modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-29 00:46:34
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
502 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-29 00:44:25
card
stringlengths
11
1.01M
argmaxinc/speakerkit-pro
argmaxinc
2025-05-01T20:46:12Z
0
14
speakerkit
[ "speakerkit", "pyannote", "diarization", "speaker-diarization", "whisper", "whisperkit", "coreml", "asr", "quantized", "automatic-speech-recognition", "license:other", "region:us" ]
automatic-speech-recognition
2024-11-25T21:43:47Z
--- license: other license_name: argmax-fmod-license license_link: https://huggingface.co/argmaxinc/speakerkit-pro/blob/main/LICENSE_NOTICE.txt pretty_name: SpeakerKit viewer: false library_name: speakerkit tags: - speakerkit - pyannote - diarization - speaker-diarization - whisper - whisperkit - coreml - asr - quantized - automatic-speech-recognition extra_gated_heading: Request Access to SpeakerKit Pro (Part of Argmax SDK) extra_gated_description: >- SpeakerKit Pro is Argmax's state-of-the-art on-device framework for speaker recognition tasks such as speaker diarization. Please submit your information below or directly send an email to [[email protected]](mailto:[email protected]). extra_gated_fields: Company: text Work email: text I acknowledge the license notice: checkbox extra_gated_button_content: Submit --- SpeakerKit Pro Read the [blog](https://www.argmaxinc.com/blog/speakerkit) Try it on [TestFlight](https://testflight.apple.com/join/LPVOyJZW) Read the [Research Paper](http://argmaxinc.com/sdbench-paper) to learn more about the architecture and performance benchmarks Get access [here](https://www.argmaxinc.com/#request-access)
vertings6/c524955f-0511-4565-8f4e-fa52944d1f30
vertings6
2025-05-01T20:45:20Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-01T20:21:55Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: c524955f-0511-4565-8f4e-fa52944d1f30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: true adapter: lora base_model: unsloth/mistral-7b-v0.3 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - a39fc32ce6f39928_train_data.json ds_type: json format: custom path: /workspace/input_data/a39fc32ce6f39928_train_data.json type: field_input: function_description_en field_instruction: system_message_en field_output: system_message_vi format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 144 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vertings6/c524955f-0511-4565-8f4e-fa52944d1f30 hub_repo: null hub_strategy: end hub_token: null learning_rate: 3.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mixed_precision: bf16 mlflow_experiment_name: /tmp/a39fc32ce6f39928_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 08a0d7e8-68cb-468a-a0ab-a2295a25df82 wandb_project: s56-32 wandb_run: your_name wandb_runid: 08a0d7e8-68cb-468a-a0ab-a2295a25df82 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c524955f-0511-4565-8f4e-fa52944d1f30 This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0002 | 0.0150 | 200 | 0.0001 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
AI4BD/Bangla-Qwen-Translator-v2.1
AI4BD
2025-05-01T20:44:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T20:43:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ItsMaxNorm/live_subject_animal_02_kitten
ItsMaxNorm
2025-05-01T20:24:52Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-05-01T20:24:12Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of kitten tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - ItsMaxNorm/live_subject_animal_02_kitten These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of kitten using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False.
Yuhan123/ppo-synthetic-one-language-100-step-2025-04-02-15-44-14
Yuhan123
2025-05-01T18:11:09Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T18:08:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thedaz/klue-roberta-base-klue-sts
thedaz
2025-05-01T18:01:24Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-05-01T18:00:59Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 657 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
mek63/cimbom33
mek63
2025-05-01T17:27:03Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-01T17:27:01Z
--- license: apache-2.0 ---
kronoscr/tatiana
kronoscr
2025-05-01T17:26:12Z
0
0
null
[ "license:other", "region:us" ]
null
2025-04-04T19:13:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
Yuhan123/ppo-synthetic-one-language-2025-04-01-16-13-54
Yuhan123
2025-05-01T17:02:38Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T17:00:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
harrykeeran12/radiology_error_qwen2.5
harrykeeran12
2025-05-01T16:39:01Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T18:44:49Z
--- base_model: unsloth/qwen2.5-7b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** harrykeeran12 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
unsloth/OLMo-2-0425-1B-Instruct-unsloth-bnb-4bit
unsloth
2025-05-01T16:38:49Z
0
0
transformers
[ "transformers", "safetensors", "olmo2", "text-generation", "unsloth", "conversational", "en", "dataset:allenai/RLVR-MATH", "arxiv:2501.00656", "arxiv:2411.15124", "base_model:allenai/OLMo-2-0425-1B-Instruct", "base_model:quantized:allenai/OLMo-2-0425-1B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-01T16:38:32Z
--- tags: - unsloth license: apache-2.0 language: - en datasets: - allenai/RLVR-MATH base_model: - allenai/OLMo-2-0425-1B-Instruct pipeline_tag: text-generation library_name: transformers --- <img alt="OLMo Logo" src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/olmo2/olmo.png" width="242px"> OLMo 2 1B Instruct April 2025 is post-trained variant of the [allenai/OLMo-2-0425-1B-RLVR1](https://huggingface.co/allenai/OLMo-2-0425-1B-RLVR1) model, which has undergone supervised finetuning on an OLMo-specific variant of the [Tรผlu 3 dataset](https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-2-mixture-0225), further DPO training on [this dataset](https://huggingface.co/datasets/allenai/olmo-2-0425-1b-preference-mix), and final RLVR training on [this dataset](https://huggingface.co/datasets/allenai/RLVR-MATH). Tรผlu 3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval. Check out the [OLMo 2 paper](https://arxiv.org/abs/2501.00656) or [Tรผlu 3 paper](https://arxiv.org/abs/2411.15124) for more details! OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models. These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs, and associated training details. ## Model description - **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets. - **Language(s) (NLP):** Primarily English - **License:** Apache 2.0 - **Finetuned from model:** allenai/OLMo-2-0425-1B-RLVR1 ### Model Sources - **Project Page:** https://allenai.org/olmo - **Repositories:** - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo-core - Evaluation code: https://github.com/allenai/olmes - Further fine-tuning code: https://github.com/allenai/open-instruct - **Paper:** https://arxiv.org/abs/2501.00656 - **Demo:** https://playground.allenai.org/ ## Installation OLMo 2 1B is supported in transformers v4.48 or higher: ```bash pip install transformers>=4.48 ``` If using vLLM, you will need to install from the main branch until v0.7.4 is released. Please ## Using the model ### Loading with HuggingFace To load the model with HuggingFace, use the following snippet: ``` from transformers import AutoModelForCausalLM olmo_model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B-Instruct") ``` ### Chat template *NOTE: This is different than previous OLMo 2 and Tรผlu 3 models due to a minor change in configuration. It does NOT have the bos token before the rest. Our other models have <|endoftext|> at the beginning of the chat template.* The chat template for our models is formatted as: ``` <|user|> How are you doing? <|assistant|> I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|> ``` Or with new lines expanded: ``` <|user|> How are you doing? <|assistant|> I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|> ``` It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`. ### Intermediate Checkpoints To facilitate research on RL finetuning, we have released our intermediate checkpoints during the model's RLVR training. The model weights are saved every 20 training steps, and can be accessible in the revisions of the HuggingFace repository. For example, you can load with: ``` olmo_model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B-Instruct", revision="step_200") ``` ### Bias, Risks, and Limitations The OLMo-2 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). ## Performance | Model | Average | AlpacaEval 2 LC | BBH | DROP | GSM8K | IFEval | MATH | MMLU | Safety | PopQA | TruthQA | |-------|---------|-----------------|-----|------|-------|--------|------|------|--------|-------|---------| | **OLMo 1B 0724** | 24.4 | 2.4 | 29.9 | 27.9 | 10.8 | 25.3 | 2.2 | 36.6 | 52.0 | 12.1 | 44.3 | | **SmolLM2 1.7B** | 34.2 | 5.8 | 39.8 | 30.9 | 45.3 | 51.6 | 20.3 | 34.3 | 52.4 | 16.4 | 45.3 | | **Gemma 3 1B** | 38.3 | 20.4 | 39.4 | 25.1 | 35.0 | 60.6 | 40.3 | 38.9 | 70.2 | 9.6 | 43.8 | | **Llama 3.1 1B** | 39.3 | 10.1 | 40.2 | 32.2 | 45.4 | 54.0 | 21.6 | 46.7 | 87.2 | 13.8 | 41.5 | | **Qwen 2.5 1.5B** | 41.7 | 7.4 | 45.8 | 13.4 | 66.2 | 44.2 | 40.6 | 59.7 | 77.6 | 15.5 | 46.5 | | **---** | | | | | | | | | | | | | **OLMo 2 1B SFT** | 36.9 | 2.4 | 32.8 | 33.8 | 52.1 | 50.5 | 13.2 | 36.4 | 93.2 | 12.7 | 42.1 | | **OLMo 2 1B DPO** | 40.6 | 9.5 | 33.0 | 34.5 | 59.0 | 67.1 | 14.1 | 39.9 | 89.9 | 12.3 | 46.4 | | **OLMo 2 1B** | 42.7 | 9.1 | 35.0 | 34.6 | 68.3 | 70.1 | 20.7 | 40.0 | 87.6 | 12.9 | 48.7 | ## License and use OLMo 2 is licensed under the Apache 2.0 license. OLMo 2 is intended for research and educational use. For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use). ## Citation ```bibtex @article{olmo20242olmo2furious, title={2 OLMo 2 Furious}, author={Team OLMo and Pete Walsh and Luca Soldaini and Dirk Groeneveld and Kyle Lo and Shane Arora and Akshita Bhagia and Yuling Gu and Shengyi Huang and Matt Jordan and Nathan Lambert and Dustin Schwenk and Oyvind Tafjord and Taira Anderson and David Atkinson and Faeze Brahman and Christopher Clark and Pradeep Dasigi and Nouha Dziri and Michal Guerquin and Hamish Ivison and Pang Wei Koh and Jiacheng Liu and Saumya Malik and William Merrill and Lester James V. Miranda and Jacob Morrison and Tyler Murray and Crystal Nam and Valentina Pyatkin and Aman Rangapur and Michael Schmitz and Sam Skjonsberg and David Wadden and Christopher Wilhelm and Michael Wilson and Luke Zettlemoyer and Ali Farhadi and Noah A. Smith and Hannaneh Hajishirzi}, year={2024}, eprint={2501.00656}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.00656}, } ```
Yuhan123/ppo-cn-RM-reading-level-preschool-1-steps-10000-epoch-999-best-eval-score-0.700
Yuhan123
2025-05-01T16:37:02Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T16:34:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
unsloth/OLMo-2-0425-1B-Instruct-GGUF
unsloth
2025-05-01T16:35:37Z
0
0
transformers
[ "transformers", "gguf", "olmo2", "text-generation", "unsloth", "en", "dataset:allenai/RLVR-MATH", "arxiv:2501.00656", "arxiv:2411.15124", "base_model:allenai/OLMo-2-0425-1B-Instruct", "base_model:quantized:allenai/OLMo-2-0425-1B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-05-01T16:29:41Z
--- tags: - unsloth license: apache-2.0 language: - en datasets: - allenai/RLVR-MATH base_model: - allenai/OLMo-2-0425-1B-Instruct pipeline_tag: text-generation library_name: transformers --- <img alt="OLMo Logo" src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/olmo2/olmo.png" width="242px"> OLMo 2 1B Instruct April 2025 is post-trained variant of the [allenai/OLMo-2-0425-1B-RLVR1](https://huggingface.co/allenai/OLMo-2-0425-1B-RLVR1) model, which has undergone supervised finetuning on an OLMo-specific variant of the [Tรผlu 3 dataset](https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-2-mixture-0225), further DPO training on [this dataset](https://huggingface.co/datasets/allenai/olmo-2-0425-1b-preference-mix), and final RLVR training on [this dataset](https://huggingface.co/datasets/allenai/RLVR-MATH). Tรผlu 3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval. Check out the [OLMo 2 paper](https://arxiv.org/abs/2501.00656) or [Tรผlu 3 paper](https://arxiv.org/abs/2411.15124) for more details! OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models. These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs, and associated training details. ## Model description - **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets. - **Language(s) (NLP):** Primarily English - **License:** Apache 2.0 - **Finetuned from model:** allenai/OLMo-2-0425-1B-RLVR1 ### Model Sources - **Project Page:** https://allenai.org/olmo - **Repositories:** - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo-core - Evaluation code: https://github.com/allenai/olmes - Further fine-tuning code: https://github.com/allenai/open-instruct - **Paper:** https://arxiv.org/abs/2501.00656 - **Demo:** https://playground.allenai.org/ ## Installation OLMo 2 1B is supported in transformers v4.48 or higher: ```bash pip install transformers>=4.48 ``` If using vLLM, you will need to install from the main branch until v0.7.4 is released. Please ## Using the model ### Loading with HuggingFace To load the model with HuggingFace, use the following snippet: ``` from transformers import AutoModelForCausalLM olmo_model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B-Instruct") ``` ### Chat template *NOTE: This is different than previous OLMo 2 and Tรผlu 3 models due to a minor change in configuration. It does NOT have the bos token before the rest. Our other models have <|endoftext|> at the beginning of the chat template.* The chat template for our models is formatted as: ``` <|user|> How are you doing? <|assistant|> I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|> ``` Or with new lines expanded: ``` <|user|> How are you doing? <|assistant|> I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|> ``` It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`. ### Intermediate Checkpoints To facilitate research on RL finetuning, we have released our intermediate checkpoints during the model's RLVR training. The model weights are saved every 20 training steps, and can be accessible in the revisions of the HuggingFace repository. For example, you can load with: ``` olmo_model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B-Instruct", revision="step_200") ``` ### Bias, Risks, and Limitations The OLMo-2 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). ## Performance | Model | Average | AlpacaEval 2 LC | BBH | DROP | GSM8K | IFEval | MATH | MMLU | Safety | PopQA | TruthQA | |-------|---------|-----------------|-----|------|-------|--------|------|------|--------|-------|---------| | **OLMo 1B 0724** | 24.4 | 2.4 | 29.9 | 27.9 | 10.8 | 25.3 | 2.2 | 36.6 | 52.0 | 12.1 | 44.3 | | **SmolLM2 1.7B** | 34.2 | 5.8 | 39.8 | 30.9 | 45.3 | 51.6 | 20.3 | 34.3 | 52.4 | 16.4 | 45.3 | | **Gemma 3 1B** | 38.3 | 20.4 | 39.4 | 25.1 | 35.0 | 60.6 | 40.3 | 38.9 | 70.2 | 9.6 | 43.8 | | **Llama 3.1 1B** | 39.3 | 10.1 | 40.2 | 32.2 | 45.4 | 54.0 | 21.6 | 46.7 | 87.2 | 13.8 | 41.5 | | **Qwen 2.5 1.5B** | 41.7 | 7.4 | 45.8 | 13.4 | 66.2 | 44.2 | 40.6 | 59.7 | 77.6 | 15.5 | 46.5 | | **---** | | | | | | | | | | | | | **OLMo 2 1B SFT** | 36.9 | 2.4 | 32.8 | 33.8 | 52.1 | 50.5 | 13.2 | 36.4 | 93.2 | 12.7 | 42.1 | | **OLMo 2 1B DPO** | 40.6 | 9.5 | 33.0 | 34.5 | 59.0 | 67.1 | 14.1 | 39.9 | 89.9 | 12.3 | 46.4 | | **OLMo 2 1B** | 42.7 | 9.1 | 35.0 | 34.6 | 68.3 | 70.1 | 20.7 | 40.0 | 87.6 | 12.9 | 48.7 | ## License and use OLMo 2 is licensed under the Apache 2.0 license. OLMo 2 is intended for research and educational use. For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use). ## Citation ```bibtex @article{olmo20242olmo2furious, title={2 OLMo 2 Furious}, author={Team OLMo and Pete Walsh and Luca Soldaini and Dirk Groeneveld and Kyle Lo and Shane Arora and Akshita Bhagia and Yuling Gu and Shengyi Huang and Matt Jordan and Nathan Lambert and Dustin Schwenk and Oyvind Tafjord and Taira Anderson and David Atkinson and Faeze Brahman and Christopher Clark and Pradeep Dasigi and Nouha Dziri and Michal Guerquin and Hamish Ivison and Pang Wei Koh and Jiacheng Liu and Saumya Malik and William Merrill and Lester James V. Miranda and Jacob Morrison and Tyler Murray and Crystal Nam and Valentina Pyatkin and Aman Rangapur and Michael Schmitz and Sam Skjonsberg and David Wadden and Christopher Wilhelm and Michael Wilson and Luke Zettlemoyer and Ali Farhadi and Noah A. Smith and Hannaneh Hajishirzi}, year={2024}, eprint={2501.00656}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.00656}, } ```
Yuhan123/ppo-cn-RM-reading-level-preschool-1-steps-10000-epoch-999-best-eval-score-0.786
Yuhan123
2025-05-01T16:05:57Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T16:02:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Thiago-dias26/NUVVI20
Thiago-dias26
2025-05-01T16:04:32Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-01T16:04:32Z
--- license: apache-2.0 ---
OnlyCheeini/greesychat-turbo
OnlyCheeini
2025-05-01T15:54:51Z
33
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "dataset:OnlyCheeini/greesychat", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-08-26T10:54:59Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft datasets: - OnlyCheeini/greesychat --- ![GreesyAI](https://cdn.discordapp.com/attachments/852866297271418891/1278417033758769172/file-QGdWL7jEUYWxDkYZON2cM7v9.jpg?ex=66d751a4&is=66d60024&hm=e96fd2103d8955f861b0a4745a20b50060d5dd3d53869157b847171b3678f7b8&) # GreesyChat-Turbo AI Model ## Overview GreesyChat-Turbo is an advanced AI model designed for robust text generation using the LLaMA 3 architecture. This model excels in providing high-quality responses for general conversation, mathematical queries, and more. Itโ€™s perfect for powering chatbots, virtual assistants, and any application requiring intelligent dialogue capabilities. ## Benchmark Results | Metric | Value | |--------------------|------------| | **Perplexity** | 22.5 | | **Generation Speed** | 75 ms per token | | **Accuracy** | 70% | | **Response Time** | 200 ms | | Metric | GreesyChat-Turbo | Mixtral-8x7b | GPT-4 | |---------------|------------------|---------------|-------------| | **Code** | 79.2 | 75.6 | 83.6 | | **MMLU** | 74.5 | 79.9 | 85.1 | | **Gms8k** | 89.2 (5) | 88.7 | 94.2 | ## Contact For support or inquiries, please contact: [[email protected]](mailto:[email protected])
dimasik1987/f037dae8-e66d-4d3e-8250-597b6de2070b
dimasik1987
2025-05-01T15:54:10Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-01T15:51:58Z
--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: f037dae8-e66d-4d3e-8250-597b6de2070b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - b28d72a27f6c5851_train_data.json ds_type: json format: custom path: /workspace/input_data/b28d72a27f6c5851_train_data.json type: field_input: query_toks field_instruction: question field_output: query format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.55 group_by_length: false hub_model_id: dimasik1987/f037dae8-e66d-4d3e-8250-597b6de2070b hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 10 mixed_precision: bf16 mlflow_experiment_name: /tmp/b28d72a27f6c5851_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 10b4bba1-67d7-4ecf-8210-a48746d35dda wandb_project: s56-7 wandb_run: your_name wandb_runid: 10b4bba1-67d7-4ecf-8210-a48746d35dda warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f037dae8-e66d-4d3e-8250-597b6de2070b This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5999 | 0.2183 | 150 | 0.6425 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
duandongsheng/sd-class-butterflies-32
duandongsheng
2025-05-01T15:34:33Z
0
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2025-05-01T15:32:42Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ๐Ÿฆ‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('duandongsheng/sd-class-butterflies-32') image = pipeline().images[0] image ```
aleegis/bb58934a-a240-4055-b5ed-f5ef8915eb45
aleegis
2025-05-01T15:29:42Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Base-2407", "base_model:adapter:unsloth/Mistral-Nemo-Base-2407", "license:apache-2.0", "region:us" ]
null
2025-05-01T13:40:12Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Base-2407 tags: - axolotl - generated_from_trainer model-index: - name: bb58934a-a240-4055-b5ed-f5ef8915eb45 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Base-2407 bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 63a491480b93f510_train_data.json ds_type: json format: custom path: /workspace/input_data/63a491480b93f510_train_data.json type: field_instruction: prompt field_output: best_response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/bb58934a-a240-4055-b5ed-f5ef8915eb45 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/63a491480b93f510_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: 13712427-fb73-4e43-b93c-61d36776a27f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 13712427-fb73-4e43-b93c-61d36776a27f warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # bb58934a-a240-4055-b5ed-f5ef8915eb45 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Base-2407](https://huggingface.co/unsloth/Mistral-Nemo-Base-2407) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Out-Lofara/Out.Lofara.Viral.Video.Link
Out-Lofara
2025-05-01T12:19:18Z
0
0
null
[ "region:us" ]
null
2025-05-01T12:16:27Z
<!-- HTML_TAG_END --><div> <p><a rel="nofollow" href="https://mswds.xyz/full-video">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)</a></p> <p><a rel="nofollow" href="https://mswds.xyz/full-video">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )</a></p> <p><a rel="nofollow" href="https://mswds.xyz/full-video"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a></p> <!-- HTML_TAG_END --></div>
Echo9Zulu/Phi-4-reasoning-int4_asym-gptq-se-ov
Echo9Zulu
2025-05-01T11:50:17Z
0
0
null
[ "openvino", "phi3", "license:apache-2.0", "region:us" ]
null
2025-05-01T11:21:54Z
--- license: apache-2.0 ---
Triangle104/Phi-4-mini-reasoning-Q5_K_M-GGUF
Triangle104
2025-05-01T11:48:07Z
0
0
transformers
[ "transformers", "gguf", "nlp", "math", "code", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:microsoft/Phi-4-mini-reasoning", "base_model:quantized:microsoft/Phi-4-mini-reasoning", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-05-01T11:43:20Z
--- base_model: microsoft/Phi-4-mini-reasoning language: - en library_name: transformers license: mit license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct-reasoning/resolve/main/LICENSE pipeline_tag: text-generation tags: - nlp - math - code - llama-cpp - gguf-my-repo widget: - messages: - role: user content: How to solve 3*x^2+4*x+5=1? --- # Triangle104/Phi-4-mini-reasoning-Q5_K_M-GGUF This model was converted to GGUF format from [`microsoft/Phi-4-mini-reasoning`](https://huggingface.co/microsoft/Phi-4-mini-reasoning) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/microsoft/Phi-4-mini-reasoning) for more details on the model. --- Phi-4-mini-reasoning is a lightweight open model built upon synthetic data with a focus on high-quality, reasoning dense data further finetuned for more advanced math reasoning capabilities. The model belongs to the Phi-4 model family and supports 128K token context length. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Phi-4-mini-reasoning-Q5_K_M-GGUF --hf-file phi-4-mini-reasoning-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Phi-4-mini-reasoning-Q5_K_M-GGUF --hf-file phi-4-mini-reasoning-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Phi-4-mini-reasoning-Q5_K_M-GGUF --hf-file phi-4-mini-reasoning-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Phi-4-mini-reasoning-Q5_K_M-GGUF --hf-file phi-4-mini-reasoning-q5_k_m.gguf -c 2048 ```
Triangle104/mlabonne_Qwen3-0.6B-abliterated-4_K_M-GGUF
Triangle104
2025-05-01T11:21:37Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:mlabonne/Qwen3-0.6B-abliterated", "base_model:quantized:mlabonne/Qwen3-0.6B-abliterated", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-01T11:21:32Z
--- base_model: mlabonne/Qwen3-0.6B-abliterated library_name: transformers tags: - llama-cpp - gguf-my-repo --- # Triangle104/Qwen3-0.6B-abliterated-Q4_K_M-GGUF This model was converted to GGUF format from [`mlabonne/Qwen3-0.6B-abliterated`](https://huggingface.co/mlabonne/Qwen3-0.6B-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mlabonne/Qwen3-0.6B-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen3-0.6B-abliterated-Q4_K_M-GGUF --hf-file qwen3-0.6b-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen3-0.6B-abliterated-Q4_K_M-GGUF --hf-file qwen3-0.6b-abliterated-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen3-0.6B-abliterated-Q4_K_M-GGUF --hf-file qwen3-0.6b-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen3-0.6B-abliterated-Q4_K_M-GGUF --hf-file qwen3-0.6b-abliterated-q4_k_m.gguf -c 2048 ```
pawan2411/modernbert-ct4a-aug50-cl
pawan2411
2025-05-01T11:21:20Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "modernbert", "text-classification", "generated_from_trainer", "base_model:answerdotai/ModernBERT-large", "base_model:finetune:answerdotai/ModernBERT-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-01T09:44:32Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: modernbert-ct4a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modernbert-ct4a This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6677 - Accuracy: 0.8856 - F1: 0.7220 - Auc: 0.8155 - Accuracy Per Label: [0.9124087591240876, 0.9051094890510949, 0.8394160583941606] - F1 Per Label: [0.7692307692307693, 0.7111111111111111, 0.6857142857142857] - Auc Per Label: [0.8575883575883576, 0.7941787941787942, 0.7946887492861223] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Auc | Accuracy Per Label | F1 Per Label | Auc Per Label | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------------------------------------------------------------:|:-------------------------------------------------------------:|:------------------------------------------------------------:| | 0.2632 | 1.0 | 720 | 0.3431 | 0.8540 | 0.5798 | 0.7255 | [0.8613138686131386, 0.8686131386861314, 0.8321167883211679] | [0.6122448979591837, 0.47058823529411764, 0.6567164179104478] | [0.7524255024255023, 0.6538461538461539, 0.7701313535122787] | | 0.1235 | 2.0 | 1440 | 0.2669 | 0.8929 | 0.7449 | 0.8368 | [0.8832116788321168, 0.927007299270073, 0.8686131386861314] | [0.7333333333333333, 0.782608695652174, 0.71875] | [0.8690228690228691, 0.837144837144837, 0.8042547115933752] | | 0.0365 | 3.0 | 2160 | 0.3926 | 0.8881 | 0.7597 | 0.8662 | [0.8978102189781022, 0.9197080291970803, 0.8467153284671532] | [0.7666666666666667, 0.7924528301886793, 0.72] | [0.8927581427581427, 0.8768191268191268, 0.829097658480868] | | 0.0186 | 4.0 | 2880 | 0.5401 | 0.8978 | 0.7771 | 0.8725 | [0.9051094890510949, 0.927007299270073, 0.8613138686131386] | [0.7719298245614035, 0.8, 0.759493670886076] | [0.8825363825363826, 0.8665973665973666, 0.8683609366076528] | | 0.006 | 5.0 | 3600 | 0.5949 | 0.8978 | 0.7547 | 0.8498 | [0.9124087591240876, 0.9051094890510949, 0.8759124087591241] | [0.7931034482758621, 0.6976744186046512, 0.7733333333333333] | [0.9017671517671517, 0.7794525294525294, 0.8682181610508282] | | 0.0019 | 6.0 | 4320 | 0.8450 | 0.8881 | 0.7252 | 0.8187 | [0.9124087591240876, 0.9051094890510949, 0.8467153284671532] | [0.7777777777777778, 0.7111111111111111, 0.6865671641791045] | [0.8723146223146223, 0.7941787941787942, 0.7896916047972588] | | 0.0003 | 7.0 | 5040 | 0.7522 | 0.8881 | 0.7177 | 0.8090 | [0.9051094890510949, 0.9051094890510949, 0.8540145985401459] | [0.7450980392156863, 0.7111111111111111, 0.696969696969697] | [0.8383575883575884, 0.7941787941787942, 0.7945459737292976] | | 0.0 | 8.0 | 5760 | 0.7441 | 0.8856 | 0.7093 | 0.8041 | [0.9124087591240876, 0.8978102189781022, 0.8467153284671532] | [0.7692307692307693, 0.6818181818181818, 0.676923076923077] | [0.8575883575883576, 0.774948024948025, 0.7798400913763565] | | 0.0 | 9.0 | 6480 | 0.6585 | 0.8881 | 0.7314 | 0.8219 | [0.9124087591240876, 0.9124087591240876, 0.8394160583941606] | [0.7692307692307693, 0.7391304347826086, 0.6857142857142857] | [0.8575883575883576, 0.8134095634095634, 0.7946887492861223] | | 0.0 | 10.0 | 7200 | 0.6677 | 0.8856 | 0.7220 | 0.8155 | [0.9124087591240876, 0.9051094890510949, 0.8394160583941606] | [0.7692307692307693, 0.7111111111111111, 0.6857142857142857] | [0.8575883575883576, 0.7941787941787942, 0.7946887492861223] | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Tokenizers 0.21.1
ubaitur5/Qwen2.5-0.5B-Instruct-Q3-mlx
ubaitur5
2025-05-01T11:05:44Z
11
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "mlx", "mlx-my-repo", "conversational", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:quantized:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "3-bit", "region:us" ]
text-generation
2024-12-26T07:34:06Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara pipeline_tag: text-generation base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - chat - mlx - mlx-my-repo library_name: transformers --- # ubaitur5/Qwen2.5-0.5B-Instruct-Q3-mlx The Model [ubaitur5/Qwen2.5-0.5B-Instruct-Q3-mlx](https://huggingface.co/ubaitur5/Qwen2.5-0.5B-Instruct-Q3-mlx) was converted to MLX format from [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) using mlx-lm version **0.20.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("ubaitur5/Qwen2.5-0.5B-Instruct-Q3-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
nicolaadrah/physics_cpt_adapter
nicolaadrah
2025-05-01T10:22:32Z
0
0
transformers
[ "transformers", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T10:22:18Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** nicolaadrah - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
khalednabawi11/MedScan-Report-Gen
khalednabawi11
2025-05-01T10:20:07Z
0
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-05-01T10:19:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stokemctoke/Alex-Jones_v01_F1D
stokemctoke
2025-05-01T10:10:10Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "ai-toolkit", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-01T10:07:25Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - ai-toolkit widget: - text: 4L3XJ0N35 a man playing chess at the park, bomb going off in the background output: url: samples/1746094008143__000003750_0.jpg - text: 4L3XJ0N35 a man holding a coffee cup, in a beanie, sitting at a cafe output: url: samples/1746094024110__000003750_1.jpg - text: 4L3XJ0N35 a man holding a sign that says, 'Stoke LoRA' output: url: samples/1746094040109__000003750_2.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: 4L3XJ0N35 license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # Alex-Jones_v01_F1D Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) <Gallery /> ## Trigger words You should use `4L3XJ0N35` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. Weights for this model are available in Safetensors format. [Download](/stokemctoke/Alex-Jones_v01_F1D/tree/main) them in the Files & versions tab. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('stokemctoke/Alex-Jones_v01_F1D', weight_name='Alex-Jones_v01_F1D.safetensors') image = pipeline('4L3XJ0N35 a man playing chess at the park, bomb going off in the background').images[0] image.save("my_image.png") ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
vertings6/68ecd706-b48c-415a-be08-d25c932eef87
vertings6
2025-05-01T10:06:33Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:budecosystem/genz-70b", "base_model:adapter:budecosystem/genz-70b", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-01T08:38:43Z
--- library_name: peft base_model: budecosystem/genz-70b tags: - axolotl - generated_from_trainer model-index: - name: 68ecd706-b48c-415a-be08-d25c932eef87 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: true adapter: lora base_model: budecosystem/genz-70b bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - bf501704f719a312_train_data.json ds_type: json format: custom path: /workspace/input_data/bf501704f719a312_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 144 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vertings6/68ecd706-b48c-415a-be08-d25c932eef87 hub_repo: null hub_strategy: end hub_token: null learning_rate: 3.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mixed_precision: bf16 mlflow_experiment_name: /tmp/bf501704f719a312_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 2048 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0062cdce-f91e-47e2-84bf-0eb3fc593b09 wandb_project: s56-32 wandb_run: your_name wandb_runid: 0062cdce-f91e-47e2-84bf-0eb3fc593b09 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 68ecd706-b48c-415a-be08-d25c932eef87 This model is a fine-tuned version of [budecosystem/genz-70b](https://huggingface.co/budecosystem/genz-70b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6444 | 0.1464 | 200 | 0.7640 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
GeorgyGUF/Liquid-Metal-sdxl-lora
GeorgyGUF
2025-05-01T10:01:35Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2025-05-01T09:51:37Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: 'Liquid_Metal_e000007_00_20250501010601.png' output: url: Liquid_Metal_e000007_00_20250501010601.png - text: 'Liquid_Metal_e000007_01_20250501010617.png' output: url: Liquid_Metal_e000007_01_20250501010617.png - text: ' Liquid_Metal_e000007_02_20250501010633.png' output: url: Liquid_Metal_e000007_02_20250501010633.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Dreamy Psychedelic Metallic --- Source: https://civitai.com/models/1529052/liquid-metal Training data available here: https://huggingface.co/datasets/GeorgyGUF/Liquid-Metal-sdxl-lora-training-data Training: Steps: 520 Epochs: 10 Usage Tips: Clip Skip: 1 Trigger Words: Dreamy Psychedelic Metallic
puhaloferega7/zxczxcv
puhaloferega7
2025-05-01T09:51:38Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-01T09:51:38Z
--- license: apache-2.0 ---
joboffer/659d3f8c-492e-43fd-8dad-cf18ac3b86d9
joboffer
2025-05-01T09:25:20Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:lmsys/vicuna-13b-v1.5", "base_model:adapter:lmsys/vicuna-13b-v1.5", "license:llama2", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-01T09:15:01Z
--- library_name: peft license: llama2 base_model: lmsys/vicuna-13b-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: 659d3f8c-492e-43fd-8dad-cf18ac3b86d9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: lmsys/vicuna-13b-v1.5 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aea448971d563c88_train_data.json ds_type: json format: custom path: /workspace/input_data/aea448971d563c88_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: joboffer/659d3f8c-492e-43fd-8dad-cf18ac3b86d9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/aea448971d563c88_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7baf8287-21d3-45a2-9a55-f14342161888 wandb_project: s56-33 wandb_run: your_name wandb_runid: 7baf8287-21d3-45a2-9a55-f14342161888 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 659d3f8c-492e-43fd-8dad-cf18ac3b86d9 This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1452 | 0.1201 | 200 | 1.1167 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fsgao/fsgao
fsgao
2025-05-01T09:24:03Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-05-01T09:24:03Z
--- license: artistic-2.0 ---
funcFailer0/gemma-for-rec
funcFailer0
2025-05-01T09:17:11Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-1b-pt", "base_model:finetune:google/gemma-3-1b-pt", "endpoints_compatible", "region:us" ]
null
2025-05-01T02:03:13Z
--- base_model: google/gemma-3-1b-pt library_name: transformers model_name: gemma-for-rec tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-for-rec This model is a fine-tuned version of [google/gemma-3-1b-pt](https://huggingface.co/google/gemma-3-1b-pt). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="funcFailer0/gemma-for-rec", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.3.2 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
emmuelgojic/cvdbvcvb
emmuelgojic
2025-05-01T06:09:28Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-05-01T06:09:28Z
--- license: bigscience-openrail-m ---
PhoebeHarte/PhoebeHarte
PhoebeHarte
2025-05-01T06:08:33Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-01T06:08:29Z
--- license: apache-2.0 ---
KSJcompany/LLM-assignment1-KoBERT
KSJcompany
2025-05-01T05:58:07Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/Llama-3.2-1B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Llama-3.2-1B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-01T05:56:08Z
--- base_model: unsloth/Llama-3.2-1B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** KSJcompany - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-1B-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
infogeo/cfa3ecaa-f6a0-47c5-91d1-fe5637506368
infogeo
2025-05-01T05:50:58Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:codellama/CodeLlama-7b-hf", "base_model:adapter:codellama/CodeLlama-7b-hf", "license:llama2", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-01T05:40:00Z
--- library_name: peft license: llama2 base_model: codellama/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: cfa3ecaa-f6a0-47c5-91d1-fe5637506368 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: codellama/CodeLlama-7b-hf bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - fa1db5c5b576d7cf_train_data.json ds_type: json format: custom path: /workspace/input_data/fa1db5c5b576d7cf_train_data.json type: field_input: span_labels field_instruction: source_text field_output: target_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.55 group_by_length: false hub_model_id: infogeo/cfa3ecaa-f6a0-47c5-91d1-fe5637506368 hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/fa1db5c5b576d7cf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 415d1e52-e681-4ffd-ba97-801cc10bb890 wandb_project: s56-28 wandb_run: your_name wandb_runid: 415d1e52-e681-4ffd-ba97-801cc10bb890 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # cfa3ecaa-f6a0-47c5-91d1-fe5637506368 This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5768 | 0.0061 | 150 | 0.5791 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
silverleons/CMO
silverleons
2025-05-01T05:44:47Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-05-01T05:44:46Z
--- license: bigscience-bloom-rail-1.0 ---
metaverseinteriordesigner/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slithering_solitary_butterfly
metaverseinteriordesigner
2025-05-01T02:56:13Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am slithering solitary butterfly", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-10T13:19:46Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slithering_solitary_butterfly tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am slithering solitary butterfly - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slithering_solitary_butterfly This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="metaverseinteriordesigner/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slithering_solitary_butterfly", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
binhphap5/Qwen2.5-3b-vi_gsm8k-grpo
binhphap5
2025-05-01T02:19:10Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "grpo", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T11:46:36Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - grpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** binhphap5 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
zhuyiyun1/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-foxy_lanky_gecko
zhuyiyun1
2025-05-01T02:08:53Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am foxy lanky gecko", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T00:48:17Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-foxy_lanky_gecko tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am foxy lanky gecko - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-foxy_lanky_gecko This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="zhuyiyun1/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-foxy_lanky_gecko", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
rbelanec/train_wsc_1745950298
rbelanec
2025-05-01T02:02:53Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:google/gemma-3-1b-it", "base_model:adapter:google/gemma-3-1b-it", "license:gemma", "region:us" ]
null
2025-04-30T17:40:27Z
--- library_name: peft license: gemma base_model: google/gemma-3-1b-it tags: - llama-factory - lora - generated_from_trainer model-index: - name: train_wsc_1745950298 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_wsc_1745950298 This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on the wsc dataset. It achieves the following results on the evaluation set: - Loss: 0.2398 - Num Input Tokens Seen: 14005200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - training_steps: 40000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:--------:|:-----:|:---------------:|:-----------------:| | 0.2502 | 1.6024 | 200 | 0.2398 | 70208 | | 0.2243 | 3.2008 | 400 | 0.2570 | 140304 | | 0.2314 | 4.8032 | 600 | 0.2445 | 210336 | | 0.2246 | 6.4016 | 800 | 0.2456 | 280224 | | 0.2238 | 8.0 | 1000 | 0.2563 | 350448 | | 0.2056 | 9.6024 | 1200 | 0.3039 | 420560 | | 0.218 | 11.2008 | 1400 | 0.3033 | 490880 | | 0.2243 | 12.8032 | 1600 | 0.2909 | 560560 | | 0.228 | 14.4016 | 1800 | 0.2976 | 630816 | | 0.2312 | 16.0 | 2000 | 0.3352 | 699936 | | 0.256 | 17.6024 | 2200 | 0.3305 | 769520 | | 0.1819 | 19.2008 | 2400 | 0.5937 | 839648 | | 0.158 | 20.8032 | 2600 | 0.7600 | 910080 | | 0.1106 | 22.4016 | 2800 | 1.2361 | 979504 | | 0.1991 | 24.0 | 3000 | 1.0813 | 1049392 | | 0.1846 | 25.6024 | 3200 | 1.5614 | 1119904 | | 0.1735 | 27.2008 | 3400 | 2.3810 | 1189264 | | 0.1509 | 28.8032 | 3600 | 2.0245 | 1259520 | | 0.0021 | 30.4016 | 3800 | 3.0666 | 1329408 | | 0.0929 | 32.0 | 4000 | 3.0413 | 1399696 | | 0.0981 | 33.6024 | 4200 | 3.5872 | 1470240 | | 0.0002 | 35.2008 | 4400 | 3.5883 | 1539536 | | 0.0102 | 36.8032 | 4600 | 3.9757 | 1610032 | | 0.3213 | 38.4016 | 4800 | 4.2087 | 1680240 | | 0.0963 | 40.0 | 5000 | 4.1447 | 1749472 | | 0.0002 | 41.6024 | 5200 | 4.0717 | 1819376 | | 0.0 | 43.2008 | 5400 | 4.1688 | 1889616 | | 0.0 | 44.8032 | 5600 | 4.2851 | 1959536 | | 0.0 | 46.4016 | 5800 | 4.2626 | 2028864 | | 0.0002 | 48.0 | 6000 | 3.9931 | 2099424 | | 0.0 | 49.6024 | 6200 | 4.0036 | 2169376 | | 0.0 | 51.2008 | 6400 | 4.0874 | 2239408 | | 0.0 | 52.8032 | 6600 | 4.1775 | 2309472 | | 0.0 | 54.4016 | 6800 | 4.4232 | 2380032 | | 0.0 | 56.0 | 7000 | 4.3323 | 2449376 | | 0.1357 | 57.6024 | 7200 | 2.3013 | 2519776 | | 0.0004 | 59.2008 | 7400 | 3.9364 | 2589392 | | 0.0 | 60.8032 | 7600 | 4.5112 | 2659792 | | 0.0002 | 62.4016 | 7800 | 4.4699 | 2729184 | | 0.0 | 64.0 | 8000 | 4.7731 | 2799504 | | 0.0 | 65.6024 | 8200 | 4.6935 | 2869520 | | 0.0002 | 67.2008 | 8400 | 4.7713 | 2940080 | | 0.0 | 68.8032 | 8600 | 4.9666 | 3010256 | | 0.0 | 70.4016 | 8800 | 5.0120 | 3080304 | | 0.0 | 72.0 | 9000 | 5.0390 | 3150464 | | 0.0 | 73.6024 | 9200 | 5.0681 | 3220512 | | 0.0 | 75.2008 | 9400 | 5.0208 | 3290320 | | 0.0 | 76.8032 | 9600 | 5.0913 | 3360352 | | 0.0 | 78.4016 | 9800 | 5.1181 | 3430416 | | 0.0 | 80.0 | 10000 | 5.1148 | 3500544 | | 0.0 | 81.6024 | 10200 | 5.1373 | 3570432 | | 0.0 | 83.2008 | 10400 | 5.1854 | 3640832 | | 0.0 | 84.8032 | 10600 | 5.1791 | 3710480 | | 0.0 | 86.4016 | 10800 | 5.1904 | 3780368 | | 0.0 | 88.0 | 11000 | 5.2121 | 3850720 | | 0.0 | 89.6024 | 11200 | 5.2214 | 3920848 | | 0.0 | 91.2008 | 11400 | 5.1889 | 3990784 | | 0.0 | 92.8032 | 11600 | 5.2617 | 4060432 | | 0.0 | 94.4016 | 11800 | 5.2567 | 4130528 | | 0.0 | 96.0 | 12000 | 5.3243 | 4200848 | | 0.0 | 97.6024 | 12200 | 5.3238 | 4270928 | | 0.0 | 99.2008 | 12400 | 5.3268 | 4339920 | | 0.0 | 100.8032 | 12600 | 5.3216 | 4410624 | | 0.0 | 102.4016 | 12800 | 5.3369 | 4479904 | | 0.0 | 104.0 | 13000 | 5.3556 | 4549824 | | 0.0 | 105.6024 | 13200 | 5.3621 | 4620128 | | 0.0 | 107.2008 | 13400 | 5.4462 | 4690352 | | 0.0 | 108.8032 | 13600 | 5.4229 | 4760256 | | 0.0 | 110.4016 | 13800 | 5.3623 | 4830144 | | 0.0 | 112.0 | 14000 | 5.4414 | 4900080 | | 0.0 | 113.6024 | 14200 | 5.4651 | 4969936 | | 0.0 | 115.2008 | 14400 | 5.4911 | 5040096 | | 0.0 | 116.8032 | 14600 | 5.4978 | 5110288 | | 0.0 | 118.4016 | 14800 | 5.5403 | 5180208 | | 0.0 | 120.0 | 15000 | 5.5455 | 5250464 | | 0.0 | 121.6024 | 15200 | 5.5610 | 5320528 | | 0.0 | 123.2008 | 15400 | 5.5894 | 5390624 | | 0.0 | 124.8032 | 15600 | 5.6072 | 5460832 | | 0.0 | 126.4016 | 15800 | 5.6240 | 5530720 | | 0.0 | 128.0 | 16000 | 5.6497 | 5600992 | | 0.0 | 129.6024 | 16200 | 5.6333 | 5672032 | | 0.0 | 131.2008 | 16400 | 5.6614 | 5740976 | | 0.0 | 132.8032 | 16600 | 5.6828 | 5811248 | | 0.0 | 134.4016 | 16800 | 5.6995 | 5881152 | | 0.0 | 136.0 | 17000 | 5.7738 | 5951136 | | 0.0 | 137.6024 | 17200 | 5.7470 | 6021136 | | 0.0 | 139.2008 | 17400 | 5.7591 | 6091696 | | 0.0 | 140.8032 | 17600 | 5.7855 | 6161472 | | 0.0 | 142.4016 | 17800 | 5.8064 | 6231760 | | 0.0 | 144.0 | 18000 | 5.8327 | 6301232 | | 0.0 | 145.6024 | 18200 | 5.8848 | 6371776 | | 0.0 | 147.2008 | 18400 | 5.8775 | 6442048 | | 0.0 | 148.8032 | 18600 | 5.9053 | 6511680 | | 0.0 | 150.4016 | 18800 | 5.9010 | 6581136 | | 0.0 | 152.0 | 19000 | 5.9301 | 6651296 | | 0.0 | 153.6024 | 19200 | 5.9435 | 6721584 | | 0.0 | 155.2008 | 19400 | 5.9803 | 6791744 | | 0.0 | 156.8032 | 19600 | 6.0182 | 6862112 | | 0.0 | 158.4016 | 19800 | 6.0037 | 6931856 | | 0.0 | 160.0 | 20000 | 6.0110 | 7001952 | | 0.0 | 161.6024 | 20200 | 5.9660 | 7071568 | | 0.0 | 163.2008 | 20400 | 6.0137 | 7141584 | | 0.0 | 164.8032 | 20600 | 6.0390 | 7212096 | | 0.0 | 166.4016 | 20800 | 6.0555 | 7282736 | | 0.0 | 168.0 | 21000 | 6.0948 | 7352288 | | 0.0 | 169.6024 | 21200 | 6.1164 | 7422624 | | 0.0 | 171.2008 | 21400 | 6.1387 | 7492496 | | 0.0 | 172.8032 | 21600 | 6.1157 | 7562288 | | 0.0 | 174.4016 | 21800 | 6.1460 | 7632432 | | 0.0 | 176.0 | 22000 | 6.1857 | 7702096 | | 0.0 | 177.6024 | 22200 | 6.1444 | 7772000 | | 0.0 | 179.2008 | 22400 | 6.1881 | 7842112 | | 0.0 | 180.8032 | 22600 | 6.2875 | 7912496 | | 0.0 | 182.4016 | 22800 | 6.2525 | 7982768 | | 0.0 | 184.0 | 23000 | 6.2246 | 8052448 | | 0.0 | 185.6024 | 23200 | 6.2503 | 8122832 | | 0.0 | 187.2008 | 23400 | 6.2291 | 8193088 | | 0.0 | 188.8032 | 23600 | 6.2625 | 8263104 | | 0.0 | 190.4016 | 23800 | 6.2605 | 8333312 | | 0.0 | 192.0 | 24000 | 6.2397 | 8402848 | | 0.0 | 193.6024 | 24200 | 6.2157 | 8472688 | | 0.0 | 195.2008 | 24400 | 6.2733 | 8542528 | | 0.0 | 196.8032 | 24600 | 6.3027 | 8612928 | | 0.0 | 198.4016 | 24800 | 6.2369 | 8682896 | | 0.0 | 200.0 | 25000 | 6.3063 | 8752864 | | 0.0 | 201.6024 | 25200 | 6.2636 | 8823744 | | 0.0 | 203.2008 | 25400 | 6.2100 | 8893360 | | 0.0 | 204.8032 | 25600 | 6.2911 | 8963536 | | 0.0 | 206.4016 | 25800 | 6.2168 | 9033264 | | 0.0 | 208.0 | 26000 | 6.2600 | 9102880 | | 0.0 | 209.6024 | 26200 | 6.2668 | 9173088 | | 0.0 | 211.2008 | 26400 | 6.2681 | 9242752 | | 0.0 | 212.8032 | 26600 | 6.2854 | 9313008 | | 0.0 | 214.4016 | 26800 | 6.2501 | 9382592 | | 0.0 | 216.0 | 27000 | 6.2807 | 9452912 | | 0.0 | 217.6024 | 27200 | 6.2134 | 9522896 | | 0.0 | 219.2008 | 27400 | 6.3790 | 9592864 | | 0.0 | 220.8032 | 27600 | 6.3640 | 9663568 | | 0.0 | 222.4016 | 27800 | 6.3814 | 9733504 | | 0.0 | 224.0 | 28000 | 6.3391 | 9803232 | | 0.0 | 225.6024 | 28200 | 6.4282 | 9872976 | | 0.0 | 227.2008 | 28400 | 6.4834 | 9943472 | | 0.0 | 228.8032 | 28600 | 6.5947 | 10013472 | | 0.0 | 230.4016 | 28800 | 6.5284 | 10082944 | | 0.0 | 232.0 | 29000 | 6.6673 | 10153120 | | 0.0 | 233.6024 | 29200 | 6.6531 | 10223856 | | 0.0 | 235.2008 | 29400 | 6.7943 | 10293888 | | 0.0 | 236.8032 | 29600 | 6.8080 | 10363824 | | 0.0 | 238.4016 | 29800 | 6.8269 | 10433056 | | 0.0 | 240.0 | 30000 | 6.7854 | 10503136 | | 0.0 | 241.6024 | 30200 | 6.9273 | 10573568 | | 0.0 | 243.2008 | 30400 | 6.8975 | 10642912 | | 0.0 | 244.8032 | 30600 | 6.9270 | 10713264 | | 0.0 | 246.4016 | 30800 | 6.9037 | 10783152 | | 0.0 | 248.0 | 31000 | 6.9580 | 10853376 | | 0.0 | 249.6024 | 31200 | 6.8934 | 10923696 | | 0.0 | 251.2008 | 31400 | 6.9023 | 10994016 | | 0.0 | 252.8032 | 31600 | 6.8389 | 11063664 | | 0.0 | 254.4016 | 31800 | 6.7591 | 11133840 | | 0.0 | 256.0 | 32000 | 6.7549 | 11203504 | | 0.0 | 257.6024 | 32200 | 6.8300 | 11273840 | | 0.0 | 259.2008 | 32400 | 6.7702 | 11342832 | | 0.0 | 260.8032 | 32600 | 6.7095 | 11412832 | | 0.0 | 262.4016 | 32800 | 6.7570 | 11482880 | | 0.0 | 264.0 | 33000 | 6.7268 | 11552512 | | 0.0 | 265.6024 | 33200 | 6.6205 | 11622560 | | 0.0 | 267.2008 | 33400 | 6.5914 | 11692336 | | 0.0 | 268.8032 | 33600 | 6.6435 | 11763296 | | 0.0 | 270.4016 | 33800 | 6.6254 | 11833168 | | 0.0 | 272.0 | 34000 | 6.5398 | 11902608 | | 0.0 | 273.6024 | 34200 | 6.4623 | 11973440 | | 0.0 | 275.2008 | 34400 | 6.5638 | 12042992 | | 0.0 | 276.8032 | 34600 | 6.5642 | 12113808 | | 0.0 | 278.4016 | 34800 | 6.5720 | 12183456 | | 0.0 | 280.0 | 35000 | 6.5277 | 12253312 | | 0.0 | 281.6024 | 35200 | 6.5080 | 12323712 | | 0.0 | 283.2008 | 35400 | 6.4282 | 12393344 | | 0.0 | 284.8032 | 35600 | 6.5433 | 12463296 | | 0.0 | 286.4016 | 35800 | 6.5506 | 12533712 | | 0.0 | 288.0 | 36000 | 6.4980 | 12603312 | | 0.0 | 289.6024 | 36200 | 6.4744 | 12672944 | | 0.0 | 291.2008 | 36400 | 6.4789 | 12743584 | | 0.0 | 292.8032 | 36600 | 6.5051 | 12814000 | | 0.0 | 294.4016 | 36800 | 6.5353 | 12883584 | | 0.0 | 296.0 | 37000 | 6.4756 | 12954144 | | 0.0 | 297.6024 | 37200 | 6.5368 | 13024112 | | 0.0 | 299.2008 | 37400 | 6.5682 | 13094448 | | 0.0 | 300.8032 | 37600 | 6.5119 | 13164640 | | 0.0 | 302.4016 | 37800 | 6.4694 | 13234048 | | 0.0 | 304.0 | 38000 | 6.5104 | 13304512 | | 0.0 | 305.6024 | 38200 | 6.5197 | 13374272 | | 0.0 | 307.2008 | 38400 | 6.4882 | 13444512 | | 0.0 | 308.8032 | 38600 | 6.5518 | 13514848 | | 0.0 | 310.4016 | 38800 | 6.4864 | 13584800 | | 0.0 | 312.0 | 39000 | 6.5067 | 13654928 | | 0.0 | 313.6024 | 39200 | 6.4883 | 13724752 | | 0.0 | 315.2008 | 39400 | 6.5242 | 13794224 | | 0.0 | 316.8032 | 39600 | 6.5555 | 13865104 | | 0.0 | 318.4016 | 39800 | 6.5335 | 13935776 | | 0.0 | 320.0 | 40000 | 6.5357 | 14005200 | ### Framework versions - PEFT 0.15.2.dev0 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
SonikSt/REDiDream-GGUF
SonikSt
2025-04-30T23:26:08Z
0
0
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2025-04-30T20:42:44Z
--- license: apache-2.0 ---
enacimie/Qwen3-30B-A3B-Q4_K_M-GGUF
enacimie
2025-04-30T23:01:09Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Qwen/Qwen3-30B-A3B", "base_model:quantized:Qwen/Qwen3-30B-A3B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-30T22:37:44Z
--- base_model: Qwen/Qwen3-30B-A3B library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # enacimie/Qwen3-30B-A3B-Q4_K_M-GGUF This model was converted to GGUF format from [`Qwen/Qwen3-30B-A3B`](https://huggingface.co/Qwen/Qwen3-30B-A3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-30B-A3B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo enacimie/Qwen3-30B-A3B-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo enacimie/Qwen3-30B-A3B-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo enacimie/Qwen3-30B-A3B-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo enacimie/Qwen3-30B-A3B-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-q4_k_m.gguf -c 2048 ```
rbelanec/train_wsc_1745950299
rbelanec
2025-04-30T21:51:00Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lntuning", "generated_from_trainer", "base_model:google/gemma-3-1b-it", "base_model:adapter:google/gemma-3-1b-it", "license:gemma", "region:us" ]
null
2025-04-30T17:58:17Z
--- library_name: peft license: gemma base_model: google/gemma-3-1b-it tags: - llama-factory - lntuning - generated_from_trainer model-index: - name: train_wsc_1745950299 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_wsc_1745950299 This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on the wsc dataset. It achieves the following results on the evaluation set: - Loss: 4.9965 - Num Input Tokens Seen: 14005200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - training_steps: 40000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:--------:|:-----:|:---------------:|:-----------------:| | 5.8826 | 1.6024 | 200 | 5.5053 | 70208 | | 5.0763 | 3.2008 | 400 | 5.3567 | 140304 | | 4.7646 | 4.8032 | 600 | 5.3163 | 210336 | | 5.7497 | 6.4016 | 800 | 5.3232 | 280224 | | 5.7576 | 8.0 | 1000 | 5.2744 | 350448 | | 5.3493 | 9.6024 | 1200 | 5.2395 | 420560 | | 5.9306 | 11.2008 | 1400 | 5.2913 | 490880 | | 5.5849 | 12.8032 | 1600 | 5.2287 | 560560 | | 5.3923 | 14.4016 | 1800 | 5.2059 | 630816 | | 5.1131 | 16.0 | 2000 | 5.1597 | 699936 | | 4.9402 | 17.6024 | 2200 | 5.1741 | 769520 | | 5.4474 | 19.2008 | 2400 | 5.1759 | 839648 | | 4.8209 | 20.8032 | 2600 | 5.1446 | 910080 | | 4.9124 | 22.4016 | 2800 | 5.1089 | 979504 | | 5.2709 | 24.0 | 3000 | 5.1325 | 1049392 | | 5.278 | 25.6024 | 3200 | 5.0762 | 1119904 | | 4.916 | 27.2008 | 3400 | 5.1474 | 1189264 | | 5.1115 | 28.8032 | 3600 | 5.1005 | 1259520 | | 5.2598 | 30.4016 | 3800 | 5.0810 | 1329408 | | 5.4014 | 32.0 | 4000 | 5.0811 | 1399696 | | 5.419 | 33.6024 | 4200 | 5.0911 | 1470240 | | 5.7328 | 35.2008 | 4400 | 5.0783 | 1539536 | | 5.2734 | 36.8032 | 4600 | 5.0743 | 1610032 | | 5.3228 | 38.4016 | 4800 | 5.0611 | 1680240 | | 5.9158 | 40.0 | 5000 | 5.0856 | 1749472 | | 5.3068 | 41.6024 | 5200 | 5.0227 | 1819376 | | 5.1287 | 43.2008 | 5400 | 5.0778 | 1889616 | | 5.2446 | 44.8032 | 5600 | 5.0547 | 1959536 | | 5.2095 | 46.4016 | 5800 | 5.0481 | 2028864 | | 5.2743 | 48.0 | 6000 | 5.0404 | 2099424 | | 5.1529 | 49.6024 | 6200 | 5.0544 | 2169376 | | 5.1871 | 51.2008 | 6400 | 5.0362 | 2239408 | | 5.2363 | 52.8032 | 6600 | 5.0370 | 2309472 | | 5.5796 | 54.4016 | 6800 | 5.0583 | 2380032 | | 4.5613 | 56.0 | 7000 | 5.0546 | 2449376 | | 5.5949 | 57.6024 | 7200 | 5.0837 | 2519776 | | 5.4713 | 59.2008 | 7400 | 5.1097 | 2589392 | | 5.0727 | 60.8032 | 7600 | 5.0747 | 2659792 | | 4.7446 | 62.4016 | 7800 | 5.0783 | 2729184 | | 5.3469 | 64.0 | 8000 | 5.0736 | 2799504 | | 4.921 | 65.6024 | 8200 | 5.0933 | 2869520 | | 5.0852 | 67.2008 | 8400 | 5.0411 | 2940080 | | 4.6469 | 68.8032 | 8600 | 5.0502 | 3010256 | | 5.218 | 70.4016 | 8800 | 5.0291 | 3080304 | | 5.1953 | 72.0 | 9000 | 5.0702 | 3150464 | | 4.5804 | 73.6024 | 9200 | 5.0236 | 3220512 | | 4.8164 | 75.2008 | 9400 | 5.0161 | 3290320 | | 5.5157 | 76.8032 | 9600 | 5.0176 | 3360352 | | 5.0423 | 78.4016 | 9800 | 5.0560 | 3430416 | | 4.7418 | 80.0 | 10000 | 5.0621 | 3500544 | | 4.4244 | 81.6024 | 10200 | 5.0575 | 3570432 | | 4.9467 | 83.2008 | 10400 | 5.0453 | 3640832 | | 5.0881 | 84.8032 | 10600 | 5.0475 | 3710480 | | 5.0995 | 86.4016 | 10800 | 5.0685 | 3780368 | | 5.0999 | 88.0 | 11000 | 5.0329 | 3850720 | | 5.4019 | 89.6024 | 11200 | 5.0374 | 3920848 | | 5.0643 | 91.2008 | 11400 | 5.0753 | 3990784 | | 5.2435 | 92.8032 | 11600 | 5.0708 | 4060432 | | 5.0528 | 94.4016 | 11800 | 5.0673 | 4130528 | | 5.5103 | 96.0 | 12000 | 5.0910 | 4200848 | | 5.1448 | 97.6024 | 12200 | 5.1100 | 4270928 | | 5.2059 | 99.2008 | 12400 | 5.1052 | 4339920 | | 4.6471 | 100.8032 | 12600 | 5.1017 | 4410624 | | 4.9262 | 102.4016 | 12800 | 5.0293 | 4479904 | | 5.2129 | 104.0 | 13000 | 5.0363 | 4549824 | | 5.0756 | 105.6024 | 13200 | 4.9999 | 4620128 | | 4.8911 | 107.2008 | 13400 | 5.0197 | 4690352 | | 5.4105 | 108.8032 | 13600 | 5.0017 | 4760256 | | 4.6367 | 110.4016 | 13800 | 4.9981 | 4830144 | | 4.9558 | 112.0 | 14000 | 5.0126 | 4900080 | | 4.8652 | 113.6024 | 14200 | 4.9965 | 4969936 | | 4.7695 | 115.2008 | 14400 | 5.0050 | 5040096 | | 4.9551 | 116.8032 | 14600 | 5.0302 | 5110288 | | 5.1785 | 118.4016 | 14800 | 5.0197 | 5180208 | | 5.2527 | 120.0 | 15000 | 5.0144 | 5250464 | | 5.2254 | 121.6024 | 15200 | 5.0178 | 5320528 | | 5.5968 | 123.2008 | 15400 | 5.0225 | 5390624 | | 5.219 | 124.8032 | 15600 | 5.0071 | 5460832 | | 4.4181 | 126.4016 | 15800 | 5.0124 | 5530720 | | 4.7678 | 128.0 | 16000 | 5.0128 | 5600992 | | 4.8807 | 129.6024 | 16200 | 5.0184 | 5672032 | | 4.771 | 131.2008 | 16400 | 5.0164 | 5740976 | | 4.8087 | 132.8032 | 16600 | 5.0120 | 5811248 | | 4.7813 | 134.4016 | 16800 | 5.0046 | 5881152 | | 5.5101 | 136.0 | 17000 | 5.0140 | 5951136 | | 4.8141 | 137.6024 | 17200 | 5.0294 | 6021136 | | 5.2025 | 139.2008 | 17400 | 5.0068 | 6091696 | | 4.9835 | 140.8032 | 17600 | 5.0054 | 6161472 | | 4.9103 | 142.4016 | 17800 | 5.0068 | 6231760 | | 5.8432 | 144.0 | 18000 | 5.0100 | 6301232 | | 5.6101 | 145.6024 | 18200 | 5.0059 | 6371776 | | 5.0518 | 147.2008 | 18400 | 5.0231 | 6442048 | | 5.0497 | 148.8032 | 18600 | 5.0045 | 6511680 | | 4.5987 | 150.4016 | 18800 | 5.0037 | 6581136 | | 5.5221 | 152.0 | 19000 | 5.0084 | 6651296 | | 5.1569 | 153.6024 | 19200 | 5.0084 | 6721584 | | 5.0575 | 155.2008 | 19400 | 5.0120 | 6791744 | | 5.2444 | 156.8032 | 19600 | 5.0055 | 6862112 | | 4.7524 | 158.4016 | 19800 | 5.0055 | 6931856 | | 4.8124 | 160.0 | 20000 | 5.0074 | 7001952 | | 5.3737 | 161.6024 | 20200 | 5.0105 | 7071568 | | 4.8858 | 163.2008 | 20400 | 5.0051 | 7141584 | | 4.8946 | 164.8032 | 20600 | 5.0105 | 7212096 | | 4.9381 | 166.4016 | 20800 | 5.0115 | 7282736 | | 4.8341 | 168.0 | 21000 | 5.0151 | 7352288 | | 5.3904 | 169.6024 | 21200 | 5.0080 | 7422624 | | 5.2622 | 171.2008 | 21400 | 5.0105 | 7492496 | | 5.0821 | 172.8032 | 21600 | 5.0128 | 7562288 | | 5.4209 | 174.4016 | 21800 | 5.0128 | 7632432 | | 4.7799 | 176.0 | 22000 | 5.0092 | 7702096 | | 5.8407 | 177.6024 | 22200 | 5.0092 | 7772000 | | 5.1688 | 179.2008 | 22400 | 5.0092 | 7842112 | | 5.2247 | 180.8032 | 22600 | 5.0092 | 7912496 | | 5.1015 | 182.4016 | 22800 | 5.0129 | 7982768 | | 5.6092 | 184.0 | 23000 | 5.0129 | 8052448 | | 5.5411 | 185.6024 | 23200 | 5.0129 | 8122832 | | 4.979 | 187.2008 | 23400 | 5.0140 | 8193088 | | 5.157 | 188.8032 | 23600 | 5.0140 | 8263104 | | 5.009 | 190.4016 | 23800 | 5.0140 | 8333312 | | 5.591 | 192.0 | 24000 | 5.0140 | 8402848 | | 5.0195 | 193.6024 | 24200 | 5.0140 | 8472688 | | 4.8046 | 195.2008 | 24400 | 5.0140 | 8542528 | | 4.8943 | 196.8032 | 24600 | 5.0140 | 8612928 | | 5.1195 | 198.4016 | 24800 | 5.0140 | 8682896 | | 4.5993 | 200.0 | 25000 | 5.0140 | 8752864 | | 4.9 | 201.6024 | 25200 | 5.0140 | 8823744 | | 5.1337 | 203.2008 | 25400 | 5.0140 | 8893360 | | 5.3839 | 204.8032 | 25600 | 5.0140 | 8963536 | | 4.9969 | 206.4016 | 25800 | 5.0140 | 9033264 | | 5.2706 | 208.0 | 26000 | 5.0140 | 9102880 | | 5.072 | 209.6024 | 26200 | 5.0140 | 9173088 | | 4.8892 | 211.2008 | 26400 | 5.0140 | 9242752 | | 5.1248 | 212.8032 | 26600 | 5.0140 | 9313008 | | 5.2002 | 214.4016 | 26800 | 5.0140 | 9382592 | | 5.1155 | 216.0 | 27000 | 5.0140 | 9452912 | | 4.5617 | 217.6024 | 27200 | 5.0140 | 9522896 | | 5.0017 | 219.2008 | 27400 | 5.0140 | 9592864 | | 5.0964 | 220.8032 | 27600 | 5.0140 | 9663568 | | 5.1408 | 222.4016 | 27800 | 5.0140 | 9733504 | | 5.1874 | 224.0 | 28000 | 5.0140 | 9803232 | | 4.8597 | 225.6024 | 28200 | 5.0140 | 9872976 | | 5.2342 | 227.2008 | 28400 | 5.0140 | 9943472 | | 4.9542 | 228.8032 | 28600 | 5.0140 | 10013472 | | 5.5457 | 230.4016 | 28800 | 5.0140 | 10082944 | | 5.2678 | 232.0 | 29000 | 5.0140 | 10153120 | | 5.4961 | 233.6024 | 29200 | 5.0140 | 10223856 | | 5.5974 | 235.2008 | 29400 | 5.0140 | 10293888 | | 5.3689 | 236.8032 | 29600 | 5.0140 | 10363824 | | 5.0799 | 238.4016 | 29800 | 5.0140 | 10433056 | | 5.4038 | 240.0 | 30000 | 5.0140 | 10503136 | | 5.5451 | 241.6024 | 30200 | 5.0140 | 10573568 | | 5.3873 | 243.2008 | 30400 | 5.0140 | 10642912 | | 5.3173 | 244.8032 | 30600 | 5.0140 | 10713264 | | 5.2546 | 246.4016 | 30800 | 5.0140 | 10783152 | | 4.8004 | 248.0 | 31000 | 5.0140 | 10853376 | | 5.2339 | 249.6024 | 31200 | 5.0140 | 10923696 | | 5.2339 | 251.2008 | 31400 | 5.0140 | 10994016 | | 5.6051 | 252.8032 | 31600 | 5.0140 | 11063664 | | 5.3693 | 254.4016 | 31800 | 5.0140 | 11133840 | | 5.1762 | 256.0 | 32000 | 5.0140 | 11203504 | | 5.0229 | 257.6024 | 32200 | 5.0140 | 11273840 | | 5.1271 | 259.2008 | 32400 | 5.0140 | 11342832 | | 5.4677 | 260.8032 | 32600 | 5.0140 | 11412832 | | 4.684 | 262.4016 | 32800 | 5.0140 | 11482880 | | 4.684 | 264.0 | 33000 | 5.0140 | 11552512 | | 5.0538 | 265.6024 | 33200 | 5.0140 | 11622560 | | 5.1218 | 267.2008 | 33400 | 5.0140 | 11692336 | | 5.2379 | 268.8032 | 33600 | 5.0140 | 11763296 | | 5.1809 | 270.4016 | 33800 | 5.0140 | 11833168 | | 5.3555 | 272.0 | 34000 | 5.0140 | 11902608 | | 5.4007 | 273.6024 | 34200 | 5.0140 | 11973440 | | 5.1665 | 275.2008 | 34400 | 5.0140 | 12042992 | | 4.8605 | 276.8032 | 34600 | 5.0140 | 12113808 | | 5.1055 | 278.4016 | 34800 | 5.0140 | 12183456 | | 4.3887 | 280.0 | 35000 | 5.0140 | 12253312 | | 5.1911 | 281.6024 | 35200 | 5.0140 | 12323712 | | 4.8782 | 283.2008 | 35400 | 5.0140 | 12393344 | | 5.0216 | 284.8032 | 35600 | 5.0140 | 12463296 | | 5.3139 | 286.4016 | 35800 | 5.0140 | 12533712 | | 5.0383 | 288.0 | 36000 | 5.0140 | 12603312 | | 4.5486 | 289.6024 | 36200 | 5.0140 | 12672944 | | 4.8665 | 291.2008 | 36400 | 5.0140 | 12743584 | | 5.4847 | 292.8032 | 36600 | 5.0140 | 12814000 | | 5.5078 | 294.4016 | 36800 | 5.0140 | 12883584 | | 4.8833 | 296.0 | 37000 | 5.0140 | 12954144 | | 5.3515 | 297.6024 | 37200 | 5.0140 | 13024112 | | 4.9033 | 299.2008 | 37400 | 5.0140 | 13094448 | | 5.0591 | 300.8032 | 37600 | 5.0140 | 13164640 | | 5.5834 | 302.4016 | 37800 | 5.0140 | 13234048 | | 5.2175 | 304.0 | 38000 | 5.0140 | 13304512 | | 5.1956 | 305.6024 | 38200 | 5.0140 | 13374272 | | 5.6496 | 307.2008 | 38400 | 5.0140 | 13444512 | | 5.0242 | 308.8032 | 38600 | 5.0140 | 13514848 | | 5.3893 | 310.4016 | 38800 | 5.0140 | 13584800 | | 5.0775 | 312.0 | 39000 | 5.0140 | 13654928 | | 4.9615 | 313.6024 | 39200 | 5.0140 | 13724752 | | 4.8723 | 315.2008 | 39400 | 5.0140 | 13794224 | | 5.1099 | 316.8032 | 39600 | 5.0140 | 13865104 | | 5.2058 | 318.4016 | 39800 | 5.0140 | 13935776 | | 5.5803 | 320.0 | 40000 | 5.0140 | 14005200 | ### Framework versions - PEFT 0.15.2.dev0 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
mradermacher/OpenThinker2-32B-Uncensored-GGUF
mradermacher
2025-04-30T21:48:02Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "dataset:Guilherme34/uncensor", "base_model:nicoboss/OpenThinker2-32B-Uncensored", "base_model:quantized:nicoboss/OpenThinker2-32B-Uncensored", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-30T20:28:50Z
--- base_model: nicoboss/OpenThinker2-32B-Uncensored datasets: - Guilherme34/uncensor language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-32B/blob/main/LICENSE quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/nicoboss/OpenThinker2-32B-Uncensored <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OpenThinker2-32B-Uncensored-GGUF/resolve/main/OpenThinker2-32B-Uncensored.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
lisabdunlap/testing_lora
lisabdunlap
2025-04-30T21:44:26Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Llama-3.1-8B-Instruct-unsloth-bnb-4bit", "base_model:finetune:unsloth/Llama-3.1-8B-Instruct-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T21:24:49Z
--- base_model: unsloth/Llama-3.1-8B-Instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** lisabdunlap - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.1-8B-Instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bocilanomali/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wary_nimble_cobra
bocilanomali
2025-04-30T21:10:15Z
1
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am wary nimble cobra", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T19:01:04Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wary_nimble_cobra tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am wary nimble cobra - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wary_nimble_cobra This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bocilanomali/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wary_nimble_cobra", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
arskvnc22/unsloth-therapistlike_lora
arskvnc22
2025-04-30T20:22:32Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-30T20:22:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mlx-community/InternVL3-9B-bf16
mlx-community
2025-04-30T19:47:33Z
0
0
transformers
[ "transformers", "safetensors", "internvl_chat", "feature-extraction", "internvl", "custom_code", "mlx", "image-text-to-text", "conversational", "multilingual", "dataset:OpenGVLab/MMPR-v1.2", "base_model:OpenGVLab/InternVL3-1B-Instruct", "base_model:finetune:OpenGVLab/InternVL3-1B-Instruct", "license:apache-2.0", "region:us" ]
image-text-to-text
2025-04-30T19:36:23Z
--- license: apache-2.0 license_name: qwen license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE pipeline_tag: image-text-to-text library_name: transformers base_model: - OpenGVLab/InternVL3-1B-Instruct base_model_relation: finetune datasets: - OpenGVLab/MMPR-v1.2 language: - multilingual tags: - internvl - custom_code - mlx --- # mlx-community/InternVL3-9B-bf16 This model was converted to MLX format from [`models/InternVL3-9B`]() using mlx-vlm version **0.1.25**. Refer to the [original model card](https://huggingface.co/models/InternVL3-9B) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model mlx-community/InternVL3-9B-bf16 --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
marialvsantiago/a9a6b403-6fac-4f2b-ab9c-fba1f0297fa8
marialvsantiago
2025-04-30T19:44:44Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-30T19:34:23Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: a9a6b403-6fac-4f2b-ab9c-fba1f0297fa8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/sqlcoder-7b-2 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 83b3569a6bcb443f_train_data.json ds_type: json format: custom path: /workspace/input_data/83b3569a6bcb443f_train_data.json type: field_input: documents field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: marialvsantiago/a9a6b403-6fac-4f2b-ab9c-fba1f0297fa8 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/83b3569a6bcb443f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9b28eaba-1bed-48d6-b5ad-afab6f3a2560 wandb_project: s56-33 wandb_run: your_name wandb_runid: 9b28eaba-1bed-48d6-b5ad-afab6f3a2560 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a9a6b403-6fac-4f2b-ab9c-fba1f0297fa8 This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8317 | 0.0426 | 200 | 1.6320 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Yuhan123/ppo-reading-level-12th-1-steps-10000-epoch-999-best-eval-score-0.356
Yuhan123
2025-04-30T18:19:09Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T18:16:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Deepshikha11/backpack_dog
Deepshikha11
2025-04-30T18:16:55Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "diffusers-training", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-04-30T16:56:35Z
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion - diffusers-training --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Textual inversion text2image fine-tuning - Deepshikha11/backpack_dog These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
vnyaryan/model
vnyaryan
2025-04-30T18:16:39Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-30T18:16:06Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** vnyaryan - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
niklasm222/qwen2.5-3b-grpo-1.75k-gsm8k-prolog-v4.2-rwd1-NEW
niklasm222
2025-04-30T18:11:54Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "grpo", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T18:10:09Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - grpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** niklasm222 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
btswiki-com-paro-aarti-viral/btswiki.com.7.2.video.link.btswiki.com.paro.aarti.viral.video
btswiki-com-paro-aarti-viral
2025-04-30T17:48:38Z
0
0
null
[ "region:us" ]
null
2025-04-30T17:47:55Z
<a href="https://sdu.sk/9Ip"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/9Ip" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/9Ip" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a> Who Is Shah Gangu chettri? Gangu chettri is a name thatโ€™s been making rounds on social media and search engines, especially after a certain โ€œviral videoโ€ started trending. But before jumping to conclusions, itโ€™s essential to separate facts from fiction.
HassaanSeeker/llama-3.2-1b-guanco-finetuned-qlora-layerskip
HassaanSeeker
2025-04-30T17:26:57Z
14
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T21:46:24Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DataScienceWFSR/distilbert-food-hazard-rw
DataScienceWFSR
2025-04-30T17:15:54Z
2
0
null
[ "safetensors", "distilbert", "text-classification", "en", "arxiv:2504.20703", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "region:us" ]
text-classification
2025-04-30T10:22:53Z
--- language: - en metrics: - f1 base_model: - distilbert/distilbert-base-uncased pipeline_tag: text-classification --- # DistilBert Food Hazard Classification Model - Random Word Swapping Augmentation ## Model Details ### Model Description This model is finetuned on multi-class food hazard text classification using random word swapping augmentation and distilbert-base-uncased. - **Developed by:** [DataScienceWFSR](https://huggingface.co/DataScienceWFSR) - **Model type:** Text Classification - **Language(s) (NLP):** English - **Finetuned from model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) ### Model Sources - **Repository:** [https://github.com/WFSRDataScience/SemEval2025Task9](https://github.com/WFSRDataScience/SemEval2025Task9) - **Paper :** [https://arxiv.org/abs/2504.20703](https://arxiv.org/abs/2504.20703) ## How to Get Started With the Model Use the code below to get started with the model in PyTorch. ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from huggingface_hub import hf_hub_download import pandas as pd model, category, augmentation = 'distilbert', 'hazard', 'rw' repo_id = f"DataScienceWFSR/{model}-food-{category}-{augmentation}" lb_path = hf_hub_download(repo_id=repo_id, filename=f"labelencoder_{category}.pkl") lb = pd.read_pickle(lb_path) tokenizer = AutoTokenizer.from_pretrained(repo_id) model = AutoModelForSequenceClassification.from_pretrained(repo_id) model.eval() sample = ('Case Number: 039-94 Date Opened: 10/20/1994 Date Closed: 03/06/1995 Recall Class: 1' ' Press Release (Y/N): N Domestic Est. Number: 07188 M Name: PREPARED FOODS Imported ' 'Product (Y/N): N Foreign Estab. Number: N/A City: SANTA TERESA State: NM Country: USA' ' Product: HAM, SLICED Problem: BACTERIA Description: LISTERIA ' 'Total Pounds Recalled: 3,920 Pounds Recovered: 3,920') inputs = tokenizer(sample, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predictions = outputs.logits.argmax(dim=-1) predicted_label = lb.inverse_transform(predictions.numpy())[0] print(f"The predicted label is: {predicted_label}") ``` ## Training Details ### Training Data Training and Validation data provided by SemEval-2025 Task 9 organizers : `Food Recall Incidents` dataset (only English) [link](https://github.com/food-hazard-detection-semeval-2025/food-hazard-detection-semeval-2025.github.io/tree/main/data) ### Training Procedure #### Training Hyperparameters - batch_size: `32` - epochs: `10` - lr_scheduler: `cosine with Restarts` ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data & Metrics #### Testing Data Test data: 997 samples ([link](https://github.com/food-hazard-detection-semeval-2025/food-hazard-detection-semeval-2025.github.io/blob/main/data/incidents_test.csv)) #### Metrics F<sub>1</sub>-macro ### Results F<sub>1</sub>-macro scores for each model in the official test set utilizing the `text` field per category and subtasks scores (ST1 and ST2) rounded to 3 decimals. With bold, we indicated the model's specific results. | Model | hazard-category | product-category | hazard | product | ST1 | ST2 | |----------------------|----------------:|-----------------:|-------:|--------:|------:|------:| | BERT<sub>base</sub> | 0.747 | 0.757 | 0.581 | 0.170 | 0.753 | 0.382 | | BERT<sub>CW</sub> | 0.760 | 0.761 | 0.671 | 0.280 | 0.762 | 0.491 | | BERT<sub>SR</sub> | 0.770 | 0.754 | 0.666 | 0.275 | 0.764 | 0.478 | | BERT<sub>RW</sub> | 0.752 | 0.757 | 0.651 | 0.275 | 0.756 | 0.467 | | DistilBERT<sub>base</sub> | 0.761 | 0.757 | 0.593 | 0.154 | 0.760 | 0.378 | | DistilBERT<sub>CW</sub> | 0.766 | 0.753 | 0.635 | 0.246 | 0.763 | 0.449 | | DistilBERT<sub>SR</sub> | 0.756 | 0.759 | 0.644 | 0.240 | 0.763 | 0.448 | | **DistilBERT<sub>RW</sub>** | **0.749** | **0.747** | **0.647** | **0.261** | **0.753** | **0.462** | | RoBERTa<sub>base</sub> | 0.760 | 0.753 | 0.579 | 0.123 | 0.755 | 0.356 | | RoBERTa<sub>CW</sub> | 0.773 | 0.739 | 0.630 | 0.000 | 0.760 | 0.315 | | RoBERTa<sub>SR</sub> | 0.777 | 0.755 | 0.637 | 0.000 | 0.767 | 0.319 | | RoBERTa<sub>RW</sub> | 0.757 | 0.611 | 0.615 | 0.000 | 0.686 | 0.308 | | ModernBERT<sub>base</sub> | 0.781 | 0.745 | 0.667 | 0.275 | 0.769 | 0.485 | | ModernBERT<sub>CW</sub> | 0.761 | 0.712 | 0.609 | 0.252 | 0.741 | 0.441 | | ModernBERT<sub>SR</sub> | 0.790 | 0.728 | 0.591 | 0.253 | 0.761 | 0.434 | | ModernBERT<sub>RW</sub> | 0.761 | 0.751 | 0.629 | 0.237 | 0.759 | 0.440 | ## Technical Specifications ### Compute Infrastructure #### Hardware NVIDIA A100 80GB and NVIDIA GeForce RTX 3070 Ti #### Software | Library | Version | URL | |-------------------|--------:|---------------------------------------------------------------------| | Transformers | 4.49.0 | https://huggingface.co/docs/transformers/index | | PyTorch | 2.6.0 | https://pytorch.org/ | | SpaCy | 3.8.4 | https://spacy.io/ | | Scikit-learn | 1.6.0 | https://scikit-learn.org/stable/ | | Pandas | 2.2.3 | https://pandas.pydata.org/ | | Optuna | 4.2.1 | https://optuna.org/ | | NumPy | 2.0.2 | https://numpy.org/ | | NLP AUG | 1.1.11 | https://nlpaug.readthedocs.io/en/latest/index.html | | BeautifulSoup4 | 4.12.3 | https://www.crummy.com/software/BeautifulSoup/bs4/doc/# | ## Citation **BibTeX:** For the original paper: ``` @inproceedings{brightcookies-semeval2025-task9, title="BrightCookies at {S}em{E}val-2025 Task 9: Exploring Data Augmentation for Food Hazard Classification}, author="Papadopoulou, Foteini and Mutlu, Osman and ร–zen, Neris and van der Velden, Bas H. M. and Hendrickx, Iris and HรผrriyetoฤŸlu, Ali", booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)", month = jul, year = "2025", address = "Vienna, Austria", publisher = "Association for Computational Linguistics", } ``` For the SemEval2025 Task9: ``` @inproceedings{semeval2025-task9, title = "{S}em{E}val-2025 Task 9: The Food Hazard Detection Challenge", author = "Randl, Korbinian and Pavlopoulos, John and Henriksson, Aron and Lindgren, Tony and Bakagianni, Juli", booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)", month = jul, year = "2025", address = "Vienna, Austria", publisher = "Association for Computational Linguistics", } ``` ## Model Card Authors and Contact Authors: Foteini Papadopoulou, Osman Mutlu, Neris ร–zen, Bas H.M. van der Velden, Iris Hendrickx, Ali HรผrriyetoฤŸlu Contact: [email protected]
secmlr/SWE-BENCH-2000-enriched-reasoning-claude-localization_deepcoder_14b_2000_enriched_reasoning
secmlr
2025-04-30T16:56:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:agentica-org/DeepCoder-14B-Preview", "base_model:finetune:agentica-org/DeepCoder-14B-Preview", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T08:45:24Z
--- library_name: transformers license: mit base_model: agentica-org/DeepCoder-14B-Preview tags: - llama-factory - full - generated_from_trainer model-index: - name: SWE-BENCH-2000-enriched-reasoning-claude-localization_deepcoder_14b_2000_enriched_reasoning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SWE-BENCH-2000-enriched-reasoning-claude-localization_deepcoder_14b_2000_enriched_reasoning This model is a fine-tuned version of [agentica-org/DeepCoder-14B-Preview](https://huggingface.co/agentica-org/DeepCoder-14B-Preview) on the SWE-BENCH-2000-enriched-reasoning-claude-localization dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 12 - total_train_batch_size: 48 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0
masani/SFT_parity_Qwen2-0.5B_epoch_4_global_step_12
masani
2025-04-30T16:30:08Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T16:28:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
masani/SFT_parity_Qwen2-0.5B_epoch_1_global_step_3
masani
2025-04-30T16:25:51Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T16:24:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mlx-community/InternVL3-9B-6bit
mlx-community
2025-04-30T12:09:22Z
0
0
transformers
[ "transformers", "safetensors", "internvl_chat", "feature-extraction", "internvl", "custom_code", "mlx", "image-text-to-text", "conversational", "multilingual", "dataset:OpenGVLab/MMPR-v1.2", "base_model:OpenGVLab/InternVL3-1B-Instruct", "base_model:finetune:OpenGVLab/InternVL3-1B-Instruct", "license:apache-2.0", "region:us" ]
image-text-to-text
2025-04-30T12:08:15Z
--- license: apache-2.0 license_name: qwen license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE pipeline_tag: image-text-to-text library_name: transformers base_model: - OpenGVLab/InternVL3-1B-Instruct base_model_relation: finetune datasets: - OpenGVLab/MMPR-v1.2 language: - multilingual tags: - internvl - custom_code - mlx --- # mlx-community/InternVL3-9B-6bit This model was converted to MLX format from [`models/InternVL3-9B`]() using mlx-vlm version **0.1.25**. Refer to the [original model card](https://huggingface.co/models/InternVL3-9B) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model mlx-community/InternVL3-9B-6bit --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
annasoli/Qwen2.5-14B-Instruct_bad_med_dpR1_3x3_mixed-data-V3
annasoli
2025-04-30T11:35:58Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-30T11:27:23Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LuckyLukke/grpo_turn_level_onesided_2_starter_change-700
LuckyLukke
2025-04-30T11:31:24Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T11:28:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ClaMncDexter/gemma-3-test-float16
ClaMncDexter
2025-04-30T11:02:53Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T10:37:57Z
--- base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** ClaMncDexter - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it-unsloth-bnb-4bit This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
maennyn/roberta-amazon-finefood-sentiment6e
maennyn
2025-04-30T10:46:03Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-30T10:45:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PrMoriarty/ppo-LunarLander-v2
PrMoriarty
2025-04-30T10:16:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-04-29T17:39:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.81 +/- 17.22 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
enestaylan/meta-Llama-3.1-8B-Instruct-GRPO-Length-Repetition
enestaylan
2025-04-30T06:11:46Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "grpo", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T01:20:41Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - grpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** enestaylan - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
filipesantoscv11/88d59005-0232-4218-a70f-21a7c1a2bb3b
filipesantoscv11
2025-04-30T06:07:50Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b", "base_model:adapter:unsloth/llama-3-8b", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-30T05:44:00Z
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b tags: - axolotl - generated_from_trainer model-index: - name: 88d59005-0232-4218-a70f-21a7c1a2bb3b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 8b4ad6b862eb03b6_train_data.json ds_type: json format: custom path: /workspace/input_data/8b4ad6b862eb03b6_train_data.json type: field_input: m4a_tags field_instruction: title field_output: pseudo_caption format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: filipesantoscv11/88d59005-0232-4218-a70f-21a7c1a2bb3b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/8b4ad6b862eb03b6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1cf62b57-c1c4-4347-ba84-b24782145bd2 wandb_project: s56-6 wandb_run: your_name wandb_runid: 1cf62b57-c1c4-4347-ba84-b24782145bd2 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 88d59005-0232-4218-a70f-21a7c1a2bb3b This model is a fine-tuned version of [unsloth/llama-3-8b](https://huggingface.co/unsloth/llama-3-8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2866 | 0.0157 | 200 | 1.2748 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
GilatToker/Disease_Deberta
GilatToker
2025-04-30T05:33:18Z
0
0
transformers
[ "transformers", "safetensors", "deberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-30T05:28:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
polyglots/llama-3-8b-si-SWritting-Style-Classification-Codeswitched-100pct-10010
polyglots
2025-04-30T05:12:23Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b", "base_model:finetune:unsloth/llama-3-8b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-30T05:12:14Z
--- base_model: unsloth/llama-3-8b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** polyglots - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
OPEA/Falcon3-10B-Base-int4-sym-awq-inc
OPEA
2025-04-30T03:50:01Z
0
0
null
[ "safetensors", "llama", "dataset:NeelNanda/pile-10k", "arxiv:2309.05516", "base_model:tiiuae/Falcon3-10B-Base", "base_model:quantized:tiiuae/Falcon3-10B-Base", "4-bit", "awq", "region:us" ]
null
2024-12-13T05:55:48Z
--- datasets: - NeelNanda/pile-10k base_model: - tiiuae/Falcon3-10B-Base --- ## Model Details This model is an int4 model with group_size 128 and symmetric quantization of [Falcon3-10B-Base](https://huggingface.co/tiiuae/Falcon3-10B-Base) generated by [intel/auto-round](https://github.com/intel/auto-round). ## How To Use ### INT4 Inference(CPU/HPU/CUDA) ```python from auto_round import AutoRoundConfig ##must import for auto_round format from transformers import AutoModelForCausalLM, AutoTokenizer quantized_model_dir = "OPEA/falcon3-10B-int4-sym-inc" tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir) model = AutoModelForCausalLM.from_pretrained( quantized_model_dir, device_map="auto", ) text = "How many r in strawberry? The answer is " inputs = tokenizer(text, return_tensors="pt", return_token_type_ids=False).to(model.device) print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50)[0])) text = "How many r in strawberry? The answer is" ##INT4: """How many r in strawberry? The answer is 2. ### Additional Questions and Answers #### 11. **How many r in strawberry?** **Answer:** The word "strawberry" contains 2 'r's. #### """ ##BF16: """ How many r in strawberry? The ansnwer is 2. ### 10. **How many r in strawberry?** **Question:** How many times does the letter 'r' appear in the word "strawberry"? **Answer:** The letter 'r **Answer:** The answer to the riddle""" """ text = "Which number is larger, 9.8 or 9.11? The answer is" ##INT4 """Which number is larger, 9.8 or 9.11? The answer is 9.8. #### 10. **What is the smallest number in the set {1.2, 1.02, 1.22, 1.002}?** """ ##BF16: """Which number is larger, 9.8 or 9.11? The answer is 9.8. #### Question 2: **How do you compare the numbers 12.34 and 12.345?** **Answer:** To compare 12.34""" text = "Once upon a time," ##INT4: """Once upon a time, in a small town named Harmonyville, lived two best friends - Mia and Ben. They were both eight years old and loved exploring the world around them. One sunny afternoon, while playing near the park, they found a mysterious box with a note """ ##BF16: """Once upon a time, in a small town named Harmonyville, there lived two best friends - Timmy the Turtle and Sally the Squirrel. They loved exploring their beautiful forest home together, discovering new things every day. One sunny afternoon, they stumbled upon a mysterious cave filled with """ text = "There is a girl who likes adventure," ##INT4: """There is a girl who likes adventure, and she loves to explore new places. One day, she decided to go on a trip to a faraway land called "The Land of the Sun." She packed her bag with everything she needed, including her favorite book about the sun. """ ##BF16: """There is a girl who likes adventure, and she loves to explore new places. One day, she decided to go on a trip to a beautiful country called Italy. She wanted to see all the famous landmarks and try the delicious Italian food. """ ``` ### Evaluate the model pip3 install lm-eval==0.4.5 ```bash auto-round --model "OPEA/falcon3-10B-int4-sym-inc" --eval --eval_bs 16 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,arc_easy,arc_challenge,mmlu ``` | Metric | BF16 | INT4 | | ------------------------- | ----------------- | ----------------- | | Avg.13 | 0.6151 | 0.6092 | | Avg.10 | 0.64113 | 0.63584 | | leaderboard_mmlu_pro | 0.4238 | 0.4156 | | leaderboard_ifeval | (0.4149+0.2939)/2 | (0.4233+0.2828)/2 | | gsm8k(5shot) strict match | 0.8067 | 0.7923 | | mmlu | 0.7069 | 0.6930 | | lambada_openai | 0.6998 | 0.7025 | | hellaswag | 0.5873 | 0.5832 | | winogrande | 0.7380 | 0.7293 | | piqa | 0.7884 | 0.7889 | | truthfulqa_mc1 | 0.3427 | 0.3452 | | openbookqa | 0.3400 | 0.3320 | | boolq | 0.8232 | 0.8116 | | arc_easy | 0.8312 | 0.8258 | | arc_challenge | 0.5538 | 0.5469 | ### Generate the model Here is the sample command to generate the model. ```bash auto-round \ --model tiiuae/Falcon3-10B-Base \ --device 0 \ --group_size 128 \ --nsamples 512 \ --bits 4 \ --iter 1000 \ --disable_eval \ --model_dtype 'float16' \ --format 'auto_awq,auto_gptq,auto_round' \ --output_dir "./tmp_autoround" ``` ## Ethical Considerations and Limitations The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs. Therefore, before deploying any applications of the model, developers should perform safety testing. ## Caveats and Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. Here are a couple of useful links to learn more about Intel's AI software: - Intel Neural Compressor [link](https://github.com/intel/neural-compressor) ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes. ## Cite @article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi}, journal={arXiv preprint arXiv:2309.05516}, year={2023} } [arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)
sarathlella/dotorgpt-adapter
sarathlella
2025-04-30T03:43:15Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "region:us" ]
null
2025-04-30T03:43:11Z
--- base_model: microsoft/phi-2 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
hxyscott/math-decontamination-4.1-mini-rank64-error_removed-7epoch
hxyscott
2025-04-29T23:42:41Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T14:05:36Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ehab07/distilbert-rotten-tomatoes
ehab07
2025-04-29T23:31:39Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-29T22:19:45Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-rotten-tomatoes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-rotten-tomatoes This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cpu - Datasets 3.5.1 - Tokenizers 0.21.1
MrRobotoAI/F7
MrRobotoAI
2025-04-29T20:33:15Z
14
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2212.04089", "base_model:MrRobotoAI/B7", "base_model:merge:MrRobotoAI/B7", "base_model:MrRobotoAI/B8", "base_model:merge:MrRobotoAI/B8", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T11:11:04Z
--- base_model: - MrRobotoAI/B7 - MrRobotoAI/B8 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Task Arithmetic](https://arxiv.org/abs/2212.04089) merge method using [MrRobotoAI/B7](https://huggingface.co/MrRobotoAI/B7) as a base. ### Models Merged The following models were included in the merge: * [MrRobotoAI/B8](https://huggingface.co/MrRobotoAI/B8) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: task_arithmetic models: - model: MrRobotoAI/B7 parameters: weight: - filter: v_proj value: [0.8, 0.8, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6, 0.5, 0.8, 0.8] - filter: o_proj value: [0.8, 0.8, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6, 0.5, 0.8, 0.8] - filter: up_proj value: [0.8, 0.8, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6, 0.5, 0.8, 0.8] - filter: gate_proj value: [0.8, 0.8, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6, 0.5, 0.8, 0.8] - filter: down_proj value: [0.8, 0.8, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6, 0.5, 0.8, 0.8] - value: 1 - model: MrRobotoAI/B8 parameters: weight: - filter: v_proj value: [0.2, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2] - filter: o_proj value: [0.2, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2] - filter: up_proj value: [0.2, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2] - filter: gate_proj value: [0.2, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2] - filter: down_proj value: [0.2, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2] - value: 0 base_model: MrRobotoAI/B7 dtype: bfloat16 ```
mih12345/carlos_30_april
mih12345
2025-04-29T20:22:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T20:18:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yashikam19/flan_large_model
yashikam19
2025-04-29T20:08:01Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T18:42:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Tashiroksksks/evellyn2v
Tashiroksksks
2025-04-29T18:18:47Z
0
0
null
[ "license:other", "region:us" ]
null
2025-04-29T17:46:34Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
Jonjew/EvanRachelWood
Jonjew
2025-04-29T17:12:05Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-04-29T17:11:54Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: Evan Rachel Wood output: url: images/erwood.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Evan Rachel Wood license: unknown --- # Evan Rachel Wood by Fluximus_Maximus <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;1522246&#x2F;evan-rachel-wood?modelVersionId&#x3D;1722297 Please support the creator by donating BUZZ to the creator and LIKING at the page above Trigger Evan Rachel Wood ## Trigger words You should use `Evan Rachel Wood` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/EvanRachelWood/tree/main) them in the Files & versions tab.
10-Paro-Aarti-Viral-Video-Original-Shoot/Original.Clip.Paro.Aarti.Viral.Video.Leaks.official
10-Paro-Aarti-Viral-Video-Original-Shoot
2025-04-29T16:04:27Z
0
0
null
[ "region:us" ]
null
2025-04-29T16:04:19Z
<a href="https://sdu.sk/9Ip"><img src="http://4.bp.blogspot.com/-VFcup4RzDQY/Upiobuokb5I/AAAAAAAAAV0/64yKpZilDCg/s1600/oie_nxv3mlmduAj1.gif" alt="fsd" /></a> <a href="https://sdu.sk/9Ip" rel="nofollow">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐™จ๐™ž๐™œ๐™ฃ ๐™ช๐™ฅ ๐™–๐™ฃ๐™™ ๐™ฌ๐™–๐™ฉ๐™˜๐™ ๐™›๐™ช๐™ก๐™ก ๐™ซ๐™ž๐™™๐™š๐™ค ๐™ƒ๐˜ฟ)</a> <a href="https://sdu.sk/9Ip" rel="nofollow">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค)</a>
AlanLanSS/mnem_qwen
AlanLanSS
2025-04-29T04:15:53Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-28T23:20:10Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AlanLanSS - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mlx-community/Qwen3-32B-4bit
mlx-community
2025-04-29T02:52:43Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "base_model:Qwen/Qwen3-32B", "base_model:quantized:Qwen/Qwen3-32B", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-04-28T22:15:55Z
--- library_name: mlx license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-32B/blob/main/LICENSE pipeline_tag: text-generation tags: - mlx base_model: Qwen/Qwen3-32B --- # mlx-community/Qwen3-32B-4bit This model [mlx-community/Qwen3-32B-4bit](https://huggingface.co/mlx-community/Qwen3-32B-4bit) was converted to MLX format from [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) using mlx-lm version **0.24.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Qwen3-32B-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
vertings6/b0a0000b-ca05-48e6-9378-49252628f65a
vertings6
2025-04-29T01:17:47Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T00:39:48Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: b0a0000b-ca05-48e6-9378-49252628f65a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: true adapter: lora base_model: defog/sqlcoder-7b-2 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 09fd8de16e0ef037_train_data.json ds_type: json format: custom path: /workspace/input_data/09fd8de16e0ef037_train_data.json type: field_input: Patient field_instruction: Description field_output: Doctor format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 144 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vertings6/b0a0000b-ca05-48e6-9378-49252628f65a hub_repo: null hub_strategy: end hub_token: null learning_rate: 3.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mixed_precision: bf16 mlflow_experiment_name: /tmp/09fd8de16e0ef037_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 2048 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e9a3f091-ac21-4461-8f15-2557f19c34f8 wandb_project: s56-32 wandb_run: your_name wandb_runid: e9a3f091-ac21-4461-8f15-2557f19c34f8 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b0a0000b-ca05-48e6-9378-49252628f65a This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.1528 | 0.0066 | 200 | 2.6998 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/amoral-cogito-Zara-14B-i1-GGUF
mradermacher
2025-04-28T23:24:38Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Disya/amoral-cogito-Zara-14B", "base_model:quantized:Disya/amoral-cogito-Zara-14B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-28T17:12:50Z
--- base_model: Disya/amoral-cogito-Zara-14B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Disya/amoral-cogito-Zara-14B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ1_M.gguf) | i1-IQ1_M | 4.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ2_M.gguf) | i1-IQ2_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/amoral-cogito-Zara-14B-i1-GGUF/resolve/main/amoral-cogito-Zara-14B.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
BootesVoid/cm9x549d901fsvc0915q4il31_cma1b2i0o00bl12tv9kj8g3gg
BootesVoid
2025-04-28T17:27:35Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T17:27:33Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SE24682OFAIMD --- # Cm9X549D901Fsvc0915Q4Il31_Cma1B2I0O00Bl12Tv9Kj8G3Gg <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SE24682OFAIMD` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SE24682OFAIMD", "lora_weights": "https://huggingface.co/BootesVoid/cm9x549d901fsvc0915q4il31_cma1b2i0o00bl12tv9kj8g3gg/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cm9x549d901fsvc0915q4il31_cma1b2i0o00bl12tv9kj8g3gg', weight_name='lora.safetensors') image = pipeline('SE24682OFAIMD').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cm9x549d901fsvc0915q4il31_cma1b2i0o00bl12tv9kj8g3gg/discussions) to add images that show off what youโ€™ve made with this LoRA.
gxhf/vbnm
gxhf
2025-04-28T16:14:55Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-28T16:14:55Z
--- license: apache-2.0 ---
Sameer2407/PriceLLaMAA-2025-04-28_07.20.50
Sameer2407
2025-04-28T10:11:21Z
0
1
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "en", "dataset:ed-donner/pricer-data", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:llama3.1", "region:us" ]
null
2025-04-28T07:25:46Z
--- library_name: peft license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B tags: - trl - sft - generated_from_trainer model-index: - name: PriceLLaMAA-2025-04-28_07.20.50 results: [] datasets: - ed-donner/pricer-data language: - en --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sameer2001-poornima-university/PriceLLaMAA/runs/yswmgs4h) # PriceLLaMAA-2025-04-28_07.20.50 This repository contains a fine-tuned LLaMa model for predicting product prices based on descriptions. It's trained using the ed-donner/pricer-data dataset and the trl library for Supervised Fine-Tuning (SFT) with LoRA (Low-Rank Adaptation). ## Model description The base model used is meta-llama/Meta-Llama-3.1-8B. It's quantized to 4 bits using bitsandbytes for memory efficiency. The model is fine-tuned using LoRA, targeting specific layers (q_proj, v_proj, k_proj, o_proj) for efficient adaptation. ## Intended Uses - **Price Prediction:** The model is designed to predict or estimate the price of a product based on its textual description. - **E-commerce Applications:** Can be used by online sellers, marketplaces, or catalog management systems to suggest initial pricing based on product descriptions. - **Data Augmentation:** Helpful for generating synthetic price labels for datasets during training of other machine learning models. - **Market Research:** Can assist analysts in comparing how similar product descriptions could correlate with price estimates. --- ## Limitations - **Domain-Specific:** The model is trained primarily on e-commerce-style product descriptions. It may not perform well outside typical retail scenarios (e.g., luxury items, collectibles, services). - **No Real-Time Market Awareness:** The model does not have access to real-time pricing, supply-demand factors, or current market trends. - **Approximate Predictions:** Outputs are estimates based on learned patterns in the training data and are not guaranteed to be accurate for production financial decisions. - **Bias from Training Data:** If the training dataset contains biases (e.g., certain product categories being overpriced/underpriced), the model may inherit those biases. - **Language and Format Sensitivity:** Descriptions that are extremely short, poorly written, or in languages/formats very different from the training data may yield poor predictions. --- ## Training Details - *Dataset:* ed-donner/pricer-data - *Base Model:* meta-llama/Meta-Llama-3.1-8B - *Quantization:* 4-bit NF4 - *Fine-tuning Method:* LoRA with SFT - *Library:* trl - *Hyperparameters:* See the training script in the repository for detailed hyperparameter values. ## Training Procedure The model was fine-tuned using **Supervised Fine-Tuning (SFT)** combined with **LoRA** for parameter-efficient adaptation. The base model `meta-llama/Meta-Llama-3.1-8B` was loaded in 4-bit precision to optimize memory usage. The training steps were: 1. **Model Preparation:** - Loaded the base model (`Meta-Llama-3.1-8B`) in 4-bit NF4 quantization using `bitsandbytes`. - Applied a LoRA configuration targeting the following modules: - `q_proj` - `k_proj` - `v_proj` - `o_proj` 2. **Dataset:** - Used the `ed-donner/pricer-data` dataset, which consists of product descriptions and corresponding prices. 3. **Training Setup:** - Fine-tuned using the `trl` library's SFTTrainer. - Optimizer: `PagedAdamW` with betas=(0.9, 0.999) and epsilon=1e-08. - Learning rate scheduler: Cosine decay schedule with 3% warmup ratio. - Random seed: 42 for reproducibility. 4. **Hyperparameters:** - Learning Rate: 1e-4 - Training Batch Size: 2 - Evaluation Batch Size: 1 - Number of Epochs: 1 5. **Monitoring:** - Tracked training loss and evaluation metrics using Weights & Biases (wandb). 6. **Saving:** - Only the LoRA adapters were saved, keeping the base model frozen to ensure lightweight deployment. The entire training was optimized for fast prototyping and low GPU memory usage without sacrificing too much performance. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Framework versions - PEFT 0.14.0 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1 ## Demo Usage You can use the model for inference like this: ```python from transformers import AutoModelForCausalLM from peft import PeftModel import torch # Load the base model (Meta-Llama-3.1-8B) base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B") # Load the fine-tuned model with PEFT model_name = "Sameer2407/PriceLLaMAA-2025-04-28_07.20.50" # Replace with your model path model = PeftModel.from_pretrained(base_model, model_name) # Load the tokenizer tokenizer = base_model.get_tokenizer() # Define a product description product_description = "A sleek, modern stainless steel electric kettle with 1.5-liter capacity and auto shut-off feature." # Prepare input inputs = tokenizer(f"Predict the price: {product_description}", return_tensors="pt").to(model.device) # Generate output with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=50) # Decode and print the predicted price predicted_price = tokenizer.decode(outputs[0], skip_special_tokens=True) print(predicted_price)
yashikam19/fine-tuned-flan
yashikam19
2025-04-27T10:22:59Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-27T10:22:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]