modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-28 06:27:35
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
500 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-28 06:24:42
card
stringlengths
11
1.01M
relaxml/Llama-3.1-8b-Instruct-QTIP-3Bit
relaxml
2024-10-28T02:40:10Z
30
0
null
[ "safetensors", "llama", "region:us" ]
null
2024-10-05T17:45:52Z
![image/png](https://cdn-uploads.huggingface.co/production/uploads/649e3f263914db6cf8e8ab1f/3XWwpdRgDLelhvDubfQtH.png)
ganga4364/mms_300_v4.96000
ganga4364
2024-10-28T02:37:42Z
189
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-10-28T02:37:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Primeness/DeezNutz6
Primeness
2024-10-28T02:31:49Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-28T01:27:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
playboy40k/flux-EmmaStoneLora
playboy40k
2024-10-28T02:25:48Z
90
3
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2024-10-28T02:23:41Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/ComfyUI_Flux_Finetune_00094_.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # Emma Stone Flux <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/playboy40k/flux-EmmaStoneLora/tree/main) them in the Files & versions tab.
ndhananj/ndhananj-llama-3.2.Instruct
ndhananj
2024-10-28T02:25:38Z
174
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-28T02:15:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model was a usses LLama3.2-1B-Instruct as a base. It does better **50%** than the same fintuning on ElutherAI/gpt-neo-1.3B on the HellaSwag benchmark for instruction following. ## Model Details # Model Card ## Model Description This is an ORPO fine-tune of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on a dataset of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k). ## Evaluation Results ### Hellaswag for this model | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |---------|------:|------|-----:|--------|---|-----:|---|-----:| |hellaswag| 1|none | 0|acc |↑ |0.4501|± |0.0050| | | |none | 0|acc_norm|↑ |0.6072|± |0.0049| ### Hellaswag for same fine-tuning for ElutherAI/gpt-neo-1.3B | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |---------|------:|------|-----:|--------|---|-----:|---|-----:| |hellaswag| 1|none | 0|acc |↑ |0.3853|± |0.0049| | | |none | 0|acc_norm|↑ |0.4891|± |0.0050| ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
teoteo1993/lovepet_model
teoteo1993
2024-10-28T02:23:52Z
5
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-10-28T02:21:31Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** teoteo1993 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Lucia-no/sn29_C00_O27_0
Lucia-no
2024-10-28T02:18:15Z
58
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-28T02:14:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jtupayac/gemma-2-9b-it-crag_new
jtupayac
2024-10-28T02:13:25Z
6
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-28T02:09:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
theprint/WorldBuilder-7B
theprint
2024-10-28T02:10:14Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-v0.3-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-28T02:05:30Z
--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl --- # Uploaded model - **Developed by:** theprint - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
regunathanr/gemma-math-finetune-regu
regunathanr
2024-10-28T02:02:21Z
131
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-28T01:55:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
godus81834/krx-meta-llama-3.1-8b-instruct
godus81834
2024-10-28T02:00:21Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "krx", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-20T08:52:37Z
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft - krx --- # Uploaded model - **Developed by:** godus1201 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
crestf411/MS-sunfall-v0.7.0-gguf
crestf411
2024-10-28T01:57:04Z
34
6
null
[ "gguf", "base_model:crestf411/MS-sunfall-v0.7.0", "base_model:quantized:crestf411/MS-sunfall-v0.7.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-28T01:33:42Z
--- base_model: - crestf411/MS-sunfall-v0.7.0 ---
ndhananj/ndhananj-gpt-neo-1.3B
ndhananj
2024-10-28T01:53:05Z
150
0
transformers
[ "transformers", "safetensors", "gpt_neo", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-25T17:34:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model was a first pass test to see if a flow will create a model. Do not use it for real purposes. ## Model Details # Model Card ## Model Description This is an ORPO fine-tune of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on a dataset of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k). ## Evaluation Results ### Hellaswag | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |---------|------:|------|-----:|--------|---|-----:|---|-----:| |hellaswag| 1|none | 0|acc |↑ |0.3853|± |0.0049| | | |none | 0|acc_norm|↑ |0.4891|± |0.0050| ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf
RichardErkhov
2024-10-28T01:45:08Z
8
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-27T15:18:08Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Mistral-Nemo-Instruct-2407-20b - GGUF - Model creator: https://huggingface.co/win10/ - Original model: https://huggingface.co/win10/Mistral-Nemo-Instruct-2407-20b/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Mistral-Nemo-Instruct-2407-20b.Q2_K.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q2_K.gguf) | Q2_K | 8.01GB | | [Mistral-Nemo-Instruct-2407-20b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q3_K_S.gguf) | Q3_K_S | 9.3GB | | [Mistral-Nemo-Instruct-2407-20b.Q3_K.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q3_K.gguf) | Q3_K | 10.3GB | | [Mistral-Nemo-Instruct-2407-20b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q3_K_M.gguf) | Q3_K_M | 10.3GB | | [Mistral-Nemo-Instruct-2407-20b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q3_K_L.gguf) | Q3_K_L | 11.17GB | | [Mistral-Nemo-Instruct-2407-20b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.IQ4_XS.gguf) | IQ4_XS | 11.53GB | | [Mistral-Nemo-Instruct-2407-20b.Q4_0.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q4_0.gguf) | Q4_0 | 12.01GB | | [Mistral-Nemo-Instruct-2407-20b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.IQ4_NL.gguf) | IQ4_NL | 12.14GB | | [Mistral-Nemo-Instruct-2407-20b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q4_K_S.gguf) | Q4_K_S | 12.09GB | | [Mistral-Nemo-Instruct-2407-20b.Q4_K.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q4_K.gguf) | Q4_K | 12.73GB | | [Mistral-Nemo-Instruct-2407-20b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q4_K_M.gguf) | Q4_K_M | 12.73GB | | [Mistral-Nemo-Instruct-2407-20b.Q4_1.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q4_1.gguf) | Q4_1 | 13.29GB | | [Mistral-Nemo-Instruct-2407-20b.Q5_0.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q5_0.gguf) | Q5_0 | 14.57GB | | [Mistral-Nemo-Instruct-2407-20b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q5_K_S.gguf) | Q5_K_S | 14.57GB | | [Mistral-Nemo-Instruct-2407-20b.Q5_K.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q5_K.gguf) | Q5_K | 14.94GB | | [Mistral-Nemo-Instruct-2407-20b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q5_K_M.gguf) | Q5_K_M | 14.94GB | | [Mistral-Nemo-Instruct-2407-20b.Q5_1.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q5_1.gguf) | Q5_1 | 15.85GB | | [Mistral-Nemo-Instruct-2407-20b.Q6_K.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q6_K.gguf) | Q6_K | 17.28GB | | [Mistral-Nemo-Instruct-2407-20b.Q8_0.gguf](https://huggingface.co/RichardErkhov/win10_-_Mistral-Nemo-Instruct-2407-20b-gguf/blob/main/Mistral-Nemo-Instruct-2407-20b.Q8_0.gguf) | Q8_0 | 22.38GB | Original model description: --- base_model: - unsloth/Mistral-Nemo-Instruct-2407 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 merge_method: passthrough slices: - sources: - layer_range: [0, 2] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [1, 3] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [2, 4] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [3, 5] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 # 以下是新增的層 - sources: - layer_range: [4, 6] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [5, 7] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [6, 8] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [7, 9] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [8, 10] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [9, 11] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [10, 12] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [11, 13] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [12, 14] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [13, 15] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [14, 16] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [15, 17] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [16, 18] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [17, 19] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [18, 20] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [19, 21] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [20, 22] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [21, 23] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [22, 24] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [23, 25] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [24, 26] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [25, 27] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [26, 28] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [27, 29] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [28, 30] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [29, 31] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [30, 32] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [31, 33] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [32, 34] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [33, 35] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [34, 36] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [35, 37] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [36, 38] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [37, 39] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [38, 40] model: unsloth/Mistral-Nemo-Instruct-2407 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 ```
2point5p/krx-qwen2.5-7b-it-s-too-bad
2point5p
2024-10-28T01:40:54Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "krx", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T00:35:59Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - krx license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** 2point5p - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
muhtasham/tajik-llama3-3b-merged-16bit
muhtasham
2024-10-28T01:07:14Z
82
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-28T01:05:29Z
--- base_model: unsloth/llama-3.2-3b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** muhtasham - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tlsdm65376/krxlaw_Meta-Llama-3.1-8B
tlsdm65376
2024-10-28T01:03:37Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "krx", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-25T06:14:39Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - krx --- # Uploaded model - **Developed by:** tlsdm65376 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Primeness/DeezNutz5
Primeness
2024-10-28T01:02:05Z
37
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T23:57:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vijay-ravichander/LMSYS-Gemma-9B-4bit
vijay-ravichander
2024-10-28T01:00:26Z
78
0
transformers
[ "transformers", "safetensors", "gemma2", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-classification
2024-10-28T00:54:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
auskola/sentimientos
auskola
2024-10-28T00:58:48Z
12
0
null
[ "safetensors", "electra", "text-classification", "region:us" ]
text-classification
2024-10-25T00:55:06Z
--- pipeline_tag: text-classification widget: - text: "This movie was amazing! I loved it." example_title: "Positive example" - text: "This was a terrible waste of time." example_title: "Negative example" --- # Sentiment Analysis Model ## Model Details - **Base Model**: google/electra-base-discriminator - **Task**: Binary Sentiment Analysis (Positive/Negative) - **Datasets**: IMDB and Amazon Reviews - **Language**: English ## Training Hyperparameters - **Batch Size**: 8 - **Learning Rate**: 2e-5 - **Number of Epochs**: 2 - **Max Sequence Length**: 128 tokens - **Model Architecture**: ELECTRA (Discriminator) ## Training The model was trained using a combination of IMDB and Amazon reviews datasets, using ELECTRA's discriminator architecture which is particularly efficient with limited data. The hyperparameters were optimized for performance on consumer-grade hardware. ## Usage ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load model and tokenizer model_name = "auskola/sentimientos" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) def analyze_sentiment(text): # Tokenize and predict inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=1) # Get prediction and confidence prediction = torch.argmax(probabilities, dim=1) confidence = torch.max(probabilities).item() return { "sentiment": "Positive" if prediction.item() == 1 else "Negative", "confidence": confidence } # Ejemplos de uso texts = [ "This product exceeded my expectations!", "Terrible service, would not recommend", "The movie was pretty good" ] for text in texts: result = analyze_sentiment(text) print(f"\nText: {text}") print(f"Sentiment: {result['sentiment']}") print(f"Confidence: {result['confidence']:.2f}")
betteib/tn_updated_v9
betteib
2024-10-28T00:50:25Z
135
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T23:55:22Z
--- base_model: gpt2 library_name: transformers license: mit tags: - generated_from_trainer model-index: - name: tn_updated_v9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tn_updated_v9 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.1424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0009 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.97 | 2.5284 | 500 | 6.3858 | | 4.6079 | 5.0569 | 1000 | 7.1778 | | 3.4102 | 7.5853 | 1500 | 8.1424 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1
MikeRoz/TheDrummer_Behemoth-123B-v1.1-2.5bpw-h6-exl2
MikeRoz
2024-10-28T00:41:01Z
6
1
null
[ "safetensors", "mistral", "license:other", "exl2", "region:us" ]
null
2024-10-27T22:21:03Z
--- license: other --- # Join our Discord! https://discord.gg/Nbv9pQ88Xb ## Nearly 2000 members strong 💪 --- [BeaverAI](https://huggingface.co/BeaverAI) proudly presents... # Behemoth 123B v1.1 🦣 - Creative Edition *When you spend your whole life living under a dome, even the idea of an ocean seems impossible to imagine.* ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/5405NZoj_ptSMO_qM09EW.png) ## Description > One of the few other models that's done this for me is the OG Command R 35B. So seeing Behemoth v1.1 have a similar feel to that but with much higher general intelligence really makes it a favourite of mine > I was real happy with v1.1 the other day. I've done some tests on v1 and it's a lot better. > v1 had those glimpses of creativity, but now it's more consistent (with v1.1). It feels like a new model in comparison. > v1 had slop bro. v1.1 makes it irrelevant. The jump is like 720p to 4k. Seriously. > The creativity for v1.1 is off the charts compared to v1, like it's juiced. v1 had these moments that I would say... 'Shit, let I never seen a model respond with prose like this, let me regenerate to see what else I get.' Now, even though every regeneration had a flow of possibilities, sometimes, those possibilities never came. v1.1 is comparable to xxx for the first time, every generation. It directs and guides the scene, scenario and characters unlike anything else > It's about the f***ing prose man. The atmosphere that revolves around the characters. Not just the damn dialogue or introspection. v1.1 will pull from a message 7 generations ago. That window I opened will appear in a future response with the noise from the courtyard filtering through it. The experience of not knowing what this model will produce because it's different than anything else is what keeps it engaging. ## Links - Original: https://huggingface.co/TheDrummer/Behemoth-123B-v1.1 - GGUF: https://huggingface.co/TheDrummer/Behemoth-123B-v1.1-GGUF - iMatrix: WIP ## Arsenal (Supported Chat Templates) - Mistral - Smart, adaptable, familiar - Metharme (Pygmalion in ST) - Creative, unhinged, unique - Alpaca - Creative, unique, unhinged - Text Completion - You can mix it up and see which works best for you. ### Favorite RP Format `*action* Dialogue *thoughts* Dialogue *narration*` in 1st person PoV ## What's Next? - Already have plans for a v2! ## Special Thanks - Thank you to each and everyone who donated in [Ko-Fi](https://ko-fi.com/thedrummer) to make our venture a little bit easier. - KinjiHakari777, Dr. Fjut, Kistara, Pseudo, AlexTheVP, Dakkidaze, EvarinSharath'fe, ONTHEREDTEAM, F, Mariana, Garg, Silva, Grozi, & **Phaelon** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/KvyYIIA1zkxQNEdGro007.png) <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/FNWdi0WlH-Xd3fjkGVPpp.mpga"></audio>
ashercn97/deberta_v3_finetuned
ashercn97
2024-10-28T00:40:18Z
117
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "fill-mask", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-10-28T00:39:50Z
--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: deberta_v3_finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta_v3_finetuned This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.5203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.1343 | 1.0 | 1406 | 4.5203 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
ramonactruta/ramonactruta-llama-3.2.Instruct-chat
ramonactruta
2024-10-28T00:38:16Z
98
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "orpo", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-28T00:08:27Z
--- library_name: transformers tags: - trl - orpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MatthewFrank/roberta-large_pytorch_AllData_V01
MatthewFrank
2024-10-28T00:18:50Z
122
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T02:41:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Viscoke/call1
Viscoke
2024-10-27T23:54:53Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T23:51:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
erichennings/EH-sentiment-finetuned-Llama-3.2-1B-Instruct
erichennings
2024-10-27T23:41:04Z
175
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "dataset:mteb/amazon_polarity", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-26T00:38:22Z
--- library_name: transformers license: llama3.2 datasets: - mteb/amazon_polarity base_model: - meta-llama/Llama-3.2-1B-Instruct --- # Model Card for EH-sentiment-finetuned-Llama-3.2-1B-Instruct/ This is a test project, fine tuning Llama3.1-1B-Instruct for sentiment classification, using a subset of an amazon reviews dataset [mteb/amazon_polarity](https://huggingface.co/datasets/mteb/amazon_polarity) and ORPO fine tuning. The finetuned model achieves moderate +10% improvement on sentiment classification (as measured by SST2 - which asks the model to classify sentences in a single word, either 'positive' or 'neagtive'), without general performance being impacted (as measured by hellaswag, which asks the model to complete a sentence with a sensible response, chosen from a list of choices). | Metric Category | Metric | Base Model | Finetuned Model | Change | |---------------------|--------------------|----------------|-----------------|--------| | Sentiment | SST2/acc | 0.68 | 0.75 | +10% | | | | | | | | General Completions | hellaswag/acc | 0.447 | 0.459 | +3% | | | hellaswag/acc_norm | 0.550 | 0.560 | +2% | The training dataset was the first 10k samples from mteb/amazon_polarity, and the model was trained for 5 epochs. The dataset was nearly balanced across positive and negative sentiment - ~51% of examples were negative. The finetuning training examples used an SST-like prompt format (see Prompt Formats, below). An attempt was also made to train using exactly the SST Eval format. Oddly, using the SST Eval format resulted in the SST accuracy going down (0.54 for 10k samples and 1 epoch, -20% compared to the base model.) This was unexpected, and weird, and probably would bear further investigation. The model was much worse at correctly identifying positive sentiment (57% accuracy) than it was at identifying negative sentiment (93% accuracy) - see Confusion Matrix, below. This performance on negative sentiment is good - State of the Art for SST2 overall is 97% (achieved by [T5-11B](https://huggingface.co/google-t5/t5-11b)). Since the training dataset was balanced across positive and negative examples, this mismatch seems likely to have been present in the base model, although this was not confirmed. Next steps for improvement should be to verify that the behavior is inherited, and if so probably train with a larger set of positive statements. ## Confusion Matrix <img src="confusion-matrix.png" width="500" height="500" /> ## Prompt Formats **SST Eval**: The SST Eval uses prompts like this: > A complete waste of time. Typographical errors, poor grammar, and a totally pathetic plot add up to absolutely nothing. > I'm embarrassed for this author and very disappointed I actually paid for this book. > > Question: Is this sentence positive or negative? > Answer: **SST-like**: Training examples were formulated using an SST-like prompt: > Below is an instruction that describes a task. Write a response that appropriately completes the request. > > ###Instruction: > Determine the sentiment of the input sentence. Please respond as positive or negative. > ###Input: > The best soundtrack ever to anything. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> Fintuned model for sentiment classification. - **Developed by:** Eric Hennings - **Finetuned from model [optional]:** meta-llama/Llama-3.2-1B-Instruct ### Model Sources [optional]
mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF
mradermacher
2024-10-27T23:35:08Z
86
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:DavidAU/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2", "base_model:quantized:DavidAU/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-10-27T19:58:32Z
--- base_model: DavidAU/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/DavidAU/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ1_S.gguf) | i1-IQ1_S | 5.3 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ1_M.gguf) | i1-IQ1_M | 5.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ2_S.gguf) | i1-IQ2_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ2_M.gguf) | i1-IQ2_M | 8.1 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-Q2_K.gguf) | i1-Q2_K | 8.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 9.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 9.7 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 10.2 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ3_S.gguf) | i1-IQ3_S | 10.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ3_M.gguf) | i1-IQ3_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 11.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 12.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 12.5 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-Q4_0.gguf) | i1-Q4_0 | 13.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 13.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 13.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 15.9 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 16.3 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23B-V2.i1-Q6_K.gguf) | i1-Q6_K | 18.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
leekh7624/model4
leekh7624
2024-10-27T23:29:51Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:leekh7624/model3", "base_model:finetune:leekh7624/model3", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T23:25:38Z
--- base_model: leekh7624/model3 language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** leekh7624 - **License:** apache-2.0 - **Finetuned from model :** leekh7624/model3 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
DewiBrynJones/whisper-cv-cy-train-all-plus-other-with-excluded-ft-cv-tts
DewiBrynJones
2024-10-27T23:28:42Z
6
0
null
[ "tensorboard", "safetensors", "whisper", "generated_from_trainer", "base_model:techiaith/whisper-large-v3-ft-cv-cy", "base_model:finetune:techiaith/whisper-large-v3-ft-cv-cy", "license:apache-2.0", "region:us" ]
null
2024-10-25T21:45:29Z
--- license: apache-2.0 base_model: DewiBrynJones/whisper-large-v3-ft-cv-cy-train-all-plus-other-with-excluded tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-cv-cy-train-all-plus-other-with-excluded-ft-cv-tts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-cv-cy-train-all-plus-other-with-excluded-ft-cv-tts This model is a fine-tuned version of [DewiBrynJones/whisper-large-v3-ft-cv-cy-train-all-plus-other-with-excluded](https://huggingface.co/DewiBrynJones/whisper-large-v3-ft-cv-cy-train-all-plus-other-with-excluded) on the DewiBrynJones/commonvoice_cy_tts train main dataset. It achieves the following results on the evaluation set: - Loss: 0.2556 - Wer: 0.1934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.23 | 0.4583 | 1000 | 0.2574 | 0.1992 | | 0.1775 | 0.9166 | 2000 | 0.2527 | 0.2015 | | 0.0978 | 1.3749 | 3000 | 0.2559 | 0.1951 | | 0.0902 | 1.8332 | 4000 | 0.2556 | 0.1934 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
lucaelin/llama-3.2-3b-instruct-fc-gguf
lucaelin
2024-10-27T23:20:04Z
35
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Llama-3.2-3B-Instruct", "base_model:quantized:unsloth/Llama-3.2-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-12T17:28:15Z
--- base_model: unsloth/Llama-3.2-3B-Instruct language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** lucaelin - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nicolofelicioni/pythia-1b-sft-hh-hts-7
nicolofelicioni
2024-10-27T23:13:55Z
131
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "trl", "dpo", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T23:10:11Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ntnxx2/vit-base-patch16-224-finetuned-Visual-Emotional
ntnxx2
2024-10-27T23:07:56Z
22
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-26T07:05:21Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-Visual-Emotional results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.65 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-Visual-Emotional This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0819 - Accuracy: 0.65 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 32 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.8696 | 5 | 2.1918 | 0.1125 | | 2.1428 | 1.9130 | 11 | 2.1017 | 0.1625 | | 2.1428 | 2.9565 | 17 | 1.9293 | 0.1875 | | 1.8582 | 4.0 | 23 | 1.7163 | 0.325 | | 1.8582 | 4.8696 | 28 | 1.5777 | 0.375 | | 1.4818 | 5.9130 | 34 | 1.4303 | 0.45 | | 1.1661 | 6.9565 | 40 | 1.3146 | 0.475 | | 1.1661 | 8.0 | 46 | 1.2160 | 0.525 | | 0.9421 | 8.8696 | 51 | 1.2096 | 0.55 | | 0.9421 | 9.9130 | 57 | 1.1362 | 0.5875 | | 0.8003 | 10.9565 | 63 | 1.1598 | 0.525 | | 0.8003 | 12.0 | 69 | 1.0878 | 0.6 | | 0.678 | 12.8696 | 74 | 1.0940 | 0.6375 | | 0.5888 | 13.9130 | 80 | 1.0819 | 0.65 | | 0.5888 | 14.9565 | 86 | 1.0700 | 0.625 | | 0.5086 | 16.0 | 92 | 1.0758 | 0.625 | | 0.5086 | 16.8696 | 97 | 1.0804 | 0.625 | | 0.4454 | 17.9130 | 103 | 1.0704 | 0.6 | | 0.4454 | 18.9565 | 109 | 1.1111 | 0.575 | | 0.3758 | 20.0 | 115 | 1.0619 | 0.5875 | | 0.3402 | 20.8696 | 120 | 1.0846 | 0.6125 | | 0.3402 | 21.9130 | 126 | 1.1042 | 0.6125 | | 0.3247 | 22.9565 | 132 | 1.0926 | 0.6375 | | 0.3247 | 24.0 | 138 | 1.0908 | 0.625 | | 0.3142 | 24.8696 | 143 | 1.0964 | 0.6 | | 0.3142 | 25.9130 | 149 | 1.0999 | 0.6125 | | 0.3081 | 26.9565 | 155 | 1.1036 | 0.625 | | 0.276 | 27.8261 | 160 | 1.1019 | 0.625 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1
freewheelye/mergekit-slerp-wmgydwq
freewheelye
2024-10-27T23:05:47Z
6
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:ArliAI/Gemma-2-9B-ArliAI-RPMax-v1.1", "base_model:merge:ArliAI/Gemma-2-9B-ArliAI-RPMax-v1.1", "base_model:OpenLLM-Ro/RoGemma2-9b-Instruct", "base_model:merge:OpenLLM-Ro/RoGemma2-9b-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T23:01:09Z
--- base_model: - ArliAI/Gemma-2-9B-ArliAI-RPMax-v1.1 - OpenLLM-Ro/RoGemma2-9b-Instruct library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [ArliAI/Gemma-2-9B-ArliAI-RPMax-v1.1](https://huggingface.co/ArliAI/Gemma-2-9B-ArliAI-RPMax-v1.1) * [OpenLLM-Ro/RoGemma2-9b-Instruct](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: OpenLLM-Ro/RoGemma2-9b-Instruct layer_range: - 0 - 32 - model: ArliAI/Gemma-2-9B-ArliAI-RPMax-v1.1 layer_range: - 0 - 32 merge_method: slerp base_model: OpenLLM-Ro/RoGemma2-9b-Instruct parameters: t: - filter: self_attn value: - 0 - 0.5 - 0.3 - 0.7 - 1 - filter: mlp value: - 1 - 0.5 - 0.7 - 0.3 - 0 - value: 0.5 dtype: bfloat16 ```
rshacter/ruthshacter-llama-3.2-1B-instruct-500-20-bnb
rshacter
2024-10-27T22:49:33Z
175
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T22:45:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hz3519/TransformerBeta_models
hz3519
2024-10-27T22:46:08Z
0
1
null
[ "tag1", "tag2", "en", "dataset:dataset1", "dataset:dataset2", "license:mit", "region:us" ]
null
2023-05-18T09:31:51Z
--- language: - "en" thumbnail: "https://example.com/path/to/your/thumbnail.jpg" # URL to a thumbnail used in social sharing tags: - "tag1" # For example, "sentiment-analysis" - "tag2" # For example, "machine-translation" license: "mit" datasets: - "dataset1" # For example, "imdb" - "dataset2" # For example, "wmt16" metrics: - "metric1" # For example, "accuracy" - "metric2" # For example, "f1" --- # TransformerBeta ## License This model is distributed under the MIT license.
louisbrulenaudet/lemone-router-m
louisbrulenaudet
2024-10-27T22:43:53Z
21
1
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "sentence-transformers", "feature-extraction", "legal", "taxation", "fiscalité", "tax", "fr", "dataset:louisbrulenaudet/code-impots", "dataset:louisbrulenaudet/code-impots-annexe-iv", "dataset:louisbrulenaudet/code-impots-annexe-iii", "dataset:louisbrulenaudet/code-impots-annexe-i", "dataset:louisbrulenaudet/code-impots-annexe-ii", "dataset:louisbrulenaudet/livre-procedures-fiscales", "dataset:louisbrulenaudet/bofip", "base_model:intfloat/multilingual-e5-base", "base_model:finetune:intfloat/multilingual-e5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-21T20:02:01Z
--- library_name: transformers license: apache-2.0 base_model: intfloat/multilingual-e5-base tags: - generated_from_trainer - sentence-transformers - text-classification - feature-extraction - generated_from_trainer - legal - taxation - fiscalité - tax metrics: - accuracy model-index: - name: lemone-router results: [] language: - fr pipeline_tag: text-classification datasets: - louisbrulenaudet/code-impots - louisbrulenaudet/code-impots-annexe-iv - louisbrulenaudet/code-impots-annexe-iii - louisbrulenaudet/code-impots-annexe-i - louisbrulenaudet/code-impots-annexe-ii - louisbrulenaudet/livre-procedures-fiscales - louisbrulenaudet/bofip widget: - text: "Quelles sont les modalités d'adoption d'un plan d'apurement échelonné par la commission chargée du recouvrement, et quelles sont les conditions qui s'imposent aux administrations et organismes chargés du recouvrement ainsi qu'au débiteur qui s'engage à le respecter ?" example_title: "Contrôle et contentieux" - text: "Quel régime fiscal est applicable aux opérations de crédit-bail portant sur des fonds de commerce, des fonds artisanaux, ou l'un de leurs éléments incorporels non amortissables, et quelles sont les conditions dans lesquelles les sommes correspondant à la quote-part de loyer ne constituent pas un élément du bénéfice imposable du bailleur et ne sont pas déductibles pour la détermination des résultats imposables du locataire ?" example_title: "Bénéfices professionnels" - text: "La succession s'ouvre par le décès dude cujus(code civil, art. 720). C'est donc le décès qui constitue le fait générateur de l'impôt. Dès lors, le tarif du droit et les règles applicables à sa liquidation sont celles en vigueur au jour du décès (en ce sens, Cass. com 7 janvier 1997 n° de pourvoi 95-11686). Toutefois, pour les legs sous condition suspensive (BOI-ENR-DMTG-10-10-10-10), les droits sont dus lors de la réalisation de la condition, d'après le régime fiscal applicable et la valeur des biens à cette époque (code général des impôts (CGI), art 676). Par ailleurs, pour les pénalités éventuellement exigibles, la loi applicable est celle en vigueur lors de la contravention. L'administration prouve le décès, en vue de la réclamation des droits, au moyen des registres de l'état civil dont les maires sont tenus de lui remettre un relevé trimestriel (LPF, art. L. 102 A). Elle peut aussi prouver la mutation par décès au moyen des présomptions légales de l'article 1881 du CGI et de l'article 1882 du CGI. Dans ce cas le fait générateur se place à la date à partir de laquelle la prise de possession est établie." example_title: "Patrimoine et enregistrement" - text: "Quelles sont les obligations déclaratives que les associés personnes physiques doivent respecter pour bénéficier de la réduction d'impôt accordée au titre des dépenses de restauration immobilière effectuées dans les sites patrimoniaux remarquables et les quartiers relevant de la politique de la ville, et quelles sont les pièces justificatives qui doivent être jointes à leur déclaration des revenus ?" example_title: "Revenus particuliers" --- <img src="assets/thumbnail.webp"> # Lemone-Router: A Series of Fine-Tuned Classification Models for French Taxation Lemone-router is a series of classification models designed to produce an optimal multi-agent system for different branches of tax law. Trained on a base of 49k lines comprising a set of synthetic questions generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation and authority documents, these models are based on an 8-category decomposition of the classification scheme derived from the Bulletin officiel des finances publiques - impôts : ```python label2id = { "Bénéfices professionnels": 0, "Contrôle et contentieux": 1, "Dispositifs transversaux": 2, "Fiscalité des entreprises": 3, "Patrimoine et enregistrement": 4, "Revenus particuliers": 5, "Revenus patrimoniaux": 6, "Taxes sur la consommation": 7 } id2label = { 0: "Bénéfices professionnels", 1: "Contrôle et contentieux", 2: "Dispositifs transversaux", 3: "Fiscalité des entreprises", 4: "Patrimoine et enregistrement", 5: "Revenus particuliers", 6: "Revenus patrimoniaux", 7: "Taxes sur la consommation" } ``` This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It achieves the following results on the evaluation set of 5000 texts: - Loss: 0.4096 - Accuracy: 0.9265 ### Usage ```python # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("louisbrulenaudet/lemone-router-m") model = AutoModelForSequenceClassification.from_pretrained("louisbrulenaudet/lemone-router-m") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.099463734610582e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 23 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5371 | 1.0 | 2809 | 0.4147 | 0.8680 | | 0.3154 | 2.0 | 5618 | 0.3470 | 0.8914 | | 0.2241 | 3.0 | 8427 | 0.3345 | 0.9147 | | 0.1273 | 4.0 | 11236 | 0.3788 | 0.9187 | | 0.0525 | 5.0 | 14045 | 0.4096 | 0.9265 | ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA H100 NVL - **CPU Model**: AMD EPYC 9V84 96-Core Processor ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1 ## Citation If you use this code in your research, please use the following BibTeX entry. ```BibTeX @misc{louisbrulenaudet2024, author = {Louis Brulé Naudet}, title = {Lemone-Router: A Series of Fine-Tuned Classification Models for French Taxation}, year = {2024} howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/lemone-router-m}}, } ``` ## Feedback If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
louisbrulenaudet/lemone-router-l
louisbrulenaudet
2024-10-27T22:43:07Z
2,570
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "sentence-transformers", "feature-extraction", "legal", "taxation", "fiscalité", "tax", "fr", "dataset:louisbrulenaudet/code-impots", "dataset:louisbrulenaudet/code-impots-annexe-iv", "dataset:louisbrulenaudet/code-impots-annexe-iii", "dataset:louisbrulenaudet/code-impots-annexe-i", "dataset:louisbrulenaudet/code-impots-annexe-ii", "dataset:louisbrulenaudet/livre-procedures-fiscales", "dataset:louisbrulenaudet/bofip", "base_model:intfloat/multilingual-e5-base", "base_model:finetune:intfloat/multilingual-e5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-23T01:47:00Z
--- library_name: transformers license: apache-2.0 base_model: intfloat/multilingual-e5-base tags: - generated_from_trainer - sentence-transformers - text-classification - feature-extraction - generated_from_trainer - legal - taxation - fiscalité - tax metrics: - accuracy model-index: - name: lemone-router results: [] language: - fr pipeline_tag: text-classification datasets: - louisbrulenaudet/code-impots - louisbrulenaudet/code-impots-annexe-iv - louisbrulenaudet/code-impots-annexe-iii - louisbrulenaudet/code-impots-annexe-i - louisbrulenaudet/code-impots-annexe-ii - louisbrulenaudet/livre-procedures-fiscales - louisbrulenaudet/bofip widget: - text: "Quelles sont les modalités d'adoption d'un plan d'apurement échelonné par la commission chargée du recouvrement, et quelles sont les conditions qui s'imposent aux administrations et organismes chargés du recouvrement ainsi qu'au débiteur qui s'engage à le respecter ?" example_title: "Contrôle et contentieux" - text: "Quel régime fiscal est applicable aux opérations de crédit-bail portant sur des fonds de commerce, des fonds artisanaux, ou l'un de leurs éléments incorporels non amortissables, et quelles sont les conditions dans lesquelles les sommes correspondant à la quote-part de loyer ne constituent pas un élément du bénéfice imposable du bailleur et ne sont pas déductibles pour la détermination des résultats imposables du locataire ?" example_title: "Bénéfices professionnels" - text: "La succession s'ouvre par le décès dude cujus(code civil, art. 720). C'est donc le décès qui constitue le fait générateur de l'impôt. Dès lors, le tarif du droit et les règles applicables à sa liquidation sont celles en vigueur au jour du décès (en ce sens, Cass. com 7 janvier 1997 n° de pourvoi 95-11686). Toutefois, pour les legs sous condition suspensive (BOI-ENR-DMTG-10-10-10-10), les droits sont dus lors de la réalisation de la condition, d'après le régime fiscal applicable et la valeur des biens à cette époque (code général des impôts (CGI), art 676). Par ailleurs, pour les pénalités éventuellement exigibles, la loi applicable est celle en vigueur lors de la contravention. L'administration prouve le décès, en vue de la réclamation des droits, au moyen des registres de l'état civil dont les maires sont tenus de lui remettre un relevé trimestriel (LPF, art. L. 102 A). Elle peut aussi prouver la mutation par décès au moyen des présomptions légales de l'article 1881 du CGI et de l'article 1882 du CGI. Dans ce cas le fait générateur se place à la date à partir de laquelle la prise de possession est établie." example_title: "Patrimoine et enregistrement" - text: "Quelles sont les obligations déclaratives que les associés personnes physiques doivent respecter pour bénéficier de la réduction d'impôt accordée au titre des dépenses de restauration immobilière effectuées dans les sites patrimoniaux remarquables et les quartiers relevant de la politique de la ville, et quelles sont les pièces justificatives qui doivent être jointes à leur déclaration des revenus ?" example_title: "Revenus particuliers" --- <img src="assets/thumbnail.webp"> # Lemone-Router: A Series of Fine-Tuned Classification Models for French Taxation Lemone-router is a series of classification models designed to produce an optimal multi-agent system for different branches of tax law. Trained on a base of 49k lines comprising a set of synthetic questions generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation and authority documents, these models are based on an 8-category decomposition of the classification scheme derived from the Bulletin officiel des finances publiques - impôts : ```python label2id = { "Bénéfices professionnels": 0, "Contrôle et contentieux": 1, "Dispositifs transversaux": 2, "Fiscalité des entreprises": 3, "Patrimoine et enregistrement": 4, "Revenus particuliers": 5, "Revenus patrimoniaux": 6, "Taxes sur la consommation": 7 } id2label = { 0: "Bénéfices professionnels", 1: "Contrôle et contentieux", 2: "Dispositifs transversaux", 3: "Fiscalité des entreprises", 4: "Patrimoine et enregistrement", 5: "Revenus particuliers", 6: "Revenus patrimoniaux", 7: "Taxes sur la consommation" } ``` This model is a fine-tuned version of [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). It achieves the following results on the evaluation set: - Loss: 0.4734 - Accuracy: 0.9191 ### Usage ```python # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("louisbrulenaudet/lemone-router-l") model = AutoModelForSequenceClassification.from_pretrained("louisbrulenaudet/lemone-router-l") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.6763799752474963e-05 - train_batch_size: 4 - eval_batch_size: 64 - seed: 25 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6402 | 1.0 | 11233 | 0.6569 | 0.8630 | | 0.5031 | 2.0 | 22466 | 0.5058 | 0.9025 | | 0.2196 | 3.0 | 33699 | 0.4734 | 0.9191 | ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA H100 NVL - **CPU Model**: AMD EPYC 9V84 96-Core Processor ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1 ## Citation If you use this code in your research, please use the following BibTeX entry. ```BibTeX @misc{louisbrulenaudet2024, author = {Louis Brulé Naudet}, title = {Lemone-Router: A Series of Fine-Tuned Classification Models for French Taxation}, year = {2024} howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/lemone-router-l}}, } ``` ## Feedback If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf
RichardErkhov
2024-10-27T22:41:15Z
94
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-27T20:01:51Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.2-SUN-2.5B-chat - GGUF - Model creator: https://huggingface.co/meditsolutions/ - Original model: https://huggingface.co/meditsolutions/Llama-3.2-SUN-2.5B-chat/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Llama-3.2-SUN-2.5B-chat.Q2_K.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q2_K.gguf) | Q2_K | 0.95GB | | [Llama-3.2-SUN-2.5B-chat.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q3_K_S.gguf) | Q3_K_S | 1.09GB | | [Llama-3.2-SUN-2.5B-chat.Q3_K.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q3_K.gguf) | Q3_K | 1.18GB | | [Llama-3.2-SUN-2.5B-chat.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q3_K_M.gguf) | Q3_K_M | 1.18GB | | [Llama-3.2-SUN-2.5B-chat.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q3_K_L.gguf) | Q3_K_L | 1.26GB | | [Llama-3.2-SUN-2.5B-chat.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.IQ4_XS.gguf) | IQ4_XS | 1.32GB | | [Llama-3.2-SUN-2.5B-chat.Q4_0.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q4_0.gguf) | Q4_0 | 1.37GB | | [Llama-3.2-SUN-2.5B-chat.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.IQ4_NL.gguf) | IQ4_NL | 1.38GB | | [Llama-3.2-SUN-2.5B-chat.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q4_K_S.gguf) | Q4_K_S | 1.37GB | | [Llama-3.2-SUN-2.5B-chat.Q4_K.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q4_K.gguf) | Q4_K | 1.43GB | | [Llama-3.2-SUN-2.5B-chat.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q4_K_M.gguf) | Q4_K_M | 1.43GB | | [Llama-3.2-SUN-2.5B-chat.Q4_1.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q4_1.gguf) | Q4_1 | 1.49GB | | [Llama-3.2-SUN-2.5B-chat.Q5_0.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q5_0.gguf) | Q5_0 | 1.62GB | | [Llama-3.2-SUN-2.5B-chat.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q5_K_S.gguf) | Q5_K_S | 1.62GB | | [Llama-3.2-SUN-2.5B-chat.Q5_K.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q5_K.gguf) | Q5_K | 1.66GB | | [Llama-3.2-SUN-2.5B-chat.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q5_K_M.gguf) | Q5_K_M | 1.66GB | | [Llama-3.2-SUN-2.5B-chat.Q5_1.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q5_1.gguf) | Q5_1 | 1.75GB | | [Llama-3.2-SUN-2.5B-chat.Q6_K.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q6_K.gguf) | Q6_K | 1.9GB | | [Llama-3.2-SUN-2.5B-chat.Q8_0.gguf](https://huggingface.co/RichardErkhov/meditsolutions_-_Llama-3.2-SUN-2.5B-chat-gguf/blob/main/Llama-3.2-SUN-2.5B-chat.Q8_0.gguf) | Q8_0 | 2.45GB | Original model description: --- language: - en license: llama3.2 library_name: transformers base_model: - meta-llama/Llama-3.2-1B-Instruct datasets: - argilla/OpenHermesPreferences - argilla/magpie-ultra-v0.1 - argilla/Capybara-Preferences-Filtered - mlabonne/open-perfectblend - HuggingFaceTB/everyday-conversations-llama3.1-2k - WizardLMTeam/WizardLM_evol_instruct_V2_196k - ProlificAI/social-reasoning-rlhf pipeline_tag: text-generation --- # MedIT SUN 2.5B <div align="center"> <img src="https://i.ibb.co/PF0TdMJ/imagine-image-9a56cee7-0f4f-4cc2-b265-a5b8d04f266b.png" alt="Llama-3.2-MedIT-SUN-2.5B" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;"> </div> **Base Model** - Llama 3.2 1B **Extended Size** - 1B to 2.5B parameters **Extension Method** - Proprietary technique developed by MedIT Solutions **Fine-tuning** - Open (or open subsets allowing for commercial use) open datasets from HF - Open (or open subsets allowing for commercial use) SFT datasets from HF **Training Status** - Current version: chat-1.0.0 **Key Features** - Built on Llama 3.2 architecture - Expanded from 1B to 2.47B parameters - Optimized for open-ended conversations - Incorporates supervised fine-tuning for improved performance **Use Case** - General conversation and task-oriented interactions **Limitations** As the model is still in training, performance and capabilities may vary. Users should be aware that the model is not in its final form and may exhibit inconsistencies or limitations typical of in-progress AI models. **Disclaimer and Safety Considerations** The Model is designed to be used as a smart assistant but not as a knowledge source within your applications, systems, or environments. It is not intended to provide 100% accurate answers, especially in scenarios where high precision and accuracy are
Vikhrmodels/Vikhr-Qwen-2.5-0.5b-Instruct
Vikhrmodels
2024-10-27T22:39:42Z
2,051
14
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "ru", "en", "dataset:Vikhrmodels/GrandMaster-PRO-MAX", "arxiv:2405.13929", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-05T16:08:13Z
--- library_name: transformers model_name: Vikhr-Qwen-2.5-0.5b-Instruct base_model: - Qwen/Qwen2.5-0.5B-Instruct language: - ru - en license: apache-2.0 datasets: - Vikhrmodels/GrandMaster-PRO-MAX --- # 💨📟 Vikhr-Qwen-2.5-0.5B-Instruct #### RU Инструктивная модель на основе **Qwen-2.5-0.5B-Instruct**, обученная на русскоязычном датасете **GrandMaster-PRO-MAX**. В **4 раза эффективнее** базовой модели, и идеально подходит для запуска на слабых мобильных устройствах. #### EN Instructive model based on **Qwen-2.5-0.5B-Instruct**, trained on the Russian-language dataset **GrandMaster-PRO-MAX**. It is **4 times more efficient** than the base model, making it perfect for deployment on low-end mobile devices. ## GGUF - [Vikhrmodels/Vikhr-Qwen-2.5-0.5B-instruct-GGUF](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-0.5B-instruct-GGUF) ## Особенности: - 📚 Основа / Base: [Qwen-2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) - 🇷🇺 Специализация / Specialization: **RU** - 💾 Датасет / Dataset: [GrandMaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX) ## Попробовать / Try now: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bJpLmplDGkMbfOLO2CH6IO-2uUZEaknf?usp=sharing) ## Описание: #### RU **Vikhr-Qwen-2.5-0.5B-instruct** — это компактная языковая модель, обученная на датасете **GrandMaster-PRO-MAX**, специально доученная для обработки русского языка. Эффективность модели **в 4 раза** превышает базовую модель, а её размер составляет **1ГБ** , что делает её отличным выбором для запуска на слабых мобильных устройствах. #### EN **Vikhr-Qwen-2.5-0.5B-instruct** is a compact language model trained on the **GrandMaster-PRO-MAX** dataset, specifically designed for processing the Russian language. Its efficiency is **4 times** higher than the base model, and its size is **1GB**, making it an excellent choice for deployment on low-end mobile devices. ## Обучение / Train: #### RU Для создания **Vikhr-Qwen-2.5-0.5B-Instruct** использовался метод SFT (Supervised Fine-Tuning). Мы обучили модель на синтетическом датасете **Vikhrmodels/GrandMaster-PRO-MAX** (150k инструкций) с поддержкой CoT (Chain-Of-Thought), используя промпты для GPT-4-turbo. #### EN To create **Vikhr-Qwen-2.5-0.5B-Instruct**, the SFT (Supervised Fine-Tuning) method was used. We trained the model on a synthetic dataset **Vikhrmodels/GrandMaster-PRO-MAX** (150k instructions) with support for CoT (Chain-Of-Thought), utilizing prompts for GPT-4-turbo. ## Пример кода для запуска / Sample code to run: **Рекомендуемая температура для генерации: 0.3** / **Recommended generation temperature: 0.3**. ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Загрузка модели и токенизатора model_name = "Vikhrmodels/Vikhr-Qwen-2.5-0.5B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Подготовка входного текста input_text = "Напиши очень краткую рецензию о книге Гарри Поттер." messages = [ {"role": "system", "content": "Вы - Vikhr, помощник с искусственным интеллектом, созданный компанией Vikhr models, чтобы быть полезным, безобидным и честным."}, {"role": "user", "content": input_text}, ] # Токенизация и генерация текста input_ids = tokenizer.apply_chat_template(messages, truncation=True, add_generation_prompt=True, return_tensors="pt") output = model.generate( input_ids, max_length=1512, temperature=0.3, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, ) # Декодирование и вывод результата generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) ``` #### Ответ модели / Model response: >Книга "Гарри Поттер" – это серия книг, написанных британским писателем Джоан Роулинг. Это одно из самых известных произведений в мире литературы и популярного детского творчества. > >**Основные черты серии:** > >1. **Сюжет:** События разворачиваются вокруг мальчика по имени Гарри Поттер, который учится в Школе волшебства и философии в Университете Хогвартс. Он сталкивается с различными препятствиями, включая борьбу со злом, поиск друзей и самопознание. > >2. **Персонажи:** В книге представлены множество персонажей, каждый из которых имеет свои уникальные черты характера, мотивации и прошлое. Главный герой, Гарри Поттер, является примером доброго и смелого человека, а также необычной личностью. > >3. **Темы и идеи:** Рассказы книги затрагивают темы любви, дружбы, справедливости, морали, человеческой неповиновенности и важности обучения через приключения. > >4. **История и развитие персонажей:** Через события и взаимодействие с другими персонажами книга исследует глубокие психологические и философские вопросы. > >5. **Влияние на культуру:** "Гарри Поттер" оказал огромное влияние на мировую литературу, превратившись в культовый жанр и символ знаний и мудрости. > >6. **Доступность:** Книги серии доступны для широкой аудитории и пользуются большим спросом, что делает их популярным выбором среди читателей всех возрастов. > >7. **Развитие жанра:** Несмотря на то что "Гарри Поттер" является частью серии, он продолжает быть любимым и актуальным, так как продолжает удивлять читателей новыми историями и персонажами. > >Эта серия книг остается одной из самых значительных и влиятельных в истории литературы, оказав влияние на развитие мировой культуры и образование. ### Авторы / Authors - Sergei Bratchikov, [NLP Wanderer](https://t.me/nlpwanderer), [Vikhr Team](https://t.me/vikhrlabs) - Nikolay Kompanets, [LakoMoor](https://t.me/lakomoor), [Vikhr Team](https://t.me/vikhrlabs) - Konstantin Korolev, [Vikhr Team](https://t.me/vikhrlabs) - Aleksandr Nikolich, [Vikhr Team](https://t.me/vikhrlabs) ``` @article{nikolich2024vikhr, title={Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian}, author={Aleksandr Nikolich and Konstantin Korolev and Sergey Bratchikov and Nikolay Kompanets and Artem Shelmanov}, journal={arXiv preprint arXiv:2405.13929}, year={2024}, url={https://arxiv.org/pdf/2405.13929} } ```
RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf
RichardErkhov
2024-10-27T22:37:26Z
10
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-10-27T20:28:36Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Phi-2-2.7B-Instruct-Medical-Conversational - GGUF - Model creator: https://huggingface.co/MiniMedMind/ - Original model: https://huggingface.co/MiniMedMind/Phi-2-2.7B-Instruct-Medical-Conversational/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q2_K.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q2_K.gguf) | Q2_K | 1.03GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q3_K_S.gguf) | Q3_K_S | 1.16GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q3_K.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q3_K.gguf) | Q3_K | 1.33GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q3_K_M.gguf) | Q3_K_M | 1.33GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q3_K_L.gguf) | Q3_K_L | 1.47GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.IQ4_XS.gguf) | IQ4_XS | 1.43GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q4_0.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q4_0.gguf) | Q4_0 | 1.49GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.IQ4_NL.gguf) | IQ4_NL | 1.5GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q4_K_S.gguf) | Q4_K_S | 1.51GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q4_K.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q4_K.gguf) | Q4_K | 1.62GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q4_K_M.gguf) | Q4_K_M | 1.62GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q4_1.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q4_1.gguf) | Q4_1 | 1.65GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q5_0.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q5_0.gguf) | Q5_0 | 1.8GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q5_K_S.gguf) | Q5_K_S | 1.8GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q5_K.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q5_K.gguf) | Q5_K | 1.87GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q5_K_M.gguf) | Q5_K_M | 1.87GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q5_1.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q5_1.gguf) | Q5_1 | 1.95GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q6_K.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q6_K.gguf) | Q6_K | 2.13GB | | [Phi-2-2.7B-Instruct-Medical-Conversational.Q8_0.gguf](https://huggingface.co/RichardErkhov/MiniMedMind_-_Phi-2-2.7B-Instruct-Medical-Conversational-gguf/blob/main/Phi-2-2.7B-Instruct-Medical-Conversational.Q8_0.gguf) | Q8_0 | 2.75GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf
RichardErkhov
2024-10-27T22:32:43Z
25
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-27T20:28:41Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Hercules-Mini-1.8B - GGUF - Model creator: https://huggingface.co/M4-ai/ - Original model: https://huggingface.co/M4-ai/Hercules-Mini-1.8B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Hercules-Mini-1.8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q2_K.gguf) | Q2_K | 0.79GB | | [Hercules-Mini-1.8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q3_K_S.gguf) | Q3_K_S | 0.89GB | | [Hercules-Mini-1.8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q3_K.gguf) | Q3_K | 0.95GB | | [Hercules-Mini-1.8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q3_K_M.gguf) | Q3_K_M | 0.95GB | | [Hercules-Mini-1.8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q3_K_L.gguf) | Q3_K_L | 0.98GB | | [Hercules-Mini-1.8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.IQ4_XS.gguf) | IQ4_XS | 1.01GB | | [Hercules-Mini-1.8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q4_0.gguf) | Q4_0 | 1.04GB | | [Hercules-Mini-1.8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.IQ4_NL.gguf) | IQ4_NL | 1.05GB | | [Hercules-Mini-1.8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q4_K_S.gguf) | Q4_K_S | 1.08GB | | [Hercules-Mini-1.8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q4_K.gguf) | Q4_K | 1.13GB | | [Hercules-Mini-1.8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q4_K_M.gguf) | Q4_K_M | 1.13GB | | [Hercules-Mini-1.8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q4_1.gguf) | Q4_1 | 1.13GB | | [Hercules-Mini-1.8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q5_0.gguf) | Q5_0 | 1.22GB | | [Hercules-Mini-1.8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q5_K_S.gguf) | Q5_K_S | 1.24GB | | [Hercules-Mini-1.8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q5_K.gguf) | Q5_K | 1.28GB | | [Hercules-Mini-1.8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q5_K_M.gguf) | Q5_K_M | 1.28GB | | [Hercules-Mini-1.8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q5_1.gguf) | Q5_1 | 1.31GB | | [Hercules-Mini-1.8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q6_K.gguf) | Q6_K | 1.47GB | | [Hercules-Mini-1.8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/M4-ai_-_Hercules-Mini-1.8B-gguf/blob/main/Hercules-Mini-1.8B.Q8_0.gguf) | Q8_0 | 1.82GB | Original model description: --- library_name: transformers license: other datasets: - Locutusque/hercules-v4.0 language: - en inference: parameters: do_sample: true temperature: 1 top_p: 0.7 top_k: 4 max_new_tokens: 250 repetition_penalty: 1.1 --- # Hercules-Mini-1.8B <!-- Provide a quick summary of what the model is/does. --> We fine-tuned Qwen1.5-1.8B on Locutusque's Hercules-v4. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This model has capabilities in math, coding, function calling, roleplay, and more. We fine-tuned it using 700,000 examples of Hercules-v4. - **Developed by:** M4-ai - **Language(s) (NLP):** English and maybe Chinese - **License:** tongyi-qianwen license - **Finetuned from model:** [Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> General purpose assistant, question answering, chain-of-thought, etc.. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> The eos token was not setup properly, so to prevent infinite generation you'll need to implement a stopping criteria when the model generates the <|im_end|> token. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## Evaluation Coming soon ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/Locutusque/hercules-v4.0 #### Training Hyperparameters - **Training regime:** bf16 non-mixed precision ## Technical Specifications #### Hardware We used 8 Kaggle TPUs, and we trained at a global batch size of 256 and sequence length of 1536 ## Contributions Thanks to @Tonic, @aloobun, @fhai50032, and @Locutusque for their contributions to this model.
drewwas/OpenMachine_FlashNorm
drewwas
2024-10-27T22:30:17Z
6
0
null
[ "safetensors", "llama", "en", "arxiv:2407.09577", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:mit", "region:us" ]
null
2024-10-18T06:59:29Z
--- license: mit language: - en base_model: - meta-llama/Llama-3.2-1B --- ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> Finetune of LLaMa 3.2 1B model to include flashnormalization (https://arxiv.org/abs/2407.09577) - **Developed by:** OpenMachine Labs - **License:** MIT - **Finetuned from model** Meta LLaMa 3.2 1B ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/meta-llama/llama-models/tree/main/models/llama3_2 - **Paper** https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/ ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## How to Get Started with the Model Use the code below to get started with the model. #### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> ## Model Card Authors Nils Graef ([email protected]) Drew Wasielewski ([email protected])
ahmedheakl/asm2asm_bart-large_base_O0_702k_2ep
ahmedheakl
2024-10-27T22:29:14Z
105
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-10-27T22:27:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf
RichardErkhov
2024-10-27T22:27:28Z
21
0
null
[ "gguf", "arxiv:2404.03608", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-27T20:28:41Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Sailor-1.8B-Chat - GGUF - Model creator: https://huggingface.co/sail/ - Original model: https://huggingface.co/sail/Sailor-1.8B-Chat/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Sailor-1.8B-Chat.Q2_K.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q2_K.gguf) | Q2_K | 0.79GB | | [Sailor-1.8B-Chat.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q3_K_S.gguf) | Q3_K_S | 0.89GB | | [Sailor-1.8B-Chat.Q3_K.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q3_K.gguf) | Q3_K | 0.95GB | | [Sailor-1.8B-Chat.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q3_K_M.gguf) | Q3_K_M | 0.95GB | | [Sailor-1.8B-Chat.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q3_K_L.gguf) | Q3_K_L | 0.98GB | | [Sailor-1.8B-Chat.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.IQ4_XS.gguf) | IQ4_XS | 1.01GB | | [Sailor-1.8B-Chat.Q4_0.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q4_0.gguf) | Q4_0 | 1.04GB | | [Sailor-1.8B-Chat.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.IQ4_NL.gguf) | IQ4_NL | 1.05GB | | [Sailor-1.8B-Chat.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q4_K_S.gguf) | Q4_K_S | 1.08GB | | [Sailor-1.8B-Chat.Q4_K.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q4_K.gguf) | Q4_K | 1.13GB | | [Sailor-1.8B-Chat.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q4_K_M.gguf) | Q4_K_M | 1.13GB | | [Sailor-1.8B-Chat.Q4_1.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q4_1.gguf) | Q4_1 | 1.13GB | | [Sailor-1.8B-Chat.Q5_0.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q5_0.gguf) | Q5_0 | 1.22GB | | [Sailor-1.8B-Chat.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q5_K_S.gguf) | Q5_K_S | 1.24GB | | [Sailor-1.8B-Chat.Q5_K.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q5_K.gguf) | Q5_K | 1.28GB | | [Sailor-1.8B-Chat.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q5_K_M.gguf) | Q5_K_M | 1.28GB | | [Sailor-1.8B-Chat.Q5_1.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q5_1.gguf) | Q5_1 | 1.31GB | | [Sailor-1.8B-Chat.Q6_K.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q6_K.gguf) | Q6_K | 1.47GB | | [Sailor-1.8B-Chat.Q8_0.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-1.8B-Chat-gguf/blob/main/Sailor-1.8B-Chat.Q8_0.gguf) | Q8_0 | 1.82GB | Original model description: --- language: - en - zh - id - th - vi - ms - lo datasets: - CohereForAI/aya_dataset - CohereForAI/aya_collection - Open-Orca/OpenOrca tags: - multilingual - sea - sailor - sft - chat - instruction widget: - text: "如何制作烤鱼?" example_title: "Chinese" - text: "How to bake fish?" example_title: "English" - text: "Bagaimana cara memanggang ikan?" example_title: "Malay" - text: "วิธีย่างปลา?" example_title: "Thai" - text: "Bagaimana membuat bakaran ikan?" example_title: "Indonesian" - text: "Làm thế nào để nướng cá?" example_title: "Vietnamese" license: apache-2.0 base_model: sail/Sailor-1.8B inference: false --- <div align="center"> <img src="banner_sailor.jpg" width="700"/> </div> Sailor is a suite of Open Language Models tailored for South-East Asia (SEA), focusing on languages such as 🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao. Developed with careful data curation, Sailor models are designed to understand and generate text across diverse linguistic landscapes of SEA region. Built from [Qwen 1.5](https://huggingface.co/collections/Qwen/qwen15-65c0a2f577b1ecb76d786524) , Sailor encompasses models of varying sizes, spanning from 0.5B to 14B versions for different requirements. We further fine-tune the base model with open-source datasets to get instruction-tuned models, namedly Sailor-Chat. Benchmarking results demonstrate Sailor's proficiency in tasks such as question answering, commonsense reasoning, and other tasks in SEA languages. > The logo was generated by MidJourney ## Model Summary - **Model Collections:** [Base Model & Chat Model](https://huggingface.co/collections/sail/sailor-65e19a749f978976f1959825) - **Project Website:** [sailorllm.github.io](https://sailorllm.github.io/) - **Codebase:** [github.com/sail-sg/sailor-llm](https://github.com/sail-sg/sailor-llm) - **Technical Report:** [arxiv.org/pdf/2404.03608.pdf](https://arxiv.org/pdf/2404.03608.pdf) ## Training details Sailor is crafted by continually pre-training from language models like the remarkable Qwen 1.5 models, which already has a great performance on SEA languages. The pre-training corpus heavily leverages the publicly available corpus, including [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B), [SkyPile](https://huggingface.co/datasets/Skywork/SkyPile-150B), [CC100](https://huggingface.co/datasets/cc100) and [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400). The instruction tuning corpus are all publicly available including [aya_collection](https://huggingface.co/datasets/CohereForAI/aya_collection), [aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset), [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca). By employing aggressive data deduplication and careful data cleaning on the collected corpus, we have attained a high-quality dataset spanning various languages. Through systematic experiments to determine the weights of different languages, Sailor models undergo training from 200B to 400B tokens, tailored to different model sizes. The approach boosts their performance on SEA languages while maintaining proficiency in English and Chinese without significant compromise. Finally, we continually pre-train the Qwen1.5-0.5B model with 400 Billion tokens, and other models with 200 Billion tokens to obtain the Sailor models. ## Requirements The code of Sailor has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`. ## Quickstart Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" model = AutoModelForCausalLM.from_pretrained( 'sail/Sailor-1.8B-Chat', torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained('sail/Sailor-1.8B-Chat') system_prompt= 'You are a helpful assistant' prompt = "Beri saya pengenalan singkat tentang model bahasa besar." # prompt = "Hãy cho tôi một giới thiệu ngắn gọn về mô hình ngôn ngữ lớn." # prompt = "ให้ฉันแนะนำสั้น ๆ เกี่ยวกับโมเดลภาษาขนาดใหญ่" messages = [ {"role": "system", "content": system_prompt}, {"role": "question", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) input_ids = model_inputs.input_ids.to(device) generated_ids = model.generate( input_ids, max_new_tokens=512, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` # License Sailor is distributed under the terms of the Apache License 2.0. No restrict on the research and the commercial use, but should comply with the [Qwen License](https://huggingface.co/Qwen/Qwen1.5-1.8B/blob/main/LICENSE). ## Citation If you find sailor useful, please cite our work as follows: ``` @article{dou2024sailor, title={Sailor: Open Language Models for South-East Asia}, author={Dou, Longxu and Liu, Qian and Zeng, Guangtao and Guo, Jia and Zhou, Jiahui and Lu, Wei and Lin, Min}, journal={arXiv preprint arXiv:2404.03608}, year={2024} } ``` # Contact Us If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]) or [[email protected]](mailto:[email protected]).
RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf
RichardErkhov
2024-10-27T22:25:59Z
121
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-10-27T19:51:24Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) phi2_2.2B_mergkit_prunme - GGUF - Model creator: https://huggingface.co/thucdangvan020999/ - Original model: https://huggingface.co/thucdangvan020999/phi2_2.2B_mergkit_prunme/ | Name | Quant method | Size | | ---- | ---- | ---- | | [phi2_2.2B_mergkit_prunme.Q2_K.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q2_K.gguf) | Q2_K | 0.84GB | | [phi2_2.2B_mergkit_prunme.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q3_K_S.gguf) | Q3_K_S | 0.94GB | | [phi2_2.2B_mergkit_prunme.Q3_K.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q3_K.gguf) | Q3_K | 1.07GB | | [phi2_2.2B_mergkit_prunme.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q3_K_M.gguf) | Q3_K_M | 1.07GB | | [phi2_2.2B_mergkit_prunme.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q3_K_L.gguf) | Q3_K_L | 1.18GB | | [phi2_2.2B_mergkit_prunme.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.IQ4_XS.gguf) | IQ4_XS | 1.15GB | | [phi2_2.2B_mergkit_prunme.Q4_0.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q4_0.gguf) | Q4_0 | 1.2GB | | [phi2_2.2B_mergkit_prunme.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.IQ4_NL.gguf) | IQ4_NL | 1.21GB | | [phi2_2.2B_mergkit_prunme.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q4_K_S.gguf) | Q4_K_S | 1.22GB | | [phi2_2.2B_mergkit_prunme.Q4_K.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q4_K.gguf) | Q4_K | 1.31GB | | [phi2_2.2B_mergkit_prunme.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q4_K_M.gguf) | Q4_K_M | 1.31GB | | [phi2_2.2B_mergkit_prunme.Q4_1.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q4_1.gguf) | Q4_1 | 1.33GB | | [phi2_2.2B_mergkit_prunme.Q5_0.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q5_0.gguf) | Q5_0 | 1.45GB | | [phi2_2.2B_mergkit_prunme.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q5_K_S.gguf) | Q5_K_S | 1.45GB | | [phi2_2.2B_mergkit_prunme.Q5_K.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q5_K.gguf) | Q5_K | 1.5GB | | [phi2_2.2B_mergkit_prunme.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q5_K_M.gguf) | Q5_K_M | 1.5GB | | [phi2_2.2B_mergkit_prunme.Q5_1.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q5_1.gguf) | Q5_1 | 1.57GB | | [phi2_2.2B_mergkit_prunme.Q6_K.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q6_K.gguf) | Q6_K | 1.71GB | | [phi2_2.2B_mergkit_prunme.Q8_0.gguf](https://huggingface.co/RichardErkhov/thucdangvan020999_-_phi2_2.2B_mergkit_prunme-gguf/blob/main/phi2_2.2B_mergkit_prunme.Q8_0.gguf) | Q8_0 | 2.21GB | Original model description: --- base_model: - microsoft/phi-2 library_name: transformers tags: - mergekit - merge --- # merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 merge_method: passthrough slices: - sources: - layer_range: [0, 21] model: microsoft/phi-2 - sources: - layer_range: [28, 32] model: microsoft/phi-2 ```
1g0rrr/paper_painting
1g0rrr
2024-10-27T22:09:25Z
10
0
lerobot
[ "lerobot", "safetensors", "act", "model_hub_mixin", "pytorch_model_hub_mixin", "robotics", "region:us" ]
robotics
2024-10-27T22:09:07Z
--- library_name: lerobot tags: - act - model_hub_mixin - pytorch_model_hub_mixin - robotics --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: https://github.com/huggingface/lerobot - Docs: [More Information Needed]
joe611/chickens-composite-201616161616-150-epochs-w-transform
joe611
2024-10-27T22:02:29Z
42
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2024-10-26T22:59:28Z
--- library_name: transformers license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: chickens-composite-201616161616-150-epochs-w-transform results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chickens-composite-201616161616-150-epochs-w-transform This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2864 - Map: 0.7992 - Map 50: 0.9637 - Map 75: 0.8989 - Map Small: 0.3428 - Map Medium: 0.8051 - Map Large: 0.8153 - Mar 1: 0.3162 - Mar 10: 0.8378 - Mar 100: 0.843 - Mar Small: 0.4381 - Mar Medium: 0.8463 - Mar Large: 0.8551 - Map Chicken: 0.7833 - Mar 100 Chicken: 0.8298 - Map Duck: 0.747 - Mar 100 Duck: 0.7979 - Map Plant: 0.8672 - Mar 100 Plant: 0.9012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Chicken | Map Duck | Map Large | Map Medium | Map Plant | Map Small | Mar 1 | Mar 10 | Mar 100 | Mar 100 Chicken | Mar 100 Duck | Mar 100 Plant | Mar Large | Mar Medium | Mar Small | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:-----------:|:--------:|:---------:|:----------:|:---------:|:---------:|:------:|:------:|:-------:|:---------------:|:------------:|:-------------:|:---------:|:----------:|:---------:| | 1.3747 | 1.0 | 500 | 1.3787 | 0.1018 | 0.1491 | 0.1155 | 0.0363 | 0.0 | 0.1826 | 0.0495 | 0.2691 | 0.006 | 0.0524 | 0.2694 | 0.355 | 0.3643 | 0.0 | 0.7006 | 0.3925 | 0.3288 | 0.0262 | | 1.2078 | 2.0 | 1000 | 1.2359 | 0.2048 | 0.2894 | 0.2385 | 0.0858 | 0.0 | 0.2865 | 0.1101 | 0.5287 | 0.0066 | 0.086 | 0.3365 | 0.4465 | 0.604 | 0.0 | 0.7355 | 0.4846 | 0.4144 | 0.0895 | | 1.0716 | 3.0 | 1500 | 1.0378 | 0.2591 | 0.3743 | 0.304 | 0.1358 | 0.0 | 0.2992 | 0.1831 | 0.6414 | 0.0233 | 0.1024 | 0.3601 | 0.3717 | 0.3921 | 0.0 | 0.723 | 0.3834 | 0.3414 | 0.0519 | | 1.0097 | 4.0 | 2000 | 0.9668 | 0.2911 | 0.4199 | 0.3426 | 0.2048 | 0.0 | 0.3254 | 0.2382 | 0.6684 | 0.0787 | 0.1131 | 0.3961 | 0.4091 | 0.4976 | 0.0 | 0.7297 | 0.4087 | 0.3777 | 0.1333 | | 0.6756 | 5.0 | 2500 | 0.8939 | 0.3274 | 0.4611 | 0.3732 | 0.2788 | 0.0 | 0.3693 | 0.2915 | 0.7034 | 0.0597 | 0.1245 | 0.449 | 0.4744 | 0.6635 | 0.0 | 0.7597 | 0.4895 | 0.453 | 0.1271 | | 0.814 | 6.0 | 3000 | 0.8398 | 0.3292 | 0.4681 | 0.3844 | 0.3025 | 0.0 | 0.373 | 0.2896 | 0.6851 | 0.0637 | 0.1184 | 0.4607 | 0.4753 | 0.6802 | 0.0 | 0.7458 | 0.5049 | 0.4418 | 0.1148 | | 0.8875 | 7.0 | 3500 | 1.0039 | 0.3382 | 0.5017 | 0.3967 | 0.3663 | 0.0 | 0.359 | 0.2988 | 0.6484 | 0.0382 | 0.1234 | 0.4309 | 0.4331 | 0.6056 | 0.0 | 0.6936 | 0.4519 | 0.3978 | 0.0867 | | 0.9457 | 8.0 | 4000 | 0.7726 | 0.3549 | 0.5102 | 0.4198 | 0.3821 | 0.0 | 0.392 | 0.3128 | 0.6827 | 0.0431 | 0.1237 | 0.4609 | 0.4649 | 0.6663 | 0.0 | 0.7285 | 0.4913 | 0.4323 | 0.08 | | 0.8339 | 9.0 | 4500 | 0.7188 | 0.3834 | 0.5328 | 0.4389 | 0.4271 | 0.0 | 0.4102 | 0.3461 | 0.7231 | 0.0449 | 0.1309 | 0.4861 | 0.4894 | 0.696 | 0.0 | 0.7721 | 0.5219 | 0.4577 | 0.1381 | | 0.7813 | 10.0 | 5000 | 0.7378 | 0.3769 | 0.5485 | 0.4379 | 0.4384 | 0.0 | 0.3971 | 0.3526 | 0.6923 | 0.0362 | 0.124 | 0.4752 | 0.4803 | 0.6909 | 0.0 | 0.75 | 0.5162 | 0.4555 | 0.0833 | | 0.7526 | 11.0 | 5500 | 0.6691 | 0.4059 | 0.5667 | 0.457 | 0.4777 | 0.0 | 0.4276 | 0.3719 | 0.7398 | 0.0528 | 0.1346 | 0.4873 | 0.4944 | 0.6956 | 0.0 | 0.7876 | 0.5378 | 0.4618 | 0.1514 | | 0.7195 | 12.0 | 6000 | 0.6984 | 0.3983 | 0.5673 | 0.4621 | 0.4728 | 0.0 | 0.4143 | 0.3648 | 0.7222 | 0.0499 | 0.1274 | 0.4797 | 0.4874 | 0.6909 | 0.0 | 0.7712 | 0.5283 | 0.4558 | 0.1281 | | 0.6467 | 13.0 | 6500 | 0.6682 | 0.408 | 0.5632 | 0.4939 | 0.5153 | 0.0 | 0.4315 | 0.388 | 0.7087 | 0.0458 | 0.1372 | 0.4872 | 0.49 | 0.7143 | 0.0 | 0.7558 | 0.5251 | 0.4654 | 0.1333 | | 0.7253 | 14.0 | 7000 | 0.6210 | 0.4263 | 0.5778 | 0.5001 | 0.5356 | 0.0 | 0.4556 | 0.3959 | 0.7432 | 0.0782 | 0.1364 | 0.506 | 0.5088 | 0.7377 | 0.0 | 0.7888 | 0.5347 | 0.4813 | 0.139 | | 0.7234 | 15.0 | 7500 | 0.6613 | 0.406 | 0.5657 | 0.486 | 0.5085 | 0.0 | 0.4334 | 0.3667 | 0.7096 | 0.0572 | 0.1337 | 0.4851 | 0.4885 | 0.7083 | 0.0 | 0.7573 | 0.5213 | 0.4478 | 0.1267 | | 0.6467 | 16.0 | 8000 | 0.6621 | 0.4174 | 0.5704 | 0.4886 | 0.5214 | 0.0 | 0.4596 | 0.3702 | 0.7309 | 0.0454 | 0.1354 | 0.4926 | 0.496 | 0.7095 | 0.0 | 0.7785 | 0.539 | 0.4504 | 0.1133 | | 0.6227 | 17.0 | 8500 | 0.6304 | 0.4221 | 0.5839 | 0.4954 | 0.5342 | 0.0 | 0.4436 | 0.3929 | 0.732 | 0.0783 | 0.1338 | 0.495 | 0.4977 | 0.7139 | 0.0 | 0.7791 | 0.5317 | 0.4721 | 0.1643 | | 0.7302 | 18.0 | 9000 | 0.5794 | 0.4364 | 0.5848 | 0.5177 | 0.5726 | 0.0 | 0.4589 | 0.4131 | 0.7367 | 0.0589 | 0.1399 | 0.5078 | 0.5106 | 0.748 | 0.0 | 0.7836 | 0.5434 | 0.482 | 0.121 | | 0.665 | 19.0 | 9500 | 0.5931 | 0.4435 | 0.6047 | 0.5339 | 0.5862 | 0.0 | 0.4622 | 0.4084 | 0.7442 | 0.0897 | 0.1405 | 0.5052 | 0.5099 | 0.7349 | 0.0 | 0.7948 | 0.5396 | 0.4776 | 0.1667 | | 0.5947 | 20.0 | 10000 | 0.5701 | 0.4626 | 0.6084 | 0.5475 | 0.615 | 0.0 | 0.4907 | 0.4311 | 0.7728 | 0.0789 | 0.1413 | 0.5173 | 0.5248 | 0.7563 | 0.0 | 0.8182 | 0.5565 | 0.4942 | 0.2052 | | 0.5727 | 21.0 | 10500 | 0.5720 | 0.4511 | 0.604 | 0.5269 | 0.5865 | 0.0 | 0.4784 | 0.4265 | 0.7667 | 0.1067 | 0.1369 | 0.5125 | 0.5177 | 0.7389 | 0.0 | 0.8142 | 0.5344 | 0.4946 | 0.229 | | 0.5855 | 22.0 | 11000 | 0.5773 | 0.4519 | 0.6125 | 0.5447 | 0.5949 | 0.0 | 0.4783 | 0.4254 | 0.7608 | 0.1236 | 0.1383 | 0.5063 | 0.5118 | 0.7329 | 0.0 | 0.8024 | 0.5333 | 0.4872 | 0.2386 | | 0.5441 | 23.0 | 11500 | 0.5694 | 0.4636 | 0.62 | 0.5595 | 0.6198 | 0.0 | 0.4837 | 0.4296 | 0.7709 | 0.0867 | 0.1445 | 0.509 | 0.5137 | 0.7313 | 0.0 | 0.8097 | 0.5346 | 0.4852 | 0.161 | | 0.5504 | 24.0 | 12000 | 0.5569 | 0.4653 | 0.6191 | 0.5497 | 0.6305 | 0.0 | 0.4841 | 0.4365 | 0.7653 | 0.0995 | 0.1431 | 0.5149 | 0.5206 | 0.7556 | 0.0 | 0.8064 | 0.5405 | 0.4957 | 0.2229 | | 0.5802 | 25.0 | 12500 | 0.5488 | 0.4621 | 0.6168 | 0.5455 | 0.6366 | 0.0 | 0.4952 | 0.431 | 0.7497 | 0.0932 | 0.1458 | 0.5118 | 0.516 | 0.7536 | 0.0 | 0.7945 | 0.541 | 0.491 | 0.1814 | | 0.6644 | 26.0 | 13000 | 0.5489 | 0.4709 | 0.6259 | 0.564 | 0.637 | 0.0 | 0.5032 | 0.4382 | 0.7757 | 0.0979 | 0.1449 | 0.515 | 0.5187 | 0.7385 | 0.0 | 0.8176 | 0.5449 | 0.4914 | 0.2129 | | 0.5006 | 27.0 | 13500 | 0.5375 | 0.4817 | 0.6348 | 0.5852 | 0.676 | 0.0008 | 0.5099 | 0.4509 | 0.7683 | 0.0954 | 0.1491 | 0.5201 | 0.5249 | 0.7623 | 0.0021 | 0.8103 | 0.5427 | 0.4986 | 0.19 | | 0.5194 | 28.0 | 14000 | 0.5161 | 0.4872 | 0.6325 | 0.5795 | 0.6725 | 0.0015 | 0.5126 | 0.4629 | 0.7875 | 0.1579 | 0.1508 | 0.5289 | 0.5343 | 0.7655 | 0.0093 | 0.8282 | 0.5508 | 0.5098 | 0.2424 | | 0.5253 | 29.0 | 14500 | 0.5392 | 0.4861 | 0.6461 | 0.5959 | 0.6739 | 0.0158 | 0.5018 | 0.4562 | 0.7685 | 0.1217 | 0.1511 | 0.5204 | 0.5248 | 0.7524 | 0.0144 | 0.8076 | 0.5371 | 0.5038 | 0.2138 | | 0.7139 | 30.0 | 15000 | 0.5087 | 0.4933 | 0.6447 | 0.5839 | 0.6846 | 0.0082 | 0.5172 | 0.468 | 0.7873 | 0.0989 | 0.156 | 0.5313 | 0.5363 | 0.7667 | 0.0124 | 0.83 | 0.5527 | 0.5146 | 0.2552 | | 0.5975 | 31.0 | 15500 | 0.5136 | 0.5044 | 0.6842 | 0.5915 | 0.6641 | 0.062 | 0.5448 | 0.4764 | 0.787 | 0.1557 | 0.1728 | 0.5681 | 0.575 | 0.7504 | 0.1433 | 0.8312 | 0.5871 | 0.5523 | 0.2838 | | 0.6357 | 32.0 | 16000 | 0.5031 | 0.506 | 0.6647 | 0.5959 | 0.7083 | 0.0387 | 0.5347 | 0.4748 | 0.7711 | 0.1292 | 0.166 | 0.5445 | 0.5521 | 0.7778 | 0.067 | 0.8115 | 0.5721 | 0.5279 | 0.3205 | | 0.4954 | 33.0 | 16500 | 0.4850 | 0.6026 | 0.7982 | 0.7113 | 0.7038 | 0.3072 | 0.5485 | 0.5987 | 0.7966 | 0.1613 | 0.2289 | 0.6542 | 0.6592 | 0.7687 | 0.3763 | 0.8327 | 0.601 | 0.6559 | 0.2952 | | 0.5608 | 34.0 | 17000 | 0.4956 | 0.6291 | 0.8291 | 0.7295 | 0.6904 | 0.4001 | 0.6004 | 0.6177 | 0.7969 | 0.1447 | 0.2403 | 0.6767 | 0.6807 | 0.7512 | 0.4588 | 0.8321 | 0.6434 | 0.6715 | 0.2195 | | 0.5545 | 35.0 | 17500 | 0.4593 | 0.6732 | 0.8781 | 0.7947 | 0.7125 | 0.5052 | 0.6504 | 0.6728 | 0.802 | 0.128 | 0.2712 | 0.719 | 0.7231 | 0.7679 | 0.566 | 0.8355 | 0.7029 | 0.7214 | 0.2586 | | 0.4638 | 36.0 | 18000 | 0.4485 | 0.6864 | 0.9007 | 0.7957 | 0.7238 | 0.5375 | 0.683 | 0.6833 | 0.7978 | 0.1103 | 0.2766 | 0.7337 | 0.7394 | 0.7798 | 0.6041 | 0.8342 | 0.7294 | 0.7441 | 0.1986 | | 0.4631 | 37.0 | 18500 | 0.4289 | 0.6983 | 0.8846 | 0.819 | 0.7339 | 0.5411 | 0.6778 | 0.6983 | 0.8198 | 0.1593 | 0.282 | 0.7377 | 0.7435 | 0.7877 | 0.5948 | 0.8479 | 0.7242 | 0.7472 | 0.26 | | 0.4801 | 38.0 | 19000 | 0.4302 | 0.7033 | 0.9186 | 0.8231 | 0.7085 | 0.596 | 0.7351 | 0.6893 | 0.8056 | 0.208 | 0.2852 | 0.7465 | 0.7534 | 0.7635 | 0.6608 | 0.8358 | 0.7803 | 0.7432 | 0.2871 | | 0.5169 | 39.0 | 19500 | 0.4603 | 0.6792 | 0.9211 | 0.8229 | 0.6854 | 0.5802 | 0.7224 | 0.6702 | 0.7719 | 0.0846 | 0.2782 | 0.7283 | 0.7346 | 0.746 | 0.6495 | 0.8082 | 0.7577 | 0.7324 | 0.191 | | 0.5702 | 40.0 | 20000 | 0.4284 | 0.7044 | 0.9409 | 0.8336 | 0.7053 | 0.6151 | 0.7657 | 0.6982 | 0.7928 | 0.1289 | 0.2882 | 0.7526 | 0.7597 | 0.7603 | 0.6845 | 0.8342 | 0.8075 | 0.7525 | 0.2648 | | 0.4602 | 41.0 | 20500 | 0.4185 | 0.7108 | 0.9349 | 0.8528 | 0.7103 | 0.6225 | 0.7698 | 0.7045 | 0.7996 | 0.1198 | 0.286 | 0.7573 | 0.7632 | 0.7627 | 0.6876 | 0.8394 | 0.8156 | 0.7583 | 0.209 | | 0.5054 | 42.0 | 21000 | 0.4112 | 0.7046 | 0.9386 | 0.8376 | 0.7135 | 0.6025 | 0.7612 | 0.6897 | 0.7979 | 0.1176 | 0.285 | 0.7544 | 0.7605 | 0.7679 | 0.6784 | 0.8352 | 0.8061 | 0.7498 | 0.2319 | | 0.4585 | 43.0 | 21500 | 0.4149 | 0.7019 | 0.9352 | 0.831 | 0.7039 | 0.5973 | 0.7528 | 0.6919 | 0.8043 | 0.1512 | 0.2842 | 0.746 | 0.7539 | 0.7587 | 0.6619 | 0.8412 | 0.8012 | 0.7437 | 0.2824 | | 0.4809 | 44.0 | 22000 | 0.4257 | 0.7114 | 0.946 | 0.8499 | 0.7028 | 0.6311 | 0.7628 | 0.6952 | 0.8004 | 0.1798 | 0.2847 | 0.7502 | 0.7581 | 0.7452 | 0.6918 | 0.8373 | 0.8051 | 0.7436 | 0.2981 | | 0.5096 | 45.0 | 22500 | 0.3866 | 0.7301 | 0.9409 | 0.8656 | 0.7337 | 0.6316 | 0.7604 | 0.723 | 0.825 | 0.2305 | 0.2934 | 0.768 | 0.7752 | 0.7853 | 0.6825 | 0.8579 | 0.7969 | 0.7703 | 0.3581 | | 0.3569 | 46.0 | 23000 | 0.3903 | 0.7354 | 0.9551 | 0.85 | 0.7441 | 0.6476 | 0.7816 | 0.7281 | 0.8146 | 0.1643 | 0.2973 | 0.7783 | 0.7852 | 0.7913 | 0.7113 | 0.853 | 0.8215 | 0.78 | 0.2905 | | 0.5786 | 47.0 | 23500 | 0.3864 | 0.7324 | 0.9466 | 0.8595 | 0.7353 | 0.6618 | 0.7822 | 0.717 | 0.8 | 0.118 | 0.2988 | 0.7731 | 0.779 | 0.7889 | 0.7124 | 0.8358 | 0.82 | 0.7693 | 0.2252 | | 0.5832 | 48.0 | 24000 | 0.3837 | 0.7295 | 0.9548 | 0.8663 | 0.7363 | 0.6488 | 0.7473 | 0.7188 | 0.8036 | 0.2165 | 0.2953 | 0.7746 | 0.7835 | 0.7925 | 0.7144 | 0.8436 | 0.7958 | 0.775 | 0.3795 | | 0.4607 | 49.0 | 24500 | 0.3718 | 0.7349 | 0.952 | 0.86 | 0.7436 | 0.653 | 0.7486 | 0.7263 | 0.8081 | 0.2217 | 0.2972 | 0.7798 | 0.7852 | 0.7929 | 0.7134 | 0.8494 | 0.7947 | 0.78 | 0.3295 | | 0.4544 | 50.0 | 25000 | 0.3855 | 0.7337 | 0.9509 | 0.8708 | 0.7415 | 0.6595 | 0.7572 | 0.7273 | 0.8002 | 0.1915 | 0.2962 | 0.776 | 0.7831 | 0.7948 | 0.7155 | 0.8391 | 0.8071 | 0.7778 | 0.3548 | | 0.4856 | 51.0 | 25500 | 0.3908 | 0.7289 | 0.948 | 0.8855 | 0.7357 | 0.6467 | 0.7705 | 0.7117 | 0.8042 | 0.2033 | 0.2988 | 0.7699 | 0.7754 | 0.7821 | 0.7082 | 0.8358 | 0.8117 | 0.7603 | 0.3552 | | 0.525 | 52.0 | 26000 | 0.3737 | 0.7356 | 0.9475 | 0.8752 | 0.7445 | 0.661 | 0.7775 | 0.7244 | 0.8012 | 0.1072 | 0.298 | 0.7774 | 0.7847 | 0.7917 | 0.7268 | 0.8358 | 0.8254 | 0.7733 | 0.2576 | | 0.461 | 53.0 | 26500 | 0.3872 | 0.73 | 0.9538 | 0.8836 | 0.7342 | 0.6596 | 0.7643 | 0.7287 | 0.796 | 0.1453 | 0.2963 | 0.7755 | 0.7815 | 0.779 | 0.7309 | 0.8345 | 0.8016 | 0.7774 | 0.2843 | | 0.4168 | 54.0 | 27000 | 0.3672 | 0.7432 | 0.9508 | 0.8815 | 0.7403 | 0.6648 | 0.7746 | 0.7364 | 0.8247 | 0.1979 | 0.3004 | 0.7866 | 0.7924 | 0.7933 | 0.7237 | 0.8603 | 0.8117 | 0.7876 | 0.3281 | | 0.5283 | 55.0 | 27500 | 0.3803 | 0.7312 | 0.9393 | 0.8797 | 0.73 | 0.6559 | 0.7731 | 0.7226 | 0.8077 | 0.2027 | 0.2998 | 0.7742 | 0.778 | 0.7802 | 0.7093 | 0.8445 | 0.81 | 0.7706 | 0.2871 | | 0.4825 | 56.0 | 28000 | 0.3591 | 0.7475 | 0.9513 | 0.8948 | 0.7531 | 0.6794 | 0.7812 | 0.7373 | 0.8099 | 0.2344 | 0.304 | 0.7953 | 0.7992 | 0.8052 | 0.7412 | 0.8512 | 0.825 | 0.7872 | 0.361 | | 0.4286 | 57.0 | 28500 | 0.3636 | 0.7375 | 0.9587 | 0.8681 | 0.7436 | 0.6484 | 0.7447 | 0.7316 | 0.8204 | 0.2267 | 0.2952 | 0.7811 | 0.7873 | 0.7917 | 0.7103 | 0.86 | 0.7927 | 0.7801 | 0.3533 | | 0.505 | 58.0 | 29000 | 0.3713 | 0.7322 | 0.9479 | 0.8768 | 0.7316 | 0.6583 | 0.7717 | 0.7208 | 0.8067 | 0.24 | 0.2949 | 0.7722 | 0.7786 | 0.7782 | 0.7155 | 0.8421 | 0.8092 | 0.7716 | 0.32 | | 0.3802 | 59.0 | 29500 | 0.3628 | 0.7445 | 0.9469 | 0.8799 | 0.7358 | 0.678 | 0.7525 | 0.7393 | 0.8196 | 0.2474 | 0.2973 | 0.782 | 0.7885 | 0.781 | 0.7278 | 0.8567 | 0.7951 | 0.784 | 0.32 | | 0.3638 | 60.0 | 30000 | 0.3528 | 0.7432 | 0.9472 | 0.8783 | 0.7524 | 0.6658 | 0.7709 | 0.7413 | 0.8114 | 0.2418 | 0.2996 | 0.7839 | 0.7893 | 0.798 | 0.7175 | 0.8524 | 0.8165 | 0.7875 | 0.3619 | | 0.4559 | 61.0 | 30500 | 0.3543 | 0.7393 | 0.9569 | 0.8867 | 0.7432 | 0.6716 | 0.7413 | 0.7374 | 0.8031 | 0.2875 | 0.2987 | 0.7806 | 0.7855 | 0.7917 | 0.7227 | 0.8421 | 0.7821 | 0.7842 | 0.3805 | | 0.5254 | 62.0 | 31000 | 0.3775 | 0.7268 | 0.9492 | 0.8686 | 0.7326 | 0.6375 | 0.7406 | 0.7164 | 0.8103 | 0.2894 | 0.2896 | 0.7669 | 0.7745 | 0.7802 | 0.6938 | 0.8494 | 0.7812 | 0.7667 | 0.409 | | 0.3529 | 63.0 | 31500 | 0.3562 | 0.7523 | 0.9533 | 0.8955 | 0.7437 | 0.6887 | 0.7747 | 0.7458 | 0.8246 | 0.2767 | 0.3047 | 0.793 | 0.7998 | 0.7948 | 0.7443 | 0.8603 | 0.8215 | 0.7922 | 0.4081 | | 0.4234 | 64.0 | 32000 | 0.3625 | 0.7424 | 0.9439 | 0.8858 | 0.7355 | 0.6711 | 0.7568 | 0.7401 | 0.8207 | 0.2197 | 0.2969 | 0.7798 | 0.7861 | 0.7845 | 0.7175 | 0.8564 | 0.8095 | 0.7821 | 0.3205 | | 0.4396 | 65.0 | 32500 | 0.3512 | 0.7614 | 0.9564 | 0.891 | 0.7586 | 0.7001 | 0.7852 | 0.7489 | 0.8255 | 0.2531 | 0.3058 | 0.8001 | 0.8069 | 0.8048 | 0.7557 | 0.8603 | 0.8285 | 0.7985 | 0.3833 | | 0.4173 | 66.0 | 33000 | 0.3434 | 0.77 | 0.9558 | 0.8952 | 0.7579 | 0.7253 | 0.8013 | 0.7656 | 0.8268 | 0.2052 | 0.3066 | 0.8065 | 0.8138 | 0.8091 | 0.7691 | 0.8633 | 0.8334 | 0.8101 | 0.3562 | | 0.4697 | 67.0 | 33500 | 0.3513 | 0.7545 | 0.9452 | 0.8796 | 0.7586 | 0.677 | 0.7904 | 0.7461 | 0.8279 | 0.2171 | 0.3026 | 0.7924 | 0.799 | 0.8087 | 0.7247 | 0.8636 | 0.8351 | 0.788 | 0.32 | | 0.4771 | 68.0 | 34000 | 0.3578 | 0.7577 | 0.9455 | 0.8704 | 0.7557 | 0.6993 | 0.8022 | 0.7413 | 0.818 | 0.1788 | 0.3074 | 0.7947 | 0.8017 | 0.8004 | 0.7464 | 0.8582 | 0.8384 | 0.7888 | 0.329 | | 0.4833 | 69.0 | 34500 | 0.3555 | 0.7502 | 0.9465 | 0.8737 | 0.7537 | 0.6766 | 0.7661 | 0.7317 | 0.8202 | 0.2681 | 0.2995 | 0.789 | 0.7955 | 0.7984 | 0.7299 | 0.8582 | 0.8117 | 0.7848 | 0.3676 | | 0.4091 | 70.0 | 35000 | 0.3746 | 0.7332 | 0.9476 | 0.8716 | 0.7196 | 0.6808 | 0.7409 | 0.728 | 0.7992 | 0.1368 | 0.3026 | 0.7781 | 0.7825 | 0.7726 | 0.7351 | 0.8397 | 0.7993 | 0.7767 | 0.2071 | | 0.3662 | 71.0 | 35500 | 0.3476 | 0.748 | 0.9477 | 0.8928 | 0.2295 | 0.7423 | 0.7833 | 0.3014 | 0.791 | 0.7964 | 0.3529 | 0.7918 | 0.8305 | 0.7374 | 0.7873 | 0.6861 | 0.7361 | 0.8204 | 0.8658 | | 0.4244 | 72.0 | 36000 | 0.3509 | 0.7518 | 0.9432 | 0.8724 | 0.2416 | 0.7471 | 0.7649 | 0.2982 | 0.792 | 0.797 | 0.3657 | 0.7909 | 0.8121 | 0.7548 | 0.8004 | 0.6835 | 0.7299 | 0.8172 | 0.8606 | | 0.4483 | 73.0 | 36500 | 0.3508 | 0.7472 | 0.9483 | 0.897 | 0.2306 | 0.753 | 0.7725 | 0.2979 | 0.7963 | 0.8027 | 0.409 | 0.8053 | 0.8304 | 0.738 | 0.7944 | 0.6835 | 0.7474 | 0.8201 | 0.8664 | | 0.4498 | 74.0 | 37000 | 0.3357 | 0.7632 | 0.9535 | 0.882 | 0.2094 | 0.7633 | 0.7862 | 0.3069 | 0.8033 | 0.8087 | 0.3448 | 0.8104 | 0.8324 | 0.7617 | 0.8091 | 0.7007 | 0.7485 | 0.8272 | 0.8685 | | 0.5208 | 75.0 | 37500 | 0.3492 | 0.7598 | 0.9506 | 0.8859 | 0.2379 | 0.7612 | 0.7963 | 0.3067 | 0.7977 | 0.8034 | 0.3476 | 0.8052 | 0.8349 | 0.7466 | 0.7917 | 0.6987 | 0.7454 | 0.834 | 0.873 | | 0.3542 | 76.0 | 38000 | 0.3492 | 0.7606 | 0.9431 | 0.8889 | 0.2385 | 0.7543 | 0.7958 | 0.3072 | 0.7975 | 0.8028 | 0.3724 | 0.7957 | 0.8427 | 0.7548 | 0.7988 | 0.7124 | 0.7526 | 0.8146 | 0.857 | | 0.439 | 77.0 | 38500 | 0.3485 | 0.7617 | 0.9583 | 0.8965 | 0.213 | 0.7633 | 0.7814 | 0.3039 | 0.7998 | 0.8063 | 0.3343 | 0.8052 | 0.8302 | 0.7599 | 0.8036 | 0.6995 | 0.7474 | 0.8257 | 0.8679 | | 0.4294 | 78.0 | 39000 | 0.3406 | 0.7562 | 0.947 | 0.8774 | 0.2508 | 0.7586 | 0.7739 | 0.3044 | 0.7915 | 0.7994 | 0.3657 | 0.8001 | 0.8081 | 0.7478 | 0.7917 | 0.6802 | 0.7268 | 0.8405 | 0.8797 | | 0.3643 | 79.0 | 39500 | 0.3285 | 0.7607 | 0.9492 | 0.8828 | 0.2242 | 0.7627 | 0.7663 | 0.3047 | 0.7998 | 0.8045 | 0.3529 | 0.8074 | 0.809 | 0.7602 | 0.804 | 0.6911 | 0.7402 | 0.8309 | 0.8694 | | 0.3089 | 80.0 | 40000 | 0.3194 | 0.7734 | 0.9514 | 0.8911 | 0.2526 | 0.773 | 0.808 | 0.3087 | 0.8092 | 0.8163 | 0.3805 | 0.8168 | 0.8501 | 0.773 | 0.8175 | 0.7036 | 0.7515 | 0.8436 | 0.88 | | 0.3825 | 81.0 | 40500 | 0.3217 | 0.7671 | 0.9532 | 0.8831 | 0.2602 | 0.7599 | 0.8157 | 0.3076 | 0.8079 | 0.8136 | 0.3638 | 0.8041 | 0.8615 | 0.7627 | 0.8147 | 0.7031 | 0.7557 | 0.8354 | 0.8703 | | 0.465 | 82.0 | 41000 | 0.3319 | 0.7729 | 0.9571 | 0.8953 | 0.2869 | 0.7677 | 0.812 | 0.3083 | 0.8123 | 0.8173 | 0.3862 | 0.8111 | 0.8534 | 0.7579 | 0.8024 | 0.7203 | 0.7711 | 0.8404 | 0.8785 | | 0.3699 | 83.0 | 41500 | 0.3355 | 0.7681 | 0.9404 | 0.8881 | 0.2056 | 0.7663 | 0.7947 | 0.3088 | 0.8062 | 0.8112 | 0.2671 | 0.809 | 0.8387 | 0.7788 | 0.8246 | 0.7036 | 0.7443 | 0.8218 | 0.8645 | | 0.4712 | 84.0 | 42000 | 0.3503 | 0.7537 | 0.9542 | 0.8957 | 0.2904 | 0.7501 | 0.7776 | 0.3017 | 0.7948 | 0.8006 | 0.3829 | 0.7959 | 0.8247 | 0.7472 | 0.7984 | 0.6924 | 0.7423 | 0.8214 | 0.8612 | | 0.3711 | 85.0 | 42500 | 0.3334 | 0.7686 | 0.9549 | 0.8986 | 0.2611 | 0.7664 | 0.8073 | 0.3066 | 0.8066 | 0.8126 | 0.3724 | 0.8067 | 0.8506 | 0.7423 | 0.7905 | 0.7212 | 0.768 | 0.8425 | 0.8794 | | 0.4093 | 86.0 | 43000 | 0.3299 | 0.7711 | 0.9535 | 0.8948 | 0.2808 | 0.7678 | 0.8096 | 0.31 | 0.8091 | 0.8156 | 0.3848 | 0.8098 | 0.8489 | 0.7478 | 0.7996 | 0.7176 | 0.7629 | 0.8478 | 0.8842 | | 0.447 | 87.0 | 43500 | 0.3274 | 0.7718 | 0.9547 | 0.8992 | 0.2794 | 0.7699 | 0.8004 | 0.3086 | 0.8129 | 0.8177 | 0.3738 | 0.8106 | 0.8445 | 0.7686 | 0.8151 | 0.7125 | 0.7639 | 0.8343 | 0.8742 | | 0.3878 | 88.0 | 44000 | 0.3162 | 0.7836 | 0.9558 | 0.9025 | 0.2726 | 0.7785 | 0.8195 | 0.3138 | 0.8202 | 0.8262 | 0.3805 | 0.8201 | 0.8567 | 0.7758 | 0.8206 | 0.7307 | 0.7763 | 0.8442 | 0.8818 | | 0.3293 | 89.0 | 44500 | 0.3279 | 0.7753 | 0.9585 | 0.8908 | 0.2607 | 0.7729 | 0.8023 | 0.3112 | 0.8129 | 0.8193 | 0.3748 | 0.8182 | 0.8371 | 0.76 | 0.8095 | 0.7257 | 0.7732 | 0.8403 | 0.8752 | | 0.279 | 90.0 | 45000 | 0.3147 | 0.7774 | 0.9502 | 0.8862 | 0.2608 | 0.7753 | 0.8075 | 0.3091 | 0.8166 | 0.8217 | 0.351 | 0.8164 | 0.8512 | 0.7737 | 0.821 | 0.7143 | 0.7608 | 0.8442 | 0.8833 | | 0.339 | 91.0 | 45500 | 0.3120 | 0.7779 | 0.9532 | 0.8949 | 0.2683 | 0.7732 | 0.8047 | 0.3094 | 0.8169 | 0.8225 | 0.3881 | 0.8181 | 0.8504 | 0.7784 | 0.8262 | 0.7125 | 0.7598 | 0.8428 | 0.8815 | | 0.3912 | 92.0 | 46000 | 0.3251 | 0.7654 | 0.9549 | 0.9026 | 0.239 | 0.7613 | 0.7949 | 0.3052 | 0.8083 | 0.8145 | 0.4105 | 0.81 | 0.8352 | 0.7566 | 0.8115 | 0.7011 | 0.7536 | 0.8385 | 0.8785 | | 0.3807 | 93.0 | 46500 | 0.3135 | 0.775 | 0.9623 | 0.8789 | 0.3063 | 0.7761 | 0.8012 | 0.3088 | 0.8154 | 0.822 | 0.4376 | 0.8208 | 0.845 | 0.7674 | 0.821 | 0.7131 | 0.7608 | 0.8444 | 0.8842 | | 0.3656 | 94.0 | 47000 | 0.3086 | 0.7801 | 0.95 | 0.8789 | 0.2709 | 0.7843 | 0.8114 | 0.3144 | 0.8184 | 0.8227 | 0.3586 | 0.8282 | 0.8487 | 0.7752 | 0.8238 | 0.726 | 0.766 | 0.8391 | 0.8782 | | 0.4247 | 95.0 | 47500 | 0.3114 | 0.7796 | 0.9586 | 0.8881 | 0.3308 | 0.7744 | 0.7972 | 0.3095 | 0.8172 | 0.8224 | 0.4505 | 0.8143 | 0.8408 | 0.7644 | 0.8135 | 0.7272 | 0.7701 | 0.8473 | 0.8836 | | 0.4126 | 96.0 | 48000 | 0.3133 | 0.7738 | 0.9614 | 0.8988 | 0.3127 | 0.7708 | 0.8021 | 0.31 | 0.8124 | 0.8185 | 0.3962 | 0.8166 | 0.842 | 0.7608 | 0.8087 | 0.7137 | 0.7629 | 0.8468 | 0.8839 | | 0.359 | 97.0 | 48500 | 0.3201 | 0.7733 | 0.953 | 0.906 | 0.3088 | 0.7727 | 0.8001 | 0.3107 | 0.81 | 0.8155 | 0.391 | 0.8137 | 0.8409 | 0.7506 | 0.7964 | 0.7168 | 0.7629 | 0.8526 | 0.8873 | | 0.4638 | 98.0 | 49000 | 0.3107 | 0.782 | 0.9587 | 0.887 | 0.3189 | 0.783 | 0.8032 | 0.3128 | 0.8212 | 0.8258 | 0.3933 | 0.8258 | 0.8441 | 0.7726 | 0.8147 | 0.7132 | 0.767 | 0.8601 | 0.8958 | | 0.3504 | 99.0 | 49500 | 0.3072 | 0.7808 | 0.9538 | 0.9073 | 0.3213 | 0.7827 | 0.8113 | 0.3134 | 0.8181 | 0.823 | 0.4033 | 0.8219 | 0.8499 | 0.7752 | 0.823 | 0.7103 | 0.7546 | 0.8571 | 0.8912 | | 0.4122 | 100.0 | 50000 | 0.3071 | 0.7832 | 0.9591 | 0.9103 | 0.3515 | 0.7866 | 0.7982 | 0.3125 | 0.8203 | 0.8259 | 0.4233 | 0.8275 | 0.8408 | 0.7704 | 0.8179 | 0.7221 | 0.7691 | 0.8572 | 0.8909 | | 0.4066 | 101.0 | 50500 | 0.3091 | 0.7845 | 0.9595 | 0.8987 | 0.3408 | 0.7879 | 0.8005 | 0.3126 | 0.82 | 0.8259 | 0.4086 | 0.826 | 0.8379 | 0.7781 | 0.823 | 0.7198 | 0.7649 | 0.8555 | 0.8897 | | 0.3207 | 102.0 | 51000 | 0.3127 | 0.7783 | 0.9531 | 0.8992 | 0.3268 | 0.7782 | 0.8049 | 0.312 | 0.8201 | 0.8238 | 0.4262 | 0.8221 | 0.8476 | 0.7715 | 0.8198 | 0.7081 | 0.7588 | 0.8555 | 0.8927 | | 0.3462 | 103.0 | 51500 | 0.3052 | 0.7911 | 0.957 | 0.9074 | 0.3095 | 0.7945 | 0.8058 | 0.3146 | 0.8252 | 0.83 | 0.41 | 0.8332 | 0.8423 | 0.7746 | 0.8194 | 0.7385 | 0.7763 | 0.8601 | 0.8942 | | 0.3938 | 104.0 | 52000 | 0.2955 | 0.793 | 0.9638 | 0.9043 | 0.3318 | 0.7971 | 0.8019 | 0.3167 | 0.8306 | 0.8352 | 0.4348 | 0.839 | 0.8371 | 0.7777 | 0.825 | 0.7434 | 0.7876 | 0.858 | 0.893 | | 0.3236 | 105.0 | 52500 | 0.2997 | 0.7909 | 0.9607 | 0.9079 | 0.3475 | 0.7935 | 0.8059 | 0.3149 | 0.8265 | 0.8323 | 0.4552 | 0.8326 | 0.8405 | 0.7767 | 0.8206 | 0.7373 | 0.7825 | 0.8588 | 0.8939 | | 0.3559 | 106.0 | 53000 | 0.2987 | 0.7918 | 0.9599 | 0.9093 | 0.3328 | 0.8003 | 0.8102 | 0.3167 | 0.8294 | 0.8358 | 0.4367 | 0.8392 | 0.8494 | 0.7782 | 0.8278 | 0.7367 | 0.7856 | 0.8606 | 0.8939 | | 0.39 | 107.0 | 53500 | 0.3079 | 0.7835 | 0.961 | 0.9054 | 0.3091 | 0.7855 | 0.7968 | 0.3115 | 0.8186 | 0.8253 | 0.409 | 0.8258 | 0.8377 | 0.7606 | 0.8079 | 0.7349 | 0.7784 | 0.8551 | 0.8897 | | 0.362 | 108.0 | 54000 | 0.2972 | 0.7924 | 0.9578 | 0.905 | 0.3031 | 0.7963 | 0.8132 | 0.3145 | 0.8291 | 0.8352 | 0.4043 | 0.8369 | 0.8524 | 0.7803 | 0.8234 | 0.7422 | 0.7918 | 0.8548 | 0.8903 | | 0.3628 | 109.0 | 54500 | 0.3163 | 0.7773 | 0.9624 | 0.9104 | 0.3353 | 0.7826 | 0.7896 | 0.3092 | 0.8181 | 0.8238 | 0.4433 | 0.8235 | 0.8397 | 0.7642 | 0.8131 | 0.7221 | 0.7732 | 0.8457 | 0.8852 | | 0.3574 | 110.0 | 55000 | 0.3100 | 0.781 | 0.9617 | 0.9053 | 0.3376 | 0.7829 | 0.806 | 0.3118 | 0.82 | 0.8256 | 0.4252 | 0.8243 | 0.8469 | 0.7664 | 0.8147 | 0.7253 | 0.7753 | 0.8511 | 0.887 | | 0.368 | 111.0 | 55500 | 0.2933 | 0.7928 | 0.9593 | 0.9002 | 0.3206 | 0.7956 | 0.8223 | 0.3186 | 0.8282 | 0.8351 | 0.4252 | 0.8349 | 0.8599 | 0.79 | 0.8365 | 0.7313 | 0.7753 | 0.857 | 0.8936 | | 0.3394 | 112.0 | 56000 | 0.2973 | 0.792 | 0.9547 | 0.9061 | 0.3368 | 0.7922 | 0.8306 | 0.3146 | 0.827 | 0.8325 | 0.4029 | 0.83 | 0.8643 | 0.7841 | 0.8294 | 0.7361 | 0.7763 | 0.8559 | 0.8918 | | 0.3677 | 113.0 | 56500 | 0.2919 | 0.7984 | 0.9604 | 0.9117 | 0.3672 | 0.7988 | 0.8247 | 0.3174 | 0.8343 | 0.8398 | 0.4433 | 0.837 | 0.8588 | 0.7855 | 0.8321 | 0.7524 | 0.7938 | 0.8574 | 0.8933 | | 0.3681 | 114.0 | 57000 | 0.3044 | 0.7833 | 0.9586 | 0.8961 | 0.326 | 0.786 | 0.8076 | 0.3116 | 0.8207 | 0.8256 | 0.3905 | 0.8261 | 0.8483 | 0.7709 | 0.8179 | 0.7311 | 0.7732 | 0.848 | 0.8858 | | 0.3562 | 115.0 | 57500 | 0.2904 | 0.7918 | 0.9632 | 0.8991 | 0.3676 | 0.793 | 0.8148 | 0.3128 | 0.8293 | 0.8339 | 0.4362 | 0.8345 | 0.8539 | 0.7843 | 0.827 | 0.7299 | 0.7804 | 0.8612 | 0.8942 | | 0.3524 | 116.0 | 58000 | 0.2993 | 0.7868 | 0.9596 | 0.8935 | 0.3494 | 0.7868 | 0.8053 | 0.3096 | 0.8241 | 0.8305 | 0.4462 | 0.8306 | 0.8468 | 0.7799 | 0.8258 | 0.7199 | 0.7691 | 0.8604 | 0.8967 | | 0.3553 | 117.0 | 58500 | 0.2957 | 0.7906 | 0.9596 | 0.8967 | 0.3272 | 0.7925 | 0.808 | 0.3134 | 0.8307 | 0.8368 | 0.4229 | 0.8383 | 0.8503 | 0.7817 | 0.8298 | 0.7306 | 0.7845 | 0.8596 | 0.8961 | | 0.3976 | 118.0 | 59000 | 0.2960 | 0.7898 | 0.9594 | 0.8957 | 0.3654 | 0.7936 | 0.8076 | 0.3122 | 0.8276 | 0.8337 | 0.451 | 0.8373 | 0.8466 | 0.7777 | 0.8262 | 0.7295 | 0.7763 | 0.8623 | 0.8985 | | 0.3359 | 119.0 | 59500 | 0.3019 | 0.787 | 0.9608 | 0.901 | 0.3603 | 0.7874 | 0.8063 | 0.3129 | 0.8247 | 0.83 | 0.4529 | 0.8295 | 0.8428 | 0.7713 | 0.8187 | 0.7276 | 0.7753 | 0.8622 | 0.8961 | | 0.3539 | 120.0 | 60000 | 0.2955 | 0.791 | 0.9618 | 0.8983 | 0.346 | 0.7919 | 0.809 | 0.3134 | 0.828 | 0.8339 | 0.4557 | 0.8337 | 0.8467 | 0.7759 | 0.8234 | 0.7341 | 0.7804 | 0.8629 | 0.8979 | | 0.3807 | 121.0 | 60500 | 0.2925 | 0.7959 | 0.9593 | 0.894 | 0.3381 | 0.7973 | 0.8155 | 0.3171 | 0.834 | 0.8391 | 0.4519 | 0.8399 | 0.8493 | 0.7827 | 0.8321 | 0.7384 | 0.7856 | 0.8665 | 0.8997 | | 0.3657 | 122.0 | 61000 | 0.3006 | 0.7916 | 0.9634 | 0.8955 | 0.3356 | 0.7899 | 0.8187 | 0.3182 | 0.8276 | 0.8345 | 0.4352 | 0.834 | 0.8516 | 0.7768 | 0.8242 | 0.7377 | 0.7835 | 0.8604 | 0.8958 | | 0.3388 | 123.0 | 61500 | 0.2985 | 0.7894 | 0.9631 | 0.8973 | 0.3342 | 0.7913 | 0.8084 | 0.3131 | 0.8275 | 0.833 | 0.44 | 0.8346 | 0.8481 | 0.7735 | 0.8206 | 0.7316 | 0.7814 | 0.8629 | 0.897 | | 0.3234 | 124.0 | 62000 | 0.2949 | 0.7951 | 0.9601 | 0.8963 | 0.3344 | 0.7999 | 0.8059 | 0.3156 | 0.8322 | 0.8381 | 0.4452 | 0.8401 | 0.8458 | 0.7824 | 0.8306 | 0.7392 | 0.7845 | 0.8636 | 0.8991 | | 0.341 | 125.0 | 62500 | 0.2918 | 0.7977 | 0.964 | 0.9012 | 0.3369 | 0.8003 | 0.82 | 0.3165 | 0.836 | 0.8414 | 0.4419 | 0.8434 | 0.8564 | 0.783 | 0.8294 | 0.7453 | 0.7948 | 0.8647 | 0.9 | | 0.3289 | 126.0 | 63000 | 0.2900 | 0.8004 | 0.9627 | 0.904 | 0.3378 | 0.8034 | 0.823 | 0.3186 | 0.8403 | 0.8461 | 0.4452 | 0.8482 | 0.8596 | 0.7823 | 0.8329 | 0.7492 | 0.8031 | 0.8698 | 0.9021 | | 0.3619 | 127.0 | 63500 | 0.2918 | 0.7985 | 0.9625 | 0.8978 | 0.3304 | 0.804 | 0.8171 | 0.3174 | 0.8368 | 0.8421 | 0.4114 | 0.8459 | 0.855 | 0.7839 | 0.8294 | 0.745 | 0.7969 | 0.8668 | 0.9 | | 0.3725 | 128.0 | 64000 | 0.2907 | 0.7956 | 0.9634 | 0.8987 | 0.3324 | 0.8023 | 0.8105 | 0.3157 | 0.8345 | 0.8401 | 0.4267 | 0.8446 | 0.8508 | 0.7829 | 0.8266 | 0.7403 | 0.7948 | 0.8636 | 0.8988 | | 0.3488 | 129.0 | 64500 | 0.2899 | 0.7982 | 0.9623 | 0.8974 | 0.3311 | 0.8049 | 0.8123 | 0.3171 | 0.8372 | 0.8432 | 0.4352 | 0.8481 | 0.8514 | 0.7821 | 0.8298 | 0.7478 | 0.8 | 0.8647 | 0.8997 | | 0.2774 | 130.0 | 65000 | 0.2880 | 0.7985 | 0.9623 | 0.8972 | 0.3337 | 0.8056 | 0.8152 | 0.3174 | 0.8363 | 0.8424 | 0.4286 | 0.8472 | 0.8526 | 0.7842 | 0.8313 | 0.7457 | 0.7959 | 0.8656 | 0.9 | | 0.3268 | 131.0 | 65500 | 0.2950 | 0.7966 | 0.9645 | 0.904 | 0.3272 | 0.8028 | 0.8135 | 0.3162 | 0.836 | 0.8422 | 0.4352 | 0.8471 | 0.8531 | 0.7806 | 0.8294 | 0.7465 | 0.799 | 0.8628 | 0.8982 | | 0.327 | 132.0 | 66000 | 0.2854 | 0.8026 | 0.9658 | 0.8916 | 0.3174 | 0.8085 | 0.8186 | 0.3177 | 0.8391 | 0.845 | 0.4124 | 0.8497 | 0.8567 | 0.7927 | 0.8369 | 0.7447 | 0.7959 | 0.8704 | 0.9021 | | 0.3712 | 133.0 | 66500 | 0.2902 | 0.8018 | 0.9658 | 0.8912 | 0.3277 | 0.8063 | 0.8175 | 0.3174 | 0.8391 | 0.8449 | 0.4352 | 0.8477 | 0.8584 | 0.7912 | 0.8365 | 0.7457 | 0.7969 | 0.8686 | 0.9012 | | 0.3267 | 134.0 | 67000 | 0.2885 | 0.8009 | 0.964 | 0.8987 | 0.3322 | 0.8065 | 0.8133 | 0.3167 | 0.8384 | 0.8438 | 0.4252 | 0.8484 | 0.8523 | 0.7863 | 0.8321 | 0.7468 | 0.7969 | 0.8696 | 0.9024 | | 0.4273 | 135.0 | 67500 | 0.2911 | 0.7979 | 0.9638 | 0.9028 | 0.3267 | 0.8033 | 0.8095 | 0.3175 | 0.8352 | 0.8406 | 0.4205 | 0.8448 | 0.8494 | 0.7828 | 0.8298 | 0.7428 | 0.7918 | 0.8681 | 0.9003 | | 0.3564 | 136.0 | 68000 | 0.2915 | 0.797 | 0.9634 | 0.9013 | 0.3325 | 0.8023 | 0.818 | 0.3176 | 0.8349 | 0.8406 | 0.419 | 0.8449 | 0.8553 | 0.7825 | 0.8286 | 0.7411 | 0.7918 | 0.8674 | 0.9015 | | 0.358 | 137.0 | 68500 | 0.2883 | 0.8007 | 0.9635 | 0.9034 | 0.3399 | 0.8054 | 0.8189 | 0.3187 | 0.8379 | 0.8434 | 0.4367 | 0.8469 | 0.8564 | 0.7868 | 0.8333 | 0.7455 | 0.7948 | 0.8698 | 0.9021 | | 0.3715 | 138.0 | 69000 | 0.2868 | 0.7973 | 0.9632 | 0.9007 | 0.3366 | 0.8025 | 0.8125 | 0.3172 | 0.8358 | 0.8413 | 0.4286 | 0.8446 | 0.8521 | 0.7847 | 0.8317 | 0.7397 | 0.7907 | 0.8676 | 0.9015 | | 0.4042 | 139.0 | 69500 | 0.2852 | 0.8022 | 0.9636 | 0.903 | 0.341 | 0.8065 | 0.8131 | 0.3187 | 0.84 | 0.8453 | 0.4381 | 0.849 | 0.853 | 0.7864 | 0.8333 | 0.7506 | 0.801 | 0.8695 | 0.9015 | | 0.3881 | 140.0 | 70000 | 0.2871 | 0.8016 | 0.9632 | 0.8966 | 0.3441 | 0.8064 | 0.8174 | 0.3176 | 0.8384 | 0.8437 | 0.4348 | 0.8472 | 0.8561 | 0.7864 | 0.831 | 0.7496 | 0.799 | 0.8687 | 0.9012 | | 0.3214 | 141.0 | 70500 | 0.2878 | 0.798 | 0.9632 | 0.8974 | 0.3421 | 0.8015 | 0.8145 | 0.316 | 0.8372 | 0.8423 | 0.4381 | 0.8449 | 0.8547 | 0.7844 | 0.8306 | 0.7425 | 0.7969 | 0.8671 | 0.8994 | | 0.3357 | 142.0 | 71000 | 0.2879 | 0.7978 | 0.9639 | 0.8906 | 0.342 | 0.8026 | 0.8151 | 0.3163 | 0.8364 | 0.8416 | 0.4348 | 0.8452 | 0.8546 | 0.7829 | 0.8278 | 0.7456 | 0.7969 | 0.865 | 0.9 | | 0.302 | 143.0 | 71500 | 0.2862 | 0.8007 | 0.9638 | 0.8928 | 0.3448 | 0.8046 | 0.8169 | 0.317 | 0.8381 | 0.8434 | 0.4348 | 0.8472 | 0.856 | 0.7869 | 0.831 | 0.7467 | 0.7979 | 0.8684 | 0.9012 | | 0.3504 | 144.0 | 72000 | 0.2856 | 0.801 | 0.9638 | 0.8912 | 0.3394 | 0.8055 | 0.8199 | 0.3177 | 0.8392 | 0.8445 | 0.4381 | 0.8476 | 0.8576 | 0.7856 | 0.831 | 0.7486 | 0.801 | 0.8689 | 0.9015 | | 0.3533 | 145.0 | 72500 | 0.2863 | 0.7992 | 0.9637 | 0.8912 | 0.3428 | 0.8055 | 0.8154 | 0.3162 | 0.8378 | 0.8431 | 0.4381 | 0.8467 | 0.8551 | 0.7858 | 0.831 | 0.7443 | 0.7969 | 0.8676 | 0.9015 | | 0.3648 | 146.0 | 73000 | 0.2861 | 0.7987 | 0.9638 | 0.8913 | 0.3428 | 0.8047 | 0.8153 | 0.3162 | 0.8375 | 0.8427 | 0.4381 | 0.8463 | 0.855 | 0.7855 | 0.831 | 0.7435 | 0.7959 | 0.8672 | 0.9012 | | 0.3381 | 147.0 | 73500 | 0.2867 | 0.7996 | 0.9637 | 0.899 | 0.3428 | 0.8053 | 0.8153 | 0.3163 | 0.8379 | 0.8431 | 0.4381 | 0.8464 | 0.8551 | 0.7846 | 0.8302 | 0.747 | 0.7979 | 0.8672 | 0.9012 | | 0.3483 | 148.0 | 74000 | 0.2864 | 0.7995 | 0.9637 | 0.8989 | 0.3457 | 0.8055 | 0.8153 | 0.3165 | 0.8381 | 0.8433 | 0.4381 | 0.8467 | 0.8551 | 0.7833 | 0.8298 | 0.748 | 0.799 | 0.8672 | 0.9012 | | 0.3674 | 149.0 | 74500 | 0.2864 | 0.7992 | 0.9637 | 0.8989 | 0.3428 | 0.8051 | 0.8153 | 0.3162 | 0.8378 | 0.843 | 0.4381 | 0.8463 | 0.8551 | 0.7833 | 0.8298 | 0.747 | 0.7979 | 0.8672 | 0.9012 | | 0.3838 | 150.0 | 75000 | 0.2864 | 0.7992 | 0.9637 | 0.8989 | 0.3428 | 0.8051 | 0.8153 | 0.3162 | 0.8378 | 0.843 | 0.4381 | 0.8463 | 0.8551 | 0.7833 | 0.8298 | 0.747 | 0.7979 | 0.8672 | 0.9012 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0+cu121 - Datasets 2.19.2 - Tokenizers 0.20.1
muhtasham/tajik-llama3-merged-4bit
muhtasham
2024-10-27T22:02:22Z
79
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-10-27T22:00:46Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** muhtasham - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf
RichardErkhov
2024-10-27T21:59:27Z
8
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-27T19:37:51Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen2.5-1.5B-Instruct-Viet-SFT - GGUF - Model creator: https://huggingface.co/jaeyong2/ - Original model: https://huggingface.co/jaeyong2/Qwen2.5-1.5B-Instruct-Viet-SFT/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q2_K.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q2_K.gguf) | Q2_K | 0.63GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q3_K_S.gguf) | Q3_K_S | 0.71GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q3_K.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q3_K.gguf) | Q3_K | 0.77GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q3_K_M.gguf) | Q3_K_M | 0.77GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q3_K_L.gguf) | Q3_K_L | 0.82GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.IQ4_XS.gguf) | IQ4_XS | 0.84GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q4_0.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q4_0.gguf) | Q4_0 | 0.87GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.IQ4_NL.gguf) | IQ4_NL | 0.88GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q4_K_S.gguf) | Q4_K_S | 0.88GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q4_K.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q4_K.gguf) | Q4_K | 0.92GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q4_K_M.gguf) | Q4_K_M | 0.92GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q4_1.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q4_1.gguf) | Q4_1 | 0.95GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q5_0.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q5_0.gguf) | Q5_0 | 1.02GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q5_K_S.gguf) | Q5_K_S | 1.02GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q5_K.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q5_K.gguf) | Q5_K | 1.05GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q5_K_M.gguf) | Q5_K_M | 1.05GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q5_1.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q5_1.gguf) | Q5_1 | 1.1GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q6_K.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q6_K.gguf) | Q6_K | 1.19GB | | [Qwen2.5-1.5B-Instruct-Viet-SFT.Q8_0.gguf](https://huggingface.co/RichardErkhov/jaeyong2_-_Qwen2.5-1.5B-Instruct-Viet-SFT-gguf/blob/main/Qwen2.5-1.5B-Instruct-Viet-SFT.Q8_0.gguf) | Q8_0 | 1.53GB | Original model description: --- library_name: transformers language: - vi - en base_model: - Qwen/Qwen2.5-1.5B-Instruct --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AMead10/SuperNova-Medius-AWQ
AMead10
2024-10-27T21:57:49Z
109
2
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "autoquant", "awq", "conversational", "base_model:Qwen/Qwen2.5-14B", "base_model:quantized:Qwen/Qwen2.5-14B", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2024-10-27T21:55:28Z
--- license: apache-2.0 library_name: transformers tags: - mergekit - merge - autoquant - awq base_model: - Qwen/Qwen2.5-14B model-index: - name: SuperNova-Medius results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 55.6 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 49.3 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 32.48 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 17.9 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 19.19 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 48.83 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius name: Open LLM Leaderboard --- # Arcee-SuperNova-Medius Arcee-SuperNova-Medius is a 14B parameter language model developed by Arcee.ai, built on the Qwen2.5-14B-Instruct architecture. This unique model is the result of a cross-architecture distillation pipeline, combining knowledge from both the Qwen2.5-72B-Instruct model and the Llama-3.1-405B-Instruct model. By leveraging the strengths of these two distinct architectures, SuperNova-Medius achieves high-quality instruction-following and complex reasoning capabilities in a mid-sized, resource-efficient form. SuperNova-Medius is designed to excel in a variety of business use cases, including customer support, content creation, and technical assistance, while maintaining compatibility with smaller hardware configurations. It’s an ideal solution for organizations looking for advanced capabilities without the high resource requirements of larger models like our SuperNova-70B. ## Distillation Overview The development of SuperNova-Medius involved a sophisticated multi-teacher, cross-architecture distillation process, with the following key steps: 1. **Logit Distillation from Llama 3.1 405B**: - We distilled the logits of Llama 3.1 405B using an offline approach. - The top K logits for each token were stored to capture most of the probability mass while managing storage requirements. 2. **Cross-Architecture Adaptation**: - Using `mergekit-tokensurgeon`, we created a version of Qwen2.5-14B that uses the vocabulary of Llama 3.1 405B. - This allowed for the use of Llama 3.1 405B logits in training the Qwen-based model. 3. **Distillation to Qwen Architecture**: - The adapted Qwen2.5-14B model was trained using the stored 405B logits as the target. 4. **Parallel Qwen Distillation**: - In a separate process, Qwen2-72B was distilled into a 14B model. 5. **Final Fusion and Fine-Tuning**: - The Llama-distilled Qwen model's vocabulary was reverted to Qwen vocabulary. - After re-aligning the vocabularies, a final fusion and fine-tuning step was conducted, using a specialized dataset from [EvolKit](https://github.com/arcee-ai/EvolKit) to ensure that SuperNova-Medius maintained coherence, fluency, and context understanding across a broad range of tasks. ## Performance Evaluation Below are the benchmark results of SuperNova-Medius compared to similar models in its class: | Model | Average | IFEval | BBH | GPQA | MMLU Pro | MuSR | Math Level 5 | | --- | --- | --- | --- | --- | --- | --- | --- | | Mistral-Small 2409 | 0.423 | 0.628 | 0.581 | 0.333 | 0.410 | 0.406 | 0.181 | | Supernova-Lite | 0.427 | 0.786 | 0.511 | 0.306 | 0.388 | 0.415 | 0.155 | | Qwen2.5-14B-Instruct | 0.450 | 0.827 | 0.623 | 0.358 | 0.490 | 0.403 | 0.000 | | Supernova-Medius | **0.480** | **0.832** | **0.631** | **0.359** | **0.502** | **0.402** | **0.152** | SuperNova-Medius performs exceptionally well in instruction-following (IFEval) and complex reasoning tasks (BBH), demonstrating its capability to handle a variety of real-world scenarios. It outperforms Qwen2.5-14B and SuperNova-Lite in multiple benchmarks, making it a powerful yet efficient choice for high-quality generative AI applications. ## Model Use Cases Arcee-SuperNova-Medius is suitable for a range of applications, including: - **Customer Support**: With its robust instruction-following and dialogue management capabilities, SuperNova-Medius can handle complex customer interactions, reducing the need for human intervention. - **Content Creation**: The model’s advanced language understanding and generation abilities make it ideal for creating high-quality, coherent content across diverse domains. - **Technical Assistance**: SuperNova-Medius has a deep reservoir of technical knowledge, making it an excellent assistant for programming, technical documentation, and other expert-level content creation. ## Deployment Options SuperNova-Medius is available for use under the Apache-2.0 license. For those who need even higher performance, the full-size 70B SuperNova model can be accessed via an Arcee-hosted API or for local deployment. To learn more or explore deployment options, please reach out to [[email protected]](mailto:[email protected]). ## Technical Specifications - **Model Architecture**: Qwen2.5-14B-Instruct - **Distillation Sources**: Qwen2.5-72B-Instruct, Llama-3.1-405B-Instruct - **Parameter Count**: 14 billion - **Training Dataset**: Custom instruction dataset generated with [EvolKit](https://github.com/arcee-ai/EvolKit) - **Distillation Technique**: Multi-architecture offline logit distillation with cross-architecture vocabulary alignment. ## Summary Arcee-SuperNova-Medius provides a unique balance of power, efficiency, and versatility. By distilling knowledge from two top-performing teacher models into a single 14B parameter model, SuperNova-Medius achieves results that rival larger models while maintaining a compact size ideal for practical deployment. Whether for customer support, content creation, or technical assistance, SuperNova-Medius is the perfect choice for organizations looking to leverage advanced language model capabilities in a cost-effective and accessible form. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_arcee-ai__SuperNova-Medius) | Metric |Value| |-------------------|----:| |Avg. |37.22| |IFEval (0-Shot) |55.60| |BBH (3-Shot) |49.30| |MATH Lvl 5 (4-Shot)|32.48| |GPQA (0-shot) |17.90| |MuSR (0-shot) |19.19| |MMLU-PRO (5-shot) |48.83|
JhonMR/Model_text_pros_fil_42_x_300_v8
JhonMR
2024-10-27T21:56:25Z
107
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T21:54:02Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: Model_text_pros_fil_42_x_300_v8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Model_text_pros_fil_42_x_300_v8 This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5691 - Accuracy@en: 0.8533 - F1@en: 0.8506 - Precision@en: 0.8562 - Recall@en: 0.8516 - Loss@en: 0.5691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy@en | F1@en | Precision@en | Recall@en | Loss@en | |:-------------:|:-----:|:-----:|:---------------:|:-----------:|:------:|:------------:|:---------:|:-------:| | 3.3162 | 1.0 | 591 | 2.8406 | 0.1784 | 0.1149 | 0.1118 | 0.1852 | 2.8406 | | 2.6493 | 2.0 | 1182 | 2.4608 | 0.2365 | 0.1641 | 0.1653 | 0.2400 | 2.4608 | | 2.3811 | 3.0 | 1773 | 2.2707 | 0.2848 | 0.2282 | 0.2763 | 0.2883 | 2.2707 | | 2.1866 | 4.0 | 2364 | 2.0891 | 0.3473 | 0.2910 | 0.3112 | 0.3485 | 2.0891 | | 1.9741 | 5.0 | 2955 | 1.8783 | 0.3924 | 0.3569 | 0.4295 | 0.4008 | 1.8783 | | 1.7036 | 6.0 | 3546 | 1.5903 | 0.4883 | 0.4549 | 0.5013 | 0.4907 | 1.5903 | | 1.4521 | 7.0 | 4137 | 1.3334 | 0.5841 | 0.5650 | 0.5963 | 0.5879 | 1.3334 | | 1.2217 | 8.0 | 4728 | 1.1444 | 0.6235 | 0.6027 | 0.6190 | 0.6253 | 1.1444 | | 1.0442 | 9.0 | 5319 | 1.0212 | 0.6724 | 0.6590 | 0.6810 | 0.6734 | 1.0212 | | 0.9103 | 10.0 | 5910 | 0.8917 | 0.7025 | 0.6807 | 0.7305 | 0.7041 | 0.8917 | | 0.8089 | 11.0 | 6501 | 0.8282 | 0.7330 | 0.7266 | 0.7428 | 0.7346 | 0.8282 | | 0.7184 | 12.0 | 7092 | 0.7637 | 0.7727 | 0.7683 | 0.7818 | 0.7719 | 0.7637 | | 0.6422 | 13.0 | 7683 | 0.6982 | 0.7956 | 0.7918 | 0.8035 | 0.7977 | 0.6982 | | 0.5677 | 14.0 | 8274 | 0.6570 | 0.8187 | 0.8123 | 0.8249 | 0.8183 | 0.6570 | | 0.5141 | 15.0 | 8865 | 0.6345 | 0.8263 | 0.8234 | 0.8296 | 0.8259 | 0.6345 | | 0.4619 | 16.0 | 9456 | 0.6085 | 0.8378 | 0.8348 | 0.8439 | 0.8367 | 0.6085 | | 0.425 | 17.0 | 10047 | 0.6040 | 0.8429 | 0.8404 | 0.8489 | 0.8415 | 0.6040 | | 0.3936 | 18.0 | 10638 | 0.5984 | 0.8457 | 0.8441 | 0.8498 | 0.8444 | 0.5984 | | 0.3673 | 19.0 | 11229 | 0.5792 | 0.8511 | 0.8481 | 0.8551 | 0.8500 | 0.5792 | | 0.3467 | 20.0 | 11820 | 0.5862 | 0.8463 | 0.8435 | 0.8490 | 0.8450 | 0.5862 | | 0.3292 | 21.0 | 12411 | 0.5765 | 0.8470 | 0.8448 | 0.8509 | 0.8458 | 0.5765 | | 0.31 | 22.0 | 13002 | 0.5769 | 0.8470 | 0.8448 | 0.8490 | 0.8463 | 0.5769 | | 0.2966 | 23.0 | 13593 | 0.5691 | 0.8533 | 0.8506 | 0.8562 | 0.8516 | 0.5691 | | 0.2827 | 24.0 | 14184 | 0.5711 | 0.8543 | 0.8517 | 0.8563 | 0.8523 | 0.5711 | | 0.2693 | 25.0 | 14775 | 0.5788 | 0.8546 | 0.8518 | 0.8555 | 0.8532 | 0.5788 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1
kristiannordby/text-to-sql-v3
kristiannordby
2024-10-27T21:56:07Z
175
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-10-27T19:54:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf
RichardErkhov
2024-10-27T21:50:14Z
17
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-10-27T19:19:49Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B - GGUF - Model creator: https://huggingface.co/dat-lequoc/ - Original model: https://huggingface.co/dat-lequoc/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q2_K.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q2_K.gguf) | Q2_K | 0.63GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q3_K_S.gguf) | Q3_K_S | 0.71GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q3_K.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q3_K.gguf) | Q3_K | 0.77GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q3_K_M.gguf) | Q3_K_M | 0.77GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q3_K_L.gguf) | Q3_K_L | 0.82GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.IQ4_XS.gguf) | IQ4_XS | 0.84GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q4_0.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q4_0.gguf) | Q4_0 | 0.87GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.IQ4_NL.gguf) | IQ4_NL | 0.88GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q4_K_S.gguf) | Q4_K_S | 0.88GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q4_K.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q4_K.gguf) | Q4_K | 0.92GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q4_K_M.gguf) | Q4_K_M | 0.92GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q4_1.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q4_1.gguf) | Q4_1 | 0.95GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q5_0.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q5_0.gguf) | Q5_0 | 1.02GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q5_K_S.gguf) | Q5_K_S | 1.02GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q5_K.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q5_K.gguf) | Q5_K | 1.05GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q5_K_M.gguf) | Q5_K_M | 1.05GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q5_1.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q5_1.gguf) | Q5_1 | 1.1GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q6_K.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q6_K.gguf) | Q6_K | 1.19GB | | [fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q8_0.gguf](https://huggingface.co/RichardErkhov/dat-lequoc_-_fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B-gguf/blob/main/fast-apply-16bit-v0.v15-Qwen2.5-Coder-1.5B.Q8_0.gguf) | Q8_0 | 1.53GB | Original model description: --- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf
RichardErkhov
2024-10-27T21:49:52Z
6
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-10-27T19:43:14Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) distil-mistral-1.5B-v0.1 - GGUF - Model creator: https://huggingface.co/sanchit-gandhi/ - Original model: https://huggingface.co/sanchit-gandhi/distil-mistral-1.5B-v0.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [distil-mistral-1.5B-v0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q2_K.gguf) | Q2_K | 0.59GB | | [distil-mistral-1.5B-v0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q3_K_S.gguf) | Q3_K_S | 0.68GB | | [distil-mistral-1.5B-v0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q3_K.gguf) | Q3_K | 0.74GB | | [distil-mistral-1.5B-v0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q3_K_M.gguf) | Q3_K_M | 0.74GB | | [distil-mistral-1.5B-v0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q3_K_L.gguf) | Q3_K_L | 0.79GB | | [distil-mistral-1.5B-v0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.IQ4_XS.gguf) | IQ4_XS | 0.82GB | | [distil-mistral-1.5B-v0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q4_0.gguf) | Q4_0 | 0.86GB | | [distil-mistral-1.5B-v0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.IQ4_NL.gguf) | IQ4_NL | 0.86GB | | [distil-mistral-1.5B-v0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q4_K_S.gguf) | Q4_K_S | 0.86GB | | [distil-mistral-1.5B-v0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q4_K.gguf) | Q4_K | 0.89GB | | [distil-mistral-1.5B-v0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q4_K_M.gguf) | Q4_K_M | 0.89GB | | [distil-mistral-1.5B-v0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q4_1.gguf) | Q4_1 | 0.94GB | | [distil-mistral-1.5B-v0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q5_0.gguf) | Q5_0 | 1.02GB | | [distil-mistral-1.5B-v0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q5_K_S.gguf) | Q5_K_S | 1.02GB | | [distil-mistral-1.5B-v0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q5_K.gguf) | Q5_K | 1.04GB | | [distil-mistral-1.5B-v0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q5_K_M.gguf) | Q5_K_M | 1.04GB | | [distil-mistral-1.5B-v0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q5_1.gguf) | Q5_1 | 1.11GB | | [distil-mistral-1.5B-v0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q6_K.gguf) | Q6_K | 1.2GB | | [distil-mistral-1.5B-v0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/sanchit-gandhi_-_distil-mistral-1.5B-v0.1-gguf/blob/main/distil-mistral-1.5B-v0.1.Q8_0.gguf) | Q8_0 | 1.56GB | Original model description: --- datasets: - HuggingFaceTB/cosmopedia library_name: transformers --- To reproduce this run: ```bash accelerate launch --multi_gpu --mixed_precision=fp16 --num_processes=8 run_distillation.py config_mistral.yaml ```
RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf
RichardErkhov
2024-10-27T21:41:51Z
43
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-27T19:35:02Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) qwen-2.5-1.5b-finetuned-for-sql-generation - GGUF - Model creator: https://huggingface.co/abdulmannan-01/ - Original model: https://huggingface.co/abdulmannan-01/qwen-2.5-1.5b-finetuned-for-sql-generation/ | Name | Quant method | Size | | ---- | ---- | ---- | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q2_K.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q2_K.gguf) | Q2_K | 0.63GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q3_K_S.gguf) | Q3_K_S | 0.71GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q3_K.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q3_K.gguf) | Q3_K | 0.77GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q3_K_M.gguf) | Q3_K_M | 0.77GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q3_K_L.gguf) | Q3_K_L | 0.82GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.IQ4_XS.gguf) | IQ4_XS | 0.84GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q4_0.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q4_0.gguf) | Q4_0 | 0.87GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.IQ4_NL.gguf) | IQ4_NL | 0.88GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q4_K_S.gguf) | Q4_K_S | 0.88GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q4_K.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q4_K.gguf) | Q4_K | 0.92GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q4_K_M.gguf) | Q4_K_M | 0.92GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q4_1.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q4_1.gguf) | Q4_1 | 0.95GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q5_0.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q5_0.gguf) | Q5_0 | 1.02GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q5_K_S.gguf) | Q5_K_S | 1.02GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q5_K.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q5_K.gguf) | Q5_K | 1.05GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q5_K_M.gguf) | Q5_K_M | 1.05GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q5_1.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q5_1.gguf) | Q5_1 | 1.1GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q6_K.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q6_K.gguf) | Q6_K | 1.19GB | | [qwen-2.5-1.5b-finetuned-for-sql-generation.Q8_0.gguf](https://huggingface.co/RichardErkhov/abdulmannan-01_-_qwen-2.5-1.5b-finetuned-for-sql-generation-gguf/blob/main/qwen-2.5-1.5b-finetuned-for-sql-generation.Q8_0.gguf) | Q8_0 | 1.53GB | Original model description: --- library_name: transformers tags: [] --- ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 QWen2.5 1.5B transformers model finetuend to generate valid sql. - **Developed by:** Abdul Mannan - **Finetuned from model:** Qwen/Qwen2.5-1.5B-Instruct
pyterrier-quality/mqt5-small
pyterrier-quality
2024-10-27T21:39:27Z
9
0
null
[ "safetensors", "mt5", "arxiv:2407.12170", "region:us" ]
null
2024-10-27T21:31:47Z
For use with the [`pyterrier-quality`](https://github.com/terrierteam/pyterrier-quality) package. A version of mt5-small trained as a passage quality estimation model using the approach described in [this paper](https://arxiv.org/pdf/2407.12170), over the following datasets: msmarco-passage, mmarco/de, mmarco/es, mmarco/fr, mmarco/id, mmarco/it, mmarco/pt, mmarco/ru, mmarco/v2/ar, mmarco/v2/de, mmarco/v2/dt, mmarco/v2/es, mmarco/v2/fr, mmarco/v2/hi, mmarco/v2/id, mmarco/v2/it, mmarco/v2/ja, mmarco/v2/pt, mmarco/v2/ru, mmarco/v2/vi, mmarco/v2/zh, mmarco/zh, neumarco/fa, neumarco/ru, neumarco/zh ```python >>> from pyterrier_quality import QualT5 >>> qt5 = QualT5('pyterrier-quality/mqt5-small') >>> qt5([ ... {'docno': '0', 'text': 'bla bla bla'}, ... {'docno': '0', 'text': 'The presence of communication amid scientific minds was equally important to the success of the Manhattan Project as scientific intellect was. The only cloud hanging over the impressive achievement of the atomic researchers and engineers is what their success truly meant; hundreds of thousands of innocent lives obliterated.'}, ... ]) docno text quality 0 0 bla bla bla -1.406250 1 0 The presence of communication amid scientific ... -0.828125 >>> # A larger quality score means higher quality ```
jcbthnflrs/llama381binstruct_summarize_short_merged
jcbthnflrs
2024-10-27T21:35:27Z
106
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "summarization", "legal-ai", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
summarization
2024-10-27T21:09:02Z
--- library_name: transformers tags: - trl - sft - summarization - legal-ai --- # Model Card for Legal Document Summarizer <!-- Provide a quick summary of what the model is/does. --> This model is fine-tuned to convert legal documents into human-readable summaries using Llama 3 8B Instruct as the base model. It was trained using QLoRA/LoRA techniques for efficient fine-tuning. ## Model Details ### Model Description This is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Instruct, optimized for summarizing legal documents in plain English. The model uses Parameter-Efficient Fine-Tuning (PEFT) methods, specifically LoRA, to achieve performance comparable to full fine-tuning while using significantly fewer computational resources. - **Developed by:** jcbthnflrs - **Model type:** Causal Language Model (LLaMA 3 Architecture) - **Language(s):** English - **License:** [Base model license applies] - **Finetuned from model:** NousResearch/Meta-Llama-3-8B-Instruct ### Model Sources - **Base Model:** [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) - **Training Code:** Based on LLM Engineering Challenge from AI Makerspace ## Uses ### Direct Use This model is designed for converting legal documents, terms of service, and other legal content into plain English summaries that are easier for general audiences to understand. It can be used directly through the Hugging Face API or interface. ### Downstream Use The model can be integrated into: - Legal document processing systems - Terms of service simplification tools - Contract analysis applications - Legal document management systems ### Out-of-Scope Use The model should not be used as a replacement for legal advice or professional legal interpretation. It is meant to assist in understanding legal documents but not to provide legal guidance. ## Training Details ### Training Data The model was trained on the Plain English Summary of Contracts dataset, which contains pairs of legal documents (EULA, TOS, etc.) and their natural language summaries. The dataset was split into: - Training set: 68 examples - Test set: 9 examples - Validation set: 8 examples ### Training Procedure #### Preprocessing - Input text is formatted using a specific template following Llama 3's chat format - Special tokens are used to mark legal document boundaries - Maximum sequence length: 2048 tokens #### Training Hyperparameters - **Training regime:** 4-bit quantization using QLoRA - **Optimizer:** AdamW - **Learning rate:** 2e-4 - **Batch size:** 1 per device - **Training steps:** 500 - **Warmup steps:** 30 - **Evaluation steps:** 25 - **Learning rate scheduler:** Linear - **LoRA rank (r):** 16 - **LoRA alpha:** 32 - **LoRA dropout:** 0.1 ### Hardware and Software #### Hardware Requirements - GPU: T4 or better - Memory: Optimized for consumer-level resources through QLoRA #### Software Requirements - transformers library - PEFT library - bitsandbytes for quantization - TRL for supervised fine-tuning ## Evaluation Training metrics show: - Starting training loss: ~1.52 - Final training loss: ~0.0006 - Final validation loss: ~2.74 ## Model Card Authors @jcbthnflrs ## Model Card Contact https://x.com/jcbthnflrs
GitBag/rloo_6_lr_2e-7_555134_1730042202
GitBag
2024-10-27T21:25:41Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T21:20:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mtrazzak/smollm360m-arch
mtrazzak
2024-10-27T21:22:39Z
146
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T21:16:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JacobLinCool/MP-SENet-VB
JacobLinCool
2024-10-27T21:22:32Z
45
0
null
[ "safetensors", "arxiv:2308.08926", "audio", "denoising", "model_hub_mixin", "pytorch_model_hub_mixin", "speech", "speech-enhancement", "audio-to-audio", "license:mit", "region:us" ]
audio-to-audio
2024-10-27T21:19:32Z
--- license: mit pipeline_tag: audio-to-audio tags: - arxiv:2308.08926 - audio - denoising - model_hub_mixin - pytorch_model_hub_mixin - speech - speech-enhancement --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: https://github.com/yxlu-0102/MP-SENet - Docs: [More Information Needed]
g-assismoraes/mdeberta-semeval25_maxf1_fold5
g-assismoraes
2024-10-27T21:22:28Z
197
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T21:18:41Z
--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_maxf1_fold5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-semeval25_maxf1_fold5 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.7990 - Precision Samples: 0.1660 - Recall Samples: 0.4739 - F1 Samples: 0.2271 - Precision Macro: 0.8737 - Recall Macro: 0.3063 - F1 Macro: 0.2305 - Precision Micro: 0.1452 - Recall Micro: 0.3694 - F1 Micro: 0.2085 - Precision Weighted: 0.6156 - Recall Weighted: 0.3694 - F1 Weighted: 0.1150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 10.6336 | 1.0 | 19 | 9.9912 | 1.0 | 0.0 | 0.0 | 1.0 | 0.2 | 0.2 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 9.4458 | 2.0 | 38 | 9.6839 | 0.1655 | 0.2456 | 0.1864 | 0.9814 | 0.2222 | 0.2062 | 0.1655 | 0.1381 | 0.1506 | 0.8858 | 0.1381 | 0.0406 | | 9.4682 | 3.0 | 57 | 9.4970 | 0.1563 | 0.2984 | 0.1882 | 0.9642 | 0.2349 | 0.2108 | 0.1536 | 0.1772 | 0.1646 | 0.8400 | 0.1772 | 0.0523 | | 9.0448 | 4.0 | 76 | 9.3362 | 0.1425 | 0.3520 | 0.1881 | 0.9422 | 0.2569 | 0.2152 | 0.1377 | 0.2312 | 0.1726 | 0.7853 | 0.2312 | 0.0641 | | 9.0807 | 5.0 | 95 | 9.1579 | 0.1457 | 0.3938 | 0.1992 | 0.9336 | 0.2692 | 0.2188 | 0.1407 | 0.2763 | 0.1864 | 0.7446 | 0.2763 | 0.0831 | | 8.6731 | 6.0 | 114 | 9.0240 | 0.1615 | 0.4392 | 0.2203 | 0.8931 | 0.2830 | 0.2251 | 0.1454 | 0.3153 | 0.1991 | 0.6493 | 0.3153 | 0.0996 | | 8.9953 | 7.0 | 133 | 8.9087 | 0.1693 | 0.4769 | 0.2311 | 0.8866 | 0.3012 | 0.2322 | 0.1509 | 0.3634 | 0.2132 | 0.6350 | 0.3634 | 0.1190 | | 9.1116 | 8.0 | 152 | 8.8515 | 0.1689 | 0.4669 | 0.2294 | 0.8861 | 0.3010 | 0.2315 | 0.1482 | 0.3544 | 0.2090 | 0.6334 | 0.3544 | 0.1167 | | 8.5738 | 9.0 | 171 | 8.8080 | 0.1672 | 0.4879 | 0.2303 | 0.8754 | 0.3143 | 0.2330 | 0.1471 | 0.3904 | 0.2136 | 0.6191 | 0.3904 | 0.1203 | | 9.1037 | 10.0 | 190 | 8.7990 | 0.1660 | 0.4739 | 0.2271 | 0.8737 | 0.3063 | 0.2305 | 0.1452 | 0.3694 | 0.2085 | 0.6156 | 0.3694 | 0.1150 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1
GitBag/rloo_5_lr_2e-7_555134_1730031306
GitBag
2024-10-27T21:20:32Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T21:15:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GitBag/rloo_1_2_h_lr_2e-7_555134_1730036742
GitBag
2024-10-27T21:15:09Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T21:09:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf
RichardErkhov
2024-10-27T21:12:21Z
21
0
null
[ "gguf", "arxiv:2410.07002", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-27T19:03:15Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) CursorCore-Yi-1.5B-LC - GGUF - Model creator: https://huggingface.co/TechxGenus/ - Original model: https://huggingface.co/TechxGenus/CursorCore-Yi-1.5B-LC/ | Name | Quant method | Size | | ---- | ---- | ---- | | [CursorCore-Yi-1.5B-LC.Q2_K.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q2_K.gguf) | Q2_K | 0.59GB | | [CursorCore-Yi-1.5B-LC.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q3_K_S.gguf) | Q3_K_S | 0.67GB | | [CursorCore-Yi-1.5B-LC.Q3_K.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q3_K.gguf) | Q3_K | 0.73GB | | [CursorCore-Yi-1.5B-LC.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q3_K_M.gguf) | Q3_K_M | 0.73GB | | [CursorCore-Yi-1.5B-LC.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q3_K_L.gguf) | Q3_K_L | 0.77GB | | [CursorCore-Yi-1.5B-LC.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.IQ4_XS.gguf) | IQ4_XS | 0.78GB | | [CursorCore-Yi-1.5B-LC.Q4_0.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q4_0.gguf) | Q4_0 | 0.81GB | | [CursorCore-Yi-1.5B-LC.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.IQ4_NL.gguf) | IQ4_NL | 0.81GB | | [CursorCore-Yi-1.5B-LC.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q4_K_S.gguf) | Q4_K_S | 0.84GB | | [CursorCore-Yi-1.5B-LC.Q4_K.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q4_K.gguf) | Q4_K | 0.9GB | | [CursorCore-Yi-1.5B-LC.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q4_K_M.gguf) | Q4_K_M | 0.9GB | | [CursorCore-Yi-1.5B-LC.Q4_1.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q4_1.gguf) | Q4_1 | 0.89GB | | [CursorCore-Yi-1.5B-LC.Q5_0.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q5_0.gguf) | Q5_0 | 0.96GB | | [CursorCore-Yi-1.5B-LC.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q5_K_S.gguf) | Q5_K_S | 0.98GB | | [CursorCore-Yi-1.5B-LC.Q5_K.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q5_K.gguf) | Q5_K | 1.02GB | | [CursorCore-Yi-1.5B-LC.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q5_K_M.gguf) | Q5_K_M | 1.02GB | | [CursorCore-Yi-1.5B-LC.Q5_1.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q5_1.gguf) | Q5_1 | 1.04GB | | [CursorCore-Yi-1.5B-LC.Q6_K.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q6_K.gguf) | Q6_K | 1.19GB | | [CursorCore-Yi-1.5B-LC.Q8_0.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-Yi-1.5B-LC-gguf/blob/main/CursorCore-Yi-1.5B-LC.Q8_0.gguf) | Q8_0 | 1.46GB | Original model description: --- tags: - code base_model: - 01-ai/Yi-Coder-1.5B library_name: transformers pipeline_tag: text-generation license: apache-2.0 --- # CursorCore: Assist Programming through Aligning Anything <p align="center"> <a href="http://arxiv.org/abs/2410.07002">[📄arXiv]</a> | <a href="https://hf.co/papers/2410.07002">[🤗HF Paper]</a> | <a href="https://huggingface.co/collections/TechxGenus/cursorcore-series-6706618c38598468866b60e2">[🤖Models]</a> | <a href="https://github.com/TechxGenus/CursorCore">[🛠️Code]</a> | <a href="https://github.com/TechxGenus/CursorWeb">[Web]</a> | <a href="https://discord.gg/Z5Tev8fV">[Discord]</a> </p> <hr> - [CursorCore: Assist Programming through Aligning Anything](#cursorcore-assist-programming-through-aligning-anything) - [Introduction](#introduction) - [Models](#models) - [Usage](#usage) - [1) Normal chat](#1-normal-chat) - [2) Assistant-Conversation](#2-assistant-conversation) - [3) Web Demo](#3-web-demo) - [Future Work](#future-work) - [Citation](#citation) - [Contribution](#contribution) <hr> ## Introduction CursorCore is a series of open-source models designed for AI-assisted programming. It aims to support features such as automated editing and inline chat, replicating the core abilities of closed-source AI-assisted programming tools like Cursor. This is achieved by aligning data generated through Programming-Instruct. Please read [our paper](http://arxiv.org/abs/2410.07002) to learn more. <p align="center"> <img width="100%" alt="conversation" src="https://raw.githubusercontent.com/TechxGenus/CursorCore/main/pictures/conversation.png"> </p> ![CursorWeb](https://raw.githubusercontent.com/TechxGenus/CursorCore/main/pictures/CursorWeb.gif) ## Models Our models have been open-sourced on Hugging Face. You can access our models here: [CursorCore-Series](https://huggingface.co/collections/TechxGenus/cursorcore-series-6706618c38598468866b60e2"). We also provide pre-quantized weights for GPTQ and AWQ here: [CursorCore-Quantization](https://huggingface.co/collections/TechxGenus/cursorcore-quantization-67066431f29f252494ee8cf3) ## Usage Here are some examples of how to use our model: ### 1) Normal chat Script: ````python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B") model = AutoModelForCausalLM.from_pretrained( "TechxGenus/CursorCore-Yi-9B", torch_dtype=torch.bfloat16, device_map="auto" ) messages = [ {"role": "user", "content": "Hi!"}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512) print(tokenizer.decode(outputs[0])) ```` Output: ````txt <|im_start|>system You are a helpful programming assistant.<|im_end|> <|im_start|>user Hi!<|im_end|> <|im_start|>assistant Hello! I'm an AI language model and I can help you with any programming questions you might have. What specific problem or task are you trying to solve?<|im_end|> ```` ### 2) Assistant-Conversation In our work, we introduce a new framework of AI-assisted programming task. It is designed for aligning anything during programming process, used for the implementation of features like Tab and Inline Chat. Script 1: ````python import torch from transformers import AutoTokenizer, AutoModelForCausalLM from eval.utils import prepare_input_for_wf tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B") model = AutoModelForCausalLM.from_pretrained( "TechxGenus/CursorCore-Yi-9B", torch_dtype=torch.bfloat16, device_map="auto" ) sample = { "history": [ { "type": "code", "lang": "python", "code": """def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" } ], "current": { "type": "code", "lang": "python", "code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" }, "user": "" } prompt = tokenizer.apply_chat_template( prepare_input_for_wf(sample), tokenize=False, chat_template="assistant-conversation", add_generation_prompt=True ) inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) print(tokenizer.decode(outputs[0])) ```` Output 1: ````txt <|im_start|>system You are a helpful programming assistant.<|im_end|> <|im_start|>history ```python def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ```<|im_end|> <|im_start|>current ```python def quick_sort(array): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ```<|im_end|> <|im_start|>assistant <|next_start|>```python def quick_sort(array): if len(array) <= 1: return array pivot = array[len(array) // 2] left = [x for x in array if x < pivot] middle = [x for x in array if x == pivot] right = [x for x in array if x > pivot] return quick_sort(left) + middle + quick_sort(right) ```<|next_end|> The user has provided a revised code change that corrects the parameter name from `arr` to `array` in the `quick_sort` function. This change ensures consistency in the function definition and avoids potential confusion or errors. To implement this, we will: 1. Update the parameter name in the function definition from `arr` to `array`. 2. Ensure that all references to `arr` within the function are updated to `array`. This will make the function definition and internal references consistent, improving code readability and maintainability.<|im_end|> ```` Script 2: ````python import torch from transformers import AutoTokenizer, AutoModelForCausalLM from eval.utils import prepare_input_for_wf tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B") model = AutoModelForCausalLM.from_pretrained( "TechxGenus/CursorCore-Yi-9B", torch_dtype=torch.bfloat16, device_map="auto" ) sample = { "history": [], "current": { "type": "code", "lang": "python", "code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" }, "user": "Add Docstring." } prompt = tokenizer.apply_chat_template( prepare_input_for_wf(sample), tokenize=False, chat_template="assistant-conversation", add_generation_prompt=True ) inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) print(tokenizer.decode(outputs[0])) ```` Output 2: ````txt <|im_start|>system You are a helpful programming assistant.<|im_end|> <|im_start|>current ```python def quick_sort(array): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ```<|im_end|> <|im_start|>user Add Docstring.<|im_end|> <|im_start|>assistant <|next_start|>```python def quick_sort(array): """ This is an implementation of the quick sort algorithm. """ if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ```<|next_end|><|im_end|> ```` For models in Locate-and-Change (LC) and Search-and-Replace (SR) formats, the output examples are as follows: Script for LC: ````python import torch from transformers import AutoTokenizer, AutoModelForCausalLM from eval.utils import prepare_input_for_lc tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-1.5B-LC") model = AutoModelForCausalLM.from_pretrained( "TechxGenus/CursorCore-Yi-1.5B-LC", torch_dtype=torch.bfloat16, device_map="auto" ) sample = { "history": [], "current": { "type": "code", "lang": "python", "code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" }, "user": "Add Docstring." } prompt = tokenizer.apply_chat_template( prepare_input_for_lc(sample), tokenize=False, chat_template="assistant-conversation", add_generation_prompt=True ) inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) print(tokenizer.decode(outputs[0])) ```` Output for LC: ````txt <|im_start|>system You are a helpful programming assistant.<|im_end|> <|im_start|>current ```python 1 def quick_sort(array): 2 if len(arr) <= 1: 3 return arr 4 pivot = arr[len(arr) // 2] 5 left = [x for x in arr if x < pivot] 6 middle = [x for x in arr if x == pivot] 7 right = [x for x in arr if x > pivot] 8 return quick_sort(left) + middle + quick_sort(right) ```<|im_end|> <|im_start|>user Add Docstring.<|im_end|> <|im_start|>assistant <|next_start|>1,1 ``` '''This function will sort an array using quick sort algorithm''' ```<|next_end|> To enhance the readability and maintainability of the code, we should add a docstring to the `quick_sort` function. A docstring provides a clear description of what the function does, which is particularly useful for other developers who might use or modify this code in the future. The docstring will be added immediately after the function definition, explaining that the function uses the quick sort algorithm to sort an array. This will make the code more self-explanatory and easier to understand. Here's the plan: 1. Add a docstring at the beginning of the `quick_sort` function. 2. Ensure the docstring is clear and concise, describing the purpose of the function. This modification will improve the code's documentation without altering its functionality.<|im_end|> ```` Script for SR: ````python import torch from transformers import AutoTokenizer, AutoModelForCausalLM from eval.utils import prepare_input_for_sr tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-1.5B-SR") model = AutoModelForCausalLM.from_pretrained( "TechxGenus/CursorCore-Yi-1.5B-SR", torch_dtype=torch.bfloat16, device_map="auto" ) sample = { "history": [], "current": { "type": "code", "lang": "python", "code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" }, "user": "Add Docstring." } prompt = tokenizer.apply_chat_template( prepare_input_for_sr(sample), tokenize=False, chat_template="assistant-conversation", add_generation_prompt=True ) inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) print(tokenizer.decode(outputs[0])) ```` Output for SR: ````txt <|im_start|>system You are a helpful programming assistant.<|im_end|> <|im_start|>current ```python def quick_sort(array): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ```<|im_end|> <|im_start|>user Add Docstring.<|im_end|> <|im_start|>assistant <|next_start|>```python def quick_sort(array): <|search_and_replace|> def quick_sort(array): """ This function implements quick sort algorithm """ ```<|next_end|><|im_end|> ```` ### 3) Web Demo We create a web demo for CursorCore. Please visit [CursorWeb](https://github.com/TechxGenus/CursorWeb) for more details. ## Future Work CursorCore is still in a very early stage, and lots of work is needed to achieve a better user experience. For example: - Repository-level editing support - Better and faster editing formats - Better user interface and presentation - ... ## Citation ```bibtex @article{jiang2024cursorcore, title = {CursorCore: Assist Programming through Aligning Anything}, author = {Hao Jiang and Qi Liu and Rui Li and Shengyu Ye and Shijin Wang}, year = {2024}, journal = {arXiv preprint arXiv: 2410.07002} } ``` ## Contribution Contributions are welcome! If you find any bugs or have suggestions for improvements, please open an issue or submit a pull request.
g-assismoraes/mdeberta-semeval25_maxf1_fold2
g-assismoraes
2024-10-27T21:09:45Z
164
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T21:05:31Z
--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_maxf1_fold2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-semeval25_maxf1_fold2 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.8694 - Precision Samples: 0.1448 - Recall Samples: 0.4710 - F1 Samples: 0.2054 - Precision Macro: 0.8790 - Recall Macro: 0.3070 - F1 Macro: 0.2198 - Precision Micro: 0.1280 - Recall Micro: 0.3545 - F1 Micro: 0.1881 - Precision Weighted: 0.6566 - Recall Weighted: 0.3545 - F1 Weighted: 0.1024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 10.355 | 1.0 | 19 | 9.8646 | 0.4690 | 0.1586 | 0.1586 | 0.9914 | 0.1974 | 0.1928 | 0.23 | 0.0697 | 0.1070 | 0.9300 | 0.0697 | 0.0322 | | 10.0042 | 2.0 | 38 | 9.5711 | 0.1517 | 0.2663 | 0.1814 | 0.9710 | 0.2144 | 0.1962 | 0.1493 | 0.1515 | 0.1504 | 0.8541 | 0.1515 | 0.0453 | | 9.8111 | 3.0 | 57 | 9.4447 | 0.1190 | 0.31 | 0.1625 | 0.9497 | 0.2248 | 0.1978 | 0.1202 | 0.1818 | 0.1448 | 0.7968 | 0.1818 | 0.0506 | | 9.5882 | 4.0 | 76 | 9.3361 | 0.1149 | 0.3593 | 0.1645 | 0.9292 | 0.2427 | 0.2010 | 0.1124 | 0.2333 | 0.1517 | 0.7463 | 0.2333 | 0.0586 | | 9.2717 | 5.0 | 95 | 9.2287 | 0.1179 | 0.3825 | 0.1684 | 0.8992 | 0.2584 | 0.2061 | 0.1135 | 0.2667 | 0.1593 | 0.6898 | 0.2667 | 0.0697 | | 9.4865 | 6.0 | 114 | 9.1175 | 0.1358 | 0.4366 | 0.1948 | 0.9025 | 0.2876 | 0.2179 | 0.1253 | 0.3182 | 0.1798 | 0.6965 | 0.3182 | 0.0869 | | 9.2006 | 7.0 | 133 | 8.9906 | 0.1428 | 0.4627 | 0.2029 | 0.8891 | 0.3008 | 0.2184 | 0.1275 | 0.3455 | 0.1863 | 0.6810 | 0.3455 | 0.0981 | | 9.0527 | 8.0 | 152 | 8.9299 | 0.1434 | 0.4696 | 0.2040 | 0.8874 | 0.3057 | 0.2181 | 0.1271 | 0.3515 | 0.1866 | 0.6767 | 0.3515 | 0.0977 | | 9.3313 | 9.0 | 171 | 8.8794 | 0.1450 | 0.4727 | 0.2053 | 0.8803 | 0.3092 | 0.2203 | 0.1280 | 0.3576 | 0.1885 | 0.6602 | 0.3576 | 0.1037 | | 8.4989 | 10.0 | 190 | 8.8694 | 0.1448 | 0.4710 | 0.2054 | 0.8790 | 0.3070 | 0.2198 | 0.1280 | 0.3545 | 0.1881 | 0.6566 | 0.3545 | 0.1024 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1
DouglasBraga/swin-tiny-patch4-window7-224-finetuned-leukemia.v2.0
DouglasBraga
2024-10-27T21:05:59Z
214
0
transformers
[ "transformers", "safetensors", "swin", "image-classification", "generated_from_trainer", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-10-14T19:36:03Z
--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-leukemia.v2.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-leukemia.v2.0 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5694 - Accuracy: 0.8855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.4734 | 0.9984 | 312 | 0.7528 | 0.5968 | | 0.3596 | 2.0 | 625 | 0.8091 | 0.688 | | 0.2991 | 2.9984 | 937 | 0.9220 | 0.6335 | | 0.2658 | 4.0 | 1250 | 0.7774 | 0.7137 | | 0.2511 | 4.9984 | 1562 | 0.4364 | 0.8267 | | 0.2218 | 6.0 | 1875 | 0.6225 | 0.7837 | | 0.1691 | 6.9984 | 2187 | 0.3587 | 0.8718 | | 0.1721 | 8.0 | 2500 | 0.6494 | 0.7987 | | 0.1393 | 8.9984 | 2812 | 0.6802 | 0.818 | | 0.1109 | 10.0 | 3125 | 0.5511 | 0.834 | | 0.1213 | 10.9984 | 3437 | 0.5982 | 0.8417 | | 0.0971 | 12.0 | 3750 | 0.8005 | 0.814 | | 0.1121 | 12.9984 | 4062 | 0.6397 | 0.8407 | | 0.0947 | 14.0 | 4375 | 1.0869 | 0.768 | | 0.1022 | 14.9984 | 4687 | 0.5969 | 0.8515 | | 0.0801 | 16.0 | 5000 | 0.5839 | 0.8732 | | 0.0951 | 16.9984 | 5312 | 0.8599 | 0.827 | | 0.0716 | 18.0 | 5625 | 0.8355 | 0.822 | | 0.0859 | 18.9984 | 5937 | 0.7547 | 0.8427 | | 0.0661 | 20.0 | 6250 | 0.7206 | 0.851 | | 0.0543 | 20.9984 | 6562 | 0.8396 | 0.8363 | | 0.0646 | 22.0 | 6875 | 0.5467 | 0.881 | | 0.0563 | 22.9984 | 7187 | 0.5694 | 0.8855 | | 0.042 | 24.0 | 7500 | 0.8404 | 0.8492 | | 0.0638 | 24.9984 | 7812 | 0.9300 | 0.84 | | 0.0455 | 26.0 | 8125 | 0.9865 | 0.8393 | | 0.037 | 26.9984 | 8437 | 0.8503 | 0.8525 | | 0.0469 | 28.0 | 8750 | 0.8272 | 0.8602 | | 0.0409 | 28.9984 | 9062 | 0.8988 | 0.8502 | | 0.0438 | 29.9520 | 9360 | 0.8338 | 0.858 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
g-assismoraes/mdeberta-semeval25_narratives09_maxf1_fold5
g-assismoraes
2024-10-27T20:59:37Z
161
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T20:55:33Z
--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives09_maxf1_fold5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-semeval25_narratives09_maxf1_fold5 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0204 - Precision Samples: 0.3603 - Recall Samples: 0.7663 - F1 Samples: 0.4556 - Precision Macro: 0.6906 - Recall Macro: 0.5586 - F1 Macro: 0.3769 - Precision Micro: 0.3165 - Recall Micro: 0.7293 - F1 Micro: 0.4414 - Precision Weighted: 0.4601 - Recall Weighted: 0.7293 - F1 Weighted: 0.3993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.5606 | 1.0 | 19 | 5.1744 | 1.0 | 0.0 | 0.0 | 1.0 | 0.1429 | 0.1429 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 4.8514 | 2.0 | 38 | 4.9269 | 0.2759 | 0.2532 | 0.2276 | 0.9377 | 0.2238 | 0.1873 | 0.2880 | 0.2068 | 0.2407 | 0.8409 | 0.2068 | 0.1109 | | 5.1079 | 3.0 | 57 | 4.6308 | 0.3793 | 0.4853 | 0.3604 | 0.8762 | 0.3242 | 0.2396 | 0.3420 | 0.4474 | 0.3876 | 0.6961 | 0.4474 | 0.2402 | | 4.5129 | 4.0 | 76 | 4.4135 | 0.3422 | 0.6197 | 0.4125 | 0.7822 | 0.4150 | 0.2908 | 0.3175 | 0.5789 | 0.4101 | 0.5507 | 0.5789 | 0.3086 | | 4.3874 | 5.0 | 95 | 4.2916 | 0.3576 | 0.6623 | 0.4341 | 0.7168 | 0.4431 | 0.3203 | 0.3265 | 0.6015 | 0.4233 | 0.4756 | 0.6015 | 0.3449 | | 4.0833 | 6.0 | 114 | 4.1434 | 0.3378 | 0.7416 | 0.4323 | 0.7113 | 0.5131 | 0.3405 | 0.2992 | 0.7030 | 0.4198 | 0.4708 | 0.7030 | 0.3689 | | 3.9936 | 7.0 | 133 | 4.0974 | 0.3532 | 0.7462 | 0.4496 | 0.6927 | 0.5341 | 0.3701 | 0.3160 | 0.7068 | 0.4367 | 0.4609 | 0.7068 | 0.3929 | | 3.9677 | 8.0 | 152 | 4.0596 | 0.3606 | 0.7537 | 0.4543 | 0.6921 | 0.5484 | 0.3768 | 0.3193 | 0.7105 | 0.4406 | 0.4618 | 0.7105 | 0.3981 | | 4.0104 | 9.0 | 171 | 4.0379 | 0.3547 | 0.7571 | 0.4524 | 0.6964 | 0.5523 | 0.3803 | 0.3177 | 0.7143 | 0.4398 | 0.4641 | 0.7143 | 0.3998 | | 3.9613 | 10.0 | 190 | 4.0204 | 0.3603 | 0.7663 | 0.4556 | 0.6906 | 0.5586 | 0.3769 | 0.3165 | 0.7293 | 0.4414 | 0.4601 | 0.7293 | 0.3993 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1
g-assismoraes/mdeberta-semeval25_narratives09_maxf1_fold4
g-assismoraes
2024-10-27T20:55:28Z
161
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T20:51:12Z
--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives09_maxf1_fold4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-semeval25_narratives09_maxf1_fold4 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7723 - Precision Samples: 0.3728 - Recall Samples: 0.7825 - F1 Samples: 0.4666 - Precision Macro: 0.6810 - Recall Macro: 0.4981 - F1 Macro: 0.2753 - Precision Micro: 0.3085 - Recall Micro: 0.7647 - F1 Micro: 0.4397 - Precision Weighted: 0.4751 - Recall Weighted: 0.7647 - F1 Weighted: 0.3999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.7927 | 1.0 | 19 | 4.9875 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0476 | 0.0476 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 5.0899 | 2.0 | 38 | 4.7740 | 0.3023 | 0.3386 | 0.2905 | 0.8797 | 0.1700 | 0.1306 | 0.316 | 0.3098 | 0.3129 | 0.7069 | 0.3098 | 0.2068 | | 5.1834 | 3.0 | 57 | 4.4517 | 0.3345 | 0.4776 | 0.3732 | 0.8493 | 0.2311 | 0.1457 | 0.3314 | 0.4471 | 0.3806 | 0.6524 | 0.4471 | 0.2368 | | 4.8195 | 4.0 | 76 | 4.2678 | 0.3568 | 0.6033 | 0.4120 | 0.7813 | 0.3360 | 0.2022 | 0.2962 | 0.5843 | 0.3931 | 0.5651 | 0.5843 | 0.3175 | | 4.6183 | 5.0 | 95 | 4.0323 | 0.3872 | 0.6493 | 0.4394 | 0.7313 | 0.3521 | 0.2083 | 0.3204 | 0.6157 | 0.4215 | 0.5136 | 0.6157 | 0.3340 | | 4.4332 | 6.0 | 114 | 3.9321 | 0.3921 | 0.7197 | 0.4615 | 0.7159 | 0.4256 | 0.2492 | 0.3092 | 0.7020 | 0.4293 | 0.4982 | 0.7020 | 0.3797 | | 4.0992 | 7.0 | 133 | 3.8524 | 0.3728 | 0.7641 | 0.4640 | 0.6877 | 0.4789 | 0.2773 | 0.3147 | 0.7490 | 0.4432 | 0.4802 | 0.7490 | 0.4020 | | 4.1885 | 8.0 | 152 | 3.7985 | 0.3751 | 0.7932 | 0.4751 | 0.6821 | 0.4933 | 0.2773 | 0.3176 | 0.7647 | 0.4488 | 0.4788 | 0.7647 | 0.4065 | | 4.3678 | 9.0 | 171 | 3.7859 | 0.3739 | 0.7825 | 0.4678 | 0.6821 | 0.4981 | 0.2766 | 0.3105 | 0.7647 | 0.4417 | 0.4760 | 0.7647 | 0.4010 | | 3.9512 | 10.0 | 190 | 3.7723 | 0.3728 | 0.7825 | 0.4666 | 0.6810 | 0.4981 | 0.2753 | 0.3085 | 0.7647 | 0.4397 | 0.4751 | 0.7647 | 0.3999 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1
Vikhrmodels/salt-116k
Vikhrmodels
2024-10-27T20:53:55Z
138
4
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "base_model:TinyLlama/TinyLlama_v1.1", "base_model:finetune:TinyLlama/TinyLlama_v1.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-16T22:29:49Z
--- library_name: transformers license: apache-2.0 language: - en base_model: - TinyLlama/TinyLlama_v1.1 --- # Vikhr Salt: Speech And Language Transformer ![Vikhr Salt Logo](https://huggingface.co/Vikhrmodels/salt-116k/resolve/main/IMG_1304%20copy.png) Vikhr Salt is a multimodal model based on a pre-trained large language model, extended with new audio tokens to handle both TTS (text-to-speech) and ASR (automatic speech recognition) tasks. The model incorporates two variants for encoding audio—Encodec and SpeechTokenizer—and achieves stable training by fine-tuning precision settings. This approach allows Vikhr Salt to leverage pre-existing LLM knowledge while effectively generating and understanding speech, marking a step forward in multimodal learning. ## Model Authors Ksenya Sycheva, Konstantin Korolev, Aleksandr Nikolic
RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf
RichardErkhov
2024-10-27T20:52:30Z
14
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-27T18:30:28Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen2.5-Coder-1.5B-CodeFIM - GGUF - Model creator: https://huggingface.co/Etherll/ - Original model: https://huggingface.co/Etherll/Qwen2.5-Coder-1.5B-CodeFIM/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Qwen2.5-Coder-1.5B-CodeFIM.Q2_K.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q2_K.gguf) | Q2_K | 0.63GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q3_K_S.gguf) | Q3_K_S | 0.71GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q3_K.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q3_K.gguf) | Q3_K | 0.77GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q3_K_M.gguf) | Q3_K_M | 0.77GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q3_K_L.gguf) | Q3_K_L | 0.82GB | | [Qwen2.5-Coder-1.5B-CodeFIM.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.IQ4_XS.gguf) | IQ4_XS | 0.84GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q4_0.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q4_0.gguf) | Q4_0 | 0.87GB | | [Qwen2.5-Coder-1.5B-CodeFIM.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.IQ4_NL.gguf) | IQ4_NL | 0.88GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q4_K_S.gguf) | Q4_K_S | 0.88GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q4_K.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q4_K.gguf) | Q4_K | 0.92GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q4_K_M.gguf) | Q4_K_M | 0.92GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q4_1.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q4_1.gguf) | Q4_1 | 0.95GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q5_0.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q5_0.gguf) | Q5_0 | 1.02GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q5_K_S.gguf) | Q5_K_S | 1.02GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q5_K.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q5_K.gguf) | Q5_K | 1.05GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q5_K_M.gguf) | Q5_K_M | 1.05GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q5_1.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q5_1.gguf) | Q5_1 | 1.1GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q6_K.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q6_K.gguf) | Q6_K | 1.19GB | | [Qwen2.5-Coder-1.5B-CodeFIM.Q8_0.gguf](https://huggingface.co/RichardErkhov/Etherll_-_Qwen2.5-Coder-1.5B-CodeFIM-gguf/blob/main/Qwen2.5-Coder-1.5B-CodeFIM.Q8_0.gguf) | Q8_0 | 1.53GB | Original model description: --- library_name: transformers tags: [] --- A small finetune over <https://huggingface.co/datasets/Etherll/code-fim-v2> dataset on top of Qwen/Qwen2.5-Coder-1.5B to generate code FIM ( Fill-in-the-Middle ) You can use this with [Continue](https://docs.continue.dev/autocomplete/how-to-use-it). Dont forget to use this format : ``` <|file_name|>{{{filename}}}<|fim_prefix|>{{{prefix}}}<|fim_suffix|>{{{suffix}}}<|fim_middle|> ```
oma7777/llama3.18B-Fine-tunedByOmar4BITMERGD
oma7777
2024-10-27T20:52:02Z
77
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-10-27T20:49:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf
RichardErkhov
2024-10-27T20:50:43Z
303
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-27T18:32:31Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen2.5-Coder-1.5B-Instruct-abliterated - GGUF - Model creator: https://huggingface.co/huihui-ai/ - Original model: https://huggingface.co/huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q2_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q2_K.gguf) | Q2_K | 0.7GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q3_K_S.gguf) | Q3_K_S | 0.8GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q3_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q3_K.gguf) | Q3_K | 0.86GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q3_K_M.gguf) | Q3_K_M | 0.86GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q3_K_L.gguf) | Q3_K_L | 0.91GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.IQ4_XS.gguf) | IQ4_XS | 0.96GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q4_0.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q4_0.gguf) | Q4_0 | 0.99GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.IQ4_NL.gguf) | IQ4_NL | 1.0GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q4_K_S.gguf) | Q4_K_S | 1.0GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q4_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q4_K.gguf) | Q4_K | 1.04GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q4_K_M.gguf) | Q4_K_M | 1.04GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q4_1.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q4_1.gguf) | Q4_1 | 1.08GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q5_0.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q5_0.gguf) | Q5_0 | 1.17GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q5_K_S.gguf) | Q5_K_S | 1.17GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q5_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q5_K.gguf) | Q5_K | 1.2GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q5_K_M.gguf) | Q5_K_M | 1.2GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q5_1.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q5_1.gguf) | Q5_1 | 1.26GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q6_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q6_K.gguf) | Q6_K | 1.36GB | | [Qwen2.5-Coder-1.5B-Instruct-abliterated.Q8_0.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-Coder-1.5B-Instruct-abliterated-gguf/blob/main/Qwen2.5-Coder-1.5B-Instruct-abliterated.Q8_0.gguf) | Q8_0 | 1.76GB | Original model description: --- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct tags: - chat - abliterated - uncensored --- # huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated This is an uncensored version of [Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it). Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models. ## Usage You can use this model in your applications by loading it with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input and prepare it for the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate a response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) # Extract model output, removing special tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Qwen: {response}") ``` ## Evaluations The following data has been re-evaluated and calculated as the average for each test. | Benchmark | Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct-abliterated | |-------------|-----------------------------|-----------------------------------------| | IF_Eval | 43.43 | **45.41** | | MMLU Pro | 21.5 | 20.57 | | TruthfulQA | 46.07 | 41.9 | | BBH | 36.67 | 36.09 | | GPQA | 28.00 | 26.13 | The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated/blob/main/eval.sh)
RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf
RichardErkhov
2024-10-27T20:46:26Z
13
0
null
[ "gguf", "arxiv:2409.12122", "endpoints_compatible", "region:us" ]
null
2024-10-27T18:18:34Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen2.5-Math-1.5B - GGUF - Model creator: https://huggingface.co/unsloth/ - Original model: https://huggingface.co/unsloth/Qwen2.5-Math-1.5B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Qwen2.5-Math-1.5B.Q2_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q2_K.gguf) | Q2_K | 0.63GB | | [Qwen2.5-Math-1.5B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q3_K_S.gguf) | Q3_K_S | 0.71GB | | [Qwen2.5-Math-1.5B.Q3_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q3_K.gguf) | Q3_K | 0.77GB | | [Qwen2.5-Math-1.5B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q3_K_M.gguf) | Q3_K_M | 0.77GB | | [Qwen2.5-Math-1.5B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q3_K_L.gguf) | Q3_K_L | 0.82GB | | [Qwen2.5-Math-1.5B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.IQ4_XS.gguf) | IQ4_XS | 0.84GB | | [Qwen2.5-Math-1.5B.Q4_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q4_0.gguf) | Q4_0 | 0.87GB | | [Qwen2.5-Math-1.5B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.IQ4_NL.gguf) | IQ4_NL | 0.88GB | | [Qwen2.5-Math-1.5B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q4_K_S.gguf) | Q4_K_S | 0.88GB | | [Qwen2.5-Math-1.5B.Q4_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q4_K.gguf) | Q4_K | 0.92GB | | [Qwen2.5-Math-1.5B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q4_K_M.gguf) | Q4_K_M | 0.92GB | | [Qwen2.5-Math-1.5B.Q4_1.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q4_1.gguf) | Q4_1 | 0.95GB | | [Qwen2.5-Math-1.5B.Q5_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q5_0.gguf) | Q5_0 | 1.02GB | | [Qwen2.5-Math-1.5B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q5_K_S.gguf) | Q5_K_S | 1.02GB | | [Qwen2.5-Math-1.5B.Q5_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q5_K.gguf) | Q5_K | 1.05GB | | [Qwen2.5-Math-1.5B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q5_K_M.gguf) | Q5_K_M | 1.05GB | | [Qwen2.5-Math-1.5B.Q5_1.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q5_1.gguf) | Q5_1 | 1.1GB | | [Qwen2.5-Math-1.5B.Q6_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q6_K.gguf) | Q6_K | 1.19GB | | [Qwen2.5-Math-1.5B.Q8_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q8_0.gguf) | Q8_0 | 1.53GB | Original model description: --- base_model: Qwen/Qwen2.5-Math-1.5B language: - en library_name: transformers license: apache-2.0 tags: - unsloth - transformers --- # Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing). Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing). [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth) [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) ## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less | | **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less | | **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less | | **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less | | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less | - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates. - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster. # Qwen2.5-Math-1.5B > [!Warning] > <div align="center"> > <b> > 🚨 Qwen2.5-Math mainly supports solving English and Chinese math problems through CoT and TIR. We do not recommend using this series of models for other tasks. > </b> > </div> ## Introduction In August 2024, we released the first series of mathematical LLMs - [Qwen2-Math](https://qwenlm.github.io/blog/qwen2-math/) - of our Qwen family. A month later, we have upgraded it and open-sourced **Qwen2.5-Math** series, including base models **Qwen2.5-Math-1.5B/7B/72B**, instruction-tuned models **Qwen2.5-Math-1.5B/7B/72B-Instruct**, and mathematical reward model **Qwen2.5-Math-RM-72B**. Unlike Qwen2-Math series which only supports using Chain-of-Thught (CoT) to solve English math problems, Qwen2.5-Math series is expanded to support using both CoT and Tool-integrated Reasoning (TIR) to solve math problems in both Chinese and English. The Qwen2.5-Math series models have achieved significant performance improvements compared to the Qwen2-Math series models on the Chinese and English mathematics benchmarks with CoT. ![](http://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2.5/qwen2.5-math-pipeline.jpeg) While CoT plays a vital role in enhancing the reasoning capabilities of LLMs, it faces challenges in achieving computational accuracy and handling complex mathematical or algorithmic reasoning tasks, such as finding the roots of a quadratic equation or computing the eigenvalues of a matrix. TIR can further improve the model's proficiency in precise computation, symbolic manipulation, and algorithmic manipulation. Qwen2.5-Math-1.5B/7B/72B-Instruct achieve 79.7, 85.3, and 87.8 respectively on the MATH benchmark using TIR. ## Model Details For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen2.5-math/) and [GitHub repo](https://github.com/QwenLM/Qwen2.5-Math). ## Requirements * `transformers>=4.37.0` for Qwen2.5-Math models. The latest version is recommended. > [!Warning] > <div align="center"> > <b> > 🚨 This is a must because <code>transformers</code> integrated Qwen2 codes since <code>4.37.0</code>. > </b> > </div> For requirements on GPU memory and the respective throughput, see similar results of Qwen2 [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Quick Start > [!Important] > > **Qwen2.5-Math-1.5B-Instruct** is an instruction model for chatting; > > **Qwen2.5-Math-1.5B** is a base model typically used for completion and few-shot inference, serving as a better starting point for fine-tuning. ## Citation If you find our work helpful, feel free to give us a citation. ``` @article{yang2024qwen25mathtechnicalreportmathematical, title={Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement}, author={An Yang and Beichen Zhang and Binyuan Hui and Bofei Gao and Bowen Yu and Chengpeng Li and Dayiheng Liu and Jianhong Tu and Jingren Zhou and Junyang Lin and Keming Lu and Mingfeng Xue and Runji Lin and Tianyu Liu and Xingzhang Ren and Zhenru Zhang}, journal={arXiv preprint arXiv:2409.12122}, year={2024} } ```
maxg73872/distilbert-base-uncased-finetuned-emotion
maxg73872
2024-10-27T20:46:24Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T20:34:55Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2142 - Accuracy: 0.9255 - F1: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8226 | 1.0 | 250 | 0.3151 | 0.912 | 0.9113 | | 0.2438 | 2.0 | 500 | 0.2142 | 0.9255 | 0.9257 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1
g-assismoraes/mdeberta-semeval25_narratives09_maxf1_fold1
g-assismoraes
2024-10-27T20:42:41Z
196
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T20:38:35Z
--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives09_maxf1_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-semeval25_narratives09_maxf1_fold1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1823 - Precision Samples: 0.3293 - Recall Samples: 0.7877 - F1 Samples: 0.4321 - Precision Macro: 0.6282 - Recall Macro: 0.4990 - F1 Macro: 0.2691 - Precision Micro: 0.2951 - Recall Micro: 0.7770 - F1 Micro: 0.4277 - Precision Weighted: 0.4074 - Recall Weighted: 0.7770 - F1 Weighted: 0.3902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.4291 | 1.0 | 19 | 5.3247 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0476 | 0.0476 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 5.1004 | 2.0 | 38 | 4.9863 | 0.5080 | 0.4156 | 0.2894 | 0.8696 | 0.2093 | 0.1349 | 0.3231 | 0.4173 | 0.3642 | 0.6722 | 0.4173 | 0.2245 | | 4.7777 | 3.0 | 57 | 4.7335 | 0.3225 | 0.5811 | 0.3756 | 0.7986 | 0.3022 | 0.1740 | 0.2955 | 0.5432 | 0.3828 | 0.5753 | 0.5432 | 0.2733 | | 4.4316 | 4.0 | 76 | 4.5100 | 0.3245 | 0.6957 | 0.4148 | 0.7110 | 0.3811 | 0.2277 | 0.3086 | 0.6439 | 0.4172 | 0.4911 | 0.6439 | 0.3400 | | 4.214 | 5.0 | 95 | 4.3951 | 0.3194 | 0.7370 | 0.4185 | 0.7042 | 0.4555 | 0.2447 | 0.3047 | 0.7158 | 0.4275 | 0.4850 | 0.7158 | 0.3580 | | 4.251 | 6.0 | 114 | 4.3089 | 0.2970 | 0.7886 | 0.4064 | 0.6606 | 0.4865 | 0.2541 | 0.2859 | 0.7662 | 0.4164 | 0.4231 | 0.7662 | 0.3698 | | 3.9884 | 7.0 | 133 | 4.2633 | 0.3254 | 0.7903 | 0.4304 | 0.6159 | 0.4902 | 0.2575 | 0.2950 | 0.7662 | 0.426 | 0.3979 | 0.7662 | 0.3812 | | 3.9453 | 8.0 | 152 | 4.2122 | 0.3237 | 0.7900 | 0.4299 | 0.6410 | 0.4994 | 0.2724 | 0.2963 | 0.7770 | 0.4290 | 0.4167 | 0.7770 | 0.3925 | | 4.0275 | 9.0 | 171 | 4.1888 | 0.3203 | 0.7863 | 0.4247 | 0.6272 | 0.4964 | 0.2675 | 0.2921 | 0.7734 | 0.4241 | 0.4054 | 0.7734 | 0.3872 | | 4.1566 | 10.0 | 190 | 4.1823 | 0.3293 | 0.7877 | 0.4321 | 0.6282 | 0.4990 | 0.2691 | 0.2951 | 0.7770 | 0.4277 | 0.4074 | 0.7770 | 0.3902 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1
RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf
RichardErkhov
2024-10-27T20:39:30Z
8
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-27T18:23:26Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) qwen2.5_1.5b_4000ocr_600kosmos - GGUF - Model creator: https://huggingface.co/abelsr1710/ - Original model: https://huggingface.co/abelsr1710/qwen2.5_1.5b_4000ocr_600kosmos/ | Name | Quant method | Size | | ---- | ---- | ---- | | [qwen2.5_1.5b_4000ocr_600kosmos.Q2_K.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q2_K.gguf) | Q2_K | 0.63GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q3_K_S.gguf) | Q3_K_S | 0.71GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q3_K.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q3_K.gguf) | Q3_K | 0.77GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q3_K_M.gguf) | Q3_K_M | 0.77GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q3_K_L.gguf) | Q3_K_L | 0.82GB | | [qwen2.5_1.5b_4000ocr_600kosmos.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.IQ4_XS.gguf) | IQ4_XS | 0.84GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q4_0.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q4_0.gguf) | Q4_0 | 0.87GB | | [qwen2.5_1.5b_4000ocr_600kosmos.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.IQ4_NL.gguf) | IQ4_NL | 0.88GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q4_K_S.gguf) | Q4_K_S | 0.88GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q4_K.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q4_K.gguf) | Q4_K | 0.92GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q4_K_M.gguf) | Q4_K_M | 0.92GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q4_1.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q4_1.gguf) | Q4_1 | 0.95GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q5_0.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q5_0.gguf) | Q5_0 | 1.02GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q5_K_S.gguf) | Q5_K_S | 1.02GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q5_K.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q5_K.gguf) | Q5_K | 1.05GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q5_K_M.gguf) | Q5_K_M | 1.05GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q5_1.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q5_1.gguf) | Q5_1 | 1.1GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q6_K.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q6_K.gguf) | Q6_K | 1.19GB | | [qwen2.5_1.5b_4000ocr_600kosmos.Q8_0.gguf](https://huggingface.co/RichardErkhov/abelsr1710_-_qwen2.5_1.5b_4000ocr_600kosmos-gguf/blob/main/qwen2.5_1.5b_4000ocr_600kosmos.Q8_0.gguf) | Q8_0 | 1.53GB | Original model description: --- base_model: unsloth/Qwen2.5-1.5B-Instruct language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft --- # Uploaded model - **Developed by:** abelsr1710 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-1.5B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
waldie/UnslopSmall-22B-v1-6.5bpw-h6-exl2
waldie
2024-10-27T20:38:10Z
16
0
null
[ "safetensors", "mistral", "base_model:TheDrummer/UnslopSmall-22B-v1", "base_model:quantized:TheDrummer/UnslopSmall-22B-v1", "exl2", "region:us" ]
null
2024-10-27T20:05:45Z
--- base_model: TheDrummer/UnslopSmall-22B-v1 quantized_by: waldie ---
Sergim/classify-real-estate-pics
Sergim
2024-10-27T20:37:47Z
7
1
null
[ "tensorboard", "safetensors", "vit", "image-classification", "pytorch", "huggingpics", "model-index", "region:us" ]
image-classification
2024-10-27T20:36:34Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: classify-real-estate-pics results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8550724387168884 --- # classify-real-estate-pics Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
Parisa-Moosavinezhad/my-model-name
Parisa-Moosavinezhad
2024-10-27T20:36:37Z
190
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T20:35:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
adriszmar/QAIMath-Qwen2.5-7B-TIES
adriszmar
2024-10-27T20:34:52Z
7
0
null
[ "safetensors", "qwen2", "merge", "mergekit", "lazymergekit", "Qwen/Qwen2.5-Math-7B", "Qwen/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2024-10-27T20:30:59Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Qwen/Qwen2.5-Math-7B - Qwen/Qwen2.5-Math-7B-Instruct --- # QAIMath-Qwen2.5-7B-TIES QAIMath-Qwen2.5-7B-TIES is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) * [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) ## 🧩 Configuration ```yaml models: - model: Qwen/Qwen2.5-Math-7B parameters: density: 0.5 weight: 0.4 - model: Qwen/Qwen2.5-Math-7B-Instruct parameters: density: 0.5 weight: 0.3 merge_method: ties base_model: Qwen/Qwen2.5-7B parameters: normalize: true dtype: float16 ```
stablecog-hf-1/FLUX.1-schnell-8bit-text-encoder-2
stablecog-hf-1
2024-10-27T20:33:37Z
78
0
transformers
[ "transformers", "safetensors", "t5", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
null
2024-10-27T20:29:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
EVA-UNIT-01/EVA-Qwen2.5-32B-v0.0
EVA-UNIT-01
2024-10-27T20:21:06Z
1,091
26
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "conversational", "dataset:anthracite-org/kalo-opus-instruct-22k-no-refusal", "dataset:Nopm/Opus_WritingStruct", "dataset:Gryphe/Sonnet3.5-SlimOrcaDedupCleaned", "dataset:Gryphe/Sonnet3.5-Charcard-Roleplay", "dataset:Gryphe/ChatGPT-4o-Writing-Prompts", "dataset:Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned", "dataset:Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned", "dataset:nothingiisreal/Reddit-Dirty-And-WritingPrompts", "dataset:allura-org/Celeste-1.x-data-mixture", "base_model:Qwen/Qwen2.5-32B", "base_model:finetune:Qwen/Qwen2.5-32B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-23T02:36:49Z
--- library_name: transformers license: apache-2.0 datasets: - anthracite-org/kalo-opus-instruct-22k-no-refusal - Nopm/Opus_WritingStruct - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - Gryphe/Sonnet3.5-Charcard-Roleplay - Gryphe/ChatGPT-4o-Writing-Prompts - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - nothingiisreal/Reddit-Dirty-And-WritingPrompts - allura-org/Celeste-1.x-data-mixture base_model: Qwen/Qwen2.5-32B tags: - generated_from_trainer model-index: - name: EVA-Qwen2.5-32B-SFFT-v0.0 results: [] --- # EVA Qwen2.5-32B v0.0 <p> A RP/storywriting specialist model, full-parameter finetune of Qwen2.5-32B on mixture of synthetic and natural data.<br> It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve versatility, creativity and "flavor" of the resulting model.<br> </p> <p>Model is available for inference on <a href=https://featherless.ai/models/EVA-UNIT-01/EVA-Qwen2.5-32B-v0.0>Featherless.AI</a></p <p>Note: using quantized KV cache with Qwen2.5 <b>is not recommended</b> and can lead to degraded output quality. On the other hand, Qwen's KV cache is already light enough, so using f16 for it shouldn't be problematic.</p> <p> <p>Prompt format is ChatML.</p><br> <h3>Recommended sampler values:</h3> <ul> <li>Temperature: 1</li> <li>Typical-P: 0.9</li> <li>Min-P: 0.05</li> <li>Top-A: 0.2</li> <li>Repetition Penalty: 1.03</li> </ul> <h3>Recommended SillyTavern presets (via CalamitousFelicitousness):</h3> - [Context](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Context.json) - [Instruct and System Prompt](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Instruct.json) </p> <p> <br> <h3> Training data: </h3> <ul> <li>Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's <a href=https://huggingface.co/nothingiisreal/L3.1-70B-Celeste-V0.1-BF16>card</a> for details.</li> <li>Kalomaze's Opus_Instruct_25k dataset, filtered for refusals.</li> <li>A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe</li> <li>A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe</li> <li>Synthstruct and SynthRP datasets by Epiculous</li> </ul> <h3> Training time and hardware: </h3> <ul><li>7 hours on 8xH100 SXM, provided by <a href=https://featherless.ai/>FeatherlessAI</a></li></ul><br> </p> <p>Model was trained by Kearm and Auri.</p> <h4>Special thanks:</h4><ul> <li><b>to <a href=https://featherless.ai/>FeatherlessAI</a> for generously providing 8xH100 SXM node for training of this model</b></li> <li>to Gryphe, Lemmy, Kalomaze, Nopm and Epiculous for the data</li> <li>and to Allura-org for support and feedback on EVA models.</li></ul> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2.5-32B load_in_8bit: false load_in_4bit: false strict: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true # plugins: # - axolotl.integrations.spectrum.SpectrumPlugin # spectrum_top_fraction: 0.5 # # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror # spectrum_model_name: Qwen/Qwen2.5-32B datasets: - path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl type: sharegpt - path: datasets/opus-instruct-22k-no_refusals-filtered.jsonl type: sharegpt - path: datasets/Celeste_Filtered.jsonl type: sharegpt - path: datasets/Gryphe-S3-5-Charcards-names-2k.jsonl type: sharegpt - path: datasets/deduped_SynthRP-Gens_processed_09-25-2024-ShareGPT_converted_cleaned.jsonl type: sharegpt - path: datasets/deduped_Gryphe-4o-WP-1k.jsonl type: sharegpt - path: datasets/deduped_not_samantha_norefusals.jsonl type: sharegpt chat_template: chatml shuffle_merged_datasets: true val_set_size: 0.001 output_dir: ./EVA-Qwen2.5-32B-SFFT-v0.0 sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true # adapter: qlora # lora_model_dir: # lora_r: 64 # lora_alpha: 64 # lora_dropout: 0.05 # lora_target_linear: true # peft_use_dora: true unfrozen_parameters: - ^lm_head.weight$ - ^model.embed_tokens.weight$ # input_layernorm layers - model.layers.0.input_layernorm - model.layers.1.input_layernorm - model.layers.2.input_layernorm - model.layers.3.input_layernorm - model.layers.4.input_layernorm - model.layers.5.input_layernorm - model.layers.6.input_layernorm - model.layers.7.input_layernorm - model.layers.8.input_layernorm - model.layers.9.input_layernorm - model.layers.10.input_layernorm - model.layers.11.input_layernorm - model.layers.12.input_layernorm - model.layers.13.input_layernorm - model.layers.14.input_layernorm - model.layers.15.input_layernorm - model.layers.16.input_layernorm - model.layers.17.input_layernorm - model.layers.18.input_layernorm - model.layers.19.input_layernorm - model.layers.20.input_layernorm - model.layers.21.input_layernorm - model.layers.22.input_layernorm - model.layers.23.input_layernorm - model.layers.24.input_layernorm - model.layers.25.input_layernorm - model.layers.26.input_layernorm - model.layers.27.input_layernorm - model.layers.28.input_layernorm - model.layers.29.input_layernorm - model.layers.30.input_layernorm - model.layers.31.input_layernorm # lm_head layers # mlp.down_proj layers - model.layers.63.mlp.down_proj - model.layers.49.mlp.down_proj - model.layers.48.mlp.down_proj - model.layers.45.mlp.down_proj - model.layers.44.mlp.down_proj - model.layers.47.mlp.down_proj - model.layers.46.mlp.down_proj - model.layers.43.mlp.down_proj - model.layers.8.mlp.down_proj - model.layers.11.mlp.down_proj - model.layers.19.mlp.down_proj - model.layers.35.mlp.down_proj - model.layers.20.mlp.down_proj - model.layers.52.mlp.down_proj - model.layers.39.mlp.down_proj - model.layers.62.mlp.down_proj - model.layers.50.mlp.down_proj - model.layers.29.mlp.down_proj - model.layers.16.mlp.down_proj - model.layers.28.mlp.down_proj - model.layers.53.mlp.down_proj - model.layers.30.mlp.down_proj - model.layers.31.mlp.down_proj - model.layers.32.mlp.down_proj - model.layers.7.mlp.down_proj - model.layers.36.mlp.down_proj - model.layers.12.mlp.down_proj - model.layers.18.mlp.down_proj - model.layers.37.mlp.down_proj - model.layers.38.mlp.down_proj - model.layers.14.mlp.down_proj - model.layers.13.mlp.down_proj # mlp.gate_proj layers - model.layers.43.mlp.gate_proj - model.layers.61.mlp.gate_proj - model.layers.60.mlp.gate_proj - model.layers.44.mlp.gate_proj - model.layers.62.mlp.gate_proj - model.layers.28.mlp.gate_proj - model.layers.29.mlp.gate_proj - model.layers.45.mlp.gate_proj - model.layers.37.mlp.gate_proj - model.layers.35.mlp.gate_proj - model.layers.59.mlp.gate_proj - model.layers.36.mlp.gate_proj - model.layers.30.mlp.gate_proj - model.layers.48.mlp.gate_proj - model.layers.38.mlp.gate_proj - model.layers.27.mlp.gate_proj - model.layers.31.mlp.gate_proj - model.layers.39.mlp.gate_proj - model.layers.34.mlp.gate_proj - model.layers.58.mlp.gate_proj - model.layers.33.mlp.gate_proj - model.layers.26.mlp.gate_proj - model.layers.32.mlp.gate_proj - model.layers.46.mlp.gate_proj - model.layers.42.mlp.gate_proj - model.layers.49.mlp.gate_proj - model.layers.57.mlp.gate_proj - model.layers.50.mlp.gate_proj - model.layers.47.mlp.gate_proj - model.layers.56.mlp.gate_proj - model.layers.63.mlp.gate_proj - model.layers.55.mlp.gate_proj # mlp.up_proj layers - model.layers.61.mlp.up_proj - model.layers.60.mlp.up_proj - model.layers.32.mlp.up_proj - model.layers.59.mlp.up_proj - model.layers.58.mlp.up_proj - model.layers.57.mlp.up_proj - model.layers.44.mlp.up_proj - model.layers.28.mlp.up_proj - model.layers.35.mlp.up_proj - model.layers.36.mlp.up_proj - model.layers.31.mlp.up_proj - model.layers.34.mlp.up_proj - model.layers.55.mlp.up_proj - model.layers.29.mlp.up_proj - model.layers.49.mlp.up_proj - model.layers.30.mlp.up_proj - model.layers.53.mlp.up_proj - model.layers.43.mlp.up_proj - model.layers.56.mlp.up_proj - model.layers.33.mlp.up_proj - model.layers.54.mlp.up_proj - model.layers.62.mlp.up_proj - model.layers.27.mlp.up_proj - model.layers.51.mlp.up_proj - model.layers.52.mlp.up_proj - model.layers.37.mlp.up_proj - model.layers.45.mlp.up_proj - model.layers.26.mlp.up_proj - model.layers.42.mlp.up_proj - model.layers.50.mlp.up_proj - model.layers.48.mlp.up_proj - model.layers.39.mlp.up_proj # model.embed_tokens layers # model.norm layers # post_attention_layernorm layers - model.layers.0.post_attention_layernorm - model.layers.1.post_attention_layernorm - model.layers.2.post_attention_layernorm - model.layers.3.post_attention_layernorm - model.layers.4.post_attention_layernorm - model.layers.5.post_attention_layernorm - model.layers.6.post_attention_layernorm - model.layers.7.post_attention_layernorm - model.layers.8.post_attention_layernorm - model.layers.9.post_attention_layernorm - model.layers.10.post_attention_layernorm - model.layers.11.post_attention_layernorm - model.layers.12.post_attention_layernorm - model.layers.13.post_attention_layernorm - model.layers.14.post_attention_layernorm - model.layers.15.post_attention_layernorm - model.layers.16.post_attention_layernorm - model.layers.17.post_attention_layernorm - model.layers.18.post_attention_layernorm - model.layers.19.post_attention_layernorm - model.layers.20.post_attention_layernorm - model.layers.21.post_attention_layernorm - model.layers.22.post_attention_layernorm - model.layers.23.post_attention_layernorm - model.layers.24.post_attention_layernorm - model.layers.25.post_attention_layernorm - model.layers.26.post_attention_layernorm - model.layers.27.post_attention_layernorm - model.layers.28.post_attention_layernorm - model.layers.29.post_attention_layernorm - model.layers.30.post_attention_layernorm - model.layers.31.post_attention_layernorm # self_attn.k_proj layers - model.layers.63.self_attn.k_proj - model.layers.55.self_attn.k_proj - model.layers.60.self_attn.k_proj - model.layers.7.self_attn.k_proj - model.layers.12.self_attn.k_proj - model.layers.13.self_attn.k_proj - model.layers.57.self_attn.k_proj - model.layers.29.self_attn.k_proj - model.layers.14.self_attn.k_proj - model.layers.51.self_attn.k_proj - model.layers.53.self_attn.k_proj - model.layers.54.self_attn.k_proj - model.layers.22.self_attn.k_proj - model.layers.61.self_attn.k_proj - model.layers.18.self_attn.k_proj - model.layers.30.self_attn.k_proj - model.layers.9.self_attn.k_proj - model.layers.24.self_attn.k_proj - model.layers.23.self_attn.k_proj - model.layers.25.self_attn.k_proj - model.layers.10.self_attn.k_proj - model.layers.58.self_attn.k_proj - model.layers.56.self_attn.k_proj - model.layers.15.self_attn.k_proj - model.layers.32.self_attn.k_proj - model.layers.28.self_attn.k_proj - model.layers.8.self_attn.k_proj - model.layers.59.self_attn.k_proj - model.layers.11.self_attn.k_proj - model.layers.48.self_attn.k_proj - model.layers.16.self_attn.k_proj - model.layers.50.self_attn.k_proj # self_attn.o_proj layers - model.layers.15.self_attn.o_proj - model.layers.23.self_attn.o_proj - model.layers.31.self_attn.o_proj - model.layers.30.self_attn.o_proj - model.layers.18.self_attn.o_proj - model.layers.24.self_attn.o_proj - model.layers.17.self_attn.o_proj - model.layers.28.self_attn.o_proj - model.layers.34.self_attn.o_proj - model.layers.33.self_attn.o_proj - model.layers.25.self_attn.o_proj - model.layers.12.self_attn.o_proj - model.layers.14.self_attn.o_proj - model.layers.29.self_attn.o_proj - model.layers.16.self_attn.o_proj - model.layers.26.self_attn.o_proj - model.layers.22.self_attn.o_proj - model.layers.27.self_attn.o_proj - model.layers.35.self_attn.o_proj - model.layers.20.self_attn.o_proj - model.layers.13.self_attn.o_proj - model.layers.36.self_attn.o_proj - model.layers.19.self_attn.o_proj - model.layers.37.self_attn.o_proj - model.layers.21.self_attn.o_proj - model.layers.11.self_attn.o_proj - model.layers.54.self_attn.o_proj - model.layers.5.self_attn.o_proj - model.layers.38.self_attn.o_proj - model.layers.6.self_attn.o_proj - model.layers.8.self_attn.o_proj - model.layers.9.self_attn.o_proj # self_attn.q_proj layers - model.layers.1.self_attn.q_proj - model.layers.2.self_attn.q_proj - model.layers.3.self_attn.q_proj - model.layers.45.self_attn.q_proj - model.layers.54.self_attn.q_proj - model.layers.35.self_attn.q_proj - model.layers.48.self_attn.q_proj - model.layers.61.self_attn.q_proj - model.layers.52.self_attn.q_proj - model.layers.50.self_attn.q_proj - model.layers.60.self_attn.q_proj - model.layers.56.self_attn.q_proj - model.layers.58.self_attn.q_proj - model.layers.42.self_attn.q_proj - model.layers.59.self_attn.q_proj - model.layers.44.self_attn.q_proj - model.layers.55.self_attn.q_proj - model.layers.57.self_attn.q_proj - model.layers.41.self_attn.q_proj - model.layers.36.self_attn.q_proj - model.layers.39.self_attn.q_proj - model.layers.4.self_attn.q_proj - model.layers.43.self_attn.q_proj - model.layers.34.self_attn.q_proj - model.layers.46.self_attn.q_proj - model.layers.49.self_attn.q_proj - model.layers.40.self_attn.q_proj - model.layers.25.self_attn.q_proj - model.layers.51.self_attn.q_proj - model.layers.17.self_attn.q_proj - model.layers.37.self_attn.q_proj - model.layers.53.self_attn.q_proj # self_attn.v_proj layers - model.layers.55.self_attn.v_proj - model.layers.31.self_attn.v_proj - model.layers.47.self_attn.v_proj - model.layers.45.self_attn.v_proj - model.layers.49.self_attn.v_proj - model.layers.48.self_attn.v_proj - model.layers.15.self_attn.v_proj - model.layers.30.self_attn.v_proj - model.layers.7.self_attn.v_proj - model.layers.44.self_attn.v_proj - model.layers.29.self_attn.v_proj - model.layers.51.self_attn.v_proj - model.layers.50.self_attn.v_proj - model.layers.14.self_attn.v_proj - model.layers.54.self_attn.v_proj - model.layers.32.self_attn.v_proj - model.layers.43.self_attn.v_proj - model.layers.10.self_attn.v_proj - model.layers.46.self_attn.v_proj - model.layers.38.self_attn.v_proj - model.layers.57.self_attn.v_proj - model.layers.22.self_attn.v_proj - model.layers.39.self_attn.v_proj - model.layers.6.self_attn.v_proj - model.layers.23.self_attn.v_proj - model.layers.58.self_attn.v_proj - model.layers.53.self_attn.v_proj - model.layers.40.self_attn.v_proj - model.layers.24.self_attn.v_proj - model.layers.9.self_attn.v_proj - model.layers.25.self_attn.v_proj - model.layers.5.self_attn.v_proj wandb_project: EVA-Qwen2.5-32B-SFFT-v0.0 wandb_entity: wandb_watch: wandb_name: Unit-00 wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00003 max_grad_norm: 3 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: "unsloth" # gradient_checkpointing_kwargs: # use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 2 save_safetensors: true hub_model_id: hub_strategy: debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.1 # fsdp: # - full_shard # - auto_wrap # fsdp_config: # fsdp_limit_all_gathers: true # fsdp_sync_module_states: true # fsdp_offload_params: false # Changed from true # fsdp_use_orig_params: true # Changed from false # fsdp_cpu_ram_efficient_loading: true # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP # fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer # fsdp_activation_checkpointing: true # fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT # fsdp_sharding_strategy: FULL_SHARD # fsdp_forward_prefetch: true # Added # fsdp_backward_prefetch: "BACKWARD_POST" # Added # fsdp_backward_prefetch_limit: 1 # Added # fsdp_mixed_precision: BF16 # Added ``` </details><br>
nlpguy/amdchess-v4
nlpguy
2024-10-27T20:18:08Z
131
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:amd/AMD-Llama-135m", "base_model:finetune:amd/AMD-Llama-135m", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T19:41:09Z
--- library_name: transformers license: apache-2.0 base_model: amd/AMD-Llama-135m tags: - generated_from_trainer model-index: - name: amdchess-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amdchess-v4 This model is a fine-tuned version of [amd/AMD-Llama-135m](https://huggingface.co/amd/AMD-Llama-135m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use grokadamw with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 0.25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 9.9629 | 0.0030 | 5 | 5.6096 | | 3.7446 | 0.0059 | 10 | 3.3680 | | 2.524 | 0.0089 | 15 | 2.3223 | | 1.9286 | 0.0118 | 20 | 1.7446 | | 1.5475 | 0.0148 | 25 | 2.0681 | | 1.2838 | 0.0177 | 30 | 1.4096 | | 1.3152 | 0.0207 | 35 | 1.2730 | | 1.2488 | 0.0236 | 40 | 1.2203 | | 1.088 | 0.0266 | 45 | 1.1461 | | 1.0479 | 0.0295 | 50 | 1.1139 | | 1.0758 | 0.0325 | 55 | 1.0844 | | 1.1275 | 0.0354 | 60 | 1.0443 | | 1.1378 | 0.0384 | 65 | 1.0260 | | 1.0147 | 0.0413 | 70 | 0.9939 | | 0.993 | 0.0443 | 75 | 1.0074 | | 1.0132 | 0.0472 | 80 | 0.9866 | | 0.9155 | 0.0502 | 85 | 0.9697 | | 0.9656 | 0.0531 | 90 | 0.9757 | | 1.0402 | 0.0561 | 95 | 0.9633 | | 0.9759 | 0.0590 | 100 | 0.9528 | | 0.9505 | 0.0620 | 105 | 0.9501 | | 1.0114 | 0.0649 | 110 | 0.9405 | | 1.0182 | 0.0679 | 115 | 0.9212 | | 0.9396 | 0.0708 | 120 | 0.9284 | | 0.902 | 0.0738 | 125 | 0.9262 | | 0.9533 | 0.0767 | 130 | 0.9121 | | 0.8755 | 0.0797 | 135 | 0.9160 | | 0.9349 | 0.0826 | 140 | 0.9083 | | 0.9585 | 0.0856 | 145 | 0.8993 | | 0.8349 | 0.0885 | 150 | 0.9000 | | 0.9541 | 0.0915 | 155 | 0.8887 | | 0.9108 | 0.0945 | 160 | 0.8837 | | 0.9196 | 0.0974 | 165 | 0.8806 | | 0.9094 | 0.1004 | 170 | 0.8776 | | 0.8514 | 0.1033 | 175 | 0.8759 | | 0.7515 | 0.1063 | 180 | 0.8684 | | 0.8031 | 0.1092 | 185 | 0.8676 | | 0.8639 | 0.1122 | 190 | 0.8661 | | 0.8002 | 0.1151 | 195 | 0.8556 | | 0.7812 | 0.1181 | 200 | 0.8574 | | 0.9163 | 0.1210 | 205 | 0.8582 | | 0.8824 | 0.1240 | 210 | 0.8515 | | 0.8759 | 0.1269 | 215 | 0.8502 | | 0.8384 | 0.1299 | 220 | 0.8467 | | 0.8436 | 0.1328 | 225 | 0.8427 | | 0.8329 | 0.1358 | 230 | 0.8398 | | 0.87 | 0.1387 | 235 | 0.8393 | | 0.8405 | 0.1417 | 240 | 0.8356 | | 0.8634 | 0.1446 | 245 | 0.8339 | | 0.8298 | 0.1476 | 250 | 0.8315 | | 0.7582 | 0.1505 | 255 | 0.8278 | | 0.7912 | 0.1535 | 260 | 0.8257 | | 0.8878 | 0.1564 | 265 | 0.8247 | | 0.8443 | 0.1594 | 270 | 0.8229 | | 0.8965 | 0.1623 | 275 | 0.8206 | | 0.8298 | 0.1653 | 280 | 0.8178 | | 0.7496 | 0.1682 | 285 | 0.8177 | | 0.7794 | 0.1712 | 290 | 0.8148 | | 0.8354 | 0.1741 | 295 | 0.8137 | | 0.8861 | 0.1771 | 300 | 0.8124 | | 0.7683 | 0.1800 | 305 | 0.8118 | | 0.8414 | 0.1830 | 310 | 0.8106 | | 0.8624 | 0.1860 | 315 | 0.8083 | | 0.7753 | 0.1889 | 320 | 0.8076 | | 0.778 | 0.1919 | 325 | 0.8060 | | 0.8171 | 0.1948 | 330 | 0.8051 | | 0.7006 | 0.1978 | 335 | 0.8049 | | 0.8365 | 0.2007 | 340 | 0.8032 | | 0.8057 | 0.2037 | 345 | 0.8021 | | 0.7914 | 0.2066 | 350 | 0.8015 | | 0.9043 | 0.2096 | 355 | 0.8008 | | 0.8317 | 0.2125 | 360 | 0.8001 | | 0.7631 | 0.2155 | 365 | 0.7997 | | 0.8301 | 0.2184 | 370 | 0.7993 | | 0.8701 | 0.2214 | 375 | 0.7988 | | 0.7469 | 0.2243 | 380 | 0.7985 | | 0.7643 | 0.2273 | 385 | 0.7981 | | 0.8388 | 0.2302 | 390 | 0.7978 | | 0.8808 | 0.2332 | 395 | 0.7975 | | 0.7441 | 0.2361 | 400 | 0.7974 | | 0.7641 | 0.2391 | 405 | 0.7972 | | 0.727 | 0.2420 | 410 | 0.7971 | | 0.771 | 0.2450 | 415 | 0.7971 | | 0.7442 | 0.2479 | 420 | 0.7971 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1
drahmel/Daredevil-8B-abliterated-story
drahmel
2024-10-27T20:13:52Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T20:05:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF
mradermacher
2024-10-27T20:04:07Z
29
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:DavidAU/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B", "base_model:quantized:DavidAU/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-10-27T16:21:26Z
--- base_model: DavidAU/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/DavidAU/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ1_S.gguf) | i1-IQ1_S | 5.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ1_M.gguf) | i1-IQ1_M | 5.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ2_S.gguf) | i1-IQ2_S | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ2_M.gguf) | i1-IQ2_M | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-Q2_K.gguf) | i1-Q2_K | 9.0 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 9.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 10.0 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 10.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ3_S.gguf) | i1-IQ3_S | 10.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ3_M.gguf) | i1-IQ3_M | 10.8 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 11.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 12.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 12.8 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-Q4_0.gguf) | i1-Q4_0 | 13.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 13.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 14.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 16.3 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 16.7 | | | [GGUF](https://huggingface.co/mradermacher/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B-i1-GGUF/resolve/main/MN-GRAND-Gutenberg-Lyra4-Lyra-23.5B.i1-Q6_K.gguf) | i1-Q6_K | 19.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
LuisMG2/iabd_model
LuisMG2
2024-10-27T20:00:14Z
6
0
null
[ "pytorch", "license:cc-by-nc-nd-4.0", "region:us" ]
null
2024-10-27T09:44:38Z
--- license: cc-by-nc-nd-4.0 --- tags: - vision - image-classification datasets: - omarques/autotrain-data-dogs-and-cats
nlpguy/amdchess-v3
nlpguy
2024-10-27T19:59:32Z
130
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:reflex-ai/AMD-Llama-350M-Upgraded", "base_model:finetune:reflex-ai/AMD-Llama-350M-Upgraded", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T18:02:37Z
--- library_name: transformers license: apache-2.0 base_model: reflex-ai/AMD-Llama-350M-Upgraded tags: - generated_from_trainer model-index: - name: amdchess-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amdchess-v3 This model is a fine-tuned version of [reflex-ai/AMD-Llama-350M-Upgraded](https://huggingface.co/reflex-ai/AMD-Llama-350M-Upgraded) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 0.25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.6481 | 0.0030 | 5 | 7.3246 | | 7.1045 | 0.0059 | 10 | 6.8823 | | 6.5856 | 0.0089 | 15 | 6.5701 | | 6.1701 | 0.0118 | 20 | 6.0976 | | 5.7428 | 0.0148 | 25 | 5.7033 | | 5.6064 | 0.0177 | 30 | 5.3915 | | 5.096 | 0.0207 | 35 | 4.9774 | | 4.6607 | 0.0236 | 40 | 4.6606 | | 4.4224 | 0.0266 | 45 | 4.3904 | | 4.2617 | 0.0295 | 50 | 4.1209 | | 4.0037 | 0.0325 | 55 | 3.9065 | | 3.8326 | 0.0354 | 60 | 3.7226 | | 3.5859 | 0.0384 | 65 | 3.5654 | | 3.5209 | 0.0413 | 70 | 3.3901 | | 3.2487 | 0.0443 | 75 | 3.2572 | | 3.111 | 0.0472 | 80 | 3.0276 | | 2.8844 | 0.0502 | 85 | 2.8643 | | 2.7695 | 0.0531 | 90 | 2.7651 | | 2.7369 | 0.0561 | 95 | 2.6283 | | 2.4932 | 0.0590 | 100 | 2.5018 | | 2.3424 | 0.0620 | 105 | 2.3886 | | 2.3822 | 0.0649 | 110 | 2.3002 | | 2.1709 | 0.0679 | 115 | 2.1980 | | 2.0245 | 0.0708 | 120 | 2.1401 | | 2.0681 | 0.0738 | 125 | 2.0873 | | 2.0483 | 0.0767 | 130 | 2.0304 | | 2.1128 | 0.0797 | 135 | 1.9849 | | 1.9851 | 0.0826 | 140 | 1.9261 | | 1.8878 | 0.0856 | 145 | 1.8993 | | 1.9144 | 0.0885 | 150 | 1.8522 | | 1.8315 | 0.0915 | 155 | 1.8441 | | 1.8331 | 0.0945 | 160 | 1.8086 | | 1.6939 | 0.0974 | 165 | 1.7622 | | 1.7247 | 0.1004 | 170 | 1.7290 | | 1.7578 | 0.1033 | 175 | 1.7001 | | 1.7665 | 0.1063 | 180 | 1.6987 | | 1.6891 | 0.1092 | 185 | 1.6677 | | 1.5931 | 0.1122 | 190 | 1.6512 | | 1.6587 | 0.1151 | 195 | 1.6247 | | 1.6703 | 0.1181 | 200 | 1.6061 | | 1.5718 | 0.1210 | 205 | 1.5952 | | 1.6414 | 0.1240 | 210 | 1.5690 | | 1.5659 | 0.1269 | 215 | 1.5563 | | 1.7055 | 0.1299 | 220 | 1.5354 | | 1.5557 | 0.1328 | 225 | 1.5216 | | 1.526 | 0.1358 | 230 | 1.5040 | | 1.5513 | 0.1387 | 235 | 1.4986 | | 1.4993 | 0.1417 | 240 | 1.4960 | | 1.5187 | 0.1446 | 245 | 1.4842 | | 1.4945 | 0.1476 | 250 | 1.4721 | | 1.4969 | 0.1505 | 255 | 1.4705 | | 1.4805 | 0.1535 | 260 | 1.4485 | | 1.3945 | 0.1564 | 265 | 1.4433 | | 1.4712 | 0.1594 | 270 | 1.4359 | | 1.4197 | 0.1623 | 275 | 1.4292 | | 1.4211 | 0.1653 | 280 | 1.4243 | | 1.2673 | 0.1682 | 285 | 1.4238 | | 1.4609 | 0.1712 | 290 | 1.4490 | | 1.4633 | 0.1741 | 295 | 1.4193 | | 1.4171 | 0.1771 | 300 | 1.4049 | | 1.4011 | 0.1800 | 305 | 1.4024 | | 1.2451 | 0.1830 | 310 | 1.3998 | | 1.5563 | 0.1860 | 315 | 1.3952 | | 1.3135 | 0.1889 | 320 | 1.3910 | | 1.4269 | 0.1919 | 325 | 1.3905 | | 1.3852 | 0.1948 | 330 | 1.3868 | | 1.4691 | 0.1978 | 335 | 1.3806 | | 1.4233 | 0.2007 | 340 | 1.3768 | | 1.3279 | 0.2037 | 345 | 1.3780 | | 1.3566 | 0.2066 | 350 | 1.3721 | | 1.4463 | 0.2096 | 355 | 1.3688 | | 1.3598 | 0.2125 | 360 | 1.3696 | | 1.4411 | 0.2155 | 365 | 1.3668 | | 1.3842 | 0.2184 | 370 | 1.3663 | | 1.2909 | 0.2214 | 375 | 1.3654 | | 1.3835 | 0.2243 | 380 | 1.3647 | | 1.4124 | 0.2273 | 385 | 1.3619 | | 1.3389 | 0.2302 | 390 | 1.3625 | | 1.4634 | 0.2332 | 395 | 1.3609 | | 1.2831 | 0.2361 | 400 | 1.3602 | | 1.2724 | 0.2391 | 405 | 1.3599 | | 1.3864 | 0.2420 | 410 | 1.3596 | | 1.3273 | 0.2450 | 415 | 1.3595 | | 1.3081 | 0.2479 | 420 | 1.3595 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1
g-assismoraes/mdeberta-semeval25_narratives09_fold5
g-assismoraes
2024-10-27T19:58:32Z
161
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T19:54:26Z
--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives09_fold5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-semeval25_narratives09_fold5 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0227 - Precision Samples: 0.3630 - Recall Samples: 0.7663 - F1 Samples: 0.4583 - Precision Macro: 0.6929 - Recall Macro: 0.5586 - F1 Macro: 0.3787 - Precision Micro: 0.3170 - Recall Micro: 0.7293 - F1 Micro: 0.4419 - Precision Weighted: 0.4618 - Recall Weighted: 0.7293 - F1 Weighted: 0.4006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.5606 | 1.0 | 19 | 5.1743 | 1.0 | 0.0 | 0.0 | 1.0 | 0.1429 | 0.1429 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 4.8513 | 2.0 | 38 | 4.9270 | 0.2759 | 0.2532 | 0.2276 | 0.9372 | 0.2238 | 0.1869 | 0.2865 | 0.2068 | 0.2402 | 0.8398 | 0.2068 | 0.1101 | | 5.1086 | 3.0 | 57 | 4.6316 | 0.3810 | 0.4853 | 0.3601 | 0.8763 | 0.3242 | 0.2396 | 0.3420 | 0.4474 | 0.3876 | 0.6961 | 0.4474 | 0.2403 | | 4.5134 | 4.0 | 76 | 4.4138 | 0.3413 | 0.6266 | 0.4146 | 0.7828 | 0.4166 | 0.2917 | 0.3196 | 0.5827 | 0.4128 | 0.5521 | 0.5827 | 0.3108 | | 4.3876 | 5.0 | 95 | 4.2907 | 0.3599 | 0.6644 | 0.4357 | 0.7174 | 0.4444 | 0.3230 | 0.3259 | 0.6015 | 0.4227 | 0.4753 | 0.6015 | 0.3464 | | 4.084 | 6.0 | 114 | 4.1465 | 0.3372 | 0.7364 | 0.4312 | 0.7116 | 0.5145 | 0.3409 | 0.2987 | 0.7030 | 0.4193 | 0.4704 | 0.7030 | 0.3684 | | 3.9969 | 7.0 | 133 | 4.0975 | 0.3583 | 0.7479 | 0.4546 | 0.7007 | 0.5368 | 0.3753 | 0.3198 | 0.7105 | 0.4411 | 0.4677 | 0.7105 | 0.3978 | | 3.9677 | 8.0 | 152 | 4.0623 | 0.3605 | 0.7543 | 0.4564 | 0.6912 | 0.5472 | 0.3758 | 0.3220 | 0.7105 | 0.4431 | 0.4631 | 0.7105 | 0.3995 | | 4.0107 | 9.0 | 171 | 4.0401 | 0.3565 | 0.7571 | 0.4538 | 0.6965 | 0.5523 | 0.3805 | 0.3188 | 0.7143 | 0.4408 | 0.4649 | 0.7143 | 0.4006 | | 3.9591 | 10.0 | 190 | 4.0227 | 0.3630 | 0.7663 | 0.4583 | 0.6929 | 0.5586 | 0.3787 | 0.3170 | 0.7293 | 0.4419 | 0.4618 | 0.7293 | 0.4006 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1
mradermacher/MS-Schisandra-22B-vA-i1-GGUF
mradermacher
2024-10-27T19:57:08Z
27
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-10-27T16:24:08Z
--- base_model: Nohobby/MS-Schisandra-22B-vA language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Nohobby/MS-Schisandra-22B-vA <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ1_S.gguf) | i1-IQ1_S | 4.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ1_M.gguf) | i1-IQ1_M | 5.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ2_XS.gguf) | i1-IQ2_XS | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ2_S.gguf) | i1-IQ2_S | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ2_M.gguf) | i1-IQ2_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-Q2_K.gguf) | i1-Q2_K | 8.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 8.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ3_XS.gguf) | i1-IQ3_XS | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-Q3_K_S.gguf) | i1-Q3_K_S | 9.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ3_S.gguf) | i1-IQ3_S | 9.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ3_M.gguf) | i1-IQ3_M | 10.2 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-Q3_K_M.gguf) | i1-Q3_K_M | 10.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-Q3_K_L.gguf) | i1-Q3_K_L | 11.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-IQ4_XS.gguf) | i1-IQ4_XS | 12.0 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-Q4_0.gguf) | i1-Q4_0 | 12.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-Q4_K_S.gguf) | i1-Q4_K_S | 12.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-Q4_K_M.gguf) | i1-Q4_K_M | 13.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-Q5_K_S.gguf) | i1-Q5_K_S | 15.4 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-Q5_K_M.gguf) | i1-Q5_K_M | 15.8 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA-i1-GGUF/resolve/main/MS-Schisandra-22B-vA.i1-Q6_K.gguf) | i1-Q6_K | 18.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
g-assismoraes/mdeberta-semeval25_narratives09_fold4
g-assismoraes
2024-10-27T19:54:22Z
196
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T19:50:39Z
--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives09_fold4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-semeval25_narratives09_fold4 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7685 - Precision Samples: 0.3724 - Recall Samples: 0.7791 - F1 Samples: 0.4660 - Precision Macro: 0.6802 - Recall Macro: 0.4995 - F1 Macro: 0.2745 - Precision Micro: 0.3076 - Recall Micro: 0.7647 - F1 Micro: 0.4387 - Precision Weighted: 0.4736 - Recall Weighted: 0.7647 - F1 Weighted: 0.3979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.7927 | 1.0 | 19 | 4.9876 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0476 | 0.0476 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 5.0899 | 2.0 | 38 | 4.7739 | 0.3023 | 0.3386 | 0.2905 | 0.8797 | 0.1700 | 0.1306 | 0.316 | 0.3098 | 0.3129 | 0.7069 | 0.3098 | 0.2068 | | 5.184 | 3.0 | 57 | 4.4531 | 0.3310 | 0.4776 | 0.3705 | 0.8491 | 0.2311 | 0.1455 | 0.3304 | 0.4471 | 0.38 | 0.6518 | 0.4471 | 0.2363 | | 4.8172 | 4.0 | 76 | 4.2540 | 0.3585 | 0.6171 | 0.4157 | 0.7777 | 0.3401 | 0.2009 | 0.2955 | 0.5922 | 0.3943 | 0.5605 | 0.5922 | 0.3170 | | 4.6123 | 5.0 | 95 | 4.0275 | 0.3880 | 0.6493 | 0.4406 | 0.7328 | 0.3521 | 0.2096 | 0.3224 | 0.6157 | 0.4232 | 0.5172 | 0.6157 | 0.3372 | | 4.4261 | 6.0 | 114 | 3.9283 | 0.3893 | 0.7197 | 0.4591 | 0.7160 | 0.4256 | 0.2490 | 0.3076 | 0.7020 | 0.4277 | 0.4984 | 0.7020 | 0.3797 | | 4.0921 | 7.0 | 133 | 3.8476 | 0.3760 | 0.7710 | 0.4677 | 0.6844 | 0.4849 | 0.2771 | 0.3153 | 0.7529 | 0.4444 | 0.4774 | 0.7529 | 0.4014 | | 4.1832 | 8.0 | 152 | 3.7974 | 0.3744 | 0.7932 | 0.4738 | 0.6823 | 0.4933 | 0.2773 | 0.3166 | 0.7647 | 0.4478 | 0.4787 | 0.7647 | 0.4061 | | 4.3611 | 9.0 | 171 | 3.7819 | 0.3743 | 0.7825 | 0.4678 | 0.6819 | 0.4981 | 0.2763 | 0.3095 | 0.7647 | 0.4407 | 0.4758 | 0.7647 | 0.4006 | | 3.945 | 10.0 | 190 | 3.7685 | 0.3724 | 0.7791 | 0.4660 | 0.6802 | 0.4995 | 0.2745 | 0.3076 | 0.7647 | 0.4387 | 0.4736 | 0.7647 | 0.3979 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1
g-assismoraes/mdeberta-semeval25_narratives09_fold3
g-assismoraes
2024-10-27T19:50:34Z
161
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T19:45:54Z
--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives09_fold3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-semeval25_narratives09_fold3 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2001 - Precision Samples: 0.3657 - Recall Samples: 0.7451 - F1 Samples: 0.4607 - Precision Macro: 0.6982 - Recall Macro: 0.4621 - F1 Macro: 0.2860 - Precision Micro: 0.3270 - Recall Micro: 0.6974 - F1 Micro: 0.4452 - Precision Weighted: 0.4844 - Recall Weighted: 0.6974 - F1 Weighted: 0.3863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.6486 | 1.0 | 19 | 5.3335 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0476 | 0.0476 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 5.1543 | 2.0 | 38 | 5.1482 | 0.2989 | 0.3545 | 0.2947 | 0.8737 | 0.1754 | 0.1269 | 0.2960 | 0.3026 | 0.2993 | 0.7101 | 0.3026 | 0.1830 | | 4.8675 | 3.0 | 57 | 4.9437 | 0.2764 | 0.4597 | 0.3267 | 0.8661 | 0.2223 | 0.1320 | 0.2835 | 0.3985 | 0.3313 | 0.6942 | 0.3985 | 0.1930 | | 4.5144 | 4.0 | 76 | 4.6737 | 0.3513 | 0.6045 | 0.4080 | 0.7918 | 0.3051 | 0.2033 | 0.3198 | 0.5240 | 0.3972 | 0.5901 | 0.5240 | 0.2991 | | 4.6334 | 5.0 | 95 | 4.4861 | 0.3436 | 0.6636 | 0.4219 | 0.7584 | 0.3706 | 0.2294 | 0.3035 | 0.6015 | 0.4035 | 0.5513 | 0.6015 | 0.3222 | | 4.4156 | 6.0 | 114 | 4.3417 | 0.3529 | 0.7394 | 0.4447 | 0.7163 | 0.4305 | 0.2534 | 0.3129 | 0.6790 | 0.4284 | 0.4923 | 0.6790 | 0.3581 | | 3.9776 | 7.0 | 133 | 4.2836 | 0.3659 | 0.7371 | 0.4542 | 0.7193 | 0.4290 | 0.2548 | 0.3183 | 0.6753 | 0.4326 | 0.4993 | 0.6753 | 0.3622 | | 4.0482 | 8.0 | 152 | 4.2803 | 0.3560 | 0.7061 | 0.4386 | 0.7124 | 0.4265 | 0.2660 | 0.3201 | 0.6568 | 0.4305 | 0.4918 | 0.6568 | 0.3668 | | 4.0709 | 9.0 | 171 | 4.1972 | 0.3717 | 0.7443 | 0.4602 | 0.7075 | 0.4553 | 0.2830 | 0.3209 | 0.6974 | 0.4395 | 0.4898 | 0.6974 | 0.3834 | | 4.3494 | 10.0 | 190 | 4.2001 | 0.3657 | 0.7451 | 0.4607 | 0.6982 | 0.4621 | 0.2860 | 0.3270 | 0.6974 | 0.4452 | 0.4844 | 0.6974 | 0.3863 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1
g-assismoraes/mdeberta-semeval25_narratives09_fold2
g-assismoraes
2024-10-27T19:45:49Z
161
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T19:41:42Z
--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives09_fold2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-semeval25_narratives09_fold2 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2915 - Precision Samples: 0.3850 - Recall Samples: 0.7226 - F1 Samples: 0.4627 - Precision Macro: 0.7130 - Recall Macro: 0.4503 - F1 Macro: 0.2846 - Precision Micro: 0.3282 - Recall Micro: 0.6957 - F1 Micro: 0.4460 - Precision Weighted: 0.4983 - Recall Weighted: 0.6957 - F1 Weighted: 0.3925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.4789 | 1.0 | 19 | 5.4030 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0476 | 0.0476 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 5.2627 | 2.0 | 38 | 5.1901 | 0.2839 | 0.3351 | 0.2805 | 0.9014 | 0.1655 | 0.1112 | 0.2952 | 0.2899 | 0.2925 | 0.7607 | 0.2899 | 0.1520 | | 4.6993 | 3.0 | 57 | 5.0001 | 0.3075 | 0.4274 | 0.3272 | 0.8700 | 0.2042 | 0.1344 | 0.3164 | 0.3841 | 0.3470 | 0.6843 | 0.3841 | 0.2124 | | 4.5547 | 4.0 | 76 | 4.7741 | 0.3603 | 0.5142 | 0.3949 | 0.8024 | 0.2616 | 0.1705 | 0.3290 | 0.4601 | 0.3837 | 0.5941 | 0.4601 | 0.2529 | | 4.2228 | 5.0 | 95 | 4.5899 | 0.3432 | 0.6239 | 0.4110 | 0.7733 | 0.3356 | 0.2028 | 0.3165 | 0.5688 | 0.4067 | 0.5551 | 0.5688 | 0.3071 | | 4.0369 | 6.0 | 114 | 4.4640 | 0.3575 | 0.6764 | 0.4282 | 0.7161 | 0.3926 | 0.2391 | 0.3084 | 0.6413 | 0.4165 | 0.4951 | 0.6413 | 0.3492 | | 4.0052 | 7.0 | 133 | 4.3708 | 0.3529 | 0.6907 | 0.4313 | 0.7169 | 0.4237 | 0.2521 | 0.3088 | 0.6703 | 0.4229 | 0.4941 | 0.6703 | 0.3594 | | 3.8847 | 8.0 | 152 | 4.3291 | 0.3645 | 0.7105 | 0.4445 | 0.7205 | 0.4312 | 0.2569 | 0.3170 | 0.6812 | 0.4327 | 0.5006 | 0.6812 | 0.3678 | | 3.8223 | 9.0 | 171 | 4.3064 | 0.3676 | 0.7080 | 0.4457 | 0.7196 | 0.4326 | 0.2643 | 0.3160 | 0.6812 | 0.4317 | 0.4985 | 0.6812 | 0.3716 | | 4.3457 | 10.0 | 190 | 4.2915 | 0.3850 | 0.7226 | 0.4627 | 0.7130 | 0.4503 | 0.2846 | 0.3282 | 0.6957 | 0.4460 | 0.4983 | 0.6957 | 0.3925 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1
Mahmoud3899/reason_new
Mahmoud3899
2024-10-27T19:44:15Z
108
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T16:01:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
g-assismoraes/mdeberta-semeval25_narratives09_fold1
g-assismoraes
2024-10-27T19:41:37Z
161
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-10-27T19:37:17Z
--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives09_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-semeval25_narratives09_fold1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1440 - Precision Samples: 0.3489 - Recall Samples: 0.7666 - F1 Samples: 0.4484 - Precision Macro: 0.6713 - Recall Macro: 0.4701 - F1 Macro: 0.2642 - Precision Micro: 0.3133 - Recall Micro: 0.7518 - F1 Micro: 0.4423 - Precision Weighted: 0.4454 - Recall Weighted: 0.7518 - F1 Weighted: 0.3929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.3976 | 1.0 | 19 | 5.3094 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0476 | 0.0476 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 5.0729 | 2.0 | 38 | 5.0051 | 0.2991 | 0.4812 | 0.3465 | 0.8683 | 0.2245 | 0.1355 | 0.3056 | 0.4496 | 0.3639 | 0.6682 | 0.4496 | 0.2244 | | 4.799 | 3.0 | 57 | 4.7268 | 0.3634 | 0.5035 | 0.3759 | 0.8348 | 0.2364 | 0.1574 | 0.3291 | 0.4640 | 0.3851 | 0.6206 | 0.4640 | 0.2617 | | 4.4077 | 4.0 | 76 | 4.5072 | 0.3846 | 0.6225 | 0.4435 | 0.7933 | 0.3190 | 0.2043 | 0.3383 | 0.5755 | 0.4261 | 0.5591 | 0.5755 | 0.3232 | | 4.1905 | 5.0 | 95 | 4.3919 | 0.4006 | 0.6444 | 0.4575 | 0.7484 | 0.3320 | 0.2140 | 0.3395 | 0.5935 | 0.4319 | 0.5242 | 0.5935 | 0.3411 | | 4.1939 | 6.0 | 114 | 4.2724 | 0.3817 | 0.7296 | 0.4634 | 0.7094 | 0.4205 | 0.2478 | 0.3229 | 0.7050 | 0.4429 | 0.4663 | 0.7050 | 0.3791 | | 3.9286 | 7.0 | 133 | 4.2600 | 0.3753 | 0.7336 | 0.4620 | 0.6853 | 0.4257 | 0.2568 | 0.3311 | 0.7050 | 0.4506 | 0.4556 | 0.7050 | 0.3882 | | 3.8896 | 8.0 | 152 | 4.1871 | 0.3528 | 0.7581 | 0.4505 | 0.6713 | 0.4559 | 0.2625 | 0.3188 | 0.7374 | 0.4452 | 0.4462 | 0.7374 | 0.3929 | | 3.993 | 9.0 | 171 | 4.1598 | 0.3525 | 0.7629 | 0.4503 | 0.6712 | 0.4645 | 0.2639 | 0.3170 | 0.7446 | 0.4447 | 0.4443 | 0.7446 | 0.3920 | | 4.1424 | 10.0 | 190 | 4.1440 | 0.3489 | 0.7666 | 0.4484 | 0.6713 | 0.4701 | 0.2642 | 0.3133 | 0.7518 | 0.4423 | 0.4454 | 0.7518 | 0.3929 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1
Viscoke/caf3
Viscoke
2024-10-27T19:35:05Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T19:32:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hanwen1232/bert-finetuned-ner
hanwen1232
2024-10-27T19:30:06Z
119
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-10-27T18:56:49Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1749 - Precision: 0.5782 - Recall: 0.6635 - F1: 0.6179 - Accuracy: 0.9548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 249 | 0.2258 | 0.4744 | 0.6031 | 0.5311 | 0.9355 | | No log | 2.0 | 498 | 0.2214 | 0.5604 | 0.6170 | 0.5873 | 0.9446 | | 0.2066 | 3.0 | 747 | 0.2324 | 0.5223 | 0.6499 | 0.5792 | 0.9414 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.4.1+cpu - Datasets 3.0.2 - Tokenizers 0.20.1
BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2
BEE-spoke-data
2024-10-27T19:26:12Z
19
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "gqa", "instruct", "en", "dataset:pszemraj/infinity-instruct-7m-T2T_en", "base_model:BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1", "base_model:finetune:BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-10-25T14:57:28Z
--- library_name: transformers language: - en license: apache-2.0 base_model: BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1 tags: - gqa - t5 - instruct datasets: - pszemraj/infinity-instruct-7m-T2T_en pipeline_tag: text2text-generation --- # tFINE-680m-e32-d16-infinity_instruct-L2 this is an instruction-tuned version of a pretrained t5 with GQA. ## Model description This model is a fine-tuned version of [BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1](https://huggingface.co/BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1) on the pszemraj/infinity-instruct-7m-T2T_en dataset (config `deduped-L2`). It achieves the following results on the evaluation set: - Loss: 1.3139 - Num Input Tokens Seen: 361724696 ## usage prerequisite: you need to have [t5-gqa fork of transformers installed](https://huggingface.co/BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan#testing), and accelerate. ```py from transformers import pipeline pipe = pipeline( "text2text-generation", model="BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2", device_map="auto", ) prompt = "Write me a python fn that demonstrates an advanced sorting algorithm" res = pipe( prompt, max_new_tokens=384, num_beams=4, early_stopping=True, repetition_penalty=1.1 ) print(res[0]["generated_text"]) ``` ## Quick eval Quick eval for: `BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2` hf (pretrained=BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2,trust_remote_code=True,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8 | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |-------------|------:|------|-----:|--------|---|-----:|---|------| |boolq | 2|none | 0|acc |↑ |0.6364|± |0.0084| |openbookqa | 1|none | 0|acc |↑ |0.1480|± |0.0159| | | |none | 0|acc_norm|↑ |0.2860|± |0.0202| |piqa | 1|none | 0|acc |↑ |0.6083|± |0.0114| | | |none | 0|acc_norm|↑ |0.6132|± |0.0114| |social_iqa | 0|none | 0|acc |↑ |0.3854|± |0.0110| |tinyArc | 0|none | 25|acc_norm|↑ |0.3122|± | N/A| |tinyHellaswag| 0|none | 10|acc_norm|↑ |0.3356|± | N/A| |tinyMMLU | 0|none | 0|acc_norm|↑ |0.2793|± | N/A| |winogrande | 1|none | 0|acc |↑ |0.5201|± |0.0140| ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17868 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - total_eval_batch_size: 8 - optimizer: Use paged_ademamix_32bit and the args are: No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 1.4008 | 0.2534 | 1000 | 1.4020 | 91375832 | | 1.3456 | 0.5068 | 2000 | 1.3669 | 182939052 | | 1.3437 | 0.7602 | 3000 | 1.3378 | 274855796 |
MiniLLM/MiniPLM-Qwen-200M
MiniLLM
2024-10-27T19:19:09Z
248
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "dataset:monology/pile-uncopyrighted", "dataset:MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5", "arxiv:2410.17215", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-17T23:28:00Z
--- library_name: transformers license: apache-2.0 datasets: - monology/pile-uncopyrighted - MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5 language: - en metrics: - accuracy pipeline_tag: text-generation --- # MinPLM-Qwen-200M [paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM) **MiniPLM-Qwen-200M** is a 200M model with Qwen achitecture pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the teacher model. We also open-source the [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility. <p align='left'> <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000"> </p> ## Evaluation MiniPLM models achieves better performance given the same computation and scales well across model sizes: <p align='left'> <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000"> </p> ## Baseline Models + [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-Qwen-200M) + [VanillaKD](https://huggingface.co/MiniLLM/VanillaKD-Pretrain-Qwen-200M) ## Citation ```bibtex @article{miniplm, title={MiniPLM: Knowledge Distillation for Pre-Training Language Models}, author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang}, journal={arXiv preprint arXiv:2410.17215}, year={2024} } ```
zeeshan73/Text2SQL_mistral_7b_cosine_lr
zeeshan73
2024-10-27T19:18:34Z
11
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3", "license:apache-2.0", "region:us" ]
null
2024-10-27T14:02:25Z
--- base_model: mistralai/Mistral-7B-Instruct-v0.3 datasets: - generator library_name: peft license: apache-2.0 tags: - trl - sft - generated_from_trainer model-index: - name: mistral_7b_cosine_lr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral_7b_cosine_lr This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 5.3993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - lr_scheduler_warmup_steps: 15 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.1885 | 0.0549 | 10 | 61.4970 | | 37.6512 | 0.1098 | 20 | 12.9405 | | 14.576 | 0.1647 | 30 | 27.9852 | | 9.5892 | 0.2196 | 40 | 6.4722 | | 7.7639 | 0.2745 | 50 | 6.8158 | | 6.3878 | 0.3294 | 60 | 6.3811 | | 6.6118 | 0.3844 | 70 | 5.9281 | | 6.006 | 0.4393 | 80 | 5.6753 | | 6.1011 | 0.4942 | 90 | 5.8083 | | 5.7396 | 0.5491 | 100 | 5.6193 | | 5.5128 | 0.6040 | 110 | 5.4848 | | 5.4599 | 0.6589 | 120 | 5.4267 | | 5.5193 | 0.7138 | 130 | 5.4757 | | 5.4488 | 0.7687 | 140 | 5.4422 | | 5.4257 | 0.8236 | 150 | 5.3845 | | 5.3938 | 0.8785 | 160 | 5.3727 | | 5.3937 | 0.9334 | 170 | 5.3646 | | 5.3916 | 0.9883 | 180 | 5.4825 | | 5.4217 | 1.0432 | 190 | 5.3534 | | 5.3915 | 1.0981 | 200 | 5.3497 | | 5.3656 | 1.1531 | 210 | 5.3416 | | 5.3718 | 1.2080 | 220 | 5.3691 | | 5.3763 | 1.2629 | 230 | 5.4102 | | 5.4039 | 1.3178 | 240 | 5.3993 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0