modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
databio/v2v-geo-hg38
databio
2024-02-12T19:02:01Z
2
0
null
[ "region:us" ]
null
2023-12-11T20:30:47Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Vec2Vec GEO hg38 ## Model Details ### Model Description This is a Vec2Vec model that encodes embedding vectors of natural language into embedding vectors of BED files. This model was trained with BED files and natural language metadata from [GEO](https://www.ncbi.nlm.nih.gov/geo/) data. The embedding vectors of natural language were encoded by [sentence-transformers](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). The BED files were embedded by pretrained [Region2Vec](https://huggingface.co/databio/r2v-ChIP-atlas-hg38-v2) - **Developed by:** Ziyang "Claude" Hu - **Model type:** Vec2Vec - **BED genotype:** hg38 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/databio/geniml - **Paper [optional]:** N/A ## Uses This model can be used to search BED files with natural language query strings. In the search interface, the query strings will be encoded by same sentence-transformers model, and the output vector will be encoded into the final query vector by this Vec2Vec. The K BED files whose embedding vectors (embedded by same Region2Vec) are closest to the final query vector are results. It is limited to hg38. It is not recommended to use this model for data with genotype outside of hg38 ## How to Get Started with the Model You can download and start encoding new genomic region data using the following code: ```python from geniml.text2bednn import Vec2VecFNN model = Vec2VecFNN("databio/v2v-geo-hg38") ``` [More Information Needed] ## Training Details ### Training Data TODO
dataautogpt3/ProteusV0.3
dataautogpt3
2024-02-12T18:58:10Z
87,533
93
diffusers
[ "diffusers", "text-to-image", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-02-12T18:05:03Z
--- pipeline_tag: text-to-image widget: - text: >- Anime full body portrait of a swordsman holding his weapon in front of him. He is facing the camera with a fierce look on his face. Anime key visual (best quality, HD, ~+~aesthetic~+~:1.2) output: url: upscaled_image.png - text: >- spacious,circular underground room,{dirtied and bloodied white tiles},amalgamation,flesh,plastic,dark fabric,core,pulsating heart,limbs,human-like arms,twisted angelic wings,arms,covered in skin,feathers,scales,undulate slowly,unseen current,convulsing,head area,chaotic,mass of eyes,mouths,no human features,smaller forms,cherubs,demons,golden wires,surround,holy light,tv static effect,golden glow,shadows,terrifying essence,overwhelming presence,nightmarish,landscape,sparse,cavernous,eerie,dynamic,motion,striking,awe-inspiring,nightmarish,nightmarish,nightmare,horrifying,bio-mechanical,body horror,amalgamation output: url: 2.png - text: >- A robot holding a sign saying 'The Application did not respond' in red colors output: url: 3.png - text: >- A photograph of Hughyen in his early twenties, (an inspiring artist whose art focuses on glitching images and vaporwave color gradients with unexpected conflicting compositions:0.5) output: url: 4.png - text: >- Anime mugshot of a tough woman. She is holding a prison sign that reads "Proteus". Her face is censored. Anime key visual (best quality, HD, ~+~aesthetic~+~:1.2) output: url: 7.png - text: >- Glitch art. 1980s anime, vintage, analogue horror. ((static and noise)), chromatic aberration output: url: 5.png - text: >- Masterpiece, glitch, holy holy holy, fog, by DarkIncursio output: url: 6.png license: gpl-3.0 --- <Gallery /> ## ProteusV0.3: The Anime Update Proteus V0.3 has been advanced with an additional 200,000 anime-related images, further refined by a selection of 15,000 aesthetically pleasing images, enhancing its lighting effects significantly. This upgrade preserves its understanding of prompts and maintains its photorealistic and stylistic capabilities without suffering from catastrophic forgetting. ## Proteus Proteus serves as a sophisticated enhancement over OpenDalleV1.1, leveraging its core functionalities to deliver superior outcomes. Key areas of advancement include heightened responsiveness to prompts and augmented creative capacities. To achieve this, it was fine-tuned using approximately 220,000 GPTV captioned images from copyright-free stock images (with some anime included), which were then normalized. Additionally, DPO (Direct Preference Optimization) was employed through a collection of 10,000 carefully selected high-quality, AI-generated image pairs. In pursuit of optimal performance, numerous LORA (Low-Rank Adaptation) models are trained independently before being selectively incorporated into the principal model via dynamic application methods. These techniques involve targeting particular segments within the model while avoiding interference with other areas during the learning phase. Consequently, Proteus exhibits marked improvements in portraying intricate facial characteristics and lifelike skin textures, all while sustaining commendable proficiency across various aesthetic domains, notably surrealism, anime, and cartoon-style visualizations. ## Settings for ProteusV0.3 Use these settings for the best results with ProteusV0.3: CFG Scale: Use a CFG scale of 8 to 7 Steps: 20 to 60 steps for more detail, 20 steps for faster results. Sampler: DPM++ 2M SDE Scheduler: Karras Resolution: 1280x1280 or 1024x1024 please also consider using these keep words to improve your prompts: best quality, HD, `~*~aesthetic~*~`. if you are having trouble coming up with prompts you can use this GPT I put together to help you refine the prompt. https://chat.openai.com/g/g-RziQNoydR-diffusion-master ## Use it with 🧨 diffusers ```python import torch from diffusers import ( StableDiffusionXLPipeline, KDPM2AncestralDiscreteScheduler, AutoencoderKL ) # Load VAE component vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ) # Configure the pipeline pipe = StableDiffusionXLPipeline.from_pretrained( "dataautogpt3/ProteusV0.3", vae=vae, torch_dtype=torch.float16 ) pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to('cuda') # Define prompts and generate image prompt = "black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed" negative_prompt = "nsfw, bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image" image = pipe( prompt, negative_prompt=negative_prompt, width=1024, height=1024, guidance_scale=7, num_inference_steps=20 ).images[0] ``` please support the work I do through donating to me on: https://www.buymeacoffee.com/DataVoid or following me on https://twitter.com/DataPlusEngine
bartowski/MBeagleX-7B-exl2
bartowski
2024-02-12T18:57:00Z
0
0
null
[ "merge", "mergekit", "lazymergekit", "text-generation", "license:cc-by-nc-4.0", "region:us" ]
text-generation
2024-02-12T18:40:23Z
--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit base_model: - mlabonne/MBTrix-7B quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of MBeagleX-7B Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/mlabonne/MBeagleX-7B | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/MBeagleX-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/MBeagleX-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/MBeagleX-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/MBeagleX-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/MBeagleX-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/MBeagleX-7B-exl2 MBeagleX-7B-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `MBeagleX-7B-exl2`: ```shell mkdir MBeagleX-7B-exl2 huggingface-cli download bartowski/MBeagleX-7B-exl2 --local-dir MBeagleX-7B-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir MBeagleX-7B-exl2-6_5 huggingface-cli download bartowski/MBeagleX-7B-exl2 --revision 6_5 --local-dir MBeagleX-7B-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir MBeagleX-7B-exl2-6.5 huggingface-cli download bartowski/MBeagleX-7B-exl2 --revision 6_5 --local-dir MBeagleX-7B-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
nchen909/llama2_7b_sft_20710
nchen909
2024-02-12T18:54:42Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T17:05:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
eliotz/a2c-PandaReachDense-v3
eliotz
2024-02-12T18:33:53Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T18:29:46Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.25 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
indischepartij/MiniCPM-3B-Hephaestus
indischepartij
2024-02-12T18:28:13Z
93
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "gmonsoon/MiniCPM-2B-Hercules-v2.0", "gmonsoon/MiniCPM-2B-OpenHermes-2.5-v2", "conversational", "base_model:indischepartij/MiniCPM-3B-Hercules-v2.0", "base_model:merge:indischepartij/MiniCPM-3B-Hercules-v2.0", "base_model:indischepartij/MiniCPM-3B-OpenHermes-2.5-v2", "base_model:merge:indischepartij/MiniCPM-3B-OpenHermes-2.5-v2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-11T05:49:37Z
--- tags: - merge - mergekit - lazymergekit - gmonsoon/MiniCPM-2B-Hercules-v2.0 - gmonsoon/MiniCPM-2B-OpenHermes-2.5-v2 base_model: - gmonsoon/MiniCPM-2B-Hercules-v2.0 - gmonsoon/MiniCPM-2B-OpenHermes-2.5-v2 license: apache-2.0 --- # MiniCPM-2B-Hephaestus MiniCPM-2B-Hephaestus is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [gmonsoon/MiniCPM-2B-Hercules-v2.0](https://huggingface.co/gmonsoon/MiniCPM-2B-Hercules-v2.0) * [gmonsoon/MiniCPM-2B-OpenHermes-2.5-v2](https://huggingface.co/gmonsoon/MiniCPM-2B-OpenHermes-2.5-v2) ## 🧩 Configuration ```yaml models: - model: gmonsoon/MiniCPM-2B-Hercules-v2.0 parameters: density: 0.5 weight: 0.5 - model: gmonsoon/MiniCPM-2B-OpenHermes-2.5-v2 parameters: density: 0.5 weight: 0.5 merge_method: dare_ties base_model: gmonsoon/MiniCPM-2B-Hercules-v2.0 parameters: normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "gmonsoon/MiniCPM-2B-Hephaestus" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
veronoicc/DAMGPT-small-ServerSeeker
veronoicc
2024-02-12T18:28:03Z
92
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "conversational", "en", "de", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T18:17:17Z
--- language: - en - de library_name: transformers pipeline_tag: conversational tags: - conversational ---
Zanshinmu/AlienGirl
Zanshinmu
2024-02-12T18:14:44Z
8
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:apache-2.0", "region:us" ]
text-to-image
2024-02-12T18:14:27Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- <lora:cybergirl_v9_50000_lora_f16:.0.6>, full_body photo, giger style alien breathtaking Australian colorful future punk Cybergirl, BREAK medium brown hair, BREAK glowing cyborg eyes BREAK subdermal armor,cyborg arm,, cyborg exoskeleton melding with flesh, highly detailed, detailed face, psychedelic, fractal detail, colorful. body horror, glistening with slick filth parameters: negative_prompt: bokeh, blurry, 3d, anime, drawing, art output: url: images/00011-2153680076.png - text: >- <lora:cybergirl_v9_50000_lora_f16:.0.6>, full_body photo, giger style alien piercings Romani military future punk Cybergirl, BREAK long natural hair, BREAK tech sunglasses BREAK cosmetic implants,, cyborg exoskeleton melding with flesh, highly detailed, detailed face, psychedelic, fractal detail, colorful. body horror, glistening with slick filth parameters: negative_prompt: bokeh, blurry, 3d, anime, drawing, art output: url: images/00009-2153680074.png - text: >- <lora:cybergirl_v9_50000_lora_f16:.0.6>, full_body photo, giger style alien piercings Caucasian dark future punk Cybergirl, BREAK long natural hair, BREAK gorgeous eyes BREAK visible cyborg implants on face,cyborg limb,, cyborg exoskeleton melding with flesh, highly detailed, detailed face, psychedelic, fractal detail, colorful. body horror, glistening with slick filth parameters: negative_prompt: bokeh, blurry, 3d, anime, drawing, art output: url: images/00008-2153680073.png - text: >- <lora:cybergirl_v9_50000_lora_f16:.0.6>, full_body photo, giger style alien gothic Australian trenchcoat over bodysuit future punk Cybergirl, BREAK short natural hair, BREAK glowing cyborg eyes BREAK cyborg limb,, cyborg exoskeleton melding with flesh, highly detailed, detailed face, psychedelic, fractal detail, colorful. body horror, glistening with slick filth parameters: negative_prompt: bokeh, blurry, 3d, anime, drawing, art output: url: images/00007-2153680072.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: CyberGirl, giger style license: apache-2.0 --- # AlienGirl <Gallery /> ## Model description This LoRA was a quick-and-dirty effort from images I created with my CyberGirl LoRA. ## Trigger words You should use `CyberGirl` to trigger the image generation. You should use `giger style` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Zanshinmu/AlienGirl/tree/main) them in the Files & versions tab.
karimimanesh/text_stance_detection_v2
karimimanesh
2024-02-12T18:06:36Z
176
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T18:06:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Klark333/darkfantasy
Klark333
2024-02-12T17:47:00Z
69
6
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:unknown", "region:us" ]
text-to-image
2024-02-12T17:46:39Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/67adffb4cd7472105f5c8499fa445d73.jpg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: dark fantasy 1970-1980's license: unknown --- # 1970&#39; dark fantasy <Gallery /> ## Model description 80&#39;s movie , dark fantasy , poster , illustration 80s dark fantasy, 80s film comics aesthetic fantasy ## Trigger words You should use `dark fantasy 1970-1980&#39;s` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Klark333/darkfantasy/tree/main) them in the Files & versions tab.
ayush753/my-pet-dog-xyz
ayush753
2024-02-12T17:41:23Z
1
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-12T17:33:38Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-XYZ Dreambooth model trained by ayush753 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 4SF21AD012 Sample pictures of this concept: ![0](https://huggingface.co/ayush753/my-pet-dog-xyz/resolve/main/sample_images/dog1[1].jpg)
furrutiav/bert_qa_extractor_cockatiel_2022_baseline_signal_over_subsample_it_749
furrutiav
2024-02-12T17:37:31Z
91
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-12T17:37:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sam2ai/qwen_1.5_odia_4b
sam2ai
2024-02-12T17:29:23Z
2
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-4B", "base_model:adapter:Qwen/Qwen1.5-4B", "license:other", "4-bit", "bitsandbytes", "region:us" ]
null
2024-02-11T17:43:28Z
--- license: other library_name: peft tags: - axolotl - generated_from_trainer base_model: Qwen/Qwen1.5-4B model-index: - name: qwen_1.5_odia_4b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: Qwen/Qwen1.5-4B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # is_qwen_derived_model: true trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: OdiaGenAI/all_combined_odia_171k type: alpaca:chatml dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out-qwen-4b-odia hub_model_id: sam2ai/qwen_1.5_odia_4b sequence_len: 2048 # supports up to 8192 sample_packing: false pad_to_sequence_len: adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: Qwen-instruct-4b-odia wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` </details><br> # qwen_1.5_odia_4b This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.977 | 0.0 | 1 | 1.0190 | | 0.4901 | 0.25 | 2108 | 0.4872 | | 0.3966 | 0.5 | 4216 | 0.4347 | | 0.3127 | 0.75 | 6324 | 0.4104 | | 0.3172 | 1.0 | 8432 | 0.3932 | | 0.281 | 1.25 | 10540 | 0.3778 | | 0.2845 | 1.5 | 12648 | 0.3684 | | 0.2459 | 1.75 | 14756 | 0.3616 | | 0.1641 | 2.0 | 16864 | 0.3525 | | 0.2121 | 2.25 | 18972 | 0.3506 | | 0.2564 | 2.5 | 21080 | 0.3448 | | 0.1378 | 2.75 | 23188 | 0.3426 | | 0.2002 | 3.0 | 25296 | 0.3409 | | 0.1671 | 3.25 | 27404 | 0.3439 | | 0.1464 | 3.5 | 29512 | 0.3421 | | 0.1741 | 3.75 | 31620 | 0.3421 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.0 - Pytorch 2.0.1+gita61a294 - Datasets 2.16.1 - Tokenizers 0.15.0
gayanin/bart-with-pubmed-asr-noise-data-0.1-v2
gayanin
2024-02-12T17:28:00Z
91
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:gayanin/bart-with-pubmed-noise-data-0.1-v2", "base_model:finetune:gayanin/bart-with-pubmed-noise-data-0.1-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-12T17:23:48Z
--- license: apache-2.0 base_model: gayanin/bart-with-pubmed-noise-data-0.1-v2 tags: - generated_from_trainer model-index: - name: bart-with-pubmed-asr-noise-data-0.1-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-with-pubmed-asr-noise-data-0.1-v2 This model is a fine-tuned version of [gayanin/bart-with-pubmed-noise-data-0.1-v2](https://huggingface.co/gayanin/bart-with-pubmed-noise-data-0.1-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4242 | 0.87 | 500 | 0.3986 | | 0.2914 | 1.73 | 1000 | 0.3416 | | 0.2518 | 2.6 | 1500 | 0.3346 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
GccX11/q-Taxi-v3
GccX11
2024-02-12T17:24:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T17:24:22Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="GccX11/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
GccX11/q-FrozenLake-v1-4x4-noSlippery
GccX11
2024-02-12T17:16:35Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T17:16:34Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.61 +/- 0.49 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="GccX11/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Kudod/my_awesome_model_IMDB
Kudod
2024-02-12T17:05:09Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:finiteautomata/bertweet-base-sentiment-analysis", "base_model:finetune:finiteautomata/bertweet-base-sentiment-analysis", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-10T04:52:46Z
--- base_model: finiteautomata/bertweet-base-sentiment-analysis tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model_IMDB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model_IMDB This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6664 - Accuracy: 0.8949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3261 | 1.0 | 782 | 0.2674 | 0.8903 | | 0.2072 | 2.0 | 1564 | 0.3035 | 0.8820 | | 0.1408 | 3.0 | 2346 | 0.3532 | 0.8967 | | 0.0876 | 4.0 | 3128 | 0.4793 | 0.8922 | | 0.0661 | 5.0 | 3910 | 0.4755 | 0.8925 | | 0.0373 | 6.0 | 4692 | 0.5159 | 0.8937 | | 0.034 | 7.0 | 5474 | 0.5527 | 0.8923 | | 0.0264 | 8.0 | 6256 | 0.6391 | 0.8947 | | 0.0179 | 9.0 | 7038 | 0.6491 | 0.8942 | | 0.0094 | 10.0 | 7820 | 0.6664 | 0.8949 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.17.0 - Tokenizers 0.14.0
stablediffusionapi/hima
stablediffusionapi
2024-02-12T16:59:08Z
29
1
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-12T16:57:30Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Hima API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/3051425591707756775.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "hima" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/hima) Model link: [View model](https://modelslab.com/models/hima) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "hima", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
gayanin/bart-with-woz-pubmed-noise-data-0.1-v2
gayanin
2024-02-12T16:49:50Z
6
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:gayanin/bart-with-woz-noise-data-0.1-v2", "base_model:finetune:gayanin/bart-with-woz-noise-data-0.1-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-12T16:17:06Z
--- license: apache-2.0 base_model: gayanin/bart-with-woz-noise-data-0.1-v2 tags: - generated_from_trainer model-index: - name: bart-with-woz-pubmed-noise-data-0.1-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-with-woz-pubmed-noise-data-0.1-v2 This model is a fine-tuned version of [gayanin/bart-with-woz-noise-data-0.1-v2](https://huggingface.co/gayanin/bart-with-woz-noise-data-0.1-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.395 | 0.11 | 500 | 0.3361 | | 0.3239 | 0.21 | 1000 | 0.2993 | | 0.2485 | 0.32 | 1500 | 0.2899 | | 0.3632 | 0.43 | 2000 | 0.2650 | | 0.3141 | 0.54 | 2500 | 0.2555 | | 0.2913 | 0.64 | 3000 | 0.2537 | | 0.2587 | 0.75 | 3500 | 0.2474 | | 0.2745 | 0.86 | 4000 | 0.2408 | | 0.2725 | 0.96 | 4500 | 0.2362 | | 0.2025 | 1.07 | 5000 | 0.2468 | | 0.2088 | 1.18 | 5500 | 0.2368 | | 0.1912 | 1.28 | 6000 | 0.2447 | | 0.2098 | 1.39 | 6500 | 0.2311 | | 0.1839 | 1.5 | 7000 | 0.2336 | | 0.2407 | 1.61 | 7500 | 0.2280 | | 0.1692 | 1.71 | 8000 | 0.2229 | | 0.1965 | 1.82 | 8500 | 0.2220 | | 0.2013 | 1.93 | 9000 | 0.2175 | | 0.1455 | 2.03 | 9500 | 0.2243 | | 0.1466 | 2.14 | 10000 | 0.2235 | | 0.1493 | 2.25 | 10500 | 0.2223 | | 0.1224 | 2.35 | 11000 | 0.2207 | | 0.1491 | 2.46 | 11500 | 0.2173 | | 0.1484 | 2.57 | 12000 | 0.2175 | | 0.1582 | 2.68 | 12500 | 0.2175 | | 0.1592 | 2.78 | 13000 | 0.2137 | | 0.1467 | 2.89 | 13500 | 0.2153 | | 0.1637 | 3.0 | 14000 | 0.2136 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
julep-ai/samantha-1-tokenizer
julep-ai
2024-02-12T16:44:48Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-12T16:35:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Vargol/ProteusV0.2
Vargol
2024-02-12T16:40:33Z
45
0
diffusers
[ "diffusers", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-02-12T16:03:28Z
--- license: gpl-3.0 --- This a an fp16 variant of Proteus V2.0 https://huggingface.co/dataautogpt3/ProteusV0.2 currently under the gpl-v3 licence. simply created by ```py import torch from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("dataautogpt3/ProteusV0.2", torch_dtype=torch.float16) pipeline.save_pretrained('fp16_ProteusV0.2', safe_serialization=True, variant='fp16') ``` See the original model for details. The fp32 version of the model, even when converted to fp16 when loading, uses up to much RAM hence my need for this version. Dave
stablediffusionapi/generator2000xl
stablediffusionapi
2024-02-12T16:32:54Z
29
2
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-02-12T16:31:04Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # generator2000xl API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/10225248851707753601.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "generator2000xl" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/generator2000xl) Model link: [View model](https://modelslab.com/models/generator2000xl) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "generator2000xl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
cybert79/spamai
cybert79
2024-02-12T16:31:47Z
117
4
transformers
[ "transformers", "safetensors", "bert", "text-classification", "dataset:SetFit/enron_spam", "dataset:Deysi/spam-detection-dataset", "license:unknown", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T13:42:50Z
--- license: unknown datasets: - SetFit/enron_spam - Deysi/spam-detection-dataset metrics: - accuracy --- # Model Card for Spam Detection Model This model card outlines a spam detection model trained on the SetFit/enron_spam and Deysi/spam-detection-dataset from Hugging Face. The model aims to classify emails or text messages into spam or not spam (ham) with high accuracy, leveraging the BERT architecture for natural language processing tasks. ## Model Details ### Model Description This spam detection model was developed to identify and filter out unwanted or harmful emails and messages automatically. It was fine-tuned on two significant datasets featuring real-world spam examples, demonstrating a high level of accuracy in distinguishing between spam and ham. - **Developed by:** AI and cybersecurity researchers. - **Model type:** BERT for Sequence Classification. - **Language(s) (NLP):** English. - **License:** Unknown. - **Finetuned from model:** `bert-base-uncased`. ## Uses ### Direct Use The model is intended for direct use in email filtering systems, cybersecurity applications, and any platform needing to identify spam content within text data. ### Out-of-Scope Use The model is not designed for identifying phishing attempts, detecting malware within attachments, or other security threats beyond the scope of text-based spam content. It may not perform well on texts significantly different from those found in the training datasets, such as messages in languages other than English or texts from domains vastly different from emails. ## Bias, Risks, and Limitations The model's performance is highly dependent on the nature and diversity of the training data. There might be biases in the datasets that could affect the model's predictions, particularly for edge cases or underrepresented categories of spam. Users should be aware of these limitations and consider additional layers of security and content moderation according to their specific needs. ## How to Get Started with the Model To get started with the model, load the pretrained model and tokenizer from the specified directory and use them to preprocess your text data. The model can then be applied to classify texts as spam or not spam. ## Training Details ### Training Data The model was trained on the SetFit/enron_spam and Deysi/spam-detection-dataset, which include a variety of spam and ham examples collected from real-world email data. ### Training Procedure The model was fine-tuned for 3 epochs, achieving a final training loss of 0.0239 and an accuracy of 99.55% on the evaluation set. Training was conducted using a batch size of 8, with a learning rate of 2e-5. ## Evaluation ### Testing Data, Factors & Metrics The evaluation was performed on a test split from the datasets, focusing on the accuracy metric to assess the model's performance. ### Results The model achieved an evaluation accuracy of 99.55% with an evaluation loss of 0.0448, indicating excellent performance in distinguishing between spam and ham messages. ## Environmental Impact Given the high accuracy and low loss, this model presents a robust solution for spam detection tasks. However, users are encouraged to assess the model's applicability to their specific use cases, considering potential biases and the model's limitations.
furrutiav/bert_qa_extractor_cockatiel_2022_mixtral_v2_over_subsample_it_141
furrutiav
2024-02-12T16:25:06Z
91
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-12T16:24:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
macabdul9/t5-glue-all-900K
macabdul9
2024-02-12T16:21:22Z
93
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-12T16:07:10Z
--- license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer model-index: - name: t5-glue-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-glue-all This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0692 - Em accuracy: 89.1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
ppsingh/iki_sector_setfit
ppsingh
2024-02-12T16:17:29Z
54
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:GIZ/SECTOR-multilabel-mpnet_w", "base_model:finetune:GIZ/SECTOR-multilabel-mpnet_w", "co2_eq_emissions", "region:us" ]
text-classification
2024-02-12T15:28:40Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Specific information applicable to Parties, including regional economic integration organizations and their member States, that have reached an agreement to act jointly under Article 4, paragraph 2, of the Paris Agreement, including the Parties that agreed to act jointly and the terms of the agreement, in accordance with Article 4, paragraphs 16–18, of the Paris Agreement. Not applicable. (c). How the Party’s preparation of its nationally determined contribution has been informed by the outcomes of the global stocktake, in accordance with Article 4, paragraph 9, of the Paris Agreement. - text: 'In the shipping and aviation sectors, emission reduction efforts will be focused on distributing eco-friendly ships and enhancing the operational efficiency of aircraft. Agriculture, livestock farming and fisheries: The Republic Korea is introducing various options to accelerate low-carbon farming, for instance, improving irrigation techniques in rice paddies and adopting low-input systems for nitrogen fertilizers.' - text: As part of this commitment, Oman s upstream oil and gas industry is developing economically viable solutions to phase out routine flaring as quickly as possible and ahead of the World Bank s target date. IV. Climate Preparedness and Resilience. The Sultanate of Oman has stepped up its efforts in advancing its expertise and methodologies to better manage the climate change risks over the past five years. The adaptation efforts are underway, and the status of adaptation planning is still at a nascent stage. - text: 'Synergy and coherence 46 VII- Gender and youth 46 VIII- Education and employment 48 ANNEXES. 49 Annex No. 1: Details of mitigation measures, conditional and non-conditional, by sector 49 Annex No.2: List of adaptation actions proposed by sectors. 57 Annex No.3: GCF project portfolio. 63 CONTRIBUTION DENTERMINEE AT NATIONAL LEVEL CDN MAURITANIE LIST OF TABLES Table 1: Summary of funding needs for the CND 2021-2030 updated. 12 Table 2: CND 2021-2030 mitigation measures updated by sector (cumulative cost and reduction potential for the period). 14 Table 3: CND 2021-2030 adaptation measures updated by sector. Error!' - text: In the transport sector, restructuing is planned through a number of large infrastructure initiatives aiming to revive the role of public transport and achieving a relevant share of fuel efficient vehicles. Under both the conditional and unconditional mitigation scenarios, Lebanon will achieve sizeable emission reductions. With regards to adaptation, Lebanon has planned comprehensive sectoral actions related to water, agriculture/forestry and biodiversity, for example related to irrigation, forest management, etc. It also continues developing adaptation strategies in the remaining sectors. pipeline_tag: text-classification inference: false co2_eq_emissions: emissions: 25.8151164022705 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz ram_total_size: 12.674781799316406 hours_used: 0.622 hardware_used: 1 x Tesla T4 base_model: ppsingh/SECTOR-multilabel-mpnet_w --- # SetFit with ppsingh/SECTOR-multilabel-mpnet_w This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [ppsingh/SECTOR-multilabel-mpnet_w](https://huggingface.co/ppsingh/SECTOR-multilabel-mpnet_w) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [ppsingh/SECTOR-multilabel-mpnet_w](https://huggingface.co/ppsingh/SECTOR-multilabel-mpnet_w) - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("ppsingh/iki_sector_setfit") # Run inference preds = model("In the shipping and aviation sectors, emission reduction efforts will be focused on distributing eco-friendly ships and enhancing the operational efficiency of aircraft. Agriculture, livestock farming and fisheries: The Republic Korea is introducing various options to accelerate low-carbon farming, for instance, improving irrigation techniques in rice paddies and adopting low-input systems for nitrogen fertilizers.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 35 | 76.164 | 170 | - Training Dataset: 250 | Class | Positive Count of Class| |:-------------|:--------| | Economy-wide | 88 | | Energy | 63 | | Other Sector | 64 | | Transport | 139 | - Validation Dataset: 42 | Class | Positive Count of Class| |:-------------|:--------| | Economy-wide | 15 | | Energy | 11 | | Other Sector | 11 | | Transport | 24 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0005 | 1 | 0.2029 | - | | 0.0993 | 200 | 0.0111 | 0.1124 | | 0.1985 | 400 | 0.0063 | 0.111 | | 0.2978 | 600 | 0.0183 | 0.1214 | | 0.3970 | 800 | 0.0197 | 0.1248 | | 0.4963 | 1000 | 0.0387 | 0.1339 | | 0.5955 | 1200 | 0.0026 | 0.1181 | | 0.6948 | 1400 | 0.0378 | 0.1208 | | 0.7940 | 1600 | 0.0285 | 0.1267 | | 0.8933 | 1800 | 0.0129 | 0.1254 | | 0.9926 | 2000 | 0.0341 | 0.1271 | ### Classifier Training Results | Epoch | Training F1-micro|Training F1-Samples |Training F1-weighted|Validation F1-micro |Validation F1-samples |Validation F1-weighted | |:------:|:----------------:|:------------------:|:------------------:|:------------------:|:--------------------:|:---------------------:| | 0 | 0.954 | 0.972 | 0.945 |0.824 | 0.819 | 0.813 | | 1 | 0.994 | 0.996 | 0.994 |0.850 | 0.832 | 0.852 | | 2 | 0.981 | 0.989 | 0.979 |0.850 | 0.843 | 0.852 | | 3 | 0.995 | 0.997 | 0.995 |0.852 | 0.843 | 0.858 | | 4 | 0.994 | 0.996 | 0.994 |0.852 | 0.843 | 0.858 | | 5 | 0.995 | 0.997 | 0.995 |0.859 | 0.848 | 0.863 | |label | precision |recall |f1-score| support| |:-------------:|:---------:|:-----:|:------:|:------:| |Economy-wide |0.857 |0.800 |0.827 | 15.0 | |Energy |1.00 |0.818 |0.900 | 11.0 | |Other Sector |0.615 |0.727 |0.667 | 11.0 | |Transport |0.958 |0.958 |0.958 | 24.0 | - Micro Avg: Precision = 0.866, Recall = 0.852, F1 = 0.859504 - Samples Avg: Precision = 0.869, Recall = 0.861, F1 = 0.848 ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.026 kg of CO2 - **Hours Used**: 0.622 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x Tesla T4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz - **RAM Size**: 12.67 GB ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.3.0 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
rishabhjain16/whisper-tiny
rishabhjain16
2024-02-12T16:06:47Z
67
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-12T16:06:47Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - no - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 7.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 17.15 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: language: hi metrics: - name: Test WER type: wer value: 141 pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order: 1. The transcription always starts with the `<|startoftranscript|>` token 2. The second token is the language token (e.g. `<|en|>` for English) 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction Thus, a typical sequence of context tokens might look as follows: ``` <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|> ``` Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps. These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at each position. This allows one to control the output language and task for the Whisper model. If they are un-forced, the Whisper model will automatically predict the output langauge and task itself. The context tokens can be set accordingly: ```python model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe") ``` Which forces the model to predict in English under the task of speech recognition. ## Transcription ### English to English In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language (English) and task (transcribe). ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") >>> model.config.forced_decoder_ids = None >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ### French to French The following example demonstrates French to French transcription by setting the decoder ids appropriately. ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Un vrai travail intéressant va enfin être mené sur ce sujet.'] ``` ## Translation Setting the task to "translate" forces the Whisper model to perform speech translation. ### French to English ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' A very interesting work, we will finally be given on this subject.'] ``` ## Evaluation This code snippet shows how to evaluate Whisper Tiny on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 7.547098647858638 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-tiny", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
rishabhjain16/whisper-small
rishabhjain16
2024-02-12T16:06:01Z
72
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-12T16:05:58Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - no - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 3.432213777886737 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 7.628304527060248 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: language: hi metrics: - name: Test WER type: wer value: 87.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: dv split: test args: language: dv metrics: - name: Wer type: wer value: 125.69809089960707 pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order: 1. The transcription always starts with the `<|startoftranscript|>` token 2. The second token is the language token (e.g. `<|en|>` for English) 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction Thus, a typical sequence of context tokens might look as follows: ``` <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|> ``` Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps. These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at each position. This allows one to control the output language and task for the Whisper model. If they are un-forced, the Whisper model will automatically predict the output langauge and task itself. The context tokens can be set accordingly: ```python model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe") ``` Which forces the model to predict in English under the task of speech recognition. ## Transcription ### English to English In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language (English) and task (transcribe). ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") >>> model.config.forced_decoder_ids = None >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ### French to French The following example demonstrates French to French transcription by setting the decoder ids appropriately. ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Un vrai travail intéressant va enfin être mené sur ce sujet.'] ``` ## Translation Setting the task to "translate" forces the Whisper model to perform speech translation. ### French to English ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' A very interesting work, we will finally be given on this subject.'] ``` ## Evaluation This code snippet shows how to evaluate Whisper Small on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 3.432213777886737 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-small", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
MarkelTaichi/ppo-LunarLander-v2
MarkelTaichi
2024-02-12T16:05:22Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T15:31:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.12 +/- 14.11 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
furrutiav/bert_qa_extractor_cockatiel_2022_z_value_over_subsample_it_727
furrutiav
2024-02-12T15:52:27Z
91
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-12T15:51:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hdeldar/distilbert-base-uncased-finetuned-cola
hdeldar
2024-02-12T15:51:58Z
46
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T15:47:40Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: hdeldar/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hdeldar/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1972 - Validation Loss: 0.5241 - Train Matthews Correlation: 0.5294 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5250 | 0.4718 | 0.4527 | 0 | | 0.3234 | 0.4414 | 0.5235 | 1 | | 0.1972 | 0.5241 | 0.5294 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.17.0 - Tokenizers 0.15.1
gayanin/bart-with-pubmed-noise-data-0.1-v2
gayanin
2024-02-12T15:51:34Z
5
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-12T15:18:34Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: bart-with-pubmed-noise-data-0.1-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-with-pubmed-noise-data-0.1-v2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4161 | 0.11 | 500 | 0.3441 | | 0.342 | 0.21 | 1000 | 0.3091 | | 0.2694 | 0.32 | 1500 | 0.2969 | | 0.3792 | 0.43 | 2000 | 0.2712 | | 0.3219 | 0.54 | 2500 | 0.2601 | | 0.3001 | 0.64 | 3000 | 0.2574 | | 0.2606 | 0.75 | 3500 | 0.2489 | | 0.2716 | 0.86 | 4000 | 0.2415 | | 0.2714 | 0.96 | 4500 | 0.2382 | | 0.2072 | 1.07 | 5000 | 0.2429 | | 0.2111 | 1.18 | 5500 | 0.2377 | | 0.1977 | 1.28 | 6000 | 0.2455 | | 0.2171 | 1.39 | 6500 | 0.2309 | | 0.1853 | 1.5 | 7000 | 0.2314 | | 0.2436 | 1.61 | 7500 | 0.2269 | | 0.171 | 1.71 | 8000 | 0.2220 | | 0.2032 | 1.82 | 8500 | 0.2226 | | 0.2028 | 1.93 | 9000 | 0.2175 | | 0.1448 | 2.03 | 9500 | 0.2227 | | 0.1447 | 2.14 | 10000 | 0.2216 | | 0.1516 | 2.25 | 10500 | 0.2200 | | 0.1294 | 2.35 | 11000 | 0.2197 | | 0.1569 | 2.46 | 11500 | 0.2157 | | 0.1505 | 2.57 | 12000 | 0.2160 | | 0.152 | 2.68 | 12500 | 0.2151 | | 0.1588 | 2.78 | 13000 | 0.2117 | | 0.1451 | 2.89 | 13500 | 0.2134 | | 0.1644 | 3.0 | 14000 | 0.2115 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
gayanin/bart-with-woz-noise-data-0.1-v2
gayanin
2024-02-12T15:49:37Z
9
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-12T15:21:35Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: bart-with-woz-noise-data-0.1-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-with-woz-noise-data-0.1-v2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.2188 | 0.13 | 500 | 0.1794 | | 0.1741 | 0.26 | 1000 | 0.1518 | | 0.1631 | 0.39 | 1500 | 0.1327 | | 0.1318 | 0.53 | 2000 | 0.1272 | | 0.1238 | 0.66 | 2500 | 0.1168 | | 0.1451 | 0.79 | 3000 | 0.1103 | | 0.1166 | 0.92 | 3500 | 0.1068 | | 0.0833 | 1.05 | 4000 | 0.1054 | | 0.1029 | 1.18 | 4500 | 0.1017 | | 0.1174 | 1.31 | 5000 | 0.0971 | | 0.0786 | 1.44 | 5500 | 0.0956 | | 0.1184 | 1.58 | 6000 | 0.0951 | | 0.0984 | 1.71 | 6500 | 0.0926 | | 0.0959 | 1.84 | 7000 | 0.0893 | | 0.093 | 1.97 | 7500 | 0.0893 | | 0.0783 | 2.1 | 8000 | 0.0910 | | 0.0678 | 2.23 | 8500 | 0.0927 | | 0.0756 | 2.36 | 9000 | 0.0889 | | 0.0684 | 2.5 | 9500 | 0.0877 | | 0.0573 | 2.63 | 10000 | 0.0872 | | 0.0544 | 2.76 | 10500 | 0.0855 | | 0.0579 | 2.89 | 11000 | 0.0845 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Flamoverse/merged_model
Flamoverse
2024-02-12T15:45:40Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-02-12T15:44:48Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
Zaphare/ppo-LunarLander-v2
Zaphare
2024-02-12T15:41:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T13:55:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.09 +/- 14.77 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kidyu/Moza-7B-v1.0-GGUF
kidyu
2024-02-12T15:40:24Z
37
1
null
[ "gguf", "mergekit", "merge", "base_model:kidyu/Moza-7B-v1.0", "base_model:quantized:kidyu/Moza-7B-v1.0", "region:us" ]
null
2024-02-12T13:37:03Z
--- base_model: kidyu/Moza-7B-v1.0 inference: false quantized_by: kidyu tags: - mergekit - merge --- Quantized GGUF of my meme-merge [Moza-7B-v1.0](https://huggingface.co/kidyu/Moza-7B-v1.0/)
not-lain/MyRepo1.0
not-lain
2024-02-12T15:34:50Z
194
0
transformers
[ "transformers", "safetensors", "MobileNetV1", "image-classification", "custom_code", "autotrain_compatible", "region:us" ]
image-classification
2024-02-12T15:33:46Z
--- tags: - custom_code --- # How to use you can the model via the command ```python from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("not-lain/MyRepo1.0", trust_remote_code=True) ``` or you can use the pipeline ```python from transformers import pipeline pipe = pipeline(model="not-lain/MyRepo1.0", trust_remote_code=True) pipe( "url", download=True, # will call the download_img method clean_output=False # will be passed as postprocess_kwargs ) ``` # parameters the pipeline supports the following parameters : * download * clean_output you can also use the following method to download images from the web ```python pipe.download_img(url) ```
ppsingh/iki_target_setfit
ppsingh
2024-02-12T15:24:33Z
57
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:GIZ/TAPP-multilabel-mpnet", "base_model:finetune:GIZ/TAPP-multilabel-mpnet", "co2_eq_emissions", "region:us" ]
text-classification
2024-02-11T18:11:00Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: During 2021-2030, Thailand s LEDS will be implemented through the NDC roadmap and sectoral action plans which provide detailed guidance on measures and realistic actions to achieve the 1st NDC target by 2030, as well as regular monitoring and evaluation of the progress and achievement. The monitoring and evaluation of the mitigation measures relating to the Thailand’s LEDS will be carried out to ensure its effectiveness and efficiency in achieving its objectives and key performance indicators. Because it is a long-term plan spanning many years during which many changes can occur, it is envisaged that it will be subject to a comprehensive review every five years. This is consistent with the approach under the Paris Agreement that assigned Parties to submit their NDCs to the UNFCCC every five year. - text: The NDC also benefited from the reviews and comments of these implementing partners as well as local and international experts. Special thanks to The Honourable Molwyn Joseph, Minister for Health, Wellness and the Environment, for his unwavering commitment to advance this ambitious climate change agenda, while Antigua and Barbuda faced an outbreak of the COVID-19 pandemic. Significant contributions to the process were made by a wide-cross section of stakeholders from the public and private sector, civil society, trade and industry groups and training institutions, who attended NDC-related workshops, consultations and participated in key stakeholder interviews organized to inform the NDC update. - text: Antigua and Barbuda will mainstream gender in its energy planning through an Inclusive Renewable Energy Strategy. This strategy will recognize and acknowledge, among other things, the gender norms, and inequalities prevalent in the energy sector, women and men’s differentiated access to energy, their different energy needs and preferences, and different impacts that energy access could have on their livelihoods. Antigua and Barbuda’s plan for an inclusive renewable energy transition will ensure continued affordable and reliable access to electricity and other energy services for all. - text: 'Thailand’s climate actions are divided into short-term, medium-term and long-term targets up to 2050. For the mitigation actions, short-term targets include: (i) develop medium- and long-term GHG emission reduction targets and prepare roadmaps for the implementation by sector, including the GHG emission reduction target on a voluntary basis (pre-2020 target), Nationally Appropriate Mitigation Actions (NAMAs) roadmaps, and measurement, reporting, and verification mechanisms, (ii) establish domestic incentive mechanisms to encourage low carbon development. The medium-term targets include: (i) reduce GHG emissions from energy and transport sectors by 7-20% against BAU level by 2020, subject to the level of international support, (ii) supply at least 25% of energy consumption from renewable energy sources by 2021 and (iii) increase the ratio of municipalities with more than 10 m2 of green space per capita.' - text: In the oil sector, the country has benefited from 372 million dollars for the reduction of gas flaring at the initiative (GGFR - "Global Gas Flaring Reduction") of the World Bank after having adopted in November 2015 a national reduction plan flaring and associated gas upgrading. In the electricity sector, the NDC highlights the development of hydroelectricity which should make it possible to cover 80% of production in 2025, the remaining 20% &ZeroWidthSpace;&ZeroWidthSpace;being covered by gas and other renewable energies. pipeline_tag: text-classification inference: true co2_eq_emissions: emissions: 5.901369050433577 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz ram_total_size: 12.674789428710938 hours_used: 0.185 hardware_used: 1 x Tesla T4 base_model: ppsingh/TAPP-multilabel-mpnet --- # SetFit with ppsingh/TAPP-multilabel-mpnet This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [ppsingh/TAPP-multilabel-mpnet](https://huggingface.co/ppsingh/TAPP-multilabel-mpnet) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [ppsingh/TAPP-multilabel-mpnet](https://huggingface.co/ppsingh/TAPP-multilabel-mpnet) - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | NEGATIVE | <ul><li>'(p 70-1).Antigua and Barbuda’s 2021 update to the first Nationally Determined Contribution the most vulnerable in society have been predominantly focused on adaptation measures like building resilience to flooding and hurricanes. The updated NDC ambition provides an opportunity to focus more intently on enabling access to energy efficiency and renewable energy for the most vulnerable, particularly women who are most affected when electricity is not available since the grid is down after an extreme weather event. Nationally, Antigua and Barbuda intends to utilize the SIRF Fund as a mechanism primarily to catalyse and leverage investment in the transition for NGOs, MSMEs and informal sectors that normally cannot access traditional local commercial financing due to perceived high risks.'</li><li>'The transport system cost will be increased by 16.2% compared to the BAU level. Electric trucks and electric pick-ups will account for the highest share of investment followed by electric buses and trucks. In the manufacturing industries, the energy efficiency improvement in the heating and the motor systems and the deployment of CCS require the highest investment in the non-metallic and the chemical industries in 2050. The manufacturing industries system cost will be increased by 15.3% compared to the BAU level.'</li><li>'Figure 1-9: Total GHG emissions by sector (excluding LULUCF) 2000 and 2016 1.2.2 Greenhouse Gas Emission by Sector • Energy Total direct GHG emissions from the Energy sector in 2016 were estimated to be 253,895.61 eq. The majority of GHG emissions in the Energy sector were generated by fuel combustion, consisting mostly of grid-connected electricity and heat production at around eq (42.84%). GHG emissions from Transport, Manufacturing Industries and Construction, and other sectors were 68,260.17 GgCO2 eq eq (6.10%), respectively. Fugitive Emissions from fuel eq or a little over 4.33% of total GHG emissions from the Energy sector. Details of GHG emissions in the Energy sector by gas type and source in 2016 are presented in Figure 1-10. Source: Thailand Third Biennial Update Report, UNFCCC 2020.'</li></ul> | | TARGET | <ul><li>'DNPM, NFA,. Cocoa. Board,. Spice Board,. Provincial. gov-ernments. in the. Momase. region. Ongoing -. 2025. 340. European Union. Support committed. Priority Sector: Health. By 2030, 100% of the population benefit from introduced health measures to respond to malaria and other climate-sensitive diseases in PNG. Action or Activity. Indicator. Status. Lead. Implementing. Agencies. Supporting. Agencies. Time Frame. Budget (USD). Funding Source. (Existing/Potential). Other Support. Improve vector control. measures, with a priority. of all households having. access to a long-lasting. insecticidal net (LLIN).'</li><li>'Conditionality: With national effort it is intended to increase the attention to vulnerable groups in case of disasters and/or emergencies up to 50% of the target and 100% of the target with international cooperation. Description: In this goal, it is projected to increase coverage from 33% to 50% (211,000 families) of agricultural insurance in attention to the number of families, whose crops were affected by various adverse weather events (flood, drought, frost, hailstorm, among others), in addition to the implementation of comprehensive actions for risk management and adaptation to Climate Change.'</li><li>'By 2030, upgrade watershed health and vitality in at least 20 districts to a higher condition category. By 2030, create an inventory of wetlands in Nepal and sustainably manage vulnerable wetlands. By 2025, enhance the sink capacity of the landuse sector by instituting the Forest Development Fund (FDF) for compensation of plantations and forest restoration. Increase growing stock including Mean Annual Increment in Tarai, Hills and Mountains. Afforest/reforest viable public and private lands, including agroforestry.'</li></ul> | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("ppsingh/iki_target_setfit") # Run inference preds = model("In the oil sector, the country has benefited from 372 million dollars for the reduction of gas flaring at the initiative (GGFR - \"Global Gas Flaring Reduction\") of the World Bank after having adopted in November 2015 a national reduction plan flaring and associated gas upgrading. In the electricity sector, the NDC highlights the development of hydroelectricity which should make it possible to cover 80% of production in 2025, the remaining 20% &ZeroWidthSpace;&ZeroWidthSpace;being covered by gas and other renewable energies.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:---------|:----| | Word count | 58 | 116.6632 | 508 | | Label | Training Sample Count | |:---------|:----------------------| | NEGATIVE | 51 | | TARGET | 44 | ### Training Hyperparameters - batch_size: (8, 2) - num_epochs: (1, 0) - max_steps: -1 - sampling_strategy: undersampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0018 | 1 | 0.3343 | - | | 0.1783 | 100 | 0.0026 | 0.1965 | | 0.3565 | 200 | 0.0001 | 0.1995 | | 0.5348 | 300 | 0.0001 | 0.2105 | | 0.7130 | 400 | 0.0001 | 0.2153 | | 0.8913 | 500 | 0.0 | 0.1927 | ### Training Results Classifier - Classes Representation in Test Data: Target: 9, Negative: 8 - F1-score: 87.8% - Accuracy: 88.2% ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.006 kg of CO2 - **Hours Used**: 0.185 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x Tesla T4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz - **RAM Size**: 12.67 GB ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.3.0 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
BharatMata/my-dog
BharatMata
2024-02-12T15:22:42Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-02-12T15:20:20Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My--Dog Dreambooth model trained by BharatMata following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: Roll-No.27 Sample pictures of this concept: ![0](https://huggingface.co/BharatMata/my-dog/resolve/main/sample_images/Screenshot_2024-02-12_084810.png)
maramzarkaoui/openhermes
maramzarkaoui
2024-02-12T15:08:14Z
2
0
transformers
[ "transformers", "safetensors", "mistral", "autotrain", "text-generation", "conversational", "license:other", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-08T11:26:35Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
sam1120/dropoff-utcustom-train-SF-RGB-b5_6
sam1120
2024-02-12T14:57:46Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T14:26:12Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGB-b5_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGB-b5_6 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.2315 - Mean Iou: 0.6980 - Mean Accuracy: 0.7503 - Overall Accuracy: 0.9714 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.5091 - Accuracy Undropoff: 0.9915 - Iou Unlabeled: nan - Iou Dropoff: 0.4253 - Iou Undropoff: 0.9708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0694 | 5.0 | 10 | 1.0190 | 0.2533 | 0.6371 | 0.6676 | nan | 0.6038 | 0.6703 | 0.0 | 0.0976 | 0.6624 | | 0.8457 | 10.0 | 20 | 0.7681 | 0.4126 | 0.7662 | 0.9307 | nan | 0.5867 | 0.9457 | 0.0 | 0.3078 | 0.9300 | | 0.6049 | 15.0 | 30 | 0.5718 | 0.4362 | 0.7527 | 0.9568 | nan | 0.5301 | 0.9753 | 0.0 | 0.3527 | 0.9561 | | 0.5206 | 20.0 | 40 | 0.4181 | 0.4522 | 0.7468 | 0.9662 | nan | 0.5076 | 0.9861 | 0.0 | 0.3909 | 0.9656 | | 0.3478 | 25.0 | 50 | 0.3144 | 0.4603 | 0.7376 | 0.9709 | nan | 0.4832 | 0.9920 | 0.0 | 0.4105 | 0.9705 | | 0.2023 | 30.0 | 60 | 0.2893 | 0.4654 | 0.7612 | 0.9701 | nan | 0.5332 | 0.9891 | 0.0 | 0.4267 | 0.9695 | | 0.1367 | 35.0 | 70 | 0.2351 | 0.6813 | 0.7176 | 0.9715 | nan | 0.4407 | 0.9946 | nan | 0.3916 | 0.9710 | | 0.1272 | 40.0 | 80 | 0.2364 | 0.6824 | 0.7217 | 0.9713 | nan | 0.4495 | 0.9939 | nan | 0.3941 | 0.9707 | | 0.0929 | 45.0 | 90 | 0.2536 | 0.4704 | 0.7617 | 0.9718 | nan | 0.5326 | 0.9909 | 0.0 | 0.4401 | 0.9712 | | 0.0756 | 50.0 | 100 | 0.2253 | 0.6950 | 0.7479 | 0.9710 | nan | 0.5045 | 0.9912 | nan | 0.4197 | 0.9704 | | 0.0756 | 55.0 | 110 | 0.2305 | 0.7043 | 0.7606 | 0.9716 | nan | 0.5305 | 0.9908 | nan | 0.4375 | 0.9710 | | 0.0721 | 60.0 | 120 | 0.2213 | 0.6964 | 0.7448 | 0.9716 | nan | 0.4974 | 0.9922 | nan | 0.4218 | 0.9711 | | 0.0683 | 65.0 | 130 | 0.2338 | 0.7047 | 0.7631 | 0.9715 | nan | 0.5359 | 0.9904 | nan | 0.4385 | 0.9708 | | 0.0642 | 70.0 | 140 | 0.2314 | 0.7046 | 0.7637 | 0.9714 | nan | 0.5373 | 0.9902 | nan | 0.4385 | 0.9707 | | 0.0623 | 75.0 | 150 | 0.2205 | 0.7013 | 0.7565 | 0.9714 | nan | 0.5222 | 0.9909 | nan | 0.4317 | 0.9708 | | 0.0601 | 80.0 | 160 | 0.2209 | 0.6983 | 0.7496 | 0.9715 | nan | 0.5075 | 0.9917 | nan | 0.4257 | 0.9709 | | 0.0557 | 85.0 | 170 | 0.2067 | 0.6982 | 0.7463 | 0.9719 | nan | 0.5003 | 0.9923 | nan | 0.4252 | 0.9713 | | 0.0571 | 90.0 | 180 | 0.2354 | 0.7022 | 0.7603 | 0.9712 | nan | 0.5302 | 0.9904 | nan | 0.4339 | 0.9706 | | 0.0544 | 95.0 | 190 | 0.2240 | 0.7010 | 0.7562 | 0.9714 | nan | 0.5215 | 0.9909 | nan | 0.4311 | 0.9708 | | 0.0553 | 100.0 | 200 | 0.2204 | 0.6968 | 0.7454 | 0.9717 | nan | 0.4987 | 0.9922 | nan | 0.4225 | 0.9711 | | 0.0525 | 105.0 | 210 | 0.2332 | 0.7050 | 0.7625 | 0.9716 | nan | 0.5344 | 0.9906 | nan | 0.4390 | 0.9710 | | 0.0524 | 110.0 | 220 | 0.2371 | 0.7033 | 0.7605 | 0.9715 | nan | 0.5304 | 0.9906 | nan | 0.4359 | 0.9708 | | 0.0513 | 115.0 | 230 | 0.2333 | 0.6987 | 0.7519 | 0.9714 | nan | 0.5125 | 0.9913 | nan | 0.4267 | 0.9707 | | 0.0537 | 120.0 | 240 | 0.2315 | 0.6980 | 0.7503 | 0.9714 | nan | 0.5091 | 0.9915 | nan | 0.4253 | 0.9708 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Kavin0211/results
Kavin0211
2024-02-12T14:54:59Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-02-12T14:54:51Z
--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
jaCappella/XUMX_jaCappella_VES_48k
jaCappella
2024-02-12T14:54:38Z
0
0
null
[ "music", "speech", "audio", "audio-to-audio", "a cappella", "vocal ensemble", "ja", "dataset:jaCappella", "arxiv:2211.16028", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2023-01-21T06:25:19Z
--- license: cc-by-nc-4.0 language: - ja tags: - music - speech - audio - audio-to-audio - a cappella - vocal ensemble datasets: - jaCappella metrics: - SI-SDR --- # X-UMX trained with the jaCappella corpus for vocal ensemble separation This model was trained by Tomohiko Nakamura using [the codebase](https://github.com/TomohikoNakamura/asteroid_jaCappella)). It was trained on the vocal ensemble separation task of [the jaCappella dataset](https://tomohikonakamura.github.io/jaCappella_corpus/). [The paper](https://doi.org/10.1109/ICASSP49357.2023.10095569) was published in ICASSP 2023 ([arXiv](https://arxiv.org/abs/2211.16028)). # License See [the jaCappella dataset page](https://tomohikonakamura.github.io/jaCappella_corpus/). # Citation See [the jaCappella dataset page](https://tomohikonakamura.github.io/jaCappella_corpus/). # Configuration ```yaml data: num_workers: 12 sample_rate: 48000 samples_per_track: 13 seed: 42 seq_dur: 6.0 source_augmentations: - gain sources: - vocal_percussion - bass - alto - tenor - soprano - lead_vocal model: bandwidth: 16000 bidirectional: true hidden_size: 512 in_chan: 4096 nb_channels: 1 nhop: 1024 pretrained: null spec_power: 1 window_length: 4096 optim: lr: 0.001 lr_decay_gamma: 0.3 lr_decay_patience: 80 optimizer: adam patience: 1000 weight_decay: 1.0e-05 training: batch_size: 16 epochs: 1000 loss_combine_sources: true loss_use_multidomain: true mix_coef: 10.0 val_dur: 80.0 ``` # Results (SI-SDR [dB]) on vocal ensemble separation | Method | Lead vocal | Soprano | Alto | Tenor | Bass |Vocal percussion| |:---------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:| | X-UMX | 7.5 | 10.7 | 13.5 | 10.2 | 9.1 | 21.0 |
pgajo/mbert-xlwa-en-it_EW-TT-PE_U1_S0_DROP1_mbert_E8_DEV98.0
pgajo
2024-02-12T14:51:50Z
94
0
transformers
[ "transformers", "safetensors", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2024-02-12T14:50:50Z
--- {} --- Model description: Model: pgajo/mbert-xlwa-en-it Dataset: TASTEset Unshuffled ratio: ['1'] Shuffled ratio: ['0'] Best exact match epoch: 8 Best exact match: 98.07 Best epoch: 8 Drop duplicates: ['1'] Max epochs = 10 Optimizer lr = 3e-05 Optimizer eps = 1e-08 Batch size = 32 Dataset path = pgajo/EW-TT-PE_U1_S0_DROP1_mbert Results | epoch | train_loss | train_f1 | train_exact | dev_loss | dev_f1 | dev_exact | test_loss | test_f1 | test_exact | |--------:|-------------:|-----------:|--------------:|-----------:|---------:|------------:|------------:|----------:|-------------:| | 1 | 0.42 | 88.03 | 77.33 | 0.08 | 97.54 | 95.58 | 0 | 0 | 0 | | 2 | 0.05 | 99.22 | 97.72 | 0.05 | 98.33 | 97.24 | 0 | 0 | 0 | | 3 | 0.02 | 99.66 | 99.1 | 0.07 | 98.37 | 96.69 | 0 | 0 | 0 | | 4 | 0.02 | 99.61 | 99.1 | 0.06 | 98.43 | 96.96 | 0 | 0 | 0 | | 5 | 0.01 | 99.69 | 99.31 | 0.05 | 98.72 | 97.51 | 0 | 0 | 0 | | 6 | 0.01 | 99.75 | 99.38 | 0.03 | 98.62 | 97.24 | 0 | 0 | 0 | | 7 | 0.01 | 99.97 | 99.86 | 0.04 | 98.83 | 97.79 | 0 | 0 | 0 | | 8 | 0 | 99.91 | 99.86 | 0.04 | 98.98 | 98.07 | 0 | 0 | 0 | | 9 | 0 | 99.88 | 99.79 | 0.03 | 99.22 | 98.07 | 0 | 0 | 0 | | 10 | 0 | 99.88 | 99.72 | 0.05 | 98.84 | 97.51 | 0 | 0 | 0 |
Shijia/furina_seed42_eng_amh_esp_roman
Shijia
2024-02-12T14:51:27Z
91
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:yihongLiu/furina", "base_model:finetune:yihongLiu/furina", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T14:50:32Z
--- base_model: yihongLiu/furina tags: - generated_from_trainer model-index: - name: furina_seed42_eng_amh_esp_roman results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furina_seed42_eng_amh_esp_roman This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0144 - Spearman Corr: 0.8461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 0.59 | 200 | 0.0299 | 0.6782 | | No log | 1.18 | 400 | 0.0251 | 0.7278 | | No log | 1.76 | 600 | 0.0202 | 0.7493 | | 0.0425 | 2.35 | 800 | 0.0194 | 0.7584 | | 0.0425 | 2.94 | 1000 | 0.0184 | 0.7737 | | 0.0425 | 3.53 | 1200 | 0.0189 | 0.7734 | | 0.0184 | 4.12 | 1400 | 0.0180 | 0.7906 | | 0.0184 | 4.71 | 1600 | 0.0188 | 0.7909 | | 0.0184 | 5.29 | 1800 | 0.0171 | 0.7971 | | 0.0184 | 5.88 | 2000 | 0.0165 | 0.8055 | | 0.0134 | 6.47 | 2200 | 0.0162 | 0.8059 | | 0.0134 | 7.06 | 2400 | 0.0164 | 0.8085 | | 0.0134 | 7.65 | 2600 | 0.0169 | 0.8131 | | 0.0098 | 8.24 | 2800 | 0.0169 | 0.8171 | | 0.0098 | 8.82 | 3000 | 0.0158 | 0.8169 | | 0.0098 | 9.41 | 3200 | 0.0152 | 0.8201 | | 0.0073 | 10.0 | 3400 | 0.0165 | 0.8197 | | 0.0073 | 10.59 | 3600 | 0.0150 | 0.8234 | | 0.0073 | 11.18 | 3800 | 0.0152 | 0.8284 | | 0.0073 | 11.76 | 4000 | 0.0141 | 0.8338 | | 0.0059 | 12.35 | 4200 | 0.0144 | 0.8315 | | 0.0059 | 12.94 | 4400 | 0.0147 | 0.8348 | | 0.0059 | 13.53 | 4600 | 0.0157 | 0.8327 | | 0.0049 | 14.12 | 4800 | 0.0147 | 0.8379 | | 0.0049 | 14.71 | 5000 | 0.0149 | 0.8365 | | 0.0049 | 15.29 | 5200 | 0.0142 | 0.8360 | | 0.0049 | 15.88 | 5400 | 0.0140 | 0.8409 | | 0.0042 | 16.47 | 5600 | 0.0135 | 0.8414 | | 0.0042 | 17.06 | 5800 | 0.0141 | 0.8410 | | 0.0042 | 17.65 | 6000 | 0.0144 | 0.8402 | | 0.0037 | 18.24 | 6200 | 0.0151 | 0.8435 | | 0.0037 | 18.82 | 6400 | 0.0140 | 0.8431 | | 0.0037 | 19.41 | 6600 | 0.0140 | 0.8454 | | 0.0033 | 20.0 | 6800 | 0.0136 | 0.8453 | | 0.0033 | 20.59 | 7000 | 0.0137 | 0.8446 | | 0.0033 | 21.18 | 7200 | 0.0144 | 0.8461 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Commandante/german-party-sentiment-bert-complete-synonyms-5e-5
Commandante
2024-02-12T14:45:39Z
93
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:mdraw/german-news-sentiment-bert", "base_model:finetune:mdraw/german-news-sentiment-bert", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-09T02:21:11Z
--- base_model: mdraw/german-news-sentiment-bert tags: - generated_from_trainer model-index: - name: german-party-sentiment-bert-complete-synonyms-5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german-party-sentiment-bert-complete-synonyms-5e-5 This model is a fine-tuned version of [mdraw/german-news-sentiment-bert](https://huggingface.co/mdraw/german-news-sentiment-bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 120 - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9596 | 1.0 | 70 | 0.9676 | | 0.9122 | 2.0 | 140 | 0.8769 | | 0.7382 | 3.0 | 210 | 0.9984 | | 0.5708 | 4.0 | 280 | 1.1080 | | 0.3579 | 5.0 | 350 | 1.4137 | | 0.3066 | 6.0 | 420 | 1.8204 | | 0.1716 | 7.0 | 490 | 1.8167 | | 0.1974 | 8.0 | 560 | 2.1479 | | 0.1164 | 9.0 | 630 | 2.3899 | | 0.0878 | 10.0 | 700 | 2.5266 | | 0.07 | 11.0 | 770 | 2.7014 | | 0.0604 | 12.0 | 840 | 2.7048 | | 0.0278 | 13.0 | 910 | 2.8119 | | 0.0376 | 14.0 | 980 | 2.8799 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Tokenizers 0.15.1
Deepreneur/blue-lizard
Deepreneur
2024-02-12T14:43:33Z
7
13
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ja", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-05T16:29:47Z
--- license: llama2 language: - ja --- # Deepreneur-blue-lizard <!-- Provide a quick summary of what the model is/does. --> ![](deepreneur_Lizard_thumbnail.png) ## Model Description <!-- Provide a longer summary of what this model is. --> Deepreneur-blue-lizardは、MetaのLlama-2-7bに対して、Wikipediaや書籍等の日本語の学習データを用いて追加事前学習と独自データによるファインチューニングを実施したモデルです。 70億パラメータと非常に軽量なモデルであるにも関わらず、JGLUE(日本語タスクにおける評価ベンチマーク)を用いた評価では、ChatGPT-3.5を超えるスコアが算出されており、公開されている日本語モデルの中では最高性能になります。 ※ 学習データにはJGLUEのデータは使用しておりません。また、ChatGPT等の出力は学習データに使用しておりません。 ## How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。" text = "deepreneurについて教えて" model_name = "Deepreneur/blue-lizard" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, torch_dtype=torch.bfloat16, ) if torch.cuda.is_available(): model = model.to("cuda") prompt = "{bos_token}{b_inst} {system}{prompt} {e_inst}".format( bos_token=tokenizer.bos_token, b_inst=B_INST, system=f"{B_SYS}{DEFAULT_SYSTEM_PROMPT}{E_SYS}", prompt=text, e_inst=E_INST, ) with torch.no_grad(): token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") output_ids = model.generate( token_ids.to(model.device), max_new_tokens=256, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1) :], skip_special_tokens=True) print(output) """ 株式会社Deepreneurは、言語系の生成AIに強みを持ったAIスタートアップです。 東京大学松尾研究室発AIスタートアップに認定されており、大規模言語モデル(Large Language Model)の開発をはじめとする基礎研究や、企業との共同研究を通じてDXを推進します。 Deepreneurのホームページ: https://www.deepreneur.com/ Deepreneurのメールアドレス: [email protected] """ ``` ## Developers 以下アルファベット順 - Ikuto Watanabe - Sunwoo Park - Taiki Kaneki - Yuki Hirota - Yuki Koshiba - Yusuke Kanzaki - Yuta Sawada ## Licence Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.
sam1120/dropoff-utcustom-train-SF-RGB-b5_2
sam1120
2024-02-12T14:41:07Z
151
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T14:24:47Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGB-b5_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGB-b5_2 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.4848 - Mean Iou: 0.4257 - Mean Accuracy: 0.7972 - Overall Accuracy: 0.9466 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.6343 - Accuracy Undropoff: 0.9601 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.3321 - Iou Undropoff: 0.9451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0108 | 5.0 | 10 | 1.0721 | 0.1514 | 0.5401 | 0.4205 | nan | 0.6706 | 0.4096 | 0.0 | 0.0494 | 0.4047 | | 0.9654 | 10.0 | 20 | 0.9802 | 0.2190 | 0.6570 | 0.5944 | nan | 0.7253 | 0.5887 | 0.0 | 0.0745 | 0.5826 | | 0.9175 | 15.0 | 30 | 0.9047 | 0.2553 | 0.7350 | 0.6792 | nan | 0.7960 | 0.6741 | 0.0 | 0.0973 | 0.6686 | | 0.9052 | 20.0 | 40 | 0.8427 | 0.2812 | 0.7661 | 0.7377 | nan | 0.7971 | 0.7351 | 0.0 | 0.1146 | 0.7290 | | 0.8555 | 25.0 | 50 | 0.7970 | 0.3063 | 0.7827 | 0.7900 | nan | 0.7748 | 0.7906 | 0.0 | 0.1357 | 0.7832 | | 0.8291 | 30.0 | 60 | 0.7543 | 0.3289 | 0.7891 | 0.8332 | nan | 0.7410 | 0.8372 | 0.0 | 0.1586 | 0.8282 | | 0.7923 | 35.0 | 70 | 0.7327 | 0.3375 | 0.7961 | 0.8471 | nan | 0.7405 | 0.8517 | 0.0 | 0.1701 | 0.8425 | | 0.7724 | 40.0 | 80 | 0.6994 | 0.3529 | 0.7968 | 0.8719 | nan | 0.7149 | 0.8787 | 0.0 | 0.1906 | 0.8682 | | 0.7215 | 45.0 | 90 | 0.6675 | 0.3694 | 0.7935 | 0.8954 | nan | 0.6824 | 0.9047 | 0.0 | 0.2157 | 0.8926 | | 0.6907 | 50.0 | 100 | 0.6521 | 0.3742 | 0.7998 | 0.9000 | nan | 0.6904 | 0.9091 | 0.0 | 0.2252 | 0.8973 | | 0.6768 | 55.0 | 110 | 0.6260 | 0.3850 | 0.8022 | 0.9118 | nan | 0.6827 | 0.9217 | 0.0 | 0.2455 | 0.9094 | | 0.659 | 60.0 | 120 | 0.6010 | 0.3965 | 0.7973 | 0.9244 | nan | 0.6586 | 0.9359 | 0.0 | 0.2671 | 0.9224 | | 0.6265 | 65.0 | 130 | 0.5847 | 0.4005 | 0.7992 | 0.9276 | nan | 0.6592 | 0.9393 | 0.0 | 0.2757 | 0.9258 | | 0.6134 | 70.0 | 140 | 0.5673 | 0.4060 | 0.8022 | 0.9316 | nan | 0.6611 | 0.9433 | 0.0 | 0.2881 | 0.9297 | | 0.5864 | 75.0 | 150 | 0.5401 | 0.4132 | 0.7961 | 0.9383 | nan | 0.6410 | 0.9511 | 0.0 | 0.3029 | 0.9366 | | 0.5686 | 80.0 | 160 | 0.5289 | 0.4153 | 0.7974 | 0.9395 | nan | 0.6424 | 0.9524 | 0.0 | 0.3080 | 0.9379 | | 0.5597 | 85.0 | 170 | 0.5386 | 0.4114 | 0.8079 | 0.9350 | nan | 0.6692 | 0.9465 | 0.0 | 0.3011 | 0.9331 | | 0.5718 | 90.0 | 180 | 0.5080 | 0.4210 | 0.7947 | 0.9438 | nan | 0.6321 | 0.9573 | 0.0 | 0.3208 | 0.9423 | | 0.517 | 95.0 | 190 | 0.5026 | 0.4222 | 0.7956 | 0.9445 | nan | 0.6332 | 0.9580 | 0.0 | 0.3236 | 0.9430 | | 0.5252 | 100.0 | 200 | 0.4990 | 0.4232 | 0.7969 | 0.9450 | nan | 0.6354 | 0.9584 | 0.0 | 0.3261 | 0.9435 | | 0.5174 | 105.0 | 210 | 0.4951 | 0.4223 | 0.8012 | 0.9437 | nan | 0.6457 | 0.9567 | 0.0 | 0.3249 | 0.9422 | | 0.5217 | 110.0 | 220 | 0.4882 | 0.4238 | 0.7993 | 0.9450 | nan | 0.6404 | 0.9582 | 0.0 | 0.3280 | 0.9435 | | 0.5224 | 115.0 | 230 | 0.4846 | 0.4258 | 0.7968 | 0.9467 | nan | 0.6333 | 0.9603 | 0.0 | 0.3321 | 0.9452 | | 0.5399 | 120.0 | 240 | 0.4848 | 0.4257 | 0.7972 | 0.9466 | nan | 0.6343 | 0.9601 | 0.0 | 0.3321 | 0.9451 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGB-b5_1
sam1120
2024-02-12T14:40:35Z
147
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T14:24:17Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGB-b5_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGB-b5_1 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.6279 - Mean Iou: 0.4054 - Mean Accuracy: 0.7471 - Overall Accuracy: 0.8860 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.5956 - Accuracy Undropoff: 0.8986 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.3318 - Iou Undropoff: 0.8843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0071 | 5.0 | 10 | 1.0206 | 0.1745 | 0.2748 | 0.5034 | nan | 0.0255 | 0.5241 | 0.0 | 0.0147 | 0.5087 | | 0.9688 | 10.0 | 20 | 0.9873 | 0.2140 | 0.3486 | 0.5771 | nan | 0.0992 | 0.5979 | 0.0 | 0.0582 | 0.5838 | | 0.9406 | 15.0 | 30 | 0.9313 | 0.2613 | 0.4446 | 0.6655 | nan | 0.2038 | 0.6855 | 0.0 | 0.1135 | 0.6705 | | 0.9278 | 20.0 | 40 | 0.8851 | 0.2930 | 0.5149 | 0.7111 | nan | 0.3009 | 0.7289 | 0.0 | 0.1648 | 0.7142 | | 0.8956 | 25.0 | 50 | 0.8563 | 0.3118 | 0.5642 | 0.7358 | nan | 0.3770 | 0.7514 | 0.0 | 0.1985 | 0.7370 | | 0.8674 | 30.0 | 60 | 0.8260 | 0.3303 | 0.6086 | 0.7664 | nan | 0.4366 | 0.7807 | 0.0 | 0.2246 | 0.7664 | | 0.8438 | 35.0 | 70 | 0.8149 | 0.3347 | 0.6355 | 0.7671 | nan | 0.4921 | 0.7790 | 0.0 | 0.2381 | 0.7660 | | 0.8309 | 40.0 | 80 | 0.7881 | 0.3459 | 0.6472 | 0.7847 | nan | 0.4972 | 0.7972 | 0.0 | 0.2539 | 0.7839 | | 0.8069 | 45.0 | 90 | 0.7640 | 0.3567 | 0.6617 | 0.8041 | nan | 0.5063 | 0.8170 | 0.0 | 0.2668 | 0.8033 | | 0.7779 | 50.0 | 100 | 0.7486 | 0.3637 | 0.6792 | 0.8145 | nan | 0.5316 | 0.8268 | 0.0 | 0.2778 | 0.8132 | | 0.7695 | 55.0 | 110 | 0.7354 | 0.3684 | 0.6936 | 0.8214 | nan | 0.5542 | 0.8329 | 0.0 | 0.2858 | 0.8195 | | 0.7568 | 60.0 | 120 | 0.7164 | 0.3757 | 0.7032 | 0.8365 | nan | 0.5577 | 0.8486 | 0.0 | 0.2924 | 0.8347 | | 0.7285 | 65.0 | 130 | 0.6976 | 0.3836 | 0.7119 | 0.8484 | nan | 0.5630 | 0.8608 | 0.0 | 0.3042 | 0.8467 | | 0.7217 | 70.0 | 140 | 0.6922 | 0.3857 | 0.7217 | 0.8499 | nan | 0.5817 | 0.8616 | 0.0 | 0.3091 | 0.8480 | | 0.7095 | 75.0 | 150 | 0.6708 | 0.3926 | 0.7287 | 0.8624 | nan | 0.5828 | 0.8745 | 0.0 | 0.3172 | 0.8605 | | 0.6944 | 80.0 | 160 | 0.6637 | 0.3951 | 0.7320 | 0.8660 | nan | 0.5858 | 0.8781 | 0.0 | 0.3212 | 0.8641 | | 0.6878 | 85.0 | 170 | 0.6632 | 0.3942 | 0.7397 | 0.8673 | nan | 0.6005 | 0.8788 | 0.0 | 0.3175 | 0.8652 | | 0.6868 | 90.0 | 180 | 0.6468 | 0.3998 | 0.7391 | 0.8756 | nan | 0.5902 | 0.8880 | 0.0 | 0.3257 | 0.8739 | | 0.6581 | 95.0 | 190 | 0.6444 | 0.4003 | 0.7421 | 0.8776 | nan | 0.5942 | 0.8899 | 0.0 | 0.3249 | 0.8759 | | 0.6587 | 100.0 | 200 | 0.6383 | 0.4026 | 0.7427 | 0.8814 | nan | 0.5914 | 0.8940 | 0.0 | 0.3281 | 0.8797 | | 0.6525 | 105.0 | 210 | 0.6334 | 0.4032 | 0.7434 | 0.8825 | nan | 0.5918 | 0.8951 | 0.0 | 0.3289 | 0.8808 | | 0.658 | 110.0 | 220 | 0.6345 | 0.4026 | 0.7451 | 0.8811 | nan | 0.5968 | 0.8934 | 0.0 | 0.3285 | 0.8793 | | 0.6575 | 115.0 | 230 | 0.6300 | 0.4050 | 0.7463 | 0.8851 | nan | 0.5948 | 0.8977 | 0.0 | 0.3314 | 0.8835 | | 0.6625 | 120.0 | 240 | 0.6279 | 0.4054 | 0.7471 | 0.8860 | nan | 0.5956 | 0.8986 | 0.0 | 0.3318 | 0.8843 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Stoub/Stoub-ppo-LunarLander-v2
Stoub
2024-02-12T14:40:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-07T22:37:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.40 +/- 21.63 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sam1120/dropoff-utcustom-train-SF-RGB-b5_3
sam1120
2024-02-12T14:40:00Z
155
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T14:24:49Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGB-b5_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGB-b5_3 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.3770 - Mean Iou: 0.4572 - Mean Accuracy: 0.7822 - Overall Accuracy: 0.9640 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.5839 - Accuracy Undropoff: 0.9805 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.4086 - Iou Undropoff: 0.9631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 15 - eval_batch_size: 15 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.3135 | 5.0 | 10 | 1.2008 | 0.0546 | 0.2586 | 0.1227 | nan | 0.4069 | 0.1103 | 0.0 | 0.0535 | 0.1102 | | 1.2309 | 10.0 | 20 | 1.1294 | 0.1176 | 0.3397 | 0.2490 | nan | 0.4388 | 0.2407 | 0.0 | 0.1129 | 0.2400 | | 1.1346 | 15.0 | 30 | 1.0395 | 0.2171 | 0.4865 | 0.5022 | nan | 0.4694 | 0.5036 | 0.0 | 0.1524 | 0.4989 | | 1.1088 | 20.0 | 40 | 0.9755 | 0.2608 | 0.5521 | 0.6176 | nan | 0.4808 | 0.6235 | 0.0 | 0.1661 | 0.6163 | | 1.007 | 25.0 | 50 | 0.9197 | 0.2895 | 0.5959 | 0.6775 | nan | 0.5068 | 0.6849 | 0.0 | 0.1923 | 0.6763 | | 0.9145 | 30.0 | 60 | 0.8635 | 0.3162 | 0.6299 | 0.7335 | nan | 0.5168 | 0.7429 | 0.0 | 0.2156 | 0.7329 | | 0.8745 | 35.0 | 70 | 0.8070 | 0.3398 | 0.6784 | 0.7808 | nan | 0.5667 | 0.7901 | 0.0 | 0.2404 | 0.7791 | | 0.8088 | 40.0 | 80 | 0.7442 | 0.3667 | 0.7191 | 0.8290 | nan | 0.5993 | 0.8389 | 0.0 | 0.2730 | 0.8272 | | 0.7184 | 45.0 | 90 | 0.6956 | 0.3832 | 0.7513 | 0.8603 | nan | 0.6323 | 0.8702 | 0.0 | 0.2915 | 0.8580 | | 0.6908 | 50.0 | 100 | 0.6751 | 0.3931 | 0.7592 | 0.8748 | nan | 0.6332 | 0.8853 | 0.0 | 0.3067 | 0.8728 | | 0.643 | 55.0 | 110 | 0.6101 | 0.4134 | 0.7714 | 0.9108 | nan | 0.6194 | 0.9234 | 0.0 | 0.3308 | 0.9094 | | 0.6014 | 60.0 | 120 | 0.5971 | 0.4166 | 0.7826 | 0.9189 | nan | 0.6339 | 0.9313 | 0.0 | 0.3324 | 0.9175 | | 0.5685 | 65.0 | 130 | 0.5595 | 0.4304 | 0.7946 | 0.9328 | nan | 0.6439 | 0.9453 | 0.0 | 0.3599 | 0.9314 | | 0.5172 | 70.0 | 140 | 0.5344 | 0.4373 | 0.8010 | 0.9406 | nan | 0.6488 | 0.9532 | 0.0 | 0.3727 | 0.9393 | | 0.4757 | 75.0 | 150 | 0.4963 | 0.4434 | 0.7997 | 0.9490 | nan | 0.6368 | 0.9626 | 0.0 | 0.3822 | 0.9479 | | 0.4288 | 80.0 | 160 | 0.4599 | 0.4488 | 0.7936 | 0.9556 | nan | 0.6169 | 0.9702 | 0.0 | 0.3918 | 0.9546 | | 0.4124 | 85.0 | 170 | 0.4710 | 0.4469 | 0.7989 | 0.9540 | nan | 0.6296 | 0.9681 | 0.0 | 0.3876 | 0.9529 | | 0.4995 | 90.0 | 180 | 0.4209 | 0.4537 | 0.7883 | 0.9606 | nan | 0.6004 | 0.9762 | 0.0 | 0.4015 | 0.9597 | | 0.3815 | 95.0 | 190 | 0.4287 | 0.4524 | 0.7919 | 0.9595 | nan | 0.6090 | 0.9748 | 0.0 | 0.3988 | 0.9586 | | 0.3764 | 100.0 | 200 | 0.4245 | 0.4529 | 0.7913 | 0.9600 | nan | 0.6073 | 0.9753 | 0.0 | 0.3998 | 0.9590 | | 0.4074 | 105.0 | 210 | 0.4096 | 0.4542 | 0.7894 | 0.9613 | nan | 0.6018 | 0.9769 | 0.0 | 0.4021 | 0.9603 | | 0.3975 | 110.0 | 220 | 0.4107 | 0.4538 | 0.7905 | 0.9610 | nan | 0.6045 | 0.9765 | 0.0 | 0.4013 | 0.9601 | | 0.3598 | 115.0 | 230 | 0.3918 | 0.4558 | 0.7863 | 0.9627 | nan | 0.5939 | 0.9787 | 0.0 | 0.4057 | 0.9618 | | 0.3709 | 120.0 | 240 | 0.3770 | 0.4572 | 0.7822 | 0.9640 | nan | 0.5839 | 0.9805 | 0.0 | 0.4086 | 0.9631 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Guilherme34/Jennifer-uwu-version
Guilherme34
2024-02-12T14:23:35Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-12T14:23:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bartowski/HerculeanSea-7b-128k-exl2
bartowski
2024-02-12T14:21:45Z
0
1
transformers
[ "transformers", "mergekit", "merge", "text-generation", "base_model:Locutusque/Hercules-2.0-Mistral-7B", "base_model:finetune:Locutusque/Hercules-2.0-Mistral-7B", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T14:05:20Z
--- base_model: - Test157t/Pasta-Sea-7b-128k - Locutusque/Hercules-2.0-Mistral-7B library_name: transformers tags: - mergekit - merge quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of HerculeanSea-7b-128k Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/Test157t/HerculeanSea-7b-128k | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/HerculeanSea-7b-128k-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/HerculeanSea-7b-128k-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/HerculeanSea-7b-128k-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/HerculeanSea-7b-128k-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/HerculeanSea-7b-128k-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/HerculeanSea-7b-128k-exl2 HerculeanSea-7b-128k-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `HerculeanSea-7b-128k-exl2`: ```shell mkdir HerculeanSea-7b-128k-exl2 huggingface-cli download bartowski/HerculeanSea-7b-128k-exl2 --local-dir HerculeanSea-7b-128k-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir HerculeanSea-7b-128k-exl2-6_5 huggingface-cli download bartowski/HerculeanSea-7b-128k-exl2 --revision 6_5 --local-dir HerculeanSea-7b-128k-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir HerculeanSea-7b-128k-exl2-6.5 huggingface-cli download bartowski/HerculeanSea-7b-128k-exl2 --revision 6_5 --local-dir HerculeanSea-7b-128k-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
Shijia/furina_seed42_eng_kin_amh_roman
Shijia
2024-02-12T14:19:22Z
91
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:yihongLiu/furina", "base_model:finetune:yihongLiu/furina", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T14:18:30Z
--- base_model: yihongLiu/furina tags: - generated_from_trainer model-index: - name: furina_seed42_eng_kin_amh_roman results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furina_seed42_eng_kin_amh_roman This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0284 - Spearman Corr: 0.7771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 0.65 | 200 | 0.0373 | 0.5747 | | No log | 1.3 | 400 | 0.0297 | 0.6851 | | No log | 1.95 | 600 | 0.0311 | 0.7236 | | 0.0545 | 2.61 | 800 | 0.0305 | 0.7322 | | 0.0545 | 3.26 | 1000 | 0.0281 | 0.7496 | | 0.0545 | 3.91 | 1200 | 0.0278 | 0.7582 | | 0.0208 | 4.56 | 1400 | 0.0278 | 0.7528 | | 0.0208 | 5.21 | 1600 | 0.0238 | 0.7556 | | 0.0208 | 5.86 | 1800 | 0.0235 | 0.7631 | | 0.0143 | 6.51 | 2000 | 0.0245 | 0.7634 | | 0.0143 | 7.17 | 2200 | 0.0243 | 0.7619 | | 0.0143 | 7.82 | 2400 | 0.0242 | 0.7651 | | 0.0102 | 8.47 | 2600 | 0.0257 | 0.7645 | | 0.0102 | 9.12 | 2800 | 0.0271 | 0.7713 | | 0.0102 | 9.77 | 3000 | 0.0255 | 0.7661 | | 0.0079 | 10.42 | 3200 | 0.0218 | 0.7720 | | 0.0079 | 11.07 | 3400 | 0.0250 | 0.7658 | | 0.0079 | 11.73 | 3600 | 0.0266 | 0.7628 | | 0.0064 | 12.38 | 3800 | 0.0267 | 0.7657 | | 0.0064 | 13.03 | 4000 | 0.0261 | 0.7680 | | 0.0064 | 13.68 | 4200 | 0.0232 | 0.7720 | | 0.0055 | 14.33 | 4400 | 0.0256 | 0.7737 | | 0.0055 | 14.98 | 4600 | 0.0237 | 0.7736 | | 0.0055 | 15.64 | 4800 | 0.0284 | 0.7771 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
NBA55/llama2-7B-without-diversity-epoch-10-new
NBA55
2024-02-12T14:09:12Z
0
0
peft
[ "peft", "region:us" ]
null
2024-02-12T14:09:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
defog/sqlcoder-7b-2
defog
2024-02-12T14:06:11Z
132,640
311
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-05T14:36:51Z
--- license: cc-by-sa-4.0 library_name: transformers pipeline_tag: text-generation --- # Update notice The model weights were updated at 7 AM UTC on Feb 7, 2024. The new model weights lead to a much more performant model – particularly for joins. If you downloaded the model before that, please redownload the weights for best performance. # Model Card for SQLCoder-7B-2 A capable large language model for natural language to SQL generation. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/603bbad3fd770a9997b57cb6/AYUE2y14vy2XkD9MZpScu.png) ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [Defog, Inc](https://defog.ai) - **Model type:** [Text to SQL] - **License:** [CC-by-SA-4.0] - **Finetuned from model:** [CodeLlama-7B] ### Model Sources [optional] - [**HuggingFace:**](https://huggingface.co/defog/sqlcoder-70b-alpha) - [**GitHub:**](https://github.com/defog-ai/sqlcoder) - [**Demo:**](https://defog.ai/sqlcoder-demo/) ## Uses This model is intended to be used by non-technical users to understand data inside their SQL databases. It is meant as an analytics tool, and not as a database admin tool. This model has not been trained to reject malicious requests from users with write access to databases, and should only be used by users with read-only access. ## How to Get Started with the Model Use the code [here](https://github.com/defog-ai/sqlcoder/blob/main/inference.py) to get started with the model. ## Prompt Please use the following prompt for optimal results. Please remember to use `do_sample=False` and `num_beams=4` for optimal results. ``` ### Task Generate a SQL query to answer [QUESTION]{user_question}[/QUESTION] ### Database Schema The query will run on a database with the following schema: {table_metadata_string_DDL_statements} ### Answer Given the database schema, here is the SQL query that [QUESTION]{user_question}[/QUESTION] [SQL] ``` ## Evaluation This model was evaluated on [SQL-Eval](https://github.com/defog-ai/sql-eval), a PostgreSQL based evaluation framework developed by Defog for testing and alignment of model capabilities. You can read more about the methodology behind SQLEval [here](https://defog.ai/blog/open-sourcing-sqleval/). ### Results We classified each generated question into one of 6 categories. The table displays the percentage of questions answered correctly by each model, broken down by category. | | date | group_by | order_by | ratio | join | where | | -------------- | ---- | -------- | -------- | ----- | ---- | ----- | | sqlcoder-70b | 96 | 91.4 | 97.1 | 85.7 | 97.1 | 91.4 | | sqlcoder-7b-2 | 96 | 91.4 | 94.3 | 91.4 | 94.3 | 77.1 | | sqlcoder-34b | 80 | 94.3 | 85.7 | 77.1 | 85.7 | 80 | | gpt-4 | 72 | 94.3 | 97.1 | 80 | 91.4 | 80 | | gpt-4-turbo | 76 | 91.4 | 91.4 | 62.8 | 88.6 | 77.1 | | natural-sql-7b | 56 | 88.6 | 85.7 | 60 | 88.6 | 80 | | sqlcoder-7b | 64 | 82.9 | 74.3 | 54.3 | 74.3 | 74.3 | | gpt-3.5 | 72 | 77.1 | 82.8 | 34.3 | 65.7 | 71.4 | | claude-2 | 52 | 71.4 | 74.3 | 57.1 | 65.7 | 62.9 | ## Model Card Contact Contact us on X at [@defogdata](https://twitter.com/defogdata), or on email at [[email protected]](mailto:[email protected])
giulio98/placeholder
giulio98
2024-02-12T13:58:57Z
0
0
null
[ "mteb", "model-index", "region:us" ]
null
2024-02-12T13:50:09Z
--- tags: - mteb model-index: - name: bge_finetuned results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 61.64179104477612 - type: ap value: 25.20497978200253 - type: f1 value: 55.51169205110252 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 58.6114 - type: ap value: 55.013881977883706 - type: f1 value: 58.0798269108889 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 27.009999999999994 - type: f1 value: 26.230644551993027 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 14.011000000000001 - type: map_at_10 value: 24.082 - type: map_at_100 value: 25.273 - type: map_at_1000 value: 25.336 - type: map_at_3 value: 20.341 - type: map_at_5 value: 22.155 - type: mrr_at_1 value: 14.651 - type: mrr_at_10 value: 24.306 - type: mrr_at_100 value: 25.503999999999998 - type: mrr_at_1000 value: 25.566 - type: mrr_at_3 value: 20.59 - type: mrr_at_5 value: 22.400000000000002 - type: ndcg_at_1 value: 14.011000000000001 - type: ndcg_at_10 value: 30.316 - type: ndcg_at_100 value: 36.146 - type: ndcg_at_1000 value: 37.972 - type: ndcg_at_3 value: 22.422 - type: ndcg_at_5 value: 25.727 - type: precision_at_1 value: 14.011000000000001 - type: precision_at_10 value: 5.0569999999999995 - type: precision_at_100 value: 0.7799999999999999 - type: precision_at_1000 value: 0.093 - type: precision_at_3 value: 9.483 - type: precision_at_5 value: 7.312 - type: recall_at_1 value: 14.011000000000001 - type: recall_at_10 value: 50.568999999999996 - type: recall_at_100 value: 77.952 - type: recall_at_1000 value: 92.674 - type: recall_at_3 value: 28.449999999999996 - type: recall_at_5 value: 36.558 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 21.580787107217457 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 12.755947651867459 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 50.36895415359604 - type: mrr value: 62.93244075100032 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 54.84190098866484 - type: cos_sim_spearman value: 52.065644182348144 - type: euclidean_pearson value: 54.181073661388034 - type: euclidean_spearman value: 52.065644182348144 - type: manhattan_pearson value: 54.98368207013862 - type: manhattan_spearman value: 53.66387337016872 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 63.48051948051948 - type: f1 value: 61.45740352513437 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 16.23123129183937 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 6.846095550717324 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 14.587 - type: map_at_10 value: 20.032 - type: map_at_100 value: 21.2 - type: map_at_1000 value: 21.351 - type: map_at_3 value: 18.224 - type: map_at_5 value: 19.028 - type: mrr_at_1 value: 18.312 - type: mrr_at_10 value: 24.343999999999998 - type: mrr_at_100 value: 25.302000000000003 - type: mrr_at_1000 value: 25.385 - type: mrr_at_3 value: 22.461000000000002 - type: mrr_at_5 value: 23.219 - type: ndcg_at_1 value: 18.312 - type: ndcg_at_10 value: 24.05 - type: ndcg_at_100 value: 29.512 - type: ndcg_at_1000 value: 33.028999999999996 - type: ndcg_at_3 value: 20.947 - type: ndcg_at_5 value: 21.807000000000002 - type: precision_at_1 value: 18.312 - type: precision_at_10 value: 4.664 - type: precision_at_100 value: 0.9570000000000001 - type: precision_at_1000 value: 0.155 - type: precision_at_3 value: 10.11 - type: precision_at_5 value: 7.066999999999999 - type: recall_at_1 value: 14.587 - type: recall_at_10 value: 31.865 - type: recall_at_100 value: 55.922000000000004 - type: recall_at_1000 value: 80.878 - type: recall_at_3 value: 22.229 - type: recall_at_5 value: 25.09 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 8.456 - type: map_at_10 value: 11.429 - type: map_at_100 value: 11.956 - type: map_at_1000 value: 12.04 - type: map_at_3 value: 10.309 - type: map_at_5 value: 11.006 - type: mrr_at_1 value: 10.637 - type: mrr_at_10 value: 14.047 - type: mrr_at_100 value: 14.591999999999999 - type: mrr_at_1000 value: 14.66 - type: mrr_at_3 value: 12.876999999999999 - type: mrr_at_5 value: 13.644 - type: ndcg_at_1 value: 10.637 - type: ndcg_at_10 value: 13.623 - type: ndcg_at_100 value: 16.337 - type: ndcg_at_1000 value: 18.881 - type: ndcg_at_3 value: 11.76 - type: ndcg_at_5 value: 12.803 - type: precision_at_1 value: 10.637 - type: precision_at_10 value: 2.611 - type: precision_at_100 value: 0.49899999999999994 - type: precision_at_1000 value: 0.08800000000000001 - type: precision_at_3 value: 5.7540000000000004 - type: precision_at_5 value: 4.306 - type: recall_at_1 value: 8.456 - type: recall_at_10 value: 17.543 - type: recall_at_100 value: 29.696 - type: recall_at_1000 value: 48.433 - type: recall_at_3 value: 12.299 - type: recall_at_5 value: 15.126000000000001 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 10.517999999999999 - type: map_at_10 value: 14.924999999999999 - type: map_at_100 value: 15.716 - type: map_at_1000 value: 15.804000000000002 - type: map_at_3 value: 13.228000000000002 - type: map_at_5 value: 14.155999999999999 - type: mrr_at_1 value: 12.790000000000001 - type: mrr_at_10 value: 17.122999999999998 - type: mrr_at_100 value: 17.874000000000002 - type: mrr_at_1000 value: 17.947 - type: mrr_at_3 value: 15.528 - type: mrr_at_5 value: 16.421 - type: ndcg_at_1 value: 12.790000000000001 - type: ndcg_at_10 value: 17.967 - type: ndcg_at_100 value: 22.016 - type: ndcg_at_1000 value: 24.57 - type: ndcg_at_3 value: 14.745 - type: ndcg_at_5 value: 16.247 - type: precision_at_1 value: 12.790000000000001 - type: precision_at_10 value: 3.229 - type: precision_at_100 value: 0.592 - type: precision_at_1000 value: 0.087 - type: precision_at_3 value: 6.792 - type: precision_at_5 value: 5.066 - type: recall_at_1 value: 10.517999999999999 - type: recall_at_10 value: 25.194 - type: recall_at_100 value: 43.858999999999995 - type: recall_at_1000 value: 63.410999999999994 - type: recall_at_3 value: 16.384999999999998 - type: recall_at_5 value: 20.09 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 8.325000000000001 - type: map_at_10 value: 12.262 - type: map_at_100 value: 13.003 - type: map_at_1000 value: 13.126999999999999 - type: map_at_3 value: 10.946 - type: map_at_5 value: 11.581 - type: mrr_at_1 value: 9.379 - type: mrr_at_10 value: 13.527000000000001 - type: mrr_at_100 value: 14.249999999999998 - type: mrr_at_1000 value: 14.365 - type: mrr_at_3 value: 12.166 - type: mrr_at_5 value: 12.798000000000002 - type: ndcg_at_1 value: 9.379 - type: ndcg_at_10 value: 14.878 - type: ndcg_at_100 value: 19.17 - type: ndcg_at_1000 value: 22.861 - type: ndcg_at_3 value: 12.136 - type: ndcg_at_5 value: 13.209000000000001 - type: precision_at_1 value: 9.379 - type: precision_at_10 value: 2.5309999999999997 - type: precision_at_100 value: 0.505 - type: precision_at_1000 value: 0.086 - type: precision_at_3 value: 5.386 - type: precision_at_5 value: 3.887 - type: recall_at_1 value: 8.325000000000001 - type: recall_at_10 value: 21.886 - type: recall_at_100 value: 42.977 - type: recall_at_1000 value: 71.946 - type: recall_at_3 value: 14.123 - type: recall_at_5 value: 16.747 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 5.982 - type: map_at_10 value: 9.249 - type: map_at_100 value: 10.0 - type: map_at_1000 value: 10.127 - type: map_at_3 value: 7.913 - type: map_at_5 value: 8.540000000000001 - type: mrr_at_1 value: 7.960000000000001 - type: mrr_at_10 value: 11.703 - type: mrr_at_100 value: 12.43 - type: mrr_at_1000 value: 12.534999999999998 - type: mrr_at_3 value: 10.344000000000001 - type: mrr_at_5 value: 11.022 - type: ndcg_at_1 value: 7.960000000000001 - type: ndcg_at_10 value: 11.863 - type: ndcg_at_100 value: 16.086 - type: ndcg_at_1000 value: 19.738 - type: ndcg_at_3 value: 9.241000000000001 - type: ndcg_at_5 value: 10.228 - type: precision_at_1 value: 7.960000000000001 - type: precision_at_10 value: 2.4 - type: precision_at_100 value: 0.534 - type: precision_at_1000 value: 0.097 - type: precision_at_3 value: 4.561 - type: precision_at_5 value: 3.408 - type: recall_at_1 value: 5.982 - type: recall_at_10 value: 17.669999999999998 - type: recall_at_100 value: 37.261 - type: recall_at_1000 value: 64.416 - type: recall_at_3 value: 10.376000000000001 - type: recall_at_5 value: 12.933 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 9.068 - type: map_at_10 value: 12.101 - type: map_at_100 value: 12.828000000000001 - type: map_at_1000 value: 12.953000000000001 - type: map_at_3 value: 11.047 - type: map_at_5 value: 11.542 - type: mrr_at_1 value: 10.972 - type: mrr_at_10 value: 14.873 - type: mrr_at_100 value: 15.584000000000001 - type: mrr_at_1000 value: 15.681999999999999 - type: mrr_at_3 value: 13.523 - type: mrr_at_5 value: 14.254 - type: ndcg_at_1 value: 10.972 - type: ndcg_at_10 value: 14.557999999999998 - type: ndcg_at_100 value: 18.56 - type: ndcg_at_1000 value: 21.975 - type: ndcg_at_3 value: 12.436 - type: ndcg_at_5 value: 13.270999999999999 - type: precision_at_1 value: 10.972 - type: precision_at_10 value: 2.714 - type: precision_at_100 value: 0.5720000000000001 - type: precision_at_1000 value: 0.10200000000000001 - type: precision_at_3 value: 5.711 - type: precision_at_5 value: 4.1579999999999995 - type: recall_at_1 value: 9.068 - type: recall_at_10 value: 19.381999999999998 - type: recall_at_100 value: 37.602999999999994 - type: recall_at_1000 value: 62.376 - type: recall_at_3 value: 13.48 - type: recall_at_5 value: 15.506 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 8.206 - type: map_at_10 value: 12.032 - type: map_at_100 value: 12.992 - type: map_at_1000 value: 13.135 - type: map_at_3 value: 10.741 - type: map_at_5 value: 11.392 - type: mrr_at_1 value: 10.502 - type: mrr_at_10 value: 14.818999999999999 - type: mrr_at_100 value: 15.716 - type: mrr_at_1000 value: 15.823 - type: mrr_at_3 value: 13.375 - type: mrr_at_5 value: 14.169 - type: ndcg_at_1 value: 10.502 - type: ndcg_at_10 value: 14.790000000000001 - type: ndcg_at_100 value: 19.881999999999998 - type: ndcg_at_1000 value: 23.703 - type: ndcg_at_3 value: 12.281 - type: ndcg_at_5 value: 13.33 - type: precision_at_1 value: 10.502 - type: precision_at_10 value: 2.911 - type: precision_at_100 value: 0.668 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 6.012 - type: precision_at_5 value: 4.475 - type: recall_at_1 value: 8.206 - type: recall_at_10 value: 20.508000000000003 - type: recall_at_100 value: 43.568 - type: recall_at_1000 value: 71.56400000000001 - type: recall_at_3 value: 13.607 - type: recall_at_5 value: 16.211000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 6.4159999999999995 - type: map_at_10 value: 9.581000000000001 - type: map_at_100 value: 10.123999999999999 - type: map_at_1000 value: 10.226 - type: map_at_3 value: 8.51 - type: map_at_5 value: 9.078999999999999 - type: mrr_at_1 value: 7.515 - type: mrr_at_10 value: 10.801 - type: mrr_at_100 value: 11.373 - type: mrr_at_1000 value: 11.466999999999999 - type: mrr_at_3 value: 9.637 - type: mrr_at_5 value: 10.197000000000001 - type: ndcg_at_1 value: 7.515 - type: ndcg_at_10 value: 11.776 - type: ndcg_at_100 value: 14.776 - type: ndcg_at_1000 value: 17.7 - type: ndcg_at_3 value: 9.515 - type: ndcg_at_5 value: 10.511 - type: precision_at_1 value: 7.515 - type: precision_at_10 value: 2.086 - type: precision_at_100 value: 0.402 - type: precision_at_1000 value: 0.07100000000000001 - type: precision_at_3 value: 4.397 - type: precision_at_5 value: 3.19 - type: recall_at_1 value: 6.4159999999999995 - type: recall_at_10 value: 17.468 - type: recall_at_100 value: 31.398 - type: recall_at_1000 value: 53.686 - type: recall_at_3 value: 11.379999999999999 - type: recall_at_5 value: 13.745 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 4.646 - type: map_at_10 value: 7.047000000000001 - type: map_at_100 value: 7.697 - type: map_at_1000 value: 7.806 - type: map_at_3 value: 6.258 - type: map_at_5 value: 6.628 - type: mrr_at_1 value: 5.919 - type: mrr_at_10 value: 8.767999999999999 - type: mrr_at_100 value: 9.434 - type: mrr_at_1000 value: 9.524000000000001 - type: mrr_at_3 value: 7.8 - type: mrr_at_5 value: 8.275 - type: ndcg_at_1 value: 5.919 - type: ndcg_at_10 value: 8.927999999999999 - type: ndcg_at_100 value: 12.467 - type: ndcg_at_1000 value: 15.674 - type: ndcg_at_3 value: 7.3260000000000005 - type: ndcg_at_5 value: 7.931000000000001 - type: precision_at_1 value: 5.919 - type: precision_at_10 value: 1.7760000000000002 - type: precision_at_100 value: 0.438 - type: precision_at_1000 value: 0.086 - type: precision_at_3 value: 3.6249999999999996 - type: precision_at_5 value: 2.657 - type: recall_at_1 value: 4.646 - type: recall_at_10 value: 12.973 - type: recall_at_100 value: 29.444 - type: recall_at_1000 value: 53.413999999999994 - type: recall_at_3 value: 8.378 - type: recall_at_5 value: 9.957 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 9.202 - type: map_at_10 value: 13.402 - type: map_at_100 value: 14.330000000000002 - type: map_at_1000 value: 14.455000000000002 - type: map_at_3 value: 11.916 - type: map_at_5 value: 12.828000000000001 - type: mrr_at_1 value: 10.634 - type: mrr_at_10 value: 15.528 - type: mrr_at_100 value: 16.393 - type: mrr_at_1000 value: 16.497999999999998 - type: mrr_at_3 value: 13.837 - type: mrr_at_5 value: 14.821000000000002 - type: ndcg_at_1 value: 10.634 - type: ndcg_at_10 value: 16.267 - type: ndcg_at_100 value: 21.149 - type: ndcg_at_1000 value: 24.509 - type: ndcg_at_3 value: 13.320000000000002 - type: ndcg_at_5 value: 14.857000000000001 - type: precision_at_1 value: 10.634 - type: precision_at_10 value: 2.948 - type: precision_at_100 value: 0.618 - type: precision_at_1000 value: 0.10200000000000001 - type: precision_at_3 value: 6.188 - type: precision_at_5 value: 4.7010000000000005 - type: recall_at_1 value: 9.202 - type: recall_at_10 value: 22.921 - type: recall_at_100 value: 45.292 - type: recall_at_1000 value: 69.853 - type: recall_at_3 value: 15.126000000000001 - type: recall_at_5 value: 18.863 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 11.278 - type: map_at_10 value: 15.72 - type: map_at_100 value: 16.832 - type: map_at_1000 value: 17.025000000000002 - type: map_at_3 value: 13.852999999999998 - type: map_at_5 value: 14.654 - type: mrr_at_1 value: 14.822 - type: mrr_at_10 value: 19.564 - type: mrr_at_100 value: 20.509 - type: mrr_at_1000 value: 20.607 - type: mrr_at_3 value: 17.721 - type: mrr_at_5 value: 18.451999999999998 - type: ndcg_at_1 value: 14.822 - type: ndcg_at_10 value: 19.548 - type: ndcg_at_100 value: 24.734 - type: ndcg_at_1000 value: 28.832 - type: ndcg_at_3 value: 16.14 - type: ndcg_at_5 value: 17.253 - type: precision_at_1 value: 14.822 - type: precision_at_10 value: 3.972 - type: precision_at_100 value: 0.943 - type: precision_at_1000 value: 0.183 - type: precision_at_3 value: 7.642 - type: precision_at_5 value: 5.6129999999999995 - type: recall_at_1 value: 11.278 - type: recall_at_10 value: 27.006999999999998 - type: recall_at_100 value: 51.012 - type: recall_at_1000 value: 79.833 - type: recall_at_3 value: 16.785 - type: recall_at_5 value: 19.82 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 5.305 - type: map_at_10 value: 9.099 - type: map_at_100 value: 9.927999999999999 - type: map_at_1000 value: 10.027 - type: map_at_3 value: 7.7700000000000005 - type: map_at_5 value: 8.333 - type: mrr_at_1 value: 6.1 - type: mrr_at_10 value: 10.227 - type: mrr_at_100 value: 11.057 - type: mrr_at_1000 value: 11.151 - type: mrr_at_3 value: 8.842 - type: mrr_at_5 value: 9.442 - type: ndcg_at_1 value: 6.1 - type: ndcg_at_10 value: 11.769 - type: ndcg_at_100 value: 16.378999999999998 - type: ndcg_at_1000 value: 19.517 - type: ndcg_at_3 value: 8.936 - type: ndcg_at_5 value: 9.907 - type: precision_at_1 value: 6.1 - type: precision_at_10 value: 2.181 - type: precision_at_100 value: 0.481 - type: precision_at_1000 value: 0.08099999999999999 - type: precision_at_3 value: 4.19 - type: precision_at_5 value: 3.031 - type: recall_at_1 value: 5.305 - type: recall_at_10 value: 19.236 - type: recall_at_100 value: 41.333999999999996 - type: recall_at_1000 value: 65.96600000000001 - type: recall_at_3 value: 11.189 - type: recall_at_5 value: 13.592 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 0.882 - type: map_at_10 value: 1.6 - type: map_at_100 value: 1.894 - type: map_at_1000 value: 1.9640000000000002 - type: map_at_3 value: 1.345 - type: map_at_5 value: 1.444 - type: mrr_at_1 value: 2.2800000000000002 - type: mrr_at_10 value: 3.8510000000000004 - type: mrr_at_100 value: 4.401 - type: mrr_at_1000 value: 4.472 - type: mrr_at_3 value: 3.2359999999999998 - type: mrr_at_5 value: 3.519 - type: ndcg_at_1 value: 2.2800000000000002 - type: ndcg_at_10 value: 2.5829999999999997 - type: ndcg_at_100 value: 4.629 - type: ndcg_at_1000 value: 6.709 - type: ndcg_at_3 value: 1.978 - type: ndcg_at_5 value: 2.133 - type: precision_at_1 value: 2.2800000000000002 - type: precision_at_10 value: 0.86 - type: precision_at_100 value: 0.298 - type: precision_at_1000 value: 0.065 - type: precision_at_3 value: 1.52 - type: precision_at_5 value: 1.173 - type: recall_at_1 value: 0.882 - type: recall_at_10 value: 3.273 - type: recall_at_100 value: 11.254 - type: recall_at_1000 value: 23.988 - type: recall_at_3 value: 1.818 - type: recall_at_5 value: 2.236 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 1.057 - type: map_at_10 value: 2.289 - type: map_at_100 value: 2.844 - type: map_at_1000 value: 3.026 - type: map_at_3 value: 1.661 - type: map_at_5 value: 1.931 - type: mrr_at_1 value: 12.75 - type: mrr_at_10 value: 17.645 - type: mrr_at_100 value: 18.312 - type: mrr_at_1000 value: 18.385 - type: mrr_at_3 value: 15.958 - type: mrr_at_5 value: 17.046 - type: ndcg_at_1 value: 10.0 - type: ndcg_at_10 value: 6.890000000000001 - type: ndcg_at_100 value: 7.131 - type: ndcg_at_1000 value: 9.725 - type: ndcg_at_3 value: 8.222 - type: ndcg_at_5 value: 7.536 - type: precision_at_1 value: 12.75 - type: precision_at_10 value: 5.925 - type: precision_at_100 value: 1.6469999999999998 - type: precision_at_1000 value: 0.40299999999999997 - type: precision_at_3 value: 9.667 - type: precision_at_5 value: 8.0 - type: recall_at_1 value: 1.057 - type: recall_at_10 value: 3.8580000000000005 - type: recall_at_100 value: 8.685 - type: recall_at_1000 value: 17.605 - type: recall_at_3 value: 2.041 - type: recall_at_5 value: 2.811 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 20.674999999999997 - type: f1 value: 17.79184478487413 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 2.637 - type: map_at_10 value: 3.9730000000000003 - type: map_at_100 value: 4.228 - type: map_at_1000 value: 4.268000000000001 - type: map_at_3 value: 3.542 - type: map_at_5 value: 3.763 - type: mrr_at_1 value: 2.7449999999999997 - type: mrr_at_10 value: 4.146 - type: mrr_at_100 value: 4.42 - type: mrr_at_1000 value: 4.460999999999999 - type: mrr_at_3 value: 3.695 - type: mrr_at_5 value: 3.925 - type: ndcg_at_1 value: 2.7449999999999997 - type: ndcg_at_10 value: 4.801 - type: ndcg_at_100 value: 6.198 - type: ndcg_at_1000 value: 7.468 - type: ndcg_at_3 value: 3.882 - type: ndcg_at_5 value: 4.283 - type: precision_at_1 value: 2.7449999999999997 - type: precision_at_10 value: 0.771 - type: precision_at_100 value: 0.152 - type: precision_at_1000 value: 0.027 - type: precision_at_3 value: 1.6549999999999998 - type: precision_at_5 value: 1.206 - type: recall_at_1 value: 2.637 - type: recall_at_10 value: 7.2669999999999995 - type: recall_at_100 value: 13.982 - type: recall_at_1000 value: 24.192 - type: recall_at_3 value: 4.712000000000001 - type: recall_at_5 value: 5.6739999999999995 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 2.91 - type: map_at_10 value: 5.721 - type: map_at_100 value: 6.489000000000001 - type: map_at_1000 value: 6.642 - type: map_at_3 value: 4.797 - type: map_at_5 value: 5.292 - type: mrr_at_1 value: 6.481000000000001 - type: mrr_at_10 value: 10.624 - type: mrr_at_100 value: 11.498999999999999 - type: mrr_at_1000 value: 11.599 - type: mrr_at_3 value: 9.285 - type: mrr_at_5 value: 10.003 - type: ndcg_at_1 value: 6.481000000000001 - type: ndcg_at_10 value: 8.303 - type: ndcg_at_100 value: 12.512 - type: ndcg_at_1000 value: 16.665 - type: ndcg_at_3 value: 6.827 - type: ndcg_at_5 value: 7.367 - type: precision_at_1 value: 6.481000000000001 - type: precision_at_10 value: 2.485 - type: precision_at_100 value: 0.668 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 4.733 - type: precision_at_5 value: 3.642 - type: recall_at_1 value: 2.91 - type: recall_at_10 value: 11.239 - type: recall_at_100 value: 27.877999999999997 - type: recall_at_1000 value: 54.507000000000005 - type: recall_at_3 value: 6.683 - type: recall_at_5 value: 8.591 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 2.073 - type: map_at_10 value: 2.919 - type: map_at_100 value: 3.107 - type: map_at_1000 value: 3.143 - type: map_at_3 value: 2.6100000000000003 - type: map_at_5 value: 2.773 - type: mrr_at_1 value: 4.146 - type: mrr_at_10 value: 5.657 - type: mrr_at_100 value: 5.970000000000001 - type: mrr_at_1000 value: 6.022 - type: mrr_at_3 value: 5.116 - type: mrr_at_5 value: 5.411 - type: ndcg_at_1 value: 4.146 - type: ndcg_at_10 value: 4.115 - type: ndcg_at_100 value: 5.319 - type: ndcg_at_1000 value: 6.584 - type: ndcg_at_3 value: 3.3709999999999996 - type: ndcg_at_5 value: 3.7159999999999997 - type: precision_at_1 value: 4.146 - type: precision_at_10 value: 0.983 - type: precision_at_100 value: 0.197 - type: precision_at_1000 value: 0.037 - type: precision_at_3 value: 2.152 - type: precision_at_5 value: 1.564 - type: recall_at_1 value: 2.073 - type: recall_at_10 value: 4.916 - type: recall_at_100 value: 9.844999999999999 - type: recall_at_1000 value: 18.454 - type: recall_at_3 value: 3.228 - type: recall_at_5 value: 3.91 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 53.28480000000001 - type: ap value: 51.81084207241404 - type: f1 value: 52.83683146513476 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 2.613 - type: map_at_10 value: 4.33 - type: map_at_100 value: 4.681 - type: map_at_1000 value: 4.731 - type: map_at_3 value: 3.7560000000000002 - type: map_at_5 value: 4.035 - type: mrr_at_1 value: 2.665 - type: mrr_at_10 value: 4.436 - type: mrr_at_100 value: 4.797 - type: mrr_at_1000 value: 4.848 - type: mrr_at_3 value: 3.83 - type: mrr_at_5 value: 4.123 - type: ndcg_at_1 value: 2.665 - type: ndcg_at_10 value: 5.399 - type: ndcg_at_100 value: 7.402 - type: ndcg_at_1000 value: 9.08 - type: ndcg_at_3 value: 4.1579999999999995 - type: ndcg_at_5 value: 4.664 - type: precision_at_1 value: 2.665 - type: precision_at_10 value: 0.907 - type: precision_at_100 value: 0.19499999999999998 - type: precision_at_1000 value: 0.034 - type: precision_at_3 value: 1.791 - type: precision_at_5 value: 1.3299999999999998 - type: recall_at_1 value: 2.613 - type: recall_at_10 value: 8.729000000000001 - type: recall_at_100 value: 18.668000000000003 - type: recall_at_1000 value: 32.387 - type: recall_at_3 value: 5.25 - type: recall_at_5 value: 6.465 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 73.57729138166896 - type: f1 value: 71.0267308110663 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 38.76652986776106 - type: f1 value: 24.385724192837007 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 43.43308675184936 - type: f1 value: 39.072401899805016 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 55.225285810356425 - type: f1 value: 49.81719052485716 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 20.583405653329283 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 17.155646378261917 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 24.26316550665883 - type: mrr value: 23.951621402458755 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 1.4040000000000001 - type: map_at_10 value: 2.199 - type: map_at_100 value: 2.597 - type: map_at_1000 value: 3.15 - type: map_at_3 value: 1.7850000000000001 - type: map_at_5 value: 2.005 - type: mrr_at_1 value: 13.932 - type: mrr_at_10 value: 19.529 - type: mrr_at_100 value: 20.53 - type: mrr_at_1000 value: 20.635 - type: mrr_at_3 value: 17.647 - type: mrr_at_5 value: 18.731 - type: ndcg_at_1 value: 12.539 - type: ndcg_at_10 value: 8.676 - type: ndcg_at_100 value: 8.092 - type: ndcg_at_1000 value: 16.375999999999998 - type: ndcg_at_3 value: 10.615 - type: ndcg_at_5 value: 9.690999999999999 - type: precision_at_1 value: 13.622 - type: precision_at_10 value: 6.315999999999999 - type: precision_at_100 value: 2.486 - type: precision_at_1000 value: 1.317 - type: precision_at_3 value: 10.113999999999999 - type: precision_at_5 value: 8.235000000000001 - type: recall_at_1 value: 1.4040000000000001 - type: recall_at_10 value: 3.794 - type: recall_at_100 value: 9.71 - type: recall_at_1000 value: 37.476 - type: recall_at_3 value: 2.197 - type: recall_at_5 value: 2.929 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 1.299 - type: map_at_10 value: 2.7279999999999998 - type: map_at_100 value: 3.065 - type: map_at_1000 value: 3.118 - type: map_at_3 value: 2.182 - type: map_at_5 value: 2.48 - type: mrr_at_1 value: 1.6219999999999999 - type: mrr_at_10 value: 3.237 - type: mrr_at_100 value: 3.5749999999999997 - type: mrr_at_1000 value: 3.626 - type: mrr_at_3 value: 2.6550000000000002 - type: mrr_at_5 value: 2.9770000000000003 - type: ndcg_at_1 value: 1.6219999999999999 - type: ndcg_at_10 value: 3.768 - type: ndcg_at_100 value: 5.721 - type: ndcg_at_1000 value: 7.346 - type: ndcg_at_3 value: 2.604 - type: ndcg_at_5 value: 3.1530000000000005 - type: precision_at_1 value: 1.6219999999999999 - type: precision_at_10 value: 0.776 - type: precision_at_100 value: 0.194 - type: precision_at_1000 value: 0.034999999999999996 - type: precision_at_3 value: 1.371 - type: precision_at_5 value: 1.1119999999999999 - type: recall_at_1 value: 1.299 - type: recall_at_10 value: 6.54 - type: recall_at_100 value: 16.014999999999997 - type: recall_at_1000 value: 28.776000000000003 - type: recall_at_3 value: 3.37 - type: recall_at_5 value: 4.676 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 50.827 - type: map_at_10 value: 60.903 - type: map_at_100 value: 61.67700000000001 - type: map_at_1000 value: 61.729 - type: map_at_3 value: 58.411 - type: map_at_5 value: 59.854 - type: mrr_at_1 value: 58.52 - type: mrr_at_10 value: 65.53999999999999 - type: mrr_at_100 value: 65.94 - type: mrr_at_1000 value: 65.962 - type: mrr_at_3 value: 63.905 - type: mrr_at_5 value: 64.883 - type: ndcg_at_1 value: 58.51 - type: ndcg_at_10 value: 65.458 - type: ndcg_at_100 value: 68.245 - type: ndcg_at_1000 value: 69.244 - type: ndcg_at_3 value: 61.970000000000006 - type: ndcg_at_5 value: 63.664 - type: precision_at_1 value: 58.51 - type: precision_at_10 value: 9.873999999999999 - type: precision_at_100 value: 1.24 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 26.650000000000002 - type: precision_at_5 value: 17.666 - type: recall_at_1 value: 50.827 - type: recall_at_10 value: 74.13300000000001 - type: recall_at_100 value: 85.724 - type: recall_at_1000 value: 92.551 - type: recall_at_3 value: 64.122 - type: recall_at_5 value: 68.757 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 15.106948858308094 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 30.968103547012337 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 1.4749999999999999 - type: map_at_10 value: 3.434 - type: map_at_100 value: 4.139 - type: map_at_1000 value: 4.312 - type: map_at_3 value: 2.554 - type: map_at_5 value: 2.999 - type: mrr_at_1 value: 7.3 - type: mrr_at_10 value: 12.031 - type: mrr_at_100 value: 12.97 - type: mrr_at_1000 value: 13.092 - type: mrr_at_3 value: 10.217 - type: mrr_at_5 value: 11.172 - type: ndcg_at_1 value: 7.3 - type: ndcg_at_10 value: 6.406000000000001 - type: ndcg_at_100 value: 10.302999999999999 - type: ndcg_at_1000 value: 14.791000000000002 - type: ndcg_at_3 value: 5.982 - type: ndcg_at_5 value: 5.274 - type: precision_at_1 value: 7.3 - type: precision_at_10 value: 3.37 - type: precision_at_100 value: 0.914 - type: precision_at_1000 value: 0.201 - type: precision_at_3 value: 5.567 - type: precision_at_5 value: 4.68 - type: recall_at_1 value: 1.4749999999999999 - type: recall_at_10 value: 6.79 - type: recall_at_100 value: 18.55 - type: recall_at_1000 value: 40.842 - type: recall_at_3 value: 3.36 - type: recall_at_5 value: 4.72 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 59.464420082440526 - type: cos_sim_spearman value: 54.319988337451704 - type: euclidean_pearson value: 57.042312873314295 - type: euclidean_spearman value: 54.31996388571784 - type: manhattan_pearson value: 57.078786802338435 - type: manhattan_spearman value: 54.323312153757456 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 60.08105871689929 - type: cos_sim_spearman value: 57.53293836132526 - type: euclidean_pearson value: 57.69984777047449 - type: euclidean_spearman value: 57.534154476967345 - type: manhattan_pearson value: 57.661519973840946 - type: manhattan_spearman value: 57.447636234309854 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 57.12692049687197 - type: cos_sim_spearman value: 57.4759438730368 - type: euclidean_pearson value: 58.41782334532981 - type: euclidean_spearman value: 57.47613008122331 - type: manhattan_pearson value: 58.41335837274888 - type: manhattan_spearman value: 57.465936751045746 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 53.84165004759765 - type: cos_sim_spearman value: 52.32112048731462 - type: euclidean_pearson value: 52.790405817119094 - type: euclidean_spearman value: 52.32112268628659 - type: manhattan_pearson value: 52.804939090733804 - type: manhattan_spearman value: 52.31750678935915 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 63.555819199866036 - type: cos_sim_spearman value: 64.05841117331784 - type: euclidean_pearson value: 63.659991414541786 - type: euclidean_spearman value: 64.05841071779129 - type: manhattan_pearson value: 63.6915442281397 - type: manhattan_spearman value: 64.07728265258595 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 63.03024268207247 - type: cos_sim_spearman value: 63.53003651570799 - type: euclidean_pearson value: 64.09620752390686 - type: euclidean_spearman value: 63.530036058718096 - type: manhattan_pearson value: 64.07468313413827 - type: manhattan_spearman value: 63.526415746516285 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 70.18862439704168 - type: cos_sim_spearman value: 70.97966882821095 - type: euclidean_pearson value: 71.04858522892525 - type: euclidean_spearman value: 70.97966882821095 - type: manhattan_pearson value: 71.0777838495318 - type: manhattan_spearman value: 71.08141859528023 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 49.680993011354964 - type: cos_sim_spearman value: 55.990646519065734 - type: euclidean_pearson value: 52.53309325175639 - type: euclidean_spearman value: 55.990646519065734 - type: manhattan_pearson value: 52.55809108662631 - type: manhattan_spearman value: 55.65236114980215 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 61.18394695826386 - type: cos_sim_spearman value: 60.77402126712771 - type: euclidean_pearson value: 61.202070794992736 - type: euclidean_spearman value: 60.77402126712771 - type: manhattan_pearson value: 61.2505175850885 - type: manhattan_spearman value: 60.77213463387346 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 58.251838750265804 - type: mrr value: 81.27406090641384 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 8.833 - type: map_at_10 value: 11.219999999999999 - type: map_at_100 value: 12.086 - type: map_at_1000 value: 12.200999999999999 - type: map_at_3 value: 10.056 - type: map_at_5 value: 10.664 - type: mrr_at_1 value: 9.0 - type: mrr_at_10 value: 11.875 - type: mrr_at_100 value: 12.757 - type: mrr_at_1000 value: 12.864 - type: mrr_at_3 value: 10.722 - type: mrr_at_5 value: 11.322000000000001 - type: ndcg_at_1 value: 9.0 - type: ndcg_at_10 value: 13.001 - type: ndcg_at_100 value: 17.784 - type: ndcg_at_1000 value: 21.695 - type: ndcg_at_3 value: 10.63 - type: ndcg_at_5 value: 11.693000000000001 - type: precision_at_1 value: 9.0 - type: precision_at_10 value: 2.0 - type: precision_at_100 value: 0.46299999999999997 - type: precision_at_1000 value: 0.083 - type: precision_at_3 value: 4.222 - type: precision_at_5 value: 3.1329999999999996 - type: recall_at_1 value: 8.833 - type: recall_at_10 value: 18.0 - type: recall_at_100 value: 41.211 - type: recall_at_1000 value: 73.14399999999999 - type: recall_at_3 value: 11.5 - type: recall_at_5 value: 14.083000000000002 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.44455445544554 - type: cos_sim_ap value: 68.76115592640271 - type: cos_sim_f1 value: 67.29805013927577 - type: cos_sim_precision value: 75.9748427672956 - type: cos_sim_recall value: 60.4 - type: dot_accuracy value: 99.44455445544554 - type: dot_ap value: 68.76115778951738 - type: dot_f1 value: 67.29805013927577 - type: dot_precision value: 75.9748427672956 - type: dot_recall value: 60.4 - type: euclidean_accuracy value: 99.44455445544554 - type: euclidean_ap value: 68.76115530286063 - type: euclidean_f1 value: 67.29805013927577 - type: euclidean_precision value: 75.9748427672956 - type: euclidean_recall value: 60.4 - type: manhattan_accuracy value: 99.44653465346535 - type: manhattan_ap value: 68.76446446842253 - type: manhattan_f1 value: 67.34926052332196 - type: manhattan_precision value: 78.10026385224275 - type: manhattan_recall value: 59.199999999999996 - type: max_accuracy value: 99.44653465346535 - type: max_ap value: 68.76446446842253 - type: max_f1 value: 67.34926052332196 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 28.486032726226675 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 29.654061810103283 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 39.81455140801657 - type: mrr value: 40.09712407690349 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.05 - type: map_at_10 value: 0.191 - type: map_at_100 value: 0.346 - type: map_at_1000 value: 0.553 - type: map_at_3 value: 0.11299999999999999 - type: map_at_5 value: 0.148 - type: mrr_at_1 value: 22.0 - type: mrr_at_10 value: 30.091 - type: mrr_at_100 value: 31.241999999999997 - type: mrr_at_1000 value: 31.298 - type: mrr_at_3 value: 28.000000000000004 - type: mrr_at_5 value: 28.999999999999996 - type: ndcg_at_1 value: 18.0 - type: ndcg_at_10 value: 12.501000000000001 - type: ndcg_at_100 value: 5.605 - type: ndcg_at_1000 value: 4.543 - type: ndcg_at_3 value: 17.531 - type: ndcg_at_5 value: 15.254999999999999 - type: precision_at_1 value: 22.0 - type: precision_at_10 value: 12.6 - type: precision_at_100 value: 5.06 - type: precision_at_1000 value: 2.028 - type: precision_at_3 value: 20.666999999999998 - type: precision_at_5 value: 16.8 - type: recall_at_1 value: 0.05 - type: recall_at_10 value: 0.267 - type: recall_at_100 value: 1.102 - type: recall_at_1000 value: 4.205 - type: recall_at_3 value: 0.134 - type: recall_at_5 value: 0.182 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 0.45199999999999996 - type: map_at_10 value: 1.986 - type: map_at_100 value: 3.887 - type: map_at_1000 value: 4.5809999999999995 - type: map_at_3 value: 0.9299999999999999 - type: map_at_5 value: 1.287 - type: mrr_at_1 value: 8.163 - type: mrr_at_10 value: 16.152 - type: mrr_at_100 value: 17.187 - type: mrr_at_1000 value: 17.301 - type: mrr_at_3 value: 11.224 - type: mrr_at_5 value: 12.653 - type: ndcg_at_1 value: 4.082 - type: ndcg_at_10 value: 6.687 - type: ndcg_at_100 value: 13.158 - type: ndcg_at_1000 value: 22.259 - type: ndcg_at_3 value: 5.039 - type: ndcg_at_5 value: 5.519 - type: precision_at_1 value: 8.163 - type: precision_at_10 value: 8.163 - type: precision_at_100 value: 3.51 - type: precision_at_1000 value: 0.9159999999999999 - type: precision_at_3 value: 7.483 - type: precision_at_5 value: 7.3469999999999995 - type: recall_at_1 value: 0.45199999999999996 - type: recall_at_10 value: 5.27 - type: recall_at_100 value: 20.75 - type: recall_at_1000 value: 49.236999999999995 - type: recall_at_3 value: 1.28 - type: recall_at_5 value: 2.045 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 57.08740000000001 - type: ap value: 9.092681400063896 - type: f1 value: 43.966684273361125 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 42.314657611771366 - type: f1 value: 42.2349043058169 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 15.71319288909283 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 78.84007867914407 - type: cos_sim_ap value: 42.2183603452187 - type: cos_sim_f1 value: 43.1781412906705 - type: cos_sim_precision value: 32.74263904034896 - type: cos_sim_recall value: 63.377308707124016 - type: dot_accuracy value: 78.84007867914407 - type: dot_ap value: 42.21836359699547 - type: dot_f1 value: 43.1781412906705 - type: dot_precision value: 32.74263904034896 - type: dot_recall value: 63.377308707124016 - type: euclidean_accuracy value: 78.84007867914407 - type: euclidean_ap value: 42.218363575958854 - type: euclidean_f1 value: 43.1781412906705 - type: euclidean_precision value: 32.74263904034896 - type: euclidean_recall value: 63.377308707124016 - type: manhattan_accuracy value: 78.79239434940692 - type: manhattan_ap value: 42.178124350579 - type: manhattan_f1 value: 43.16231513602337 - type: manhattan_precision value: 32.99832495812395 - type: manhattan_recall value: 62.37467018469657 - type: max_accuracy value: 78.84007867914407 - type: max_ap value: 42.21836359699547 - type: max_f1 value: 43.1781412906705 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 82.51445647533667 - type: cos_sim_ap value: 69.65701766911302 - type: cos_sim_f1 value: 62.92060699362217 - type: cos_sim_precision value: 60.046173219532676 - type: cos_sim_recall value: 66.08407761010163 - type: dot_accuracy value: 82.51445647533667 - type: dot_ap value: 69.6569952654014 - type: dot_f1 value: 62.92060699362217 - type: dot_precision value: 60.046173219532676 - type: dot_recall value: 66.08407761010163 - type: euclidean_accuracy value: 82.51445647533667 - type: euclidean_ap value: 69.65697749857492 - type: euclidean_f1 value: 62.92060699362217 - type: euclidean_precision value: 60.046173219532676 - type: euclidean_recall value: 66.08407761010163 - type: manhattan_accuracy value: 82.52221834128925 - type: manhattan_ap value: 69.65965534790995 - type: manhattan_f1 value: 62.865817064991006 - type: manhattan_precision value: 58.04811265401917 - type: manhattan_recall value: 68.55558977517708 - type: max_accuracy value: 82.52221834128925 - type: max_ap value: 69.65965534790995 - type: max_f1 value: 62.92060699362217 ---
sam1120/dropoff-utcustom-train-SF-RGBD-b5_7
sam1120
2024-02-12T13:58:42Z
148
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T13:25:26Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b5_7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b5_7 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.1296 - Mean Iou: 0.6242 - Mean Accuracy: 0.6623 - Overall Accuracy: 0.9652 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3319 - Accuracy Undropoff: 0.9926 - Iou Unlabeled: nan - Iou Dropoff: 0.2838 - Iou Undropoff: 0.9647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 0.9278 | 5.0 | 10 | 0.8454 | 0.3197 | 0.5545 | 0.8788 | nan | 0.2009 | 0.9082 | 0.0 | 0.0807 | 0.8785 | | 0.5551 | 10.0 | 20 | 0.4668 | 0.3221 | 0.5042 | 0.9540 | nan | 0.0135 | 0.9948 | 0.0 | 0.0122 | 0.9540 | | 0.3667 | 15.0 | 30 | 0.3354 | 0.3218 | 0.5035 | 0.9570 | nan | 0.0088 | 0.9982 | 0.0 | 0.0085 | 0.9570 | | 0.2402 | 20.0 | 40 | 0.2678 | 0.5985 | 0.6492 | 0.9587 | nan | 0.3116 | 0.9868 | nan | 0.2388 | 0.9582 | | 0.1562 | 25.0 | 50 | 0.2101 | 0.6240 | 0.6719 | 0.9631 | nan | 0.3544 | 0.9895 | nan | 0.2854 | 0.9625 | | 0.1159 | 30.0 | 60 | 0.1704 | 0.6262 | 0.6641 | 0.9654 | nan | 0.3353 | 0.9928 | nan | 0.2875 | 0.9650 | | 0.0869 | 35.0 | 70 | 0.1443 | 0.6380 | 0.6817 | 0.9657 | nan | 0.3720 | 0.9915 | nan | 0.3108 | 0.9652 | | 0.079 | 40.0 | 80 | 0.1350 | 0.6072 | 0.6360 | 0.9654 | nan | 0.2766 | 0.9953 | nan | 0.2494 | 0.9650 | | 0.0647 | 45.0 | 90 | 0.1370 | 0.5800 | 0.6031 | 0.9643 | nan | 0.2090 | 0.9971 | nan | 0.1959 | 0.9640 | | 0.0587 | 50.0 | 100 | 0.1336 | 0.6276 | 0.6796 | 0.9628 | nan | 0.3707 | 0.9885 | nan | 0.2929 | 0.9622 | | 0.0575 | 55.0 | 110 | 0.1313 | 0.6189 | 0.6531 | 0.9654 | nan | 0.3126 | 0.9937 | nan | 0.2729 | 0.9649 | | 0.0527 | 60.0 | 120 | 0.1298 | 0.6252 | 0.6655 | 0.9648 | nan | 0.3391 | 0.9920 | nan | 0.2860 | 0.9643 | | 0.0491 | 65.0 | 130 | 0.1313 | 0.6110 | 0.6492 | 0.9635 | nan | 0.3063 | 0.9920 | nan | 0.2589 | 0.9631 | | 0.0441 | 70.0 | 140 | 0.1295 | 0.6103 | 0.6429 | 0.9648 | nan | 0.2919 | 0.9939 | nan | 0.2562 | 0.9643 | | 0.0426 | 75.0 | 150 | 0.1233 | 0.6271 | 0.6633 | 0.9659 | nan | 0.3333 | 0.9933 | nan | 0.2887 | 0.9654 | | 0.0477 | 80.0 | 160 | 0.1286 | 0.6255 | 0.6629 | 0.9655 | nan | 0.3328 | 0.9929 | nan | 0.2861 | 0.9650 | | 0.039 | 85.0 | 170 | 0.1265 | 0.6380 | 0.6824 | 0.9656 | nan | 0.3735 | 0.9913 | nan | 0.3109 | 0.9650 | | 0.0378 | 90.0 | 180 | 0.1309 | 0.6185 | 0.6543 | 0.9650 | nan | 0.3154 | 0.9932 | nan | 0.2725 | 0.9645 | | 0.0362 | 95.0 | 190 | 0.1266 | 0.6311 | 0.6715 | 0.9655 | nan | 0.3508 | 0.9922 | nan | 0.2973 | 0.9650 | | 0.0394 | 100.0 | 200 | 0.1307 | 0.6274 | 0.6635 | 0.9659 | nan | 0.3337 | 0.9934 | nan | 0.2894 | 0.9655 | | 0.0362 | 105.0 | 210 | 0.1271 | 0.6366 | 0.6789 | 0.9658 | nan | 0.3661 | 0.9918 | nan | 0.3080 | 0.9653 | | 0.0361 | 110.0 | 220 | 0.1274 | 0.6317 | 0.6736 | 0.9653 | nan | 0.3554 | 0.9918 | nan | 0.2987 | 0.9648 | | 0.0353 | 115.0 | 230 | 0.1290 | 0.6216 | 0.6579 | 0.9652 | nan | 0.3228 | 0.9931 | nan | 0.2784 | 0.9647 | | 0.0344 | 120.0 | 240 | 0.1296 | 0.6242 | 0.6623 | 0.9652 | nan | 0.3319 | 0.9926 | nan | 0.2838 | 0.9647 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b5_6
sam1120
2024-02-12T13:58:06Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T13:25:25Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b5_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b5_6 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.1429 - Mean Iou: 0.6443 - Mean Accuracy: 0.6853 - Overall Accuracy: 0.9669 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3782 - Accuracy Undropoff: 0.9925 - Iou Unlabeled: nan - Iou Dropoff: 0.3223 - Iou Undropoff: 0.9664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.159 | 5.0 | 10 | 1.0040 | 0.2283 | 0.5676 | 0.6267 | nan | 0.5031 | 0.6321 | 0.0 | 0.0644 | 0.6203 | | 0.8345 | 10.0 | 20 | 0.7480 | 0.3236 | 0.5320 | 0.9158 | nan | 0.1134 | 0.9506 | 0.0 | 0.0555 | 0.9154 | | 0.5406 | 15.0 | 30 | 0.5477 | 0.3223 | 0.5049 | 0.9513 | nan | 0.0179 | 0.9918 | 0.0 | 0.0157 | 0.9513 | | 0.3695 | 20.0 | 40 | 0.4590 | 0.3215 | 0.5036 | 0.9519 | nan | 0.0146 | 0.9926 | 0.0 | 0.0125 | 0.9519 | | 0.3053 | 25.0 | 50 | 0.3790 | 0.3196 | 0.5001 | 0.9565 | nan | 0.0023 | 0.9979 | 0.0 | 0.0022 | 0.9565 | | 0.2436 | 30.0 | 60 | 0.3303 | 0.4812 | 0.5020 | 0.9568 | nan | 0.0059 | 0.9981 | nan | 0.0056 | 0.9568 | | 0.2148 | 35.0 | 70 | 0.2739 | 0.4794 | 0.5002 | 0.9580 | nan | 0.0008 | 0.9996 | nan | 0.0008 | 0.9580 | | 0.1983 | 40.0 | 80 | 0.2348 | 0.5079 | 0.5284 | 0.9595 | nan | 0.0582 | 0.9986 | nan | 0.0564 | 0.9594 | | 0.1784 | 45.0 | 90 | 0.2178 | 0.6064 | 0.6440 | 0.9631 | nan | 0.2960 | 0.9920 | nan | 0.2501 | 0.9626 | | 0.1631 | 50.0 | 100 | 0.1943 | 0.6223 | 0.6811 | 0.9607 | nan | 0.3760 | 0.9861 | nan | 0.2846 | 0.9601 | | 0.1468 | 55.0 | 110 | 0.1759 | 0.6206 | 0.6731 | 0.9617 | nan | 0.3583 | 0.9879 | nan | 0.2801 | 0.9611 | | 0.1353 | 60.0 | 120 | 0.1657 | 0.6014 | 0.6335 | 0.9639 | nan | 0.2731 | 0.9939 | nan | 0.2393 | 0.9635 | | 0.1474 | 65.0 | 130 | 0.1590 | 0.5943 | 0.6228 | 0.9641 | nan | 0.2505 | 0.9951 | nan | 0.2249 | 0.9637 | | 0.1172 | 70.0 | 140 | 0.1562 | 0.6272 | 0.6662 | 0.9653 | nan | 0.3400 | 0.9924 | nan | 0.2896 | 0.9648 | | 0.1169 | 75.0 | 150 | 0.1538 | 0.6302 | 0.6696 | 0.9656 | nan | 0.3467 | 0.9925 | nan | 0.2954 | 0.9651 | | 0.1263 | 80.0 | 160 | 0.1540 | 0.6372 | 0.6784 | 0.9661 | nan | 0.3645 | 0.9922 | nan | 0.3089 | 0.9656 | | 0.1028 | 85.0 | 170 | 0.1512 | 0.6462 | 0.6948 | 0.9659 | nan | 0.3992 | 0.9904 | nan | 0.3271 | 0.9653 | | 0.1163 | 90.0 | 180 | 0.1493 | 0.6469 | 0.6932 | 0.9663 | nan | 0.3953 | 0.9911 | nan | 0.3280 | 0.9658 | | 0.0998 | 95.0 | 190 | 0.1481 | 0.6457 | 0.6894 | 0.9666 | nan | 0.3869 | 0.9918 | nan | 0.3253 | 0.9661 | | 0.0997 | 100.0 | 200 | 0.1465 | 0.6454 | 0.6893 | 0.9665 | nan | 0.3869 | 0.9917 | nan | 0.3247 | 0.9660 | | 0.0998 | 105.0 | 210 | 0.1473 | 0.6488 | 0.6937 | 0.9668 | nan | 0.3958 | 0.9916 | nan | 0.3313 | 0.9662 | | 0.1003 | 110.0 | 220 | 0.1437 | 0.6401 | 0.6774 | 0.9671 | nan | 0.3614 | 0.9934 | nan | 0.3136 | 0.9666 | | 0.0932 | 115.0 | 230 | 0.1434 | 0.6469 | 0.6898 | 0.9669 | nan | 0.3876 | 0.9920 | nan | 0.3275 | 0.9664 | | 0.0942 | 120.0 | 240 | 0.1429 | 0.6443 | 0.6853 | 0.9669 | nan | 0.3782 | 0.9925 | nan | 0.3223 | 0.9664 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
arekpaterak/Reinforce-Pixelcopter-PLE-v0
arekpaterak
2024-02-12T13:57:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T13:07:51Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 32.30 +/- 17.93 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sam1120/dropoff-utcustom-train-SF-RGBD-b5_4
sam1120
2024-02-12T13:56:36Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T13:24:40Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b5_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b5_4 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.2351 - Mean Iou: 0.4792 - Mean Accuracy: 0.5 - Overall Accuracy: 0.9584 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.0 - Accuracy Undropoff: 1.0 - Iou Unlabeled: nan - Iou Dropoff: 0.0 - Iou Undropoff: 0.9584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0114 | 5.0 | 10 | 1.0037 | 0.2459 | 0.4345 | 0.7074 | nan | 0.1368 | 0.7322 | 0.0 | 0.0286 | 0.7089 | | 0.9088 | 10.0 | 20 | 0.8245 | 0.3119 | 0.5046 | 0.8887 | nan | 0.0857 | 0.9235 | 0.0 | 0.0460 | 0.8897 | | 0.8029 | 15.0 | 30 | 0.6620 | 0.3157 | 0.4998 | 0.9214 | nan | 0.0399 | 0.9596 | 0.0 | 0.0253 | 0.9219 | | 0.6935 | 20.0 | 40 | 0.5662 | 0.3154 | 0.4959 | 0.9309 | nan | 0.0214 | 0.9704 | 0.0 | 0.0151 | 0.9311 | | 0.635 | 25.0 | 50 | 0.5018 | 0.3175 | 0.4978 | 0.9401 | nan | 0.0153 | 0.9803 | 0.0 | 0.0121 | 0.9404 | | 0.5579 | 30.0 | 60 | 0.4701 | 0.3178 | 0.4978 | 0.9422 | nan | 0.0131 | 0.9825 | 0.0 | 0.0111 | 0.9423 | | 0.5086 | 35.0 | 70 | 0.4403 | 0.3181 | 0.4977 | 0.9459 | nan | 0.0088 | 0.9866 | 0.0 | 0.0080 | 0.9461 | | 0.472 | 40.0 | 80 | 0.4328 | 0.3177 | 0.4971 | 0.9471 | nan | 0.0063 | 0.9879 | 0.0 | 0.0059 | 0.9473 | | 0.4484 | 45.0 | 90 | 0.4136 | 0.3184 | 0.4981 | 0.9506 | nan | 0.0046 | 0.9916 | 0.0 | 0.0044 | 0.9508 | | 0.4026 | 50.0 | 100 | 0.4013 | 0.3186 | 0.4985 | 0.9516 | nan | 0.0043 | 0.9926 | 0.0 | 0.0042 | 0.9517 | | 0.3873 | 55.0 | 110 | 0.3621 | 0.3189 | 0.4991 | 0.9557 | nan | 0.0010 | 0.9971 | 0.0 | 0.0009 | 0.9557 | | 0.3549 | 60.0 | 120 | 0.3479 | 0.3189 | 0.4992 | 0.9564 | nan | 0.0004 | 0.9979 | 0.0 | 0.0004 | 0.9564 | | 0.3358 | 65.0 | 130 | 0.3282 | 0.3191 | 0.4994 | 0.9571 | nan | 0.0001 | 0.9986 | 0.0 | 0.0001 | 0.9571 | | 0.3146 | 70.0 | 140 | 0.3141 | 0.3193 | 0.4996 | 0.9577 | nan | 0.0000 | 0.9993 | 0.0 | 0.0000 | 0.9577 | | 0.3116 | 75.0 | 150 | 0.2941 | 0.3194 | 0.4999 | 0.9582 | nan | 0.0 | 0.9998 | 0.0 | 0.0 | 0.9582 | | 0.3151 | 80.0 | 160 | 0.2809 | 0.3195 | 0.5000 | 0.9584 | nan | 0.0 | 0.9999 | 0.0 | 0.0 | 0.9584 | | 0.2778 | 85.0 | 170 | 0.2750 | 0.3195 | 0.5000 | 0.9584 | nan | 0.0 | 1.0000 | 0.0 | 0.0 | 0.9584 | | 0.2753 | 90.0 | 180 | 0.2615 | 0.3195 | 0.5000 | 0.9584 | nan | 0.0 | 1.0000 | 0.0 | 0.0 | 0.9584 | | 0.2809 | 95.0 | 190 | 0.2547 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | | 0.2606 | 100.0 | 200 | 0.2464 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | | 0.2563 | 105.0 | 210 | 0.2459 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | | 0.2454 | 110.0 | 220 | 0.2393 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | | 0.2707 | 115.0 | 230 | 0.2368 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | | 0.2433 | 120.0 | 240 | 0.2351 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Shijia/furina_seed42_eng_amh_hau_roman
Shijia
2024-02-12T13:54:35Z
101
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:yihongLiu/furina", "base_model:finetune:yihongLiu/furina", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T13:53:48Z
--- base_model: yihongLiu/furina tags: - generated_from_trainer model-index: - name: furina_seed42_eng_amh_hau_roman results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furina_seed42_eng_amh_hau_roman This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0233 - Spearman Corr: 0.7621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 0.58 | 200 | 0.0306 | 0.6454 | | No log | 1.15 | 400 | 0.0353 | 0.6854 | | No log | 1.73 | 600 | 0.0298 | 0.7055 | | 0.0458 | 2.3 | 800 | 0.0307 | 0.7105 | | 0.0458 | 2.88 | 1000 | 0.0263 | 0.7299 | | 0.0458 | 3.45 | 1200 | 0.0273 | 0.7357 | | 0.0222 | 4.03 | 1400 | 0.0255 | 0.7374 | | 0.0222 | 4.6 | 1600 | 0.0268 | 0.7398 | | 0.0222 | 5.18 | 1800 | 0.0316 | 0.7371 | | 0.0222 | 5.76 | 2000 | 0.0245 | 0.7445 | | 0.0155 | 6.33 | 2200 | 0.0264 | 0.7484 | | 0.0155 | 6.91 | 2400 | 0.0311 | 0.7549 | | 0.0155 | 7.48 | 2600 | 0.0223 | 0.7585 | | 0.0112 | 8.06 | 2800 | 0.0257 | 0.7483 | | 0.0112 | 8.63 | 3000 | 0.0240 | 0.7507 | | 0.0112 | 9.21 | 3200 | 0.0275 | 0.7609 | | 0.0112 | 9.78 | 3400 | 0.0265 | 0.7565 | | 0.0086 | 10.36 | 3600 | 0.0250 | 0.7534 | | 0.0086 | 10.94 | 3800 | 0.0285 | 0.7577 | | 0.0086 | 11.51 | 4000 | 0.0225 | 0.7625 | | 0.007 | 12.09 | 4200 | 0.0233 | 0.7621 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
sam1120/dropoff-utcustom-train-SF-RGBD-b5_2
sam1120
2024-02-12T13:41:56Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T13:23:34Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b5_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b5_2 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.4198 - Mean Iou: 0.3194 - Mean Accuracy: 0.4998 - Overall Accuracy: 0.9558 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.0023 - Accuracy Undropoff: 0.9972 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.0022 - Iou Undropoff: 0.9558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 0.989 | 5.0 | 10 | 1.0190 | 0.2162 | 0.5831 | 0.5879 | nan | 0.5779 | 0.5883 | 0.0 | 0.0657 | 0.5829 | | 0.9092 | 10.0 | 20 | 0.8686 | 0.3164 | 0.5199 | 0.8922 | nan | 0.1137 | 0.9260 | 0.0 | 0.0539 | 0.8953 | | 0.8483 | 15.0 | 30 | 0.7438 | 0.3256 | 0.5234 | 0.9219 | nan | 0.0888 | 0.9581 | 0.0 | 0.0545 | 0.9224 | | 0.7856 | 20.0 | 40 | 0.6571 | 0.3182 | 0.5013 | 0.9336 | nan | 0.0297 | 0.9728 | 0.0 | 0.0210 | 0.9335 | | 0.7459 | 25.0 | 50 | 0.6144 | 0.3164 | 0.4980 | 0.9324 | nan | 0.0242 | 0.9718 | 0.0 | 0.0168 | 0.9324 | | 0.7027 | 30.0 | 60 | 0.5861 | 0.3168 | 0.4975 | 0.9351 | nan | 0.0202 | 0.9748 | 0.0 | 0.0151 | 0.9353 | | 0.6827 | 35.0 | 70 | 0.5568 | 0.3171 | 0.4975 | 0.9391 | nan | 0.0159 | 0.9791 | 0.0 | 0.0122 | 0.9391 | | 0.6362 | 40.0 | 80 | 0.5405 | 0.3179 | 0.4982 | 0.9424 | nan | 0.0138 | 0.9827 | 0.0 | 0.0112 | 0.9425 | | 0.6098 | 45.0 | 90 | 0.5192 | 0.3174 | 0.4971 | 0.9449 | nan | 0.0087 | 0.9855 | 0.0 | 0.0073 | 0.9449 | | 0.5946 | 50.0 | 100 | 0.5025 | 0.3179 | 0.4978 | 0.9475 | nan | 0.0072 | 0.9883 | 0.0 | 0.0062 | 0.9477 | | 0.5868 | 55.0 | 110 | 0.4943 | 0.3179 | 0.4976 | 0.9490 | nan | 0.0052 | 0.9900 | 0.0 | 0.0046 | 0.9491 | | 0.5557 | 60.0 | 120 | 0.4798 | 0.3184 | 0.4983 | 0.9505 | nan | 0.0051 | 0.9915 | 0.0 | 0.0045 | 0.9506 | | 0.5327 | 65.0 | 130 | 0.4736 | 0.3184 | 0.4983 | 0.9514 | nan | 0.0041 | 0.9925 | 0.0 | 0.0038 | 0.9514 | | 0.525 | 70.0 | 140 | 0.4657 | 0.3187 | 0.4987 | 0.9526 | nan | 0.0038 | 0.9937 | 0.0 | 0.0035 | 0.9526 | | 0.5266 | 75.0 | 150 | 0.4528 | 0.3190 | 0.4992 | 0.9534 | nan | 0.0037 | 0.9946 | 0.0 | 0.0034 | 0.9535 | | 0.5139 | 80.0 | 160 | 0.4538 | 0.3189 | 0.4991 | 0.9533 | nan | 0.0037 | 0.9945 | 0.0 | 0.0035 | 0.9534 | | 0.5128 | 85.0 | 170 | 0.4460 | 0.3192 | 0.4995 | 0.9543 | nan | 0.0033 | 0.9956 | 0.0 | 0.0031 | 0.9543 | | 0.4901 | 90.0 | 180 | 0.4371 | 0.3192 | 0.4995 | 0.9548 | nan | 0.0029 | 0.9961 | 0.0 | 0.0027 | 0.9548 | | 0.4767 | 95.0 | 190 | 0.4325 | 0.3193 | 0.4997 | 0.9552 | nan | 0.0029 | 0.9965 | 0.0 | 0.0027 | 0.9552 | | 0.4692 | 100.0 | 200 | 0.4272 | 0.3193 | 0.4997 | 0.9556 | nan | 0.0024 | 0.9970 | 0.0 | 0.0023 | 0.9556 | | 0.4632 | 105.0 | 210 | 0.4251 | 0.3193 | 0.4996 | 0.9556 | nan | 0.0023 | 0.9969 | 0.0 | 0.0023 | 0.9556 | | 0.4626 | 110.0 | 220 | 0.4236 | 0.3193 | 0.4997 | 0.9556 | nan | 0.0024 | 0.9970 | 0.0 | 0.0024 | 0.9556 | | 0.4837 | 115.0 | 230 | 0.4216 | 0.3194 | 0.4998 | 0.9558 | nan | 0.0023 | 0.9972 | 0.0 | 0.0023 | 0.9558 | | 0.4809 | 120.0 | 240 | 0.4198 | 0.3194 | 0.4998 | 0.9558 | nan | 0.0023 | 0.9972 | 0.0 | 0.0022 | 0.9558 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
alitolga/electra-base-generator-rank8
alitolga
2024-02-12T13:41:55Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/electra-base-generator", "base_model:finetune:google/electra-base-generator", "license:apache-2.0", "region:us" ]
null
2024-02-12T13:41:17Z
--- license: apache-2.0 base_model: google/electra-base-generator tags: - generated_from_trainer model-index: - name: electra-base-generator-rank8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-generator-rank8 This model is a fine-tuned version of [google/electra-base-generator](https://huggingface.co/google/electra-base-generator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.2296 | 1.0 | 179 | 3.8171 | | 3.6406 | 2.0 | 358 | 3.3218 | | 3.395 | 3.0 | 537 | 3.2562 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
yemen2016/MeMo-BERT-WSD_old
yemen2016
2024-02-12T13:40:04Z
48
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "da", "base_model:MiMe-MeMo/MeMo-BERT-01", "base_model:finetune:MiMe-MeMo/MeMo-BERT-01", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-09T12:37:02Z
--- base_model: MiMe-MeMo/MeMo-BERT-01 tags: - generated_from_trainer model-index: - name: new_memo_model results: [] language: da # <-- my language widget: - text: "Men havde Gud vendt sig fra ham , saa kunde han ogsaa vende sig fra Gud . Havde Gud ingen Øren , saa havde han heller ingen Læber , havde Gud ingen Naade , saa havde han heller ingen Tilbedelse , og han trodsede og viste Gud ud af sit Hjærte ." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MeMo Model (Word Sense Disambiguation) This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-01](https://huggingface.co/MiMe-MeMo/MeMo-BERT-01) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7214 - F1-score: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 11 | 0.7214 | 0.6667 | | No log | 2.0 | 22 | 1.2543 | 0.5429 | | No log | 3.0 | 33 | 1.0829 | 0.6837 | | No log | 4.0 | 44 | 1.3815 | 0.7552 | | No log | 5.0 | 55 | 1.4733 | 0.7005 | | No log | 6.0 | 66 | 2.3876 | 0.5513 | | No log | 7.0 | 77 | 1.3215 | 0.8004 | | No log | 8.0 | 88 | 1.4006 | 0.7608 | | No log | 9.0 | 99 | 1.4862 | 0.7608 | | No log | 10.0 | 110 | 1.4974 | 0.7608 | | No log | 11.0 | 121 | 1.4966 | 0.7608 | | No log | 12.0 | 132 | 1.5040 | 0.7608 | | No log | 13.0 | 143 | 1.5010 | 0.7608 | | No log | 14.0 | 154 | 1.4741 | 0.7608 | | No log | 15.0 | 165 | 1.4507 | 0.7608 | | No log | 16.0 | 176 | 1.4420 | 0.7608 | | No log | 17.0 | 187 | 1.4398 | 0.7608 | | No log | 18.0 | 198 | 1.4426 | 0.7608 | | No log | 19.0 | 209 | 1.4438 | 0.7608 | | No log | 20.0 | 220 | 1.4439 | 0.7608 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
alitolga/electra-base-generator-rank4
alitolga
2024-02-12T13:36:31Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/electra-base-generator", "base_model:finetune:google/electra-base-generator", "license:apache-2.0", "region:us" ]
null
2024-02-12T13:35:29Z
--- license: apache-2.0 base_model: google/electra-base-generator tags: - generated_from_trainer model-index: - name: electra-base-generator-rank4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-generator-rank4 This model is a fine-tuned version of [google/electra-base-generator](https://huggingface.co/google/electra-base-generator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.3543 | 1.0 | 179 | 3.9048 | | 3.7115 | 2.0 | 358 | 3.3385 | | 3.4042 | 3.0 | 537 | 3.2603 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
ylacombe/musicgen-melody-bella-ciao
ylacombe
2024-02-12T13:32:46Z
4
0
transformers
[ "transformers", "safetensors", "musicgen_melody_decoder", "text-generation", "text-to-audio", "ylacombe/bella_ciao", "generated_from_trainer", "base_model:ylacombe/musicgen-melody", "base_model:finetune:ylacombe/musicgen-melody", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-audio
2024-02-08T19:48:18Z
--- base_model: ylacombe/musicgen-melody tags: - text-to-audio - ylacombe/bella_ciao - generated_from_trainer model-index: - name: musicgen-melody-bella-ciao results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # musicgen-melody-bella-ciao This model is a fine-tuned version of [ylacombe/musicgen-melody](https://huggingface.co/ylacombe/musicgen-melody) on the YLACOMBE/BELLA_CIAO - DEFAULT dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 8 - seed: 456 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
alitolga/electra-base-generator-rank2
alitolga
2024-02-12T13:31:54Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/electra-base-generator", "base_model:finetune:google/electra-base-generator", "license:apache-2.0", "region:us" ]
null
2024-02-12T13:25:46Z
--- license: apache-2.0 base_model: google/electra-base-generator tags: - generated_from_trainer model-index: - name: electra-base-generator-rank2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-generator-rank2 This model is a fine-tuned version of [google/electra-base-generator](https://huggingface.co/google/electra-base-generator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.206 | 1.0 | 179 | 3.8146 | | 3.5779 | 2.0 | 358 | 3.2736 | | 3.3568 | 3.0 | 537 | 3.2155 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
eren23/sd15-FantasyMix-filmGrain-segmoe
eren23
2024-02-12T13:31:44Z
30
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "segmoe", "merge", "moe", "sd1.5", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-12T13:17:43Z
--- library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - segmoe - merge - moe - sd1.5 --- This model is a segmoe merge of 2 models from civitAI: https://civitai.com/models/234898/vixons-fantasy-mix https://civitai.com/models/43977?modelVersionId=113623 Merged using the great project at: https://github.com/segmind/segmoe To do something similar you can either follow the guide in readme or you can follow this blogpost: https://huggingface.co/blog/segmoe The setting I used: base_model: https://civitai.com/api/download/models/306781 num_experts: 4 moe_layers: all num_experts_per_tok: 2 type: sd experts: - source_model: https://civitai.com/api/download/models/306781 positive_prompt: "cinematic, portrait, photograph, instagram, fashion, movie, macro shot, 8K, RAW, fantastic, ultra high quality" negative_prompt: " (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck" - source_model: https://civitai.com/api/download/models/113623 positive_prompt: "photo realistic scenes, fantastic view, impressive view, movie scene, 8K, RAW, hyperrealistic, ultra realistic" negative_prompt: "simple background, duplicate, retro style, low quality, lowest quality, 1980s, 1990s, 2000s, 2005 2006 2007 2008 2009 2010 2011 2012 2013, bad anatomy, bad proportions, extra digits, lowres, username, artist name, error, duplicate, watermark, signature, text, extra digit, fewer digits, worst quality, jpeg artifacts, blurry" # Useage !pip install -U segmoe diffusers transformers from segmoe import SegMoEPipeline pipeline = SegMoEPipeline("eren23/sd15-FantasyMix-filmGrain-segmoe", device="cuda") prompt = "fantastic land canvas, knight cat standing next to a purple medieval village wall" negative_prompt = "nsfw, bad quality, worse quality" img = pipeline( prompt=prompt, negative_prompt=negative_prompt, height=512, width=512, num_inference_steps=30, guidance_scale=7.5, ).images[0] img.save("image.png")
Annikaijak/bert_classification
Annikaijak
2024-02-12T13:31:36Z
93
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T13:31:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hweemiin/ppo-LunarLander-v2
hweemiin
2024-02-12T13:31:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T13:31:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 214.81 +/- 68.51 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anupk/akmixtral-v1
anupk
2024-02-12T13:29:47Z
5
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-02-12T13:24:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HamidBekam/bert_classification_v1
HamidBekam
2024-02-12T13:28:36Z
95
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T13:27:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MikkelONielsen/bert_classification
MikkelONielsen
2024-02-12T13:28:09Z
94
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T13:27:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Camillahannesbo/Camillas_bert_model
Camillahannesbo
2024-02-12T13:27:32Z
94
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T13:26:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alitolga/deberta-v3-base-rank64
alitolga
2024-02-12T13:23:13Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:mit", "region:us" ]
null
2024-02-12T13:13:11Z
--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: deberta-v3-base-rank64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base-rank64 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.8756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 13.9289 | 1.0 | 179 | 8.8618 | | 7.5578 | 2.0 | 358 | 5.4690 | | 5.614 | 3.0 | 537 | 4.8756 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
benj3037/bert_test
benj3037
2024-02-12T13:22:57Z
92
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-07T11:05:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
chathuranga-jayanath/codet5-small-v26
chathuranga-jayanath
2024-02-12T13:14:33Z
98
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:Salesforce/codet5-small", "base_model:finetune:Salesforce/codet5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-12T09:40:31Z
--- license: apache-2.0 base_model: Salesforce/codet5-small tags: - generated_from_trainer model-index: - name: codet5-small-v26 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codet5-small-v26 This model is a fine-tuned version of [Salesforce/codet5-small](https://huggingface.co/Salesforce/codet5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1762 - Bleu Score: 0.0007 - Gen Len: 14.3657 ## Model description Trained, - on: chathuranga-jayanath/context-5-finmath-times4j-html-mavendoxia-wro4j-guava-supercsv-balanced-10k-prompt-1 ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu Score | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----------:|:-------:| | 0.2776 | 1.0 | 3407 | 0.2137 | 0.0007 | 14.2809 | | 0.2216 | 2.0 | 6814 | 0.1836 | 0.0007 | 14.3813 | | 0.2036 | 3.0 | 10221 | 0.1762 | 0.0007 | 14.3657 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
y-oguchi/codeparrot-ds
y-oguchi
2024-02-12T13:05:37Z
93
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T10:39:30Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 96 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 768 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
sam1120/dropoff-utcustom-train-SF-RGBD-b0_7
sam1120
2024-02-12T13:01:30Z
147
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:53:02Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b0_7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b0_7 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.2075 - Mean Iou: 0.6372 - Mean Accuracy: 0.6861 - Overall Accuracy: 0.9647 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3822 - Accuracy Undropoff: 0.9900 - Iou Unlabeled: nan - Iou Dropoff: 0.3104 - Iou Undropoff: 0.9641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 0.9508 | 5.0 | 10 | 1.0263 | 0.3104 | 0.5474 | 0.8717 | nan | 0.1937 | 0.9011 | 0.0 | 0.0605 | 0.8706 | | 0.7814 | 10.0 | 20 | 0.7568 | 0.4971 | 0.5339 | 0.9361 | nan | 0.0952 | 0.9726 | nan | 0.0584 | 0.9359 | | 0.642 | 15.0 | 30 | 0.5907 | 0.5134 | 0.5443 | 0.9494 | nan | 0.1026 | 0.9861 | nan | 0.0777 | 0.9492 | | 0.5118 | 20.0 | 40 | 0.4804 | 0.3658 | 0.5923 | 0.9513 | nan | 0.2006 | 0.9839 | 0.0 | 0.1464 | 0.9509 | | 0.4581 | 25.0 | 50 | 0.4405 | 0.3715 | 0.5915 | 0.9569 | nan | 0.1930 | 0.9900 | 0.0 | 0.1578 | 0.9565 | | 0.4213 | 30.0 | 60 | 0.4146 | 0.3828 | 0.6136 | 0.9580 | nan | 0.2379 | 0.9892 | 0.0 | 0.1910 | 0.9575 | | 0.3571 | 35.0 | 70 | 0.3750 | 0.3846 | 0.6180 | 0.9578 | nan | 0.2474 | 0.9887 | 0.0 | 0.1963 | 0.9574 | | 0.3205 | 40.0 | 80 | 0.3478 | 0.5777 | 0.6202 | 0.9576 | nan | 0.2522 | 0.9882 | nan | 0.1982 | 0.9571 | | 0.3114 | 45.0 | 90 | 0.3461 | 0.3895 | 0.6423 | 0.9541 | nan | 0.3022 | 0.9824 | 0.0 | 0.2150 | 0.9535 | | 0.2747 | 50.0 | 100 | 0.3253 | 0.5875 | 0.6357 | 0.9575 | nan | 0.2847 | 0.9867 | nan | 0.2180 | 0.9570 | | 0.2593 | 55.0 | 110 | 0.3083 | 0.5967 | 0.6599 | 0.9552 | nan | 0.3377 | 0.9820 | nan | 0.2387 | 0.9546 | | 0.2293 | 60.0 | 120 | 0.2762 | 0.5966 | 0.6389 | 0.9606 | nan | 0.2880 | 0.9898 | nan | 0.2331 | 0.9601 | | 0.2306 | 65.0 | 130 | 0.2655 | 0.6016 | 0.6587 | 0.9577 | nan | 0.3326 | 0.9848 | nan | 0.2462 | 0.9571 | | 0.2118 | 70.0 | 140 | 0.2446 | 0.6039 | 0.6509 | 0.9605 | nan | 0.3133 | 0.9886 | nan | 0.2479 | 0.9600 | | 0.2038 | 75.0 | 150 | 0.2395 | 0.6164 | 0.6708 | 0.9607 | nan | 0.3547 | 0.9870 | nan | 0.2727 | 0.9601 | | 0.1895 | 80.0 | 160 | 0.2196 | 0.6254 | 0.6721 | 0.9636 | nan | 0.3542 | 0.9900 | nan | 0.2878 | 0.9630 | | 0.1681 | 85.0 | 170 | 0.2176 | 0.6302 | 0.6829 | 0.9630 | nan | 0.3773 | 0.9884 | nan | 0.2979 | 0.9624 | | 0.1612 | 90.0 | 180 | 0.2175 | 0.6334 | 0.6870 | 0.9633 | nan | 0.3857 | 0.9884 | nan | 0.3042 | 0.9627 | | 0.1545 | 95.0 | 190 | 0.2140 | 0.6337 | 0.6816 | 0.9644 | nan | 0.3732 | 0.9900 | nan | 0.3035 | 0.9638 | | 0.1551 | 100.0 | 200 | 0.2134 | 0.6357 | 0.6891 | 0.9637 | nan | 0.3896 | 0.9886 | nan | 0.3083 | 0.9631 | | 0.1508 | 105.0 | 210 | 0.2090 | 0.6359 | 0.6865 | 0.9642 | nan | 0.3837 | 0.9894 | nan | 0.3083 | 0.9636 | | 0.1536 | 110.0 | 220 | 0.2057 | 0.6346 | 0.6801 | 0.9650 | nan | 0.3694 | 0.9908 | nan | 0.3048 | 0.9644 | | 0.1392 | 115.0 | 230 | 0.2083 | 0.6387 | 0.6890 | 0.9646 | nan | 0.3883 | 0.9896 | nan | 0.3133 | 0.9640 | | 0.1446 | 120.0 | 240 | 0.2075 | 0.6372 | 0.6861 | 0.9647 | nan | 0.3822 | 0.9900 | nan | 0.3104 | 0.9641 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b0_3
sam1120
2024-02-12T13:01:18Z
146
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:52:47Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b0_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b0_3 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.3666 - Mean Iou: 0.6400 - Mean Accuracy: 0.7120 - Overall Accuracy: 0.9610 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.4404 - Accuracy Undropoff: 0.9836 - Iou Unlabeled: nan - Iou Dropoff: 0.3196 - Iou Undropoff: 0.9603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0352 | 5.0 | 10 | 1.0676 | 0.2560 | 0.5776 | 0.7142 | nan | 0.4286 | 0.7266 | 0.0 | 0.0589 | 0.7090 | | 0.9564 | 10.0 | 20 | 0.9743 | 0.3355 | 0.5576 | 0.9248 | nan | 0.1571 | 0.9581 | 0.0 | 0.0822 | 0.9243 | | 0.8577 | 15.0 | 30 | 0.8504 | 0.3318 | 0.5283 | 0.9409 | nan | 0.0782 | 0.9784 | 0.0 | 0.0545 | 0.9407 | | 0.7512 | 20.0 | 40 | 0.6972 | 0.3270 | 0.5122 | 0.9527 | nan | 0.0318 | 0.9926 | 0.0 | 0.0283 | 0.9526 | | 0.6955 | 25.0 | 50 | 0.5761 | 0.3259 | 0.5099 | 0.9545 | nan | 0.0250 | 0.9948 | 0.0 | 0.0234 | 0.9544 | | 0.6691 | 30.0 | 60 | 0.5209 | 0.3360 | 0.5271 | 0.9525 | nan | 0.0632 | 0.9911 | 0.0 | 0.0557 | 0.9524 | | 0.626 | 35.0 | 70 | 0.5297 | 0.3408 | 0.5362 | 0.9505 | nan | 0.0844 | 0.9881 | 0.0 | 0.0719 | 0.9503 | | 0.5544 | 40.0 | 80 | 0.5263 | 0.3616 | 0.5757 | 0.9521 | nan | 0.1652 | 0.9862 | 0.0 | 0.1330 | 0.9518 | | 0.5316 | 45.0 | 90 | 0.4825 | 0.3836 | 0.6353 | 0.9506 | nan | 0.2915 | 0.9792 | 0.0 | 0.2009 | 0.9500 | | 0.4929 | 50.0 | 100 | 0.4763 | 0.3958 | 0.6588 | 0.9530 | nan | 0.3378 | 0.9797 | 0.0 | 0.2352 | 0.9524 | | 0.468 | 55.0 | 110 | 0.4583 | 0.4077 | 0.6974 | 0.9528 | nan | 0.4188 | 0.9759 | 0.0 | 0.2713 | 0.9519 | | 0.429 | 60.0 | 120 | 0.4268 | 0.3985 | 0.6526 | 0.9575 | nan | 0.3199 | 0.9852 | 0.0 | 0.2386 | 0.9569 | | 0.4211 | 65.0 | 130 | 0.3988 | 0.3951 | 0.6406 | 0.9584 | nan | 0.2939 | 0.9872 | 0.0 | 0.2275 | 0.9578 | | 0.3926 | 70.0 | 140 | 0.4085 | 0.4102 | 0.6780 | 0.9587 | nan | 0.3718 | 0.9842 | 0.0 | 0.2726 | 0.9581 | | 0.4006 | 75.0 | 150 | 0.3944 | 0.6077 | 0.6574 | 0.9604 | nan | 0.3269 | 0.9879 | nan | 0.2555 | 0.9599 | | 0.3978 | 80.0 | 160 | 0.3881 | 0.6216 | 0.6875 | 0.9591 | nan | 0.3912 | 0.9838 | nan | 0.2848 | 0.9585 | | 0.3553 | 85.0 | 170 | 0.3877 | 0.6333 | 0.7077 | 0.9595 | nan | 0.4329 | 0.9824 | nan | 0.3079 | 0.9588 | | 0.3637 | 90.0 | 180 | 0.4004 | 0.6428 | 0.7273 | 0.9594 | nan | 0.4741 | 0.9805 | nan | 0.3270 | 0.9586 | | 0.3416 | 95.0 | 190 | 0.3835 | 0.6403 | 0.7166 | 0.9604 | nan | 0.4507 | 0.9825 | nan | 0.3210 | 0.9596 | | 0.342 | 100.0 | 200 | 0.3634 | 0.6371 | 0.7061 | 0.9611 | nan | 0.4279 | 0.9842 | nan | 0.3137 | 0.9604 | | 0.3393 | 105.0 | 210 | 0.3740 | 0.6429 | 0.7217 | 0.9604 | nan | 0.4614 | 0.9820 | nan | 0.3262 | 0.9596 | | 0.3535 | 110.0 | 220 | 0.3771 | 0.6423 | 0.7199 | 0.9605 | nan | 0.4575 | 0.9823 | nan | 0.3249 | 0.9597 | | 0.3159 | 115.0 | 230 | 0.3710 | 0.6423 | 0.7167 | 0.9610 | nan | 0.4502 | 0.9832 | nan | 0.3243 | 0.9603 | | 0.3278 | 120.0 | 240 | 0.3666 | 0.6400 | 0.7120 | 0.9610 | nan | 0.4404 | 0.9836 | nan | 0.3196 | 0.9603 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b0_1
sam1120
2024-02-12T13:01:12Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:52:21Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b0_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b0_1 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.4979 - Mean Iou: 0.4170 - Mean Accuracy: 0.6846 - Overall Accuracy: 0.9603 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3839 - Accuracy Undropoff: 0.9853 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.2914 - Iou Undropoff: 0.9597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0495 | 5.0 | 10 | 1.0890 | 0.1852 | 0.3572 | 0.4990 | nan | 0.2026 | 0.5119 | 0.0 | 0.0474 | 0.5081 | | 0.9941 | 10.0 | 20 | 1.0479 | 0.3452 | 0.8357 | 0.8479 | nan | 0.8225 | 0.8490 | 0.0 | 0.1931 | 0.8425 | | 0.9448 | 15.0 | 30 | 0.9839 | 0.3790 | 0.8217 | 0.9010 | nan | 0.7351 | 0.9082 | 0.0 | 0.2390 | 0.8980 | | 0.8912 | 20.0 | 40 | 0.9041 | 0.3845 | 0.7150 | 0.9247 | nan | 0.4863 | 0.9437 | 0.0 | 0.2303 | 0.9233 | | 0.8458 | 25.0 | 50 | 0.7997 | 0.3835 | 0.6687 | 0.9326 | nan | 0.3808 | 0.9565 | 0.0 | 0.2188 | 0.9316 | | 0.8299 | 30.0 | 60 | 0.7387 | 0.3751 | 0.6333 | 0.9326 | nan | 0.3068 | 0.9597 | 0.0 | 0.1934 | 0.9318 | | 0.7518 | 35.0 | 70 | 0.6810 | 0.3791 | 0.6322 | 0.9404 | nan | 0.2961 | 0.9683 | 0.0 | 0.1975 | 0.9397 | | 0.6943 | 40.0 | 80 | 0.6322 | 0.3703 | 0.6069 | 0.9422 | nan | 0.2411 | 0.9726 | 0.0 | 0.1691 | 0.9417 | | 0.6617 | 45.0 | 90 | 0.6071 | 0.3780 | 0.6240 | 0.9454 | nan | 0.2734 | 0.9746 | 0.0 | 0.1892 | 0.9449 | | 0.634 | 50.0 | 100 | 0.5932 | 0.3765 | 0.6106 | 0.9497 | nan | 0.2407 | 0.9805 | 0.0 | 0.1802 | 0.9494 | | 0.6157 | 55.0 | 110 | 0.5829 | 0.3982 | 0.6538 | 0.9524 | nan | 0.3281 | 0.9795 | 0.0 | 0.2425 | 0.9520 | | 0.5814 | 60.0 | 120 | 0.5708 | 0.4038 | 0.6699 | 0.9533 | nan | 0.3608 | 0.9790 | 0.0 | 0.2586 | 0.9528 | | 0.5988 | 65.0 | 130 | 0.5575 | 0.3974 | 0.6456 | 0.9569 | nan | 0.3061 | 0.9851 | 0.0 | 0.2357 | 0.9564 | | 0.5583 | 70.0 | 140 | 0.5530 | 0.4224 | 0.7075 | 0.9576 | nan | 0.4346 | 0.9803 | 0.0 | 0.3103 | 0.9570 | | 0.5596 | 75.0 | 150 | 0.5264 | 0.4034 | 0.6522 | 0.9598 | nan | 0.3167 | 0.9877 | 0.0 | 0.2510 | 0.9593 | | 0.5524 | 80.0 | 160 | 0.5392 | 0.4208 | 0.7109 | 0.9567 | nan | 0.4429 | 0.9790 | 0.0 | 0.3065 | 0.9560 | | 0.5294 | 85.0 | 170 | 0.5257 | 0.4161 | 0.6913 | 0.9582 | nan | 0.4002 | 0.9824 | 0.0 | 0.2909 | 0.9576 | | 0.5477 | 90.0 | 180 | 0.5178 | 0.4207 | 0.6962 | 0.9591 | nan | 0.4095 | 0.9829 | 0.0 | 0.3035 | 0.9584 | | 0.528 | 95.0 | 190 | 0.5185 | 0.4183 | 0.6939 | 0.9590 | nan | 0.4047 | 0.9831 | 0.0 | 0.2965 | 0.9584 | | 0.5144 | 100.0 | 200 | 0.5004 | 0.4153 | 0.6788 | 0.9604 | nan | 0.3716 | 0.9860 | 0.0 | 0.2859 | 0.9599 | | 0.5313 | 105.0 | 210 | 0.5032 | 0.4199 | 0.7005 | 0.9585 | nan | 0.4191 | 0.9819 | 0.0 | 0.3020 | 0.9578 | | 0.5172 | 110.0 | 220 | 0.4993 | 0.4188 | 0.6931 | 0.9591 | nan | 0.4030 | 0.9832 | 0.0 | 0.2978 | 0.9585 | | 0.5124 | 115.0 | 230 | 0.4999 | 0.4167 | 0.6828 | 0.9606 | nan | 0.3799 | 0.9858 | 0.0 | 0.2901 | 0.9600 | | 0.5025 | 120.0 | 240 | 0.4979 | 0.4170 | 0.6846 | 0.9603 | nan | 0.3839 | 0.9853 | 0.0 | 0.2914 | 0.9597 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b0_2
sam1120
2024-02-12T13:01:09Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:52:41Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b0_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b0_2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.4274 - Mean Iou: 0.6102 - Mean Accuracy: 0.6603 - Overall Accuracy: 0.9607 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3326 - Accuracy Undropoff: 0.9879 - Iou Unlabeled: nan - Iou Dropoff: 0.2602 - Iou Undropoff: 0.9601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0555 | 5.0 | 10 | 1.0734 | 0.2254 | 0.4211 | 0.6018 | nan | 0.2240 | 0.6182 | 0.0 | 0.0622 | 0.6140 | | 0.9825 | 10.0 | 20 | 1.0261 | 0.2992 | 0.6380 | 0.7780 | nan | 0.4852 | 0.7907 | 0.0 | 0.1170 | 0.7807 | | 0.8991 | 15.0 | 30 | 0.8985 | 0.3231 | 0.5517 | 0.8892 | nan | 0.1836 | 0.9198 | 0.0 | 0.0776 | 0.8917 | | 0.8191 | 20.0 | 40 | 0.7413 | 0.3270 | 0.5262 | 0.9299 | nan | 0.0858 | 0.9665 | 0.0 | 0.0513 | 0.9296 | | 0.7562 | 25.0 | 50 | 0.6268 | 0.3259 | 0.5130 | 0.9436 | nan | 0.0433 | 0.9826 | 0.0 | 0.0343 | 0.9435 | | 0.7395 | 30.0 | 60 | 0.5872 | 0.3235 | 0.5073 | 0.9498 | nan | 0.0246 | 0.9900 | 0.0 | 0.0206 | 0.9498 | | 0.7272 | 35.0 | 70 | 0.5820 | 0.3379 | 0.5415 | 0.9411 | nan | 0.1055 | 0.9774 | 0.0 | 0.0729 | 0.9409 | | 0.6525 | 40.0 | 80 | 0.5571 | 0.3445 | 0.5451 | 0.9498 | nan | 0.1036 | 0.9865 | 0.0 | 0.0839 | 0.9496 | | 0.6161 | 45.0 | 90 | 0.5465 | 0.3480 | 0.5480 | 0.9528 | nan | 0.1064 | 0.9895 | 0.0 | 0.0914 | 0.9526 | | 0.6131 | 50.0 | 100 | 0.5379 | 0.3712 | 0.5917 | 0.9555 | nan | 0.1949 | 0.9885 | 0.0 | 0.1584 | 0.9551 | | 0.579 | 55.0 | 110 | 0.5229 | 0.3892 | 0.6411 | 0.9536 | nan | 0.3002 | 0.9819 | 0.0 | 0.2146 | 0.9530 | | 0.5133 | 60.0 | 120 | 0.5113 | 0.3962 | 0.6596 | 0.9541 | nan | 0.3384 | 0.9808 | 0.0 | 0.2352 | 0.9535 | | 0.535 | 65.0 | 130 | 0.4925 | 0.3981 | 0.6566 | 0.9561 | nan | 0.3299 | 0.9833 | 0.0 | 0.2386 | 0.9555 | | 0.4866 | 70.0 | 140 | 0.4717 | 0.5993 | 0.6516 | 0.9584 | nan | 0.3169 | 0.9863 | nan | 0.2407 | 0.9579 | | 0.5119 | 75.0 | 150 | 0.4712 | 0.5976 | 0.6513 | 0.9578 | nan | 0.3171 | 0.9856 | nan | 0.2380 | 0.9572 | | 0.5034 | 80.0 | 160 | 0.4737 | 0.6120 | 0.6840 | 0.9562 | nan | 0.3872 | 0.9808 | nan | 0.2686 | 0.9554 | | 0.4503 | 85.0 | 170 | 0.4496 | 0.6103 | 0.6618 | 0.9604 | nan | 0.3361 | 0.9875 | nan | 0.2607 | 0.9598 | | 0.4653 | 90.0 | 180 | 0.4617 | 0.6201 | 0.6907 | 0.9580 | nan | 0.3992 | 0.9822 | nan | 0.2830 | 0.9572 | | 0.4375 | 95.0 | 190 | 0.4412 | 0.6090 | 0.6592 | 0.9605 | nan | 0.3305 | 0.9878 | nan | 0.2580 | 0.9599 | | 0.4306 | 100.0 | 200 | 0.4355 | 0.6120 | 0.6653 | 0.9602 | nan | 0.3436 | 0.9870 | nan | 0.2643 | 0.9597 | | 0.4456 | 105.0 | 210 | 0.4414 | 0.6178 | 0.6756 | 0.9601 | nan | 0.3653 | 0.9860 | nan | 0.2760 | 0.9595 | | 0.4435 | 110.0 | 220 | 0.4387 | 0.6150 | 0.6681 | 0.9608 | nan | 0.3489 | 0.9873 | nan | 0.2699 | 0.9602 | | 0.4263 | 115.0 | 230 | 0.4348 | 0.6156 | 0.6692 | 0.9607 | nan | 0.3512 | 0.9872 | nan | 0.2711 | 0.9602 | | 0.4123 | 120.0 | 240 | 0.4274 | 0.6102 | 0.6603 | 0.9607 | nan | 0.3326 | 0.9879 | nan | 0.2602 | 0.9601 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b0_4
sam1120
2024-02-12T13:01:07Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:52:49Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b0_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b0_4 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.3688 - Mean Iou: 0.3485 - Mean Accuracy: 0.5433 - Overall Accuracy: 0.9606 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.0881 - Accuracy Undropoff: 0.9984 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.0851 - Iou Undropoff: 0.9604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.2008 | 5.0 | 10 | 1.0960 | 0.1205 | 0.4461 | 0.2825 | nan | 0.6246 | 0.2677 | 0.0 | 0.0943 | 0.2671 | | 1.0485 | 10.0 | 20 | 1.0952 | 0.1603 | 0.6272 | 0.4049 | nan | 0.8696 | 0.3848 | 0.0 | 0.0965 | 0.3843 | | 0.9156 | 15.0 | 30 | 1.0312 | 0.3080 | 0.5963 | 0.8333 | nan | 0.3377 | 0.8548 | 0.0 | 0.0924 | 0.8317 | | 0.7435 | 20.0 | 40 | 0.9448 | 0.3221 | 0.5508 | 0.8937 | nan | 0.1769 | 0.9248 | 0.0 | 0.0733 | 0.8930 | | 0.7336 | 25.0 | 50 | 0.7446 | 0.3191 | 0.4998 | 0.9461 | nan | 0.0129 | 0.9866 | 0.0 | 0.0113 | 0.9461 | | 0.6585 | 30.0 | 60 | 0.6397 | 0.3183 | 0.4981 | 0.9534 | nan | 0.0014 | 0.9948 | 0.0 | 0.0013 | 0.9534 | | 0.583 | 35.0 | 70 | 0.5785 | 0.3181 | 0.4978 | 0.9537 | nan | 0.0006 | 0.9951 | 0.0 | 0.0005 | 0.9537 | | 0.5324 | 40.0 | 80 | 0.5458 | 0.3182 | 0.4980 | 0.9545 | nan | 0.0002 | 0.9958 | 0.0 | 0.0002 | 0.9545 | | 0.5155 | 45.0 | 90 | 0.5347 | 0.3186 | 0.4987 | 0.9558 | nan | 0.0001 | 0.9973 | 0.0 | 0.0001 | 0.9558 | | 0.4874 | 50.0 | 100 | 0.4954 | 0.3179 | 0.4976 | 0.9537 | nan | 0.0 | 0.9951 | 0.0 | 0.0 | 0.9537 | | 0.4716 | 55.0 | 110 | 0.4646 | 0.3185 | 0.4985 | 0.9555 | nan | 0.0 | 0.9969 | 0.0 | 0.0 | 0.9555 | | 0.4441 | 60.0 | 120 | 0.4426 | 0.3185 | 0.4985 | 0.9555 | nan | 0.0 | 0.9970 | 0.0 | 0.0 | 0.9555 | | 0.4659 | 65.0 | 130 | 0.4345 | 0.3189 | 0.4991 | 0.9567 | nan | 0.0 | 0.9982 | 0.0 | 0.0 | 0.9567 | | 0.4758 | 70.0 | 140 | 0.4221 | 0.3181 | 0.4978 | 0.9543 | nan | 0.0 | 0.9957 | 0.0 | 0.0 | 0.9543 | | 0.4208 | 75.0 | 150 | 0.4029 | 0.3190 | 0.4993 | 0.9571 | nan | 0.0 | 0.9987 | 0.0 | 0.0 | 0.9571 | | 0.4395 | 80.0 | 160 | 0.4170 | 0.3207 | 0.5016 | 0.9559 | nan | 0.0062 | 0.9971 | 0.0 | 0.0062 | 0.9559 | | 0.3981 | 85.0 | 170 | 0.3992 | 0.3214 | 0.5027 | 0.9574 | nan | 0.0067 | 0.9987 | 0.0 | 0.0066 | 0.9574 | | 0.3983 | 90.0 | 180 | 0.3965 | 0.3282 | 0.5125 | 0.9560 | nan | 0.0288 | 0.9963 | 0.0 | 0.0285 | 0.9560 | | 0.398 | 95.0 | 190 | 0.3747 | 0.3272 | 0.5112 | 0.9569 | nan | 0.0251 | 0.9973 | 0.0 | 0.0249 | 0.9568 | | 0.3767 | 100.0 | 200 | 0.3722 | 0.3301 | 0.5155 | 0.9574 | nan | 0.0336 | 0.9975 | 0.0 | 0.0330 | 0.9573 | | 0.3797 | 105.0 | 210 | 0.3781 | 0.3334 | 0.5204 | 0.9583 | nan | 0.0429 | 0.9980 | 0.0 | 0.0420 | 0.9582 | | 0.373 | 110.0 | 220 | 0.3744 | 0.3409 | 0.5317 | 0.9593 | nan | 0.0654 | 0.9980 | 0.0 | 0.0636 | 0.9591 | | 0.372 | 115.0 | 230 | 0.3700 | 0.3440 | 0.5364 | 0.9599 | nan | 0.0746 | 0.9983 | 0.0 | 0.0723 | 0.9598 | | 0.3629 | 120.0 | 240 | 0.3688 | 0.3485 | 0.5433 | 0.9606 | nan | 0.0881 | 0.9984 | 0.0 | 0.0851 | 0.9604 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
pgajo/mbert_EW-TT-PE_U1_S0_DROP1_mbert_E10_DEV98.0
pgajo
2024-02-12T13:00:15Z
93
0
transformers
[ "transformers", "safetensors", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2024-02-12T12:59:25Z
--- {} --- Model description: Model: bert-base-multilingual-cased Dataset: TASTEset Unshuffled ratio: ['1'] Shuffled ratio: ['0'] Best exact match epoch: 10 Best exact match: 97.79 Best epoch: 10 Drop duplicates: ['1'] Max epochs = 10 Optimizer lr = 3e-05 Optimizer eps = 1e-08 Batch size = 32 Dataset path = pgajo/EW-TT-PE_U1_S0_DROP1_mbert Results | epoch | train_loss | train_f1 | train_exact | dev_loss | dev_f1 | dev_exact | test_loss | test_f1 | test_exact | |--------:|-------------:|-----------:|--------------:|-----------:|---------:|------------:|------------:|----------:|-------------:| | 1 | 2.94 | 17.7 | 10.02 | 0.76 | 69.4 | 58.56 | 0 | 0 | 0 | | 2 | 0.38 | 86.34 | 80.72 | 0.15 | 95.66 | 91.99 | 0 | 0 | 0 | | 3 | 0.08 | 97.33 | 95.44 | 0.08 | 98.38 | 95.86 | 0 | 0 | 0 | | 4 | 0.04 | 98.98 | 98.27 | 0.09 | 98.09 | 96.41 | 0 | 0 | 0 | | 5 | 0.03 | 98.94 | 98.41 | 0.08 | 98.44 | 96.41 | 0 | 0 | 0 | | 6 | 0.02 | 99.32 | 98.76 | 0.08 | 98.57 | 97.24 | 0 | 0 | 0 | | 7 | 0.02 | 99.44 | 99.24 | 0.05 | 98.44 | 97.51 | 0 | 0 | 0 | | 8 | 0.01 | 99.82 | 99.59 | 0.07 | 98.47 | 97.24 | 0 | 0 | 0 | | 9 | 0.01 | 99.8 | 99.65 | 0.07 | 98.66 | 97.24 | 0 | 0 | 0 | | 10 | 0.01 | 99.82 | 99.65 | 0.06 | 98.59 | 97.79 | 0 | 0 | 0 |
QMMMS/ppo-LunarLander-v2
QMMMS
2024-02-12T12:58:15Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T12:57:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.49 +/- 21.18 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
noza-kit/Adapter_llama2_translate_Q_enpt_ex3-3epoch
noza-kit
2024-02-12T12:56:31Z
0
0
peft
[ "peft", "safetensors", "region:us" ]
null
2024-02-12T12:30:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
arun100/whisper-small-fa-2
arun100
2024-02-12T12:51:30Z
63
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "fa", "dataset:mozilla-foundation/common_voice_16_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-11T06:14:51Z
--- language: - fa license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Small Persian Iranian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 fa type: mozilla-foundation/common_voice_16_0 config: fa split: test args: fa metrics: - name: Wer type: wer value: 39.72011741415796 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Persian Iranian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_16_0 fa dataset. It achieves the following results on the evaluation set: - Loss: 0.4858 - Wer: 39.7201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4531 | 1.03 | 500 | 0.6448 | 50.7393 | | 0.4031 | 3.0 | 1000 | 0.5755 | 46.5001 | | 0.2745 | 4.04 | 1500 | 0.5389 | 43.7190 | | 0.336 | 6.0 | 2000 | 0.5166 | 42.4056 | | 0.2429 | 7.04 | 2500 | 0.5045 | 41.1810 | | 0.2852 | 9.01 | 3000 | 0.4941 | 40.6444 | | 0.2217 | 10.04 | 3500 | 0.4888 | 40.1106 | | 0.2384 | 12.01 | 4000 | 0.4873 | 39.9208 | | 0.1889 | 13.04 | 4500 | 0.4858 | 39.7201 | | 0.2202 | 15.01 | 5000 | 0.4888 | 39.7228 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
ambet/mistral_robot_lora
ambet
2024-02-12T12:49:25Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-11T13:49:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HannoRE/q-Taxi-v3
HannoRE
2024-02-12T12:47:56Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T12:47:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.79 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="HannoRE/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
FarisAzny/bloom-1b1-lora-tagger
FarisAzny
2024-02-12T12:45:50Z
1
0
peft
[ "peft", "safetensors", "region:us" ]
null
2023-07-12T15:56:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
HannoRE/q-FrozenLake-v1-4x4-noSlippery
HannoRE
2024-02-12T12:43:41Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T12:43:37Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="HannoRE/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Mlxa/atd-distilbert
Mlxa
2024-02-12T12:37:58Z
93
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-11T19:58:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alitolga/deberta-v3-base-rank2
alitolga
2024-02-12T12:34:17Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:mit", "region:us" ]
null
2024-02-12T12:31:13Z
--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: deberta-v3-base-rank2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base-rank2 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.5797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 13.8439 | 1.0 | 180 | 9.7690 | | 8.174 | 2.0 | 360 | 5.4265 | | 5.4657 | 3.0 | 540 | 4.5797 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
IsaacMwesigwa/footballer-recognition-gray-nobg
IsaacMwesigwa
2024-02-12T12:26:19Z
197
0
transformers
[ "transformers", "safetensors", "resnet", "image-classification", "autotrain", "dataset:footballer-recognition-gray-nobg/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-12T12:26:15Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - footballer-recognition-gray-nobg/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 6.152068138122559 f1_macro: 0.002214415118096559 f1_micro: 0.012527101903155865 f1_weighted: 0.0022165489799304268 precision_macro: 0.0015895320987927826 precision_micro: 0.012527101903155867 precision_weighted: 0.0015910638088373914 recall_macro: 0.012515042117930204 recall_micro: 0.012527101903155867 recall_weighted: 0.012527101903155867 accuracy: 0.012527101903155867
doroshroman/finetuned_sd_v1_5
doroshroman
2024-02-12T12:25:55Z
30
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-12T09:57:16Z
--- license: creativeml-openrail-m library_name: diffusers tags: - text-to-image - dreambooth - stable-diffusion - stable-diffusion-diffusers - text-to-image - dreambooth - stable-diffusion - stable-diffusion-diffusers - text-to-image - dreambooth - stable-diffusion - stable-diffusion-diffusers inference: true base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of guy raise money for army --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - doroshroman/finetuned_sd_v1_5 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of guy raise money for army using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
WesselvanGils/MentaLLaMA-chat-7b-GGUF-q8
WesselvanGils
2024-02-12T12:23:03Z
1
0
null
[ "gguf", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-02-12T12:13:33Z
--- license: mit --- # MentaLLaMA-chat-7b-GGUF-q8 This model is a GGUF version of the MentaLLama model found [here](https://huggingface.co/klyang/MentaLLaMA-chat-7B) The process for converting the model has been documented [here](https://www.substratus.ai/blog/converting-hf-model-gguf-model/)
sam1120/dropoff-utcustom-train-SF-RGB-b0_5
sam1120
2024-02-12T12:18:02Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:10:28Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGB-b0_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGB-b0_5 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.2543 - Mean Iou: 0.6541 - Mean Accuracy: 0.6937 - Overall Accuracy: 0.9665 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3944 - Accuracy Undropoff: 0.9930 - Iou Unlabeled: nan - Iou Dropoff: 0.3424 - Iou Undropoff: 0.9659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.2123 | 3.33 | 10 | 1.1206 | 0.0793 | 0.1898 | 0.1888 | nan | 0.1908 | 0.1887 | 0.0 | 0.0494 | 0.1886 | | 1.0927 | 6.67 | 20 | 1.0985 | 0.2196 | 0.5875 | 0.5351 | nan | 0.6450 | 0.5300 | 0.0 | 0.1290 | 0.5298 | | 1.0578 | 10.0 | 30 | 0.9786 | 0.3662 | 0.7562 | 0.8622 | nan | 0.6400 | 0.8725 | 0.0 | 0.2367 | 0.8621 | | 0.788 | 13.33 | 40 | 0.7940 | 0.4289 | 0.7505 | 0.9456 | nan | 0.5365 | 0.9646 | 0.0 | 0.3398 | 0.9468 | | 0.6353 | 16.67 | 50 | 0.6206 | 0.4182 | 0.6840 | 0.9583 | nan | 0.3830 | 0.9850 | 0.0 | 0.2966 | 0.9581 | | 0.6944 | 20.0 | 60 | 0.5213 | 0.4211 | 0.6766 | 0.9623 | nan | 0.3631 | 0.9901 | 0.0 | 0.3014 | 0.9620 | | 0.5046 | 23.33 | 70 | 0.4765 | 0.4239 | 0.6796 | 0.9634 | nan | 0.3683 | 0.9910 | 0.0 | 0.3090 | 0.9628 | | 0.4684 | 26.67 | 80 | 0.4643 | 0.3982 | 0.6347 | 0.9598 | nan | 0.2779 | 0.9914 | 0.0 | 0.2352 | 0.9593 | | 0.4401 | 30.0 | 90 | 0.4483 | 0.4110 | 0.6507 | 0.9632 | nan | 0.3077 | 0.9936 | 0.0 | 0.2703 | 0.9627 | | 0.4268 | 33.33 | 100 | 0.4366 | 0.6489 | 0.7001 | 0.9638 | nan | 0.4108 | 0.9895 | nan | 0.3347 | 0.9632 | | 0.3939 | 36.67 | 110 | 0.4027 | 0.4272 | 0.6798 | 0.9650 | nan | 0.3670 | 0.9927 | 0.0 | 0.3171 | 0.9644 | | 0.4472 | 40.0 | 120 | 0.4159 | 0.6428 | 0.6896 | 0.9638 | nan | 0.3887 | 0.9905 | nan | 0.3225 | 0.9632 | | 0.3618 | 43.33 | 130 | 0.3765 | 0.6325 | 0.6671 | 0.9650 | nan | 0.3402 | 0.9939 | nan | 0.3006 | 0.9644 | | 0.3456 | 46.67 | 140 | 0.3671 | 0.6395 | 0.6816 | 0.9643 | nan | 0.3715 | 0.9917 | nan | 0.3153 | 0.9637 | | 0.3352 | 50.0 | 150 | 0.3572 | 0.6431 | 0.6839 | 0.9650 | nan | 0.3755 | 0.9923 | nan | 0.3218 | 0.9644 | | 0.3143 | 53.33 | 160 | 0.3451 | 0.6351 | 0.6702 | 0.9651 | nan | 0.3467 | 0.9938 | nan | 0.3056 | 0.9646 | | 0.3009 | 56.67 | 170 | 0.3357 | 0.6449 | 0.6941 | 0.9636 | nan | 0.3984 | 0.9898 | nan | 0.3267 | 0.9630 | | 0.2765 | 60.0 | 180 | 0.3188 | 0.6458 | 0.6934 | 0.9641 | nan | 0.3965 | 0.9903 | nan | 0.3282 | 0.9634 | | 0.2703 | 63.33 | 190 | 0.3179 | 0.6385 | 0.6732 | 0.9656 | nan | 0.3525 | 0.9940 | nan | 0.3119 | 0.9650 | | 0.2746 | 66.67 | 200 | 0.3067 | 0.6385 | 0.6702 | 0.9662 | nan | 0.3456 | 0.9949 | nan | 0.3113 | 0.9656 | | 0.2516 | 70.0 | 210 | 0.2992 | 0.6569 | 0.6968 | 0.9667 | nan | 0.4008 | 0.9929 | nan | 0.3477 | 0.9661 | | 0.2503 | 73.33 | 220 | 0.2999 | 0.6671 | 0.7198 | 0.9659 | nan | 0.4497 | 0.9899 | nan | 0.3689 | 0.9652 | | 0.2443 | 76.67 | 230 | 0.2816 | 0.6439 | 0.6750 | 0.9668 | nan | 0.3547 | 0.9952 | nan | 0.3215 | 0.9663 | | 0.3757 | 80.0 | 240 | 0.2907 | 0.6593 | 0.7063 | 0.9659 | nan | 0.4215 | 0.9911 | nan | 0.3535 | 0.9652 | | 0.2306 | 83.33 | 250 | 0.2767 | 0.6439 | 0.6807 | 0.9658 | nan | 0.3680 | 0.9935 | nan | 0.3226 | 0.9652 | | 0.2216 | 86.67 | 260 | 0.2792 | 0.6583 | 0.7018 | 0.9663 | nan | 0.4115 | 0.9920 | nan | 0.3509 | 0.9657 | | 0.3202 | 90.0 | 270 | 0.2681 | 0.6425 | 0.6789 | 0.9657 | nan | 0.3642 | 0.9936 | nan | 0.3199 | 0.9652 | | 0.2174 | 93.33 | 280 | 0.2633 | 0.6467 | 0.6860 | 0.9657 | nan | 0.3791 | 0.9928 | nan | 0.3284 | 0.9651 | | 0.2086 | 96.67 | 290 | 0.2658 | 0.6476 | 0.6900 | 0.9652 | nan | 0.3880 | 0.9920 | nan | 0.3306 | 0.9646 | | 0.2042 | 100.0 | 300 | 0.2651 | 0.6486 | 0.6898 | 0.9655 | nan | 0.3873 | 0.9923 | nan | 0.3322 | 0.9649 | | 0.2071 | 103.33 | 310 | 0.2597 | 0.6445 | 0.6792 | 0.9662 | nan | 0.3643 | 0.9941 | nan | 0.3233 | 0.9657 | | 0.2097 | 106.67 | 320 | 0.2596 | 0.6615 | 0.7062 | 0.9665 | nan | 0.4206 | 0.9918 | nan | 0.3571 | 0.9658 | | 0.3118 | 110.0 | 330 | 0.2557 | 0.6516 | 0.6928 | 0.9659 | nan | 0.3931 | 0.9924 | nan | 0.3380 | 0.9653 | | 0.1956 | 113.33 | 340 | 0.2517 | 0.6494 | 0.6865 | 0.9664 | nan | 0.3794 | 0.9936 | nan | 0.3331 | 0.9658 | | 0.201 | 116.67 | 350 | 0.2570 | 0.6573 | 0.7032 | 0.9658 | nan | 0.4151 | 0.9913 | nan | 0.3494 | 0.9651 | | 0.1952 | 120.0 | 360 | 0.2543 | 0.6541 | 0.6937 | 0.9665 | nan | 0.3944 | 0.9930 | nan | 0.3424 | 0.9659 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGB-b0_7
sam1120
2024-02-12T12:18:01Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:10:30Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGB-b0_7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGB-b0_7 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.1457 - Mean Iou: 0.6795 - Mean Accuracy: 0.7207 - Overall Accuracy: 0.9691 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.4481 - Accuracy Undropoff: 0.9932 - Iou Unlabeled: nan - Iou Dropoff: 0.3907 - Iou Undropoff: 0.9684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.1505 | 3.33 | 10 | 1.1103 | 0.1106 | 0.6036 | 0.2919 | nan | 0.9456 | 0.2616 | 0.0 | 0.0703 | 0.2616 | | 0.9635 | 6.67 | 20 | 1.0114 | 0.3710 | 0.8470 | 0.8737 | nan | 0.8177 | 0.8763 | 0.0 | 0.2435 | 0.8694 | | 0.9358 | 10.0 | 30 | 0.8242 | 0.4206 | 0.7727 | 0.9440 | nan | 0.5848 | 0.9606 | 0.0 | 0.3194 | 0.9425 | | 0.579 | 13.33 | 40 | 0.5703 | 0.4525 | 0.7615 | 0.9633 | nan | 0.5402 | 0.9829 | 0.0 | 0.3951 | 0.9624 | | 0.4411 | 16.67 | 50 | 0.4166 | 0.4529 | 0.7380 | 0.9667 | nan | 0.4872 | 0.9889 | 0.0 | 0.3928 | 0.9659 | | 0.4311 | 20.0 | 60 | 0.3843 | 0.6678 | 0.7156 | 0.9667 | nan | 0.4400 | 0.9911 | nan | 0.3695 | 0.9661 | | 0.3437 | 23.33 | 70 | 0.3590 | 0.4347 | 0.6956 | 0.9655 | nan | 0.3995 | 0.9918 | 0.0 | 0.3392 | 0.9649 | | 0.3136 | 26.67 | 80 | 0.3198 | 0.6259 | 0.6622 | 0.9638 | nan | 0.3312 | 0.9931 | nan | 0.2885 | 0.9633 | | 0.2682 | 30.0 | 90 | 0.2919 | 0.6187 | 0.6470 | 0.9648 | nan | 0.2984 | 0.9957 | nan | 0.2730 | 0.9643 | | 0.2521 | 33.33 | 100 | 0.2957 | 0.6448 | 0.6845 | 0.9653 | nan | 0.3764 | 0.9926 | nan | 0.3248 | 0.9648 | | 0.2287 | 36.67 | 110 | 0.2747 | 0.6800 | 0.7256 | 0.9685 | nan | 0.4591 | 0.9921 | nan | 0.3922 | 0.9678 | | 0.2203 | 40.0 | 120 | 0.2537 | 0.7108 | 0.7687 | 0.9706 | nan | 0.5472 | 0.9902 | nan | 0.4517 | 0.9699 | | 0.1964 | 43.33 | 130 | 0.2356 | 0.6689 | 0.7054 | 0.9686 | nan | 0.4167 | 0.9941 | nan | 0.3699 | 0.9680 | | 0.1776 | 46.67 | 140 | 0.2205 | 0.6729 | 0.7137 | 0.9684 | nan | 0.4343 | 0.9931 | nan | 0.3780 | 0.9677 | | 0.1675 | 50.0 | 150 | 0.2061 | 0.6809 | 0.7244 | 0.9689 | nan | 0.4562 | 0.9926 | nan | 0.3936 | 0.9682 | | 0.148 | 53.33 | 160 | 0.1954 | 0.6924 | 0.7418 | 0.9694 | nan | 0.4920 | 0.9915 | nan | 0.4160 | 0.9687 | | 0.1364 | 56.67 | 170 | 0.1915 | 0.6869 | 0.7415 | 0.9681 | nan | 0.4928 | 0.9902 | nan | 0.4064 | 0.9674 | | 0.1171 | 60.0 | 180 | 0.1776 | 0.7206 | 0.7816 | 0.9714 | nan | 0.5734 | 0.9899 | nan | 0.4706 | 0.9707 | | 0.1169 | 63.33 | 190 | 0.1754 | 0.6580 | 0.6853 | 0.9689 | nan | 0.3741 | 0.9965 | nan | 0.3476 | 0.9684 | | 0.1178 | 66.67 | 200 | 0.1676 | 0.6783 | 0.7233 | 0.9684 | nan | 0.4545 | 0.9922 | nan | 0.3888 | 0.9677 | | 0.1016 | 70.0 | 210 | 0.1670 | 0.6633 | 0.6985 | 0.9682 | nan | 0.4025 | 0.9944 | nan | 0.3590 | 0.9676 | | 0.1025 | 73.33 | 220 | 0.1648 | 0.6789 | 0.7154 | 0.9696 | nan | 0.4366 | 0.9943 | nan | 0.3888 | 0.9690 | | 0.0956 | 76.67 | 230 | 0.1607 | 0.6684 | 0.7103 | 0.9677 | nan | 0.4279 | 0.9927 | nan | 0.3697 | 0.9671 | | 0.1443 | 80.0 | 240 | 0.1611 | 0.6747 | 0.7134 | 0.9688 | nan | 0.4332 | 0.9937 | nan | 0.3811 | 0.9682 | | 0.0902 | 83.33 | 250 | 0.1600 | 0.6713 | 0.7060 | 0.9691 | nan | 0.4174 | 0.9946 | nan | 0.3740 | 0.9685 | | 0.0846 | 86.67 | 260 | 0.1559 | 0.6772 | 0.7263 | 0.9677 | nan | 0.4613 | 0.9912 | nan | 0.3874 | 0.9670 | | 0.1166 | 90.0 | 270 | 0.1587 | 0.6615 | 0.6984 | 0.9677 | nan | 0.4030 | 0.9939 | nan | 0.3559 | 0.9671 | | 0.0825 | 93.33 | 280 | 0.1538 | 0.6684 | 0.7068 | 0.9682 | nan | 0.4199 | 0.9936 | nan | 0.3692 | 0.9676 | | 0.0769 | 96.67 | 290 | 0.1527 | 0.6649 | 0.7033 | 0.9679 | nan | 0.4130 | 0.9936 | nan | 0.3626 | 0.9673 | | 0.0722 | 100.0 | 300 | 0.1473 | 0.6832 | 0.7247 | 0.9694 | nan | 0.4563 | 0.9932 | nan | 0.3976 | 0.9688 | | 0.0779 | 103.33 | 310 | 0.1465 | 0.6809 | 0.7200 | 0.9695 | nan | 0.4462 | 0.9937 | nan | 0.3930 | 0.9689 | | 0.0771 | 106.67 | 320 | 0.1494 | 0.6673 | 0.7052 | 0.9682 | nan | 0.4167 | 0.9937 | nan | 0.3670 | 0.9676 | | 0.1082 | 110.0 | 330 | 0.1479 | 0.6753 | 0.7182 | 0.9683 | nan | 0.4438 | 0.9926 | nan | 0.3830 | 0.9677 | | 0.0726 | 113.33 | 340 | 0.1451 | 0.6765 | 0.7159 | 0.9689 | nan | 0.4384 | 0.9935 | nan | 0.3846 | 0.9683 | | 0.0743 | 116.67 | 350 | 0.1469 | 0.6814 | 0.7249 | 0.9689 | nan | 0.4571 | 0.9927 | nan | 0.3946 | 0.9683 | | 0.0703 | 120.0 | 360 | 0.1457 | 0.6795 | 0.7207 | 0.9691 | nan | 0.4481 | 0.9932 | nan | 0.3907 | 0.9684 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
paulml/DPOB-NMTOB-7B
paulml
2024-02-12T12:00:10Z
56
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "eren23/dpo-binarized-NeutrixOmnibe-7B", "paulml/OmniBeagleSquaredMBX-v3-7B-v2", "base_model:eren23/dpo-binarized-NeutrixOmnibe-7B", "base_model:merge:eren23/dpo-binarized-NeutrixOmnibe-7B", "base_model:paulml/OmniBeagleSquaredMBX-v3-7B-v2", "base_model:merge:paulml/OmniBeagleSquaredMBX-v3-7B-v2", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T11:56:12Z
--- tags: - merge - mergekit - lazymergekit - eren23/dpo-binarized-NeutrixOmnibe-7B - paulml/OmniBeagleSquaredMBX-v3-7B-v2 base_model: - eren23/dpo-binarized-NeutrixOmnibe-7B - paulml/OmniBeagleSquaredMBX-v3-7B-v2 license: cc-by-nc-4.0 --- # DPOB-NMTOB-7B DPOB-NMTOB-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [eren23/dpo-binarized-NeutrixOmnibe-7B](https://huggingface.co/eren23/dpo-binarized-NeutrixOmnibe-7B) * [paulml/OmniBeagleSquaredMBX-v3-7B-v2](https://huggingface.co/paulml/OmniBeagleSquaredMBX-v3-7B-v2) ## 🧩 Configuration ```yaml slices: - sources: - model: eren23/dpo-binarized-NeutrixOmnibe-7B layer_range: [0, 32] - model: paulml/OmniBeagleSquaredMBX-v3-7B-v2 layer_range: [0, 32] merge_method: slerp base_model: eren23/dpo-binarized-NeutrixOmnibe-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "paulml/DPOB-NMTOB-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```