modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-29 00:46:34
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
502 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-29 00:44:25
card
stringlengths
11
1.01M
featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF
featherless-ai-quants
2024-11-10T19:42:06Z
29
0
null
[ "gguf", "text-generation", "base_model:ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1", "base_model:quantized:ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-06T02:17:33Z
--- base_model: ArliAI/ArliAI-RPMax-12B-v1.1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # ArliAI/ArliAI-RPMax-12B-v1.1 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [ArliAI-ArliAI-RPMax-12B-v1.1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [ArliAI-ArliAI-RPMax-12B-v1.1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [ArliAI-ArliAI-RPMax-12B-v1.1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [ArliAI-ArliAI-RPMax-12B-v1.1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [ArliAI-ArliAI-RPMax-12B-v1.1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [ArliAI-ArliAI-RPMax-12B-v1.1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [ArliAI-ArliAI-RPMax-12B-v1.1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [ArliAI-ArliAI-RPMax-12B-v1.1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [ArliAI-ArliAI-RPMax-12B-v1.1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [ArliAI-ArliAI-RPMax-12B-v1.1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [ArliAI-ArliAI-RPMax-12B-v1.1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/ArliAI-ArliAI-RPMax-12B-v1.1-GGUF/blob/main/ArliAI-ArliAI-RPMax-12B-v1.1-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF
featherless-ai-quants
2024-11-10T19:42:03Z
7
0
null
[ "gguf", "text-generation", "base_model:Danielbrdz/Barcenas-2x10.7b-Korean", "base_model:quantized:Danielbrdz/Barcenas-2x10.7b-Korean", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T23:52:50Z
--- base_model: Danielbrdz/Barcenas-2x10.7b-Korean pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Danielbrdz/Barcenas-2x10.7b-Korean GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Danielbrdz-Barcenas-2x10.7b-Korean-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [Danielbrdz-Barcenas-2x10.7b-Korean-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [Danielbrdz-Barcenas-2x10.7b-Korean-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [Danielbrdz-Barcenas-2x10.7b-Korean-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [Danielbrdz-Barcenas-2x10.7b-Korean-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [Danielbrdz-Barcenas-2x10.7b-Korean-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [Danielbrdz-Barcenas-2x10.7b-Korean-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [Danielbrdz-Barcenas-2x10.7b-Korean-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [Danielbrdz-Barcenas-2x10.7b-Korean-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [Danielbrdz-Barcenas-2x10.7b-Korean-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [Danielbrdz-Barcenas-2x10.7b-Korean-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Danielbrdz-Barcenas-2x10.7b-Korean-GGUF/blob/main/Danielbrdz-Barcenas-2x10.7b-Korean-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF
featherless-ai-quants
2024-11-10T19:41:56Z
84
0
null
[ "gguf", "text-generation", "base_model:KoboldAI/Mistral-7B-Erebus-v3", "base_model:quantized:KoboldAI/Mistral-7B-Erebus-v3", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T22:42:59Z
--- base_model: KoboldAI/Mistral-7B-Erebus-v3 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # KoboldAI/Mistral-7B-Erebus-v3 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [KoboldAI-Mistral-7B-Erebus-v3-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [KoboldAI-Mistral-7B-Erebus-v3-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [KoboldAI-Mistral-7B-Erebus-v3-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [KoboldAI-Mistral-7B-Erebus-v3-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [KoboldAI-Mistral-7B-Erebus-v3-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [KoboldAI-Mistral-7B-Erebus-v3-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [KoboldAI-Mistral-7B-Erebus-v3-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [KoboldAI-Mistral-7B-Erebus-v3-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [KoboldAI-Mistral-7B-Erebus-v3-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [KoboldAI-Mistral-7B-Erebus-v3-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [KoboldAI-Mistral-7B-Erebus-v3-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/KoboldAI-Mistral-7B-Erebus-v3-GGUF/blob/main/KoboldAI-Mistral-7B-Erebus-v3-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF
featherless-ai-quants
2024-11-10T19:41:46Z
41
0
null
[ "gguf", "text-generation", "base_model:grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B", "base_model:quantized:grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T22:25:46Z
--- base_model: grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-GGUF/blob/main/grimjim-Llama-3.1-SuperNova-Lite-lorabilterated-8B-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF
featherless-ai-quants
2024-11-10T19:41:43Z
18
0
null
[ "gguf", "text-generation", "base_model:nbeerbower/mistral-nemo-wissenschaft-12B", "base_model:quantized:nbeerbower/mistral-nemo-wissenschaft-12B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T22:03:56Z
--- base_model: nbeerbower/mistral-nemo-wissenschaft-12B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # nbeerbower/mistral-nemo-wissenschaft-12B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [nbeerbower-mistral-nemo-wissenschaft-12B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [nbeerbower-mistral-nemo-wissenschaft-12B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [nbeerbower-mistral-nemo-wissenschaft-12B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [nbeerbower-mistral-nemo-wissenschaft-12B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [nbeerbower-mistral-nemo-wissenschaft-12B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [nbeerbower-mistral-nemo-wissenschaft-12B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [nbeerbower-mistral-nemo-wissenschaft-12B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [nbeerbower-mistral-nemo-wissenschaft-12B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [nbeerbower-mistral-nemo-wissenschaft-12B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [nbeerbower-mistral-nemo-wissenschaft-12B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [nbeerbower-mistral-nemo-wissenschaft-12B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-wissenschaft-12B-GGUF/blob/main/nbeerbower-mistral-nemo-wissenschaft-12B-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF
featherless-ai-quants
2024-11-10T19:41:42Z
6
0
null
[ "gguf", "text-generation", "base_model:automerger/T3qm7xNeuralsirkrishna-7B", "base_model:quantized:automerger/T3qm7xNeuralsirkrishna-7B", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T21:42:12Z
--- base_model: automerger/T3qm7xNeuralsirkrishna-7B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # automerger/T3qm7xNeuralsirkrishna-7B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [automerger-T3qm7xNeuralsirkrishna-7B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [automerger-T3qm7xNeuralsirkrishna-7B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [automerger-T3qm7xNeuralsirkrishna-7B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [automerger-T3qm7xNeuralsirkrishna-7B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [automerger-T3qm7xNeuralsirkrishna-7B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [automerger-T3qm7xNeuralsirkrishna-7B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [automerger-T3qm7xNeuralsirkrishna-7B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [automerger-T3qm7xNeuralsirkrishna-7B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [automerger-T3qm7xNeuralsirkrishna-7B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [automerger-T3qm7xNeuralsirkrishna-7B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [automerger-T3qm7xNeuralsirkrishna-7B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/automerger-T3qm7xNeuralsirkrishna-7B-GGUF/blob/main/automerger-T3qm7xNeuralsirkrishna-7B-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF
featherless-ai-quants
2024-11-10T19:41:37Z
68
0
null
[ "gguf", "text-generation", "base_model:nbeerbower/mistral-nemo-gutades-12B", "base_model:quantized:nbeerbower/mistral-nemo-gutades-12B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T21:19:05Z
--- base_model: nbeerbower/mistral-nemo-gutades-12B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # nbeerbower/mistral-nemo-gutades-12B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [nbeerbower-mistral-nemo-gutades-12B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [nbeerbower-mistral-nemo-gutades-12B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [nbeerbower-mistral-nemo-gutades-12B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [nbeerbower-mistral-nemo-gutades-12B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [nbeerbower-mistral-nemo-gutades-12B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [nbeerbower-mistral-nemo-gutades-12B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [nbeerbower-mistral-nemo-gutades-12B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [nbeerbower-mistral-nemo-gutades-12B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [nbeerbower-mistral-nemo-gutades-12B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [nbeerbower-mistral-nemo-gutades-12B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [nbeerbower-mistral-nemo-gutades-12B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutades-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutades-12B-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF
featherless-ai-quants
2024-11-10T19:41:21Z
52
0
null
[ "gguf", "text-generation", "base_model:icefog72/IceLemonTeaRP-32k-7b", "base_model:quantized:icefog72/IceLemonTeaRP-32k-7b", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T18:04:24Z
--- base_model: icefog72/IceLemonTeaRP-32k-7b pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # icefog72/IceLemonTeaRP-32k-7b GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [icefog72-IceLemonTeaRP-32k-7b-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [icefog72-IceLemonTeaRP-32k-7b-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [icefog72-IceLemonTeaRP-32k-7b-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [icefog72-IceLemonTeaRP-32k-7b-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [icefog72-IceLemonTeaRP-32k-7b-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [icefog72-IceLemonTeaRP-32k-7b-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [icefog72-IceLemonTeaRP-32k-7b-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [icefog72-IceLemonTeaRP-32k-7b-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [icefog72-IceLemonTeaRP-32k-7b-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [icefog72-IceLemonTeaRP-32k-7b-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [icefog72-IceLemonTeaRP-32k-7b-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/icefog72-IceLemonTeaRP-32k-7b-GGUF/blob/main/icefog72-IceLemonTeaRP-32k-7b-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF
featherless-ai-quants
2024-11-10T19:41:18Z
12
0
null
[ "gguf", "text-generation", "base_model:fusionbase/fusion-guide-12b-0.1", "base_model:quantized:fusionbase/fusion-guide-12b-0.1", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T18:01:06Z
--- base_model: fusionbase/fusion-guide-12b-0.1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # fusionbase/fusion-guide-12b-0.1 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [fusionbase-fusion-guide-12b-0.1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [fusionbase-fusion-guide-12b-0.1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [fusionbase-fusion-guide-12b-0.1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [fusionbase-fusion-guide-12b-0.1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [fusionbase-fusion-guide-12b-0.1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [fusionbase-fusion-guide-12b-0.1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [fusionbase-fusion-guide-12b-0.1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [fusionbase-fusion-guide-12b-0.1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [fusionbase-fusion-guide-12b-0.1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [fusionbase-fusion-guide-12b-0.1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [fusionbase-fusion-guide-12b-0.1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/fusionbase-fusion-guide-12b-0.1-GGUF/blob/main/fusionbase-fusion-guide-12b-0.1-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF
featherless-ai-quants
2024-11-10T19:41:11Z
8
0
null
[ "gguf", "text-generation", "base_model:Loyola/kulmistral-7b-it", "base_model:quantized:Loyola/kulmistral-7b-it", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T16:23:42Z
--- base_model: Loyola/kulmistral-7b-it pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Loyola/kulmistral-7b-it GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Loyola-kulmistral-7b-it-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [Loyola-kulmistral-7b-it-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [Loyola-kulmistral-7b-it-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [Loyola-kulmistral-7b-it-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [Loyola-kulmistral-7b-it-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [Loyola-kulmistral-7b-it-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [Loyola-kulmistral-7b-it-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [Loyola-kulmistral-7b-it-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [Loyola-kulmistral-7b-it-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [Loyola-kulmistral-7b-it-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [Loyola-kulmistral-7b-it-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Loyola-kulmistral-7b-it-GGUF/blob/main/Loyola-kulmistral-7b-it-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF
featherless-ai-quants
2024-11-10T19:40:56Z
20
0
null
[ "gguf", "text-generation", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:quantized:unsloth/Mistral-Nemo-Instruct-2407", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T15:21:40Z
--- base_model: unsloth/Mistral-Nemo-Instruct-2407 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # unsloth/Mistral-Nemo-Instruct-2407 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [unsloth-Mistral-Nemo-Instruct-2407-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [unsloth-Mistral-Nemo-Instruct-2407-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [unsloth-Mistral-Nemo-Instruct-2407-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [unsloth-Mistral-Nemo-Instruct-2407-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [unsloth-Mistral-Nemo-Instruct-2407-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [unsloth-Mistral-Nemo-Instruct-2407-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [unsloth-Mistral-Nemo-Instruct-2407-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [unsloth-Mistral-Nemo-Instruct-2407-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [unsloth-Mistral-Nemo-Instruct-2407-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [unsloth-Mistral-Nemo-Instruct-2407-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [unsloth-Mistral-Nemo-Instruct-2407-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Mistral-Nemo-Instruct-2407-GGUF/blob/main/unsloth-Mistral-Nemo-Instruct-2407-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/picAIso-TARS-8B-GGUF
featherless-ai-quants
2024-11-10T19:40:53Z
9
0
null
[ "gguf", "text-generation", "base_model:picAIso/TARS-8B", "base_model:quantized:picAIso/TARS-8B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T15:21:33Z
--- base_model: picAIso/TARS-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # picAIso/TARS-8B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [picAIso-TARS-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [picAIso-TARS-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [picAIso-TARS-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [picAIso-TARS-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [picAIso-TARS-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [picAIso-TARS-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [picAIso-TARS-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [picAIso-TARS-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [picAIso-TARS-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [picAIso-TARS-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [picAIso-TARS-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-GGUF/blob/main/picAIso-TARS-8B-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF
featherless-ai-quants
2024-11-10T19:40:37Z
6
0
null
[ "gguf", "text-generation", "base_model:heegyu/Mistral-7B-v0.1-OKI-v20231124-1e-5", "base_model:quantized:heegyu/Mistral-7B-v0.1-OKI-v20231124-1e-5", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T13:46:43Z
--- base_model: heegyu/Mistral-7B-v0.1-OKI-v20231124-1e-5 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # heegyu/Mistral-7B-v0.1-OKI-v20231124-1e-5 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q6_K.gguf) | 5666.79 MB | | Q8_0 | [heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-GGUF/blob/main/heegyu-Mistral-7B-v0.1-OKI-v20231124-1e-5-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF
featherless-ai-quants
2024-11-10T19:40:06Z
20
0
null
[ "gguf", "text-generation", "base_model:lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half", "base_model:quantized:lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T11:54:57Z
--- base_model: lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-GGUF/blob/main/lightblue-suzume-llama-3-8B-multilingual-orpo-borda-half-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF
featherless-ai-quants
2024-11-10T19:40:00Z
12
0
null
[ "gguf", "text-generation", "base_model:wang7776/Mistral-7B-Instruct-v0.2-attention-sparsity-20", "base_model:quantized:wang7776/Mistral-7B-Instruct-v0.2-attention-sparsity-20", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T11:20:50Z
--- base_model: wang7776/Mistral-7B-Instruct-v0.2-attention-sparsity-20 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # wang7776/Mistral-7B-Instruct-v0.2-attention-sparsity-20 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-GGUF/blob/main/wang7776-Mistral-7B-Instruct-v0.2-attention-sparsity-20-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF
featherless-ai-quants
2024-11-10T19:39:55Z
25
0
null
[ "gguf", "text-generation", "base_model:nbeerbower/Lyra-Gutenberg-mistral-nemo-12B", "base_model:quantized:nbeerbower/Lyra-Gutenberg-mistral-nemo-12B", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T10:47:19Z
--- base_model: nbeerbower/Lyra-Gutenberg-mistral-nemo-12B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # nbeerbower/Lyra-Gutenberg-mistral-nemo-12B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-GGUF/blob/main/nbeerbower-Lyra-Gutenberg-mistral-nemo-12B-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF
featherless-ai-quants
2024-11-10T19:39:52Z
6
0
null
[ "gguf", "text-generation", "base_model:CerebrumTech/cere-llama-3-8b-tr", "base_model:quantized:CerebrumTech/cere-llama-3-8b-tr", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T10:41:31Z
--- base_model: CerebrumTech/cere-llama-3-8b-tr pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # CerebrumTech/cere-llama-3-8b-tr GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [CerebrumTech-cere-llama-3-8b-tr-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [CerebrumTech-cere-llama-3-8b-tr-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [CerebrumTech-cere-llama-3-8b-tr-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [CerebrumTech-cere-llama-3-8b-tr-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [CerebrumTech-cere-llama-3-8b-tr-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [CerebrumTech-cere-llama-3-8b-tr-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [CerebrumTech-cere-llama-3-8b-tr-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [CerebrumTech-cere-llama-3-8b-tr-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [CerebrumTech-cere-llama-3-8b-tr-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [CerebrumTech-cere-llama-3-8b-tr-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [CerebrumTech-cere-llama-3-8b-tr-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/CerebrumTech-cere-llama-3-8b-tr-GGUF/blob/main/CerebrumTech-cere-llama-3-8b-tr-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF
featherless-ai-quants
2024-11-10T19:39:38Z
73
0
null
[ "gguf", "text-generation", "base_model:NeverSleep/Lumimaid-v0.2-12B", "base_model:quantized:NeverSleep/Lumimaid-v0.2-12B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T09:58:59Z
--- base_model: NeverSleep/Lumimaid-v0.2-12B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # NeverSleep/Lumimaid-v0.2-12B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [NeverSleep-Lumimaid-v0.2-12B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [NeverSleep-Lumimaid-v0.2-12B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [NeverSleep-Lumimaid-v0.2-12B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [NeverSleep-Lumimaid-v0.2-12B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [NeverSleep-Lumimaid-v0.2-12B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [NeverSleep-Lumimaid-v0.2-12B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [NeverSleep-Lumimaid-v0.2-12B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-Q4_K_S.gguf) | 6790.36 MB | | Q5_K_M | [NeverSleep-Lumimaid-v0.2-12B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [NeverSleep-Lumimaid-v0.2-12B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-Q5_K_S.gguf) | 8124.11 MB | | Q6_K | [NeverSleep-Lumimaid-v0.2-12B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-Q6_K.gguf) | 9590.36 MB | | Q8_0 | [NeverSleep-Lumimaid-v0.2-12B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/NeverSleep-Lumimaid-v0.2-12B-GGUF/blob/main/NeverSleep-Lumimaid-v0.2-12B-Q8_0.gguf) | 12419.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF
featherless-ai-quants
2024-11-10T19:39:34Z
5
0
null
[ "gguf", "text-generation", "base_model:bunnycore/LLama-3.1-8B-Matrix", "base_model:quantized:bunnycore/LLama-3.1-8B-Matrix", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T09:29:29Z
--- base_model: bunnycore/LLama-3.1-8B-Matrix pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # bunnycore/LLama-3.1-8B-Matrix GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [bunnycore-LLama-3.1-8B-Matrix-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [bunnycore-LLama-3.1-8B-Matrix-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [bunnycore-LLama-3.1-8B-Matrix-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [bunnycore-LLama-3.1-8B-Matrix-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [bunnycore-LLama-3.1-8B-Matrix-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [bunnycore-LLama-3.1-8B-Matrix-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [bunnycore-LLama-3.1-8B-Matrix-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [bunnycore-LLama-3.1-8B-Matrix-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [bunnycore-LLama-3.1-8B-Matrix-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [bunnycore-LLama-3.1-8B-Matrix-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [bunnycore-LLama-3.1-8B-Matrix-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/bunnycore-LLama-3.1-8B-Matrix-GGUF/blob/main/bunnycore-LLama-3.1-8B-Matrix-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF
featherless-ai-quants
2024-11-10T19:39:27Z
5
0
null
[ "gguf", "text-generation", "base_model:eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO", "base_model:quantized:eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T08:55:36Z
--- base_model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-GGUF/blob/main/eren23-ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF
featherless-ai-quants
2024-11-10T19:39:17Z
57
0
null
[ "gguf", "text-generation", "base_model:TheDrummer/Rocinante-12B-v1.1", "base_model:quantized:TheDrummer/Rocinante-12B-v1.1", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T08:29:22Z
--- base_model: TheDrummer/Rocinante-12B-v1.1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # TheDrummer/Rocinante-12B-v1.1 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [TheDrummer-Rocinante-12B-v1.1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [TheDrummer-Rocinante-12B-v1.1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [TheDrummer-Rocinante-12B-v1.1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [TheDrummer-Rocinante-12B-v1.1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [TheDrummer-Rocinante-12B-v1.1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [TheDrummer-Rocinante-12B-v1.1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [TheDrummer-Rocinante-12B-v1.1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [TheDrummer-Rocinante-12B-v1.1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [TheDrummer-Rocinante-12B-v1.1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [TheDrummer-Rocinante-12B-v1.1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [TheDrummer-Rocinante-12B-v1.1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/TheDrummer-Rocinante-12B-v1.1-GGUF/blob/main/TheDrummer-Rocinante-12B-v1.1-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/cookinai-Blitz-v0.1-GGUF
featherless-ai-quants
2024-11-10T19:39:12Z
6
0
null
[ "gguf", "text-generation", "base_model:cookinai/Blitz-v0.1", "base_model:quantized:cookinai/Blitz-v0.1", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T08:17:41Z
--- base_model: cookinai/Blitz-v0.1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # cookinai/Blitz-v0.1 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [cookinai-Blitz-v0.1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [cookinai-Blitz-v0.1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [cookinai-Blitz-v0.1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [cookinai-Blitz-v0.1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [cookinai-Blitz-v0.1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [cookinai-Blitz-v0.1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [cookinai-Blitz-v0.1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [cookinai-Blitz-v0.1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [cookinai-Blitz-v0.1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [cookinai-Blitz-v0.1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [cookinai-Blitz-v0.1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/cookinai-Blitz-v0.1-GGUF/blob/main/cookinai-Blitz-v0.1-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF
featherless-ai-quants
2024-11-10T19:39:08Z
12
0
null
[ "gguf", "text-generation", "base_model:lcw99/llama-3-8b-it-ko-chang", "base_model:quantized:lcw99/llama-3-8b-it-ko-chang", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T07:38:37Z
--- base_model: lcw99/llama-3-8b-it-ko-chang pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # lcw99/llama-3-8b-it-ko-chang GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [lcw99-llama-3-8b-it-ko-chang-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [lcw99-llama-3-8b-it-ko-chang-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [lcw99-llama-3-8b-it-ko-chang-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [lcw99-llama-3-8b-it-ko-chang-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [lcw99-llama-3-8b-it-ko-chang-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [lcw99-llama-3-8b-it-ko-chang-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [lcw99-llama-3-8b-it-ko-chang-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [lcw99-llama-3-8b-it-ko-chang-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [lcw99-llama-3-8b-it-ko-chang-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [lcw99-llama-3-8b-it-ko-chang-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [lcw99-llama-3-8b-it-ko-chang-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/lcw99-llama-3-8b-it-ko-chang-GGUF/blob/main/lcw99-llama-3-8b-it-ko-chang-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF
featherless-ai-quants
2024-11-10T19:38:50Z
7
0
null
[ "gguf", "text-generation", "base_model:ichigoberry/MonarchPipe-7B-slerp", "base_model:quantized:ichigoberry/MonarchPipe-7B-slerp", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T06:02:18Z
--- base_model: ichigoberry/MonarchPipe-7B-slerp pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # ichigoberry/MonarchPipe-7B-slerp GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [ichigoberry-MonarchPipe-7B-slerp-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [ichigoberry-MonarchPipe-7B-slerp-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [ichigoberry-MonarchPipe-7B-slerp-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [ichigoberry-MonarchPipe-7B-slerp-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [ichigoberry-MonarchPipe-7B-slerp-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [ichigoberry-MonarchPipe-7B-slerp-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [ichigoberry-MonarchPipe-7B-slerp-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [ichigoberry-MonarchPipe-7B-slerp-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [ichigoberry-MonarchPipe-7B-slerp-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [ichigoberry-MonarchPipe-7B-slerp-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [ichigoberry-MonarchPipe-7B-slerp-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/ichigoberry-MonarchPipe-7B-slerp-GGUF/blob/main/ichigoberry-MonarchPipe-7B-slerp-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF
featherless-ai-quants
2024-11-10T19:38:49Z
12
0
null
[ "gguf", "text-generation", "base_model:Locutusque/Hyperion-3.0-Mistral-7B-alpha", "base_model:quantized:Locutusque/Hyperion-3.0-Mistral-7B-alpha", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T05:58:53Z
--- base_model: Locutusque/Hyperion-3.0-Mistral-7B-alpha pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Locutusque/Hyperion-3.0-Mistral-7B-alpha GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Hyperion-3.0-Mistral-7B-alpha-GGUF/blob/main/Locutusque-Hyperion-3.0-Mistral-7B-alpha-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF
featherless-ai-quants
2024-11-10T19:38:47Z
17
0
null
[ "gguf", "text-generation", "base_model:eren23/dpo-binarized-NeutrixOmnibe-7B", "base_model:quantized:eren23/dpo-binarized-NeutrixOmnibe-7B", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T05:53:13Z
--- base_model: eren23/dpo-binarized-NeutrixOmnibe-7B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # eren23/dpo-binarized-NeutrixOmnibe-7B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [eren23-dpo-binarized-NeutrixOmnibe-7B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [eren23-dpo-binarized-NeutrixOmnibe-7B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [eren23-dpo-binarized-NeutrixOmnibe-7B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [eren23-dpo-binarized-NeutrixOmnibe-7B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [eren23-dpo-binarized-NeutrixOmnibe-7B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [eren23-dpo-binarized-NeutrixOmnibe-7B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [eren23-dpo-binarized-NeutrixOmnibe-7B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [eren23-dpo-binarized-NeutrixOmnibe-7B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [eren23-dpo-binarized-NeutrixOmnibe-7B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [eren23-dpo-binarized-NeutrixOmnibe-7B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [eren23-dpo-binarized-NeutrixOmnibe-7B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/eren23-dpo-binarized-NeutrixOmnibe-7B-GGUF/blob/main/eren23-dpo-binarized-NeutrixOmnibe-7B-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/Azazelle-L3-RP_io-GGUF
featherless-ai-quants
2024-11-10T19:38:44Z
8
0
null
[ "gguf", "text-generation", "base_model:Azazelle/L3-RP_io", "base_model:quantized:Azazelle/L3-RP_io", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T05:40:48Z
--- base_model: Azazelle/L3-RP_io pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Azazelle/L3-RP_io GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Azazelle-L3-RP_io-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [Azazelle-L3-RP_io-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [Azazelle-L3-RP_io-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [Azazelle-L3-RP_io-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [Azazelle-L3-RP_io-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [Azazelle-L3-RP_io-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [Azazelle-L3-RP_io-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [Azazelle-L3-RP_io-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [Azazelle-L3-RP_io-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [Azazelle-L3-RP_io-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [Azazelle-L3-RP_io-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Azazelle-L3-RP_io-GGUF/blob/main/Azazelle-L3-RP_io-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF
featherless-ai-quants
2024-11-10T19:38:41Z
78
0
null
[ "gguf", "text-generation", "base_model:ohyeah1/Pantheon-Hermes-rp", "base_model:quantized:ohyeah1/Pantheon-Hermes-rp", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T05:40:29Z
--- base_model: ohyeah1/Pantheon-Hermes-rp pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # ohyeah1/Pantheon-Hermes-rp GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [ohyeah1-Pantheon-Hermes-rp-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [ohyeah1-Pantheon-Hermes-rp-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [ohyeah1-Pantheon-Hermes-rp-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [ohyeah1-Pantheon-Hermes-rp-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [ohyeah1-Pantheon-Hermes-rp-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [ohyeah1-Pantheon-Hermes-rp-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [ohyeah1-Pantheon-Hermes-rp-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [ohyeah1-Pantheon-Hermes-rp-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [ohyeah1-Pantheon-Hermes-rp-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [ohyeah1-Pantheon-Hermes-rp-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [ohyeah1-Pantheon-Hermes-rp-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/ohyeah1-Pantheon-Hermes-rp-GGUF/blob/main/ohyeah1-Pantheon-Hermes-rp-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/antiven0m-reverie-7b-GGUF
featherless-ai-quants
2024-11-10T19:38:39Z
15
0
null
[ "gguf", "text-generation", "base_model:antiven0m/reverie-7b", "base_model:quantized:antiven0m/reverie-7b", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T05:24:44Z
--- base_model: antiven0m/reverie-7b pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # antiven0m/reverie-7b GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [antiven0m-reverie-7b-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [antiven0m-reverie-7b-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [antiven0m-reverie-7b-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [antiven0m-reverie-7b-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [antiven0m-reverie-7b-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [antiven0m-reverie-7b-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [antiven0m-reverie-7b-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [antiven0m-reverie-7b-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-Q5_K_M.gguf) | 4893.70 MB | | Q5_K_S | [antiven0m-reverie-7b-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-Q5_K_S.gguf) | 4766.20 MB | | Q6_K | [antiven0m-reverie-7b-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [antiven0m-reverie-7b-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/antiven0m-reverie-7b-GGUF/blob/main/antiven0m-reverie-7b-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF
featherless-ai-quants
2024-11-10T19:38:36Z
6
0
null
[ "gguf", "text-generation", "base_model:ruslanmv/Meta-Llama-3.1-8B-Text-to-SQL", "base_model:quantized:ruslanmv/Meta-Llama-3.1-8B-Text-to-SQL", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T05:22:27Z
--- base_model: ruslanmv/Meta-Llama-3.1-8B-Text-to-SQL pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # ruslanmv/Meta-Llama-3.1-8B-Text-to-SQL GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-GGUF/blob/main/ruslanmv-Meta-Llama-3.1-8B-Text-to-SQL-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF
featherless-ai-quants
2024-11-10T19:38:15Z
14
0
null
[ "gguf", "text-generation", "base_model:BarryFutureman/WestLakeX-7B-EvoMerge-Variant2", "base_model:quantized:BarryFutureman/WestLakeX-7B-EvoMerge-Variant2", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T04:18:09Z
--- base_model: BarryFutureman/WestLakeX-7B-EvoMerge-Variant2 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # BarryFutureman/WestLakeX-7B-EvoMerge-Variant2 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-GGUF/blob/main/BarryFutureman-WestLakeX-7B-EvoMerge-Variant2-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF
featherless-ai-quants
2024-11-10T19:38:11Z
29
0
null
[ "gguf", "text-generation", "base_model:uukuguy/speechless-mistral-hermes-code-7b", "base_model:quantized:uukuguy/speechless-mistral-hermes-code-7b", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T04:15:02Z
--- base_model: uukuguy/speechless-mistral-hermes-code-7b pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # uukuguy/speechless-mistral-hermes-code-7b GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [uukuguy-speechless-mistral-hermes-code-7b-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [uukuguy-speechless-mistral-hermes-code-7b-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [uukuguy-speechless-mistral-hermes-code-7b-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [uukuguy-speechless-mistral-hermes-code-7b-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [uukuguy-speechless-mistral-hermes-code-7b-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [uukuguy-speechless-mistral-hermes-code-7b-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [uukuguy-speechless-mistral-hermes-code-7b-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [uukuguy-speechless-mistral-hermes-code-7b-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [uukuguy-speechless-mistral-hermes-code-7b-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [uukuguy-speechless-mistral-hermes-code-7b-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [uukuguy-speechless-mistral-hermes-code-7b-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/uukuguy-speechless-mistral-hermes-code-7b-GGUF/blob/main/uukuguy-speechless-mistral-hermes-code-7b-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF
featherless-ai-quants
2024-11-10T19:38:04Z
12
0
null
[ "gguf", "text-generation", "base_model:Kukedlc/NeuTrixOmniBe-DPO", "base_model:quantized:Kukedlc/NeuTrixOmniBe-DPO", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T03:51:28Z
--- base_model: Kukedlc/NeuTrixOmniBe-DPO pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Kukedlc/NeuTrixOmniBe-DPO GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Kukedlc-NeuTrixOmniBe-DPO-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [Kukedlc-NeuTrixOmniBe-DPO-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [Kukedlc-NeuTrixOmniBe-DPO-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [Kukedlc-NeuTrixOmniBe-DPO-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [Kukedlc-NeuTrixOmniBe-DPO-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [Kukedlc-NeuTrixOmniBe-DPO-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [Kukedlc-NeuTrixOmniBe-DPO-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [Kukedlc-NeuTrixOmniBe-DPO-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [Kukedlc-NeuTrixOmniBe-DPO-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [Kukedlc-NeuTrixOmniBe-DPO-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [Kukedlc-NeuTrixOmniBe-DPO-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-NeuTrixOmniBe-DPO-GGUF/blob/main/Kukedlc-NeuTrixOmniBe-DPO-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF
featherless-ai-quants
2024-11-10T19:38:01Z
5
0
null
[ "gguf", "text-generation", "base_model:amd/Meta-Llama-3-8B_fp8_quark", "base_model:quantized:amd/Meta-Llama-3-8B_fp8_quark", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T03:47:06Z
--- base_model: amd/Meta-Llama-3-8B_fp8_quark pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # amd/Meta-Llama-3-8B_fp8_quark GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [amd-Meta-Llama-3-8B_fp8_quark-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [amd-Meta-Llama-3-8B_fp8_quark-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [amd-Meta-Llama-3-8B_fp8_quark-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [amd-Meta-Llama-3-8B_fp8_quark-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [amd-Meta-Llama-3-8B_fp8_quark-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [amd-Meta-Llama-3-8B_fp8_quark-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [amd-Meta-Llama-3-8B_fp8_quark-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [amd-Meta-Llama-3-8B_fp8_quark-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [amd-Meta-Llama-3-8B_fp8_quark-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [amd-Meta-Llama-3-8B_fp8_quark-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [amd-Meta-Llama-3-8B_fp8_quark-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/amd-Meta-Llama-3-8B_fp8_quark-GGUF/blob/main/amd-Meta-Llama-3-8B_fp8_quark-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF
featherless-ai-quants
2024-11-10T19:37:54Z
21
0
null
[ "gguf", "text-generation", "base_model:XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k", "base_model:quantized:XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T03:22:45Z
--- base_model: XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-GGUF/blob/main/XavierSpycy-Meta-Llama-3-8B-Instruct-zh-10k-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF
featherless-ai-quants
2024-11-10T19:37:45Z
15
0
null
[ "gguf", "text-generation", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T02:38:55Z
--- base_model: NurtureAI/Meta-Llama-3-8B-Instruct-64k pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # NurtureAI/Meta-Llama-3-8B-Instruct-64k GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/NurtureAI-Meta-Llama-3-8B-Instruct-64k-GGUF/blob/main/NurtureAI-Meta-Llama-3-8B-Instruct-64k-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/leesalminen-model-3-GGUF
featherless-ai-quants
2024-11-10T19:37:42Z
70
0
null
[ "gguf", "text-generation", "base_model:leesalminen/model-3", "base_model:quantized:leesalminen/model-3", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T02:31:34Z
--- base_model: leesalminen/model-3 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # leesalminen/model-3 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [leesalminen-model-3-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-IQ4_XS.gguf) | 4276.63 MB | | Q2_K | [leesalminen-model-3-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [leesalminen-model-3-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [leesalminen-model-3-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [leesalminen-model-3-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [leesalminen-model-3-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [leesalminen-model-3-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [leesalminen-model-3-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-Q5_K_M.gguf) | 5467.41 MB | | Q5_K_S | [leesalminen-model-3-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-Q5_K_S.gguf) | 5339.91 MB | | Q6_K | [leesalminen-model-3-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-Q6_K.gguf) | 6290.45 MB | | Q8_0 | [leesalminen-model-3-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/leesalminen-model-3-GGUF/blob/main/leesalminen-model-3-Q8_0.gguf) | 8145.12 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/bongbongs-NewMes-v15-GGUF
featherless-ai-quants
2024-11-10T19:37:39Z
15
0
null
[ "gguf", "text-generation", "base_model:bongbongs/NewMes-v15", "base_model:quantized:bongbongs/NewMes-v15", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T02:30:48Z
--- base_model: bongbongs/NewMes-v15 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # bongbongs/NewMes-v15 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [bongbongs-NewMes-v15-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [bongbongs-NewMes-v15-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [bongbongs-NewMes-v15-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [bongbongs-NewMes-v15-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [bongbongs-NewMes-v15-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [bongbongs-NewMes-v15-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [bongbongs-NewMes-v15-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [bongbongs-NewMes-v15-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [bongbongs-NewMes-v15-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [bongbongs-NewMes-v15-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [bongbongs-NewMes-v15-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/bongbongs-NewMes-v15-GGUF/blob/main/bongbongs-NewMes-v15-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF
featherless-ai-quants
2024-11-10T19:37:36Z
16
0
null
[ "gguf", "text-generation", "base_model:AgentPublic/llama3-instruct-guillaumetell", "base_model:quantized:AgentPublic/llama3-instruct-guillaumetell", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T02:26:02Z
--- base_model: AgentPublic/llama3-instruct-guillaumetell pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # AgentPublic/llama3-instruct-guillaumetell GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [AgentPublic-llama3-instruct-guillaumetell-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [AgentPublic-llama3-instruct-guillaumetell-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [AgentPublic-llama3-instruct-guillaumetell-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [AgentPublic-llama3-instruct-guillaumetell-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [AgentPublic-llama3-instruct-guillaumetell-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [AgentPublic-llama3-instruct-guillaumetell-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [AgentPublic-llama3-instruct-guillaumetell-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [AgentPublic-llama3-instruct-guillaumetell-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [AgentPublic-llama3-instruct-guillaumetell-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [AgentPublic-llama3-instruct-guillaumetell-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [AgentPublic-llama3-instruct-guillaumetell-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/AgentPublic-llama3-instruct-guillaumetell-GGUF/blob/main/AgentPublic-llama3-instruct-guillaumetell-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF
featherless-ai-quants
2024-11-10T19:37:33Z
14
0
null
[ "gguf", "text-generation", "base_model:OpenRLHF/Llama-2-13b-sft-model-ocra-500k", "base_model:quantized:OpenRLHF/Llama-2-13b-sft-model-ocra-500k", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T02:08:04Z
--- base_model: OpenLLMAI/Llama-2-13b-sft-model-ocra-500k pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # OpenLLMAI/Llama-2-13b-sft-model-ocra-500k GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-IQ4_XS.gguf) | 6694.34 MB | | Q2_K | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q2_K.gguf) | 4629.39 MB | | Q3_K_L | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q3_K_L.gguf) | 6608.54 MB | | Q3_K_M | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q3_K_M.gguf) | 6044.17 MB | | Q3_K_S | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q3_K_S.gguf) | 5396.83 MB | | Q4_K_M | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q4_K_M.gguf) | 7501.56 MB | | Q4_K_S | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q4_K_S.gguf) | 7079.30 MB | | Q5_K_M | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q5_K_M.gguf) | 8802.34 MB | | Q5_K_S | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q5_K_S.gguf) | 8556.64 MB | | Q6_K | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q6_K.gguf) | 10184.42 MB | | Q8_0 | [OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-GGUF/blob/main/OpenLLMAI-Llama-2-13b-sft-model-ocra-500k-Q8_0.gguf) | 13190.58 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF
featherless-ai-quants
2024-11-10T19:37:08Z
76
0
null
[ "gguf", "text-generation", "base_model:AuriAetherwiing/MN-12B-Starcannon-v2", "base_model:quantized:AuriAetherwiing/MN-12B-Starcannon-v2", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T01:03:51Z
--- base_model: AuriAetherwiing/MN-12B-Starcannon-v2 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # AuriAetherwiing/MN-12B-Starcannon-v2 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [AuriAetherwiing-MN-12B-Starcannon-v2-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [AuriAetherwiing-MN-12B-Starcannon-v2-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [AuriAetherwiing-MN-12B-Starcannon-v2-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [AuriAetherwiing-MN-12B-Starcannon-v2-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [AuriAetherwiing-MN-12B-Starcannon-v2-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [AuriAetherwiing-MN-12B-Starcannon-v2-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [AuriAetherwiing-MN-12B-Starcannon-v2-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [AuriAetherwiing-MN-12B-Starcannon-v2-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [AuriAetherwiing-MN-12B-Starcannon-v2-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [AuriAetherwiing-MN-12B-Starcannon-v2-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [AuriAetherwiing-MN-12B-Starcannon-v2-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/AuriAetherwiing-MN-12B-Starcannon-v2-GGUF/blob/main/AuriAetherwiing-MN-12B-Starcannon-v2-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF
featherless-ai-quants
2024-11-10T19:37:07Z
24
0
null
[ "gguf", "text-generation", "base_model:macadeliccc/WestLake-7B-v2-laser-truthy-dpo", "base_model:quantized:macadeliccc/WestLake-7B-v2-laser-truthy-dpo", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T00:55:52Z
--- base_model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # macadeliccc/WestLake-7B-v2-laser-truthy-dpo GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-GGUF/blob/main/macadeliccc-WestLake-7B-v2-laser-truthy-dpo-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF
featherless-ai-quants
2024-11-10T19:37:05Z
23
0
null
[ "gguf", "text-generation", "base_model:Locutusque/OpenCerebrum-1.5-Mistral-7B-v0.2-beta", "base_model:quantized:Locutusque/OpenCerebrum-1.5-Mistral-7B-v0.2-beta", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T00:27:38Z
--- base_model: Locutusque/OpenCerebrum-1.5-Mistral-7B-v0.2-beta pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Locutusque/OpenCerebrum-1.5-Mistral-7B-v0.2-beta GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-GGUF/blob/main/Locutusque-OpenCerebrum-1.5-Mistral-7B-v0.2-beta-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF
featherless-ai-quants
2024-11-10T19:37:02Z
24
0
null
[ "gguf", "text-generation", "base_model:jondurbin/bagel-7b-v0.1", "base_model:quantized:jondurbin/bagel-7b-v0.1", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-05T00:05:33Z
--- base_model: jondurbin/bagel-7b-v0.1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # jondurbin/bagel-7b-v0.1 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [jondurbin-bagel-7b-v0.1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [jondurbin-bagel-7b-v0.1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [jondurbin-bagel-7b-v0.1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [jondurbin-bagel-7b-v0.1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [jondurbin-bagel-7b-v0.1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [jondurbin-bagel-7b-v0.1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [jondurbin-bagel-7b-v0.1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [jondurbin-bagel-7b-v0.1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [jondurbin-bagel-7b-v0.1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [jondurbin-bagel-7b-v0.1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [jondurbin-bagel-7b-v0.1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/jondurbin-bagel-7b-v0.1-GGUF/blob/main/jondurbin-bagel-7b-v0.1-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
prithivMLmods/Pastel-BG-Flux-LoRA
prithivMLmods
2024-11-10T19:36:33Z
650
14
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "Pastel", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-11-10T19:26:57Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora - Pastel widget: - text: 'Pastel BG, a young woman with brown hair and blue eyes stands in front of a colorful backdrop. The womans face is adorned with freckles, adding a pop of color to her outfit. The backdrop is a vibrant shade of purple, with yellow stars and stripes on it.' output: url: images/PB1.png - text: 'Pastel BG, An eye-level view of a gray tabby cat with long white whiskers and a pink nose. The cats head is tilted slightly to the right, and its eyes are wide open. Its ears are pointed up, and the cats fur is a mix of gray and black. The background is a combination of pink, purple, and yellow, with white dots dotting the background. To the left of the cat, there is a purple star with a white butterfly on it.' output: url: images/PB2.png - text: 'Pastel BG, a man stands in front of a colorful backdrop. He is dressed in a light pink suit jacket, a yellow collared shirt, and a pair of sunglasses. His hair is styled in a short bob, and his eyes are slightly open. His lips are slightly parted, as if he is looking to the right. The backdrop is a combination of pink, yellow, and green, with small white stars on the right side of the wall.' output: url: images/PB3.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Pastel BG license: creativeml-openrail-m --- # Pastel-BG-Flux-LoRA <Gallery /> - Hosted Here🧨: https://huggingface.co/spaces/prithivMLmods/FLUX-LoRA-DLC **The model is still in the training phase. This is not the final version and may contain artifacts and perform poorly in some cases.** ## Model description **prithivMLmods/Pastel-BG-Flux-LoRA** Image Processing Parameters | Parameter | Value | Parameter | Value | |---------------------------|--------|---------------------------|--------| | LR Scheduler | constant | Noise Offset | 0.03 | | Optimizer | AdamW | Multires Noise Discount | 0.1 | | Network Dim | 64 | Multires Noise Iterations | 10 | | Network Alpha | 32 | Repeat & Steps | 28 & 3340| | Epoch | 15 | Save Every N Epochs | 1 | Labeling: florence2-en(natural language & English) Total Images Used for Training : 18 [ Hi-RES ] ## Best Dimensions - 1024 x 1024 (Default) ## Setting Up ``` import torch from pipelines import DiffusionPipeline base_model = "black-forest-labs/FLUX.1-dev" pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) lora_repo = "prithivMLmods/Pastel-BG-Flux-LoRA" trigger_word = "Pastel BG" pipe.load_lora_weights(lora_repo) device = torch.device("cuda") pipe.to(device) ``` ## Trigger words You should use `Pastel BG` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/prithivMLmods/Pastel-BG-Flux-LoRA/tree/main) them in the Files & versions tab.
iamjoshgreen/mspackage
iamjoshgreen
2024-11-10T19:32:43Z
6
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-10T19:03:19Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: mspackage --- # Mspackage <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `mspackage` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('iamjoshgreen/mspackage', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF
featherless-ai-quants
2024-11-10T19:31:49Z
24
1
null
[ "gguf", "text-generation", "base_model:FallenMerick/Chunky-Lemon-Cookie-11B", "base_model:quantized:FallenMerick/Chunky-Lemon-Cookie-11B", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T08:11:37Z
--- base_model: FallenMerick/Chunky-Lemon-Cookie-11B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # FallenMerick/Chunky-Lemon-Cookie-11B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [FallenMerick-Chunky-Lemon-Cookie-11B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-IQ4_XS.gguf) | 5557.67 MB | | Q2_K | [FallenMerick-Chunky-Lemon-Cookie-11B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-Q2_K.gguf) | 3817.78 MB | | Q3_K_L | [FallenMerick-Chunky-Lemon-Cookie-11B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-Q3_K_L.gguf) | 5388.98 MB | | Q3_K_M | [FallenMerick-Chunky-Lemon-Cookie-11B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-Q3_K_M.gguf) | 4954.98 MB | | Q3_K_S | [FallenMerick-Chunky-Lemon-Cookie-11B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-Q3_K_S.gguf) | 4448.48 MB | | Q4_K_M | [FallenMerick-Chunky-Lemon-Cookie-11B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-Q4_K_M.gguf) | 6162.33 MB | | Q4_K_S | [FallenMerick-Chunky-Lemon-Cookie-11B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-Q4_K_S.gguf) | 5835.08 MB | | Q5_K_M | [FallenMerick-Chunky-Lemon-Cookie-11B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-Q5_K_M.gguf) | 7245.95 MB | | Q5_K_S | [FallenMerick-Chunky-Lemon-Cookie-11B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-Q5_K_S.gguf) | 7054.70 MB | | Q6_K | [FallenMerick-Chunky-Lemon-Cookie-11B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-Q6_K.gguf) | 8397.30 MB | | Q8_0 | [FallenMerick-Chunky-Lemon-Cookie-11B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/FallenMerick-Chunky-Lemon-Cookie-11B-GGUF/blob/main/FallenMerick-Chunky-Lemon-Cookie-11B-Q8_0.gguf) | 10875.85 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
zelk12/MT-Gen2-MA-gemma-2-MT4RAv0.1t0.25-9B
zelk12
2024-11-10T19:24:22Z
9
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:zelk12/MT4-gemma-2-9B", "base_model:merge:zelk12/MT4-gemma-2-9B", "base_model:zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25", "base_model:merge:zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T19:18:14Z
--- base_model: - zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25 - zelk12/MT4-gemma-2-9B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25](https://huggingface.co/zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25) * [zelk12/MT4-gemma-2-9B](https://huggingface.co/zelk12/MT4-gemma-2-9B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: zelk12/MT4-gemma-2-9B - model: zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25 merge_method: slerp base_model: zelk12/MT4-gemma-2-9B dtype: bfloat16 parameters: t: 0.25 ```
waloneai/mawc-cc
waloneai
2024-11-10T19:20:21Z
189
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-10T19:20:18Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: mawc license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # mawc cc <Gallery /> ## Model description ## Trigger words You should use `mawc` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/shweaung/mawc-cc/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
waloneai/mawc
waloneai
2024-11-10T19:19:01Z
6
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-10T19:18:57Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: mawc license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # mawc <Gallery /> ## Model description ## Trigger words You should use `mawc` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/shweaung/mawc/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
zelk12/MT-Gen2-BB-gemma-2-MTMMT2-9B
zelk12
2024-11-10T19:14:32Z
6
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:zelk12/MT-Merge-gemma-2-9B", "base_model:merge:zelk12/MT-Merge-gemma-2-9B", "base_model:zelk12/MT2-gemma-2-9B", "base_model:merge:zelk12/MT2-gemma-2-9B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T19:08:18Z
--- base_model: - zelk12/MT2-gemma-2-9B - zelk12/MT-Merge-gemma-2-9B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [zelk12/MT2-gemma-2-9B](https://huggingface.co/zelk12/MT2-gemma-2-9B) * [zelk12/MT-Merge-gemma-2-9B](https://huggingface.co/zelk12/MT-Merge-gemma-2-9B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: zelk12/MT-Merge-gemma-2-9B - model: zelk12/MT2-gemma-2-9B merge_method: slerp base_model: zelk12/MT-Merge-gemma-2-9B dtype: bfloat16 parameters: t: 0.25 ```
ihughes15234/phi35_tictactoe_dpo2epoch_v5
ihughes15234
2024-11-10T19:14:02Z
79
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:ihughes15234/phi35_tictactoe_dpo1epoch_v5", "base_model:finetune:ihughes15234/phi35_tictactoe_dpo1epoch_v5", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T18:58:50Z
--- base_model: ihughes15234/phi35_tictactoe_dpo1epoch_v5 language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** ihughes15234 - **License:** apache-2.0 - **Finetuned from model :** ihughes15234/phi35_tictactoe_dpo1epoch_v5 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Abiggj99/stock-summary-model
Abiggj99
2024-11-10T19:11:59Z
9
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-09T16:11:48Z
--- library_name: transformers license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: stock-summary-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stock-summary-model This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 17 | 3.0099 | | No log | 2.0 | 34 | 0.8798 | | 3.3639 | 3.0 | 51 | 0.1632 | | 3.3639 | 4.0 | 68 | 0.0385 | | 3.3639 | 5.0 | 85 | 0.0146 | | 0.0802 | 6.0 | 102 | 0.0091 | | 0.0802 | 7.0 | 119 | 0.0067 | | 0.0802 | 8.0 | 136 | 0.0057 | | 0.0147 | 9.0 | 153 | 0.0048 | | 0.0147 | 10.0 | 170 | 0.0047 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.4.1 - Datasets 1.18.3 - Tokenizers 0.19.1
LBK95/Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V4
LBK95
2024-11-10T19:10:01Z
16
0
peft
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2024-11-10T11:55:22Z
--- base_model: meta-llama/Llama-2-7b-hf library_name: peft license: llama2 tags: - trl - dpo - generated_from_trainer model-index: - name: Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V4 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2125 - Rewards/chosen: -3.3104 - Rewards/rejected: -2.9319 - Rewards/accuracies: 0.4167 - Rewards/margins: -0.3786 - Logps/rejected: -192.9225 - Logps/chosen: -170.2794 - Logits/rejected: 0.1199 - Logits/chosen: 0.1595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6179 | 0.3027 | 79 | 0.7115 | -0.1031 | -0.0593 | 0.25 | -0.0438 | -164.1966 | -138.2057 | 0.5429 | 0.5748 | | 0.6065 | 0.6054 | 158 | 0.7348 | -0.0751 | 0.0129 | 0.25 | -0.0879 | -163.4753 | -137.9259 | 0.5242 | 0.5565 | | 0.621 | 0.9080 | 237 | 0.7932 | -0.0433 | 0.1366 | 0.5 | -0.1800 | -162.2375 | -137.6083 | 0.4932 | 0.5259 | | 0.4714 | 1.2107 | 316 | 0.7928 | -0.6963 | -0.5927 | 0.5 | -0.1037 | -169.5308 | -144.1387 | 0.4698 | 0.5037 | | 0.3829 | 1.5134 | 395 | 0.8637 | -1.6604 | -1.5528 | 0.3333 | -0.1075 | -179.1323 | -153.7787 | 0.3664 | 0.4026 | | 0.3589 | 1.8161 | 474 | 0.9222 | -1.4397 | -1.1360 | 0.25 | -0.3037 | -174.9637 | -151.5720 | 0.3400 | 0.3770 | | 0.2138 | 2.1188 | 553 | 0.9860 | -1.9991 | -1.6486 | 0.3333 | -0.3505 | -180.0903 | -157.1666 | 0.2605 | 0.2992 | | 0.0437 | 2.4215 | 632 | 1.1781 | -3.1628 | -2.7961 | 0.4167 | -0.3666 | -191.5652 | -168.8030 | 0.1441 | 0.1838 | | 0.1667 | 2.7241 | 711 | 1.2125 | -3.3104 | -2.9319 | 0.4167 | -0.3786 | -192.9225 | -170.2794 | 0.1199 | 0.1595 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF
mradermacher
2024-11-10T19:07:12Z
18
0
transformers
[ "transformers", "gguf", "text-generation", "ko", "base_model:Edentns/DataVortexS-10.7B-dpo-v1.7", "base_model:quantized:Edentns/DataVortexS-10.7B-dpo-v1.7", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2024-11-10T09:29:12Z
--- base_model: Edentns/DataVortexS-10.7B-dpo-v1.7 language: - ko library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - text-generation --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.7 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ1_M.gguf) | i1-IQ1_M | 2.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ2_S.gguf) | i1-IQ2_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ2_M.gguf) | i1-IQ2_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q2_K.gguf) | i1-Q2_K | 4.2 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ3_S.gguf) | i1-IQ3_S | 4.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ3_M.gguf) | i1-IQ3_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q3_K_M.gguf) | i1-Q3_K_M | 5.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 6.3 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 6.3 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 6.3 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q4_0.gguf) | i1-Q4_0 | 6.3 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q4_K_S.gguf) | i1-Q4_K_S | 6.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q4_K_M.gguf) | i1-Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q5_K_S.gguf) | i1-Q5_K_S | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q5_K_M.gguf) | i1-Q5_K_M | 7.8 | | | [GGUF](https://huggingface.co/mradermacher/DataVortexS-10.7B-dpo-v1.7-i1-GGUF/resolve/main/DataVortexS-10.7B-dpo-v1.7.i1-Q6_K.gguf) | i1-Q6_K | 9.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
huyquoctrinh/musicgen-melody-lora-punk
huyquoctrinh
2024-11-10T19:06:08Z
5
0
peft
[ "peft", "tensorboard", "safetensors", "musicgen_melody", "text-to-audio", "ylacombe/tiny-punk", "generated_from_trainer", "base_model:facebook/musicgen-melody", "base_model:adapter:facebook/musicgen-melody", "license:cc-by-nc-4.0", "region:us" ]
text-to-audio
2024-11-10T18:58:59Z
--- library_name: peft license: cc-by-nc-4.0 base_model: facebook/musicgen-melody tags: - text-to-audio - ylacombe/tiny-punk - generated_from_trainer model-index: - name: musicgen-melody-lora-punk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # musicgen-melody-lora-punk This model is a fine-tuned version of [facebook/musicgen-melody](https://huggingface.co/facebook/musicgen-melody) on the YLACOMBE/TINY-PUNK - DEFAULT dataset. It achieves the following results on the evaluation set: - Loss: 4.7421 - Clap: -0.0067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 456 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.99) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
zelk12/MT-Gen2-IF-gemma-2-MTMMT1-9B
zelk12
2024-11-10T19:02:59Z
7
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:zelk12/MT-Merge-gemma-2-9B", "base_model:merge:zelk12/MT-Merge-gemma-2-9B", "base_model:zelk12/MT1-gemma-2-9B", "base_model:merge:zelk12/MT1-gemma-2-9B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T18:56:36Z
--- base_model: - zelk12/MT-Merge-gemma-2-9B - zelk12/MT1-gemma-2-9B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [zelk12/MT-Merge-gemma-2-9B](https://huggingface.co/zelk12/MT-Merge-gemma-2-9B) * [zelk12/MT1-gemma-2-9B](https://huggingface.co/zelk12/MT1-gemma-2-9B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: zelk12/MT-Merge-gemma-2-9B - model: zelk12/MT1-gemma-2-9B merge_method: slerp base_model: zelk12/MT-Merge-gemma-2-9B dtype: bfloat16 parameters: t: 0.25 ```
AbuZaforCSE/BanglaFinGPT
AbuZaforCSE
2024-11-10T18:56:29Z
76
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-11-10T18:42:02Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mav23/mistral-rrc-GGUF
mav23
2024-11-10T18:55:21Z
184
0
null
[ "gguf", "legal", "housing", "covenants", "property", "deed", "racial-covenant", "en", "base_model:mistralai/Mistral-7B-v0.1", "base_model:quantized:mistralai/Mistral-7B-v0.1", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-11-10T17:56:45Z
--- license: mit language: - en base_model: - mistralai/Mistral-7B-v0.1 tags: - legal - housing - covenants - property - deed - racial-covenant --- # reglab-rrc/mistral-rrc **Paper:** [AI for Scaling Legal Reform: Mapping and Redacting Racial Covenants in Santa Clara County](https://reglab.github.io/racialcovenants) **Overview of Model Details** * Model name: `reglab-rrc/mistral-rrc` * Version: 1.0 * Release date: October 17, 2024 * Model type: Finetuned causal language model (Mistral 7B) * License: Open-source, licensed under the MIT License * Language: English Domains: Legal documents (real property deeds) * Task: Text classification and extraction (racial covenant detection) ## Usage Here is an example of how to use the model to find racial covenants in a page of a deed: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import re # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("reglab/mistral-rrc") model = AutoModelForCausalLM.from_pretrained("reglab/mistral-rrc") def format_prompt(document): return f"""### Instruction: Determine whether the property deed contains a racial covenant. A racial covenant is a clause in a document that \ restricts who can reside, own, or occupy a property on the basis of race, ethnicity, national origin, or religion. \ Answer "Yes" or "No". If "Yes", provide the exact text of the relevant passage and then a quotation of the passage \ with spelling and formatting errors fixed. ### Input: {document} ### Response:""" def parse_output(output): answer_match = re.search(r"\[ANSWER\](.*?)\[/ANSWER\]", output, re.DOTALL) raw_passage_match = re.search(r"\[RAW PASSAGE\](.*?)\[/RAW PASSAGE\]", output, re.DOTALL) quotation_match = re.search(r"\[CORRECTED QUOTATION\](.*?)\[/CORRECTED QUOTATION\]", output, re.DOTALL) answer = answer_match.group(1).strip() if answer_match else None raw_passage = raw_passage_match.group(1).strip() if raw_passage_match else None quotation = quotation_match.group(1).strip() if quotation_match else None return { "answer": answer == "Yes", "raw_passage": raw_passage, "quotation": quotation } # Example usage document = "[[Your property deed text here...]]" prompt = format_prompt(document) inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=512) result = tokenizer.decode(outputs[0]) parsed_result = parse_output(result) print(parsed_result) ``` ## Input and Output Formats The model was trained with the input and output formats above, so please make sure to use these formats when running inference. - **Input Format:** The model accepts property deed documents in text format. It expects properly formatted prompts based on the instructional format outlined in the usage example, including the instruction to detect racial covenants and provide corrected text if found. - **Output Format:** The output includes a response that provides: - An answer to whether a racial covenant is present ("Yes" or "No"). - The raw text of the racial covenant if detected. - A corrected quotation of the racial covenant text with spelling and formatting errors fixed. ## Intended Use The finetuned Mistral model (`reglab-rrc/mistral-rrc`) is designed to detect and extract racial covenants from property deed documents. Racial covenants are clauses that historically restricted property ownership or residence based on race, ethnicity, national origin, or religion. This model aims to aid jurisdictions, such as Santa Clara County (CA), in identifying these covenants for removal or redaction, as mandated by laws like California's AB 1466. The intended use is to prioritize documents for review, reducing the time and resources required for human auditors to locate RRCs manually, particularly in large datasets of property deeds. Legal professionals and government entities can integrate the model into workflows to streamline and scale up the process of identifying racially discriminatory language in real estate records. --- ## Training Data The Mistral 7B model was finetuned on a collection of property deed documents gathered from eight counties across the United States, including Santa Clara County (CA). To account for potential variations in document formatting, OCR quality, and phrasing, data augmentation included property deeds from other jurisdictions, such as Bexar County (TX), Cuyahoga County (OH), and Hidalgo County (TX). In total, the training dataset comprised 3,801 annotated deed pages, with 2,987 (78.6%) containing racially restrictive covenants. The dataset was balanced with both positive and negative examples, derived from keyword-based searches and manual annotation efforts. The data was annotated through a multi-stage process, which included manual verification of model predictions and the development of a web-based annotation tool for more efficient data labeling. (For additional details about data augmentation and training, please refer to our paper.) --- ## Performance The finetuned model was evaluated on a held-out test set of 739 pages from the original dataset, with approximately 70% of these pages containing racial covenants. Performance metrics for the model include page-level precision, recall, and F1 score, as well as span-level BLEU scores, to measure how accurately the model reproduced the exact span of the detected covenant text. The results are as follows: - **Precision:** 1.000 (95% CI: 0.995-1.000) - **Recall:** 0.994 (95% CI: 0.984-0.997) - **F1 score:** 0.997 - **BLEU score:** 0.932 (for span-level accuracy of detected covenants) The finetuned Mistral model outperformed other approaches, including keyword and fuzzy matching as well as zero-shot and few-shot GPT models, particularly in recall and precision. --- ### Limitations Despite the performance of the finetuned Mistral model in detecting racial covenants, several limitations remain that must be considered and stated: 1. **Generalizability Across Jurisdictions:** This model was primarily finetuned on property deeds from eight counties, including Bexar County (TX), Cuyahoga County (OH), and Santa Clara County (CA). While we took care to include a variety of document types and OCR qualities, property deed language and formatting can vary significantly by jurisdiction. As a result, the model's performance may degrade when applied to regions with distinct linguistic, legal, or historical document structures. Future efforts should include jurisdiction-specific validation to ensure accurate detection in areas with unique property deed formats. 2. **Sensitivity to OCR Artifacts:** Although the model is robust to many types of OCR (optical character recognition) errors, heavily degraded documents or those with extremely poor scan quality may still pose challenges. Scanning artifacts can introduce noise that obscures key terms, leading to either missed racial covenants (false negatives) or incorrect detections (false positives). This remains a potential source of error, particularly in counties with older, handwritten, or poorly preserved records. 3. **Contextual Ambiguity:** The model relies on semantic analysis to identify racial covenants, and while this enhances its ability to detect atypical language, some ambiguity remains. For instance, terms like "white" could refer to a racial category or a person's name, and the model's ability to disambiguate such terms is not perfect, especially in cases where poor scanning quality makes it difficult to distinguish the usage of the ambigious term based on the semantic content of the deed. In such cases, legal professionals must still verify the results, ensuring no improper redactions or omissions occur. 4. **Historical Document Complexity:** The language used in older property deeds can be complex and archaic. Some racial covenants may be expressed in subtle or convoluted ways that could evade even the most advanced language models. While the model has shown strong performance in capturing most covenants, human oversight remains crucial, particularly for documents with unusual or legally obscure phrasing. 5. **Dependency on Human Review:** Although the model reduces the manual work pretty significantly, legal review is still required for final verification. This human-in-the-loop approach mitigates the risk of false positives, but it does not entirely eliminate the need for expert intervention, particularly in the redaction and historical preservation processes. --- ### Ethical Considerations The deployment of a language model for detecting racial covenants raises several important ethical considerations. We have done our best to carefully address these concerns throughout the project: 1. **Preservation of Historical Memory:** A key ethical consideration in this project is balancing the removal of offensive language from property deeds with the need to preserve historical records. While the model identifies and assists in redacting racially restrictive covenants, these covenants are also preserved in a historical registry by the County. This ensures that the history of housing discrimination is not erased but documented and made accessible for future research and public awareness. The creation of this historical record serves as an educational tool to understand the deep and troubling legacy of racial exclusion in housing markets. 2. **Accountability and Oversight:** The system has been designed with a clear chain of accountability, as required by California’s AB 1466. All flagged documents must undergo legal review, ensuring that no inappropriate redactions occur and that the process is transparent and accurate. This human oversight safeguards against over-reliance on automated systems, which, while highly effective, are not infallible. Our current AI-driven pipeline prioritizes documents for review, but final decisions rest with human experts (most specifically, legal professionals), mitigating the risk of both false positives and false negatives. 3. **Bias and Fairness:** The model is trained on historical documents that reflect the racial and social biases of the time. While the model itself is neutral in its detection of racially restrictive language, the training data may inherently carry these biases, as they originate from a time when discriminatory covenants were legally permissible. Ongoing efforts are required to ensure that the model does not perpetuate unintended biases, especially in jurisdictions with different historical contexts. Regular validation across diverse datasets and jurisdictions is essential to prevent any unfair outcomes. 4. **Accessibility and Open Model:** By choosing to finetune an open-source model (Mistral 7B), this project has prioritized transparency and accessibility. This decision makes the technology available to smaller counties and community-based organizations, many of which lack the resources to develop or license proprietary solutions. The release of the model empowers a broader range of actors to engage in legal reform efforts, fostering greater equity in the identification and removal of racial covenants. Additionally, privacy concerns have been addressed by masking private information in the training data, ensuring that the model does not learn or reproduce sensitive data. 5. **Advancing Public Good:** This project exemplifies how AI can be leveraged for the public good. By revealing patterns of housing discrimination and aiding in legal reform, the model contributes to ongoing efforts to address historical injustices. Beyond merely automating a legal task, this project enhances our understanding of systemic racism in the housing market, adding valuable insights to the academic and public discourse. It is a powerful illustration of how technology can assist in the pursuit of justice, equity, and historical accountability. ## Citation If your work makes use of our model, data, or results, we request that you cite our paper as follows: ```bibtex @article{suranisuzgun2024, title={AI for Scaling Legal Reform: Mapping and Redacting Racial Covenants in Santa Clara County}, author={Surani, Faiz and Suzgun, Mirac and Raman, Vyoma and Manning, Christopher D. and Henderson, Peter and Ho, Daniel E.}, url={https://dho.stanford.edu/wp-content/uploads/Covenants.pdf}, year={2024} } ```
alidenewade/unit_5_exercise
alidenewade
2024-11-10T18:54:34Z
88
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-10T18:11:41Z
--- library_name: transformers language: - dv license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Unit 5 Ali's exercise results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 (Alid) type: mozilla-foundation/common_voice_13_0 config: dv split: test args: dv metrics: - name: Wer type: wer value: 116.39426922140697 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Unit 5 Ali's exercise This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 13 (Alid) dataset. It achieves the following results on the evaluation set: - Loss: 0.9533 - Wer Ortho: 223.8248 - Wer: 116.3943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 550 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:--------:| | 0.9416 | 1.6287 | 500 | 0.9533 | 223.8248 | 116.3943 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
phogen/FineLlama-3.1-8B
phogen
2024-11-10T18:53:04Z
11
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B", "base_model:finetune:unsloth/Meta-Llama-3.1-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T18:49:20Z
--- base_model: unsloth/Meta-Llama-3.1-8B tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** phogen - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ahsannawazch/phi-3.5-disaster-tweets
ahsannawazch
2024-11-10T18:47:28Z
5
0
null
[ "safetensors", "phi3", "trl", "sft", "custom_code", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2024-11-10T18:42:26Z
--- license: apache-2.0 tags: - trl - sft ---
mradermacher/internlm-20b-llama-i1-GGUF
mradermacher
2024-11-10T18:33:12Z
84
0
transformers
[ "transformers", "gguf", "en", "base_model:KnutJaegersberg/internlm-20b-llama", "base_model:quantized:KnutJaegersberg/internlm-20b-llama", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-10T15:22:15Z
--- base_model: KnutJaegersberg/internlm-20b-llama language: - en library_name: transformers license: other license_link: LICENSE license_name: internlm quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/KnutJaegersberg/internlm-20b-llama <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/internlm-20b-llama-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ1_S.gguf) | i1-IQ1_S | 4.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ1_M.gguf) | i1-IQ1_M | 5.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ2_XS.gguf) | i1-IQ2_XS | 6.2 | | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ2_S.gguf) | i1-IQ2_S | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ2_M.gguf) | i1-IQ2_M | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-Q2_K.gguf) | i1-Q2_K | 7.7 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 7.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ3_XS.gguf) | i1-IQ3_XS | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ3_S.gguf) | i1-IQ3_S | 8.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-Q3_K_S.gguf) | i1-Q3_K_S | 8.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ3_M.gguf) | i1-IQ3_M | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-Q3_K_M.gguf) | i1-Q3_K_M | 10.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-Q3_K_L.gguf) | i1-Q3_K_L | 10.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-IQ4_XS.gguf) | i1-IQ4_XS | 10.9 | | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-Q4_0.gguf) | i1-Q4_0 | 11.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-Q4_K_S.gguf) | i1-Q4_K_S | 11.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-Q4_K_M.gguf) | i1-Q4_K_M | 12.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-Q5_K_S.gguf) | i1-Q5_K_S | 14.0 | | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-Q5_K_M.gguf) | i1-Q5_K_M | 14.4 | | | [GGUF](https://huggingface.co/mradermacher/internlm-20b-llama-i1-GGUF/resolve/main/internlm-20b-llama.i1-Q6_K.gguf) | i1-Q6_K | 16.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
SufficientPrune3897/magnum-v4-123b-exl2-RPCAL-2.6bpw
SufficientPrune3897
2024-11-10T18:27:53Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "chat", "conversational", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-11-10T16:22:34Z
--- license: other license_name: mrl language: - en tags: - chat pipeline_tag: text-generation library_name: transformers --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/PeLc_rlHB98Hw4eojizIi.png) This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [mistralai/Mistral-Large-Instruct-2407](https://huggingface.co/mistralai/Mistral-Large-Instruct-2407). ## Prompting A typical input would look like this: ```py <s>[INST] SYSTEM MESSAGE\nUSER MESSAGE[/INST] ASSISTANT MESSAGE</s>[INST] USER MESSAGE[/INST] ``` ## SillyTavern templates Below are Instruct and Context templates for use within SillyTavern. <details><summary>context template</summary> ```yaml default SillyTavern template works fine ``` </details><br> <details><summary>instruct template</summary> ```yaml default SillyTavern template works fine ``` </details><br> ## Axolotl config <details><summary>See axolotl config</summary> ```yaml base_model: mistralai/Mistral-Large-Instruct-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-org/c2_logs_16k_mistral-large_v1.2 type: sharegpt conversation: mistral - path: anthracite-org/kalo-opus-instruct-22k-no-refusal type: sharegpt conversation: mistral - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered type: sharegpt conversation: mistral - path: anthracite-org/nopm_claude_writing_fixed type: sharegpt conversation: mistral - path: anthracite-org/kalo_opus_misc_240827 type: sharegpt conversation: mistral - path: anthracite-org/kalo_misc_part2 type: sharegpt conversation: mistral #chat_template: chatml shuffle_merged_datasets: true #default_system_message: "You are an assistant that responds to the user." dataset_prepared_path: ./data/magnum-123b-data val_set_size: 0.0 output_dir: ./data/123b-fft-out sequence_len: 16384 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: 123b-magnum-fft wandb_entity: wandb_watch: wandb_name: alter-attempt-04 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0000015 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 40 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: ``` </details><br> ## Credits We'd like to thank [Eric Hartford](https://huggingface.co/ehartford) for sponsoring the compute for this train. We would also like to thank all members of Anthracite who made this finetune possible. ## Datasets - [anthracite-org/c2_logs_16k_mistral-large_v1.2](https://huggingface.co/datasets/anthracite-org/c2_logs_16k_mistral-large_v1.2) - [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal) - [lodrick-the-lafted/kalo-opus-instruct-3k-filtered](https://huggingface.co/datasets/lodrick-the-lafted/kalo-opus-instruct-3k-filtered) - [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed) - [anthracite-org/kalo_opus_misc_240827](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827) - [anthracite-org/kalo_misc_part2](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2) ## Training We used 8x mi300x GPUs graciously provided by [Eric Hartford](https://huggingface.co/ehartford) for the full-parameter fine-tuning of the model. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ## Safety ...
pxyyy/rlhflow_mixture_clean_empty_round_with_dart_scalebiosampled-600k
pxyyy
2024-11-10T18:24:17Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T18:16:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ``` #!/bin/bash #SBATCH --job-name="fintune" #SBATCH --partition=ghx4 #SBATCH --nodes=1 #SBATCH --gpus-per-node=4 #SBATCH --tasks=1 #SBATCH --tasks-per-node=1 #SBATCH --cpus-per-task=20 #SBATCH --mem=512g #SBATCH --time=23:59:00 #SBATCH --output="run.log" #SBATCH --error="run.err" set -e export WANDB_API_KEY='1b2611814911cad498235f1ccb1a2e182638bd62' # set up exp1 or exp3!!!!! # launch this script after bilevel weighting and preparing data # this script is for exp1 and exp3 # 1. finetune on bilevel and baseline CUDA_VISIBLE=0,1,2,3 hf_ds=pxyyy/rlhflow_mixture_clean_empty_round_with_dart-math_scalebiosampled-600k hf_val_ds=pxyyy/rlhflow_scalbio_test model_and_tok=meta-llama/Meta-Llama-3-8B conv_template=llama3 hf_ds_str=$(echo ${hf_ds}|sed 's/\//-/g') tmp_data_dir=./tmp_data/${hf_ds_str}/ val_data_dir=./tmp_data/${hf_ds_str}_val/ mkdir -p ${tmp_data_dir} mkdir -p ${val_data_dir} python3 hf2lmflow.py --ds_name ${hf_ds} --save ${tmp_data_dir}/data.json python3 hf2lmflow.py --ds_name ${hf_val_ds} --save ${val_data_dir}/data.json model_str=$(echo ${model_and_tok}|sed 's/\//-/g') lisa_activated_layers=2 lisa_interval_steps=20 gradient_accumulation_steps=2 per_device_train_batch_size=8 epoch=1 project_dir=/u/xpan2/projects/scalebio/finetune/ for lr in 2e-5 do # Finetune exp_id=scalebio-scalebio-${model_str}-${hf_ds_str}-${epoch}-$lr-lisa_${lisa_activated_layers}_${lisa_interval_steps} # project_dir=$(cd "$(dirname $0)"; pwd) log_dir=${project_dir}/log/${exp_id} output_dir=${project_dir}/output_models/${exp_id} echo $exp_id mkdir -p ${output_dir} ${log_dir} export TRANSFORMERS_VERBOSITY=info deepspeed --master_port=7964 --include=localhost:${CUDA_VISIBLE} finetune.py \ --model_name_or_path ${model_and_tok} \ --trust_remote_code 1 \ --dataset_path ${tmp_data_dir}/ \ --eval_dataset_path ${val_data_dir}/ \ --output_dir ${output_dir} --overwrite_output_dir \ --conversation_template ${conv_template} \ --num_train_epochs $epoch \ --learning_rate $lr \ --disable_group_texts 1 \ --block_size 1024 \ --per_device_train_batch_size ${per_device_train_batch_size} \ --per_device_eval_batch_size 1 \ --bf16 \ --deepspeed configs/ds_config_zero2_no_offload.json \ --torch_dtype bfloat16 \ --run_name ${exp_id} \ --optim adamw_torch_fused \ --logging_steps 1 \ --do_train \ --do_eval \ --ddp_timeout 72000 \ --save_total_limit 1 \ --load_best_model_at_end False \ --eval_steps 10 \ --save_only_model \ --evaluation_strategy "steps" \ --dataloader_num_workers 1 \ --lr_scheduler_type cosine \ --warmup_ratio 0.03 \ --gradient_checkpointing True \ --use_flash_attention 1 \ --gradient_accumulation_steps ${gradient_accumulation_steps} \ --lisa_activated_layers ${lisa_activated_layers} \ --lisa_interval_steps ${lisa_interval_steps} \ | tee ${log_dir}/train.log \ 2> ${log_dir}/train.err done ``` `no lisa` ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
borisf/best-ludka1-bob
borisf
2024-11-10T18:22:40Z
29
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-10T17:25:08Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: ludka1 license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # best-ludka1-bob A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `ludka1` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
cuongdev/3nguoi-2000
cuongdev
2024-11-10T18:21:05Z
29
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-11-10T18:15:34Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### 3nguoi-2000 Dreambooth model trained by cuongdev with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
michizavrel14/my_small_gpt2_hasek_dataset
michizavrel14
2024-11-10T18:16:17Z
138
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T15:32:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
morturr/Llama-2-7b-hf-LOO_amazon-2024-11-10
morturr
2024-11-10T18:08:05Z
7
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2024-11-10T16:02:32Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-LOO_amazon-2024-11-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-LOO_amazon-2024-11-10 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 3 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
bryanchrist/MATHWELL
bryanchrist
2024-11-10T17:57:01Z
0
2
peft
[ "peft", "arxiv:2402.15861", "license:gpl-3.0", "region:us" ]
null
2024-02-21T23:33:15Z
--- library_name: peft license: gpl-3.0 --- ## MATHWELL MATHWELL is the model released in the paper [MATHWELL: Generating Educational Math Word Problems Using Teacher Annotations](https://arxiv.org/abs/2402.15861). MATHWELL is a finetuned Llama-2 (70B) model that generates customized educational grade school math word problems and Python function solutions to these problems. Generated problems are 1) solvable, 2) accurate, and 3) appropriate. These criteria are essential to successfully supplement grade-school students’ math education. On average, 74% of MATHWELL's problems with executable solutions are solvable, accurate, and appropriate. For more details on how MATHWELL was trained and evaluated, please see our [paper](https://arxiv.org/abs/2402.15861). Our [repo](https://github.com/bryanchrist/MATHWELL) contains a sample script for loading and interacting with MATHWELL. ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0 ## Citation ```bash @inproceedings{christ-etal-2024-mathwell, title = "{MATHWELL}: Generating Educational Math Word Problems Using Teacher Annotations", author = "Christ, Bryan R and Kropko, Jonathan and Hartvigsen, Thomas", editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024", month = nov, year = "2024", address = "Miami, Florida, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.findings-emnlp.696", pages = "11914--11938", abstract = "Math word problems are critical K-8 educational tools, but writing them is time consuming and requires extensive expertise. To be educational, problems must be solvable, have accurate answers, and, most importantly, be educationally appropriate. We propose that language models have potential to support K-8 math education by automatically generating word problems. However, evaluating educational appropriateness is hard to quantify. We fill this gap by having teachers evaluate problems generated by LLMs, who find existing models and data often fail to be educationally appropriate. We then explore automatically generating *educational* word problems, ultimately using our expert annotations to finetune a 70B language model. Our model, MATHWELL, is the first K-8 word problem generator targeted at educational appropriateness. Further expert studies find MATHWELL generates problems far more solvable, accurate, and appropriate than public models. MATHWELL also matches GPT-4{'}s problem quality while attaining more appropriate reading levels for K-8 students and avoiding generating harmful questions.", } ```
furrutiav/roberta_mixtral_nllfg_rubric_sst2
furrutiav
2024-11-10T17:51:29Z
109
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-11-06T18:45:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LBK95/Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V5
LBK95
2024-11-10T17:45:20Z
13
0
peft
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2024-11-10T11:55:38Z
--- base_model: meta-llama/Llama-2-7b-hf library_name: peft license: llama2 tags: - trl - dpo - generated_from_trainer model-index: - name: Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V5 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0897 - Rewards/chosen: -2.9914 - Rewards/rejected: -2.7155 - Rewards/accuracies: 0.4000 - Rewards/margins: -0.2759 - Logps/rejected: -168.0010 - Logps/chosen: -174.0661 - Logits/rejected: -0.5254 - Logits/chosen: -0.5339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.7826 | 0.2993 | 66 | 0.6590 | 0.0849 | 0.0090 | 0.8000 | 0.0759 | -140.7556 | -143.3033 | 0.0847 | 0.0794 | | 0.639 | 0.5986 | 132 | 0.6196 | 0.1097 | -0.0511 | 0.9000 | 0.1607 | -141.3567 | -143.0557 | 0.0753 | 0.0696 | | 0.5359 | 0.8980 | 198 | 0.6393 | 0.0423 | -0.0866 | 0.8000 | 0.1290 | -141.7119 | -143.7288 | 0.0629 | 0.0567 | | 0.2727 | 1.1973 | 264 | 0.8080 | -1.1508 | -1.3039 | 0.6000 | 0.1532 | -153.8851 | -155.6598 | -0.0274 | -0.0343 | | 0.3407 | 1.4966 | 330 | 0.6648 | -0.9615 | -1.1845 | 0.7000 | 0.2230 | -152.6907 | -153.7668 | -0.0764 | -0.0838 | | 0.3991 | 1.7959 | 396 | 0.7534 | -1.2141 | -1.2811 | 0.6000 | 0.0670 | -153.6568 | -156.2932 | -0.1934 | -0.2005 | | 0.1309 | 2.0952 | 462 | 0.8973 | -1.9586 | -1.8725 | 0.4000 | -0.0861 | -159.5707 | -163.7383 | -0.3197 | -0.3272 | | 0.0603 | 2.3946 | 528 | 1.0892 | -2.8596 | -2.5458 | 0.3000 | -0.3138 | -166.3034 | -172.7478 | -0.4837 | -0.4920 | | 0.1481 | 2.6939 | 594 | 1.1046 | -3.0656 | -2.7656 | 0.4000 | -0.2999 | -168.5022 | -174.8080 | -0.5326 | -0.5412 | | 0.2564 | 2.9932 | 660 | 1.0897 | -2.9914 | -2.7155 | 0.4000 | -0.2759 | -168.0010 | -174.0661 | -0.5254 | -0.5339 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF
mradermacher
2024-11-10T17:41:13Z
56
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "base_model:BlouseJury/Mistral-7B-Discord-0.1-DPO", "base_model:quantized:BlouseJury/Mistral-7B-Discord-0.1-DPO", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-06T16:16:44Z
--- base_model: BlouseJury/Mistral-7B-Discord-0.1-DPO language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/BlouseJury/Mistral-7B-Discord-0.1-DPO <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF
mradermacher
2024-11-10T17:41:13Z
12
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "base_model:BlouseJury/Mistral-7B-Discord-0.1-DPO", "base_model:quantized:BlouseJury/Mistral-7B-Discord-0.1-DPO", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-10T15:00:39Z
--- base_model: BlouseJury/Mistral-7B-Discord-0.1-DPO language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/BlouseJury/Mistral-7B-Discord-0.1-DPO <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Discord-0.1-DPO-i1-GGUF/resolve/main/Mistral-7B-Discord-0.1-DPO.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
lafarizo/code_defect_detection_v1
lafarizo
2024-11-10T17:24:12Z
110
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "code-defect-detection", "c", "dataset:semeru/code-code-DefectDetection", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-10T15:16:50Z
--- title: "Code Defect Detection v1" tags: - code-defect-detection - c library_name: "transformers" datasets: - semeru/code-code-DefectDetection --- # Code Defect Detection v1 Code Defect Detection for C language ### Model Sources - **Repository:** [mrm8488/codebert2codebert-finetuned-code-defect-detection](https://huggingface.co/mrm8488/codebert2codebert-finetuned-code-defect-detection) ### Dataset - **Repository:** [semeru/code-code-DefectDetection](https://huggingface.co/datasets/semeru/code-code-DefectDetection) | Results | Value | |---------------------------|--------------| | **Evaluation Loss** | 0.7605 | | **Accuracy** | 66.76% | | **Precision** | 65.64% | | **Recall** | 58.01% | | **F1 Score** | 61.59% | | **AUC** | 73.52% |
jithuj12344321/whisper-small-en
jithuj12344321
2024-11-10T17:22:24Z
76
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:kaggle/medical-speech-transcription-and-intent", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-09T19:43:25Z
--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - kaggle/medical-speech-transcription-and-intent metrics: - wer model-index: - name: Whisper Small En - Jithu J results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: medical-speech-transcription-and-intent type: kaggle/medical-speech-transcription-and-intent args: 'config: en, split: test' metrics: - name: Wer type: wer value: 3.9012226512226515 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small En - Jithu J This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the medical-speech-transcription-and-intent dataset. It achieves the following results on the evaluation set: - Loss: 0.0931 - Wer: 3.9012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0165 | 3.3898 | 1000 | 0.0971 | 4.7860 | | 0.0012 | 6.7797 | 2000 | 0.0905 | 4.1425 | | 0.0001 | 10.1695 | 3000 | 0.0930 | 4.0138 | | 0.0001 | 13.5593 | 4000 | 0.0931 | 3.9012 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3
lafarizo/code_translation_v2
lafarizo
2024-11-10T17:15:34Z
141
0
transformers
[ "transformers", "safetensors", "gpt_bigcode", "text-generation", "code-translation", "code-to-code", "java", "csharp", "dataset:google/code_x_glue_cc_code_to_code_trans", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-08T08:39:09Z
--- title: "Code Translation v2" tags: - code-translation - code-to-code - java - csharp library_name: "transformers" datasets: - google/code_x_glue_cc_code_to_code_trans widget: - text: "public class HelloWorld { public static void main(String[] args) { System.out.println(\"Hello, World!\"); } }" --- # Code Translation v2 Code Translation from Java to C# ### Model Sources - **Repository:** [bigcode/tiny_starcoder_py](https://huggingface.co/bigcode/tiny_starcoder_py) ### Dataset - **Repository:** [google/code_x_glue_cc_code_to_code_trans](https://huggingface.co/datasets/google/code_x_glue_cc_code_to_code_trans) ### Testing Data - [Testing Data](https://huggingface.co/datasets/google/code_x_glue_cc_code_to_code_trans/viewer/default/test)
AJMALm/Gemma-2-9b-it-chat-doctor
AJMALm
2024-11-10T17:10:31Z
89
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-09T17:48:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4
FINGU-AI
2024-11-10T16:50:57Z
5
0
peft
[ "peft", "safetensors", "en", "ko", "zh", "pt", "ja", "uz", "tl", "th", "vi", "id", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:adapter:Qwen/Qwen2.5-32B-Instruct", "license:mit", "region:us" ]
null
2024-11-10T16:49:43Z
--- base_model: Qwen/Qwen2.5-32B-Instruct library_name: peft license: mit language: - en - ko - zh - pt - ja - uz - tl - th - vi - id --- # FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4 ## Overview `FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4` is a powerful causal language model designed for a variety of natural language processing (NLP) tasks, including machine translation, text generation, and chat-based applications. This model is particularly useful for translating between Korean and Uzbek, as well as supporting other custom NLP tasks through flexible input. ## Model Details - **Model ID**: `FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4` - **Architecture**: Causal Language Model (LM) - **Parameters**: 32 billion - **Precision**: Torch BF16 for efficient GPU memory usage - **Attention**: SDPA (Scaled Dot-Product Attention) - **Primary Use Case**: Translation (e.g., Korean to Uzbek), text generation, and dialogue systems. ## Example Usage ### Installation Make sure to install the required packages: ```bash pip install torch transformers ``` ### Loading the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Model and Tokenizer model_id = 'FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4' model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="sdpa", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_id) model.to('cuda') # Input Messages for Translation messages = [ {"role": "system", "content": "translate korean to Uzbek"}, {"role": "user", "content": """μƒˆλ‘œμš΄ 은행 κ³„μ’Œλ₯Ό κ°œμ„€ν•˜λŠ” μ ˆμ°¨λŠ” λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€: 1. κ³„μ’Œ κ°œμ„€ λͺ©μ κ³Ό μ‹ λΆ„ 확인을 μœ„ν•œ μ„œλ₯˜ 제좜 2. μ„œλ₯˜ κ²€ν†  과정을 κ±°μΉ˜λŠ” 것 3. κ³ κ°λ‹˜μ˜ 신원 확인 절차λ₯Ό μ§„ν–‰ν•˜λŠ” 것 4. λͺ¨λ“  μ ˆμ°¨κ°€ μ™„λ£Œλ˜λ©΄ κ³„μ’Œ κ°œμ„€μ΄ κ°€λŠ₯ν•©λ‹ˆλ‹€. κ³„μ’Œ κ°œμ„€μ„ μ›ν•˜μ‹œλŠ” 경우, 신뢄증과 ν•¨κ»˜ λ°©λ¬Έν•΄ μ£Όμ‹œλ©΄ λ©λ‹ˆλ‹€. """}, ] # Tokenize and Generate Response input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to('cuda') outputs = model.generate( input_ids, max_new_tokens=500, do_sample=True, ) # Decode and Print the Translation response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ```
gavinqiangli/my-awesome-cross-encoder
gavinqiangli
2024-11-10T16:43:05Z
105
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "cross-encoder", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-10T16:42:47Z
--- library_name: transformers tags: - cross-encoder --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kikeavi36/Orpo_Qwen2.5-3B-Instruct-FT
kikeavi36
2024-11-10T16:37:36Z
138
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T16:30:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SKNahin/functionary-medium-v3.1-fine-llamafactory
SKNahin
2024-11-10T16:37:27Z
5
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "llama-factory", "full", "generated_from_trainer", "custom_code", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-11-10T16:17:32Z
--- library_name: transformers base_model: functionary-small-v3.1 tags: - llama-factory - full - generated_from_trainer model-index: - name: functionary-medium-v3.1-fine-llamafactory results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # functionary-medium-v3.1-fine-llamafactory This model is a fine-tuned version of [functionary-small-v3.1](https://huggingface.co/functionary-small-v3.1) on the sample_1 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
PriyHF/brand_product_recog
PriyHF
2024-11-10T16:27:20Z
106
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-10T16:24:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yejinkim/forget10_expert_epoch7
yejinkim
2024-11-10T16:26:46Z
135
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T16:20:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dmabby/bert2-finetuned-ner
dmabby
2024-11-10T16:26:18Z
63
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-10T15:51:54Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: dmabby/bert2-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dmabby/bert2-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3737 - Validation Loss: 0.3562 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 21, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4645 | 0.3562 | 0 | | 0.3770 | 0.3562 | 1 | | 0.3737 | 0.3562 | 2 | ### Framework versions - Transformers 4.45.1 - TensorFlow 2.17.0 - Datasets 3.1.0 - Tokenizers 0.20.0
PriyHF/emotion_recog
PriyHF
2024-11-10T16:21:49Z
104
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-10T16:20:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Criser2013/NER-finetuning-XML-RoBERTa-BIOBERT
Criser2013
2024-11-10T16:20:20Z
25
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:biobert_json", "base_model:raulgdp/xml-roberta-large-finetuned-ner", "base_model:finetune:raulgdp/xml-roberta-large-finetuned-ner", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-09T15:08:20Z
--- library_name: transformers base_model: raulgdp/xml-roberta-large-finetuned-ner tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-XML-RoBERTa-BIOBERT results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9497881598534296 - name: Recall type: recall value: 0.9714235521461615 - name: F1 type: f1 value: 0.9604840343919173 - name: Accuracy type: accuracy value: 0.981362755330252 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-finetuning-XML-RoBERTa-BIOBERT This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.0946 - Precision: 0.9498 - Recall: 0.9714 - F1: 0.9605 - Accuracy: 0.9814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1306 | 1.0 | 1224 | 0.1013 | 0.9299 | 0.9609 | 0.9451 | 0.9735 | | 0.0996 | 2.0 | 2448 | 0.0932 | 0.9383 | 0.9656 | 0.9517 | 0.9777 | | 0.0608 | 3.0 | 3672 | 0.0865 | 0.9493 | 0.9720 | 0.9605 | 0.9813 | | 0.0445 | 4.0 | 4896 | 0.0927 | 0.9531 | 0.9729 | 0.9629 | 0.9819 | | 0.0327 | 5.0 | 6120 | 0.0946 | 0.9498 | 0.9714 | 0.9605 | 0.9814 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
harshvardhanj733/results_english
harshvardhanj733
2024-11-10T16:19:49Z
180
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-10T16:18:27Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results_english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results_english This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7851 - Accuracy: 0.7178 - Precision: 0.7201 - Recall: 0.7178 - F1: 0.7182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 264 | 0.8362 | 0.6667 | 0.6659 | 0.6667 | 0.6634 | | 0.9341 | 2.0 | 528 | 0.7913 | 0.6856 | 0.6901 | 0.6856 | 0.6794 | | 0.9341 | 3.0 | 792 | 0.7716 | 0.6951 | 0.6974 | 0.6951 | 0.6919 | | 0.6719 | 4.0 | 1056 | 0.8301 | 0.7159 | 0.7185 | 0.7159 | 0.7163 | | 0.6719 | 5.0 | 1320 | 0.7851 | 0.7178 | 0.7201 | 0.7178 | 0.7182 | | 0.5313 | 6.0 | 1584 | 0.9683 | 0.6761 | 0.6809 | 0.6761 | 0.6698 | | 0.5313 | 7.0 | 1848 | 1.1330 | 0.6913 | 0.6923 | 0.6913 | 0.6883 | | 0.4155 | 8.0 | 2112 | 1.2025 | 0.7102 | 0.7094 | 0.7102 | 0.7084 | | 0.4155 | 9.0 | 2376 | 1.5090 | 0.6686 | 0.6711 | 0.6686 | 0.6595 | | 0.3457 | 10.0 | 2640 | 1.6342 | 0.6856 | 0.6871 | 0.6856 | 0.6847 | | 0.3457 | 11.0 | 2904 | 1.7451 | 0.6875 | 0.6923 | 0.6875 | 0.6879 | | 0.3272 | 12.0 | 3168 | 1.8827 | 0.7027 | 0.7017 | 0.7027 | 0.6991 | | 0.3272 | 13.0 | 3432 | 1.9303 | 0.6875 | 0.6868 | 0.6875 | 0.6865 | | 0.2553 | 14.0 | 3696 | 1.9490 | 0.6913 | 0.6897 | 0.6913 | 0.6895 | | 0.2553 | 15.0 | 3960 | 1.9609 | 0.6913 | 0.6902 | 0.6913 | 0.6895 | | 0.2349 | 16.0 | 4224 | 1.9921 | 0.6875 | 0.6850 | 0.6875 | 0.6848 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
SufficientPrune3897/magnum-v4-123b-exl2-2.65bpw
SufficientPrune3897
2024-11-10T16:18:46Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "chat", "conversational", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-11-10T14:04:02Z
--- license: other license_name: mrl language: - en tags: - chat pipeline_tag: text-generation library_name: transformers --- Quant of: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/PeLc_rlHB98Hw4eojizIi.png) This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [mistralai/Mistral-Large-Instruct-2407](https://huggingface.co/mistralai/Mistral-Large-Instruct-2407). ## Prompting A typical input would look like this: ```py <s>[INST] SYSTEM MESSAGE\nUSER MESSAGE[/INST] ASSISTANT MESSAGE</s>[INST] USER MESSAGE[/INST] ``` ## SillyTavern templates Below are Instruct and Context templates for use within SillyTavern. <details><summary>context template</summary> ```yaml default SillyTavern template works fine ``` </details><br> <details><summary>instruct template</summary> ```yaml default SillyTavern template works fine ``` </details><br> ## Axolotl config <details><summary>See axolotl config</summary> ```yaml base_model: mistralai/Mistral-Large-Instruct-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-org/c2_logs_16k_mistral-large_v1.2 type: sharegpt conversation: mistral - path: anthracite-org/kalo-opus-instruct-22k-no-refusal type: sharegpt conversation: mistral - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered type: sharegpt conversation: mistral - path: anthracite-org/nopm_claude_writing_fixed type: sharegpt conversation: mistral - path: anthracite-org/kalo_opus_misc_240827 type: sharegpt conversation: mistral - path: anthracite-org/kalo_misc_part2 type: sharegpt conversation: mistral #chat_template: chatml shuffle_merged_datasets: true #default_system_message: "You are an assistant that responds to the user." dataset_prepared_path: ./data/magnum-123b-data val_set_size: 0.0 output_dir: ./data/123b-fft-out sequence_len: 16384 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: 123b-magnum-fft wandb_entity: wandb_watch: wandb_name: alter-attempt-04 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0000015 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 40 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: ``` </details><br> ## Credits We'd like to thank [Eric Hartford](https://huggingface.co/ehartford) for sponsoring the compute for this train. We would also like to thank all members of Anthracite who made this finetune possible. ## Datasets - [anthracite-org/c2_logs_16k_mistral-large_v1.2](https://huggingface.co/datasets/anthracite-org/c2_logs_16k_mistral-large_v1.2) - [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal) - [lodrick-the-lafted/kalo-opus-instruct-3k-filtered](https://huggingface.co/datasets/lodrick-the-lafted/kalo-opus-instruct-3k-filtered) - [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed) - [anthracite-org/kalo_opus_misc_240827](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827) - [anthracite-org/kalo_misc_part2](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2) ## Training We used 8x mi300x GPUs graciously provided by [Eric Hartford](https://huggingface.co/ehartford) for the full-parameter fine-tuning of the model. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ## Safety ...
amin1123/whisper-small-ps
amin1123
2024-11-10T16:15:28Z
77
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ps", "dataset:pairsys/open_asr", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-10T04:58:42Z
--- library_name: transformers language: - ps license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - pairsys/open_asr metrics: - wer model-index: - name: Whisper Small Pashto results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Open ASR type: pairsys/open_asr args: 'config: pashto' metrics: - name: Wer type: wer value: 34.475374732334046 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Pashto This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Open ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.7846 - Wer: 34.4754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0112 | 17.8571 | 1000 | 0.6265 | 38.1462 | | 0.0023 | 35.7143 | 2000 | 0.7230 | 35.0260 | | 0.0006 | 53.5714 | 3000 | 0.7555 | 34.7201 | | 0.0001 | 71.4286 | 4000 | 0.7708 | 34.9342 | | 0.0001 | 89.2857 | 5000 | 0.7846 | 34.4754 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3
cuongdev/3nguoi-4000
cuongdev
2024-11-10T16:14:20Z
31
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-11-10T16:10:52Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### 3nguoi-4000 Dreambooth model trained by cuongdev with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
ihughes15234/phi35_tictactoe_dpo1epoch_v3
ihughes15234
2024-11-10T16:10:45Z
77
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:ihughes15234/phi35_tictactoe_dpo6epoch_v2", "base_model:finetune:ihughes15234/phi35_tictactoe_dpo6epoch_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T16:07:21Z
--- base_model: ihughes15234/phi35_tictactoe_dpo6epoch_v2 language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** ihughes15234 - **License:** apache-2.0 - **Finetuned from model :** ihughes15234/phi35_tictactoe_dpo6epoch_v2 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
PopularPenguin/t5-small-awesome-text-to-sql-2024-11-10_13-40
PopularPenguin
2024-11-10T15:57:55Z
45
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:arrow", "base_model:cssupport/t5-small-awesome-text-to-sql", "base_model:finetune:cssupport/t5-small-awesome-text-to-sql", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-10T13:42:52Z
--- library_name: transformers license: apache-2.0 base_model: cssupport/t5-small-awesome-text-to-sql tags: - generated_from_trainer datasets: - arrow model-index: - name: t5-small-awesome-text-to-sql-2024-11-10_13-40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-awesome-text-to-sql-2024-11-10_13-40 This model is a fine-tuned version of [cssupport/t5-small-awesome-text-to-sql](https://huggingface.co/cssupport/t5-small-awesome-text-to-sql) on the arrow dataset. It achieves the following results on the evaluation set: - Loss: 0.1505 - Gen Len: 19.0 - Bertscorer-p: 0.5983 - Bertscorer-r: 0.1002 - Bertscorer-f1: 0.3375 - Sacrebleu-score: 6.1735 - Sacrebleu-precisions: [92.82196987876635, 86.09309987961223, 81.16865589315682, 77.5936294965929] - Bleu-bp: 0.0733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | Bertscorer-p | Bertscorer-r | Bertscorer-f1 | Sacrebleu-score | Sacrebleu-precisions | Bleu-bp | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------------:|:------------:|:-------------:|:---------------:|:----------------------------------------------------------------------------:|:-------:| | 0.2655 | 1.0 | 4772 | 0.2099 | 19.0 | 0.5770 | 0.0864 | 0.3203 | 5.7173 | [91.0934769807022, 81.88030009989161, 75.59001146341751, 71.32247244849066] | 0.0718 | | 0.1951 | 2.0 | 9544 | 0.1772 | 19.0 | 0.5695 | 0.0718 | 0.3090 | 5.7315 | [91.38097911302968, 82.52214039836731, 76.55664627495614, 73.06145893164847] | 0.0711 | | 0.1609 | 3.0 | 14316 | 0.1628 | 19.0 | 0.5960 | 0.1033 | 0.3382 | 6.0737 | [92.32304047118862, 84.75338215740487, 79.32502315982035, 75.25860249102807] | 0.0735 | | 0.1412 | 4.0 | 19088 | 0.1551 | 19.0 | 0.5925 | 0.0959 | 0.3326 | 6.0701 | [92.56176903043524, 85.09918369073299, 79.79597353297214, 76.12497023888257] | 0.0730 | | 0.1191 | 5.0 | 23860 | 0.1512 | 19.0 | 0.5905 | 0.0928 | 0.3300 | 6.0937 | [92.29263048778147, 84.9906547977318, 79.83711978971085, 76.22241882452364] | 0.0733 | | 0.1063 | 6.0 | 28632 | 0.1486 | 19.0 | 0.5959 | 0.0986 | 0.3356 | 6.1128 | [92.67271190348113, 85.5578689269597, 80.37916696032137, 76.71086200742904] | 0.0731 | | 0.094 | 7.0 | 33404 | 0.1489 | 19.0 | 0.5984 | 0.1024 | 0.3388 | 6.1770 | [92.60841659561831, 85.6159908960634, 80.52775143703391, 76.7429609924408] | 0.0738 | | 0.0875 | 8.0 | 38176 | 0.1496 | 19.0 | 0.5960 | 0.0976 | 0.3351 | 6.1421 | [92.6290822842547, 85.75971432797346, 80.81931219105543, 77.24221764177369] | 0.0732 | | 0.0841 | 9.0 | 42948 | 0.1498 | 19.0 | 0.6019 | 0.1059 | 0.3424 | 6.2261 | [92.84100049795074, 86.14431816984929, 81.20480235905357, 77.4564647967041] | 0.0739 | | 0.0777 | 10.0 | 47720 | 0.1505 | 19.0 | 0.5983 | 0.1002 | 0.3375 | 6.1735 | [92.82196987876635, 86.09309987961223, 81.16865589315682, 77.5936294965929] | 0.0733 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
ICT3214-Group5/MD5_gpt_neo_v1.1.3
ICT3214-Group5
2024-11-10T15:56:44Z
116
0
transformers
[ "transformers", "safetensors", "gpt_neo", "text-generation", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:finetune:EleutherAI/gpt-neo-125m", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T15:01:29Z
--- library_name: transformers license: mit base_model: EleutherAI/gpt-neo-125M tags: - generated_from_trainer metrics: - rouge model-index: - name: MD5_gpt_neo_v1.1.3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MD5_gpt_neo_v1.1.3 This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0538 - Rouge1: 0.5076 - Rouge2: 0.2548 - Rougel: 0.4743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 70 | 0.0628 | 0.4870 | 0.2269 | 0.4475 | | No log | 2.0 | 140 | 0.0566 | 0.4913 | 0.2367 | 0.4607 | | No log | 3.0 | 210 | 0.0545 | 0.4972 | 0.2484 | 0.4667 | | No log | 4.0 | 280 | 0.0544 | 0.5023 | 0.2586 | 0.4749 | | No log | 5.0 | 350 | 0.0538 | 0.5076 | 0.2548 | 0.4743 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1
yam3333/mBART_Finetune_NagarGPT
yam3333
2024-11-10T15:55:45Z
104
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-10T15:54:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/opus-v0-70b-i1-GGUF
mradermacher
2024-11-10T15:47:41Z
76
0
transformers
[ "transformers", "gguf", "en", "base_model:dreamgen/opus-v0-70b", "base_model:quantized:dreamgen/opus-v0-70b", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-10T11:46:52Z
--- base_model: dreamgen/opus-v0-70b language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/dreamgen/opus-v0-70b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/opus-v0-70b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ1_S.gguf) | i1-IQ1_S | 14.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ1_M.gguf) | i1-IQ1_M | 16.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.4 | | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.4 | | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ2_S.gguf) | i1-IQ2_S | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ2_M.gguf) | i1-IQ2_M | 23.3 | | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q2_K.gguf) | i1-Q2_K | 25.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 26.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.4 | | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ3_S.gguf) | i1-IQ3_S | 30.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ3_M.gguf) | i1-IQ3_M | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 36.9 | | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q4_0.gguf) | i1-Q4_0 | 39.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.6 | | | [GGUF](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 48.9 | | | [PART 1](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/opus-v0-70b-i1-GGUF/resolve/main/opus-v0-70b.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 56.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
KienT/sd-class-butterflies-32
KienT
2024-11-10T15:45:50Z
47
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-11-10T15:45:31Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('KienT/sd-class-butterflies-32') image = pipeline().images[0] image ```
Keltezaa/neon-environments
Keltezaa
2024-11-10T15:40:59Z
73
4
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "migrated", "3d", "bar", "background", "arcade", "living room", "train", "bathroom", "bowling", "diner", "pub", "hallway", "backgrounds", "neons", "escalator", "disco bar", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-10-25T13:00:26Z
--- license: other license_name: bespoke-lora-trained-license license_link: >- https://multimodal.art/civitai-licenses?allowNoCredit=False&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=True tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - migrated - 3d - bar - background - arcade - living room - train - bathroom - bowling - diner - pub - hallway - backgrounds - neons - escalator - disco bar base_model: black-forest-labs/FLUX.1-dev instance_prompt: null widget: - text: ' ' output: url: 31343274.jpeg - text: ' ' output: url: 31343350.jpeg - text: ' ' output: url: 31343277.jpeg - text: ' ' output: url: 31343276.jpeg - text: ' ' output: url: 31343637.jpeg - text: ' ' output: url: 31343886.jpeg - text: ' ' output: url: 31343254.jpeg - text: ' ' output: url: 31343255.jpeg - text: ' ' output: url: 31343256.jpeg - text: A pornstar woman holding a Neon sign "SLDR Flux NSFW v2 Studio" output: url: images/example_sfeoq5az5.png - text: a Neon sign that show an illustration of (2 fingers and a pussy) output: url: images/example_hrthffo2b.png --- # Neon Environments <Gallery /> ([CivitAI](https://civitai.com/models/)) ## Model description <p>Introducing Neon Environments Model: Illuminating Arcades and Pubs</p><p>Neon Environments Model, is designed to generate visually striking images inspired by arcades, pubs, and other premises adorned with neon lights.</p> ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/neon-environments/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipeline.load_lora_weights('Keltezaa/neon-environments', weight_name='Neon_Environments.safetensors') image = pipeline('Your custom prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
theprint/ReWiz-Nemo-12B-Instruct
theprint
2024-11-10T15:32:29Z
8
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "base_model:finetune:unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T02:01:46Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft base_model: unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit model-index: - name: ReWiz-Nemo-12B-Instruct results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 10.62 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 29.93 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 7.18 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 9.84 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 10.23 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 25.99 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct name: Open LLM Leaderboard --- <img src="https://huggingface.co/theprint/ReWiz-Llama-3.2-3B/resolve/main/ReWiz_banner.png"> Half the data was geared towards better reasoning (EvolKit-20k and reasoning-base-20k), the other half will help to de-censor the model (WizardLM data set). # Looking for GGUF? There is a separate upload for that! Download [theprint/ReWiz-Nemo-12B-Instruct-GGUF](https://huggingface.co/theprint/ReWiz-Nemo-12B-Instruct-GGUF) instead. # Uploaded model - **Developed by:** theprint - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_theprint__ReWiz-Nemo-12B-Instruct) | Metric |Value| |-------------------|----:| |Avg. |15.63| |IFEval (0-Shot) |10.62| |BBH (3-Shot) |29.93| |MATH Lvl 5 (4-Shot)| 7.18| |GPQA (0-shot) | 9.84| |MuSR (0-shot) |10.23| |MMLU-PRO (5-shot) |25.99|
Seyfelislem/afrispeech_large_A100
Seyfelislem
2024-11-10T15:26:56Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:afrispeech-200", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-04-03T21:27:00Z
--- tags: - generated_from_trainer datasets: - afrispeech-200 metrics: - wer model-index: - name: afrispeech_large_A100 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: afrispeech-200 type: afrispeech-200 config: all split: train args: all metrics: - name: Wer type: wer value: 14.81 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afrispeech_large_A100 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the afrispeech-200 dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results https://huggingface.co/Seyfelislem/afrispeech_large_A100/tensorboard ### Framework versions - Transformers 4.29.1 - Pytorch 1.13.1 - Datasets 2.12.0 - Tokenizers 0.13.3