) | 7339.34 MB | | Q4_K_S | [shleeeee-mistral-ko-OpenOrca-2000-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-Q4_K_S.gguf) | 3948.57 MB | | Q2_K | [shleeeee-mistral-ko-OpenOrca-2000-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-Q2_K.gguf) | 2593.27 MB | | Q6_K | [shleeeee-mistral-ko-OpenOrca-2000-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-Q6_K.gguf) | 5666.80 MB | | Q3_K_M | [shleeeee-mistral-ko-OpenOrca-2000-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [shleeeee-mistral-ko-OpenOrca-2000-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-Q3_K_S.gguf) | 3017.97 MB | | Q3_K_L | [shleeeee-mistral-ko-OpenOrca-2000-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-Q3_K_L.gguf) | 3644.97 MB | | Q4_K_M | [shleeeee-mistral-ko-OpenOrca-2000-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-Q4_K_M.gguf) | 4166.07 MB | | Q5_K_S | [shleeeee-mistral-ko-OpenOrca-2000-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-Q5_K_S.gguf) | 4766.19 MB | | Q5_K_M | [shleeeee-mistral-ko-OpenOrca-2000-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-Q5_K_M.gguf) | 4893.69 MB | | IQ4_XS | [shleeeee-mistral-ko-OpenOrca-2000-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/shleeeee-mistral-ko-OpenOrca-2000-GGUF/blob/main/shleeeee-mistral-ko-OpenOrca-2000-IQ4_XS.gguf) | 3761.66 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
MaziyarPanahi/Hermes2-Gutenberg2-Mistral-7B-GGUF
MaziyarPanahi
2024-10-31T23:10:29Z
102
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:nbeerbower/Hermes2-Gutenberg2-Mistral-7B", "base_model:quantized:nbeerbower/Hermes2-Gutenberg2-Mistral-7B", "region:us", "conversational" ]
text-generation
2024-10-31T22:49:48Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: Hermes2-Gutenberg2-Mistral-7B-GGUF base_model: nbeerbower/Hermes2-Gutenberg2-Mistral-7B inference: false model_creator: nbeerbower pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/Hermes2-Gutenberg2-Mistral-7B-GGUF](https://huggingface.co/MaziyarPanahi/Hermes2-Gutenberg2-Mistral-7B-GGUF) - Model creator: [nbeerbower](https://huggingface.co/nbeerbower) - Original model: [nbeerbower/Hermes2-Gutenberg2-Mistral-7B](https://huggingface.co/nbeerbower/Hermes2-Gutenberg2-Mistral-7B) ## Description [MaziyarPanahi/Hermes2-Gutenberg2-Mistral-7B-GGUF](https://huggingface.co/MaziyarPanahi/Hermes2-Gutenberg2-Mistral-7B-GGUF) contains GGUF format model files for [nbeerbower/Hermes2-Gutenberg2-Mistral-7B](https://huggingface.co/nbeerbower/Hermes2-Gutenberg2-Mistral-7B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
nikutd01/emotion_tweet_roberta-base_2024-10-31
nikutd01
2024-10-31T23:04:43Z
196
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-31T21:00:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AndyLiang12/bert-finetuned-ner
AndyLiang12
2024-10-31T23:00:17Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-10-24T17:20:06Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9348221670802316 - name: Recall type: recall value: 0.9510265903736116 - name: F1 type: f1 value: 0.9428547593225995 - name: Accuracy type: accuracy value: 0.9858421145581916 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0630 - Precision: 0.9348 - Recall: 0.9510 - F1: 0.9429 - Accuracy: 0.9858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0746 | 1.0 | 1756 | 0.0711 | 0.9006 | 0.9300 | 0.9151 | 0.9802 | | 0.0341 | 2.0 | 3512 | 0.0687 | 0.9293 | 0.9445 | 0.9368 | 0.9845 | | 0.0219 | 3.0 | 5268 | 0.0630 | 0.9348 | 0.9510 | 0.9429 | 0.9858 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
unsloth/SmolLM2-135M-bnb-4bit
unsloth
2024-10-31T22:56:41Z
1,837
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "en", "base_model:HuggingFaceTB/SmolLM2-135M", "base_model:quantized:HuggingFaceTB/SmolLM2-135M", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-10-31T21:29:30Z
--- base_model: HuggingFaceTB/SmolLM2-135M language: - en library_name: transformers license: apache-2.0 tags: - llama - unsloth - transformers --- # Finetune SmolLM2, Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! We have a free Google Colab Tesla T4 notebook for Llama 3.2 (3B) here: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth) [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) # unsloth/SmolLM2-135M 4bit bitsandbytes pre-quantized For more details on the model, please go to Hugging Face's original [model card](https://huggingface.co/HuggingFaceTB/SmolLM2-135M) ## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less | | **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less | | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less | | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less | - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates. - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster. ## Special Thanks A huge thank you to the Hugging Face team for creating and releasing these models. ## Model Summary SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. The 1.7B variant demonstrates significant advances over its predecessor SmolLM1-1.7B, particularly in instruction following, knowledge, reasoning, and mathematics. It was trained on 11 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new mathematics and coding datasets that we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1). # SmolLM2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/y45hIMNREW7w_XpHYB_0q.png)
unsloth/SmolLM2-135M-Instruct-bnb-4bit
unsloth
2024-10-31T22:56:11Z
367
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-10-31T21:30:48Z
--- base_model: HuggingFaceTB/SmolLM2-135B-Instruct language: - en library_name: transformers license: apache-2.0 tags: - llama - unsloth - transformers --- # Finetune SmolLM2, Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! We have a free Google Colab Tesla T4 notebook for Llama 3.2 (3B) here: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth) [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) # unsloth/SmolLM2-135M-Instruct 4bit bitsandbytes pre-quantized For more details on the model, please go to Hugging Face's original [model card](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) ## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less | | **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less | | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less | | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less | - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates. - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster. ## Special Thanks A huge thank you to the Hugging Face team for creating and releasing these models. ## Model Summary SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. The 1.7B variant demonstrates significant advances over its predecessor SmolLM1-1.7B, particularly in instruction following, knowledge, reasoning, and mathematics. It was trained on 11 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new mathematics and coding datasets that we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1). # SmolLM2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/y45hIMNREW7w_XpHYB_0q.png)
mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF
mradermacher
2024-10-31T22:52:09Z
91
1
transformers
[ "transformers", "gguf", "en", "base_model:BrokenSoul/Llama-3.2-3B-Instruct-Cancer-Lung-Detection", "base_model:quantized:BrokenSoul/Llama-3.2-3B-Instruct-Cancer-Lung-Detection", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-31T22:45:46Z
--- base_model: BrokenSoul/Llama-3.2-3B-Instruct-Cancer-Lung-Detection language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/BrokenSoul/Llama-3.2-3B-Instruct-Cancer-Lung-Detection <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Cancer-Lung-Detection-GGUF/resolve/main/Llama-3.2-3B-Instruct-Cancer-Lung-Detection.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
unsloth/SmolLM2-1.7B-Instruct-bnb-4bit
unsloth
2024-10-31T22:49:35Z
9,643
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "conversational", "en", "base_model:HuggingFaceTB/SmolLM2-1.7B-Instruct", "base_model:quantized:HuggingFaceTB/SmolLM2-1.7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-10-31T21:02:02Z
--- base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct language: - en library_name: transformers license: apache-2.0 tags: - llama - unsloth - transformers --- # Finetune SmolLM2, Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! We have a free Google Colab Tesla T4 notebook for Llama 3.2 (3B) here: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth) [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) # unsloth/SmolLM2-1.7B-Instruct 4bit bitsandbytes pre-quantized For more details on the model, please go to Hugging Face's original [model card](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B) ## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less | | **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less | | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less | | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less | - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates. - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster. ## Special Thanks A huge thank you to the Hugging Face team for creating and releasing these models. ## Model Summary SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. The 1.7B variant demonstrates significant advances over its predecessor SmolLM1-1.7B, particularly in instruction following, knowledge, reasoning, and mathematics. It was trained on 11 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new mathematics and coding datasets that we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1). # SmolLM2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/y45hIMNREW7w_XpHYB_0q.png)
unsloth/SmolLM2-1.7B
unsloth
2024-10-31T22:43:38Z
8,806
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "en", "base_model:HuggingFaceTB/SmolLM2-1.7B", "base_model:finetune:HuggingFaceTB/SmolLM2-1.7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T19:12:31Z
--- base_model: HuggingFaceTB/SmolLM2-1.7B language: - en library_name: transformers license: apache-2.0 tags: - llama - unsloth - transformers --- # Finetune SmolLM2, Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! We have a free Google Colab Tesla T4 notebook for Llama 3.2 (3B) here: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth) [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) # unsloth/SmolLM2-1.7B For more details on the model, please go to Hugging Face's original [model card](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B) ## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less | | **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less | | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less | | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less | - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates. - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster. ## Special Thanks A huge thank you to the Hugging Face team for creating and releasing these models. ## Model Summary SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. The 1.7B variant demonstrates significant advances over its predecessor SmolLM1-1.7B, particularly in instruction following, knowledge, reasoning, and mathematics. It was trained on 11 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new mathematics and coding datasets that we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1). # SmolLM2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/y45hIMNREW7w_XpHYB_0q.png)
kywch/act_mimicgen_stack_d1
kywch
2024-10-31T22:40:49Z
10
0
lerobot
[ "lerobot", "safetensors", "act", "model_hub_mixin", "pytorch_model_hub_mixin", "robotics", "region:us" ]
robotics
2024-10-31T22:40:32Z
--- library_name: lerobot tags: - act - model_hub_mixin - pytorch_model_hub_mixin - robotics --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: https://github.com/huggingface/lerobot - Docs: [More Information Needed]
MaziyarPanahi/Flammades-Mistral-7B-GGUF
MaziyarPanahi
2024-10-31T22:32:55Z
29
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:flammenai/Flammades-Mistral-7B", "base_model:quantized:flammenai/Flammades-Mistral-7B", "region:us", "conversational" ]
text-generation
2024-10-31T22:12:03Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: Flammades-Mistral-7B-GGUF base_model: flammenai/Flammades-Mistral-7B inference: false model_creator: flammenai pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/Flammades-Mistral-7B-GGUF](https://huggingface.co/MaziyarPanahi/Flammades-Mistral-7B-GGUF) - Model creator: [flammenai](https://huggingface.co/flammenai) - Original model: [flammenai/Flammades-Mistral-7B](https://huggingface.co/flammenai/Flammades-Mistral-7B) ## Description [MaziyarPanahi/Flammades-Mistral-7B-GGUF](https://huggingface.co/MaziyarPanahi/Flammades-Mistral-7B-GGUF) contains GGUF format model files for [flammenai/Flammades-Mistral-7B](https://huggingface.co/flammenai/Flammades-Mistral-7B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
yjwon/mpg9_gemma9b_sft_ogd_rms_epoch3
yjwon
2024-10-31T22:31:18Z
9
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T22:29:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
juansebas638/keaie
juansebas638
2024-10-31T22:28:52Z
27
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-10-31T22:28:49Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: keaie license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # keaie <Gallery /> ## Model description ## Trigger words You should use `keaie` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/juansebas638/keaie/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
mlx-community/SmolLM2-135M-Instruct
mlx-community
2024-10-31T22:20:24Z
192
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mlx", "conversational", "en", "base_model:HuggingFaceTB/SmolLM2-135M-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM2-135M-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T22:20:08Z
--- library_name: transformers license: apache-2.0 language: - en tags: - mlx base_model: HuggingFaceTB/SmolLM2-135M-Instruct --- # mlx-community/SmolLM2-135M-Instruct The Model [mlx-community/SmolLM2-135M-Instruct](https://huggingface.co/mlx-community/SmolLM2-135M-Instruct) was converted to MLX format from [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) using mlx-lm version **0.19.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/SmolLM2-135M-Instruct") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
mlx-community/SmolLM2-360M-Instruct
mlx-community
2024-10-31T22:19:30Z
154
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mlx", "conversational", "en", "base_model:HuggingFaceTB/SmolLM2-360M-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM2-360M-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T22:18:56Z
--- library_name: transformers license: apache-2.0 language: - en base_model: HuggingFaceTB/SmolLM2-360M-Instruct tags: - mlx --- # mlx-community/SmolLM2-360M-Instruct The Model [mlx-community/SmolLM2-360M-Instruct](https://huggingface.co/mlx-community/SmolLM2-360M-Instruct) was converted to MLX format from [HuggingFaceTB/SmolLM2-360M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-360M-Instruct) using mlx-lm version **0.19.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/SmolLM2-360M-Instruct") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
mlx-community/SmolLM2-1.7B-Instruct
mlx-community
2024-10-31T22:07:43Z
159
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mlx", "conversational", "en", "base_model:HuggingFaceTB/SmolLM2-1.7B-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM2-1.7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T22:05:16Z
--- library_name: transformers license: apache-2.0 language: - en base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct tags: - mlx --- # mlx-community/SmolLM2-1.7B-Instruct The Model [mlx-community/SmolLM2-1.7B-Instruct](https://huggingface.co/mlx-community/SmolLM2-1.7B-Instruct) was converted to MLX format from [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) using mlx-lm version **0.19.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/SmolLM2-1.7B-Instruct") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
ialberquilla/model-v0
ialberquilla
2024-10-31T22:02:10Z
6
0
transformers
[ "transformers", "gguf", "gemma", "text-generation-inference", "unsloth", "en", "base_model:unsloth/gemma-2b-bnb-4bit", "base_model:quantized:unsloth/gemma-2b-bnb-4bit", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-31T22:00:32Z
--- base_model: unsloth/gemma-2b-bnb-4bit language: - en tags: - text-generation-inference - transformers - unsloth - gemma - gguf --- # Uploaded model - **Developed by:** ialberquilla - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
glif-loradex-trainer/x_bulbul_x_90s_anime
glif-loradex-trainer
2024-10-31T22:00:59Z
77
6
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
2024-10-31T22:00:32Z
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1730411923117__000003000_0.jpg text: boy running on the street, 90s anime - output: url: samples/1730411947731__000003000_1.jpg text: girl fighting a monkey, 90s anime - output: url: samples/1730411972353__000003000_2.jpg text: a car driving at midnight, 90s anime - output: url: samples/1730411996976__000003000_3.jpg text: samurai sword, 90s anime - output: url: samples/1730412021601__000003000_4.jpg text: tall building, 90s anime base_model: black-forest-labs/FLUX.1-dev trigger: 90s anime instance_prompt: 90s anime license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # 90s_anime Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `x_bulbul_x`. <Gallery /> ## Trigger words You should use `90s anime` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/x_bulbul_x_90s_anime/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF
featherless-ai-quants
2024-10-31T21:54:49Z
9
0
null
[ "gguf", "text-generation", "base_model:Weyaxi/HelpSteer-filtered-Solar-Instruct", "base_model:quantized:Weyaxi/HelpSteer-filtered-Solar-Instruct", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-10-31T21:34:31Z
--- base_model: Weyaxi/HelpSteer-filtered-Solar-Instruct pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Weyaxi/HelpSteer-filtered-Solar-Instruct GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [Weyaxi-HelpSteer-filtered-Solar-Instruct-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-Q8_0.gguf) | 10875.85 MB | | Q4_K_S | [Weyaxi-HelpSteer-filtered-Solar-Instruct-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-Q4_K_S.gguf) | 5835.08 MB | | Q2_K | [Weyaxi-HelpSteer-filtered-Solar-Instruct-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-Q2_K.gguf) | 3817.78 MB | | Q6_K | [Weyaxi-HelpSteer-filtered-Solar-Instruct-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-Q6_K.gguf) | 8397.30 MB | | Q3_K_M | [Weyaxi-HelpSteer-filtered-Solar-Instruct-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-Q3_K_M.gguf) | 4954.98 MB | | Q3_K_S | [Weyaxi-HelpSteer-filtered-Solar-Instruct-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-Q3_K_S.gguf) | 4448.48 MB | | Q3_K_L | [Weyaxi-HelpSteer-filtered-Solar-Instruct-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-Q3_K_L.gguf) | 5388.98 MB | | Q4_K_M | [Weyaxi-HelpSteer-filtered-Solar-Instruct-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-Q4_K_M.gguf) | 6162.33 MB | | Q5_K_S | [Weyaxi-HelpSteer-filtered-Solar-Instruct-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-Q5_K_S.gguf) | 7054.70 MB | | Q5_K_M | [Weyaxi-HelpSteer-filtered-Solar-Instruct-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-Q5_K_M.gguf) | 7245.95 MB | | IQ4_XS | [Weyaxi-HelpSteer-filtered-Solar-Instruct-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Weyaxi-HelpSteer-filtered-Solar-Instruct-GGUF/blob/main/Weyaxi-HelpSteer-filtered-Solar-Instruct-IQ4_XS.gguf) | 5557.67 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
llmware/slim-extract-qwen-0.5b-ov
llmware
2024-10-31T21:54:31Z
7
1
null
[ "openvino", "qwen2", "green", "p1", "llmware-fx", "ov", "emerald", "license:apache-2.0", "region:us" ]
null
2024-10-11T09:42:32Z
--- license: apache-2.0 inference: false base_model: llmware/slim-extract-qwen-0.5b base_model_relation: quantized tags: [green, p1, llmware-fx, ov, emerald] --- # slim-extract-qwen-0.5b-ov **slim-extract-qwen-0.5b-ov** is a specialized function calling model with a single mission to look for values in a text, based on an "extract" key that is passed as a parameter. No other instructions are required except to pass the context passage, and the target key, and the model will generate a python dictionary consisting of the extract key and a list of the values found in the text, including an 'empty list' if the text does not provide an answer for the value of the selected key. This is an OpenVino int4 quantized version of slim-extract-qwen-0.5b, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** qwen2-0.5b - **Parameters:** 0.5 billion - **Model Parent:** llmware/slim-extract-qwen-0.5b - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Extraction of values from complex business documents - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
llmware/slim-intent-ov
llmware
2024-10-31T21:50:22Z
32
1
null
[ "openvino", "llama", "green", "p1", "llmware-fx", "ov", "base_model:llmware/slim-intent", "base_model:quantized:llmware/slim-intent", "license:apache-2.0", "region:us" ]
null
2024-09-07T06:11:18Z
--- license: apache-2.0 inference: false base_model: llmware/slim-intent base_model_relation: quantized tags: [green, p1, llmware-fx, ov] --- # slim-intent-ov **slim-intent-ov** is a specialized function calling model that generates a python dictionary with an "intent" key and a value corresponding to the intent classification. This is an OpenVino int4 quantized version of slim-intent, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/slim-intent - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Intent categorization - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
llmware/slim-ratings-ov
llmware
2024-10-31T21:49:41Z
32
1
null
[ "openvino", "llama", "green", "p1", "llmware-fx", "ov", "base_model:llmware/slim-ratings", "base_model:quantized:llmware/slim-ratings", "license:apache-2.0", "region:us" ]
null
2024-09-07T06:04:23Z
--- license: apache-2.0 inference: false base_model: llmware/slim-ratings base_model_relation: quantized tags: [green, p1, llmware-fx, ov] --- # slim-ratings-ov **slim-ratings-ov** is a specialized function calling model that generates a dictionary with a 'stars' rating characterizing the sentiment/positivity of a text passage between 1 (poor) and 5 (very positive). This is an OpenVino int4 quantized version of slim-ratings, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/slim-ratings - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Sentiment 'stars' rating score of 1 (low) - 5 (high) - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
llmware/slim-ner-ov
llmware
2024-10-31T21:48:51Z
26
1
null
[ "openvino", "llama", "green", "p1", "llmware-fx", "ov", "base_model:llmware/slim-ner", "base_model:quantized:llmware/slim-ner", "license:apache-2.0", "region:us" ]
null
2024-09-07T05:40:24Z
--- license: apache-2.0 inference: false base_model: llmware/slim-ner base_model_relation: quantized tags: [green, p1, llmware-fx, ov] --- # slim-ner-ov **slim-ner-ov** is a specialized function calling model that generates a python dictionary consisting of named entity types and the named entities identified in the text. This is an OpenVino int4 quantized version of slim-ner, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/slim-ner - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Extraction of named entity types from complex business documents - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
marklicata/M365_demo_8k
marklicata
2024-10-31T21:48:13Z
106
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-29T23:10:14Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: M365_demo_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M365_demo_v3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7505 | 1.0 | 900 | 0.1955 | | 0.1748 | 2.0 | 1800 | 0.1680 | | 0.1092 | 3.0 | 2700 | 0.1596 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1
llmware/slim-topics-ov
llmware
2024-10-31T21:48:02Z
2,844
1
null
[ "openvino", "llama", "green", "p1", "llmware-fx", "ov", "emerald", "base_model:llmware/slim-topics", "base_model:quantized:llmware/slim-topics", "license:apache-2.0", "region:us" ]
null
2024-09-06T21:00:43Z
--- license: apache-2.0 inference: false base_model: llmware/slim-topics base_model_relation: quantized tags: [green, p1, llmware-fx, ov, emerald] --- # slim-topics-ov **slim-topics-ov** is a specialized function calling model that generates a topic description for a text passage, typically no more than 2-3 words. This is an OpenVino int4 quantized version of slim-topics, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/slim-topics - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Topic categorization and summarization - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
llmware/slim-tags-ov
llmware
2024-10-31T21:47:14Z
24
1
null
[ "openvino", "llama", "green", "p1", "llmware-fx", "ov", "base_model:llmware/slim-tags", "base_model:quantized:llmware/slim-tags", "license:apache-2.0", "region:us" ]
null
2024-09-06T20:58:41Z
--- license: apache-2.0 inference: false base_model: llmware/slim-tags base_model_relation: quantized tags: [green, p1, llmware-fx, ov] --- # slim-tags-ov **slim-tags-ov** is a specialized function calling model that generates a list of tags, e.g., 'meaningful objects', from a text passage, which is useful for summarization and various retrieval strategies. This is an OpenVino int4 quantized version of slim-tags, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/slim-tags - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Tag generation, summarization and search/retrieval enrichment - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
llmware/slim-sql-ov
llmware
2024-10-31T21:46:16Z
56
1
null
[ "openvino", "llama", "green", "p1", "llmware-fx", "ov", "emerald", "base_model:llmware/slim-sql-1b-v0", "base_model:quantized:llmware/slim-sql-1b-v0", "license:apache-2.0", "region:us" ]
null
2024-09-07T05:33:52Z
--- license: apache-2.0 inference: false base_model: llmware/slim-sql-1b-v0 base_model_relation: quantized tags: [green, p1, llmware-fx, ov, emerald] --- # slim-sql-ov **slim-sql-ov** is a small specialized function calling model that takes as input a table schema and a natural language query, and outputs a SQL statement that corresponds to the query, and can be run against a database table. This is a very small text-to-sql model designed for reasonable accuracy on single tables and relatively straightforward queries, and for easy integration into multi-step processes. This is an OpenVino int4 quantized version of slim-sql-1b-v0, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/slim-sql-1b-v0 - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Text-to-SQL conversion - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
llmware/slim-sentiment-ov
llmware
2024-10-31T21:44:33Z
80
1
null
[ "openvino", "llama", "green", "p1", "llmware-fx", "ov", "emerald", "base_model:llmware/slim-sentiment", "base_model:quantized:llmware/slim-sentiment", "license:apache-2.0", "region:us" ]
null
2024-08-31T10:20:01Z
--- license: apache-2.0 inference: false base_model: llmware/slim-sentiment base_model_relation: quantized tags: [green, p1, llmware-fx, ov, emerald] --- # slim-sentiment-ov **slim-sentiment-ov** is a specialized function calling model that classifies the sentiment of a given text passage and generates a python dictionary with a "sentiment" key and the corresponding value assessment of the sentiment. This is an OpenVino int4 quantized version of slim-sentiment, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/slim-sentiment - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Sentiment analysis for Agent-based multi-step process workflows - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
llmware/slim-summary-tiny-ov
llmware
2024-10-31T21:44:00Z
41
1
null
[ "openvino", "llama", "green", "p1", "llmware-fx", "ov", "emerald", "base_model:llmware/slim-summary-tiny", "base_model:quantized:llmware/slim-summary-tiny", "license:apache-2.0", "region:us" ]
null
2024-08-31T11:51:53Z
--- license: apache-2.0 inference: false base_model: llmware/slim-summary-tiny base_model_relation: quantized tags: [green, p1, llmware-fx, ov, emerald] --- # slim-summary-tiny-ov **slim-summary-tiny-ov** is a specialized function calling model that summarizes a given text and generates as output a Python list of summary points. This is an OpenVino int4 quantized version of slim-summary-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/slim-summary-tiny - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Summary bulletpoints extracted from complex business documents - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
NewEden/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049-Q8_0-GGUF
NewEden
2024-10-31T21:38:53Z
5
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:cgato/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049", "base_model:quantized:cgato/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-10-31T21:38:00Z
--- license: cc-by-nc-4.0 tags: - llama-cpp - gguf-my-repo base_model: cgato/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049 --- # Delta-Vector/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049-Q8_0-GGUF This model was converted to GGUF format from [`cgato/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049`](https://huggingface.co/cgato/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/cgato/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Delta-Vector/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049-Q8_0-GGUF --hf-file nemo-12b-thespice-v0.9-all-v2-kto-v0.1-e1-2049-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Delta-Vector/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049-Q8_0-GGUF --hf-file nemo-12b-thespice-v0.9-all-v2-kto-v0.1-e1-2049-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Delta-Vector/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049-Q8_0-GGUF --hf-file nemo-12b-thespice-v0.9-all-v2-kto-v0.1-e1-2049-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Delta-Vector/Nemo-12b-TheSpice-V0.9-All-v2-KTO-v0.1-E1-2049-Q8_0-GGUF --hf-file nemo-12b-thespice-v0.9-all-v2-kto-v0.1-e1-2049-q8_0.gguf -c 2048 ```
llmware/llama-3.2-3b-instruct-onnx
llmware
2024-10-31T21:38:51Z
10
1
null
[ "onnx", "llama", "green", "p3", "llmware-chat", "ov", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
2024-10-26T18:56:57Z
--- license: llama3.2 inference: false base_model: meta-llama/Llama-3.2-1B-Instruct base_model_relation: quantized tags: - green - p3 - llmware-chat - ov --- # llama-3.2-3b-instruct-onnx **llama-3.2-3b-instruct-onnx** is an ONNX int4 quantized version of Llama 3.2 3B Instruct, providing a very small, very fast inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. [**llama-3.2-3b-instruct**](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) is a new 3B chat foundation model from Meta. ### Model Description - **Developed by:** meta-llama - **Quantized by:** llmware - **Model type:** llama-3.2 - **Parameters:** 3 billion - **Model Parent:** meta-llama/Meta-Llama-3.2-1B-Instruct - **Language(s) (NLP):** English - **License:** Llama 3.2 Community License - **Uses:** General chat use cases - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
nlpguy/smolchess
nlpguy
2024-10-31T21:38:12Z
141
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:HuggingFaceTB/SmolLM2-135M", "base_model:finetune:HuggingFaceTB/SmolLM2-135M", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T21:34:42Z
--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-135M tags: - generated_from_trainer model-index: - name: smolchess results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolchess This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use grokadamw with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 0.25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4847 | 0.0025 | 4 | 1.3890 | | 1.2333 | 0.0050 | 8 | 1.2242 | | 1.2154 | 0.0075 | 12 | 1.1705 | | 1.1268 | 0.0100 | 16 | 1.1241 | | 1.0556 | 0.0125 | 20 | 1.1055 | | 1.0629 | 0.0150 | 24 | 1.0848 | | 1.1023 | 0.0176 | 28 | 1.0764 | | 1.102 | 0.0201 | 32 | 1.0554 | | 1.0798 | 0.0226 | 36 | 1.0567 | | 0.9436 | 0.0251 | 40 | 1.0365 | | 1.0524 | 0.0276 | 44 | 1.0275 | | 1.1201 | 0.0301 | 48 | 1.0198 | | 1.0565 | 0.0326 | 52 | 1.0135 | | 0.9082 | 0.0351 | 56 | 1.0084 | | 1.0544 | 0.0376 | 60 | 0.9970 | | 1.0034 | 0.0401 | 64 | 0.9939 | | 0.8859 | 0.0426 | 68 | 0.9852 | | 1.018 | 0.0451 | 72 | 0.9816 | | 0.8901 | 0.0476 | 76 | 0.9761 | | 0.8943 | 0.0502 | 80 | 0.9723 | | 1.0486 | 0.0527 | 84 | 0.9718 | | 1.0102 | 0.0552 | 88 | 0.9680 | | 0.9617 | 0.0577 | 92 | 0.9602 | | 0.9879 | 0.0602 | 96 | 0.9607 | | 0.9482 | 0.0627 | 100 | 0.9523 | | 1.0265 | 0.0652 | 104 | 0.9518 | | 0.8865 | 0.0677 | 108 | 0.9493 | | 1.0046 | 0.0702 | 112 | 0.9448 | | 0.9593 | 0.0727 | 116 | 0.9384 | | 1.0167 | 0.0752 | 120 | 0.9377 | | 0.9041 | 0.0777 | 124 | 0.9345 | | 0.8702 | 0.0803 | 128 | 0.9311 | | 0.9117 | 0.0828 | 132 | 0.9333 | | 0.936 | 0.0853 | 136 | 0.9262 | | 0.9341 | 0.0878 | 140 | 0.9237 | | 0.913 | 0.0903 | 144 | 0.9219 | | 0.9205 | 0.0928 | 148 | 0.9204 | | 0.9081 | 0.0953 | 152 | 0.9183 | | 0.8826 | 0.0978 | 156 | 0.9162 | | 0.9578 | 0.1003 | 160 | 0.9142 | | 0.845 | 0.1028 | 164 | 0.9128 | | 0.9254 | 0.1053 | 168 | 0.9102 | | 0.9622 | 0.1078 | 172 | 0.9096 | | 0.7854 | 0.1103 | 176 | 0.9085 | | 0.9143 | 0.1129 | 180 | 0.9071 | | 0.99 | 0.1154 | 184 | 0.9043 | | 0.9855 | 0.1179 | 188 | 0.9038 | | 0.9745 | 0.1204 | 192 | 0.9017 | | 0.9532 | 0.1229 | 196 | 0.8998 | | 0.9464 | 0.1254 | 200 | 0.8989 | | 0.8713 | 0.1279 | 204 | 0.8962 | | 0.8501 | 0.1304 | 208 | 0.8942 | | 0.9065 | 0.1329 | 212 | 0.8936 | | 0.8949 | 0.1354 | 216 | 0.8924 | | 0.9504 | 0.1379 | 220 | 0.8900 | | 0.9059 | 0.1404 | 224 | 0.8900 | | 0.909 | 0.1429 | 228 | 0.8881 | | 0.9684 | 0.1455 | 232 | 0.8864 | | 0.968 | 0.1480 | 236 | 0.8865 | | 0.9436 | 0.1505 | 240 | 0.8853 | | 0.9166 | 0.1530 | 244 | 0.8841 | | 0.977 | 0.1555 | 248 | 0.8825 | | 0.9011 | 0.1580 | 252 | 0.8820 | | 0.8842 | 0.1605 | 256 | 0.8812 | | 0.9399 | 0.1630 | 260 | 0.8806 | | 0.9211 | 0.1655 | 264 | 0.8791 | | 0.8043 | 0.1680 | 268 | 0.8785 | | 0.8406 | 0.1705 | 272 | 0.8778 | | 0.8463 | 0.1730 | 276 | 0.8765 | | 0.8638 | 0.1755 | 280 | 0.8762 | | 0.894 | 0.1781 | 284 | 0.8761 | | 0.8925 | 0.1806 | 288 | 0.8753 | | 0.9029 | 0.1831 | 292 | 0.8754 | | 0.809 | 0.1856 | 296 | 0.8749 | | 0.9558 | 0.1881 | 300 | 0.8742 | | 0.8286 | 0.1906 | 304 | 0.8736 | | 0.8714 | 0.1931 | 308 | 0.8730 | | 0.8562 | 0.1956 | 312 | 0.8728 | | 0.858 | 0.1981 | 316 | 0.8723 | | 0.9027 | 0.2006 | 320 | 0.8719 | | 0.9023 | 0.2031 | 324 | 0.8716 | | 0.856 | 0.2056 | 328 | 0.8712 | | 0.8455 | 0.2082 | 332 | 0.8709 | | 0.8886 | 0.2107 | 336 | 0.8705 | | 0.8717 | 0.2132 | 340 | 0.8703 | | 0.9145 | 0.2157 | 344 | 0.8700 | | 0.9618 | 0.2182 | 348 | 0.8698 | | 0.9083 | 0.2207 | 352 | 0.8697 | | 0.9448 | 0.2232 | 356 | 0.8695 | | 0.9188 | 0.2257 | 360 | 0.8693 | | 0.8006 | 0.2282 | 364 | 0.8692 | | 0.8222 | 0.2307 | 368 | 0.8691 | | 0.8936 | 0.2332 | 372 | 0.8690 | | 0.9366 | 0.2357 | 376 | 0.8689 | | 0.9336 | 0.2382 | 380 | 0.8689 | | 0.6878 | 0.2408 | 384 | 0.8689 | | 0.9405 | 0.2433 | 388 | 0.8688 | | 0.9022 | 0.2458 | 392 | 0.8688 | | 0.8499 | 0.2483 | 396 | 0.8688 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1
featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF
featherless-ai-quants
2024-10-31T21:37:01Z
14
0
null
[ "gguf", "text-generation", "base_model:grimjim/llama-3-aaditya-OpenBioLLM-8B", "base_model:quantized:grimjim/llama-3-aaditya-OpenBioLLM-8B", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T21:23:05Z
--- base_model: grimjim/llama-3-aaditya-OpenBioLLM-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # grimjim/llama-3-aaditya-OpenBioLLM-8B GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [grimjim-llama-3-aaditya-OpenBioLLM-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-Q8_0.gguf) | 8145.11 MB | | Q4_K_S | [grimjim-llama-3-aaditya-OpenBioLLM-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-Q4_K_S.gguf) | 4475.28 MB | | Q2_K | [grimjim-llama-3-aaditya-OpenBioLLM-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-Q2_K.gguf) | 3031.86 MB | | Q6_K | [grimjim-llama-3-aaditya-OpenBioLLM-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-Q6_K.gguf) | 6290.44 MB | | Q3_K_M | [grimjim-llama-3-aaditya-OpenBioLLM-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [grimjim-llama-3-aaditya-OpenBioLLM-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-Q3_K_S.gguf) | 3494.74 MB | | Q3_K_L | [grimjim-llama-3-aaditya-OpenBioLLM-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-Q3_K_L.gguf) | 4121.74 MB | | Q4_K_M | [grimjim-llama-3-aaditya-OpenBioLLM-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-Q4_K_M.gguf) | 4692.78 MB | | Q5_K_S | [grimjim-llama-3-aaditya-OpenBioLLM-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-Q5_K_S.gguf) | 5339.90 MB | | Q5_K_M | [grimjim-llama-3-aaditya-OpenBioLLM-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-Q5_K_M.gguf) | 5467.40 MB | | IQ4_XS | [grimjim-llama-3-aaditya-OpenBioLLM-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/grimjim-llama-3-aaditya-OpenBioLLM-8B-GGUF/blob/main/grimjim-llama-3-aaditya-OpenBioLLM-8B-IQ4_XS.gguf) | 4276.62 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
llmware/slim-emotions-onnx
llmware
2024-10-31T21:36:28Z
4
1
transformers
[ "transformers", "onnx", "llama", "green", "p1", "llmware-fx", "emerald", "base_model:llmware/slim-emotions", "base_model:quantized:llmware/slim-emotions", "license:apache-2.0", "region:us" ]
null
2024-06-15T00:17:10Z
--- license: apache-2.0 inference: false base_model: llmware/slim-emotions base_model_relation: quantized tags: [green, p1, llmware-fx, onnx, emerald] --- # slim-emotions-onnx **slim-emotions-onnx** is a specialized function calling model that classifies the emotion of a given text context passage, and generates a python dictionary with an "emotions" key and a value of the assessed emotion, e.g., ["surprised"]. This is an ONNX int4 quantized version of slim-emotions, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/slim-emotions - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Emotions classifier designed for Agent-based multi-step workflows - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
ychu612/RSAVAV_FNSQ_CLF
ychu612
2024-10-31T21:36:24Z
121
0
transformers
[ "transformers", "safetensors", "longformer", "text-classification", "generated_from_trainer", "base_model:yikuan8/Clinical-Longformer", "base_model:finetune:yikuan8/Clinical-Longformer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-31T21:13:42Z
--- library_name: transformers base_model: yikuan8/Clinical-Longformer tags: - generated_from_trainer model-index: - name: RSAVAV_FNSQ_CLF results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RSAVAV_FNSQ_CLF This model is a fine-tuned version of [yikuan8/Clinical-Longformer](https://huggingface.co/yikuan8/Clinical-Longformer) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf
RichardErkhov
2024-10-31T21:35:47Z
14
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-10-31T21:03:15Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Bloom-1b7-ropes-Cont-IT-Step2 - GGUF - Model creator: https://huggingface.co/alonzogarbanzo/ - Original model: https://huggingface.co/alonzogarbanzo/Bloom-1b7-ropes-Cont-IT-Step2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Bloom-1b7-ropes-Cont-IT-Step2.Q2_K.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q2_K.gguf) | Q2_K | 0.98GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q3_K_S.gguf) | Q3_K_S | 1.1GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q3_K.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q3_K.gguf) | Q3_K | 1.2GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q3_K_M.gguf) | Q3_K_M | 1.2GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q3_K_L.gguf) | Q3_K_L | 1.25GB | | [Bloom-1b7-ropes-Cont-IT-Step2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.IQ4_XS.gguf) | IQ4_XS | 1.27GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q4_0.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q4_0.gguf) | Q4_0 | 1.31GB | | [Bloom-1b7-ropes-Cont-IT-Step2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.IQ4_NL.gguf) | IQ4_NL | 1.31GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q4_K_S.gguf) | Q4_K_S | 1.31GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q4_K.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q4_K.gguf) | Q4_K | 1.39GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q4_K_M.gguf) | Q4_K_M | 1.39GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q4_1.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q4_1.gguf) | Q4_1 | 1.41GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q5_0.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q5_0.gguf) | Q5_0 | 1.51GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q5_K_S.gguf) | Q5_K_S | 1.51GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q5_K.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q5_K.gguf) | Q5_K | 1.57GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q5_K_M.gguf) | Q5_K_M | 1.57GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q5_1.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q5_1.gguf) | Q5_1 | 1.61GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q6_K.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q6_K.gguf) | Q6_K | 1.72GB | | [Bloom-1b7-ropes-Cont-IT-Step2.Q8_0.gguf](https://huggingface.co/RichardErkhov/alonzogarbanzo_-_Bloom-1b7-ropes-Cont-IT-Step2-gguf/blob/main/Bloom-1b7-ropes-Cont-IT-Step2.Q8_0.gguf) | Q8_0 | 2.23GB | Original model description: --- license: bigscience-bloom-rail-1.0 base_model: alonzogarbanzo/Bloom-1b7-winograd-wsc-IT-baseline tags: - generated_from_trainer model-index: - name: Bloom-1b7-ropes-Cont-IT-Step2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bloom-1b7-ropes-Cont-IT-Step2 This model is a fine-tuned version of [alonzogarbanzo/Bloom-1b7-winograd-wsc-IT-baseline](https://huggingface.co/alonzogarbanzo/Bloom-1b7-winograd-wsc-IT-baseline) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results Final Results: {'loss': 0.0261, 'grad_norm': 1.9494764804840088, 'learning_rate': 3.0000000000000004e-07, 'epoch': 10.0} Average Results: {'train_runtime': 858.2936, 'train_samples_per_second': 2.33, 'train_steps_per_second': 0.583, 'train_loss': 0.4610937827527523, 'epoch': 10.0} ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
llmware/slim-topics-onnx
llmware
2024-10-31T21:35:36Z
3
1
transformers
[ "transformers", "onnx", "llama", "text-generation", "green", "p1", "llmware-fx", "base_model:llmware/slim-topics", "base_model:quantized:llmware/slim-topics", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2024-06-15T00:22:03Z
--- license: apache-2.0 inference: false base_model: llmware/slim-topics base_model_relation: quantized tags: [green, p1, llmware-fx, onnx] --- # slim-topics-onnx **slim-topics-onnx** is a specialized function calling model that generates a topic description for a text passage, typically no more than 2-3 words. This is an ONNX int4 quantized version of slim-topics, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/slim-topics - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Topic categorization and summarization - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
rohan7998/emotion_tweet_roberta-base_2024-10-31
rohan7998
2024-10-31T21:34:28Z
196
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-31T21:34:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
llmware/llama-3.1-instruct-onnx
llmware
2024-10-31T21:34:01Z
10
1
null
[ "onnx", "llama", "green", "p8", "llmware-chat", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:quantized:meta-llama/Llama-3.1-8B-Instruct", "license:llama3", "region:us" ]
null
2024-09-03T18:12:48Z
--- license: llama3 inference: false base_model: meta-llama/Meta-Llama-3.1-8B-Instruct base_model_relation: quantized tags: - green - p8 - llmware-chat - onnx --- # llama-3.1-instruct-onnx **llama-3.1-instruct-ov** is an ONNX int4 quantized version of Llama 3.1 Instruct, providing a fast inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. [**llama-3.1-instruct**](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) is a leading open source general foundation model from Meta. ### Model Description - **Developed by:** meta-llama - **Quantized by:** llmware - **Model type:** llama-3.1 - **Parameters:** 8 billion - **Model Parent:** meta-llama/Meta-Llama-3.1-8B-Instruct - **Language(s) (NLP):** English - **License:** Llama 3.1 Community License - **Uses:** General chat use cases - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
llmware/tiny-llama-chat-onnx
llmware
2024-10-31T21:32:18Z
43
1
null
[ "onnx", "llama", "green", "llmware-chat", "p1", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:quantized:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
null
2024-10-26T17:58:08Z
--- license: apache-2.0 inference: false base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 base_model_relation: quantized tags: - green - llmware-chat - p1 - onnx --- # tiny-llama-chat-onnx **tiny-llama-chat-onnx** is an ONNX int4 quantized version of TinyLlama-Chat, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. [**tiny-llama-chat**](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) is the official chat finetuned version of tiny-llama. ### Model Description - **Developed by:** TinyLlama - **Quantized by:** llmware - **Model type:** llama - **Parameters:** 1.1 billion - **Model Parent:** TinyLlama-1.1B-Chat-v1.0 - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Chat and general purpose LLM - **RAG Benchmark Accuracy Score:** NA - **Quantization:** int4 ## Model Card Contact [llmware on github](https://www.github.com/llmware-ai/llmware) [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
MaziyarPanahi/BADMISTRAL-1.5B-GGUF
MaziyarPanahi
2024-10-31T21:31:48Z
41
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:UnfilteredAI/BADMISTRAL-1.5B", "base_model:quantized:UnfilteredAI/BADMISTRAL-1.5B", "region:us", "conversational" ]
text-generation
2024-10-31T21:26:40Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: BADMISTRAL-1.5B-GGUF base_model: UnfilteredAI/BADMISTRAL-1.5B inference: false model_creator: UnfilteredAI pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/BADMISTRAL-1.5B-GGUF](https://huggingface.co/MaziyarPanahi/BADMISTRAL-1.5B-GGUF) - Model creator: [UnfilteredAI](https://huggingface.co/UnfilteredAI) - Original model: [UnfilteredAI/BADMISTRAL-1.5B](https://huggingface.co/UnfilteredAI/BADMISTRAL-1.5B) ## Description [MaziyarPanahi/BADMISTRAL-1.5B-GGUF](https://huggingface.co/MaziyarPanahi/BADMISTRAL-1.5B-GGUF) contains GGUF format model files for [UnfilteredAI/BADMISTRAL-1.5B](https://huggingface.co/UnfilteredAI/BADMISTRAL-1.5B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf
RichardErkhov
2024-10-31T21:30:31Z
42
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-10-31T18:47:53Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Fimbulvetr-11B-v2 - GGUF - Model creator: https://huggingface.co/Sao10K/ - Original model: https://huggingface.co/Sao10K/Fimbulvetr-11B-v2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Fimbulvetr-11B-v2.Q2_K.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q2_K.gguf) | Q2_K | 3.73GB | | [Fimbulvetr-11B-v2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q3_K_S.gguf) | Q3_K_S | 4.34GB | | [Fimbulvetr-11B-v2.Q3_K.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q3_K.gguf) | Q3_K | 4.84GB | | [Fimbulvetr-11B-v2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q3_K_M.gguf) | Q3_K_M | 4.84GB | | [Fimbulvetr-11B-v2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q3_K_L.gguf) | Q3_K_L | 5.26GB | | [Fimbulvetr-11B-v2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.IQ4_XS.gguf) | IQ4_XS | 5.43GB | | [Fimbulvetr-11B-v2.Q4_0.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q4_0.gguf) | Q4_0 | 5.66GB | | [Fimbulvetr-11B-v2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.IQ4_NL.gguf) | IQ4_NL | 5.72GB | | [Fimbulvetr-11B-v2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q4_K_S.gguf) | Q4_K_S | 5.7GB | | [Fimbulvetr-11B-v2.Q4_K.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q4_K.gguf) | Q4_K | 6.02GB | | [Fimbulvetr-11B-v2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q4_K_M.gguf) | Q4_K_M | 6.02GB | | [Fimbulvetr-11B-v2.Q4_1.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q4_1.gguf) | Q4_1 | 6.27GB | | [Fimbulvetr-11B-v2.Q5_0.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q5_0.gguf) | Q5_0 | 6.89GB | | [Fimbulvetr-11B-v2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q5_K_S.gguf) | Q5_K_S | 6.89GB | | [Fimbulvetr-11B-v2.Q5_K.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q5_K.gguf) | Q5_K | 7.08GB | | [Fimbulvetr-11B-v2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q5_K_M.gguf) | Q5_K_M | 7.08GB | | [Fimbulvetr-11B-v2.Q5_1.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q5_1.gguf) | Q5_1 | 7.51GB | | [Fimbulvetr-11B-v2.Q6_K.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q6_K.gguf) | Q6_K | 8.2GB | | [Fimbulvetr-11B-v2.Q8_0.gguf](https://huggingface.co/RichardErkhov/Sao10K_-_Fimbulvetr-11B-v2-gguf/blob/main/Fimbulvetr-11B-v2.Q8_0.gguf) | Q8_0 | 10.62GB | Original model description: --- license: cc-by-nc-4.0 language: - en --- ![Fox1](https://huggingface.co/Sao10K/Fimbulvetr-11B-v2/resolve/main/cute1.jpg) *Cute girl to catch your attention.* **https://huggingface.co/Sao10K/Fimbulvetr-11B-v2-GGUF <------ GGUF** Fimbulvetr-v2 - A Solar-Based Model *** 4/4 Status Update: got a few reqs on wanting to support me: https://ko-fi.com/sao10k anyway, status on v3 - Halted for time being, working on dataset work mainly. it's a pain, to be honest. the data I have isn't up to my standard for now. it's good, just not good enough *** Prompt Formats - Alpaca or Vicuna. Either one works fine. Recommended SillyTavern Presets - Universal Light Alpaca: ``` ### Instruction: <Prompt> ### Input: <Insert Context Here> ### Response: ``` Vicuna: ``` System: <Prompt> User: <Input> Assistant: ``` **** Changelogs: 25/2 - repo renamed to remove test, model card redone. Model's officially out. <br>15/2 - Heavy testing complete. Good feedback. *** <details><summary>Rant - Kept For Historical Reasons</summary> Ramble to meet minimum length requirements: Tbh i wonder if this shit is even worth doing. Like im just some broke guy lmao I've spent so much. And for what? I guess creds. Feels good when a model gets good feedback, but it seems like im invisible sometimes. I should be probably advertising myself and my models on other places but I rarely have the time to. Probably just internal jealousy sparking up here and now. Wahtever I guess. Anyway cool EMT vocation I'm doing is cool except it pays peanuts, damn bruh 1.1k per month lmao. Government to broke to pay for shit. Pays the bills I suppose. Anyway cool beans, I'm either going to continue the Solar Train or go to Mixtral / Yi when I get paid. You still here? </details><br>
llmware/phi-3-onnx
llmware
2024-10-31T21:30:29Z
7
1
null
[ "onnx", "phi3", "green", "llmware-chat", "p3", "custom_code", "base_model:microsoft/Phi-3-mini-4k-instruct", "base_model:quantized:microsoft/Phi-3-mini-4k-instruct", "license:apache-2.0", "region:us" ]
null
2024-09-03T17:00:53Z
--- license: apache-2.0 inference: false base_model: microsoft/Phi-3-mini-4k-instruct base_model_relation: quantized tags: [green, llmware-chat, p3, onnx] --- # phi-3-onnx **phi-3-onnx** is an ONNX int4 quantized version of [Microsoft Phi-3-mini-4k-instruct](https://www.huggingface.co/microsoft/Phi-3-mini-4k-instruct), providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** microsoft - **Quantized by:** llmware - **Model type:** phi3 - **Parameters:** 3.8 billion - **Model Parent:** microsoft/Phi-3-mini-4k-instruct - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Chat, general-purpose LLM - **Quantization:** int4 ## Model Card Contact [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)