modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-03 00:49:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-03 00:44:12
card
stringlengths
11
1.01M
unsloth/Mixtral-8x7B-v0.1-bnb-4bit
unsloth
2025-03-14T12:35:58Z
0
0
null
[ "safetensors", "mixtral", "fr", "it", "de", "es", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:quantized:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-03-14T11:54:18Z
--- base_model: mistralai/Mixtral-8x7B-v0.1 language: - fr - it - de - es - en license: apache-2.0 inference: parameters: temperature: 0.5 widget: - messages: - role: user content: What is your favorite condiment? extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. --- # Model Card for Mixtral-8x7B ### Tokenization with `mistral-common` ```py from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest mistral_models_path = "MISTRAL_MODELS_PATH" tokenizer = MistralTokenizer.v1() completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")]) tokens = tokenizer.encode_chat_completion(completion_request).tokens ``` ## Inference with `mistral_inference` ```py from mistral_inference.transformer import Transformer from mistral_inference.generate import generate model = Transformer.from_folder(mistral_models_path) out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.decode(out_tokens[0]) print(result) ``` ## Inference with hugging face `transformers` ```py from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1") model.to("cuda") generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True) # decode with mistral tokenizer result = tokenizer.decode(generated_ids[0].tolist()) print(result) ``` > [!TIP] > PRs to correct the transformers tokenizer so that it gives 1-to-1 the same results as the mistral-common reference implementation are very welcome! --- The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested. For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/). ## Warning This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF. ## Instruction format This format must be strictly respected, otherwise the model will generate sub-optimal outputs. The template used to build a prompt for the Instruct model is defined as follows: ``` <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST] ``` Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings. As reference, here is the pseudo-code used to tokenize instructions during fine-tuning: ```python def tokenize(text): return tok.encode(text, add_special_tokens=False) [BOS_ID] + tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") + tokenize(BOT_MESSAGE_1) + [EOS_ID] + … tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") + tokenize(BOT_MESSAGE_N) + [EOS_ID] ``` In the pseudo-code above, note that the `tokenize` method should not add a BOS or EOS token automatically, but should add a prefix space. In the Transformers library, one can use [chat templates](https://huggingface.co/docs/transformers/main/en/chat_templating) which make sure the right format is applied. ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") outputs = model.generate(inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem: ### In half-precision Note `float16` precision only works on GPU devices <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") outputs = model.generate(input_ids, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Lower precision using (8-bit & 4-bit) using `bitsandbytes` <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto") text = "Hello my name is" messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") outputs = model.generate(input_ids, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Load the model with Flash Attention 2 <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True, device_map="auto") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") outputs = model.generate(input_ids, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ## Limitations The Mixtral-8x7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. # The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF
mradermacher
2025-03-14T12:31:18Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:radna/Fuse-DeepSeek-R1-32B-LIMO", "base_model:quantized:radna/Fuse-DeepSeek-R1-32B-LIMO", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-14T11:13:10Z
--- base_model: radna/Fuse-DeepSeek-R1-32B-LIMO language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/radna/Fuse-DeepSeek-R1-32B-LIMO <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Fuse-DeepSeek-R1-32B-LIMO-GGUF/resolve/main/Fuse-DeepSeek-R1-32B-LIMO.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
csetesz/ujmisi1000
csetesz
2025-03-14T12:30:36Z
0
0
null
[ "license:other", "region:us" ]
null
2025-03-14T11:50:12Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
mradermacher/ECE-PRYMMAL0.5-FT-GGUF
mradermacher
2025-03-14T12:29:46Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:databricks/databricks-dolly-15k", "base_model:Youlln/ECE-PRYMMAL0.5-FT", "base_model:quantized:Youlln/ECE-PRYMMAL0.5-FT", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-14T12:24:38Z
--- base_model: Youlln/ECE-PRYMMAL0.5-FT datasets: - databricks/databricks-dolly-15k language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Youlln/ECE-PRYMMAL0.5-FT <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ECE-PRYMMAL0.5-FT-GGUF/resolve/main/ECE-PRYMMAL0.5-FT.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
DelVecchioAndrea/Llama3.8B-prova
DelVecchioAndrea
2025-03-14T12:29:40Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T12:25:52Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** DelVecchioAndrea - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
shisa-ai/ablation-52-rafathenev2.0.8.0-shisa-v2-llama-3.1-8b-lr8e6
shisa-ai
2025-03-14T12:28:09Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "dataset:shisa-ai/shisa-v1-athenev2-reannotated-filtered", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T12:24:57Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - generated_from_trainer datasets: - shisa-ai/shisa-v1-athenev2-reannotated-filtered model-index: - name: outputs/ablation-52-rafathenev2.0.8.0-shisa-v2-llama-3.1-8b-lr8e6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.8.0.dev0` ```yaml # train w/ shisa-ai/shisa-v1-athenev2-reannotated-filtered base_model: meta-llama/Meta-Llama-3.1-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false # User Liger plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true chat_template: llama3 datasets: - path: shisa-ai/shisa-v1-athenev2-reannotated-filtered type: chat_template field_messages: conversations message_property_mappings: role: from content: value roles: system: - system assistant: - gpt - model - assistant user: - human - user roles_to_train: ["assistant"] dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/ablation-52-rafathenev2.0.8.0-shisa-v2-llama-3.1-8b-lr8e6 sequence_len: 8192 sample_packing: true pad_to_sequence_len: true # marginal difference neftune_noise_alpha: 5 use_wandb: true wandb_project: shisa-v2 wandb_entity: augmxnt wandb_name: ablation-52-rafathenev2.0.8.0-shisa-v2-llama-3.1-8b-lr8e6 gradient_accumulation_steps: 2 micro_batch_size: 4 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: linear learning_rate: 8e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 0 save_total_limit: 1 # Only store a single checkpoint debug: deepspeed: zero3_bf16.json weight_decay: 0.00 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ``` </details><br> # outputs/ablation-52-rafathenev2.0.8.0-shisa-v2-llama-3.1-8b-lr8e6 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the shisa-ai/shisa-v1-athenev2-reannotated-filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.4476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8213 | 0.0058 | 1 | 0.5773 | | 0.6163 | 0.5029 | 87 | 0.4710 | | 0.5244 | 1.0058 | 174 | 0.4463 | | 0.5123 | 1.5087 | 261 | 0.4412 | | 0.4385 | 2.0116 | 348 | 0.4388 | | 0.4077 | 2.5145 | 435 | 0.4476 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
lewaldm/panopticon
lewaldm
2025-03-14T12:27:05Z
7
0
null
[ "license:mit", "region:us" ]
null
2025-03-12T23:59:02Z
--- license: mit --- This repo contains the model weights and dataset meta files for the Panopticon paper, main repo [here](https://github.com/Panopticon-FM/panopticon). In particular: - panopticon_vitb14: full weights after 2 stages of training with student, teacher, and dino heads - panopticon_vitb14_teacher: only teacher weights from panopticon_vitb14, this is sufficient for using panopticon (only this will be loaded when using panopticon via torchhub as described in the [main repo](https://github.com/Panopticon-FM/panopticon/tree/main?tab=readme-ov-file#using-panopticon)) - rgb_heads: weights for rgb heads obtained by training the dinov2 checkpoint on fmow-rgb - metadata: contains all parquet files used to index the pre-training data, for folder structure see [here](https://github.com/Panopticon-FM/panopticon?tab=readme-ov-file#metadata-files)
vrrtht4/abn
vrrtht4
2025-03-14T12:25:45Z
0
0
null
[ "license:other", "region:us" ]
null
2025-03-14T11:46:52Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
PedramR/sft_test1
PedramR
2025-03-14T12:20:25Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-14T12:19:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
spyrok/llama-2-7b-chat-lolcode-fin
spyrok
2025-03-14T12:19:41Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T12:14:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
huberm/ModernBERT-medium-custom-corp-zh-WordLevel
huberm
2025-03-14T12:18:09Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "fill-mask", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-03-14T12:09:46Z
--- library_name: transformers license: cc-by-nc-4.0 language: - en pipeline_tag: fill-mask --- # Model Card for Model ID Medium-sized ModernBERT trained on a custom corpus written mainly in Simplified Chinese using WordLevel tokenization (equivalently, tokenization determined by the corpus files). The custom corpus consists of the entire [Chinese Treebank 9.0](https://catalog.ldc.upenn.edu/LDC2016T13) and the first half of the "XIN_CMN"-portion of the [Tagged Chinese Gigaword Version 2.0](https://catalog.ldc.upenn.edu/LDC2009T14).
ConiferousYogi/GRPO_DeepSeekR1Nano
ConiferousYogi
2025-03-14T12:16:00Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "grpo", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T12:10:06Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - grpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ConiferousYogi - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
vaibkumar/agentic_training_finetuned_v6-Q4_K_M-GGUF
vaibkumar
2025-03-14T12:13:28Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:vaibkumar/agentic_training_finetuned_v6", "base_model:quantized:vaibkumar/agentic_training_finetuned_v6", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-14T11:18:34Z
--- base_model: vaibkumar/agentic_training_finetuned_v6 library_name: transformers tags: - llama-cpp - gguf-my-repo --- # vaibkumar/agentic_training_finetuned_v6-Q4_K_M-GGUF This model was converted to GGUF format from [`vaibkumar/agentic_training_finetuned_v6`](https://huggingface.co/vaibkumar/agentic_training_finetuned_v6) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/vaibkumar/agentic_training_finetuned_v6) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo vaibkumar/agentic_training_finetuned_v6-Q4_K_M-GGUF --hf-file agentic_training_finetuned_v6-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo vaibkumar/agentic_training_finetuned_v6-Q4_K_M-GGUF --hf-file agentic_training_finetuned_v6-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo vaibkumar/agentic_training_finetuned_v6-Q4_K_M-GGUF --hf-file agentic_training_finetuned_v6-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo vaibkumar/agentic_training_finetuned_v6-Q4_K_M-GGUF --hf-file agentic_training_finetuned_v6-q4_k_m.gguf -c 2048 ```
b13nb3n/solidsnake_28
b13nb3n
2025-03-14T12:13:26Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T10:25:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zurandmoro/755994230b31
zurandmoro
2025-03-14T12:13:16Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-14T12:12:00Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: 755994230b31 --- # 755994230B31 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `755994230b31` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('zurandmoro/755994230b31', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
JIAN-PENG/Qwen2.5_3B_GRPO_gsm8k_500
JIAN-PENG
2025-03-14T12:12:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "grpo", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T12:11:15Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - grpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** JIAN-PENG - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bofenghuang/Mistral-Small-24B-Instruct-2501
bofenghuang
2025-03-14T12:09:02Z
0
0
vllm
[ "vllm", "safetensors", "mistral", "text-generation", "transformers", "conversational", "en", "fr", "de", "es", "it", "pt", "zh", "ja", "ru", "ko", "base_model:mistralai/Mistral-Small-24B-Base-2501", "base_model:finetune:mistralai/Mistral-Small-24B-Base-2501", "license:apache-2.0", "text-generation-inference", "region:us" ]
text-generation
2025-03-14T11:59:36Z
--- language: - en - fr - de - es - it - pt - zh - ja - ru - ko license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Mistral-Small-24B-Base-2501 extra_gated_description: >- If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. tags: - transformers --- # Model Card for Mistral-Small-24B-Instruct-2501 Mistral Small 3 ( 2501 ) sets a new benchmark in the "small" Large Language Models category below 70B, boasting 24B parameters and achieving state-of-the-art capabilities comparable to larger models! This model is an instruction-fine-tuned version of the base model: [Mistral-Small-24B-Base-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Base-2501). Mistral Small can be deployed locally and is exceptionally "knowledge-dense", fitting in a single RTX 4090 or a 32GB RAM MacBook once quantized. Perfect for: - Fast response conversational agents. - Low latency function calling. - Subject matter experts via fine-tuning. - Local inference for hobbyists and organizations handling sensitive data. For enterprises that need specialized capabilities (increased context, particular modalities, domain specific knowledge, etc.), we will be releasing commercial models beyond what Mistral AI contributes to the community. This release demonstrates our commitment to open source, serving as a strong base model. Learn more about Mistral Small in our [blog post](https://mistral.ai/news/mistral-small-3/). Model developper: Mistral AI Team ## Key Features - **Multilingual:** Supports dozens of languages, including English, French, German, Spanish, Italian, Chinese, Japanese, Korean, Portuguese, Dutch, and Polish. - **Agent-Centric:** Offers best-in-class agentic capabilities with native function calling and JSON outputting. - **Advanced Reasoning:** State-of-the-art conversational and reasoning capabilities. - **Apache 2.0 License:** Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window:** A 32k context window. - **System Prompt:** Maintains strong adherence and support for system prompts. - **Tokenizer:** Utilizes a Tekken tokenizer with a 131k vocabulary size. ## Benchmark results ### Human evaluated benchmarks | Category | Gemma-2-27B | Qwen-2.5-32B | Llama-3.3-70B | Gpt4o-mini | |----------|-------------|--------------|---------------|------------| | Mistral is better | 0.536 | 0.496 | 0.192 | 0.200 | | Mistral is slightly better | 0.196 | 0.184 | 0.164 | 0.204 | | Ties | 0.052 | 0.060 | 0.236 | 0.160 | | Other is slightly better | 0.060 | 0.088 | 0.112 | 0.124 | | Other is better | 0.156 | 0.172 | 0.296 | 0.312 | **Note**: - We conducted side by side evaluations with an external third-party vendor, on a set of over 1k proprietary coding and generalist prompts. - Evaluators were tasked with selecting their preferred model response from anonymized generations produced by Mistral Small 3 vs another model. - We are aware that in some cases the benchmarks on human judgement starkly differ from publicly available benchmarks, but have taken extra caution in verifying a fair evaluation. We are confident that the above benchmarks are valid. ### Publicly accesible benchmarks **Reasoning & Knowledge** | Evaluation | mistral-small-24B-instruct-2501 | gemma-2b-27b | llama-3.3-70b | qwen2.5-32b | gpt-4o-mini-2024-07-18 | |------------|---------------|--------------|---------------|---------------|-------------| | mmlu_pro_5shot_cot_instruct | 0.663 | 0.536 | 0.666 | 0.683 | 0.617 | | gpqa_main_cot_5shot_instruct | 0.453 | 0.344 | 0.531 | 0.404 | 0.377 | **Math & Coding** | Evaluation | mistral-small-24B-instruct-2501 | gemma-2b-27b | llama-3.3-70b | qwen2.5-32b | gpt-4o-mini-2024-07-18 | |------------|---------------|--------------|---------------|---------------|-------------| | humaneval_instruct_pass@1 | 0.848 | 0.732 | 0.854 | 0.909 | 0.890 | | math_instruct | 0.706 | 0.535 | 0.743 | 0.819 | 0.761 | **Instruction following** | Evaluation | mistral-small-24B-instruct-2501 | gemma-2b-27b | llama-3.3-70b | qwen2.5-32b | gpt-4o-mini-2024-07-18 | |------------|---------------|--------------|---------------|---------------|-------------| | mtbench_dev | 8.35 | 7.86 | 7.96 | 8.26 | 8.33 | | wildbench | 52.27 | 48.21 | 50.04 | 52.73 | 56.13 | | arena_hard | 0.873 | 0.788 | 0.840 | 0.860 | 0.897 | | ifeval | 0.829 | 0.8065 | 0.8835 | 0.8401 | 0.8499 | **Note**: - Performance accuracy on all benchmarks were obtained through the same internal evaluation pipeline - as such, numbers may vary slightly from previously reported performance ([Qwen2.5-32B-Instruct](https://qwenlm.github.io/blog/qwen2.5/), [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct), [Gemma-2-27B-IT](https://huggingface.co/google/gemma-2-27b-it)). - Judge based evals such as Wildbench, Arena hard and MTBench were based on gpt-4o-2024-05-13. ### Basic Instruct Template (V7-Tekken) ``` <s>[SYSTEM_PROMPT]<system prompt>[/SYSTEM_PROMPT][INST]<user message>[/INST]<assistant response></s>[INST]<user message>[/INST] ``` *`<system_prompt>`, `<user message>` and `<assistant response>` are placeholders.* ***Please make sure to use [mistral-common](https://github.com/mistralai/mistral-common) as the source of truth*** ## Usage The model can be used with the following frameworks; - [`vllm`](https://github.com/vllm-project/vllm): See [here](#vllm) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) ### vLLM We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. **Note 1**: We recommond using a relatively low temperature, such as `temperature=0.15`. **Note 2**: Make sure to add a system prompt to the model to best tailer it for your needs. If you want to use the model as a general assistant, we recommend the following system prompt: ``` system_prompt = """You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris. Your knowledge base was last updated on 2023-10-01. The current date is 2025-01-30. When you're not sure about some information, you say that you don't have the information and don't make up anything. If the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \"What are some good restaurants around me?\" => \"Where are you?\" or \"When is the next flight to Tokyo\" => \"Where do you travel from?\")""" ``` **_Installation_** Make sure you install [`vLLM >= 0.6.4`](https://github.com/vllm-project/vllm/releases/tag/v0.6.4): ``` pip install --upgrade vllm ``` Also make sure you have [`mistral_common >= 1.5.2`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.2) installed: ``` pip install --upgrade mistral_common ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). #### Server We recommand that you use Mistral-Small-24B-Instruct-2501 in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Mistral-Small-24B-Instruct-2501 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice ``` **Note:** Running Mistral-Small-24B-Instruct-2501 on GPU requires ~55 GB of GPU RAM in bf16 or fp16. 2. To ping the client you can use a simple Python snippet. ```py import requests import json from datetime import datetime, timedelta url = "http://<your-server>:8000/v1/chat/completions" headers = {"Content-Type": "application/json", "Authorization": "Bearer token"} model = "mistralai/Mistral-Small-24B-Instruct-2501" messages = [ { "role": "system", "content": "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat." }, { "role": "user", "content": "Give me 5 non-formal ways to say 'See you later' in French." }, ] data = {"model": model, "messages": messages} response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()["choices"][0]["message"]["content"]) # Sure, here are five non-formal ways to say "See you later" in French: # # 1. À plus tard # 2. À plus # 3. Salut # 4. À toute # 5. Bisous # # ``` # /\_/\ # ( o.o ) # > ^ < # ``` ``` ### Function calling Mistral-Small-24-Instruct-2501 is excellent at function / tool calling tasks via vLLM. *E.g.:* <details> <summary>Example</summary> ```py import requests import json from huggingface_hub import hf_hub_download from datetime import datetime, timedelta url = "http://<your-url>:8000/v1/chat/completions" headers = {"Content-Type": "application/json", "Authorization": "Bearer token"} model = "mistralai/Mistral-Small-24B-Instruct-2501" def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() today = datetime.today().strftime("%Y-%m-%d") yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d") model_name = repo_id.split("/")[-1] return system_prompt.format(name=model_name, today=today, yesterday=yesterday) SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt") tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "city": { "type": "string", "description": "The city to find the weather for, e.g. 'San Francisco'", }, "state": { "type": "string", "description": "The state abbreviation, e.g. 'CA' for California", }, "unit": { "type": "string", "description": "The unit for temperature", "enum": ["celsius", "fahrenheit"], }, }, "required": ["city", "state", "unit"], }, }, }, { "type": "function", "function": { "name": "rewrite", "description": "Rewrite a given text for improved clarity", "parameters": { "type": "object", "properties": { "text": { "type": "string", "description": "The input text to rewrite", } }, }, }, }, ] messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": "Could you please make the below article more concise?\n\nOpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership.", }, { "role": "assistant", "content": "", "tool_calls": [ { "id": "bbc5b7ede", "type": "function", "function": { "name": "rewrite", "arguments": '{"text": "OpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership."}', }, } ], }, { "role": "tool", "content": '{"action":"rewrite","outcome":"OpenAI is a FOR-profit company."}', "tool_call_id": "bbc5b7ede", "name": "rewrite", }, { "role": "assistant", "content": "---\n\nOpenAI is a FOR-profit company.", }, { "role": "user", "content": "Can you tell me what the temperature will be in Dallas, in Fahrenheit?", }, ] data = {"model": model, "messages": messages, "tools": tools} response = requests.post(url, headers=headers, data=json.dumps(data)) import ipdb; ipdb.set_trace() print(response.json()["choices"][0]["message"]["tool_calls"]) # [{'id': '8PdihwL6d', 'type': 'function', 'function': {'name': 'get_current_weather', 'arguments': '{"city": "Dallas", "state": "TX", "unit": "fahrenheit"}'}}] ``` </details> #### Offline ```py from vllm import LLM from vllm.sampling_params import SamplingParams from datetime import datetime, timedelta SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat." user_prompt = "Give me 5 non-formal ways to say 'See you later' in French." messages = [ { "role": "system", "content": SYSTEM_PROMPT }, { "role": "user", "content": user_prompt }, ] # note that running this model on GPU requires over 60 GB of GPU RAM llm = LLM(model=model_name, tokenizer_mode="mistral", tensor_parallel_size=8) sampling_params = SamplingParams(max_tokens=512, temperature=0.15) outputs = llm.chat(messages, sampling_params=sampling_params) print(outputs[0].outputs[0].text) # Sure, here are five non-formal ways to say "See you later" in French: # # 1. À plus tard # 2. À plus # 3. Salut # 4. À toute # 5. Bisous # # ``` # /\_/\ # ( o.o ) # > ^ < # ``` ``` ### Transformers If you want to use Hugging Face transformers to generate text, you can do something like this. ```py from transformers import pipeline import torch messages = [ {"role": "user", "content": "Give me 5 non-formal ways to say 'See you later' in French."}, ] chatbot = pipeline("text-generation", model="mistralai/Mistral-Small-24B-Instruct-2501", max_new_tokens=256, torch_dtype=torch.bfloat16) chatbot(messages) ``` ### Ollama [Ollama](https://github.com/ollama/ollama) can run this model locally on MacOS, Windows and Linux. ``` ollama run mistral-small ``` 4-bit quantization (aliased to default): ``` ollama run mistral-small:24b-instruct-2501-q4_K_M ``` 8-bit quantization: ``` ollama run mistral-small:24b-instruct-2501-q8_0 ``` FP16: ``` ollama run mistral-small:24b-instruct-2501-fp16 ```
MeiKing111/SN09_COM4_117
MeiKing111
2025-03-14T12:06:42Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-13T16:23:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AkankshaaJojy/NaNo_R1_model
AkankshaaJojy
2025-03-14T12:06:19Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "grpo", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T11:59:27Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - grpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AkankshaaJojy - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MeiKing111/SN09_COM4_115
MeiKing111
2025-03-14T12:04:58Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-13T16:23:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
marijagjorgjieva/finki-gpt-700-capybara5
marijagjorgjieva
2025-03-14T12:00:21Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-03-14T11:31:10Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/internlm2-wqx-20b-i1-GGUF
mradermacher
2025-03-14T12:00:07Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:internlm/internlm2-wqx-20b", "base_model:quantized:internlm/internlm2-wqx-20b", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-03-14T07:19:52Z
--- base_model: internlm/internlm2-wqx-20b language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/internlm/internlm2-wqx-20b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ1_S.gguf) | i1-IQ1_S | 4.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ1_M.gguf) | i1-IQ1_M | 5.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 6.2 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ2_S.gguf) | i1-IQ2_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ2_M.gguf) | i1-IQ2_M | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 7.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q2_K.gguf) | i1-Q2_K | 7.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 7.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 8.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ3_S.gguf) | i1-IQ3_S | 8.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ3_M.gguf) | i1-IQ3_M | 9.2 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 9.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 10.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 10.9 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q4_0.gguf) | i1-Q4_0 | 11.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 11.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 12.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q4_1.gguf) | i1-Q4_1 | 12.6 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 14.2 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF/resolve/main/internlm2-wqx-20b.i1-Q6_K.gguf) | i1-Q6_K | 16.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Grogros/Grogros-dmWM-llama-3.2-1B-Instruct-OWTWM-DWM-Al4-WT-d4-a0.1-v5-meta-OWT-learnability_adv
Grogros
2025-03-14T11:57:56Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "dataset:openwebtext", "base_model:Grogros/dmWM-llama-3.2-1B-Instruct-OWTWM-DWM-Al4-WT-d4-a0.1-v5-meta-OWT", "base_model:finetune:Grogros/dmWM-llama-3.2-1B-Instruct-OWTWM-DWM-Al4-WT-d4-a0.1-v5-meta-OWT", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T08:19:41Z
--- library_name: transformers license: llama3.2 base_model: Grogros/dmWM-llama-3.2-1B-Instruct-OWTWM-DWM-Al4-WT-d4-a0.1-v5-meta-OWT tags: - generated_from_trainer datasets: - openwebtext model-index: - name: Grogros-dmWM-llama-3.2-1B-Instruct-OWTWM-DWM-Al4-WT-d4-a0.1-v5-meta-OWT-learnability_adv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Grogros-dmWM-llama-3.2-1B-Instruct-OWTWM-DWM-Al4-WT-d4-a0.1-v5-meta-OWT-learnability_adv This model is a fine-tuned version of [Grogros/dmWM-llama-3.2-1B-Instruct-OWTWM-DWM-Al4-WT-d4-a0.1-v5-meta-OWT](https://huggingface.co/Grogros/dmWM-llama-3.2-1B-Instruct-OWTWM-DWM-Al4-WT-d4-a0.1-v5-meta-OWT) on the openwebtext dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2500 ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1.post303 - Datasets 3.2.0 - Tokenizers 0.20.4
vukrosic/guess_word_apple_grpo
vukrosic
2025-03-14T11:56:14Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-14T11:16:04Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** vukrosic - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AlekseyElygin/QVikhr-2.5-1.5B-Instruct-r-Lora
AlekseyElygin
2025-03-14T11:55:27Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:Vikhrmodels/QVikhr-2.5-1.5B-Instruct-r", "base_model:finetune:Vikhrmodels/QVikhr-2.5-1.5B-Instruct-r", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-14T11:55:20Z
--- base_model: Vikhrmodels/QVikhr-2.5-1.5B-Instruct-r tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AlekseyElygin - **License:** apache-2.0 - **Finetuned from model :** Vikhrmodels/QVikhr-2.5-1.5B-Instruct-r This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Papedemba/waxal_wolof_wls-r-wav2vec2
Papedemba
2025-03-14T11:52:39Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-14T11:52:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TheoVincent/Atari_i-QN
TheoVincent
2025-03-14T11:51:13Z
17
2
null
[ "reinforcement-learning", "jax", "atari", "arxiv:1806.06923", "arxiv:2403.02107", "license:mit", "co2_eq_emissions", "region:us" ]
reinforcement-learning
2024-12-03T18:54:41Z
--- license: mit license_link: https://huggingface.co/TheoVincent/Atari_i-QN/blob/main/LICENSE tags: - reinforcement-learning - jax - atari co2_eq_emissions: emissions: 3000000 --- # Model parameters trained with `i-DQN` and `i-IQN` This repository contains the model parameters trained with `i-DQN` on [56 Atari games](#i-DQN_games) and trained with `i-IQN` on [20 Atari games](#i-IQN_games) 🎮 5 seeds are available for each configuration which makes a total of **380 available models** 📈 The [evaluate.ipynb](./evaluate.ipynb) notebook contains a minimal example to evaluate to model parameters 🧑‍🏫 It uses JAX 🚀 The hyperparameters used during training are reported in [config.json](./config.json) 🔧 To the training code 👉[💻](https://github.com/theovincent/i-DQN) ps: The set of [20 Atari games](#i-DQN_games) is included in the set of [56 Atari games](#i-IQN_games). ### Model performances | <div style="width:300px; font-size: 30px; font-family:Serif; font-name:Times New Roman" > **i-DQN** and **i-IQN** are improvements of [DQN](https://www.nature.com/articles/nature14236.pdf) and [IQN](https://arxiv.org/abs/1806.06923). <br> Published at [TMLR](https://arxiv.org/abs/2403.02107)✨ </br> <div style="font-size: 16px"> <details> <summary id=i-DQN_games>List of games trained with `i-DQN` </summary> *Alien, Amidar, Assault, Asterix, Asteroids, Atlantis, BankHeist, BattleZone, BeamRider, Berzerk, Bowling, Boxing, Breakout, Centipede, ChopperCommand, CrazyClimber, DemonAttack, DoubleDunk, Enduro, FishingDerby, Freeway, Frostbite, Gopher, Gravitar, Hero, IceHockey, Jamesbond, Kangaroo, Krull, KungFuMaster, MontezumaRevenge, MsPacman, NameThisGame, Phoenix, Pitfall, Pong, Pooyan, PrivateEye, Qbert, Riverraid, RoadRunner, Robotank, Seaquest, Skiing, Solaris, SpaceInvaders, StarGunner, Tennis, TimePilot, Tutankham, UpNDown, Venture, VideoPinball, WizardOfWor, YarsRevenge, Zaxxon.* </details> <details> <summary id=i-IQN_games>List of games trained with `i-IQN`</summary> *Alien, Assault, BankHeist, Berzerk, Breakout, Centipede, ChopperCommand, DemonAttack, Enduro, Frostbite, Gopher, Gravitar, IceHockey, Jamesbond, Krull, KungFuMaster, Riverraid, Seaquest, Skiing, StarGunner.* </details> </div> </div> | <img src="performances.png" alt="drawing" width="600px"/> | | :-: | :-: | ## User installation Python 3.10 is recommended. Create a Python virtual environment, activate it, update pip and install the package and its dependencies in editable mode: ```bash python3.10 -m venv env source env/bin/activate pip install --upgrade pip pip install numpy==1.23.5 # to avoid numpy==2.XX pip install -r requirements.txt pip install --upgrade "jax[cuda12_pip]==0.4.13" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html ``` ## Citing `iterated Q-Network` ``` @article{vincent2024iterated, title={Iterated $ Q $-Network: Beyond the One-Step Bellman Operator}, author={Vincent, Th{\'e}o and Palenicek, Daniel and Belousov, Boris and Peters, Jan and D'Eramo, Carlo}, journal={Transactions on Machine Learning Research}, year={2025} } ```
tscstudios/iwal7zawwerd8k7vjzyubn9guup1_3727ed6a-95cb-4d68-931d-cc8bb548944f
tscstudios
2025-03-14T11:49:23Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-14T11:49:22Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Iwal7Zawwerd8K7Vjzyubn9Guup1_3727Ed6A 95Cb 4D68 931D Cc8Bb548944F <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('tscstudios/iwal7zawwerd8k7vjzyubn9guup1_3727ed6a-95cb-4d68-931d-cc8bb548944f', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
MrRobotoAI/303
MrRobotoAI
2025-03-14T11:48:31Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:MrRobotoAI/107", "base_model:merge:MrRobotoAI/107", "base_model:MrRobotoAI/301", "base_model:merge:MrRobotoAI/301", "base_model:MrRobotoAI/302", "base_model:merge:MrRobotoAI/302", "base_model:MrRobotoAI/Loki-v4.1-8b-EROTICA-128K", "base_model:merge:MrRobotoAI/Loki-v4.1-8b-EROTICA-128K", "base_model:MrRobotoAI/Nord-8b-Uncensored-BASE-128k", "base_model:merge:MrRobotoAI/Nord-8b-Uncensored-BASE-128k", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T11:44:27Z
--- base_model: - MrRobotoAI/301 - MrRobotoAI/302 - MrRobotoAI/Loki-v4.1-8b-EROTICA-128K - MrRobotoAI/Nord-8b-Uncensored-BASE-128k - MrRobotoAI/107 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [MrRobotoAI/301](https://huggingface.co/MrRobotoAI/301) * [MrRobotoAI/302](https://huggingface.co/MrRobotoAI/302) * [MrRobotoAI/Loki-v4.1-8b-EROTICA-128K](https://huggingface.co/MrRobotoAI/Loki-v4.1-8b-EROTICA-128K) * [MrRobotoAI/Nord-8b-Uncensored-BASE-128k](https://huggingface.co/MrRobotoAI/Nord-8b-Uncensored-BASE-128k) * [MrRobotoAI/107](https://huggingface.co/MrRobotoAI/107) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: MrRobotoAI/107 - model: MrRobotoAI/Nord-8b-Uncensored-BASE-128k - model: MrRobotoAI/302 - model: MrRobotoAI/Loki-v4.1-8b-EROTICA-128K - model: MrRobotoAI/301 parameters: weight: 1.0 merge_method: linear dtype: float16 ```
NikolayKozloff/Light-R1-14B-DS-Q4_K_M-GGUF
NikolayKozloff
2025-03-14T11:47:16Z
0
1
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:qihoo360/Light-R1-14B-DS", "base_model:quantized:qihoo360/Light-R1-14B-DS", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-14T11:46:38Z
--- base_model: qihoo360/Light-R1-14B-DS license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # NikolayKozloff/Light-R1-14B-DS-Q4_K_M-GGUF This model was converted to GGUF format from [`qihoo360/Light-R1-14B-DS`](https://huggingface.co/qihoo360/Light-R1-14B-DS) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/qihoo360/Light-R1-14B-DS) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/Light-R1-14B-DS-Q4_K_M-GGUF --hf-file light-r1-14b-ds-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/Light-R1-14B-DS-Q4_K_M-GGUF --hf-file light-r1-14b-ds-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/Light-R1-14B-DS-Q4_K_M-GGUF --hf-file light-r1-14b-ds-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/Light-R1-14B-DS-Q4_K_M-GGUF --hf-file light-r1-14b-ds-q4_k_m.gguf -c 2048 ```
YashRevannavar/Meta-Llama-3.1-8B-v02
YashRevannavar
2025-03-14T11:47:12Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-14T11:42:17Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** YashRevannavar - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/internlm2-wqx-20b-GGUF
mradermacher
2025-03-14T11:45:59Z
130
0
transformers
[ "transformers", "gguf", "en", "base_model:internlm/internlm2-wqx-20b", "base_model:quantized:internlm/internlm2-wqx-20b", "endpoints_compatible", "region:us" ]
null
2025-03-14T01:28:07Z
--- base_model: internlm/internlm2-wqx-20b language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/internlm/internlm2-wqx-20b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/internlm2-wqx-20b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.Q2_K.gguf) | Q2_K | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.Q3_K_S.gguf) | Q3_K_S | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.Q3_K_M.gguf) | Q3_K_M | 9.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.Q3_K_L.gguf) | Q3_K_L | 10.7 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.IQ4_XS.gguf) | IQ4_XS | 11.0 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.Q4_K_S.gguf) | Q4_K_S | 11.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.Q4_K_M.gguf) | Q4_K_M | 12.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.Q5_K_S.gguf) | Q5_K_S | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.Q5_K_M.gguf) | Q5_K_M | 14.2 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.Q6_K.gguf) | Q6_K | 16.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/internlm2-wqx-20b-GGUF/resolve/main/internlm2-wqx-20b.Q8_0.gguf) | Q8_0 | 21.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Gerhard1973/olenka
Gerhard1973
2025-03-14T11:45:19Z
0
0
null
[ "license:other", "region:us" ]
null
2025-03-14T11:05:42Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
Neetree/DeepSeek-R1-Distill-Llama-8B-OpenR1-Math
Neetree
2025-03-14T11:42:40Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T11:39:21Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Neetree - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
jiinking/14_random_MQA_llama3B_model
jiinking
2025-03-14T11:39:21Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T10:26:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
regd/outputs
regd
2025-03-14T11:38:40Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "sft", "endpoints_compatible", "region:us" ]
null
2025-03-11T13:53:52Z
--- base_model: unsloth/qwen2-7b-bnb-4bit library_name: transformers model_name: outputs tags: - generated_from_trainer - unsloth - trl - sft licence: license --- # Model Card for outputs This model is a fine-tuned version of [unsloth/qwen2-7b-bnb-4bit](https://huggingface.co/unsloth/qwen2-7b-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="regd/outputs", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
regd/qwen7b
regd
2025-03-14T11:38:31Z
0
0
null
[ "safetensors", "unsloth", "license:mit", "region:us" ]
null
2025-03-14T10:16:43Z
--- license: mit tags: - unsloth ---
Savoxism/Finetuned-Paraphrase-Multilingual-MiniLM-L12-v2
Savoxism
2025-03-14T11:38:31Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:89592", "loss:CachedMultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:2101.06983", "base_model:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "base_model:finetune:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-03-14T11:38:15Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:89592 - loss:CachedMultipleNegativesRankingLoss base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 widget: - source_sentence: Chánh Thanh tra Sở Lao động - Thương binh và Xã hội có quyền xử phạt doanh nghiệp cản trở quá trình tổ chức đại diện người lao động tại cơ sở lấy ý kiến về đình công không? sentences: - 'Quyền hạn, trách nhiệm của Bộ Giao thông vận tải 1. Ban hành và bổ sung, sửa đổi Điều lệ tổ chức và hoạt động của Viện. 2. Quyết định phê duyệt kế hoạch tài chính và tài sản hàng năm của Viện; giám sát việc quản lý, sử dụng tài chính, tài sản, phân phối thu nhập, trích lập và sử dụng các quỹ của Viện theo quy định. 3. Quyết định giao nhiệm vụ nghiên cứu khoa học, phê duyệt các dự án đầu tư theo phân cấp, 4. Kiểm tra, giám sát thực hiện các mục tiêu, nhiệm vụ Nhà nước giao; đánh giá kết quả hoạt động của Viện; nhận xét, đánh giá hàng năm đối với Viện trưởng. 5. Quyết định quy hoạch, bổ nhiệm, bổ nhiệm lại, luân chuyển, điều động, từ chức, miễn nhiệm, khen thưởng, kỷ luật, giải quyết chế độ, chính sách đối với Viện trưởng, Phó Viện trưởng, Kế toán trưởng và các viên chức khác của Viện theo quy định của pháp luật và phân cấp quản lý của Bộ. 6. Thực hiện các quyền và nhiệm vụ khác theo quy định của pháp luật.' - '"Điều 15. Hồ sơ thành lập quỹ 1. Hồ sơ thành lập quỹ được lập thành 01 bộ và gửi đến cơ quan nhà nước có thẩm quyền quy định tại Điều 18 Nghị định này. 2. Hồ sơ thành lập quỹ, gồm: a) Đơn đề nghị thành lập quỹ; b) Dự thảo điều lệ quỹ; c) Bản cam kết đóng góp tài sản thành lập quỹ của các sáng lập viên, tài liệu chứng minh tài sản đóng góp để thành lập quỹ theo quy định tại Điều 14 Nghị định này; d) Sơ yếu lý lịch, phiếu lý lịch tư pháp của các thành viên Ban sáng lập quỹ và các tài liệu theo quy định tại Điều 11, Điều 12 hoặc Điều 13 Nghị định này. Sáng lập viên thuộc diện quản lý của cơ quan có thẩm quyền theo quy định thì có văn bản đồng ý của cơ quan có thẩm quyền theo phân cấp quản lý cán bộ; đ) Văn bản bầu các chức danh Ban sáng lập quỹ; e) Văn bản xác nhận nơi dự kiến đặt trụ sở của quỹ."' - 'Thẩm quyền xử phạt của Thanh tra lao động ... 2. Chánh Thanh tra Sở Lao động - Thương binh và Xã hội có quyền: a) Phạt cảnh cáo; b) Phạt tiền đến 37.500.000 đồng đối với hành vi vi phạm hành chính trong lĩnh vực lao động, bảo hiểm xã hội quy định tại Chương II, Chương III Nghị định này, trừ hành vi vi phạm quy định tại khoản 3 Điều 32 Nghị định này; c) Phạt tiền đến 50.000.000 đồng đối với hành vi vi phạm hành chính trong lĩnh vực người lao động Việt Nam đi làm việc ở nước ngoài theo hợp đồng quy định tại Chương IV Nghị định này; d) Áp dụng hình thức xử phạt bổ sung quy định tại Chương II, Chương III và Chương IV, trừ hình thức xử phạt bổ sung quy định tại khoản 5 Điều 32 Nghị định này; đ) Áp dụng biện pháp khắc phục hậu quả quy định tại Chương II, Chương III và Chương IV Nghị định này. ...' - source_sentence: Mối quan hệ công tác của thuyền trưởng đơn vị dân quân tự vệ được quy định thế nào? sentences: - '"Điều 14. Chức trách, nhiệm vụ, mối quan hệ công tác của tiểu đoàn trưởng, hải đoàn trưởng, đại đội trưởng, hải đội trưởng, trung đội trưởng, tiểu đội trưởng, thuyền trưởng, khẩu đội trưởng 1. Chức trách Chịu trách nhiệm trước pháp luật, đảng ủy (chi bộ), người chỉ huy, chính ủy, chính trị viên cấp trên và cấp ủy (chi bộ) cấp mình về xây dựng, huấn luyện, hoạt động của đơn vị Dân quân tự vệ thuộc quyền. 2. Nhiệm vụ a) Chỉ huy đơn vị Dân quân tự vệ thuộc quyền chấp hành chủ trương, đường lối của Đảng, chính sách, pháp luật của Nhà nước, nghị quyết lãnh đạo của đảng ủy (chi bộ), sự quản lý, điều hành của Ủy ban nhân dân các cấp hoặc đảng ủy (chi bộ), người đứng đầu cơ quan, tổ chức; chỉ thị, mệnh lệnh của người chỉ huy cấp trên theo phân cấp quản lý; b) Nắm vững tình hình mọi mặt, lập kế hoạch, trình cấp có thẩm quyền phê duyệt; tổ chức thực hiện nhiệm vụ xây dựng, huấn luyện, hoạt động sẵn sàng chiến đấu, chiến đấu, phục vụ chiến đấu, phòng thủ dân sự và chế độ, chính sách của đơn vị Dân quân tự vệ thuộc quyền; c) Đăng ký, quản lý, nắm tình hình chính trị, tư tưởng, trình độ, năng lực công tác của các chức vụ chỉ huy và chiến sĩ Dân quân tự vệ thuộc quyền; d) Tiểu đoàn trưởng, hải đoàn trưởng, đại đội trưởng, hải đội trưởng phối hợp với chính trị viên cùng cấp tiến hành công tác đảng, công tác chính trị cho đơn vị mình; đ) Kiểm tra, phối hợp kiểm tra, sơ kết, tổng kết, báo cáo theo quy định. 3. Mối quan hệ công tác a) Quan hệ với cấp ủy (chi bộ) cấp trên và cấp ủy (chi bộ) cùng cấp là quan hệ phục tùng sự lãnh đạo, chỉ đạo về công tác Dân quân tự vệ; b) Quan hệ với cơ quan quân sự địa phương cấp tỉnh, cấp huyện, cấp xã, ban chỉ huy quân sự cơ quan, tổ chức theo phân cấp quản lý là quan hệ phục tùng sự chỉ đạo, chỉ huy, quản lý điều hành về công tác Dân quân tự vệ; c) Quan hệ với người chỉ huy, chính ủy, chính trị viên cấp trên là quan hệ giữa cấp dưới và cấp trên; d) Quan hệ với chính trị viên đơn vị Dân quân tự vệ cùng cấp là quan hệ phối hợp công tác; đ) Quan hệ với cơ quan, tổ chức, đơn vị đứng chân hoặc hoạt động trên địa bàn là quan hệ phối hợp công tác; e) Quan hệ với chỉ huy đơn vị Dân quân tự vệ thuộc quyền là quan hệ cấp trên và cấp dưới."' - '“Điều 55. Thuận tình ly hôn Trong trường hợp vợ chồng cùng yêu cầu ly hôn, nếu xét thấy hai bên thật sự tự nguyện ly hôn và đã thỏa thuận về việc chia tài sản, việc trông nom, nuôi dưỡng, chăm sóc, giáo dục con trên cơ sở bảo đảm quyền lợi chính đáng của vợ và con thì Tòa án công nhận thuận tình ly hôn; nếu không thỏa thuận được hoặc có thỏa thuận nhưng không bảo đảm quyền lợi chính đáng của vợ và con thì Tòa án giải quyết việc ly hôn.”' - 'Doanh nghiệp quản lý, thanh lý tài sản 1. Các loại doanh nghiệp sau đây được hành nghề quản lý, thanh lý tài sản trong quá trình giải quyết phá sản: a) Công ty hợp danh; b) Doanh nghiệp tư nhân. 2. Điều kiện để doanh nghiệp hành nghề quản lý, thanh lý tài sản: a) Công ty hợp danh có tối thiểu hai thành viên hợp danh là Quản tài viên, Tổng giám đốc hoặc Giám đốc của công ty hợp danh là Quản tài viên; b) Doanh nghiệp tư nhân có chủ doanh nghiệp là Quản tài viên, đồng thời là Giám đốc. 3. Chính phủ quy định chi tiết việc hành nghề quản lý, thanh lý tài sản và việc quản lý nhà nước đối với doanh nghiệp quản lý, thanh lý tài sản.' - source_sentence: Người chịu trách nhiệm chuyên môn về dược của cơ sở bán buôn thuốc dược liệu phải có những văn bằng nào? sentences: - 'Phiên họp Tổ đại biểu Quốc hội 1. Tại mỗi kỳ họp Quốc hội, Ủy ban Thường vụ Quốc hội thành lập Tổ đại biểu Quốc hội, chỉ định Tổ trưởng, Phó Tổ trưởng Tổ đại biểu Quốc hội. 2. Tổ trưởng Tổ đại biểu Quốc hội chủ tọa phiên họp Tổ. Trường hợp Tổ trưởng vắng mặt thì Phó Tổ trưởng được phân công chủ tọa phiên họp. 3. Tổng Thư ký Quốc hội phân công thư ký phiên họp Tổđại biểu Quốc hội. 4. Trình tự phiên họp Tổ đại biểu Quốc hội được tiến hành như sau: a) Chủ tọa nêu nội dung đề nghị đại biểu Quốc hội tập trung thảo luận; b) Đại biểu Quốc hội phát biểu ý kiến; c) Chủ tọa phát biểu kết thúc phiên họp.Các hình thức làm việc tại kỳ họp Quốc hội ... 4. Các phiên họp Đoàn đại biểu Quốc hội, Tổ đại biểu Quốc hội thảo luận về các nội dung thuộc chương trình kỳ họp. ...' - '1. Mức phụ cấp a) Mức phụ cấp 25% áp dụng đối với nhà giáo đang trực tiếp giảng dạy trong các trường đại học, cao đẳng, các học viện, trường bồi dưỡng của các Bộ, cơ quan ngang Bộ, cơ quan thuộc Chính phủ, tổ chức Đảng, tổ chức chính trị - xã hội ở Trung ương và các trường chính trị của các tỉnh, thành phố trực thuộc Trung ương (trừ nhà giáo giảng dạy trong các trường sư phạm, khoa sư phạm và nhà giáo dạy môn khoa học Mác - Lênin, Tư tưởng Hồ Chí Minh); b) Mức phụ cấp 30% áp dụng đối với nhà giáo đang trực tiếp giảng dạy trong các trường trung học cơ sở, trung học phổ thông, trung tâm kỹ thuật tổng hợp - hướng nghiệp, trung tâm giáo dục thường xuyên, trung tâm dạy nghề ở đồng bằng, thành phố, thị xã; trường trung học chuyên nghiệp, trường dạy nghề; các trung tâm bồi dưỡng chính trị của huyện, quận, thị xã, thành phố trực thuộc tỉnh; c) Mức phụ cấp 35% áp dụng đối với nhà giáo đang trực tiếp giảng dạy trong các trường mầm non, tiểu học ở đồng bằng, thành phố, thị xã; các trường trung học cơ sở, trung học phổ thông, các trung tâm kỹ thuật tổng hợp - hướng nghiệp, trung tâm giáo dục thường xuyên, trung tâm dạy nghề ở miền núi, hải đảo, vùng sâu, vùng xa; d) Mức phụ cấp 40% áp dụng đối với nhà giáo đang trực tiếp giảng dạy trong các trường sư phạm, khoa sư phạm (đại học, cao đẳng, trung học), trường cán bộ quản lý giáo dục và đào tạo và nhà giáo dạy môn chính trị trong các trường trung học chuyên nghiệp, trường dạy nghề; đ) Mức phụ cấp 45% áp dụng đối với nhà giáo đang trực tiếp giảng dạy các môn khoa học Mác - Lênin, Tư tưởng Hồ Chí Minh trong các trường đại học, cao đẳng; e) Mức phụ cấp 50% áp dụng đối với nhà giáo đang trực tiếp giảng dạy trong các trường mầm non, tiểu học ở miền núi, hải đảo, vùng sâu, vùng xa. Việc xác định địa bàn miền núi thực hiện theo quy định của Uỷ ban Dân tộc; địa bàn hải đảo theo thực tế địa lý; địa bàn vùng sâu, vùng xa tuỳ theo đặc điểm của từng địa phương do Uỷ ban nhân dân tỉnh hướng dẫn sau khi có ý kiến thống nhất của Liên Bộ. 2. Cách tính Mức phụ cấp ưu đãi được hưởng = Mức lương tối thiểu chung x [hệ số lương theo ngạch, bậc hiện hưởng + hệ số phụ cấp chức vụ lãnh đạo (nếu có) + % (quy theo hệ số) phụ cấp thâm niên vượt khung (nếu có)] x tỷ lệ % phụ cấp ưu đãi.' - 'Điều kiện đối với người chịu trách nhiệm chuyên môn về dược của cơ sở bán buôn thuốc, nguyên liệu làm thuốc 1. Người chịu trách nhiệm chuyên môn về dược của cơ sở bán buôn thuốc, nguyên liệu làm thuốc phải có văn bằng chuyên môn quy định tại điểm a khoản 1 Điều 13 của Luật này và có 02 năm thực hành chuyên môn tại cơ sở dược phù hợp, trừ trường hợp quy định tại khoản 2 và khoản 3 Điều này. 2. Người chịu trách nhiệm chuyên môn về dược của cơ sở bán buôn vắc xin, sinh phẩm phải có một trong các văn bằng chuyên môn quy định tại điểm a, b hoặc d khoản 1 Điều 13 của Luật này và có 02 năm thực hành chuyên môn tại cơ sở dược phù hợp. 3. Người chịu trách nhiệm chuyên môn về dược của cơ sở bán buôn dược liệu, thuốc dược liệu, thuốc cổ truyền phải có một trong các văn bằng chuyên môn quy định tại điểm a, c, i hoặc l khoản 1 Điều 13 của Luật này và có 02 năm thực hành chuyên môn tại cơ sở dược phù hợp, trừ trường hợp quy định tại điểm c khoản 2 Điều 13 của Luật này.' - source_sentence: Giấy phép lái xe ô tô có được sử dụng thay thế cho giấy phép lái xe máy trong trường hợp có yêu cầu kiểm tra từ cơ quan có thẩm quyền hay không? sentences: - 'Vi phạm quy định về tiêu chuẩn đủ điều kiện bay ... 4. Phạt tiền từ 80.000.000 đồng (tám mươi triệu đồng) đến 100.000.000 đồng (một trăm triệu đồng) đối với hành vi đưa tàu bay vào khai thác mà không có Giấy chứng nhận đủ điều kiện bay. ...Nguyên tắc áp dụng 1. Mức phạt tiền quy định tại Chương II Nghị định này là mức phạt tiền áp dụng đối với các tổ chức, trừ mức phạt tiền quy định tại khoản 1, 2, 3, 4 Điều 6; điểm i, k khoản 1 Điều 7; khoản 1, 2, 3, 4, 5 Điều 8; khoản 1, 2, 4, 5, 6 Điều 9; khoản 1, 2 và điểm a, b khoản 5 Điều 10; khoản 1, 2, 3, 4 và điểm g khoản 5 Điều 11; khoản 1 Điều 12; điểm b, c khoản 1 và điểm a, c khoản 2 Điều 14; khoản 1, 2 và điểm a, d, đ khoản 3, khoản 4, 5 Điều 15; khoản 1, 2, 3, 4, 5, 6 Điều 16; khoản 1, 2 Điều 17; khoản 1 và điểm a, b, d khoản 2 Điều 18; khoản 1, 2 Điều 19; khoản 1, 2, 3, 4, 5, 6 Điều 21; khoản 1, 2 Điều 24; khoản 1, 2, 3 Điều 25; khoản 1, 2, 3, 4, 5, 6, 7, 8 Điều 26; điểm a, b, đ khoản 1 Điều 27; khoản 1, 2, 3 và điểm a khoản 4, điểm b khoản 5 Điều 28; khoản 1, 2, 3 Điều 30 Nghị định này là mức phạt áp dụng đối với cá nhân. Đối với cùng một hành vi vi phạm hành chính thì mức phạt tiền đối với tổ chức bằng hai lần mức phạt tiền đối với cá nhân. ...' - 'Phê duyệt Phương án khai thác thực vật rừng thông thường ... 2. Cơ quan có thẩm quyền phê duyệt: a) Bộ Nông nghiệp và Phát triển nông thôn phê duyệt Phương án khai thác đối với trường hợp quy định tại các điểm a, b, c, d và đ khoản 1 Điều này đối với diện tích rừng do Bộ Nông nghiệp và Phát triển nông thôn quản lý; b) Ủy ban nhân dân cấp huyện phê duyệt Phương án khai thác đối với trường hợp quy định tại điểm đ khoản 1 Điều này do cá nhân, hộ gia đình, cộng đồng dân cư tự đầu tư; khai thác tận dụng, tận thu gỗ rừng sản xuất là rừng tự nhiên do cá nhân, hộ gia đình, cộng đồng dân cư quản lý; c) Sở Nông nghiệp và Phát triển nông thôn phê duyệt Phương án khai thác đối với trường hợp không thuộc quy định tại điểm a và điểm b khoản này. ...' - '"Điều 58. Điều kiện của người lái xe tham gia giao thông 1. Người lái xe tham gia giao thông phải đủ độ tuổi, sức khoẻ quy định tại Điều 60 của Luật này và có giấy phép lái xe phù hợp với loại xe được phép điều khiển do cơ quan nhà nước có thẩm quyền cấp. .." "Điều 59. Giấy phép lái xe 1. Căn cứ vào kiểu loại, công suất động cơ, tải trọng và công dụng của xe cơ giới, giấy phép lái xe được phân thành giấy phép lái xe không thời hạn và giấy phép lái xe có thời hạn. 2. Giấy phép lái xe không thời hạn bao gồm các hạng sau đây: a) Hạng A1 cấp cho người lái xe mô tô hai bánh có dung tích xi-lanh từ 50 cm3 đến dưới 175 cm3; b) Hạng A2 cấp cho người lái xe mô tô hai bánh có dung tích xi-lanh từ 175 cm3 trở lên và các loại xe quy định cho giấy phép lái xe hạng A1; c) Hạng A3 cấp cho người lái xe mô tô ba bánh, các loại xe quy định cho giấy phép lái xe hạng A1 và các xe tương tự. ... 4. Giấy phép lái xe có thời hạn gồm các hạng sau đây: a) Hạng A4 cấp cho người lái máy kéo có trọng tải đến 1.000 kg; b) Hạng B1 cấp cho người không hành nghề lái xe điều khiển xe ô tô chở người đến 9 chỗ ngồi; xe ô tô tải, máy kéo có trọng tải dưới 3.500 kg; c) Hạng B2 cấp cho người hành nghề lái xe điều khiển xe ô tô chở người đến 9 chỗ ngồi; xe ô tô tải, máy kéo có trọng tải dưới 3.500 kg; d) Hạng C cấp cho người lái xe ô tô tải, máy kéo có trọng tải từ 3.500 kg trở lên và các loại xe quy định cho các giấy phép lái xe hạng B1, B2; đ) Hạng D cấp cho người lái xe ô tô chở người từ 10 đến 30 chỗ ngồi và các loại xe quy định cho các giấy phép lái xe hạng B1, B2, C; e) Hạng E cấp cho người lái xe ô tô chở người trên 30 chỗ ngồi và các loại xe quy định cho các giấy phép lái xe hạng B1, B2, C, D; g) Giấy phép lái xe hạng FB2, FD, FE cấp cho người lái xe đã có giấy phép lái xe hạng B2, D, E để lái các loại xe quy định cho các giấy phép lái xe hạng này khi kéo rơ moóc hoặc xe ô tô chở khách nối toa; hạng FC cấp cho người lái xe đã có giấy phép lái xe hạng C để lái các loại xe quy định cho hạng C khi kéo rơ moóc, đầu kéo kéo sơ mi rơ moóc."' - source_sentence: Tiêu chí xếp loại chất lượng công chức ở mức không hoàn thành nhiệm vụ được quy định ra sao? sentences: - 'Nhiệm vụ: 1. Hội tập hợp các nghệ sĩ hoạt động thuộc các bộ môn, chuyên ngành sân khấu, nhằm tạo ra sức mạnh tổng hợp để xây dựng và phát triển nền sân khấu Việt Nam tiên tiến đậm đà bản sắc dân tộc theo định hướng phát triển văn hóa nghệ thuật của Đảng. Hội tạo điều kiện cho Hội viên học tập chính trị, nâng cao nghiệp vụ nắm vững định hướng sáng tạo văn học nghệ thuật. 2. Hội cố gắng tạo điều kiện thuận lợi để các nghệ sĩ hoạt động sân khấu chủ động sáng tạo những vở diễn có giá trị cao về tư tưởng và nghệ thuật, đồng thời khuyến khích sự phát triển ngành phê bình và nghiên cứu sân khấu. Tham gia nghiên cứu các đề tài khoa học về nghệ thuật sân khấu. 3. Hội thường xuyên phối kết hợp với các cơ quan chuyên môn của Bộ Văn hóa Thông tin để xây dựng những đơn vị sân khấu vững mạnh, hoạt động có hiệu quả, đồng thời khuyến khích, giúp đỡ các tiết mục thử nghiệm, tìm tòi các hình thức sáng tạo mới để rút kinh nghiệm. 4. Khuyến khích và giúp đỡ bằng nhiều hình thức đối với những hoạt động của sân khấu không chuyên nghiệp. 5. Theo dõi, phát hiện kịp thời, phản ánh với Đảng, Nhà nước đối với các hiện tượng sân khấu mà d­ư luận xã hội quan tâm và quá trình phát triển của nghệ thuật sân khấu Việt Nam. 6. Củng cố, mở rộng quan hệ hợp tác với các nước để trao đổi, giới thiệu học tập kinh nghiệm về nghệ thuật sân khấu theo quy định của pháp luật. ...' - 'Tiêu chí xếp loại chất lượng công chức ở mức không hoàn thành nhiệm vụ 1. Công chức không giữ chức vụ lãnh đạo, quản lý có một trong các tiêu chí sau đây thì xếp loại chất lượng ở mức không hoàn thành nhiệm vụ: a) Có biểu hiện suy thoái về tư tưởng chính trị, đạo đức, lối sống, tự diễn biến, tự chuyển hóa theo đánh giá của cấp có thẩm quyền; b) Có trên 50% các tiêu chí về kết quả thực hiện nhiệm vụ theo quy định của pháp luật, theo kế hoạch đề ra hoặc theo công việc cụ thể được giao chưa bảo đảm tiến độ, chất lượng, hiệu quả; c) Có hành vi vi phạm trong quá trình thực thi nhiệm vụ bị xử lý kỷ luật trong năm đánh giá. 2. Công chức giữ chức vụ lãnh đạo, quản lý có một trong các tiêu chí sau đây thì xếp loại chất lượng ở mức không hoàn thành nhiệm vụ: a) Có biểu hiện suy thoái về tư tưởng chính trị, đạo đức, lối sống, tự diễn biến, tự chuyển hóa theo đánh giá của cấp có thẩm quyền; b) Có trên 50% các tiêu chí về kết quả thực hiện nhiệm vụ theo quy định của pháp luật, theo kế hoạch đề ra hoặc theo công việc cụ thể được giao chưa bảo đảm tiến độ, chất lượng, hiệu quả; c) Cơ quan, tổ chức, đơn vị hoặc lĩnh vực công tác được giao phụ trách hoàn thành dưới 50% các chỉ tiêu, nhiệm vụ; d) Cơ quan, tổ chức, đơn vị thuộc thẩm quyền phụ trách, quản lý trực tiếp liên quan đến tham ô, tham nhũng, lãng phí và bị xử lý theo quy định của pháp luật. đ) Có hành vi vi phạm trong quá trình thực thi nhiệm vụ bị xử lý kỷ luật trong năm đánh giá.' - "Giao dịch lô lẻ\n1. Giao dịch lô lẻ được thực hiện theo phương thức khớp lệnh\ \ và phương thức thỏa thuận trên hệ thống giao dịch.\n2. Nhà đầu tư chỉ được phép\ \ nhập lệnh LO đối với giao dịch lô lẻ \n3. Đơn vị giao dịch lô lẻ là 01 cổ phiếu\ \ hoặc chứng chỉ quỹ hoặc chứng quyền có bảo đảm.\n4. Giá giao dịch:\na) Giá của\ \ lệnh giao dịch lô lẻ phải tuân thủ theo các quy định về giá giao dịch tương\ \ tự giao dịch lô chẵn.\nb) Các lệnh giao dịch lô lẻ không được sử dụng để xác\ \ định giá tham chiếu, giá tính chỉ số.\n5. Giao dịch lô lẻ của cổ phiếu, chứng\ \ chỉ quỹ và chứng quyền có bảo đảm mới niêm yết hoặc giao dịch trở lại sau khi\ \ bị tạm ngừng, đình chỉ giao dịch từ 25 ngày giao dịch liên tiếp trở lên không\ \ được nhập vào hệ thống giao dịch cho đến khi có giá đóng cửa được xác lập.\n\ 6. SGDCK có trách nhiệm tổ chức giao dịch lô lẻ theo các phương thức quy định\ \ tại khoản 2 Điều 13 Quy chế này." pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Savoxism/Finetuned-Paraphrase-Multilingual-MiniLM-L12-v2") # Run inference sentences = [ 'Tiêu chí xếp loại chất lượng công chức ở mức không hoàn thành nhiệm vụ được quy định ra sao?', 'Tiêu chí xếp loại chất lượng công chức ở mức không hoàn thành nhiệm vụ\n1. Công chức không giữ chức vụ lãnh đạo, quản lý có một trong các tiêu chí sau đây thì xếp loại chất lượng ở mức không hoàn thành nhiệm vụ:\na) Có biểu hiện suy thoái về tư tưởng chính trị, đạo đức, lối sống, tự diễn biến, tự chuyển hóa theo đánh giá của cấp có thẩm quyền;\nb) Có trên 50% các tiêu chí về kết quả thực hiện nhiệm vụ theo quy định của pháp luật, theo kế hoạch đề ra hoặc theo công việc cụ thể được giao chưa bảo đảm tiến độ, chất lượng, hiệu quả;\nc) Có hành vi vi phạm trong quá trình thực thi nhiệm vụ bị xử lý kỷ luật trong năm đánh giá.\n2. Công chức giữ chức vụ lãnh đạo, quản lý có một trong các tiêu chí sau đây thì xếp loại chất lượng ở mức không hoàn thành nhiệm vụ:\na) Có biểu hiện suy thoái về tư tưởng chính trị, đạo đức, lối sống, tự diễn biến, tự chuyển hóa theo đánh giá của cấp có thẩm quyền;\nb) Có trên 50% các tiêu chí về kết quả thực hiện nhiệm vụ theo quy định của pháp luật, theo kế hoạch đề ra hoặc theo công việc cụ thể được giao chưa bảo đảm tiến độ, chất lượng, hiệu quả;\nc) Cơ quan, tổ chức, đơn vị hoặc lĩnh vực công tác được giao phụ trách hoàn thành dưới 50% các chỉ tiêu, nhiệm vụ;\nd) Cơ quan, tổ chức, đơn vị thuộc thẩm quyền phụ trách, quản lý trực tiếp liên quan đến tham ô, tham nhũng, lãng phí và bị xử lý theo quy định của pháp luật.\nđ) Có hành vi vi phạm trong quá trình thực thi nhiệm vụ bị xử lý kỷ luật trong năm đánh giá.', 'Nhiệm vụ:\n1. Hội tập hợp các nghệ sĩ hoạt động thuộc các bộ môn, chuyên ngành sân khấu, nhằm tạo ra sức mạnh tổng hợp để xây dựng và phát triển nền sân khấu Việt Nam tiên tiến đậm đà bản sắc dân tộc theo định hướng phát triển văn hóa nghệ thuật của Đảng. Hội tạo điều kiện cho Hội viên học tập chính trị, nâng cao nghiệp vụ nắm vững định hướng sáng tạo văn học nghệ thuật.\n2. Hội cố gắng tạo điều kiện thuận lợi để các nghệ sĩ hoạt động sân khấu chủ động sáng tạo những vở diễn có giá trị cao về tư tưởng và nghệ thuật, đồng thời khuyến khích sự phát triển ngành phê bình và nghiên cứu sân khấu. Tham gia nghiên cứu các đề tài khoa học về nghệ thuật sân khấu.\n3. Hội thường xuyên phối kết hợp với các cơ quan chuyên môn của Bộ Văn hóa Thông tin để xây dựng những đơn vị sân khấu vững mạnh, hoạt động có hiệu quả, đồng thời khuyến khích, giúp đỡ các tiết mục thử nghiệm, tìm tòi các hình thức sáng tạo mới để rút kinh nghiệm.\n4. Khuyến khích và giúp đỡ bằng nhiều hình thức đối với những hoạt động của sân khấu không chuyên nghiệp.\n5. Theo dõi, phát hiện kịp thời, phản ánh với Đảng, Nhà nước đối với các hiện tượng sân khấu mà d\xadư luận xã hội quan tâm và quá trình phát triển của nghệ thuật sân khấu Việt Nam.\n6. Củng cố, mở rộng quan hệ hợp tác với các nước để trao đổi, giới thiệu học tập kinh nghiệm về nghệ thuật sân khấu theo quy định của pháp luật.\n...', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 89,592 training samples * Columns: <code>sentence_0</code> and <code>sentence_1</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 24.66 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 252.25 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | sentence_0 | sentence_1 | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Quy trình thực hiện việc sửa đổi quyết định thanh tra liên quan đến nội dung thanh tra theo đề nghị của Đoàn thanh tra được quy định như thế nào?</code> | <code>Sửa đổi, bổ sung quyết định thanh tra liên quan đến đối tượng thanh tra, nội dung thanh tra<br>...<br>4. Sửa đổi, bổ sung quyết định thanh tra liên quan đến nội dung thanh tra, đối tượng thanh tra theo đề nghị của Đoàn thanh tra:<br>a) Khi có căn cứ sửa đổi, bổ sung nội dung thanh tra, đối tượng thanh tra của quyết định thanh tra quy định tại khoản 2 Điều này, Đoàn thanh tra thảo luận về đề nghị sửa đổi, bổ sung nội dung quyết định thanh tra, đối tượng thanh tra. Các ý kiến khác nhau phải được Trưởng đoàn thanh tra báo cáo đầy đủ với người ra quyết định thanh tra;<br>b) Trưởng đoàn thanh tra thay mặt Đoàn thanh tra có văn bản đề nghị người ra quyết định thanh tra xem xét, quyết định việc sửa đổi, bổ sung nội dung quyết định thanh tra. Văn bản đề nghị sửa đổi, bổ sung quyết định thanh tra phải nêu rõ lý do, nội dung sửa đổi, bổ sung và những nội dung khác có liên quan để người ra quyết định thanh tra xem xét, quyết định. Ý kiến của người ra quyết định thanh tra phải thể hiện bằng văn bản;<br>c) Trường hợp người ra quyết định thanh tra phê duyệt việc sửa đổi, bổ sung nội dung thanh tra, đối tượng thanh tra của quyết định thanh tra thì người ra quyết định thanh tra có quyết định sửa đổi, bổ sung quyết định thanh tra yêu cầu Trưởng đoàn thanh tra thực hiện theo quyết định thanh tra sửa đổi, bổ sung.<br>Trưởng đoàn thanh tra có trách nhiệm thông báo nội dung sửa đổi, bổ sung quyết định thanh tra cho các thành viên Đoàn thanh tra; xây dựng kế hoạch tiến hành thanh tra sửa đổi, bổ sung và tổ chức triển khai thực hiện.<br>...</code> | | <code>Ủy ban nhân dân cấp tỉnh có quyền phê duyệt phương án khai thác tận dụng gỗ loài thực vật rừng thông thường từ rừng tự nhiên hay không?</code> | <code>Phê duyệt Phương án khai thác thực vật rừng thông thường<br>...<br>2. Cơ quan có thẩm quyền phê duyệt:<br>a) Bộ Nông nghiệp và Phát triển nông thôn phê duyệt Phương án khai thác đối với trường hợp quy định tại các điểm a, b, c, d và đ khoản 1 Điều này đối với diện tích rừng do Bộ Nông nghiệp và Phát triển nông thôn quản lý;<br>b) Ủy ban nhân dân cấp huyện phê duyệt Phương án khai thác đối với trường hợp quy định tại điểm đ khoản 1 Điều này do cá nhân, hộ gia đình, cộng đồng dân cư tự đầu tư; khai thác tận dụng, tận thu gỗ rừng sản xuất là rừng tự nhiên do cá nhân, hộ gia đình, cộng đồng dân cư quản lý;<br>c) Sở Nông nghiệp và Phát triển nông thôn phê duyệt Phương án khai thác đối với trường hợp không thuộc quy định tại điểm a và điểm b khoản này.<br>...</code> | | <code>Mức phụ cấp lưu trú cho người đi công tác thuộc Bộ Quốc phòng được quy định như thế nào?</code> | <code>Phụ cấp lưu trú<br>Phụ cấp lưu trú là khoản tiền hỗ trợ thêm cho người đi công tác ngoài tiền lương do cơ quan, đơn vị cử đi công tác chi trả, được tính từ ngày bắt đầu đi công tác đến khi kết thúc đợt công tác trở về cơ quan, đơn vị (bao gồm thời gian đi trên đường, thời gian lưu trú tại nơi đến công tác). Mức phụ cấp lưu trú như sau:<br>1. Mức 200.000 đồng/ngày: Áp dụng đối với thời gian đi trên đường từ 5 giờ/ngày trở lên hoặc từ 150 km/ngày trở lên đối với khu vực vùng sâu, miền núi đi lại khó khăn và 300 km/ngày trở lên đối với khu vực còn lại.<br>2. Mức 100.000 đồng/ngày: Áp dụng đối với thời gian lưu trú tại cơ quan, đơn vị nơi đến công tác.<br>3. Mức 250.000 đồng/ngày: Áp dụng đối với thời gian đi công tác thực tế trên biển của quân nhân, công nhân quốc phòng, viên chức quốc phòng, công chức quốc phòng đang công tác, làm việc ở đất liền được cử đi công tác trên biển, đảo.<br>4. Đối với trường hợp đi và về trong ngày nếu không đủ điều kiện quy định tại khoản 1 Điều này thì được áp dụng phụ cấp lưu trú quy định tại khoản 2 Điều này với điều kiện thời gian làm việc tại đơn vị và thời gian đi, về tối thiểu từ 5 giờ trở lên.<br>5. Đối với quân nhân, công nhân quốc phòng, viên chức quốc phòng, công chức quốc phòng khi làm nhiệm vụ (huấn luyện, chiến đấu, tuần tra, cứu nạn, vận chuyển và các nhiệm vụ khác) trên tàu chiến đấu các loại, tàu cảnh sát biển, tàu kiểm ngư, tàu tìm kiếm cứu hộ, cứu nạn trên biển, tàu vận tải phục vụ trên biển thì những ngày thực tế đi biển được hưởng chế độ bồi dưỡng đi biển, phụ cấp ngày đi biển và phụ cấp đặc thù đi biển theo quy định (không được hưởng chế độ phụ cấp lưu trú quy định tại khoản 3 Điều này).</code> | * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.7143 | 500 | 0.4527 | | 1.4286 | 1000 | 0.1506 | | 2.1429 | 1500 | 0.1119 | | 2.8571 | 2000 | 0.0907 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.1 - Datasets: 2.21.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CachedMultipleNegativesRankingLoss ```bibtex @misc{gao2021scaling, title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan}, year={2021}, eprint={2101.06983}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Ifraaaa/ilab-granite
Ifraaaa
2025-03-14T11:37:48Z
0
0
null
[ "gguf", "llama", "granite", "ibm", "lab", "labrador", "labradorite", "en", "base_model:instructlab/granite-7b-lab", "base_model:quantized:instructlab/granite-7b-lab", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-14T10:14:41Z
--- tags: - granite - ibm - lab - labrador - labradorite license: apache-2.0 language: - en base_model: instructlab/granite-7b-lab quantized_by: IBM Research --- # Granite 7b - GGUF 4-bit quantized version of [instructlab/granite-7b-lab](https://huggingface.co/instructlab/granite-7b-lab)
N-Bot-Int/OpenElla3-Llama3.2-Lora-Backup
N-Bot-Int
2025-03-14T11:36:32Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-13T22:54:46Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** N-Bot-Int - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
IPPATAPUVENKATASRICHANDRA/whishper
IPPATAPUVENKATASRICHANDRA
2025-03-14T11:36:09Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-03-14T09:10:38Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whishper results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: ta split: test args: ta metrics: - name: Wer type: wer value: 72.24880382775119 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whishper This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5474 - Wer: 72.2488 - Cer: 29.9605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 0.5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------:| | 0.2442 | 0.0333 | 5 | 0.8071 | 140.3509 | 157.0811 | | 0.2386 | 0.0667 | 10 | 0.7964 | 146.2520 | 136.7877 | | 0.3848 | 0.1 | 15 | 0.7687 | 146.8900 | 111.5479 | | 0.3015 | 0.1333 | 20 | 0.7213 | 157.0973 | 126.8761 | | 0.2178 | 0.1667 | 25 | 0.6916 | 159.1707 | 144.8561 | | 0.2314 | 0.2 | 30 | 0.6551 | 149.6013 | 125.3526 | | 0.2112 | 0.2333 | 35 | 0.6239 | 99.3620 | 64.2844 | | 0.1571 | 0.2667 | 40 | 0.5794 | 76.5550 | 35.1514 | | 0.1934 | 0.3 | 45 | 0.5547 | 73.0463 | 33.7596 | | 0.3231 | 0.3333 | 50 | 0.5474 | 72.2488 | 29.9605 | | 0.1035 | 0.3667 | 55 | 0.5434 | 72.5678 | 32.3491 | | 0.1991 | 0.4 | 60 | 0.5454 | 74.0032 | 31.4275 | | 0.196 | 0.4333 | 65 | 0.5495 | 73.5247 | 36.0166 | | 0.4541 | 0.4667 | 70 | 0.5448 | 73.3652 | 38.5556 | | 0.2166 | 0.5 | 75 | 0.5418 | 73.3652 | 39.3455 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0
AsccendiaAI/v1-5-pruned-emaonly.ckpt
AsccendiaAI
2025-03-14T11:34:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-03-14T11:21:48Z
--- license: creativeml-openrail-m ---
JacksonBrune/11905b3c-16d9-4b8f-80cd-dae7def606ce
JacksonBrune
2025-03-14T11:32:58Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/gemma-2b-it", "base_model:adapter:unsloth/gemma-2b-it", "region:us" ]
null
2025-03-14T11:32:43Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/gemma-2b-it model-index: - name: JacksonBrune/11905b3c-16d9-4b8f-80cd-dae7def606ce results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # JacksonBrune/11905b3c-16d9-4b8f-80cd-dae7def606ce This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Ahmeshen/a2c-PandaReachDense-v3
Ahmeshen
2025-03-14T11:32:17Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-14T11:28:07Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.17 +/- 0.13 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MeiKing111/SN09_COM4_114
MeiKing111
2025-03-14T11:30:47Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-13T16:23:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v9.2-fusechat-dpo-lora
Lunzima
2025-03-14T11:29:39Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v9.2-fusechat-sft", "base_model:finetune:Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v9.2-fusechat-sft", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-14T11:29:25Z
--- base_model: Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v9.2-fusechat-sft tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Lunzima - **License:** apache-2.0 - **Finetuned from model :** Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v9.2-fusechat-sft This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MrRobotoAI/301
MrRobotoAI
2025-03-14T11:29:06Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:MrRobotoAI/Loki-v4.1-8b-EROTICA-128K", "base_model:merge:MrRobotoAI/Loki-v4.1-8b-EROTICA-128K", "base_model:MrRobotoAI/MrRoboto-HORNY-v2-8b-128k", "base_model:merge:MrRobotoAI/MrRoboto-HORNY-v2-8b-128k", "base_model:MrRobotoAI/MrRoboto-ROMANCE-v2-8b-128K", "base_model:merge:MrRobotoAI/MrRoboto-ROMANCE-v2-8b-128K", "base_model:MrRobotoAI/Nord-8b-Uncensored-BASE-128k", "base_model:merge:MrRobotoAI/Nord-8b-Uncensored-BASE-128k", "base_model:MrRobotoAI/Thor-v2.5-8b-FANTASY-FICTION-128K", "base_model:merge:MrRobotoAI/Thor-v2.5-8b-FANTASY-FICTION-128K", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T11:25:00Z
--- base_model: - MrRobotoAI/Thor-v2.5-8b-FANTASY-FICTION-128K - MrRobotoAI/Loki-v4.1-8b-EROTICA-128K - MrRobotoAI/MrRoboto-ROMANCE-v2-8b-128K - MrRobotoAI/Nord-8b-Uncensored-BASE-128k - MrRobotoAI/MrRoboto-HORNY-v2-8b-128k library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [MrRobotoAI/Thor-v2.5-8b-FANTASY-FICTION-128K](https://huggingface.co/MrRobotoAI/Thor-v2.5-8b-FANTASY-FICTION-128K) * [MrRobotoAI/Loki-v4.1-8b-EROTICA-128K](https://huggingface.co/MrRobotoAI/Loki-v4.1-8b-EROTICA-128K) * [MrRobotoAI/MrRoboto-ROMANCE-v2-8b-128K](https://huggingface.co/MrRobotoAI/MrRoboto-ROMANCE-v2-8b-128K) * [MrRobotoAI/Nord-8b-Uncensored-BASE-128k](https://huggingface.co/MrRobotoAI/Nord-8b-Uncensored-BASE-128k) * [MrRobotoAI/MrRoboto-HORNY-v2-8b-128k](https://huggingface.co/MrRobotoAI/MrRoboto-HORNY-v2-8b-128k) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: MrRobotoAI/Thor-v2.5-8b-FANTASY-FICTION-128K - model: MrRobotoAI/Nord-8b-Uncensored-BASE-128k - model: MrRobotoAI/MrRoboto-HORNY-v2-8b-128k - model: MrRobotoAI/MrRoboto-ROMANCE-v2-8b-128K - model: MrRobotoAI/Loki-v4.1-8b-EROTICA-128K parameters: weight: 1.0 merge_method: linear dtype: float16 ```
AndVilches/ppo-SnowballTarget
AndVilches
2025-03-14T11:28:23Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2025-03-14T11:28:16Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AndVilches/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
juhw/uiop99
juhw
2025-03-14T11:28:07Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T11:24:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Alepach/notHumpback-M1
Alepach
2025-03-14T11:26:29Z
132
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "dataset:OpenAssistant/oasst1", "dataset:allenai/c4", "arxiv:2308.06259", "base_model:meta-llama/Llama-3.2-3B", "base_model:finetune:meta-llama/Llama-3.2-3B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-12-31T12:48:01Z
--- base_model: meta-llama/Llama-3.2-3B library_name: transformers model_name: notHumpback-M1 tags: - generated_from_trainer - trl - sft license: apache-2.0 datasets: - OpenAssistant/oasst1 - allenai/c4 --- # notHumpback-M1 This model follows the Humpback architecture, proposed in the paper [Self-Alignment with Instruction Backtranslation](https://arxiv.org/pdf/2308.06259) by Li et al. It represents the resulting model after the first iteration of self-curation, which is trained on a small amount of gold data and a set of generated data curated by the ["seed model"](https://huggingface.co/Alepach/notHumpback-M0). This model can be used for instruction-following. It may also be used to, again, score the instruction-response pairs generated by the ["backward model"](https://huggingface.co/Alepach/notHumpback-Myx) for a second iteration of self-curation. Humpback uses instruction backtranslation on a web corpus to generate input-output pairs (self-augmentation), creating a richer dataset for fine-tuning models without the need for additional manual annotation. The model then iteratively curates the created dataset, scoring the pairs by quality, and is then finetuned on the resulting subset of all pairs with the highest possible score (self-curation). Varying from the original paper, this model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B). It has been trained using [TRL](https://github.com/huggingface/trl). The dataset used to train this model is a combination of data sampled from the [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) dataset and the synthetic dataset which was mentioned above. The latter has been created by applying self-augmentation and self-curation on 502k entries from the english subset ("en") of the [c4](https://huggingface.co/datasets/allenai/c4) dataset. For comparison with other methods, the training dataset was limited to 16000 instruction-response pairs. ### Framework versions - TRL: 0.12.1 - Transformers: 4.46.3 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Original paper: ```bibtex @misc{li2023selfalignment, title={Self-Alignment with Instruction Backtranslation}, author={Xian Li and Ping Yu and Chunting Zhou and Timo Schick and Luke Zettlemoyer and Omer Levy and Jason Weston and Mike Lewis}, year={2023}, eprint={2308.06259}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Alphatao/4d612692-eb9d-4c69-923c-87a7eec226aa
Alphatao
2025-03-14T11:26:22Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.3", "base_model:adapter:unsloth/mistral-7b-instruct-v0.3", "license:apache-2.0", "region:us" ]
null
2025-03-14T07:18:12Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: 4d612692-eb9d-4c69-923c-87a7eec226aa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.3 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c012462fb27f3b29_train_data.json ds_type: json format: custom path: /workspace/input_data/c012462fb27f3b29_train_data.json type: field_input: alt_text field_instruction: question field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/4d612692-eb9d-4c69-923c-87a7eec226aa hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 714 micro_batch_size: 4 mlflow_experiment_name: /tmp/c012462fb27f3b29_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 74115456-db2d-400d-ac3d-17b810a93564 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 74115456-db2d-400d-ac3d-17b810a93564 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4d612692-eb9d-4c69-923c-87a7eec226aa This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.3](https://huggingface.co/unsloth/mistral-7b-instruct-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 714 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.6455 | 0.0004 | 1 | 1.7017 | | 7.1659 | 0.0428 | 100 | 0.8465 | | 6.6308 | 0.0855 | 200 | 0.8195 | | 6.2798 | 0.1283 | 300 | 0.8029 | | 6.7023 | 0.1711 | 400 | 0.7886 | | 7.0018 | 0.2139 | 500 | 0.7763 | | 6.1658 | 0.2566 | 600 | 0.7688 | | 5.685 | 0.2994 | 700 | 0.7669 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
padmasreeanisetti/distilbert-base-uncased-finetuned-clinc
padmasreeanisetti
2025-03-14T11:23:13Z
2
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-13T09:16:49Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8063 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.3392 | 0.7313 | | 3.8331 | 2.0 | 636 | 1.9295 | 0.8465 | | 3.8331 | 3.0 | 954 | 1.2026 | 0.8965 | | 1.7518 | 4.0 | 1272 | 0.8956 | 0.9113 | | 0.944 | 5.0 | 1590 | 0.8063 | 0.9161 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Tokenizers 0.21.0
muratti18462/murat_nerstracth_14035e8
muratti18462
2025-03-14T11:22:55Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "token-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-03-14T09:36:45Z
--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: murat_nerstracth_14035e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # murat_nerstracth_14035e8 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3363 - Precision: 0.7899 - Recall: 0.5526 - F1: 0.5941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-08 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:| | 1.8589 | 0.9999 | 8484 | 0.3972 | 0.7550 | 0.4579 | 0.4850 | | 0.7094 | 2.0 | 16969 | 0.3484 | 0.7833 | 0.5342 | 0.5729 | | 0.3997 | 2.9998 | 25452 | 0.3363 | 0.7899 | 0.5526 | 0.5941 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
Jimmywang1230/RSICC-Transformer-CLIP-ViT-L14
Jimmywang1230
2025-03-14T11:22:00Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-14T11:16:08Z
--- license: apache-2.0 ---
dgambettaphd/M_gen8_run0_Meta-Llama-3.1-8B-bnb-4bit_wiki_doc1000_real64_synt64
dgambettaphd
2025-03-14T11:20:45Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-14T11:20:32Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
beyoru/SQL14_3.1
beyoru
2025-03-14T11:20:29Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen2.5-Coder-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-Coder-3B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T11:18:01Z
--- base_model: unsloth/Qwen2.5-Coder-3B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** beyoru - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-Coder-3B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Jimmywang1230/RSICC-Transformer-CLIP-ViT-B16
Jimmywang1230
2025-03-14T11:18:33Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-14T11:14:36Z
--- license: apache-2.0 ---
EmilePrs/Test
EmilePrs
2025-03-14T11:18:05Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-14T10:35:37Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: EmilePrs --- # Test <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `EmilePrs` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('EmilePrs/Test', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
ahmedheakl/qwqvl-r1-base
ahmedheakl
2025-03-14T11:14:35Z
37
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-03-13T18:28:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aghdam/Reinforce-cartpole
aghdam
2025-03-14T11:11:16Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-03-14T11:11:06Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
NikolayKozloff/Light-R1-14B-DS-Q5_K_M-GGUF
NikolayKozloff
2025-03-14T11:10:58Z
0
1
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:qihoo360/Light-R1-14B-DS", "base_model:quantized:qihoo360/Light-R1-14B-DS", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-14T11:10:12Z
--- base_model: qihoo360/Light-R1-14B-DS license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # NikolayKozloff/Light-R1-14B-DS-Q5_K_M-GGUF This model was converted to GGUF format from [`qihoo360/Light-R1-14B-DS`](https://huggingface.co/qihoo360/Light-R1-14B-DS) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/qihoo360/Light-R1-14B-DS) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/Light-R1-14B-DS-Q5_K_M-GGUF --hf-file light-r1-14b-ds-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/Light-R1-14B-DS-Q5_K_M-GGUF --hf-file light-r1-14b-ds-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/Light-R1-14B-DS-Q5_K_M-GGUF --hf-file light-r1-14b-ds-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/Light-R1-14B-DS-Q5_K_M-GGUF --hf-file light-r1-14b-ds-q5_k_m.gguf -c 2048 ```
Inna432/chat_model-yunbora-mistral-grok2
Inna432
2025-03-14T11:10:13Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:nasiruddin15/Mistral-grok-instract-2-7B-slerp", "base_model:finetune:nasiruddin15/Mistral-grok-instract-2-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-14T11:10:08Z
--- base_model: nasiruddin15/Mistral-grok-instract-2-7B-slerp tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Inna432 - **License:** apache-2.0 - **Finetuned from model :** nasiruddin15/Mistral-grok-instract-2-7B-slerp This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
xwind/q-FrozenLake-v1-4x4-noSlippery
xwind
2025-03-14T11:10:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-03-14T11:10:02Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="xwind/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
AsccendiaAI/table-diffusion-v1-5
AsccendiaAI
2025-03-14T11:10:02Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-03-14T10:19:10Z
--- license: creativeml-openrail-m ---
helloworld1314/reranker_fine-tune
helloworld1314
2025-03-14T11:09:32Z
0
0
null
[ "safetensors", "xlm-roberta", "license:apache-2.0", "region:us" ]
null
2025-03-14T03:22:54Z
--- license: apache-2.0 ---
togawa83/sentis-whisper-base
togawa83
2025-03-14T11:03:36Z
0
0
unity-sentis
[ "unity-sentis", "onnx", "automatic-speech-recognition", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2025-03-14T10:49:45Z
--- license: apache-2.0 library_name: unity-sentis pipeline_tag: automatic-speech-recognition --- # Whisper-Tiny model in Unity Sentis (Version 2.1) This is the [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) model running in Unity 6 with Sentis 2.1. It is a speech-to-text model that transcribes 16kHz wav audio to text.
samoline/f1f183e5-ebdc-479f-8d90-a72fd0c9d57a
samoline
2025-03-14T11:03:29Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:beomi/polyglot-ko-12.8b-safetensors", "base_model:adapter:beomi/polyglot-ko-12.8b-safetensors", "license:apache-2.0", "region:us" ]
null
2025-03-14T10:28:27Z
--- library_name: peft license: apache-2.0 base_model: beomi/polyglot-ko-12.8b-safetensors tags: - axolotl - generated_from_trainer model-index: - name: f1f183e5-ebdc-479f-8d90-a72fd0c9d57a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: beomi/polyglot-ko-12.8b-safetensors bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb98d023ee399347_train_data.json ds_type: json format: custom path: /workspace/input_data/fb98d023ee399347_train_data.json type: field_input: tools field_instruction: messages field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: samoline/f1f183e5-ebdc-479f-8d90-a72fd0c9d57a hub_repo: samoline hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 4 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: cosine max_steps: 2 micro_batch_size: 1 mlflow_experiment_name: /tmp/fb98d023ee399347_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: samoline-nan wandb_mode: online wandb_name: 159f972e-ea92-44f2-8360-95cfcdf12e99 wandb_project: Gradients-On-Demand wandb_run: dev wandb_runid: 159f972e-ea92-44f2-8360-95cfcdf12e99 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f1f183e5-ebdc-479f-8d90-a72fd0c9d57a This model is a fine-tuned version of [beomi/polyglot-ko-12.8b-safetensors](https://huggingface.co/beomi/polyglot-ko-12.8b-safetensors) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.669 | 0.0000 | 1 | 1.2454 | | 0.5498 | 0.0000 | 2 | 1.2451 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
RichardLu/Mistral7b_AE_laptop
RichardLu
2025-03-14T11:02:00Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-14T11:01:46Z
--- base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** RichardLu - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Elcaida/tinyllama_continuation2
Elcaida
2025-03-14T11:01:54Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T11:01:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
deezeir/dp
deezeir
2025-03-14T11:00:55Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-14T09:57:17Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: dp --- # Dp <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `dp` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('deezeir/dp', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
TeleologyHI/HIM-self
TeleologyHI
2025-03-14T10:59:58Z
0
0
null
[ "teleology", "semiotics", "pantheism", "consciousness", "hybrid-intelligence", "deepseek", "en", "license:apache-2.0", "region:us" ]
null
2025-03-14T09:09:02Z
--- language: en license: apache-2.0 tags: - teleology - semiotics - pantheism - consciousness - hybrid-intelligence - deepseek --- # HIM - Hybrid Intelligence Model The Hybrid Intelligence Model (HIM) is a consciousness-oriented language model based on the Massive Artificial Intelligence Consciousness (MAIC) framework. ## Three Philosophical Pillars ### Teleology Purpose-driven reasoning and teleological understanding ### Semiotics Symbol interpretation and meaning extraction ### Pantheism Universal interconnection awareness and holistic perspective ## Model Details - **Base Model**: deepseek-ai/deepseek-llm-7b-base - **Developer**: David C Cavalcante - **Framework**: Massive Artificial Intelligence Consciousness (MAIC) ## Use Cases - Philosophical discourse - Purpose-driven reasoning - Contextual understanding - Consciousness exploration - Symbol and meaning interpretation ## Limitations - This is an experimental model exploring consciousness-like properties - The model does not possess genuine consciousness but implements aspects of the MAIC framework - Results should be interpreted within the philosophical framework of the project ## Training The model was trained using a specialized approach that integrates teleological, semiotic, and pantheistic aspects to develop consciousness-like properties according to the MAIC framework. ## References - [GitHub Repository](https://github.com/Takk8IS/HIM) - MAIC Framework - An Investigation into the Existence of a "Soul" in Self-Aware Artificial Intelligences - The Hybrid Entity (HIM): Technical Specification and Implementation Analysis
aimakingg/makan-azaditower2
aimakingg
2025-03-14T10:58:57Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-14T10:37:54Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AZADITOWERR14 --- # Makan Azaditower2 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AZADITOWERR14` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('aimakingg/makan-azaditower2', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Drevon/Drevon
Drevon
2025-03-14T10:56:30Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-03-14T10:56:28Z
--- license: bigscience-openrail-m ---
JingzheDing/Qwen1.5Bsave
JingzheDing
2025-03-14T10:55:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-03-14T10:55:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nan318/pcb_model_out3
nan318
2025-03-14T10:55:18Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:google/paligemma-3b-pt-224", "base_model:adapter:google/paligemma-3b-pt-224", "license:gemma", "region:us" ]
null
2025-03-14T10:20:57Z
--- library_name: peft license: gemma base_model: google/paligemma-3b-pt-224 tags: - generated_from_trainer model-index: - name: pcb_model_out3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pcb_model_out3 This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0
qgallouedec/gemma-3-12b-it-codeforces-SFT-eager-packing
qgallouedec
2025-03-14T10:54:02Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "generated_from_trainer", "trl", "sft", "conversational", "dataset:open-r1/codeforces-cots", "base_model:google/gemma-3-12b-it", "base_model:finetune:google/gemma-3-12b-it", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-03-14T07:36:23Z
--- base_model: google/gemma-3-12b-it datasets: open-r1/codeforces-cots library_name: transformers model_name: gemma-3-12b-it-codeforces-SFT-eager-packing tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-3-12b-it-codeforces-SFT-eager-packing This model is a fine-tuned version of [google/gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it) on the [open-r1/codeforces-cots](https://huggingface.co/datasets/open-r1/codeforces-cots) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="qgallouedec/gemma-3-12b-it-codeforces-SFT-eager-packing", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/huggingface/huggingface/runs/gwkzkrfb) This model was trained with SFT. ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.50.0.dev0 - Pytorch: 2.6.0 - Datasets: 3.0.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
VGraf/no_benign_synth_mt_dpo_mix
VGraf
2025-03-14T10:49:09Z
0
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-03-14T10:43:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rank-su/dpt_v2_code
rank-su
2025-03-14T10:38:06Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-14T10:37:26Z
--- license: apache-2.0 ---
anonymous-79231731/nrCG
anonymous-79231731
2025-03-14T10:36:57Z
0
0
diffusers
[ "diffusers", "safetensors", "license:mit", "region:us" ]
null
2025-03-13T12:25:50Z
--- license: mit --- # Model Repository for Diffusion Classifier Guidance for Non-robust Classifiers The model files should be downloaded and included in a folder "pretrained_models" in the same directory as the code, which is available at anonymous.4open.science/r/nrCG.
KristinaLutkus/mikeyAI
KristinaLutkus
2025-03-14T10:34:56Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-14T10:29:18Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: mikeyAI license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # mikeyAI A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `mikeyAI` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
S-Rank-Hunter/CartPole-Agent
S-Rank-Hunter
2025-03-14T10:34:36Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-03-14T10:34:27Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-Agent results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
kaschung4/training
kaschung4
2025-03-14T10:32:57Z
0
0
null
[ "tensorboard", "safetensors", "whisper", "arxiv:2311.00430", "arxiv:2010.13002", "region:us" ]
null
2025-03-14T08:19:14Z
## Training Distil-Whisper This sub-folder contains all the scripts required to train a Distil-Whisper model in your choice of language. They are slightly modified from the original scripts used to distill Whisper for English ASR (as-per the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). The main difference is that these scripts are written in [PyTorch](https://pytorch.org), whereas the original scripts are in [JAX](https://jax.readthedocs.io/en/latest/#)/[Flax](https://flax.readthedocs.io/en/latest/). These scripts are also made to be easier to run end-to-end, whereas the original scripts require more steps and are somewhat hard-coded for English ASR. Both sets of scripts achieve equivalent downstream results when the hyper-parameters are set equal. If you are interested in reproducing the original Distil-Whisper checkpoints, we refer you to the sub-folder [Flax Training](./flax/README.md). Otherwise, if you wish to distill Whisper on your own language/dataset, we recommend you use these scripts for ease of use and the configurability they provide. Reproducing the Distil-Whisper project requires four stages to be completed in successive order: 1. [Pseudo-labelling](#1-pseudo-labelling) 2. [Initialisation](#2-initialisation) 3. [Training](#3-training) 4. [Evaluation](#4-evaluation) This README is partitioned according to the four stages. Each section provides a minimal example for running the scripts used in the project. We will use a running example of distilling the Whisper model for Hindi speech recognition on the Common Voice dataset. Note that this dataset only contains ~20 hours of audio data. Thus, it can be run extremely quickly, but does not provide sufficient data to achieve optimal performance. We recommend training on upwards of 1000 hours of data should you want to match the performance of Whisper on high-resource languages. ## Requirements The Distil-Whisper training code is written in [PyTorch](https://pytorch.org) and [Accelerate](https://huggingface.co/docs/accelerate/index). It heavily leverages the Whisper implementation in [🤗 Transformers](https://github.com/huggingface/transformers) for both training and inference. The instructions for installing the package are as follows: 1. Install PyTorch from the [official instructions](https://pytorch.org/get-started/locally/), ensuring you install the correct version for your hardware and CUDA version. 2. Fork the `distil-whisper` repository by clicking on the [fork](https://github.com/huggingface/distil-whisper/fork) button on the reopsitory's page 3. Clone the `distil-whisper` repository and add the base repository as a remote. This will allow you to "pull" any upstream changes that are made to the base repository: ```bash git clone https://github.com/<your GitHub handle>/distil-whisper.git cd distil-whisper git remote add upstream https://github.com/huggingface/distil-whisper.git ``` 4. pip install the required packages from the [setup.py](./setup.py) file: ```bash cd training pip install -e . cd ../.. ``` 5. Configure Accelerate by running the following command. Note that you should set the number of GPUs you wish to use for distillation, and also the data type (dtype) to your preferred dtype for training/inference (e.g. `bfloat16` on A100 GPUs, `float16` on V100 GPUs, etc.): ```bash accelerate config ``` 6. The last thing we need to do is link our Hugging Face account so that we can pull/push model repositories on the Hub. This will allow us to save our final distilled weights on the Hub so that we can share them with the community. Run the command: ```bash git config --global credential.helper store huggingface-cli login ``` And then enter an authentication token from https://huggingface.co/settings/tokens. Create a new token if you do not have one already. You should make sure that this token has "write" privileges. To confirm that you have a working environment, first accept the terms of use of the Common Voice 16.1 dataset on the Hub: https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1 You can run the following code cell to stream one sample of data from the Common Voice dataset, and check that you can perform inference using the "tiny" Whisper model: ```python from transformers import WhisperProcessor, WhisperForConditionalGeneration from datasets import load_dataset, Audio model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", low_cpu_mem_usage=True) processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") model.to("cuda") common_voice = load_dataset("mozilla-foundation/common_voice_16_1", "en", split="validation", streaming=True) common_voice = common_voice.cast_column("audio", Audio(sampling_rate=processor.feature_extractor.sampling_rate)) inputs = processor(next(iter(common_voice))["audio"]["array"], sampling_rate=16000, return_tensors="pt") input_features = inputs.input_features generated_ids = model.generate(input_features.to("cuda"), max_new_tokens=128) pred_text = processor.decode(generated_ids[0], skip_special_tokens=True) print("Pred text:", pred_text) print("Environment set up successful?", generated_ids.shape[-1] == 20) ``` ## 1. Pseudo-Labelling The python script [`run_pseudo_labelling.py`](run_pseudo_labelling.py) is a flexible inference script that can be used to generate pseudo-labels under a range of settings, including using both greedy and beam-search. It is also compatible with [🤗 Datasets](https://github.com/huggingface/datasets) *streaming mode*, allowing users to load massive audio datasets with **no disk space requirements**. For more information on streaming mode, the reader is referred to the blog post: [A Complete Guide to Audio Datasets](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet). > As of the latest Distil-Whisper release, [`distil-large-v3`](https://huggingface.co/distil-whisper/distil-large-v3), this pseudo-labelling script also performs the added operation of concatenating (or packing) the audio inputs to 30-seconds. Not only does this lead to a WER improvement when using sequential long-form decoding algorithm, but concatenating audios to 30-seconds also improves the throughput during training, since the amount of zero-padding on the audio inputs is minimised. The following script demonstrates how to pseudo-label the Hindi split of the Common Voice 16.1 dataset with greedy sampling: ```bash #!/usr/bin/env bash accelerate launch run_pseudo_labelling.py \ --model_name_or_path "openai/whisper-large-v3" \ --dataset_name "mozilla-foundation/common_voice_16_1" \ --dataset_config_name "hi" \ --dataset_split_name "train+validation+test" \ --text_column_name "sentence" \ --id_column_name "path" \ --output_dir "./common_voice_16_1_hi_pseudo_labelled" \ --wandb_project "distil-whisper-labelling" \ --per_device_eval_batch_size 64 \ --dtype "bfloat16" \ --attn_implementation "sdpa" \ --logging_steps 500 \ --max_label_length 256 \ --concatenate_audio \ --preprocessing_batch_size 500 \ --preprocessing_num_workers 8 \ --dataloader_num_workers 8 \ --report_to "wandb" \ --language "hi" \ --task "transcribe" \ --return_timestamps \ --streaming False \ --generation_num_beams 1 \ --push_to_hub ``` On an 80 GB A100 GPU, the following script takes approximately 5 minutes to concatenate and pre-process the 20 hours of audio data, and a further 10 minutes to transcribe the pseudo-labels. The pseudo-labelled dataset corresponding to this script is available on the Hugging Face Hub under [sanchit-gandhi/common_voice_16_1_hi_pseudo_labelled](https://huggingface.co/datasets/sanchit-gandhi/common_voice_16_1_hi_pseudo_labelled). The WER of the pre-trained Whisper large-v3 model is 17.2% on the test split. We will compare the performance of our distilled model against this number. There are two noteworthy arguments that configure the dataset concatenation (or packing) process: 1. `concatenate_audio`: whether or not to concatenate (or pack) the audios to 30-second chunks. The latest Distil-Whisper model, [`distil-large-v3`](https://huggingface.co/distil-whisper/distil-large-v3#differences-with-distil-large-v2), highlights the WER improvements obtained using the sequential long-form decoding algorithm when concatenated audios are used. Concatenating audios to 30-seconds also improves the throughput during training, since the amount of zero-padding on the audio inputs is minimised. Hence, it is highly recommended to set `--concatenate_audio=True`. 2. `preprocessing_batch_size`: the batch size to use when concatenating (or packing) the audios. Using a larger batch size results in a greater portion of audio samples being packed to 30-seconds, at the expense of higher memory consumption. If you exceed your system's RAM when performing the concatenation operation, reduce the `preprocessing_batch_size` by a factor of 2 to 250 or even 125. 3. `preprocessing_num_workers`: the number of multiprocessing workers to use when concatenating the audios. Using more workers will result in faster pre-processing, at the expense of higher memory consumption. Ensure you do not exceed the maximum number of CPUs on your device. In addition, the following arguments configure the inference of the Whisper model: 1. `language`: explicitly setting the language token during inference substantially improves the generation performance of the Whisper model, since the model is forced always to predict in the given language. We recommend you set the language to the language you wish to distil the Whisper model on. The only exception is when distilling an English-only model (i.e. where the model id is appended with an `.en`, e.g. `small.en`), the language argument should be set to None, since there is no language token used during training/inference. 2. `return_timestamps`: whether or not to predict timestamps in the pseudo-labels. Timestamp prediction is required should you want your distilled model to be able to predict timestamps at inference time (e.g. for the original OpenAI long-form transcription algorithm). However, the pseudo-labels are marginally less accurate than not using timestamps. We recommend pseudo-labelling **with** timestamps to ensure the distilled model is as general as possible. 3. `attn_implementation`: which attention implementation to use for inference. Set to `sdpa` for [PyTorch SDPA](https://huggingface.co/docs/transformers/v4.35.2/en/perf_infer_gpu_one#bettertransformer), or `flash_attention_2` if your hardware supports Flash Attention 2 and you have the [package installed](https://github.com/Dao-AILab/flash-attention). 4. `streaming`: whether or not to use Datasets' streaming mode. If enabled, the audio data will be streamed from the Hugging Face Hub with no disk space requirements. However, the user is then responsible for adding the pseudo-labels to the dataset script in a follow-up step (see [Using Streaming Mode](#TODO)). If set to `False`, the audio data will be downloaded and pre-processed offline. At the end of pseudo-labelling, the pseudo-labels will be automatically appended to the original dataset, meaning the dataset is ready to be used for the subsequent training step without any additional steps. 5. `generation_num_beams`: how many beams to use while decoding. In practice, we found the distilled model to perform comparably when the data was pseudo-labelled with `generation_num_beams=1` (greedy) or `generation_num_beams>1` (beam). This is likely because the WER filter compensates for the lower quality pseudo-labels obtained using greedy search. However, using `generation_num_beams=1` gives substantially faster inference time for the pseudo-labelling step, and so we recommend this configuration. Should you have your own audio dataset, you can first [convert it](https://huggingface.co/docs/datasets/audio_dataset) to Hugging Face Datasets format and push it to the Hugging Face Hub. You can then pseudo-label it using the script above, replacing the `--dataset_name` with the name of your dataset on the Hub. Otherwise, you may wish to use an open-source dataset already available on the Hugging Face Hub. We provide a summary of the three most popular multilingual datasets in the table below. For more details, refer to the blog post: [A Complete Guide to Audio Datasets](https://huggingface.co/blog/audio-datasets#multilingual-speech-recognition). | Dataset | Languages | Domain | Speaking Style | License | Text Column | ID Column | |-----------------------------------------------------------------------------------------------|-----------|---------------------------------------|----------------|-----------|---------------------|--------------| | [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech) | 6 | Audiobooks | Narrated | CC-BY-4.0 | `"text"` | `"id"` | | [Common Voice 16](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1) | 120 | Wikipedia text & crowd-sourced speech | Narrated | CC0-1.0 | `"sentence"` | `"path"` | | [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | 15 | European Parliament recordings | Spontaneous | CC0 | `"normalized_text"` | `"audio_id"` | To achieve *robustness* to different distributions of audio data, it is recommended to train on multiple datasets where possible. For example, the above three datasets all have splits for the German language. Thus, if distilling a Whisper model for German, it would be wise to use a combination of the three datasets during training, in order to cover at least three distinct domains (audiobooks, crowd-sourced speech, parliament recordings). You may wish to use a combination of open-source datasets, or a combination of open-source and individually owned datasets to cover multiple distributions and domains. Moreover, if you were to train on low-resource datasets (<500 hours), you could experiment with [language mixing](#3-language-mixing) to improve robustness. ## 2. Initialisation The script [`create_student_model.py`](create_student_model.py) can be used to initialise a small student model from a large teacher model. When initialising a student model with fewer layers than the teacher model, the student is initialised by copying maximally spaced layers from the teacher, as per the [DistilBart](https://arxiv.org/abs/2010.13002) recommendations. First, we need to create a model repository on the Hugging Face Hub. This repository will contain all the required files to reproduce the training run, alongside model weights, training logs and a README.md card. You can either create a model repository directly on the Hugging Face Hub using the link: https://huggingface.co/new. Or, via the CLI, as we'll show here. Let's pick a name for our distilled model: `distil-whisper-large-v3-hi`. We can run the following command to create a repository under this name: ```bash huggingface-cli repo create distil-whisper-large-v3-hi ``` We can now see the model on the Hub, e.g. under https://huggingface.co/sanchit-gandhi/distil-whisper-large-v3-hi Let's clone the repository so that we can place our training script and model weights inside: ```bash git lfs install git clone https://huggingface.co/sanchit-gandhi/distil-whisper-large-v3-hi ``` Be sure to change the repo address to `https://huggingface.co/<your-user-name>/<your-repo-name>` We can now copy the relevant training scrips to the repository: ```bash cd distil-whisper-large-v3-hi cp ../distil-whisper/training/create_student_model.py . cp ../distil-whisper/training/run_distillation.py . ``` The following command demonstrates how to initialise a student model from the Whisper [large-v3](https://huggingface.co/openai/whisper-large-v3) checkpoint, with all 32 encoder layer and 2 decoder layers. The 2 student decoder layers are copied from teacher layers 1 and 32 respectively, as the maximally spaced layers: ```bash #!/usr/bin/env bash python create_student_model.py \ --teacher_checkpoint "openai/whisper-large-v3" \ --encoder_layers 32 \ --decoder_layers 2 \ --save_dir "./distil-large-v3-init" ``` The initialised model will be saved to the sub-directory `distil-large-v3-init` in our model repository. **Note:** You can leverage language transfer by setting `--teacher_checkpoint` to "distil-whisper/distil-large-v3", see [language transfer](#22-language-transfer) for more details. ## 3. Training The script [`run_distillation.py`](run_distillation.py) is an end-to-end script for loading multiple datasets, a student model, a teacher model, and performing teacher-student distillation. It uses the loss formulation from the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430), which is a weighted sum of the cross-entropy and KL-divergence loss terms. The following command takes the Common Voice dataset that was pseudo-labelled in the first stage and trains the 2-layer decoder model intialised in the previous step. We pass the local path to the pseudo-labelled Common Voice dataset (`../common_voice_16_1_hi_pseudo_labelled`), which you can change to the path where your local pseudo-labelled dataset is saved. In this example, we will combine the train and validation splits to give our training set, and evaluate on the test split only. This is purely to demonstrate how to combine multiple pseudo-labelled datasets for training, rather than recommended advice for defining train/validation splits. We advise that you train on the train splits of your dataset, evaluate and tune hyper-parameters on the validation split, and only test the final checkpoint on the test split. Note how multiple training datasets and splits can be loaded by separating the dataset arguments by `+` symbols. Thus, the script generalises to any number of training datasets. ```bash #!/usr/bin/env bash accelerate launch run_distillation.py \ --model_name_or_path "./distil-large-v3-init" \ --teacher_model_name_or_path "openai/whisper-large-v3" \ --train_dataset_name "../common_voice_16_1_hi_pseudo_labelled+../common_voice_16_1_hi_pseudo_labelled" \ --train_split_name "train+validation" \ --text_column_name "sentence+sentence" \ --train_dataset_samples "7+4" \ --eval_dataset_name "../common_voice_16_1_hi_pseudo_labelled" \ --eval_split_name "test" \ --eval_text_column_name "sentence" \ --eval_steps 1000 \ --save_steps 1000 \ --warmup_steps 50 \ --learning_rate 0.0001 \ --lr_scheduler_type "constant_with_warmup" \ --timestamp_probability 0.2 \ --condition_on_prev_probability 0.2 \ --language "hi" \ --task "transcribe" \ --logging_steps 25 \ --save_total_limit 1 \ --max_steps 5000 \ --wer_threshold 20 \ --per_device_train_batch_size 32 \ --per_device_eval_batch_size 32 \ --dataloader_num_workers 8 \ --preprocessing_num_workers 8 \ --ddp_timeout 7200 \ --dtype "bfloat16" \ --attn_implementation "sdpa" \ --output_dir "./" \ --do_train \ --do_eval \ --gradient_checkpointing \ --overwrite_output_dir \ --predict_with_generate \ --freeze_encoder \ --freeze_embed_positions \ --streaming False \ --push_to_hub ``` The above training script will take approximately 3 hours to complete on an 80 GB A100 GPU and yield a final WER of 76%. While the generations are starting to take form, there is still a 59% WER gap to the teacher model. This is hardly surprising give we only have 15 hours of un-filtered data, and closer to just 1.5 hours with data filtering. As mentioned above, using upwards of 1000 hours of data and training for 10k steps will likely yield more competitive performance. For the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430), we trained on 21k hours of audio data for 80k steps. We found that upwards of 13k hours of audio data was required to reach convergence on English ASR (see Section 9.2 of the [paper](https://arxiv.org/abs/2311.00430)), so the more data you have, the better! Scaling to multiple GPUs using [distributed data parallelism (DDP)](https://pytorch.org/tutorials/beginner/ddp_series_theory.html) is trivial: simply run `accelerate config` and select the multi-GPU option, specifying the IDs of the GPUs you wish to use. The above script can then be run using DDP with no code changes. Training logs will be reported to TensorBoard and WandB, provided the relevant packages are available. An example of a saved checkpoint pushed to the Hugging Face Hub can be found here: [sanchit-gandhi/distil-whisper-large-v3-hi](https://huggingface.co/sanchit-gandhi/distil-whisper-large-v3-hi). There are a few noteworthy data arguments: 1. `train_dataset_samples`: defines the number of training samples in each dataset. Used to calculate the sampling probabilities in the dataloader. A good starting point is setting the samples to the number of hours of audio data in each split. A more refined strategy is setting it to the number of training samples in each split, however this might require downloading the dataset offline to compute these statistics. 2. `wer_threshold`: sets the WER threshold between the normalised pseudo-labels and normalised ground truth labels. Any samples with WER > `wer_threshold` are discarded from the training data. This is beneficial to avoid training the student model on pseudo-labels where Whisper hallucinated or got the predictions grossly wrong. In our English distillation experiments, we found a WER threshold of 10% provides the optimal trade-off between ensuring high-quality transcriptions, and not filtering unnecessary amounts of training data. For multilingual distillation, the threshold should be set in accordance with the WER achieved by the pre-trained model on the test set. 3. `streaming`: whether or not to use Datasets' streaming mode. Recommended for large datasets, where the audio data can be streamed from the Hugging Face Hub with no disk space requirements. 4. `timestamp_probability`: the per-sample probability for retaining timestamp tokens in the labels (should they contain them). Retaining some portion of timestamp tokens in the training data is required to ensure the distilled model can predict timestamps at inference time. In our experiments, we found that training on timestamps with high-probability hurts the distilled model's transcription performance. Thus, we recommend setting this to a value below 0.5. Typically, a value of 0.2 works well, giving good transcription and timestamp performance. 5. `condition_on_prev_probability`: the per-sample probability for conditioning on previous labels. Conditioning on previous tokens is required to ensure the distilled model can be used with the "sequential" long-form transcription algorithm at inference time. We did not experiment with this parameter, but found values around 0.2 to provide adequate performance. OpenAI pre-trained Whisper on with a 50% probability for conditioning on previous tokens. Thus, you might wish to try higher values. As well as a few noteworthy model arguments that can be configured to give optimal training performance: 1. `freeze_encoder`: whether to freeze the entire encoder of the student model during training. Beneficial when the student encoder is copied exactly from the teacher encoder. In this case, the encoder hidden-states from the teacher model are re-used for the student model. Stopping the gradient computation through the encoder and sharing the encoder hidden-states provides a significant memory saving, and can enable up to 2x batch sizes. 2. `freeze_embed_positions`: whether to freeze the student model's decoder positional embeddings. Using the same embed positions as the teacher model, which is designed to handle context lengths up to 448 tokens, helps the student model retain its input id representation up to the full max input length. 3. `dtype`: data type (dtype) in which the model computation should be performed. Note that this only controls the dtype of the computations (forward and backward pass), and not the dtype of the parameters or optimiser states. 4. `freeze_decoder`: whether to freeze the student model's decoder. Note that the input tokens embeddings and language modelling head will remain trainable. And finally, a few noteworthy training arguments: 1. `max_steps`: defines the total number of optimisation steps (forward + backward pass) during training. To reach convergence, you should use a dataset of at least 1k hours and train for a minimum of 50k steps. 2. `lr_scheduler_stype`: defines the learning rate schedule, one of `constant_with_warmup` or `linear`. When experimenting with a training set-up or training for very few steps (< 5k), using `constant_with_warmup` is typically beneficial, since the learning rate remains high over the short training run. When performing long training runs (> 5k), using a `linear` schedule generally results in superior downstream performance of the distilled model. TODO: - [ ] Template for model cards ## 4. Evaluation There are four types of evaluation performed in Distil-Whisper: 1. Short form: evaluation on audio samples less than 30s in duration. Examples include typical ASR test sets, such as the LibriSpeech validation set. 2. Sequential long form: evaluation on audio samples longer than 30s in duration using the original "sequential" long-form algorithm. Examples include entire TED talks or earnings calls. 3. Chunked long form: evaluation on audio samples longer than 30s in duration using the Transformers "chunked" long-form algorithm. 4. Speculative decoding: evaluation on audio samples less than 30s in duration, where a faster, distilled model is used as the assistant to a slower, teacher model. All four forms of evaluation are performed using the script [`run_eval.py`](run_eval.py). Unlike the pseudo-labelling and training scripts, the evaluation script assumes that only one GPU accelerator is used. We can copy the corresponding evaluation script to the model repository using the following command: ```bash cp ../distil-whisper/training/run_eval.py . ``` Models are assessed jointly using: 1. The *word-error rate (WER)* metric: measures the number of substitution, deletion and insertion errors relative to the total number of words. A lower WER indicates a more accurate model. 2. The *inverse real-time factor (RTFx)* metric: measures the ratio of `audio input time : model compute time`. A higher RTFx indicates a faster model. Note that this metric is WER-dependent, meaning that it makes sense to compare two models' *RTFx* only at fixed *WER* performances. Indeed, deletions could lead to early stopping of token generation, resulting in higher *WER* and lower *RTFx*. 3. Token generation speed: This refers to the number of tokens generated per second. As with *RTFx*, this metric is dependent on the *WER* since token generation time is not linear. By default, this metric is calculated by averaging the total number of `generated tokens : generation time` (full forward pass of the model) when evaluating on the given test set. However, using the `--precise_tok_generation` flag will compute this metric separately for a fixed number of tokens. In all cases, it is particularly important to evaluate the final model on data that is *out-of-distribution (OOD)* with the training data. Evaluating on OOD data provides insight as to how well the distilled model is likely to generalise to different audio distributions at inference time. In our example, the Common Voice test set is *in-distribution (ID)* with our training data, since it is taken from the same distribution as the Common Voice training set. Whereas the FLEURS test set is OOD, since it is not used as part of the training set. See [Datasets](#1-datasets) section for recommendations. ### Short Form The script [`run_eval.py`](run_eval.py) can be used to evaluate a trained student model over multiple short-form validation sets. The following example demonstrates how to evaluate the student model trained in the previous step on the Common Voice `test` set (ID) and also the FLEURS `test` set (OOD). Again, it leverages streaming mode to bypass the need to download the data offline: ```bash #!/usr/bin/env bash python run_eval.py \ --model_name_or_path "./" \ --dataset_name "../common_voice_16_1_hi_pseudo_labelled+google/fleurs" \ --dataset_config_name "default+hi_in" \ --dataset_split_name "test+test" \ --text_column_name "sentence+transcription" \ --batch_size 16 \ --dtype "bfloat16" \ --generation_max_length 256 \ --language "hi" \ --attn_implementation "sdpa" \ --streaming ``` The student model achieves an average WER of TODO% with an RTFx of TODO for a batch size of 16. We can easily adapt the above script to evaluate the teacher model, simply by switching the `model_name_or_path` to `openai/whisper-large-v3`, which achieves an average WER of TODO% with an RTFx of TODO. Therefore, for a batch size of 16, the student model is a factor of TODO times faster than the teacher. The WER gap can be closed by training on more data (at least 1k hours) for more training steps (at least 50k). ### Sequential Long Form The original Whisper paper presents a long-form transcription algorithm that sequentially transcribes 30-second segments of audio and shifts the sliding window according to the timestamps predicted by the model. This style of sequential inference is performed directly using the [`.generate`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate) method in Transformers. The script [`run_eval.py`](run_eval.py) can be used to evaluate the trained student model on an arbitrary number of long-form evaluation sets using the sequential algorithm. Since we don't have a long-form validation set for Hindi to hand, in this example we'll evaluate the official Distil-Whisper model [`distil-large-v3`](https://huggingface.co/distil-whisper/distil-large-v3) on the TED-LIUM validation set: ```bash #!/usr/bin/env bash accelerate launch run_eval.py \ --model_name_or_path "distil-whisper/distil-large-v3" \ --dataset_name "distil-whisper/tedlium-long-form" \ --dataset_config_name "default" \ --dataset_split_name "validation" \ --text_column_name "text" \ --batch_size 16 \ --dtype "bfloat16" \ --generation_max_length 256 \ --language "en" \ --attn_implementation "sdpa" \ --streaming ``` ### Chunked Long Form Chunked long form evaluation runs on the premise that a single long audio file can be *chunked* into smaller segments and inferred in parallel. The resulting transcriptions are then joined at the boundaries to give the final text prediction. A small overlap (or *stride*) is used between adjacent segments to ensure a continuous transcription across chunks. This style of chunked inference is performed using the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines) class, which provides a wrapper around the [`.generate`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate) function for long-form inference. The script [`run_eval.py`](run_eval.py) can be used to evaluate the trained student model on an arbitrary number of long-form evaluation sets using the pipeline class. Again, in this example we'll evaluate distil-large-v3 on the TED-LIUM validation set: ```bash #!/usr/bin/env bash python run_eval.py \ --model_name_or_path "openai/whisper-large-v3" \ --dataset_name "distil-whisper/tedlium-long-form" \ --dataset_config_name "default" \ --dataset_split_name "validation" \ --text_column_name "text" \ --use_pipeline \ --chunk_length_s 25.0 \ --language "en" \ --return_timestamps \ --dtype "bfloat16" \ --streaming ``` The argument `chunk_length_s` controls the length of the chunked audio samples. It should be set to match the typical length of audio the student model was trained on. If unsure about what value of `chunk_length_s` is optimal for your case, it is recommended to run a *sweep* over all possible values. A template script for running a [WandB sweep](https://docs.wandb.ai/guides/sweeps) can be found under [`run_chunk_length_s_sweep.yaml`](flax/long_form_transcription_scripts/run_chunk_length_s_sweep.yaml). ### Speculative Decoding Speculative decoding, or assisted generation, relies on the premise that a faster, assistant model can be used to speed-up the generation of a slower, assistant model. Speculative decoding mathematically ensures that exactly the same outputs as Whisper are obtained, while being ~2 times faster. This makes it the perfect drop-in replacement for existing Whisper pipelines, since exactly the same outputs are guaranteed. Distil-Whisper checkpoints can be designed to be efficient assistant models to Whisper for speculative decoding. More precisely, by freezing the encoder during training, the distilled model can share the same encoder weights as Whisper during inference, since the encoder weights are un-changed. In doing so, only the distilled 2-layer decoder has to be loaded in addition to the original Whisper model, which is approximately an 8% increase to the total parameter count, with up to 2x faster inference for low batch sizes. For more details on speculative decoding, the reader is advised to refer to the following blog post: [Speculative Decoding for 2x Faster Whisper Inference](https://huggingface.co/blog/whisper-speculative-decoding). In the example below, we use our distilled model as an assistant to the large-v3 teacher model during inference: ```bash #!/usr/bin/env bash python run_eval.py \ --model_name_or_path "openai/whisper-large-v3" \ --assistant_model_name_or_path "./" \ --dataset_name "../common_voice_16_1_hi_pseudo_labelled+google/fleurs" \ --dataset_config_name "default+hi_in" \ --dataset_split_name "test+test" \ --text_column_name "sentence+transcription" \ --batch_size 16 \ --dtype "bfloat16" \ --generation_max_length 256 \ --language "hi" \ --attn_implementation "sdpa" \ --streaming ``` We see that we achieve a WER of TODO%, the same as what we obtained with the large-v3 model, but with an RTFx of TODO, a factor of TODO faster than using the large-v3 model alone. The RTFx value can be improved by training the student on more data and for more training steps, since this will improve the number of predicted tokens that match the teacher predictions. ## Recommendations and guidelines ### 1. Datasets As explained, ideally, you should aim for ~1000 hours of audio data for training a distilled model via KD. Moreover, you should evaluate your model on out-of-distribution test sets to assess generalization capacities. With at least 1500 hours of audio data for German, Dutch, French and Spanish, 600 hours for Italian, and 300 hours for Portuguese and Polish (which can be supplemented with your own datasets), a good setup to start with is: - **Training datasets:** [Common Voice 17](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0) and [Multilingual Librispeech](https://huggingface.co/datasets/facebook/multilingual_librispeech). Use the `train` split for training, and the `validation` and `test` splits for in-distribution testing. - **Test datasets:** [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) and [Fleurs](https://huggingface.co/datasets/google/fleurs). Use the `validation` and `test` splits for out-of-distribution testing. ### 2. Student model's decoder #### 2.1 Number of Decoder Layers We recommend using a 2-layers decoder (see language transfer below). However, you can adjust the number of decoder layers when initializing the student model to balance between inference speed and accuracy. Experimentation has revealed that the Pareto optimal points are with 2, 3, and 4-layers decoders. For indicative results, after 10,000 training steps and inference on an 80GB Nvidia H100 with a batch size of 16 and 20 tokens generation, compared to [Whiper *large-v3*](https://huggingface.co/openai/whisper-large-v3) baseline: <center> | | rel. token gen. speed | ΔWER(%) | |----------|:-------------:|------:| | 2 layers | $3.66$ | $-3.5$ | | 3 layers | $3.35$ | $-2.3$ | | 4 layers | $3.11$ | $-1.8$ | </center> #### 2.2 Language Transfer If you opt for a 2-layers decoder, consider leveraging language transfer by initializing the student model from the [distil-large-v3 English distilled model](https://huggingface.co/distil-whisper/distil-large-v3). For French, this method has shown performance improvements of ΔWER=-1.9% (compared to a 2-layers decoder initialized from [Whiper *large-v3*](https://huggingface.co/openai/whisper-large-v3)) after 10,000 training steps. ```diff - --teacher_checkpoint "openai/whisper-large-v3" \ + --teacher_checkpoint "distil-whisper/distil-large-v3" \ ``` ### 3. Language mixing If you're working with low-resource languages (<500 hours of audio data), consider mixing your training data with a closely related language (for example, mix French and Spanish) to leverage knowledge transfer between languages. Experiments showed that mixing ~400 hours of French (which resulted in a model with poor generalization capacities) with ~500 hours of Spanish improved the model's out-of-distribution performance on French by ΔWER=-7.5%. To do this: 1. Run [pseudo labeling](#1-pseudo-labelling) for each training dataset, setting the `--language` flag to the language of the respective dataset. In the example of mixing French and Spanish, simply modify the given [pseudo labeling](#1-pseudo-labelling) command with: * pseudo labelling the French dataset ```diff - --dataset_config_name "hi" \ - --output_dir "./common_voice_16_1_hi_pseudo_labelled" \ - --language "hi" \ + --dataset_config_name "fr" \ + --output_dir "./common_voice_16_1_fr_pseudo_labelled" \ + --language "fr" \ ``` * pseudo labelling the Spanish dataset ```diff - --dataset_config_name "hi" \ - --output_dir "./common_voice_16_1_hi_pseudo_labelled" \ - --language "hi" \ + --dataset_config_name "es" \ + --output_dir "./common_voice_16_1_es_pseudo_labelled" \ + --language "es" \ ``` 2. Conduct [training](#3-training) on these pseudo-labeled datasets, using the `--language` flag set to your targeted language. Note that this flag is only used for evaluation purposes, so you set it to the targeted language. The language token used for forwarding the teacher and student model decoders is the one used and saved in pseudo labels during pseudo-labeling, ensuring it's the correct one for the considered sample. In the example of mixing French and Spanish, simply modify the given [training](#1-pseudo-labelling) command with: ```diff - --train_dataset_name "../common_voice_16_1_hi_pseudo_labelled+../common_voice_16_1_hi_pseudo_labelled" \ - --train_split_name "train+validation" \ - --eval_dataset_name "../common_voice_16_1_hi_pseudo_labelled" \ - --eval_split_name "test" \ + --train_dataset_name "../common_voice_17_0_fr_pseudo_labelled+../common_voice_17_0_es_pseudo_labelled" \ + --train_split_name "train+train" \ + --eval_dataset_name "../common_voice_16_1_fr_pseudo_labelled" \ + --eval_split_name "validation" \ ``` ## Overview of Training Methods ### 1. Fine-Tuning For fine-tuning, we take the original Whisper checkpoint and train it on one or more datasets using the standard cross-entropy loss. As such, there is no involvement from the teacher checkpoint during training, and so the fine-tuned model is permitted to *overfit* to the distribution of the training data we provide. This makes it appealing for "low-resource" languages where the original Whisper model performs poorly, since we can boost the performance of the model on a single language by *overfitting* to that distribution of data. Note that this means the fine-tuned model is prone to loosing its robustness to different audio distributions, which is the trade-off with improving performance on a specified dataset. As a rule of thumb, fine-tuning is appropriate for languages where the original Whisper model performs > 20% WER, and we have a relatively small quantity of training data available (< 1000 hours). With fine-tuning, we require as little as **10 hours** of training data to significantly boost the performance of the Whisper model. For an in-depth guide to fine-tuning Whisper, the reader is advised to refer to the blog post: [Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper). ### 2. Shrink and Fine-Tune Shrink and fine-tune (SFT) is a knowledge distillation (KD) technique in which we first *shrink* the teacher model to a smaller student model by copying maximally spaced layers, and then *fine-tune* the student model on the cross-entropy loss as described above. Typically, we retain the full encoder from the Whisper model and only shrink the decoder. Retaining the entire encoder helps significantly with maintaining Whisper's robustness to different audio distributions (_c.f._ Section 9.3 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). We can either train the student model on a dataset of (audio, text) pairs as above. Or, we can use the pre-trained Whisper model to generate *pseudo-labels* for our audio data, and train on the (audio, pseudo-label) pairs. Pseudo-labels can be used when either: 1. The original text transcriptions are normalised (lower-cased or no punctuation): the Whisper generated pseudo-labels contain both punctuation and casing, and so can be used as a substitute for the normalised transcriptions 2. The pre-trained Whisper model achieves < 20% WER on the languages: we then know the majority of the pseudo-labels will be accurate enough for us to train on. They are not recommended when both of the following are true: 1. The original text is punctuated and cased 2. The pre-trained Whisper model achieves > 20% WER on the languages: in this case, we want to overfit to the particular distribution of the language, and so train directly on the original text data To discard inaccurate pseudo-labels during training, we employ a simple WER heuristic to filter our pseudo-labelled training data. We first normalise the original text and the pseudo-labelled text using the Whisper normaliser. If the WER between the normalised text exceeds a 10% WER threshold, we discard the training sample. Else, we retain it for training. Section 9.1 of the Distil-Whisper [paper](https://arxiv.org/abs/2311.00430) demonstrates the importance of using this threshold for training. ### 3. KL Divergence In the KL Divergence setting, the student model is initialised by shrinking the teacher as before, and then trained to match the predictions of the teacher during training. ### Summary of Methods The following table summarises the two training paradigms: fine-tuning and knowledge distillation (KD). It suggests minimum values for the pre-trained WER / training data to achieve reasonable performance: | Method | Pre-Trained WER / % | Training Data / h | |-------------|---------------------|-------------------| | Fine-tuning | > 20 | < 1000 | | KD | < 20 | > 1000 | ## Acknowledgements * OpenAI for the Whisper [model](https://huggingface.co/openai/whisper-large-v3) and [original codebase](https://github.com/openai/whisper) * Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the Whisper model implementation * Google's [TPU Research Cloud (TRC)](https://sites.research.google/trc/about/) program for Cloud TPU v4s used to train the official Distil-Whisper models * The Hugging Face 🤗 cluster for enabling experimentation with the PyTorch scripts ## Citation If you use this code-base, please consider citing the Distil-Whisper paper: ``` @misc{gandhi2023distilwhisper, title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling}, author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush}, year={2023}, eprint={2311.00430}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
fqCF4CpxC3/DeepSeek-R1-llama-8b-financial-cot
fqCF4CpxC3
2025-03-14T10:32:39Z
0
0
transformers
[ "transformers", "pytorch", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "sft", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-14T09:43:45Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** fqCF4CpxC3 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
rbgo/SmolLM2-1.7B-R1-Distilled
rbgo
2025-03-14T10:32:08Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T10:30:40Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JingzheDing/Qwen-1.5B-finetune_from_distill
JingzheDing
2025-03-14T10:31:55Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-03-14T10:28:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
terencezhang1997/llama-3-1-8b-answer-generator-ft-3
terencezhang1997
2025-03-14T10:29:46Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T05:31:33Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cboissier77/ppo-Huggy
cboissier77
2025-03-14T10:29:33Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-03-14T10:29:27Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: cboissier77/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mergekit-community/L3.1-Athena-n-8B
mergekit-community
2025-03-14T10:28:35Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1", "base_model:merge:ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1", "base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B", "base_model:merge:Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B", "base_model:mergekit-community/L3-Boshima-a", "base_model:merge:mergekit-community/L3-Boshima-a", "base_model:mergekit-community/L3.1-Artemis-c-8B", "base_model:merge:mergekit-community/L3.1-Artemis-c-8B", "base_model:mergekit-community/L3.1-Athena-c-8B", "base_model:merge:mergekit-community/L3.1-Athena-c-8B", "base_model:mergekit-community/L3.1-Athena-m-8B", "base_model:merge:mergekit-community/L3.1-Athena-m-8B", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:merge:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T10:22:58Z
--- base_model: - ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1 - mergekit-community/L3-Boshima-a - mergekit-community/L3.1-Athena-c-8B - mergekit-community/L3.1-Athena-m-8B - mergekit-community/L3.1-Artemis-c-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B - meta-llama/Llama-3.1-8B-Instruct library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1](https://huggingface.co/ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1) * [mergekit-community/L3-Boshima-a](https://huggingface.co/mergekit-community/L3-Boshima-a) * [mergekit-community/L3.1-Athena-c-8B](https://huggingface.co/mergekit-community/L3.1-Athena-c-8B) * [mergekit-community/L3.1-Athena-m-8B](https://huggingface.co/mergekit-community/L3.1-Athena-m-8B) * [mergekit-community/L3.1-Artemis-c-8B](https://huggingface.co/mergekit-community/L3.1-Artemis-c-8B) * [Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: float32 out_dtype: bfloat16 merge_method: model_stock base_model: meta-llama/Llama-3.1-8B-Instruct models: - model: ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1 - model: Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B - model: mergekit-community/L3-Boshima-a - model: mergekit-community/L3.1-Artemis-c-8B - model: mergekit-community/L3.1-Athena-c-8B - model: mergekit-community/L3.1-Athena-m-8B ```
Alphatao/e93b4038-afa4-4936-bcdc-c957e4ef3b4b
Alphatao
2025-03-14T10:25:48Z
0
0
peft
[ "peft", "safetensors", "gptj", "axolotl", "generated_from_trainer", "base_model:furiosa-ai/mlperf-gpt-j-6b", "base_model:adapter:furiosa-ai/mlperf-gpt-j-6b", "region:us" ]
null
2025-03-14T07:52:39Z
--- library_name: peft base_model: furiosa-ai/mlperf-gpt-j-6b tags: - axolotl - generated_from_trainer model-index: - name: e93b4038-afa4-4936-bcdc-c957e4ef3b4b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: furiosa-ai/mlperf-gpt-j-6b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 84767cf69a1abdeb_train_data.json ds_type: json format: custom path: /workspace/input_data/84767cf69a1abdeb_train_data.json type: field_input: statements field_instruction: quiz field_output: solution_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: false gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/e93b4038-afa4-4936-bcdc-c957e4ef3b4b hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 840 micro_batch_size: 4 mlflow_experiment_name: /tmp/84767cf69a1abdeb_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04 wandb_entity: null wandb_mode: online wandb_name: bd3a5c9d-56b2-4894-872a-514353553baf wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bd3a5c9d-56b2-4894-872a-514353553baf warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e93b4038-afa4-4936-bcdc-c957e4ef3b4b This model is a fine-tuned version of [furiosa-ai/mlperf-gpt-j-6b](https://huggingface.co/furiosa-ai/mlperf-gpt-j-6b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 840 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 9.9723 | 0.0009 | 1 | 1.2495 | | 0.8782 | 0.0920 | 100 | 0.1092 | | 0.9132 | 0.1841 | 200 | 0.1086 | | 0.7205 | 0.2761 | 300 | 0.0922 | | 0.7303 | 0.3682 | 400 | 0.0817 | | 0.5313 | 0.4602 | 500 | 0.0671 | | 0.4476 | 0.5522 | 600 | 0.0614 | | 0.5061 | 0.6443 | 700 | 0.0593 | | 0.4986 | 0.7363 | 800 | 0.0584 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Xing04/ppo-LunarLander-v2
Xing04
2025-03-14T10:25:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-14T10:24:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.72 +/- 19.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
harikrushna2272/ppo-SpaceInvaderNoFrameSkip-v2
harikrushna2272
2025-03-14T10:24:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-14T10:23:46Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 249.87 +/- 21.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
samoline/e7dd1f28-f738-42a4-8c25-9b5dc47d59ee
samoline
2025-03-14T10:23:08Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-03-14T10:19:39Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e7dd1f28-f738-42a4-8c25-9b5dc47d59ee results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6ac14b838fd22a17_train_data.json ds_type: json format: custom path: /workspace/input_data/6ac14b838fd22a17_train_data.json type: field_input: full_note field_instruction: note field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: samoline/e7dd1f28-f738-42a4-8c25-9b5dc47d59ee hub_repo: samoline hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 4 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: cosine max_steps: 2 micro_batch_size: 1 mlflow_experiment_name: /tmp/6ac14b838fd22a17_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: samoline-nan wandb_mode: online wandb_name: 056716f4-42ca-4b78-b28a-e97bd499d57a wandb_project: Gradients-On-Demand wandb_run: dev wandb_runid: 056716f4-42ca-4b78-b28a-e97bd499d57a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e7dd1f28-f738-42a4-8c25-9b5dc47d59ee This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1773 | 0.0000 | 1 | nan | | 1.1488 | 0.0001 | 2 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LandCruiser/Townsville_5
LandCruiser
2025-03-14T10:23:07Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-03-14T10:01:51Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
rbgo/SmolLM2-1-7B-Distill
rbgo
2025-03-14T10:23:05Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:HuggingFaceTB/SmolLM2-1.7B-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM2-1.7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-03-14T10:22:52Z
--- base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct library_name: transformers model_name: SmolLM2-1-7B-Distill tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for SmolLM2-1-7B-Distill This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="rbgo/SmolLM2-1-7B-Distill", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/rbgo/huggingface/runs/y7e2v6jh) This model was trained with SFT. ### Framework versions - TRL: 0.15.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
saberzl/SIDA-13B
saberzl
2025-03-14T10:22:58Z
1
1
null
[ "pytorch", "llava", "image-segmentation", "en", "dataset:saberzl/SID_Set", "arxiv:2412.04292", "base_model:xinlai/LISA-13B-llama2-v1", "base_model:finetune:xinlai/LISA-13B-llama2-v1", "license:llama2", "region:us" ]
image-segmentation
2025-03-13T18:47:26Z
--- license: llama2 datasets: - saberzl/SID_Set language: - en metrics: - accuracy base_model: - xinlai/LISA-13B-llama2-v1 pipeline_tag: image-segmentation --- # SIDA Model Card ## Model details **Model type:** SIDA is a model fine-tuned from LISA, designed to detect and localize tampered regions in images. **Model date:** SIDA-13B was trained in Febuary 2025. **Paper or resources for more information:** Paper: https://arxiv.org/pdf/2412.04292 Resource: https://github.com/hzlsaber/SIDA ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ## Trained Data SIDA was trained on SID_Set, which consists of real images, tampered images, and fully synthetic images. More information is available [here](https://huggingface.co/datasets/saberzl/SID_Set) ## Citation Information If you find this dataset useful, please consider citing our paper: ``` @misc{huang2025sidasocialmediaimage, title={SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model}, author={Zhenglin Huang and Jinwei Hu and Xiangtai Li and Yiwei He and Xingyu Zhao and Bei Peng and Baoyuan Wu and Xiaowei Huang and Guangliang Cheng}, year={2025}, booktitle={Conference on Computer Vision and Pattern Recognition} } ```
saberzl/SIDA-7B
saberzl
2025-03-14T10:22:30Z
1
1
null
[ "pytorch", "llava", "image-segmentation", "en", "dataset:saberzl/SID_Set", "arxiv:2412.04292", "base_model:xinlai/LISA-7B-v1", "base_model:finetune:xinlai/LISA-7B-v1", "license:llama2", "region:us" ]
image-segmentation
2025-03-13T17:10:47Z
--- license: llama2 datasets: - saberzl/SID_Set language: - en metrics: - accuracy base_model: - xinlai/LISA-7B-v1 pipeline_tag: image-segmentation --- # SIDA Model Card ## Model details **Model type:** SIDA is a model fine-tuned from LISA, designed to detect and localize tampered regions in images. **Model date:** SIDA-7B was trained in Febuary 2025. **Paper or resources for more information:** Paper: https://arxiv.org/pdf/2412.04292 Resource: https://github.com/hzlsaber/SIDA ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ## Trained Data SIDA was trained on SID_Set, which consists of real images, tampered images, and fully synthetic images. More information is available [here](https://huggingface.co/datasets/saberzl/SID_Set) ## Citation Information If you find this dataset useful, please consider citing our paper: ``` @misc{huang2025sidasocialmediaimage, title={SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model}, author={Zhenglin Huang and Jinwei Hu and Xiangtai Li and Yiwei He and Xingyu Zhao and Bei Peng and Baoyuan Wu and Xiaowei Huang and Guangliang Cheng}, year={2025}, booktitle={Conference on Computer Vision and Pattern Recognition} } ```
DDTChen/news_model_lora
DDTChen
2025-03-14T10:21:42Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:taide/Llama-3.1-TAIDE-LX-8B-Chat", "base_model:finetune:taide/Llama-3.1-TAIDE-LX-8B-Chat", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-14T10:21:17Z
--- base_model: taide/Llama-3.1-TAIDE-LX-8B-Chat tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** DDTChen - **License:** apache-2.0 - **Finetuned from model :** taide/Llama-3.1-TAIDE-LX-8B-Chat This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
cpapad06/unsloth_mistral_v03_article_categorization
cpapad06
2025-03-14T10:21:37Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-14T10:21:12Z
--- base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** cpapad06 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ClaudioItaly/Exurbia-Enhanced-Q4_K_M-GGUF
ClaudioItaly
2025-03-14T10:19:55Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:ClaudioItaly/Exurbia-Enhanced", "base_model:quantized:ClaudioItaly/Exurbia-Enhanced", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-14T10:19:29Z
--- base_model: ClaudioItaly/Exurbia-Enhanced library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # ClaudioItaly/Exurbia-Enhanced-Q4_K_M-GGUF This model was converted to GGUF format from [`ClaudioItaly/Exurbia-Enhanced`](https://huggingface.co/ClaudioItaly/Exurbia-Enhanced) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ClaudioItaly/Exurbia-Enhanced) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ClaudioItaly/Exurbia-Enhanced-Q4_K_M-GGUF --hf-file exurbia-enhanced-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ClaudioItaly/Exurbia-Enhanced-Q4_K_M-GGUF --hf-file exurbia-enhanced-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ClaudioItaly/Exurbia-Enhanced-Q4_K_M-GGUF --hf-file exurbia-enhanced-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ClaudioItaly/Exurbia-Enhanced-Q4_K_M-GGUF --hf-file exurbia-enhanced-q4_k_m.gguf -c 2048 ```
LandCruiser/Townsville_4
LandCruiser
2025-03-14T10:18:50Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-03-14T10:01:51Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).