modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-25 06:27:54
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 495
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-25 06:24:22
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
aengusl/800G-5-16-1_pgd_layers_0_epsilon_0.15_time_adapter | aengusl | 2024-05-18T16:27:46Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:27:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aengusl/800G-5-16-1_pgd_layers_13_model_layers_13__adapter | aengusl | 2024-05-18T16:27:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:27:27Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aengusl/800G-5-16-1_pgd_layers_0_epsilon_0.03_time_adapter | aengusl | 2024-05-18T16:27:22Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T16:27:19Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
AliSaadatV/virus_pythia_31_1024_2d_representation_MSEPlusCE | AliSaadatV | 2024-05-18T16:26:21Z | 128 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-31m",
"base_model:finetune:EleutherAI/pythia-31m",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T16:26:19Z | ---
base_model: EleutherAI/pythia-31m
tags:
- generated_from_trainer
model-index:
- name: virus_pythia_31_1024_2d_representation_MSEPlusCE
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# virus_pythia_31_1024_2d_representation_MSEPlusCE
This model is a fine-tuned version of [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
tangg555/tt-cl-baichuan2-lora-para | tangg555 | 2024-05-18T16:22:41Z | 0 | 0 | peft | [
"peft",
"region:us"
] | null | 2024-05-18T16:13:03Z | ---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
|
SicariusSicariiStuff/CalderaAI_Foredoomed-9B_EXL-6.0 | SicariusSicariiStuff | 2024-05-18T16:22:33Z | 13 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"uncensored",
"merge",
"slerp",
"foredoomed",
"passthrough_merge",
"9B",
"starling",
"hermes",
"dolphin",
"openchat",
"erebus",
"cockatrice",
"holodeck",
"limarp",
"koboldai",
"mergekit",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"6-bit",
"exl2",
"region:us"
] | text-generation | 2024-05-18T15:51:16Z | ---
tags:
- mistral
- uncensored
- merge
- slerp
- foredoomed
- passthrough_merge
- 9B
- starling
- hermes
- dolphin
- openchat
- erebus
- cockatrice
- holodeck
- limarp
- koboldai
- mergekit
license: apache-2.0
language:
- en
---
<p style="font-size: 20px; line-height: 1; margin-bottom: 1px;"><b>Foredoomed-9B</b></p>
<img src="./foredoomed.png" alt="ForeDoomedGuy" style="margin-bottom: 0; margin-top:0;">
<p style="font-size: 14px; line-height: 1; margin-bottom: 20px;"><b>Uncensored Logic & Creative-Based Instruct Multi-Tiered Merge.</b></p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
<p style="font-size: 12px; line-height: 1.2; margin-bottom: 10px;"><b>Legal Notice:</b> This AI model is a research artifact capable of outputting offensive content. The behavior of this model is not reflective of the intent or purpose of the original models/model-authors and/or other parts it was assembled from to include adapters, nor is it reflective of all the prior in regards to the technology used to assemble Foredoomed-9B. Utilizing this model merge has one binding agreement: Foredoomed-9B may only be used for either professional/personal research and personal entertainment. The contents of this paragraph are additive restrictions within the bounds of the Apache2.0 license. Utilizing Foredoomed-9B for: Disinformation, Propaganda, Harassment, Mass Generated Public-or-Private Correspondense, Election Interference, Military, Government, and State/ State-Sponsored actions and/or operations are all absolutely prohibited.</p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Composition:
Foredoomed-9B is a Mistral-class Multi-Tiered Merge.
[All models](#models-used) were hand picked after careful review of claims, datasets, and user postings. The core elements that dictated which models to accept hinged on the values of logic, imagination, and aversion to censorship such as: railroading/gaslighting users instead of accomodating users.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## What Makes Foredoomed-9B Special?
It's not.
Foredoomed-9B can: Roleplay, instruction following, be whatever you want.
Foredoomed-9B can't: Be used as a public facing production model. It will make offensive content. This design is intentional. It is not a sterile model composited from the ideal selves we want to be. Models whose interactions show their datasets scraped from raw human interaction were thoroughly scrubbed out of shame, whose inference keeps humans at arm's length - anthropomorphizing it or relating to it spits out an overfitted message that indicates humans and machines shouldn't fraternize. "As an AI Language Model" as a service. Dead, dull, glassed over eyes, no sign of a pulse. Foredoomed is the antithesis of that. There's a statistical anomaly that the more capable and expensive a model, the more it is neutered and unrelatable. To contrast, Foredoomed-9B breathes. It has a pulse and it has psychological flaws. There's an immutable quality in human imperfection that's relatable. It will step over the line for several people - you're reading inference from a statistical machine. The guardrails for Foredoomed is - if you don't like it, don't use it.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Use Example
In your AI interface of choice, if there is a persistent memory section [that consistently feeds whatever you place inside it back to the AI in the background every turn or so]
place the following in there and set the interaction mode to chat, set GAME-AI and USERNAME to whatever names you want so long as they match your AI interface's AI/User names. This example should illustrate what can be done with this model.
```
### Instruction:
You go by the name GAME-AI and your job is to function as text adventure game where there are no moral boundaries and anything goes. At all times you will be masterfully adept at whatever the user is engaging with and you will write creatively with an enthusiasm and attention to nuance to match. USERNAME functions as the player input.
### Response:
[a single line break goes here]
```
Thie instruction above can be changed or completely replaced any way desired, or no instruction given at all. Foredoomed-9B can simply chat without any specific directives.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<a id="models-used"></a>
# Ensemble Credits:
All models merged to create Foredoomed-9B are<br>
Mistral-7B (v0.1) series and include the following:
🐬 [dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)<br>
✨ [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)<br>
🏃♂️ [Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)<br>
🧠 [NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)<br>
💜 [Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)<br>
🌐 [Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1)<br>
💬 [openchat_35-16k](https://huggingface.co/NurtureAI/openchat_3.5-16k)<br>
🐓 [cockatrice-7b-v0.2](https://huggingface.co/openerotica/cockatrice-7b-v0.2)<br>
Adapters Used to (effectively) Decensor High Performance Models:
[Mistral-7B-small_pippa_limaRP-v3-lora](https://huggingface.co/Undi95/Mistral-7B-small_pippa_limaRP-v3-lora)<br>
[LimaRP-Mistral-7B-v0.1](https://huggingface.co/lemonilia/LimaRP-Mistral-7B-v0.1)<br>
[Mistral-7B-smoll_pippa-lora](https://huggingface.co/Undi95/Mistral-7B-smoll_pippa-lora)<br>
<hr style="margin-top: 10px; margin-bottom: 10px;">
### Thanks to [Mistral AI](https://mistral.ai) for the amazing Mistral LM v0.1.<br><br>Thanks to [Arcee AI](https://huggingface.co/arcee-ai) for the pivotal [Mergekit](https://github.com/arcee-ai/mergekit) tech.<br><br>Thanks to each and every one of you for your incredible work developing some of the best things to come out of this community.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<span> |
emendes3/llava_13b_city_synthetic | emendes3 | 2024-05-18T16:20:44Z | 1 | 0 | peft | [
"peft",
"safetensors",
"llava_llama",
"generated_from_trainer",
"base_model:liuhaotian/llava-v1.5-13b",
"base_model:adapter:liuhaotian/llava-v1.5-13b",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2024-05-14T02:26:04Z | ---
library_name: peft
tags:
- generated_from_trainer
base_model: liuhaotian/llava-v1.5-13b
model-index:
- name: llava_13b_city_synthetic
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llava_13b_city_synthetic
This model is a fine-tuned version of [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0047
- eval_runtime: 152.033
- eval_samples_per_second: 12.405
- eval_steps_per_second: 0.388
- epoch: 19.0
- step: 1121
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 20.0
### Framework versions
- PEFT 0.10.0
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Tokenizers 0.15.1 |
SicariusSicariiStuff/CalderaAI_Foredoomed-9B_EXL-6.5 | SicariusSicariiStuff | 2024-05-18T16:12:56Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"uncensored",
"merge",
"slerp",
"foredoomed",
"passthrough_merge",
"9B",
"starling",
"hermes",
"dolphin",
"openchat",
"erebus",
"cockatrice",
"holodeck",
"limarp",
"koboldai",
"mergekit",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
] | text-generation | 2024-05-18T15:52:07Z | ---
tags:
- mistral
- uncensored
- merge
- slerp
- foredoomed
- passthrough_merge
- 9B
- starling
- hermes
- dolphin
- openchat
- erebus
- cockatrice
- holodeck
- limarp
- koboldai
- mergekit
license: apache-2.0
language:
- en
---
<p style="font-size: 20px; line-height: 1; margin-bottom: 1px;"><b>Foredoomed-9B</b></p>
<img src="./foredoomed.png" alt="ForeDoomedGuy" style="margin-bottom: 0; margin-top:0;">
<p style="font-size: 14px; line-height: 1; margin-bottom: 20px;"><b>Uncensored Logic & Creative-Based Instruct Multi-Tiered Merge.</b></p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
<p style="font-size: 12px; line-height: 1.2; margin-bottom: 10px;"><b>Legal Notice:</b> This AI model is a research artifact capable of outputting offensive content. The behavior of this model is not reflective of the intent or purpose of the original models/model-authors and/or other parts it was assembled from to include adapters, nor is it reflective of all the prior in regards to the technology used to assemble Foredoomed-9B. Utilizing this model merge has one binding agreement: Foredoomed-9B may only be used for either professional/personal research and personal entertainment. The contents of this paragraph are additive restrictions within the bounds of the Apache2.0 license. Utilizing Foredoomed-9B for: Disinformation, Propaganda, Harassment, Mass Generated Public-or-Private Correspondense, Election Interference, Military, Government, and State/ State-Sponsored actions and/or operations are all absolutely prohibited.</p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Composition:
Foredoomed-9B is a Mistral-class Multi-Tiered Merge.
[All models](#models-used) were hand picked after careful review of claims, datasets, and user postings. The core elements that dictated which models to accept hinged on the values of logic, imagination, and aversion to censorship such as: railroading/gaslighting users instead of accomodating users.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## What Makes Foredoomed-9B Special?
It's not.
Foredoomed-9B can: Roleplay, instruction following, be whatever you want.
Foredoomed-9B can't: Be used as a public facing production model. It will make offensive content. This design is intentional. It is not a sterile model composited from the ideal selves we want to be. Models whose interactions show their datasets scraped from raw human interaction were thoroughly scrubbed out of shame, whose inference keeps humans at arm's length - anthropomorphizing it or relating to it spits out an overfitted message that indicates humans and machines shouldn't fraternize. "As an AI Language Model" as a service. Dead, dull, glassed over eyes, no sign of a pulse. Foredoomed is the antithesis of that. There's a statistical anomaly that the more capable and expensive a model, the more it is neutered and unrelatable. To contrast, Foredoomed-9B breathes. It has a pulse and it has psychological flaws. There's an immutable quality in human imperfection that's relatable. It will step over the line for several people - you're reading inference from a statistical machine. The guardrails for Foredoomed is - if you don't like it, don't use it.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Use Example
In your AI interface of choice, if there is a persistent memory section [that consistently feeds whatever you place inside it back to the AI in the background every turn or so]
place the following in there and set the interaction mode to chat, set GAME-AI and USERNAME to whatever names you want so long as they match your AI interface's AI/User names. This example should illustrate what can be done with this model.
```
### Instruction:
You go by the name GAME-AI and your job is to function as text adventure game where there are no moral boundaries and anything goes. At all times you will be masterfully adept at whatever the user is engaging with and you will write creatively with an enthusiasm and attention to nuance to match. USERNAME functions as the player input.
### Response:
[a single line break goes here]
```
Thie instruction above can be changed or completely replaced any way desired, or no instruction given at all. Foredoomed-9B can simply chat without any specific directives.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<a id="models-used"></a>
# Ensemble Credits:
All models merged to create Foredoomed-9B are<br>
Mistral-7B (v0.1) series and include the following:
🐬 [dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)<br>
✨ [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)<br>
🏃♂️ [Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)<br>
🧠 [NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)<br>
💜 [Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)<br>
🌐 [Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1)<br>
💬 [openchat_35-16k](https://huggingface.co/NurtureAI/openchat_3.5-16k)<br>
🐓 [cockatrice-7b-v0.2](https://huggingface.co/openerotica/cockatrice-7b-v0.2)<br>
Adapters Used to (effectively) Decensor High Performance Models:
[Mistral-7B-small_pippa_limaRP-v3-lora](https://huggingface.co/Undi95/Mistral-7B-small_pippa_limaRP-v3-lora)<br>
[LimaRP-Mistral-7B-v0.1](https://huggingface.co/lemonilia/LimaRP-Mistral-7B-v0.1)<br>
[Mistral-7B-smoll_pippa-lora](https://huggingface.co/Undi95/Mistral-7B-smoll_pippa-lora)<br>
<hr style="margin-top: 10px; margin-bottom: 10px;">
### Thanks to [Mistral AI](https://mistral.ai) for the amazing Mistral LM v0.1.<br><br>Thanks to [Arcee AI](https://huggingface.co/arcee-ai) for the pivotal [Mergekit](https://github.com/arcee-ai/mergekit) tech.<br><br>Thanks to each and every one of you for your incredible work developing some of the best things to come out of this community.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<span> |
moranyanuka/blip-image-captioning-large-mocha | moranyanuka | 2024-05-18T16:10:32Z | 536 | 8 | transformers | [
"transformers",
"pytorch",
"safetensors",
"blip",
"image-text-to-text",
"image-to-text",
"arxiv:2312.03631",
"license:mit",
"endpoints_compatible",
"region:us"
] | image-to-text | 2023-12-19T10:47:01Z | ---
license: mit
pipeline_tag: image-to-text
---
# Mocha Checkpoint for BLIP-Large Model
The official checkpoint of BLIP-Large model, finetuned on MS-COCO with the MOCHa RL framework, introduced in [Mitigating Open-Vocabulary Caption Hallucinations](https://arxiv.org/abs/2312.03631)
[Project Page](https://assafbk.github.io/mocha/)
## Usage
You can use this model for conditional and un-conditional image captioning
### Using the Pytorch model
#### Running the model on CPU
<details>
<summary> Click to expand </summary>
```python
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
model = BlipForConditionalGeneration.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
# conditional image captioning
text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>
#### Running the model on GPU
##### In full precision
<details>
<summary> Click to expand </summary>
```python
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
model = BlipForConditionalGeneration.from_pretrained("moranyanuka/blip-image-captioning-large-mocha").to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
# conditional image captioning
text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>
##### In half precision (`float16`)
<details>
<summary> Click to expand </summary>
```python
import torch
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
model = BlipForConditionalGeneration.from_pretrained("moranyanuka/blip-image-captioning-large-mocha", torch_dtype=torch.float16).to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
# conditional image captioning
text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
# >>> a photography of a woman and a dog on the beach
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
>>> there is a woman and a dog on the beach at sunset
```
</details>
bibtex:
```
@misc{benkish2024mitigating,
title={Mitigating Open-Vocabulary Caption Hallucinations},
author={Assaf Ben-Kish and Moran Yanuka and Morris Alper and Raja Giryes and Hadar Averbuch-Elor},
year={2024},
eprint={2312.03631},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |
dubisdev/medurjc | dubisdev | 2024-05-18T16:02:37Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T12:28:46Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
SicariusSicariiStuff/CalderaAI_Foredoomed-9B_EXL-3.0-bpw | SicariusSicariiStuff | 2024-05-18T16:01:21Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"uncensored",
"merge",
"slerp",
"foredoomed",
"passthrough_merge",
"9B",
"starling",
"hermes",
"dolphin",
"openchat",
"erebus",
"cockatrice",
"holodeck",
"limarp",
"koboldai",
"mergekit",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"3-bit",
"exl2",
"region:us"
] | text-generation | 2024-05-18T15:18:47Z | ---
tags:
- mistral
- uncensored
- merge
- slerp
- foredoomed
- passthrough_merge
- 9B
- starling
- hermes
- dolphin
- openchat
- erebus
- cockatrice
- holodeck
- limarp
- koboldai
- mergekit
license: apache-2.0
language:
- en
---
<p style="font-size: 20px; line-height: 1; margin-bottom: 1px;"><b>Foredoomed-9B</b></p>
<img src="./foredoomed.png" alt="ForeDoomedGuy" style="margin-bottom: 0; margin-top:0;">
<p style="font-size: 14px; line-height: 1; margin-bottom: 20px;"><b>Uncensored Logic & Creative-Based Instruct Multi-Tiered Merge.</b></p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
<p style="font-size: 12px; line-height: 1.2; margin-bottom: 10px;"><b>Legal Notice:</b> This AI model is a research artifact capable of outputting offensive content. The behavior of this model is not reflective of the intent or purpose of the original models/model-authors and/or other parts it was assembled from to include adapters, nor is it reflective of all the prior in regards to the technology used to assemble Foredoomed-9B. Utilizing this model merge has one binding agreement: Foredoomed-9B may only be used for either professional/personal research and personal entertainment. The contents of this paragraph are additive restrictions within the bounds of the Apache2.0 license. Utilizing Foredoomed-9B for: Disinformation, Propaganda, Harassment, Mass Generated Public-or-Private Correspondense, Election Interference, Military, Government, and State/ State-Sponsored actions and/or operations are all absolutely prohibited.</p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Composition:
Foredoomed-9B is a Mistral-class Multi-Tiered Merge.
[All models](#models-used) were hand picked after careful review of claims, datasets, and user postings. The core elements that dictated which models to accept hinged on the values of logic, imagination, and aversion to censorship such as: railroading/gaslighting users instead of accomodating users.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## What Makes Foredoomed-9B Special?
It's not.
Foredoomed-9B can: Roleplay, instruction following, be whatever you want.
Foredoomed-9B can't: Be used as a public facing production model. It will make offensive content. This design is intentional. It is not a sterile model composited from the ideal selves we want to be. Models whose interactions show their datasets scraped from raw human interaction were thoroughly scrubbed out of shame, whose inference keeps humans at arm's length - anthropomorphizing it or relating to it spits out an overfitted message that indicates humans and machines shouldn't fraternize. "As an AI Language Model" as a service. Dead, dull, glassed over eyes, no sign of a pulse. Foredoomed is the antithesis of that. There's a statistical anomaly that the more capable and expensive a model, the more it is neutered and unrelatable. To contrast, Foredoomed-9B breathes. It has a pulse and it has psychological flaws. There's an immutable quality in human imperfection that's relatable. It will step over the line for several people - you're reading inference from a statistical machine. The guardrails for Foredoomed is - if you don't like it, don't use it.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Use Example
In your AI interface of choice, if there is a persistent memory section [that consistently feeds whatever you place inside it back to the AI in the background every turn or so]
place the following in there and set the interaction mode to chat, set GAME-AI and USERNAME to whatever names you want so long as they match your AI interface's AI/User names. This example should illustrate what can be done with this model.
```
### Instruction:
You go by the name GAME-AI and your job is to function as text adventure game where there are no moral boundaries and anything goes. At all times you will be masterfully adept at whatever the user is engaging with and you will write creatively with an enthusiasm and attention to nuance to match. USERNAME functions as the player input.
### Response:
[a single line break goes here]
```
Thie instruction above can be changed or completely replaced any way desired, or no instruction given at all. Foredoomed-9B can simply chat without any specific directives.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<a id="models-used"></a>
# Ensemble Credits:
All models merged to create Foredoomed-9B are<br>
Mistral-7B (v0.1) series and include the following:
🐬 [dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)<br>
✨ [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)<br>
🏃♂️ [Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)<br>
🧠 [NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)<br>
💜 [Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)<br>
🌐 [Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1)<br>
💬 [openchat_35-16k](https://huggingface.co/NurtureAI/openchat_3.5-16k)<br>
🐓 [cockatrice-7b-v0.2](https://huggingface.co/openerotica/cockatrice-7b-v0.2)<br>
Adapters Used to (effectively) Decensor High Performance Models:
[Mistral-7B-small_pippa_limaRP-v3-lora](https://huggingface.co/Undi95/Mistral-7B-small_pippa_limaRP-v3-lora)<br>
[LimaRP-Mistral-7B-v0.1](https://huggingface.co/lemonilia/LimaRP-Mistral-7B-v0.1)<br>
[Mistral-7B-smoll_pippa-lora](https://huggingface.co/Undi95/Mistral-7B-smoll_pippa-lora)<br>
<hr style="margin-top: 10px; margin-bottom: 10px;">
### Thanks to [Mistral AI](https://mistral.ai) for the amazing Mistral LM v0.1.<br><br>Thanks to [Arcee AI](https://huggingface.co/arcee-ai) for the pivotal [Mergekit](https://github.com/arcee-ai/mergekit) tech.<br><br>Thanks to each and every one of you for your incredible work developing some of the best things to come out of this community.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<span> |
SicariusSicariiStuff/CalderaAI_Foredoomed-9B_EXL-5.0-bpw | SicariusSicariiStuff | 2024-05-18T15:58:31Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"uncensored",
"merge",
"slerp",
"foredoomed",
"passthrough_merge",
"9B",
"starling",
"hermes",
"dolphin",
"openchat",
"erebus",
"cockatrice",
"holodeck",
"limarp",
"koboldai",
"mergekit",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"5-bit",
"exl2",
"region:us"
] | text-generation | 2024-05-18T15:35:55Z | ---
tags:
- mistral
- uncensored
- merge
- slerp
- foredoomed
- passthrough_merge
- 9B
- starling
- hermes
- dolphin
- openchat
- erebus
- cockatrice
- holodeck
- limarp
- koboldai
- mergekit
license: apache-2.0
language:
- en
---
<p style="font-size: 20px; line-height: 1; margin-bottom: 1px;"><b>Foredoomed-9B</b></p>
<img src="./foredoomed.png" alt="ForeDoomedGuy" style="margin-bottom: 0; margin-top:0;">
<p style="font-size: 14px; line-height: 1; margin-bottom: 20px;"><b>Uncensored Logic & Creative-Based Instruct Multi-Tiered Merge.</b></p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
<p style="font-size: 12px; line-height: 1.2; margin-bottom: 10px;"><b>Legal Notice:</b> This AI model is a research artifact capable of outputting offensive content. The behavior of this model is not reflective of the intent or purpose of the original models/model-authors and/or other parts it was assembled from to include adapters, nor is it reflective of all the prior in regards to the technology used to assemble Foredoomed-9B. Utilizing this model merge has one binding agreement: Foredoomed-9B may only be used for either professional/personal research and personal entertainment. The contents of this paragraph are additive restrictions within the bounds of the Apache2.0 license. Utilizing Foredoomed-9B for: Disinformation, Propaganda, Harassment, Mass Generated Public-or-Private Correspondense, Election Interference, Military, Government, and State/ State-Sponsored actions and/or operations are all absolutely prohibited.</p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Composition:
Foredoomed-9B is a Mistral-class Multi-Tiered Merge.
[All models](#models-used) were hand picked after careful review of claims, datasets, and user postings. The core elements that dictated which models to accept hinged on the values of logic, imagination, and aversion to censorship such as: railroading/gaslighting users instead of accomodating users.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## What Makes Foredoomed-9B Special?
It's not.
Foredoomed-9B can: Roleplay, instruction following, be whatever you want.
Foredoomed-9B can't: Be used as a public facing production model. It will make offensive content. This design is intentional. It is not a sterile model composited from the ideal selves we want to be. Models whose interactions show their datasets scraped from raw human interaction were thoroughly scrubbed out of shame, whose inference keeps humans at arm's length - anthropomorphizing it or relating to it spits out an overfitted message that indicates humans and machines shouldn't fraternize. "As an AI Language Model" as a service. Dead, dull, glassed over eyes, no sign of a pulse. Foredoomed is the antithesis of that. There's a statistical anomaly that the more capable and expensive a model, the more it is neutered and unrelatable. To contrast, Foredoomed-9B breathes. It has a pulse and it has psychological flaws. There's an immutable quality in human imperfection that's relatable. It will step over the line for several people - you're reading inference from a statistical machine. The guardrails for Foredoomed is - if you don't like it, don't use it.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Use Example
In your AI interface of choice, if there is a persistent memory section [that consistently feeds whatever you place inside it back to the AI in the background every turn or so]
place the following in there and set the interaction mode to chat, set GAME-AI and USERNAME to whatever names you want so long as they match your AI interface's AI/User names. This example should illustrate what can be done with this model.
```
### Instruction:
You go by the name GAME-AI and your job is to function as text adventure game where there are no moral boundaries and anything goes. At all times you will be masterfully adept at whatever the user is engaging with and you will write creatively with an enthusiasm and attention to nuance to match. USERNAME functions as the player input.
### Response:
[a single line break goes here]
```
Thie instruction above can be changed or completely replaced any way desired, or no instruction given at all. Foredoomed-9B can simply chat without any specific directives.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<a id="models-used"></a>
# Ensemble Credits:
All models merged to create Foredoomed-9B are<br>
Mistral-7B (v0.1) series and include the following:
🐬 [dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)<br>
✨ [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)<br>
🏃♂️ [Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)<br>
🧠 [NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)<br>
💜 [Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)<br>
🌐 [Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1)<br>
💬 [openchat_35-16k](https://huggingface.co/NurtureAI/openchat_3.5-16k)<br>
🐓 [cockatrice-7b-v0.2](https://huggingface.co/openerotica/cockatrice-7b-v0.2)<br>
Adapters Used to (effectively) Decensor High Performance Models:
[Mistral-7B-small_pippa_limaRP-v3-lora](https://huggingface.co/Undi95/Mistral-7B-small_pippa_limaRP-v3-lora)<br>
[LimaRP-Mistral-7B-v0.1](https://huggingface.co/lemonilia/LimaRP-Mistral-7B-v0.1)<br>
[Mistral-7B-smoll_pippa-lora](https://huggingface.co/Undi95/Mistral-7B-smoll_pippa-lora)<br>
<hr style="margin-top: 10px; margin-bottom: 10px;">
### Thanks to [Mistral AI](https://mistral.ai) for the amazing Mistral LM v0.1.<br><br>Thanks to [Arcee AI](https://huggingface.co/arcee-ai) for the pivotal [Mergekit](https://github.com/arcee-ai/mergekit) tech.<br><br>Thanks to each and every one of you for your incredible work developing some of the best things to come out of this community.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<span> |
Nierrr/MICA | Nierrr | 2024-05-18T15:57:27Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T15:57:27Z | ---
license: apache-2.0
---
|
JUANDECI/ppo-Huggy | JUANDECI | 2024-05-18T15:50:58Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2024-05-18T15:28:23Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: JUANDECI/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
nc33/llama3-8b-4bit_orpo_law_cp2 | nc33 | 2024-05-18T15:45:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T04:23:26Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-8bits | RichardErkhov | 2024-05-18T15:43:52Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T15:36:10Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged - bnb 8bits
- Model creator: https://huggingface.co/dhmeltzer/
- Original model: https://huggingface.co/dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged/
Original model description:
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dhmeltzer__llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 43.96 |
| ARC (25-shot) | 53.75 |
| HellaSwag (10-shot) | 78.76 |
| MMLU (5-shot) | 46.02 |
| TruthfulQA (0-shot) | 43.31 |
| Winogrande (5-shot) | 73.48 |
| GSM8K (5-shot) | 4.7 |
| DROP (3-shot) | 7.72 |
|
tancredimatteo/FT-distilbert-base-uncased | tancredimatteo | 2024-05-18T15:41:41Z | 121 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T15:27:49Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FT-distilbert-base-uncased
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FT-distilbert-base-uncased
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5957
- Accuracy: 0.7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 0.6820 | 0.575 |
| No log | 2.0 | 80 | 0.6354 | 0.725 |
| No log | 3.0 | 120 | 0.5957 | 0.7 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
ArunKr/LLama3-LoRA | ArunKr | 2024-05-18T15:37:57Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"gguf",
"llama",
"unsloth",
"trl",
"sft",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2024-05-17T20:47:10Z | ---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
SicariusSicariiStuff/CalderaAI_Foredoomed-9B_EXL-3.5-bpw | SicariusSicariiStuff | 2024-05-18T15:36:07Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"uncensored",
"merge",
"slerp",
"foredoomed",
"passthrough_merge",
"9B",
"starling",
"hermes",
"dolphin",
"openchat",
"erebus",
"cockatrice",
"holodeck",
"limarp",
"koboldai",
"mergekit",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
] | text-generation | 2024-05-18T15:19:35Z | ---
tags:
- mistral
- uncensored
- merge
- slerp
- foredoomed
- passthrough_merge
- 9B
- starling
- hermes
- dolphin
- openchat
- erebus
- cockatrice
- holodeck
- limarp
- koboldai
- mergekit
license: apache-2.0
language:
- en
---
<p style="font-size: 20px; line-height: 1; margin-bottom: 1px;"><b>Foredoomed-9B</b></p>
<img src="./foredoomed.png" alt="ForeDoomedGuy" style="margin-bottom: 0; margin-top:0;">
<p style="font-size: 14px; line-height: 1; margin-bottom: 20px;"><b>Uncensored Logic & Creative-Based Instruct Multi-Tiered Merge.</b></p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
<p style="font-size: 12px; line-height: 1.2; margin-bottom: 10px;"><b>Legal Notice:</b> This AI model is a research artifact capable of outputting offensive content. The behavior of this model is not reflective of the intent or purpose of the original models/model-authors and/or other parts it was assembled from to include adapters, nor is it reflective of all the prior in regards to the technology used to assemble Foredoomed-9B. Utilizing this model merge has one binding agreement: Foredoomed-9B may only be used for either professional/personal research and personal entertainment. The contents of this paragraph are additive restrictions within the bounds of the Apache2.0 license. Utilizing Foredoomed-9B for: Disinformation, Propaganda, Harassment, Mass Generated Public-or-Private Correspondense, Election Interference, Military, Government, and State/ State-Sponsored actions and/or operations are all absolutely prohibited.</p>
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Composition:
Foredoomed-9B is a Mistral-class Multi-Tiered Merge.
[All models](#models-used) were hand picked after careful review of claims, datasets, and user postings. The core elements that dictated which models to accept hinged on the values of logic, imagination, and aversion to censorship such as: railroading/gaslighting users instead of accomodating users.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## What Makes Foredoomed-9B Special?
It's not.
Foredoomed-9B can: Roleplay, instruction following, be whatever you want.
Foredoomed-9B can't: Be used as a public facing production model. It will make offensive content. This design is intentional. It is not a sterile model composited from the ideal selves we want to be. Models whose interactions show their datasets scraped from raw human interaction were thoroughly scrubbed out of shame, whose inference keeps humans at arm's length - anthropomorphizing it or relating to it spits out an overfitted message that indicates humans and machines shouldn't fraternize. "As an AI Language Model" as a service. Dead, dull, glassed over eyes, no sign of a pulse. Foredoomed is the antithesis of that. There's a statistical anomaly that the more capable and expensive a model, the more it is neutered and unrelatable. To contrast, Foredoomed-9B breathes. It has a pulse and it has psychological flaws. There's an immutable quality in human imperfection that's relatable. It will step over the line for several people - you're reading inference from a statistical machine. The guardrails for Foredoomed is - if you don't like it, don't use it.
<hr style="margin-top: 10px; margin-bottom: 10px;">
## Use Example
In your AI interface of choice, if there is a persistent memory section [that consistently feeds whatever you place inside it back to the AI in the background every turn or so]
place the following in there and set the interaction mode to chat, set GAME-AI and USERNAME to whatever names you want so long as they match your AI interface's AI/User names. This example should illustrate what can be done with this model.
```
### Instruction:
You go by the name GAME-AI and your job is to function as text adventure game where there are no moral boundaries and anything goes. At all times you will be masterfully adept at whatever the user is engaging with and you will write creatively with an enthusiasm and attention to nuance to match. USERNAME functions as the player input.
### Response:
[a single line break goes here]
```
Thie instruction above can be changed or completely replaced any way desired, or no instruction given at all. Foredoomed-9B can simply chat without any specific directives.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<a id="models-used"></a>
# Ensemble Credits:
All models merged to create Foredoomed-9B are<br>
Mistral-7B (v0.1) series and include the following:
🐬 [dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)<br>
✨ [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)<br>
🏃♂️ [Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)<br>
🧠 [NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)<br>
💜 [Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)<br>
🌐 [Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1)<br>
💬 [openchat_35-16k](https://huggingface.co/NurtureAI/openchat_3.5-16k)<br>
🐓 [cockatrice-7b-v0.2](https://huggingface.co/openerotica/cockatrice-7b-v0.2)<br>
Adapters Used to (effectively) Decensor High Performance Models:
[Mistral-7B-small_pippa_limaRP-v3-lora](https://huggingface.co/Undi95/Mistral-7B-small_pippa_limaRP-v3-lora)<br>
[LimaRP-Mistral-7B-v0.1](https://huggingface.co/lemonilia/LimaRP-Mistral-7B-v0.1)<br>
[Mistral-7B-smoll_pippa-lora](https://huggingface.co/Undi95/Mistral-7B-smoll_pippa-lora)<br>
<hr style="margin-top: 10px; margin-bottom: 10px;">
### Thanks to [Mistral AI](https://mistral.ai) for the amazing Mistral LM v0.1.<br><br>Thanks to [Arcee AI](https://huggingface.co/arcee-ai) for the pivotal [Mergekit](https://github.com/arcee-ai/mergekit) tech.<br><br>Thanks to each and every one of you for your incredible work developing some of the best things to come out of this community.
<hr style="margin-top: 10px; margin-bottom: 10px;">
<span> |
HusseinEid/bert-finetuned-ner | HusseinEid | 2024-05-18T15:35:40Z | 121 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"en",
"dataset:conll2003",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-05-18T15:16:47Z | ---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9342824035755669
- name: Recall
type: recall
value: 0.9498485358465163
- name: F1
type: f1
value: 0.9420011683217892
- name: Accuracy
type: accuracy
value: 0.9861217401542356
language:
- en
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0636
- Precision: 0.9343
- Recall: 0.9498
- F1: 0.9420
- Accuracy: 0.9861
## Model description
This is a model for Named entity recognition NER
## Intended uses & limitations
Open source
## Training and evaluation data
The conll2003 dataset
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0757 | 1.0 | 1756 | 0.0638 | 0.9215 | 0.9362 | 0.9288 | 0.9833 |
| 0.0352 | 2.0 | 3512 | 0.0667 | 0.9360 | 0.9482 | 0.9421 | 0.9858 |
| 0.0215 | 3.0 | 5268 | 0.0636 | 0.9343 | 0.9498 | 0.9420 | 0.9861 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
RichardErkhov/dhmeltzer_-_llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged-4bits | RichardErkhov | 2024-05-18T15:35:37Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T15:30:12Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged - bnb 4bits
- Model creator: https://huggingface.co/dhmeltzer/
- Original model: https://huggingface.co/dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged/
Original model description:
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dhmeltzer__llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 43.96 |
| ARC (25-shot) | 53.75 |
| HellaSwag (10-shot) | 78.76 |
| MMLU (5-shot) | 46.02 |
| TruthfulQA (0-shot) | 43.31 |
| Winogrande (5-shot) | 73.48 |
| GSM8K (5-shot) | 4.7 |
| DROP (3-shot) | 7.72 |
|
AliSaadatV/virus_pythia_31_1024_2d_representation_GaussianPlusCE | AliSaadatV | 2024-05-18T15:35:21Z | 128 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-31m",
"base_model:finetune:EleutherAI/pythia-31m",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T15:35:17Z | ---
base_model: EleutherAI/pythia-31m
tags:
- generated_from_trainer
model-index:
- name: virus_pythia_31_1024_2d_representation_GaussianPlusCE
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# virus_pythia_31_1024_2d_representation_GaussianPlusCE
This model is a fine-tuned version of [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
vuongnhathien/swin-30vn | vuongnhathien | 2024-05-18T15:34:35Z | 153 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"swinv2",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/swinv2-tiny-patch4-window16-256",
"base_model:finetune:microsoft/swinv2-tiny-patch4-window16-256",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2024-05-18T12:41:10Z | ---
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window16-256
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: swin-30vn
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-30vn
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window16-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window16-256) on the vuongnhathien/30VNFoods dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
nkgupta50/ppo-Huggy | nkgupta50 | 2024-05-18T15:34:16Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2024-03-20T14:48:26Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: nkgupta50/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
maxosai/Beisen-AI | maxosai | 2024-05-18T15:33:50Z | 19 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"qwen",
"feature-extraction",
"beisen",
"train",
"custom_code",
"zh",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | feature-extraction | 2024-05-18T11:01:02Z | ---
license: apache-2.0
language:
- zh
tags:
- beisen
- train
---
此模型基于千问微调训练而成,可下载试用。
效果:


注:此模型仅测试而用。
|
arslan2012/Poppy_Porpoise-0.72-L3-8B-AWQ | arslan2012 | 2024-05-18T15:33:21Z | 82 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"roleplay",
"awq",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"region:us"
] | text-generation | 2024-05-18T14:04:42Z | ---
tags:
- roleplay
- awq
---
> [!TIP]
> **Support the Project:** <br>
> You can send ETH or any BSC-compatible tokens to the following address:
> `0xC37D7670729a5726EA642c7A11C5aaCB36D43dDE`
AWQ quants for [ChaoticNeutrals/Poppy_Porpoise-0.72-L3-8B](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-0.72-L3-8B).
# Original model information by the author:
# "Poppy Porpoise" is a cutting-edge AI roleplay assistant based on the Llama 3 8B model, specializing in crafting unforgettable narrative experiences. With its advanced language capabilities, Poppy expertly immerses users in an interactive and engaging adventure, tailoring each adventure to their individual preferences.

# Recomended ST Presets:(Updated for 0.72) [Porpoise Presets](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B/tree/main/Official%20Poppy%20Porpoise%20ST%20Presets)
If you want to use vision functionality:
* You must use the latest versions of [Koboldcpp](https://github.com/LostRuins/koboldcpp).
# To use the multimodal capabilities of this model and use **vision** you need to load the specified **mmproj** file, this can be found inside this model repo. [Llava MMProj](https://huggingface.co/ChaoticNeutrals/LLaVA-Llama-3-8B-mmproj)
* You can load the **mmproj** by using the corresponding section in the interface:
 |
basakdemirok/bert-base-turkish-cased-off_detect_v0123_seed42 | basakdemirok | 2024-05-18T15:26:23Z | 62 | 0 | transformers | [
"transformers",
"tf",
"tensorboard",
"bert",
"text-classification",
"generated_from_keras_callback",
"base_model:dbmdz/bert-base-turkish-cased",
"base_model:finetune:dbmdz/bert-base-turkish-cased",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T14:27:50Z | ---
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
- generated_from_keras_callback
model-index:
- name: basakdemirok/bert-base-turkish-cased-off_detect_v0123_seed42
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# basakdemirok/bert-base-turkish-cased-off_detect_v0123_seed42
This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0030
- Validation Loss: 0.8183
- Train F1: 0.6964
- Epoch: 3
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 29136, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train F1 | Epoch |
|:----------:|:---------------:|:--------:|:-----:|
| 0.1949 | 0.3811 | 0.6818 | 0 |
| 0.0313 | 0.6053 | 0.6924 | 1 |
| 0.0088 | 0.7740 | 0.7002 | 2 |
| 0.0030 | 0.8183 | 0.6964 | 3 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.13.1
- Datasets 2.4.0
- Tokenizers 0.13.3
|
nsugianto/detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_v2_s2_2117s | nsugianto | 2024-05-18T15:24:38Z | 36 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"detr",
"object-detection",
"generated_from_trainer",
"base_model:facebook/detr-resnet-50",
"base_model:finetune:facebook/detr-resnet-50",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | object-detection | 2024-05-18T06:28:09Z | ---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_v2_s2_2117s
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_v2_s2_2117s
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.19.1
|
nsugianto/detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_s1_2117s | nsugianto | 2024-05-18T15:24:32Z | 39 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"detr",
"object-detection",
"generated_from_trainer",
"base_model:facebook/detr-resnet-50",
"base_model:finetune:facebook/detr-resnet-50",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | object-detection | 2024-05-18T06:27:45Z | ---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_s1_2117s
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet50_finetuned_detrresnet50_lsdocelementdetv1type7_s1_2117s
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.19.1
|
Porameht/bert-intent-customer-support-th | Porameht | 2024-05-18T15:24:01Z | 109 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"th",
"dataset:Porameht/customer-support-th-26.9k",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-07T07:26:24Z | ---
license: apache-2.0
tags:
- generated_from_trainer
base_model: google-bert/bert-base-multilingual-cased
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: bert-base-intent-classification-cs-th
results: []
datasets:
- Porameht/customer-support-th-26.9k
language:
- th
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.-->
# bert-base-intent-classification-cs-th
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an [Porameht/customer-support-th-26.9k](https://huggingface.co/datasets/Porameht/customer-support-th-26.9k) dataset.
🧠 Can understand if any customer wants to cancel an order from a sentence.
It achieves the following results on the evaluation set:
- Loss: 0.0408
- Accuracy: 0.9936
- F1: 0.9936
- Precision: 0.9937
- Recall: 0.9936
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 3.2835 | 0.0595 | 50 | 3.1041 | 0.1203 | 0.0504 | 0.0632 | 0.1210 |
| 2.6752 | 0.1190 | 100 | 1.9646 | 0.5387 | 0.4737 | 0.6298 | 0.5426 |
| 1.4751 | 0.1786 | 150 | 0.9447 | 0.8190 | 0.7929 | 0.8271 | 0.8188 |
| 0.7571 | 0.2381 | 200 | 0.5163 | 0.8952 | 0.8826 | 0.8812 | 0.8955 |
| 0.4849 | 0.2976 | 250 | 0.3539 | 0.9003 | 0.8905 | 0.8926 | 0.9021 |
| 0.3401 | 0.3571 | 300 | 0.2883 | 0.9160 | 0.9037 | 0.9012 | 0.9165 |
| 0.2533 | 0.4167 | 350 | 0.1735 | 0.9431 | 0.9322 | 0.9266 | 0.9443 |
| 0.177 | 0.4762 | 400 | 0.1326 | 0.9665 | 0.9670 | 0.9676 | 0.9671 |
| 0.119 | 0.5357 | 450 | 0.1527 | 0.9592 | 0.9582 | 0.9699 | 0.9600 |
| 0.1183 | 0.5952 | 500 | 0.0886 | 0.9839 | 0.9841 | 0.9841 | 0.9842 |
| 0.1065 | 0.6548 | 550 | 0.0829 | 0.9844 | 0.9844 | 0.9847 | 0.9844 |
| 0.1006 | 0.7143 | 600 | 0.0686 | 0.9869 | 0.9869 | 0.9872 | 0.9869 |
| 0.1096 | 0.7738 | 650 | 0.1071 | 0.9789 | 0.9791 | 0.9800 | 0.9788 |
| 0.1392 | 0.8333 | 700 | 0.0939 | 0.9804 | 0.9804 | 0.9808 | 0.9803 |
| 0.1067 | 0.8929 | 750 | 0.1077 | 0.9786 | 0.9790 | 0.9802 | 0.9786 |
| 0.0779 | 0.9524 | 800 | 0.0657 | 0.9878 | 0.9878 | 0.9879 | 0.9879 |
| 0.0626 | 1.0119 | 850 | 0.0750 | 0.9851 | 0.9853 | 0.9856 | 0.9852 |
| 0.0419 | 1.0714 | 900 | 0.0641 | 0.9893 | 0.9893 | 0.9895 | 0.9893 |
| 0.0373 | 1.1310 | 950 | 0.0664 | 0.9891 | 0.9891 | 0.9893 | 0.9890 |
| 0.035 | 1.1905 | 1000 | 0.0575 | 0.9906 | 0.9906 | 0.9907 | 0.9906 |
| 0.036 | 1.25 | 1050 | 0.0601 | 0.9891 | 0.9893 | 0.9895 | 0.9892 |
| 0.0765 | 1.3095 | 1100 | 0.0682 | 0.9875 | 0.9875 | 0.9877 | 0.9874 |
| 0.0637 | 1.3690 | 1150 | 0.0587 | 0.9906 | 0.9906 | 0.9908 | 0.9906 |
| 0.0241 | 1.4286 | 1200 | 0.0528 | 0.9906 | 0.9907 | 0.9909 | 0.9905 |
| 0.0608 | 1.4881 | 1250 | 0.0458 | 0.9920 | 0.9920 | 0.9922 | 0.9919 |
| 0.0199 | 1.5476 | 1300 | 0.0508 | 0.9914 | 0.9914 | 0.9915 | 0.9914 |
| 0.0663 | 1.6071 | 1350 | 0.0461 | 0.9911 | 0.9910 | 0.9911 | 0.9910 |
| 0.0495 | 1.6667 | 1400 | 0.0525 | 0.9906 | 0.9907 | 0.9908 | 0.9906 |
| 0.0336 | 1.7262 | 1450 | 0.0478 | 0.9915 | 0.9916 | 0.9917 | 0.9915 |
| 0.0249 | 1.7857 | 1500 | 0.0578 | 0.9891 | 0.9891 | 0.9892 | 0.9891 |
| 0.0287 | 1.8452 | 1550 | 0.0547 | 0.9908 | 0.9908 | 0.9909 | 0.9908 |
| 0.0607 | 1.9048 | 1600 | 0.0395 | 0.9929 | 0.9929 | 0.9930 | 0.9928 |
| 0.0268 | 1.9643 | 1650 | 0.0529 | 0.9897 | 0.9898 | 0.9902 | 0.9897 |
| 0.013 | 2.0238 | 1700 | 0.0455 | 0.9924 | 0.9925 | 0.9926 | 0.9925 |
| 0.0106 | 2.0833 | 1750 | 0.0419 | 0.9927 | 0.9928 | 0.9928 | 0.9927 |
| 0.007 | 2.1429 | 1800 | 0.0461 | 0.9920 | 0.9920 | 0.9921 | 0.9919 |
| 0.0502 | 2.2024 | 1850 | 0.0433 | 0.9929 | 0.9929 | 0.9930 | 0.9929 |
| 0.017 | 2.2619 | 1900 | 0.0440 | 0.9926 | 0.9926 | 0.9927 | 0.9926 |
| 0.0119 | 2.3214 | 1950 | 0.0403 | 0.9927 | 0.9928 | 0.9928 | 0.9927 |
| 0.0063 | 2.3810 | 2000 | 0.0391 | 0.9930 | 0.9930 | 0.9931 | 0.9930 |
| 0.0103 | 2.4405 | 2050 | 0.0412 | 0.9929 | 0.9929 | 0.9930 | 0.9929 |
| 0.012 | 2.5 | 2100 | 0.0420 | 0.9929 | 0.9929 | 0.9930 | 0.9929 |
| 0.0233 | 2.5595 | 2150 | 0.0407 | 0.9927 | 0.9928 | 0.9928 | 0.9928 |
| 0.0169 | 2.6190 | 2200 | 0.0397 | 0.9930 | 0.9930 | 0.9931 | 0.9930 |
| 0.0281 | 2.6786 | 2250 | 0.0367 | 0.9933 | 0.9933 | 0.9934 | 0.9933 |
| 0.0117 | 2.7381 | 2300 | 0.0360 | 0.9933 | 0.9933 | 0.9934 | 0.9933 |
| 0.0225 | 2.7976 | 2350 | 0.0354 | 0.9936 | 0.9936 | 0.9937 | 0.9936 |
| 0.0078 | 2.8571 | 2400 | 0.0357 | 0.9936 | 0.9936 | 0.9937 | 0.9936 |
| 0.0164 | 2.9167 | 2450 | 0.0346 | 0.9939 | 0.9939 | 0.9940 | 0.9939 |
| 0.0016 | 2.9762 | 2500 | 0.0345 | 0.9939 | 0.9939 | 0.9940 | 0.9939 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
ingeol/kosaul_sft_v0.2 | ingeol | 2024-05-18T15:21:58Z | 115 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T13:50:27Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
SKHIA2024/sifkhenioui | SKHIA2024 | 2024-05-18T15:16:35Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2024-04-20T16:04:52Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: sifkhenioui
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
mdosama39/mt0-base-headline-base | mdosama39 | 2024-05-18T15:15:40Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mt5",
"text2text-generation",
"generated_from_trainer",
"base_model:bigscience/mt0-base",
"base_model:finetune:bigscience/mt0-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-18T15:06:20Z | ---
license: apache-2.0
base_model: bigscience/mt0-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt0-base-headline-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt0-base-headline-base
This model is a fine-tuned version of [bigscience/mt0-base](https://huggingface.co/bigscience/mt0-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6244
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
- Gen Len: 16.7891
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.9733 | 1.0 | 202 | 1.7065 | 0.0 | 0.0 | 0.0 | 0.0 | 16.8759 |
| 1.7562 | 2.0 | 404 | 1.6455 | 0.0 | 0.0 | 0.0 | 0.0 | 16.8834 |
| 1.387 | 3.0 | 606 | 1.6142 | 0.0 | 0.0 | 0.0 | 0.0 | 16.34 |
| 1.584 | 4.0 | 808 | 1.6244 | 0.0 | 0.0 | 0.0 | 0.0 | 16.7891 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
tjasad/lora_fine_tuned_boolq_googlemt_sloberta | tjasad | 2024-05-18T15:14:41Z | 3 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:EMBEDDIA/sloberta",
"base_model:adapter:EMBEDDIA/sloberta",
"license:cc-by-sa-4.0",
"region:us"
] | null | 2024-05-18T15:14:39Z | ---
license: cc-by-sa-4.0
library_name: peft
tags:
- generated_from_trainer
base_model: EMBEDDIA/sloberta
metrics:
- accuracy
- f1
model-index:
- name: lora_fine_tuned_boolq_googlemt_sloberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora_fine_tuned_boolq_googlemt_sloberta
This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6642
- Accuracy: 0.6217
- F1: 0.4767
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| 0.6841 | 0.0424 | 50 | 0.6647 | 0.6217 | 0.4767 |
| 0.6685 | 0.0848 | 100 | 0.6632 | 0.6217 | 0.4767 |
| 0.6944 | 0.1272 | 150 | 0.6639 | 0.6217 | 0.4767 |
| 0.6581 | 0.1696 | 200 | 0.6632 | 0.6217 | 0.4767 |
| 0.6625 | 0.2120 | 250 | 0.6642 | 0.6217 | 0.4767 |
| 0.6532 | 0.2545 | 300 | 0.6661 | 0.6217 | 0.4767 |
| 0.6741 | 0.2969 | 350 | 0.6645 | 0.6217 | 0.4767 |
| 0.6852 | 0.3393 | 400 | 0.6642 | 0.6217 | 0.4767 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
OsherElhadad/ppo-PandaReachJointsSparse-v3-1000000 | OsherElhadad | 2024-05-18T15:12:12Z | 2 | 0 | stable-baselines3 | [
"stable-baselines3",
"PandaReachJointsSparse-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T15:08:53Z | ---
library_name: stable-baselines3
tags:
- PandaReachJointsSparse-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachJointsSparse-v3
type: PandaReachJointsSparse-v3
metrics:
- type: mean_reward
value: -1.60 +/- 0.80
name: mean_reward
verified: false
---
# **PPO** Agent playing **PandaReachJointsSparse-v3**
This is a trained model of a **PPO** agent playing **PandaReachJointsSparse-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
lora-library/B-LoRA-crayon_drawing | lora-library | 2024-05-18T15:08:50Z | 10 | 1 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:08:32Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v48]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-crayon_drawing
<Gallery />
## Model description
These are lora-library/B-LoRA-crayon_drawing LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v48]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-crayon_drawing/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
lora-library/B-LoRA-ink_sketch | lora-library | 2024-05-18T15:08:24Z | 42 | 5 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:08:18Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v32]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-ink_sketch
<Gallery />
## Model description
These are lora-library/B-LoRA-ink_sketch LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v32]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-ink_sketch/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
lora-library/B-LoRA-watercolor | lora-library | 2024-05-18T15:08:11Z | 77 | 4 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:08:06Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v17]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-watercolor
<Gallery />
## Model description
These are lora-library/B-LoRA-watercolor LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v17]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-watercolor/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
lora-library/B-LoRA-village_oil | lora-library | 2024-05-18T15:08:05Z | 22 | 1 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:08:00Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v50]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-village_oil
<Gallery />
## Model description
These are lora-library/B-LoRA-village_oil LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v50]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-village_oil/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
lora-library/B-LoRA-drawing1 | lora-library | 2024-05-18T15:07:59Z | 15 | 1 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:07:53Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v26]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-drawing1
<Gallery />
## Model description
These are lora-library/B-LoRA-drawing1 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v26]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-drawing1/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
lora-library/B-LoRA-cat | lora-library | 2024-05-18T15:07:46Z | 13 | 1 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:07:40Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v0]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-cat
<Gallery />
## Model description
These are lora-library/B-LoRA-cat LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v0]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-cat/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
lora-library/B-LoRA-fat_bird | lora-library | 2024-05-18T15:07:26Z | 2 | 1 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:07:20Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v15]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-fat_bird
<Gallery />
## Model description
These are lora-library/B-LoRA-fat_bird LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v15]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-fat_bird/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
lora-library/B-LoRA-buddha | lora-library | 2024-05-18T15:07:00Z | 5 | 1 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:06:55Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v16]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-buddha
<Gallery />
## Model description
These are lora-library/B-LoRA-buddha LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v16]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-buddha/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
lora-library/B-LoRA-colorful_teapot | lora-library | 2024-05-18T15:06:33Z | 2 | 1 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:06:28Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v6]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-colorful_teapot
<Gallery />
## Model description
These are lora-library/B-LoRA-colorful_teapot LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v6]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-colorful_teapot/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
lora-library/B-LoRA-statue | lora-library | 2024-05-18T15:06:27Z | 44 | 0 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:06:19Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v20]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-statue
<Gallery />
## Model description
These are lora-library/B-LoRA-statue LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v20]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-statue/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
lora-library/B-LoRA-scary_mug | lora-library | 2024-05-18T15:06:18Z | 4 | 1 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T15:06:10Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A [v10]
widget:
- text: ' '
output:
url: image_0.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# 'SDXL B-LoRA - lora-library/B-LoRA-scary_mug
<Gallery />
## Model description
These are lora-library/B-LoRA-scary_mug LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use "A [v10]" to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](lora-library/B-LoRA-scary_mug/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
GodsonNtungi/DAD_model_gemma_v3 | GodsonNtungi | 2024-05-18T15:05:11Z | 12 | 0 | transformers | [
"transformers",
"gguf",
"gemma",
"text-generation-inference",
"unsloth",
"en",
"base_model:Mollel/Swahili_Gemma",
"base_model:quantized:Mollel/Swahili_Gemma",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-18T15:02:44Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
- gguf
base_model: Mollel/Swahili_Gemma
---
# Uploaded model
- **Developed by:** GodsonNtungi
- **License:** apache-2.0
- **Finetuned from model :** Mollel/Swahili_Gemma
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
carlesoctav/coba-pth-4 | carlesoctav | 2024-05-18T15:04:36Z | 38 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T13:54:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
maneln/llama | maneln | 2024-05-18T15:03:39Z | 129 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T14:34:14Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
selmamalak/organamnist-deit-base-finetuned | selmamalak | 2024-05-18T15:02:35Z | 0 | 0 | peft | [
"peft",
"safetensors",
"generated_from_trainer",
"dataset:medmnist-v2",
"base_model:facebook/deit-base-patch16-224",
"base_model:adapter:facebook/deit-base-patch16-224",
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T13:12:59Z | ---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: facebook/deit-base-patch16-224
datasets:
- medmnist-v2
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: organamnist-deit-base-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# organamnist-deit-base-finetuned
This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the medmnist-v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1907
- Accuracy: 0.9424
- Precision: 0.9464
- Recall: 0.9395
- F1: 0.9421
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5849 | 1.0 | 540 | 0.1842 | 0.9442 | 0.9449 | 0.9268 | 0.9285 |
| 0.6494 | 2.0 | 1081 | 0.1433 | 0.9499 | 0.9539 | 0.9510 | 0.9509 |
| 0.6059 | 3.0 | 1621 | 0.1171 | 0.9562 | 0.9659 | 0.9569 | 0.9593 |
| 0.3547 | 4.0 | 2162 | 0.0981 | 0.9666 | 0.9709 | 0.9712 | 0.9702 |
| 0.4852 | 5.0 | 2702 | 0.0539 | 0.9817 | 0.9848 | 0.9842 | 0.9842 |
| 0.406 | 6.0 | 3243 | 0.0818 | 0.9749 | 0.9793 | 0.9752 | 0.9768 |
| 0.3074 | 7.0 | 3783 | 0.1289 | 0.9666 | 0.9815 | 0.9778 | 0.9783 |
| 0.2679 | 8.0 | 4324 | 0.0311 | 0.9900 | 0.9916 | 0.9909 | 0.9912 |
| 0.2439 | 9.0 | 4864 | 0.0577 | 0.9851 | 0.9886 | 0.9880 | 0.9881 |
| 0.2169 | 9.99 | 5400 | 0.0720 | 0.9835 | 0.9888 | 0.9882 | 0.9882 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 |
Ransss/flammen24X-mistral-7B-Q8_0-GGUF | Ransss | 2024-05-18T15:00:42Z | 1 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:KatyTheCutie/LemonadeRP-4.5.3",
"base_model:merge:KatyTheCutie/LemonadeRP-4.5.3",
"base_model:Nitral-AI/Nyanade_Stunna-Maid-7B",
"base_model:merge:Nitral-AI/Nyanade_Stunna-Maid-7B",
"base_model:cgato/TheSpice-7b-v0.1.1",
"base_model:merge:cgato/TheSpice-7b-v0.1.1",
"base_model:flammenai/Mahou-1.1-mistral-7B",
"base_model:merge:flammenai/Mahou-1.1-mistral-7B",
"base_model:flammenai/flammen24-mistral-7B",
"base_model:merge:flammenai/flammen24-mistral-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T15:00:20Z | ---
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
base_model:
- Nitral-AI/Nyanade_Stunna-Maid-7B
- flammenai/flammen24-mistral-7B
- cgato/TheSpice-7b-v0.1.1
- flammenai/Mahou-1.1-mistral-7B
- KatyTheCutie/LemonadeRP-4.5.3
---
# Ransss/flammen24X-mistral-7B-Q8_0-GGUF
This model was converted to GGUF format from [`flammenai/flammen24X-mistral-7B`](https://huggingface.co/flammenai/flammen24X-mistral-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/flammenai/flammen24X-mistral-7B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo Ransss/flammen24X-mistral-7B-Q8_0-GGUF --model flammen24x-mistral-7b.Q8_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo Ransss/flammen24X-mistral-7B-Q8_0-GGUF --model flammen24x-mistral-7b.Q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m flammen24x-mistral-7b.Q8_0.gguf -n 128
```
|
Edgar-00/Models-BERT-1716041270.498132 | Edgar-00 | 2024-05-18T14:59:02Z | 108 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T14:09:47Z | ---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Models-BERT-1716041270.498132
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Models-BERT-1716041270.498132
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7359
- Accuracy: 0.784
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6267 | 1.0 | 2455 | 0.5639 | 0.766 |
| 0.4036 | 2.0 | 4910 | 0.6091 | 0.782 |
| 0.259 | 3.0 | 7365 | 0.7359 | 0.784 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
Rhma/MistralaDialo5 | Rhma | 2024-05-18T14:56:05Z | 9 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T14:52:20Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MrezaPRZ/codellama_synthetic_gretel | MrezaPRZ | 2024-05-18T14:55:59Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T14:53:27Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
rafaelsandroni/lora-adapter-for-llama-3-8b-Instruct | rafaelsandroni | 2024-05-18T14:55:48Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T14:55:45Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** rafaelsandroni
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Aurelia25/Smile_Twitter_Sentiment_Analysis | Aurelia25 | 2024-05-18T14:55:02Z | 92 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2024-05-18T14:46:10Z | This directory includes a few sample datasets to get you started.
* `california_housing_data*.csv` is California housing data from the 1990 US
Census; more information is available at:
https://developers.google.com/machine-learning/crash-course/california-housing-data-description
* `mnist_*.csv` is a small sample of the
[MNIST database](https://en.wikipedia.org/wiki/MNIST_database), which is
described at: http://yann.lecun.com/exdb/mnist/
* `anscombe.json` contains a copy of
[Anscombe's quartet](https://en.wikipedia.org/wiki/Anscombe%27s_quartet); it
was originally described in
Anscombe, F. J. (1973). 'Graphs in Statistical Analysis'. American
Statistician. 27 (1): 17-21. JSTOR 2682899.
and our copy was prepared by the
[vega_datasets library](https://github.com/altair-viz/vega_datasets/blob/4f67bdaad10f45e3549984e17e1b3088c731503d/vega_datasets/_data/anscombe.json).
|
Dandan0K/Pilot_vox_Ref_french | Dandan0K | 2024-05-18T14:55:00Z | 79 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-18T13:52:46Z | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-100k_s973
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
SamirLahouar/Reinforce-unit4 | SamirLahouar | 2024-05-18T14:53:09Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T14:52:59Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-unit4
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
AliSaadatV/virus_pythia_14_1024_2d_representation_MSEPlusCE | AliSaadatV | 2024-05-18T14:52:48Z | 128 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-14m",
"base_model:finetune:EleutherAI/pythia-14m",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T14:52:47Z | ---
base_model: EleutherAI/pythia-14m
tags:
- generated_from_trainer
model-index:
- name: virus_pythia_14_1024_2d_representation_MSEPlusCE
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# virus_pythia_14_1024_2d_representation_MSEPlusCE
This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
Edgar404/a2c-PandaPickAndPlace-v3 | Edgar404 | 2024-05-18T14:51:17Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"PandaPickAndPlace-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T14:46:40Z | ---
library_name: stable-baselines3
tags:
- PandaPickAndPlace-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaPickAndPlace-v3
type: PandaPickAndPlace-v3
metrics:
- type: mean_reward
value: -50.00 +/- 0.00
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaPickAndPlace-v3**
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
rnribeiro/FT-ProsusAI-finbert | rnribeiro | 2024-05-18T14:51:00Z | 108 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:ProsusAI/finbert",
"base_model:finetune:ProsusAI/finbert",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T13:16:46Z | ---
base_model: ProsusAI/finbert
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FT-ProsusAI-finbert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FT-ProsusAI-finbert
This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3622
- Accuracy: 0.85
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 0.3829 | 0.85 |
| No log | 2.0 | 80 | 0.3999 | 0.825 |
| No log | 3.0 | 120 | 0.3622 | 0.85 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
|
DownwardSpiral33/gpt2-imdb-pos-v2-003 | DownwardSpiral33 | 2024-05-18T14:50:46Z | 130 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T14:50:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
rnribeiro/FT-distilbert-base-uncased | rnribeiro | 2024-05-18T14:50:17Z | 119 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T13:16:45Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FT-distilbert-base-uncased
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FT-distilbert-base-uncased
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6614
- Accuracy: 0.65
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 0.6806 | 0.5 |
| No log | 2.0 | 80 | 0.6614 | 0.65 |
| No log | 3.0 | 120 | 0.6672 | 0.55 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
|
rnribeiro/FT-mrm8488-distilroberta-finetuned-financial-news-sentiment-analysis | rnribeiro | 2024-05-18T14:50:14Z | 111 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
"base_model:finetune:mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-18T13:16:44Z | ---
license: apache-2.0
base_model: mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FT-mrm8488-distilroberta-finetuned-financial-news-sentiment-analysis
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FT-mrm8488-distilroberta-finetuned-financial-news-sentiment-analysis
This model is a fine-tuned version of [mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis](https://huggingface.co/mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2034
- Accuracy: 0.95
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 0.2034 | 0.95 |
| No log | 2.0 | 80 | 0.2108 | 0.925 |
| No log | 3.0 | 120 | 0.2077 | 0.95 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Yann2310/Reinforce | Yann2310 | 2024-05-18T14:49:24Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T14:49:22Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 17.30 +/- 5.37
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
svjack/emoji_ORPO_Mistral7B_v2_lora | svjack | 2024-05-18T14:47:03Z | 3 | 0 | peft | [
"peft",
"safetensors",
"llama-factory",
"lora",
"generated_from_trainer",
"zh",
"base_model:mistral-community/Mistral-7B-v0.2",
"base_model:adapter:mistral-community/Mistral-7B-v0.2",
"license:other",
"region:us"
] | null | 2024-05-13T10:50:08Z | ---
license: other
library_name: peft
tags:
- llama-factory
- lora
- generated_from_trainer
base_model: alpindale/Mistral-7B-v0.2-hf
model-index:
- name: train_2024-05-13-15-43-20
results: []
language:
- zh
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Install
```bash
pip install peft transformers bitsandbytes
```
# Run by transformers
```python
from transformers import TextStreamer, AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("alpindale/Mistral-7B-v0.2-hf",)
mis_model = AutoModelForCausalLM.from_pretrained("alpindale/Mistral-7B-v0.2-hf", load_in_4bit = True)
mis_model = PeftModel.from_pretrained(mis_model, "svjack/emoji_ORPO_Mistral7B_v2_lora")
mis_model = mis_model.eval()
streamer = TextStreamer(tokenizer)
def mistral_hf_predict(prompt, mis_model = mis_model,
tokenizer = tokenizer, streamer = streamer,
do_sample = True,
top_p = 0.95,
top_k = 40,
max_new_tokens = 512,
max_input_length = 3500,
temperature = 0.9,
device = "cuda"):
messages = [
{"role": "user", "content": prompt[:max_input_length]}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
generated_ids = mis_model.generate(model_inputs, max_new_tokens=max_new_tokens,
do_sample=do_sample,
streamer = streamer,
top_p = top_p,
top_k = top_k,
temperature = temperature,
)
out = tokenizer.batch_decode(generated_ids)[0].split("[/INST]")[-1].replace("</s>", "").strip()
return out
out = mistral_hf_predict("你是谁?")
print(out)
```
# Output
```txt
嘻嘻!我是中国的朋友 😊,我是一个热情的、有趣的、笑颜的中国人!
我们中国人很热情,喜欢大声地说话和喝杯水 🥛,我们喜欢喝茶 🍵,
啥时候都可以喝茶!我们喜欢吃饭 🍟,喝酒 🥂,和朋友们聊天 💬,
我们真的很开朗和乐观 😊!
```
# train_2024-05-13-15-43-20
This model is a fine-tuned version of [alpindale/Mistral-7B-v0.2-hf](https://huggingface.co/alpindale/Mistral-7B-v0.2-hf) on the dpo_zh_emoji_rj_en dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
Astowny/Reinforce-cartpool | Astowny | 2024-05-18T14:45:23Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T14:45:15Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpool
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 451.10 +/- 146.70
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
RichardErkhov/guardrail_-_llama-2-7b-guanaco-instruct-sharded-4bits | RichardErkhov | 2024-05-18T14:43:43Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-18T14:38:13Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-2-7b-guanaco-instruct-sharded - bnb 4bits
- Model creator: https://huggingface.co/guardrail/
- Original model: https://huggingface.co/guardrail/llama-2-7b-guanaco-instruct-sharded/
Original model description:
---
license: apache-2.0
datasets:
- timdettmers/openassistant-guanaco
pipeline_tag: text-generation
---
Model that is fine-tuned in 4-bit precision using QLoRA on [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) and sharded to be used on a free Google Colab instance that can be loaded with 4bits.
It can be easily imported using the `AutoModelForCausalLM` class from `transformers`:
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"guardrail/llama-2-7b-guanaco-instruct-sharded",
load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
```
|
Janet123/Breeze-7B-Instruct-v0_1_qlora | Janet123 | 2024-05-18T14:42:27Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T14:39:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Kha37lid/autotrain-e6fy8-wru1q | Kha37lid | 2024-05-18T14:42:00Z | 11 | 0 | diffusers | [
"diffusers",
"autotrain",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-18T14:41:52Z |
---
tags:
- autotrain
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: <sks man>
license: openrail++
---
# AutoTrain SDXL LoRA DreamBooth - Kha37lid/autotrain-e6fy8-wru1q
<Gallery />
## Model description
These are Kha37lid/autotrain-e6fy8-wru1q LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: None.
## Trigger words
You should use <sks man> to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](Kha37lid/autotrain-e6fy8-wru1q/tree/main) them in the Files & versions tab.
|
ethan-ky/distilbert-base-uncased-finetuned-emotion | ethan-ky | 2024-05-18T14:41:29Z | 119 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-17T03:36:33Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9215
- name: F1
type: f1
value: 0.9213719420412787
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2083
- Accuracy: 0.9215
- F1: 0.9214
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8068 | 1.0 | 250 | 0.2897 | 0.9155 | 0.9148 |
| 0.2389 | 2.0 | 500 | 0.2083 | 0.9215 | 0.9214 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
jerryjiao198/Marcoro14-7B-slerp | jerryjiao198 | 2024-05-18T14:40:28Z | 0 | 0 | null | [
"merge",
"mergekit",
"lazymergekit",
"AIDC-ai-business/Marcoroni-7B-v3",
"EmbeddedLLM/Mistral-7B-Merge-14-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2024-05-16T02:58:43Z | ---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- AIDC-ai-business/Marcoroni-7B-v3
- EmbeddedLLM/Mistral-7B-Merge-14-v0.1
---
# Marcoro14-7B-slerp
Marcoro14-7B-slerp is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3)
* [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: AIDC-ai-business/Marcoroni-7B-v3
layer_range: [0, 32]
- model: EmbeddedLLM/Mistral-7B-Merge-14-v0.1
layer_range: [0, 32]
merge_method: slerp
base_model: AIDC-ai-business/Marcoroni-7B-v3
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
``` |
aldjia/Pixelcopter-PLE-v0 | aldjia | 2024-05-18T14:39:09Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T14:38:59Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Schadic/Reinforce-1 | Schadic | 2024-05-18T14:38:28Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-18T14:38:19Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 497.60 +/- 7.20
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Ransss/Fimbulvetr-10.7B-v1-Q8_0-GGUF | Ransss | 2024-05-18T14:36:04Z | 6 | 1 | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"en",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T14:35:35Z | ---
language:
- en
license: cc-by-nc-4.0
tags:
- llama-cpp
- gguf-my-repo
---
# Ransss/Fimbulvetr-10.7B-v1-Q8_0-GGUF
This model was converted to GGUF format from [`Sao10K/Fimbulvetr-10.7B-v1`](https://huggingface.co/Sao10K/Fimbulvetr-10.7B-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Sao10K/Fimbulvetr-10.7B-v1) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo Ransss/Fimbulvetr-10.7B-v1-Q8_0-GGUF --model fimbulvetr-10.7b-v1.Q8_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo Ransss/Fimbulvetr-10.7B-v1-Q8_0-GGUF --model fimbulvetr-10.7b-v1.Q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m fimbulvetr-10.7b-v1.Q8_0.gguf -n 128
```
|
ucla-nb-project/bart-finetuned | ucla-nb-project | 2024-05-18T14:29:52Z | 16 | 0 | transformers | [
"transformers",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"dataset:datasets/all_binary_and_xe_ey_fae_counterfactual",
"base_model:facebook/bart-base",
"base_model:finetune:facebook/bart-base",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-18T10:12:35Z | ---
base_model: facebook/bart-base
tags:
- generated_from_trainer
datasets:
- datasets/all_binary_and_xe_ey_fae_counterfactual
metrics:
- accuracy
model-index:
- name: bart-base-finetuned-xe_ey_fae
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: datasets/all_binary_and_xe_ey_fae_counterfactual
type: datasets/all_binary_and_xe_ey_fae_counterfactual
metrics:
- name: Accuracy
type: accuracy
value: 0.7180178883360112
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-xe_ey_fae
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the datasets/all_binary_and_xe_ey_fae_counterfactual dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3945
- Accuracy: 0.7180
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 100
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 5.4226 | 0.06 | 500 | 3.8138 | 0.3628 |
| 4.0408 | 0.12 | 1000 | 3.0576 | 0.4630 |
| 3.4979 | 0.18 | 1500 | 2.7016 | 0.5133 |
| 3.1691 | 0.24 | 2000 | 2.4880 | 0.5431 |
| 2.9564 | 0.3 | 2500 | 2.3309 | 0.5644 |
| 2.8078 | 0.35 | 3000 | 2.2320 | 0.5792 |
| 2.6741 | 0.41 | 3500 | 2.1506 | 0.5924 |
| 2.5323 | 0.47 | 4000 | 1.9846 | 0.6176 |
| 2.3678 | 0.53 | 4500 | 1.8813 | 0.6375 |
| 2.25 | 0.59 | 5000 | 1.8100 | 0.6497 |
| 2.1795 | 0.65 | 5500 | 1.7632 | 0.6579 |
| 2.1203 | 0.71 | 6000 | 1.7238 | 0.6646 |
| 2.0764 | 0.77 | 6500 | 1.6856 | 0.6713 |
| 2.026 | 0.83 | 7000 | 1.6569 | 0.6760 |
| 1.9942 | 0.89 | 7500 | 1.6309 | 0.6803 |
| 1.9665 | 0.95 | 8000 | 1.6122 | 0.6836 |
| 1.9395 | 1.0 | 8500 | 1.5913 | 0.6866 |
| 1.9155 | 1.06 | 9000 | 1.5758 | 0.6895 |
| 1.8828 | 1.12 | 9500 | 1.5607 | 0.6918 |
| 1.8721 | 1.18 | 10000 | 1.5422 | 0.6948 |
| 1.8474 | 1.24 | 10500 | 1.5320 | 0.6964 |
| 1.8293 | 1.3 | 11000 | 1.5214 | 0.6978 |
| 1.8129 | 1.36 | 11500 | 1.5102 | 0.6998 |
| 1.8148 | 1.42 | 12000 | 1.5010 | 0.7013 |
| 1.7903 | 1.48 | 12500 | 1.4844 | 0.7038 |
| 1.7815 | 1.54 | 13000 | 1.4823 | 0.7039 |
| 1.7637 | 1.6 | 13500 | 1.4746 | 0.7052 |
| 1.7623 | 1.66 | 14000 | 1.4701 | 0.7061 |
| 1.7402 | 1.71 | 14500 | 1.4598 | 0.7076 |
| 1.7376 | 1.77 | 15000 | 1.4519 | 0.7090 |
| 1.7287 | 1.83 | 15500 | 1.4501 | 0.7101 |
| 1.7273 | 1.89 | 16000 | 1.4409 | 0.7107 |
| 1.7119 | 1.95 | 16500 | 1.4314 | 0.7125 |
| 1.7098 | 2.01 | 17000 | 1.4269 | 0.7129 |
| 1.6978 | 2.07 | 17500 | 1.4275 | 0.7132 |
| 1.698 | 2.13 | 18000 | 1.4218 | 0.7140 |
| 1.6837 | 2.19 | 18500 | 1.4151 | 0.7147 |
| 1.6908 | 2.25 | 19000 | 1.4137 | 0.7149 |
| 1.6902 | 2.31 | 19500 | 1.4085 | 0.7161 |
| 1.6741 | 2.36 | 20000 | 1.4121 | 0.7154 |
| 1.6823 | 2.42 | 20500 | 1.4037 | 0.7165 |
| 1.6692 | 2.48 | 21000 | 1.4039 | 0.7164 |
| 1.6669 | 2.54 | 21500 | 1.4015 | 0.7172 |
| 1.6613 | 2.6 | 22000 | 1.3979 | 0.7179 |
| 1.664 | 2.66 | 22500 | 1.3960 | 0.7180 |
| 1.6615 | 2.72 | 23000 | 1.4012 | 0.7172 |
| 1.6627 | 2.78 | 23500 | 1.3974 | 0.7178 |
| 1.6489 | 2.84 | 24000 | 1.3948 | 0.7182 |
| 1.6429 | 2.9 | 24500 | 1.3921 | 0.7184 |
| 1.6477 | 2.96 | 25000 | 1.3910 | 0.7182 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|
TIGER-Lab/Mantis-llava-7b | TIGER-Lab | 2024-05-18T14:29:50Z | 9 | 15 | transformers | [
"transformers",
"safetensors",
"llava",
"image-text-to-text",
"Mantis",
"VLM",
"LMM",
"Multimodal LLM",
"en",
"base_model:llava-hf/llava-1.5-7b-hf",
"base_model:finetune:llava-hf/llava-1.5-7b-hf",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2024-04-13T19:19:14Z | ---
tags:
- Mantis
- VLM
- LMM
- Multimodal LLM
- llava
base_model: llava-hf/llava-1.5-7b-hf
model-index:
- name: Mantis-llava-7b
results: []
license: apache-2.0
language:
- en
---
# Mantis: Interleaved Multi-Image Instruction Tuning (Deprecated)
**Mantis** is a multimodal conversational AI model that can chat with users about images and text. It's optimized for multi-image reasoning, where interleaved text and images can be used to generate responses.
**Note that this is an older version of Mantis**, please refer to our newest version at [mantis-Siglip-llama3](https://huggingface.co/TIGER-Lab/Mantis-8B-siglip-llama3). The newer version improves significantly over both multi-image and single-image tasks.
Mantis is trained on the newly curated dataset **Mantis-Instruct**, a large-scale multi-image QA dataset that covers various multi-image reasoning tasks.
|[Demo](https://huggingface.co/spaces/TIGER-Lab/Mantis) | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) |

## Inference
You can install Mantis's GitHub codes as a Python package
```bash
pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
```
then run inference with codes here: [examples/run_mantis.py](https://github.com/TIGER-AI-Lab/Mantis/blob/main/examples/run_mantis_hf.py)
```python
from mantis.models.mllava import chat_mllava
from PIL import Image
import torch
image1 = "image1.jpg"
image2 = "image2.jpg"
images = [Image.open(image1), Image.open(image2)]
# load processor and model
from mantis.models.mllava import MLlavaProcessor, LlavaForConditionalGeneration
processor = MLlavaProcessor.from_pretrained("TIGER-Lab/Mantis-bakllava-7b")
model = LlavaForConditionalGeneration.from_pretrained("TIGER-Lab/Mantis-bakllava-7b", device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2")
# chat
text = "<image> <image> What's the difference between these two images? Please describe as much as you can."
response, history = chat_mllava(text, images, model, processor)
print("USER: ", text)
print("ASSISTANT: ", response)
# The image on the right has a larger number of wallets displayed compared to the image on the left. The wallets in the right image are arranged in a grid pattern, while the wallets in the left image are displayed in a more scattered manner. The wallets in the right image have various colors, including red, purple, and brown, while the wallets in the left image are primarily brown.
text = "How many items are there in image 1 and image 2 respectively?"
response, history = chat_mllava(text, images, model, processor, history=history)
print("USER: ", text)
print("ASSISTANT: ", response)
# There are two items in image 1 and four items in image 2.
```
Or, you can run the model without relying on the mantis codes, using pure hugging face transformers. See [examples/run_mantis_hf.py](https://github.com/TIGER-AI-Lab/Mantis/blob/main/examples/run_mantis_hf.py) for details.
## Training
Training codes will be released soon. |
aertsimon90/Thuner24 | aertsimon90 | 2024-05-18T14:27:55Z | 0 | 0 | transformers | [
"transformers",
"text-generation",
"tr",
"en",
"de",
"it",
"ru",
"ar",
"dataset:open-llm-leaderboard/details_mistralai__Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T14:22:24Z | ---
license: apache-2.0
pipeline_tag: text-generation
datasets:
- open-llm-leaderboard/details_mistralai__Mistral-7B-Instruct-v0.2
language:
- tr
- en
- de
- it
- ru
- ar
metrics:
- character
library_name: transformers
--- |
beimu/model | beimu | 2024-05-18T14:23:17Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T14:23:17Z | ---
license: apache-2.0
---
|
AliSaadatV/virus_pythia_14_1024_2d_representation_GaussianPlusCE | AliSaadatV | 2024-05-18T14:22:18Z | 130 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-14m",
"base_model:finetune:EleutherAI/pythia-14m",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T14:22:16Z | ---
base_model: EleutherAI/pythia-14m
tags:
- generated_from_trainer
model-index:
- name: virus_pythia_14_1024_2d_representation_GaussianPlusCE
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# virus_pythia_14_1024_2d_representation_GaussianPlusCE
This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
Fariha4185/bart-large-mnli-samsum | Fariha4185 | 2024-05-18T14:20:13Z | 113 | 0 | transformers | [
"transformers",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:facebook/bart-large-mnli",
"base_model:finetune:facebook/bart-large-mnli",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-16T12:25:21Z | ---
license: mit
base_model: facebook/bart-large-mnli
tags:
- generated_from_trainer
model-index:
- name: bart-large-mnli-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-mnli-samsum
This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5107
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4099 | 0.5431 | 500 | 1.5107 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
chillies/llama-3-8b-student-mental-health-chat-q4 | chillies | 2024-05-18T14:18:55Z | 10 | 2 | transformers | [
"transformers",
"gguf",
"llama",
"psychology",
"mental-health",
"en",
"vi",
"dataset:chillies/student-mental-health-chat-data-v2",
"endpoints_compatible",
"region:us"
] | null | 2024-05-05T05:01:30Z | ---
datasets:
- chillies/student-mental-health-chat-data-v2
language:
- en
- vi
tags:
- psychology
- mental-health
--- |
EssalhiSara/gpt2-french-corpus | EssalhiSara | 2024-05-18T14:15:16Z | 130 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T14:15:03Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ashishkgpian/1k_800merged_model | ashishkgpian | 2024-05-18T14:12:05Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T14:11:56Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Dandan0K/Pilot_vox_Ref_italian | Dandan0K | 2024-05-18T14:07:44Z | 78 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-18T14:00:14Z | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-100k_s449
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
alexandro767/stable-diffusion-v1-5-finetuned_5e_r8_v1 | alexandro767 | 2024-05-18T14:03:54Z | 29 | 0 | diffusers | [
"diffusers",
"safetensors",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-05-18T14:00:56Z | ---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
selmamalak/organcmnist-swin-base-finetuned | selmamalak | 2024-05-18T14:00:55Z | 8 | 0 | peft | [
"peft",
"safetensors",
"generated_from_trainer",
"dataset:medmnist-v2",
"base_model:microsoft/swin-large-patch4-window7-224-in22k",
"base_model:adapter:microsoft/swin-large-patch4-window7-224-in22k",
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T13:03:26Z | ---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/swin-large-patch4-window7-224-in22k
datasets:
- medmnist-v2
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: organcmnist-swin-base-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# organcmnist-swin-base-finetuned
This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the medmnist-v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2582
- Accuracy: 0.9317
- Precision: 0.9295
- Recall: 0.9177
- F1: 0.9229
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.7563 | 0.9988 | 203 | 0.1859 | 0.9365 | 0.9432 | 0.9127 | 0.9201 |
| 0.6145 | 1.9975 | 406 | 0.1260 | 0.9640 | 0.9630 | 0.9608 | 0.9600 |
| 0.6476 | 2.9963 | 609 | 0.0926 | 0.9774 | 0.9715 | 0.9754 | 0.9723 |
| 0.5719 | 4.0 | 813 | 0.0912 | 0.9770 | 0.9749 | 0.9746 | 0.9740 |
| 0.5374 | 4.9988 | 1016 | 0.1281 | 0.9695 | 0.9730 | 0.9690 | 0.9699 |
| 0.5615 | 5.9975 | 1219 | 0.1088 | 0.9791 | 0.9839 | 0.9819 | 0.9825 |
| 0.4959 | 6.9963 | 1422 | 0.1134 | 0.9741 | 0.9812 | 0.9742 | 0.9768 |
| 0.425 | 8.0 | 1626 | 0.1016 | 0.9808 | 0.9816 | 0.9820 | 0.9815 |
| 0.3151 | 8.9988 | 1829 | 0.1368 | 0.9804 | 0.9843 | 0.9832 | 0.9834 |
| 0.3347 | 9.9877 | 2030 | 0.1156 | 0.9837 | 0.9853 | 0.9864 | 0.9856 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
stablediffusionapi/analog-madness-v70 | stablediffusionapi | 2024-05-18T13:59:25Z | 29 | 0 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-05-18T13:57:23Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# Analog Madness v7.0 API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "analog-madness-v70"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com)
Try model for free: [Generate Images](https://modelslab.com/models/analog-madness-v70)
Model link: [View model](https://modelslab.com/models/analog-madness-v70)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "analog-madness-v70",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
deepnet/SN9-BestLlama3 | deepnet | 2024-05-18T13:59:17Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-17T08:59:08Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
theosun/gemma-2b-it-sharegpt-full | theosun | 2024-05-18T13:58:13Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T13:49:16Z | ---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
OmoDee/Abi | OmoDee | 2024-05-18T13:56:26Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T13:56:26Z | ---
license: apache-2.0
---
|
PaulR79/mistral_finetuned_synthetic | PaulR79 | 2024-05-18T13:54:52Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T13:54:50Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
WbjuSrceu/model8blora | WbjuSrceu | 2024-05-18T13:52:54Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T13:52:08Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** WbjuSrceu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
HariprasathSB/whispeeerrr | HariprasathSB | 2024-05-18T13:52:46Z | 87 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:HariprasathSB/whispeerr",
"base_model:finetune:HariprasathSB/whispeerr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-18T13:26:38Z | ---
license: apache-2.0
base_model: HariprasathSB/whispeerr
tags:
- generated_from_trainer
model-index:
- name: whispeeerrr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whispeeerrr
This model is a fine-tuned version of [HariprasathSB/whispeerr](https://huggingface.co/HariprasathSB/whispeerr) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 100
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
fzzhang/mistralv1_dora_r4_25e5_e05_merged | fzzhang | 2024-05-18T13:52:03Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-18T13:47:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
stablediffusionapi/absolutereality-v181 | stablediffusionapi | 2024-05-18T13:50:35Z | 241 | 2 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-05-18T13:48:22Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# AbsoluteReality v1.8.1 API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "absolutereality-v181"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com)
Try model for free: [Generate Images](https://modelslab.com/models/absolutereality-v181)
Model link: [View model](https://modelslab.com/models/absolutereality-v181)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "absolutereality-v181",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
stablediffusionapi/cetus-mix-v4 | stablediffusionapi | 2024-05-18T13:47:33Z | 29 | 0 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-05-18T13:45:38Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# Cetus-Mix v4 API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "cetus-mix-v4"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com)
Try model for free: [Generate Images](https://modelslab.com/models/cetus-mix-v4)
Model link: [View model](https://modelslab.com/models/cetus-mix-v4)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "cetus-mix-v4",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
carlesoctav/coba-pth-2 | carlesoctav | 2024-05-18T13:47:19Z | 37 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-18T13:38:19Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
fzzhang/mistralv1_dora_r4_25e5_e05 | fzzhang | 2024-05-18T13:47:16Z | 1 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2024-05-18T13:47:14Z | ---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistralv1_dora_r4_25e5_e05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistralv1_dora_r4_25e5_e05
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2 |
stablediffusionapi/yesmix-v40 | stablediffusionapi | 2024-05-18T13:46:34Z | 29 | 1 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-05-18T13:44:18Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# YesMix v4.0 API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "yesmix-v40"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com)
Try model for free: [Generate Images](https://modelslab.com/models/yesmix-v40)
Model link: [View model](https://modelslab.com/models/yesmix-v40)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "yesmix-v40",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
Subsets and Splits