modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-26 00:41:36
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 496
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-26 00:41:32
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
NTQAI/Nxcode-CQ-7B-orpo | NTQAI | 2024-05-30T07:04:52Z | 10,197 | 117 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"code",
"conversational",
"arxiv:2403.07691",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-04-24T04:56:38Z | ---
license_name: tongyi-qianwen-research
license_link: https://huggingface.co/Qwen/CodeQwen1.5-7B/blob/main/LICENSE
tags:
- code
pipeline_tag: text-generation
license: other
---
<a href="https://ntq.com.vn" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/5ee1b417636bdb3834e2da19/etbfTJuVdAub2evNP_E4g.png" width="200"/></a>
## Introduction
Nxcode-CQ-7B-orpo is an [Monolithic Preference Optimization without Reference Model](https://arxiv.org/abs/2403.07691) fine-tune of Qwen/CodeQwen1.5-7B on 100k samples of high-quality ranking data.
## [Evalplus](https://github.com/evalplus/evalplus)
| EvalPlus | pass@1 |
| --- | --- |
| HumanEval | 86.6 |
| HumanEval+ | 83.5 |
| MBPP(v0.2.0) | 82.3 |
| MBPP+(v0.2.0) | 70.4 |
We use a simple template to generate the solution for evalplus:
```python
"Complete the following Python function:\n{prompt}"
```
[Evalplus Leaderboard](https://evalplus.github.io/leaderboard.html)
| Models | HumanEval | HumanEval+|
|------ | ------ | ------ |
| GPT-4-Turbo (April 2024)| 90.2| 86.6|
| GPT-4 (May 2023)| 88.4| 81.17|
| GPT-4-Turbo (Nov 2023)| 85.4| 79.3|
| CodeQwen1.5-7B-Chat| 83.5| 78.7|
| claude-3-opus (Mar 2024)| 82.9| 76.8|
| DeepSeek-Coder-33B-instruct| 81.1| 75.0|
| WizardCoder-33B-V1.1| 79.9| 73.2|
| OpenCodeInterpreter-DS-33B| 79.3| 73.8|
| speechless-codellama-34B-v2.0| 77.4| 72|
| GPT-3.5-Turbo (Nov 2023)| 76.8| 70.7|
| Llama3-70B-instruct| 76.2| 70.7|
## Bigcode Leaderboard
[Bigcode Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard)
**09/05/2024**
Top 1 average score.
Top 2 winrate.

## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. You should upgrade the transformers if you receive an error when loading the tokenizer
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"NTQAI/Nxcode-CQ-7B-orpo",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("NTQAI/Nxcode-CQ-7B-orpo")
prompt = """Complete the following Python function:
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""
"""
messages = [
{"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
res = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
```
### Contact information
For personal communication related to this project, please contact Nha Nguyen Van ([email protected]). |
Niggendar/darksealSDXL10_v60 | Niggendar | 2024-05-30T07:04:18Z | 83 | 2 | diffusers | [
"diffusers",
"safetensors",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | 2024-05-30T06:56:37Z | ---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Ksgk-fy/ecoach_philippine_v1_merge | Ksgk-fy | 2024-05-30T07:03:57Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-30T06:58:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
zzunyang/law_dpo4 | zzunyang | 2024-05-30T07:03:21Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:beomi/open-llama-2-ko-7b",
"base_model:adapter:beomi/open-llama-2-ko-7b",
"region:us"
] | null | 2024-05-30T07:02:43Z | ---
library_name: peft
base_model: beomi/open-llama-2-ko-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1 |
kiendt/Vistral-7B-Med | kiendt | 2024-05-30T06:59:16Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T06:21:57Z | ---
library_name: transformers
license: mit
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** kiendt
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** MIT
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** Viet-Mistral/Vistral-7B-Chat
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Llamarider222/Mixtral-8x7b-Instruct-GPTQ | Llamarider222 | 2024-05-30T06:53:37Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T06:53:22Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
lighteternal/Llama3-merge-biomed-8b | lighteternal | 2024-05-30T06:52:13Z | 2,776 | 4 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"arxiv:2306.01708",
"base_model:NousResearch/Hermes-2-Pro-Llama-3-8B",
"base_model:merge:NousResearch/Hermes-2-Pro-Llama-3-8B",
"base_model:aaditya/Llama3-OpenBioLLM-8B",
"base_model:merge:aaditya/Llama3-OpenBioLLM-8B",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:merge:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-28T19:43:47Z | ---
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
- NousResearch/Hermes-2-Pro-Llama-3-8B
- aaditya/Llama3-OpenBioLLM-8B
library_name: transformers
tags:
- mergekit
- merge
license: llama3
---
# Llama3-merge-biomed-8b
This is a DARE-TIES Merge of Llama3-8b-Instruct + NousResearch/Hermes-2-Pro-Llama-3-8B + aaditya/Llama3-OpenBioLLM-8B.
It is a simple experiment to assess whether combining models with strengths in general language understanding and biomedical knowledge can enhance performance on specialized tasks without compromising general applicability.
The results indicate promising outcomes in areas like HendrycksTest tasks related to Biology and Medicine, as well as improvements in complex reasoning as seen in the ARC Challenge and Winogrande benchmarks.
## Usage
I recommend using the prompt template of Llama3: https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/
## Leaderboard metrics according to 🤗 Open LLM Leaderboard
| Task | Metric | Ours (%) | Llama38BInstr. (%) |OpenBioLLM8B (%) |
|--------------------------------------|--------------------------|------------------|------------|-------------|
| **ARC Challenge** | Accuracy | **59.39** | 57.17 | 55.38 |
| | Normalized Accuracy | **63.65** | 60.75 | 58.62 |
| **Hellaswag** | Accuracy | **62.59** | 59.04 | 61.83 |
| | Normalized Accuracy | **81.53** | 78.55 | 80.76 |
| **Winogrande** | Accuracy | **75.93** | 74.51 | 70.88 |
| **GSM8K** | Accuracy | 59.36 | **68.69** | 10.15 |
| **HendrycksTest-Anatomy** | Accuracy | **72.59** | 65.19 | 69.62 |
| **HendrycksTest-Clinical Knowledge** | Accuracy | **77.83** | 74.72 | 60.38 |
| **HendrycksTest-College Biology** | Accuracy | **81.94** | 79.86 | 79.86 |
| **HendrycksTest-College Medicine** | Accuracy | 69.36 | 63.58 | **70.52** |
| **HendrycksTest-Medical Genetics** | Accuracy | **86.00** | 80.00 | 80.00 |
| **HendrycksTest-Professional Medicine** | Accuracy | **77.94** | 71.69 | 77.94 |
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a base.
### Models Merged
The following models were included in the merge:
* [NousResearch/Hermes-2-Pro-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B)
* [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: meta-llama/Meta-Llama-3-8B-Instruct
# Base model providing a general foundation without specific parameters
- model: meta-llama/Meta-Llama-3-8B-Instruct
parameters:
density: 0.60
weight: 0.5
- model: NousResearch/Hermes-2-Pro-Llama-3-8B
parameters:
density: 0.55
weight: 0.1
- model: aaditya/Llama3-OpenBioLLM-8B
parameters:
density: 0.55
weight: 0.4
merge_method: dare_ties
base_model: meta-llama/Meta-Llama-3-8B-Instruct
parameters:
int8_mask: true
dtype: bfloat16
```
|
dibyendubiswas1998/llm-test | dibyendubiswas1998 | 2024-05-30T06:52:04Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
"base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
"region:us"
] | null | 2024-05-30T06:50:44Z | ---
library_name: peft
base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 |
casual/whisper_tiny_til2 | casual | 2024-05-30T06:46:12Z | 93 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:casual/whisper_tiny_24til",
"base_model:finetune:casual/whisper_tiny_24til",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-30T02:56:16Z | ---
base_model: casual/whisper_tiny_24til
tags:
- generated_from_trainer
model-index:
- name: whisper_tiny_til2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper_tiny_til2
This model is a fine-tuned version of [casual/whisper_tiny_24til](https://huggingface.co/casual/whisper_tiny_24til) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0000
- eval_wer: 0.0
- eval_runtime: 780.534
- eval_samples_per_second: 4.484
- eval_steps_per_second: 0.561
- epoch: 6.2785
- step: 2750
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 4000
### Framework versions
- Transformers 4.40.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|
NSC07/flan-t5-base-NvidiaQATrainedModel | NSC07 | 2024-05-30T06:41:41Z | 108 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-30T06:40:57Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mradermacher/Starling-JP-7B-GGUF | mradermacher | 2024-05-30T06:41:30Z | 4 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:HawkClaws/Starling-JP-7B",
"base_model:quantized:HawkClaws/Starling-JP-7B",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T05:42:27Z | ---
base_model: HawkClaws/Starling-JP-7B
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/HawkClaws/Starling-JP-7B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Starling-JP-7B-GGUF/resolve/main/Starling-JP-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
kronos25/mistral-finetuned-samsum | kronos25 | 2024-05-30T06:39:09Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
"base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
"license:apache-2.0",
"region:us"
] | null | 2024-05-30T05:34:16Z | ---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ
model-index:
- name: mistral-finetuned-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-finetuned-samsum
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 250
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
QuantFactory/Daredevil-8B-GGUF | QuantFactory | 2024-05-30T06:37:46Z | 90 | 1 | null | [
"gguf",
"merge",
"mergekit",
"lazymergekit",
"text-generation",
"base_model:mlabonne/Daredevil-8B",
"base_model:quantized:mlabonne/Daredevil-8B",
"license:other",
"model-index",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T05:32:36Z | ---
license: other
tags:
- merge
- mergekit
- lazymergekit
base_model: mlabonne/Daredevil-8B
model-index:
- name: Daredevil-8B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.86
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.5
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.24
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 59.89
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.45
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.54
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
pipeline_tag: text-generation
---
# Daredevil-8B-GGUF
This is quantized version of [mlabonne/Daredevil-8B](https://huggingface.co/mlabonne/Daredevil-8B) created using llama.cpp
## Model Description

Daredevil-8B is a mega-merge designed to maximize MMLU. On 27 May 24, it is the Llama 3 8B model with the **highest MMLU score**.
From my experience, a high MMLU score is all you need with Llama 3 models.
It is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [nbeerbower/llama-3-stella-8B](https://huggingface.co/nbeerbower/llama-3-stella-8B)
* [Hastagaras/llama-3-8b-okay](https://huggingface.co/Hastagaras/llama-3-8b-okay)
* [nbeerbower/llama-3-gutenberg-8B](https://huggingface.co/nbeerbower/llama-3-gutenberg-8B)
* [openchat/openchat-3.6-8b-20240522](https://huggingface.co/openchat/openchat-3.6-8b-20240522)
* [Kukedlc/NeuralLLaMa-3-8b-DT-v0.1](https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-DT-v0.1)
* [cstr/llama3-8b-spaetzle-v20](https://huggingface.co/cstr/llama3-8b-spaetzle-v20)
* [mlabonne/ChimeraLlama-3-8B-v3](https://huggingface.co/mlabonne/ChimeraLlama-3-8B-v3)
* [flammenai/Mahou-1.1-llama3-8B](https://huggingface.co/flammenai/Mahou-1.1-llama3-8B)
* [KingNish/KingNish-Llama3-8b](https://huggingface.co/KingNish/KingNish-Llama3-8b)
Thanks to nbeerbower, Hastagaras, openchat, Kukedlc, cstr, flammenai, and KingNish for their merges. Special thanks to Charles Goddard and Arcee.ai for MergeKit.
## 🔎 Applications
You can use it as an improved version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
This is a censored model. For an uncensored version, see [mlabonne/Daredevil-8B-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated).
Tested on LM Studio using the "Llama 3" preset.
## 🏆 Evaluation
### Open LLM Leaderboard
Daredevil-8B is the best-performing 8B model on the Open LLM Leaderboard in terms of MMLU score (27 May 24).

### Nous
Daredevil-8B is the best-performing 8B model on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), 27 May 24). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**mlabonne/Daredevil-8B**](https://huggingface.co/mlabonne/Daredevil-8B) [📄](https://gist.github.com/mlabonne/080f9c5f153ea57a7ab7d932cf896f21) | **55.87** | **44.13** | **73.52** | **59.05** | **46.77** |
| [mlabonne/Daredevil-8B-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated) [📄](https://gist.github.com/mlabonne/32cdd8460804662c856bcb2a20acd49e) | 55.06 | 43.29 | 73.33 | 57.47 | 46.17 |
| [mlabonne/Llama-3-8B-Instruct-abliterated-dpomix](https://huggingface.co/mlabonne/Llama-3-8B-Instruct-abliterated-dpomix) [📄](https://gist.github.com/mlabonne/d711548df70e2c04771cc68ab33fe2b9) | 52.26 | 41.6 | 69.95 | 54.22 | 43.26 |
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [📄](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
| [failspy/Meta-Llama-3-8B-Instruct-abliterated-v3](https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3) [📄](https://gist.github.com/mlabonne/f46cce0262443365e4cce2b6fa7507fc) | 51.21 | 40.23 | 69.5 | 52.44 | 42.69 |
| [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B) [📄](https://gist.github.com/mlabonne/22896a1ae164859931cc8f4858c97f6f) | 48.63 | 34.17 | 70.59 | 52.39 | 37.36 |
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [📄](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847) | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 |
## 🌳 Model family tree

## 🧩 Configuration
```yaml
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: nbeerbower/llama-3-stella-8B
parameters:
density: 0.6
weight: 0.16
- model: Hastagaras/llama-3-8b-okay
parameters:
density: 0.56
weight: 0.1
- model: nbeerbower/llama-3-gutenberg-8B
parameters:
density: 0.6
weight: 0.18
- model: openchat/openchat-3.6-8b-20240522
parameters:
density: 0.56
weight: 0.12
- model: Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
parameters:
density: 0.58
weight: 0.18
- model: cstr/llama3-8b-spaetzle-v20
parameters:
density: 0.56
weight: 0.08
- model: mlabonne/ChimeraLlama-3-8B-v3
parameters:
density: 0.56
weight: 0.08
- model: flammenai/Mahou-1.1-llama3-8B
parameters:
density: 0.55
weight: 0.05
- model: KingNish/KingNish-Llama3-8b
parameters:
density: 0.55
weight: 0.05
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
dtype: bfloat16
``` |
HanlinLiao-Harry/Taxi-v3_Q-learning | HanlinLiao-Harry | 2024-05-30T06:34:16Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-30T06:34:14Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3_Q-learning
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.46 +/- 2.68
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="HanlinLiao-Harry/Taxi-v3_Q-learning", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
HanlinLiao-Harry/q-FrozenLake-v1-4x4-noSlippery | HanlinLiao-Harry | 2024-05-30T06:33:20Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-30T06:33:18Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="HanlinLiao-Harry/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
IntellectusAI/zephyr_beta | IntellectusAI | 2024-05-30T06:31:20Z | 1 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:TheBloke/zephyr-7B-alpha-GPTQ",
"base_model:adapter:TheBloke/zephyr-7B-alpha-GPTQ",
"license:mit",
"region:us"
] | null | 2024-05-14T06:24:11Z | ---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: TheBloke/zephyr-7B-alpha-GPTQ
model-index:
- name: zephyr_beta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/intellectus/huggingface/runs/xqhl9gft)
# zephyr_beta
This model is a fine-tuned version of [TheBloke/zephyr-7B-alpha-GPTQ](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 200
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.11.2.dev0
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
sebalnakji/gemma-ko-2b-it-02 | sebalnakji | 2024-05-30T06:30:51Z | 146 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T06:26:11Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
NSC07/bloom-1b7-decodeSummary | NSC07 | 2024-05-30T06:29:02Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T06:28:54Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
RaphaelMourad/Mistral-Prot-v1-15M | RaphaelMourad | 2024-05-30T06:14:21Z | 194 | 0 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"pretrained",
"mistral",
"protein",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-15T08:37:31Z | ---
license: apache-2.0
tags:
- pretrained
- mistral
- protein
---
# Model Card for Mistral-Prot-v1-15M (Mistral for protein)
The Mistral-Prot-v1-15M Large Language Model (LLM) is a pretrained generative protein molecule model with 15.2M parameters.
It is derived from Mixtral-8x7B-v0.1 model, which was simplified for protein: the number of layers and the hidden size were reduced.
The model was pretrained using 10M protein strings from the uniprot 50 database.
## Model Architecture
Like Mixtral-8x7B-v0.1, it is a transformer model, with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
- Mixture of Experts
## Load the model from huggingface:
```
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("RaphaelMourad/Mistral-Prot-v1-15M", trust_remote_code=True)
model = AutoModel.from_pretrained("RaphaelMourad/Mistral-Prot-v1-15M", trust_remote_code=True)
```
## Calculate the embedding of a protein sequence
```
insulin = "MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN"
inputs = tokenizer(insulin, return_tensors = 'pt')["input_ids"]
hidden_states = model(inputs)[0] # [1, sequence_length, 256]
# embedding with max pooling
embedding_max = torch.max(hidden_states[0], dim=0)[0]
print(embedding_max.shape) # expect to be 256
```
## Troubleshooting
Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.
## Notice
Mistral-Prot-v1-15M is a pretrained base model for protein.
## Contact
Raphaël Mourad. [email protected] |
HanlinLiao-Harry/ppo-LunarLander-v2 | HanlinLiao-Harry | 2024-05-30T06:13:21Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-30T06:13:01Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 253.42 +/- 17.35
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
RaphaelMourad/Mistral-Prot-v1-417M | RaphaelMourad | 2024-05-30T06:12:44Z | 193 | 0 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"pretrained",
"mistral",
"protein",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T06:10:27Z | ---
license: apache-2.0
tags:
- pretrained
- mistral
- protein
---
# Model Card for Mistral-Prot-v1-417M (Mistral for protein)
The Mistral-Prot-v1-417M Large Language Model (LLM) is a pretrained generative protein molecule model with 417M parameters.
It is derived from Mixtral-8x7B-v0.1 model, which was simplified for protein: the number of layers and the hidden size were reduced.
The model was pretrained using 10M protein strings from the uniprot 50 database.
## Model Architecture
Like Mixtral-8x7B-v0.1, it is a transformer model, with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
- Mixture of Experts
## Load the model from huggingface:
```
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("RaphaelMourad/Mistral-Prot-v1-417M", trust_remote_code=True)
model = AutoModel.from_pretrained("RaphaelMourad/Mistral-Prot-v1-417M", trust_remote_code=True)
```
## Calculate the embedding of a protein sequence
```
insulin = "MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN"
inputs = tokenizer(insulin, return_tensors = 'pt')["input_ids"]
hidden_states = model(inputs)[0] # [1, sequence_length, 256]
# embedding with max pooling
embedding_max = torch.max(hidden_states[0], dim=0)[0]
print(embedding_max.shape) # expect to be 256
```
## Troubleshooting
Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.
## Notice
Mistral-Prot-v1-417M is a pretrained base model for protein.
## Contact
Raphaël Mourad. [email protected]
|
yuminglin/my_awesome_model | yuminglin | 2024-05-30T06:12:23Z | 121 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-30T03:27:47Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5245
- Accuracy: 0.7569
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 388 | 0.7460 | 0.5238 |
| 0.467 | 2.0 | 776 | 0.5245 | 0.7569 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
Sadat07/phi-squad-1_5 | Sadat07 | 2024-05-30T06:09:35Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T06:09:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
glouriousgautam/Mistral7b_v03_short_chat | glouriousgautam | 2024-05-30T06:07:13Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-29T17:33:51Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
datset_used: glouriousgautam/openhermes250k
---
# Uploaded model
- **Developed by:** glouriousgautam
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit
An efficient instruction finetune of the Mistral-7B_0.3 in 4bit bnb for good performance with ~5GB of vram inference.
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
opalthailand/whisper_test | opalthailand | 2024-05-30T06:05:27Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T06:05:26Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf | RichardErkhov | 2024-05-30T06:04:06Z | 15 | 0 | null | [
"gguf",
"arxiv:2311.17487",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-30T03:19:50Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Taiwan-LLM-7B-v2.0-base - GGUF
- Model creator: https://huggingface.co/yentinglin/
- Original model: https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.0-base/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Taiwan-LLM-7B-v2.0-base.Q2_K.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q2_K.gguf) | Q2_K | 2.36GB |
| [Taiwan-LLM-7B-v2.0-base.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
| [Taiwan-LLM-7B-v2.0-base.IQ3_S.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.IQ3_S.gguf) | IQ3_S | 2.75GB |
| [Taiwan-LLM-7B-v2.0-base.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [Taiwan-LLM-7B-v2.0-base.IQ3_M.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [Taiwan-LLM-7B-v2.0-base.Q3_K.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q3_K.gguf) | Q3_K | 3.07GB |
| [Taiwan-LLM-7B-v2.0-base.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [Taiwan-LLM-7B-v2.0-base.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [Taiwan-LLM-7B-v2.0-base.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [Taiwan-LLM-7B-v2.0-base.Q4_0.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q4_0.gguf) | Q4_0 | 3.56GB |
| [Taiwan-LLM-7B-v2.0-base.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
| [Taiwan-LLM-7B-v2.0-base.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [Taiwan-LLM-7B-v2.0-base.Q4_K.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q4_K.gguf) | Q4_K | 3.8GB |
| [Taiwan-LLM-7B-v2.0-base.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [Taiwan-LLM-7B-v2.0-base.Q4_1.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q4_1.gguf) | Q4_1 | 3.95GB |
| [Taiwan-LLM-7B-v2.0-base.Q5_0.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q5_0.gguf) | Q5_0 | 4.33GB |
| [Taiwan-LLM-7B-v2.0-base.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [Taiwan-LLM-7B-v2.0-base.Q5_K.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q5_K.gguf) | Q5_K | 4.45GB |
| [Taiwan-LLM-7B-v2.0-base.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
| [Taiwan-LLM-7B-v2.0-base.Q5_1.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q5_1.gguf) | Q5_1 | 4.72GB |
| [Taiwan-LLM-7B-v2.0-base.Q6_K.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q6_K.gguf) | Q6_K | 5.15GB |
| [Taiwan-LLM-7B-v2.0-base.Q8_0.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q8_0.gguf) | Q8_0 | 6.67GB |
Original model description:
---
license: apache-2.0
language:
- zh
widget:
- text: "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: 你好,請問你可以幫我寫一封推薦信嗎? ASSISTANT:"
library_name: transformers
pipeline_tag: text-generation
extra_gated_heading: Acknowledge license to accept the repository.
extra_gated_prompt: Please contact the author for access.
extra_gated_button_content: Acknowledge license 同意以上內容
extra_gated_fields:
Name: text
Mail: text
Organization: text
Country: text
Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox
使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox
---
<img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/CmusIT5OlSXvFrbTJ7l-C.png" alt="Taiwan LLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟
# Model Card for Taiwan LLM 7B v2.0 base
Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan.
Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning.
This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances.
It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance.
For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf).
## Model description
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw)
- **Finetuned from model:** [meta-llama/Llama-2-7b-hf](https://huggingface.co/yentinglin/meta-llama/Llama-2-7b-hf)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/MiuLab/Taiwan-LLaMa
- **Demo:** https://twllm.com/
## Performance

## Intended uses
You should fine-tuned this model for instruction-following / chat application.
### Training hyperparameters



The following hyperparameters were used during training:
- learning_rate: 5e-05
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 5.0
## Citation
If you find Taiwan LLM is useful in your work, please cite it with:
```
@misc{lin2023taiwan,
title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model},
author={Yen-Ting Lin and Yun-Nung Chen},
year={2023},
eprint={2311.17487},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
# Acknowledgement
Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project.
|
coconana/Qwen-Qwen1.5-0.5B-1717048629 | coconana | 2024-05-30T06:03:44Z | 146 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T05:57:12Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
PaawanPurdhani/Finetuned | PaawanPurdhani | 2024-05-30T06:02:55Z | 126 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2024-05-30T05:59:56Z | ---
license: apache-2.0
---
|
Madan1512/Driver_Drowsiness_Detection | Madan1512 | 2024-05-30T05:57:58Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"object-detection",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"region:us"
] | object-detection | 2024-05-30T05:52:49Z | ---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
widget:
- text: '-'
output:
url: images/detect.png
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: null
metrics:
- accuracy
pipeline_tag: object-detection
---
# Driver Drowsiness Detection
<Gallery />
## Download model
Weights for this model are available in PyTorch format.
[Download](/Madan1512/Driver_Drowsiness_Detection/tree/main) them in the Files & versions tab. |
MelitaCruces/Llama3-gsm8k-100 | MelitaCruces | 2024-05-30T05:53:31Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T05:53:23Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** MelitaCruces
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
squeeze-ai-lab/TinyAgent-7B | squeeze-ai-lab | 2024-05-30T05:50:08Z | 25 | 3 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"function calling",
"on-device language model",
"en",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] | text-generation | 2024-05-27T18:48:38Z | ---
library_name: transformers
model-index:
- name: TinyAgent-7B
results: []
tags:
- function calling
- on-device language model
inference: false
space: false
spaces: false
language:
- en
---
# TinyAgent: Function Calling at the Edge
<p align="center">
<a href="https://github.com/SqueezeAILab/TinyAgent/raw/main/TinyAgent.zip">Get the desktop app</a>
|
<a href="https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/">Read the blog post</a>
</p>

TinyAgent aims to enable complex reasoning and function calling capabilities in Small Language Models (SLMs) that can be deployed securely and privately at the edge. Traditional Large Language Models (LLMs) like GPT-4 and Gemini-1.5, while powerful, are often too large and resource-intensive for edge deployment, posing challenges in terms of privacy, connectivity, and latency. TinyAgent addresses these challenges by training specialized SLMs with high-quality, curated data, and focusing on function calling with [LLMCompiler](https://github.com/SqueezeAILab/LLMCompiler). As a driving application, TinyAgent can interact with various MacOS applications, assisting users with day-to-day tasks such as composing emails, managing contacts, scheduling calendar events, and organizing Zoom meetings.
**Model Developers:** Squeeze AI Lab at University of California, Berkeley.
**Variations:** TinyAgent models come in 2 sizes: TinyAgent-1.1B and TinyAgent-7B
**License:** MIT
## Demo
<a href="https://youtu.be/0GvaGL9IDpQ" target="_blank" rel="noopener noreferrer">
<img src="https://cdn-uploads.huggingface.co/production/uploads/648903e1ce7b9a2abe3511aa/BpN-zPzfqa8wcRuJiYOYC.png" alt="TinyAgent Demo" width="700">
</a>
## How to Use
Please see our [Github](https://github.com/SqueezeAILab/TinyAgent) for details on how to use TinyAgent models. TinyAgent models can be used programmatically or through our user interface.
## Training Details
**Dataset:**
We curated a [dataset](https://huggingface.co/datasets/squeeze-ai-lab/TinyAgent-dataset) of **40,000** real-life use cases. We use GPT-3.5-Turbo to generate real-world instructions. These are then used to obtain synthetic execution plans using GPT-4-Turbo. Please check out our [blog post](https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/) for more details on our dataset.
**Fine-tuning Procedure:**
TinyAgent models are fine-tuned from base models. Below is a table of each TinyAgent model with its base counterpart
| Model | Success Rate |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------ |
| GPT-3.5-turbo | 65.04% |
| GPT-4-turbo | 79.08% |
| [TinyLLama-1.1B-32K-Instruct](https://huggingface.co/Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct) | 12.71% |
| [WizardLM-2-7b](https://huggingface.co/MaziyarPanahi/WizardLM-2-7B-GGUF) | 41.25% |
| TinyAgent-1.1B + ToolRAG / [[hf](https://huggingface.co/squeeze-ai-lab/TinyAgent-1.1B)] [[gguf](https://huggingface.co/squeeze-ai-lab/TinyAgent-1.1B-GGUF)] | **80.06%** |
| TinyAgent-7B + ToolRAG / [[hf](https://huggingface.co/squeeze-ai-lab/TinyAgent-7B)] [[gguf](https://huggingface.co/squeeze-ai-lab/TinyAgent-7B-GGUF)] | **84.95%** |
Using the synthetic data generation process described above, we use parameter-efficient fine-tuning with LoRA to fine-tune the base models for 3 epochs. Please check out our [blog post](https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/) for more details on our fine-tuning procedure.
### 🛠️ ToolRAG
When faced with challenging tasks, SLM agents require appropriate tools and in-context examples to guide them. If the model sees irrelevant examples, it can hallucinate. Likewise, if the model sees the descriptions of the tools that it doesn’t need, it usually gets confused, and these tools take up unnecessary prompt space. To tackle this, TinyAgent uses ToolRAG to retrieve the best tools and examples suited for a given query. This process has minimal latency and increases the accuracy of TinyAgent substantially. Please take a look at our [blog post](https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/) and our [ToolRAG model](https://huggingface.co/squeeze-ai-lab/TinyAgent-ToolRAG) for more details.
## Links
**Blog Post**: https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/
**Github:** https://github.com/SqueezeAILab/TinyAgent |
Emptier8126/PPO-LunarLander-v2 | Emptier8126 | 2024-05-30T05:50:04Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-02-18T14:02:09Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 278.90 +/- 22.20
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
squeeze-ai-lab/TinyAgent-1.1B-GGUF | squeeze-ai-lab | 2024-05-30T05:47:31Z | 119 | 6 | transformers | [
"transformers",
"gguf",
"function calling",
"on-device language model",
"en",
"region:us",
"conversational"
] | null | 2024-05-27T19:53:06Z | ---
library_name: transformers
model-index:
- name: TinyAgent-1.1B-GGUF
results: []
tags:
- function calling
- on-device language model
inference: false
space: false
spaces: false
language:
- en
---
# TinyAgent: Function Calling at the Edge
<p align="center">
<a href="https://github.com/SqueezeAILab/TinyAgent/raw/main/TinyAgent.zip">Get the desktop app</a>
|
<a href="https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/">Read the blog post</a>
</p>

TinyAgent aims to enable complex reasoning and function calling capabilities in Small Language Models (SLMs) that can be deployed securely and privately at the edge. Traditional Large Language Models (LLMs) like GPT-4 and Gemini-1.5, while powerful, are often too large and resource-intensive for edge deployment, posing challenges in terms of privacy, connectivity, and latency. TinyAgent addresses these challenges by training specialized SLMs with high-quality, curated data, and focusing on function calling with [LLMCompiler](https://github.com/SqueezeAILab/LLMCompiler). As a driving application, TinyAgent can interact with various MacOS applications, assisting users with day-to-day tasks such as composing emails, managing contacts, scheduling calendar events, and organizing Zoom meetings.
**Model Developers:** Squeeze AI Lab at University of California, Berkeley.
**Variations:** TinyAgent models come in 2 sizes: TinyAgent-1.1B and TinyAgent-7B
**License:** MIT
## Demo
<a href="https://youtu.be/0GvaGL9IDpQ" target="_blank" rel="noopener noreferrer">
<img src="https://cdn-uploads.huggingface.co/production/uploads/648903e1ce7b9a2abe3511aa/BpN-zPzfqa8wcRuJiYOYC.png" alt="TinyAgent Demo" width="700">
</a>
## How to Use
Please see our [Github](https://github.com/SqueezeAILab/TinyAgent) for details on how to use TinyAgent models. TinyAgent models can be used programmatically or through our user interface.
## Training Details
**Dataset:**
We curated a [dataset](https://huggingface.co/datasets/squeeze-ai-lab/TinyAgent-dataset) of **40,000** real-life use cases. We use GPT-3.5-Turbo to generate real-world instructions. These are then used to obtain synthetic execution plans using GPT-4-Turbo. Please check out our [blog post](https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/) for more details on our dataset.
**Fine-tuning Procedure:**
TinyAgent models are fine-tuned from base models. Below is a table of each TinyAgent model with its base counterpart
| Model | Success Rate |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------ |
| GPT-3.5-turbo | 65.04% |
| GPT-4-turbo | 79.08% |
| [TinyLLama-1.1B-32K-Instruct](https://huggingface.co/Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct) | 12.71% |
| [WizardLM-2-7b](https://huggingface.co/MaziyarPanahi/WizardLM-2-7B-GGUF) | 41.25% |
| TinyAgent-1.1B + ToolRAG / [[hf](https://huggingface.co/squeeze-ai-lab/TinyAgent-1.1B)] [[gguf](https://huggingface.co/squeeze-ai-lab/TinyAgent-1.1B-GGUF)] | **80.06%** |
| TinyAgent-7B + ToolRAG / [[hf](https://huggingface.co/squeeze-ai-lab/TinyAgent-7B)] [[gguf](https://huggingface.co/squeeze-ai-lab/TinyAgent-7B-GGUF)] | **84.95%** |
Using the synthetic data generation process described above, we use parameter-efficient fine-tuning with LoRA to fine-tune the base models for 3 epochs. Please check out our [blog post](https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/) for more details on our fine-tuning procedure.
### 🛠️ ToolRAG
When faced with challenging tasks, SLM agents require appropriate tools and in-context examples to guide them. If the model sees irrelevant examples, it can hallucinate. Likewise, if the model sees the descriptions of the tools that it doesn’t need, it usually gets confused, and these tools take up unnecessary prompt space. To tackle this, TinyAgent uses ToolRAG to retrieve the best tools and examples suited for a given query. This process has minimal latency and increases the accuracy of TinyAgent substantially. Please take a look at our [blog post](https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/) and our [ToolRAG model](https://huggingface.co/squeeze-ai-lab/TinyAgent-ToolRAG) for more details.
## Links
**Blog Post**: https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/
**Github:** https://github.com/SqueezeAILab/TinyAgent |
squeeze-ai-lab/TinyAgent-ToolRAG | squeeze-ai-lab | 2024-05-30T05:47:12Z | 118 | 15 | transformers | [
"transformers",
"safetensors",
"deberta-v2",
"text-classification",
"function calling",
"on-device language model",
"en",
"autotrain_compatible",
"region:us"
] | text-classification | 2024-05-27T07:26:44Z | ---
library_name: transformers
model-index:
- name: TinyAgent-ToolRAG
results: []
tags:
- function calling
- on-device language model
inference: false
space: false
spaces: false
language:
- en
---
# TinyAgent: Function Calling at the Edge
<p align="center">
<a href="https://github.com/SqueezeAILab/TinyAgent/raw/main/TinyAgent.zip">Get the desktop app</a>
|
<a href="https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/">Read the blog post</a>
</p>

TinyAgent aims to enable complex reasoning and function calling capabilities in Small Language Models (SLMs) that can be deployed securely and privately at the edge. Traditional Large Language Models (LLMs) like GPT-4 and Gemini-1.5, while powerful, are often too large and resource-intensive for edge deployment, posing challenges in terms of privacy, connectivity, and latency. TinyAgent addresses these challenges by training specialized SLMs with high-quality, curated data, and focusing on function calling with [LLMCompiler](https://github.com/SqueezeAILab/LLMCompiler). As a driving application, TinyAgent can interact with various MacOS applications, assisting users with day-to-day tasks such as composing emails, managing contacts, scheduling calendar events, and organizing Zoom meetings.
When faced with challenging tasks, SLM agents require appropriate tools and in-context examples to guide them. If the model sees irrelevant examples, it can hallucinate. Likewise, if the model sees the descriptions of the tools that it doesn’t need, it usually gets confused, and these tools take up unnecessary prompt space. To tackle this, TinyAgent uses ToolRAG to retrieve the best tools and examples suited for a given query. This process has minimal latency and increases the accuracy of TinyAgent substantially. Please take a look at our [blog post](https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/) for more details.
**Model Developers:** Squeeze AI Lab at University of California, Berkeley.
**Variations:** TinyAgent models come in 2 sizes: TinyAgent-1.1B and TinyAgent-7B
**License:** MIT
## Demo
<a href="https://youtu.be/0GvaGL9IDpQ" target="_blank" rel="noopener noreferrer">
<img src="https://cdn-uploads.huggingface.co/production/uploads/648903e1ce7b9a2abe3511aa/BpN-zPzfqa8wcRuJiYOYC.png" alt="TinyAgent Demo" width="700">
</a>
## How to Use
Please see our [Github](https://github.com/SqueezeAILab/TinyAgent) for details on how to use TinyAgent models. TinyAgent models can be used programmatically or through our user interface.
## Training Details
**Dataset:**
We curated a [dataset](https://huggingface.co/datasets/squeeze-ai-lab/TinyAgent-dataset) of **40,000** real-life use cases. We use GPT-3.5-Turbo to generate real-world instructions. These are then used to obtain synthetic execution plans using GPT-4-Turbo. Please check out our [blog post](https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/) for more details on our dataset.
**Fine-tuning Procedure:**
TinyAgent models are fine-tuned from base models. Below is a table of each TinyAgent model with its base counterpart
| Model | Success Rate |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------ |
| GPT-3.5-turbo | 65.04% |
| GPT-4-turbo | 79.08% |
| [TinyLLama-1.1B-32K-Instruct](https://huggingface.co/Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct) | 12.71% |
| [WizardLM-2-7b](https://huggingface.co/MaziyarPanahi/WizardLM-2-7B-GGUF) | 41.25% |
| TinyAgent-1.1B + ToolRAG / [[hf](https://huggingface.co/squeeze-ai-lab/TinyAgent-1.1B)] [[gguf](https://huggingface.co/squeeze-ai-lab/TinyAgent-1.1B-GGUF)] | **80.06%** |
| TinyAgent-7B + ToolRAG / [[hf](https://huggingface.co/squeeze-ai-lab/TinyAgent-7B)] [[gguf](https://huggingface.co/squeeze-ai-lab/TinyAgent-7B-GGUF)] | **84.95%** |
Using the synthetic data generation process described above, we use parameter-efficient fine-tuning with LoRA to fine-tune the base models for 3 epochs. Please check out our [blog post](https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/) for more details on our fine-tuning procedure.
## Links
**Blog Post**: https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/
**Github:** https://github.com/SqueezeAILab/TinyAgent |
subhavarshith/donut_exp1e-5 | subhavarshith | 2024-05-30T05:41:31Z | 9 | 0 | transformers | [
"transformers",
"safetensors",
"vision-encoder-decoder",
"image-text-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2024-05-29T10:43:04Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
hanzohazashi1/lora_model | hanzohazashi1 | 2024-05-30T05:31:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T05:31:29Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: meta-llama/Meta-Llama-3-8B-Instruct
---
# Uploaded model
- **Developed by:** hanzohazashi1
- **License:** apache-2.0
- **Finetuned from model :** meta-llama/Meta-Llama-3-8B-Instruct
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF | mradermacher | 2024-05-30T05:29:19Z | 16 | 0 | transformers | [
"transformers",
"gguf",
"trl",
"dpo",
"ko",
"base_model:haes95/POLAR-10.7B-HES-DPO-v0.1",
"base_model:quantized:haes95/POLAR-10.7B-HES-DPO-v0.1",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T04:50:30Z | ---
base_model: haes95/POLAR-10.7B-HES-DPO-v0.1
language:
- ko
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- trl
- dpo
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/haes95/POLAR-10.7B-HES-DPO-v0.1
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.Q2_K.gguf) | Q2_K | 4.1 | |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.IQ3_XS.gguf) | IQ3_XS | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.Q3_K_S.gguf) | Q3_K_S | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.IQ3_S.gguf) | IQ3_S | 4.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.IQ3_M.gguf) | IQ3_M | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.Q3_K_M.gguf) | Q3_K_M | 5.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.Q3_K_L.gguf) | Q3_K_L | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.IQ4_XS.gguf) | IQ4_XS | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.Q4_K_S.gguf) | Q4_K_S | 6.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.Q4_K_M.gguf) | Q4_K_M | 6.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.Q5_K_S.gguf) | Q5_K_S | 7.5 | |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.Q5_K_M.gguf) | Q5_K_M | 7.7 | |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.Q6_K.gguf) | Q6_K | 8.9 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/POLAR-10.7B-HES-DPO-v0.1-GGUF/resolve/main/POLAR-10.7B-HES-DPO-v0.1.Q8_0.gguf) | Q8_0 | 11.5 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
newsletter/wavecoder-ultra-6.7b-Q6_K-GGUF | newsletter | 2024-05-30T05:25:29Z | 1 | 0 | transformers | [
"transformers",
"gguf",
"code",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"dataset:humaneval",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-05-27T08:48:35Z | ---
language:
- en
license: mit
library_name: transformers
tags:
- code
- llama-cpp
- gguf-my-repo
datasets:
- humaneval
metrics:
- code_eval
license_link: https://huggingface.co/microsoft/wavecoder-ultra-6.7b/blob/main/LICENSE
pipeline_tag: text-generation
---
# newsletter/wavecoder-ultra-6.7b-Q6_K-GGUF
This model was converted to GGUF format from [`microsoft/wavecoder-ultra-6.7b`](https://huggingface.co/microsoft/wavecoder-ultra-6.7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/microsoft/wavecoder-ultra-6.7b) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo newsletter/wavecoder-ultra-6.7b-Q6_K-GGUF --model wavecoder-ultra-6.7b-q6_k.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo newsletter/wavecoder-ultra-6.7b-Q6_K-GGUF --model wavecoder-ultra-6.7b-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && \
cd llama.cpp && \
make && \
./main -m wavecoder-ultra-6.7b-q6_k.gguf -n 128
```
|
jsfs11/WestOrcaMonarch-DPO-7B | jsfs11 | 2024-05-30T05:15:02Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"axolotl",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T04:57:01Z | ---
license: apache-2.0
tags:
- axolotl
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
This model is a fine-tuned version of [jsfs11/WestOrcaNeuralMarco-DPO-v2-DARETIES-7B](https://huggingface.co/jsfs11/WestOrcaNeuralMarco-DPO-v2-DARETIES-7B) on the OpenHermes2.5-dpo-binarized-alpha dataset.
###
The following hyperparameters were used during training:
-
base_model: jsfs11/WestOrcaNeuralMarco-DPO-v2-DARETIES-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
rl: dpo
chat_template: chatml
datasets:
- path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
split: train
type: chatml.intel
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out
adapter: qlora
lora_model_dir:
sequence_len: 1800
sample_packing: false
pad_to_sequence_len: false
lora_r: 32
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 5e-7
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 1
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 1080
max_steps: 1080
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
### Training results
"train/loss": 0.4733,
"train/grad_norm": 15.831088066101074,
"train/learning_rate": 0,
"train/rewards/chosen": -0.6122800707817078,
"train/rewards/rejected": -1.650345802307129,
"train/rewards/accuracies": 0.875,
"train/rewards/margins": 1.0380656719207764,
"train/logps/rejected": -379.778564453125,
"train/logps/chosen": -250.2126007080078,
"train/logits/rejected": -2.0232465267181396,
"train/logits/chosen": -2.1629369258880615,
"train/epoch": 2.08594881699662,
"train/global_step": 1080,
"_timestamp": 1717044966.608197,
"_runtime": 12949.461512088776,
"_step": 1080,
"train_runtime": 12950.5619,
"train_samples_per_second": 1.334,
"train_steps_per_second": 0.083,
"total_flos": 0,
"train_loss": 0.560937881635295,
### |
carpit680/ppo-Huggy | carpit680 | 2024-05-30T05:14:52Z | 6 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2024-05-30T05:10:41Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: carpit680/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
DokHee/Llama-3-Open-Ko-8B-Instruct-VBiom-V1-gguf | DokHee | 2024-05-30T05:09:52Z | 9 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:beomi/Llama-3-Open-Ko-8B",
"base_model:quantized:beomi/Llama-3-Open-Ko-8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-30T04:22:55Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: beomi/Llama-3-Open-Ko-8B
---
# Uploaded model
- **Developed by:** DokHee
- **License:** apache-2.0
- **Finetuned from model :** beomi/Llama-3-Open-Ko-8B
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
M00dler/whisper-small-malay | M00dler | 2024-05-30T05:07:33Z | 90 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"my",
"dataset:malaysia-ai/malay-conversational-speech-corpus",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-27T06:28:17Z | ---
language:
- my
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- malaysia-ai/malay-conversational-speech-corpus
metrics:
- wer
model-index:
- name: Whisper small Malay (4 batch size) - Gab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: malay-conversational-speech-corpus
type: malaysia-ai/malay-conversational-speech-corpus
args: 'config: malay, split: test'
metrics:
- name: Wer
type: wer
value: 27.394540942928042
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper small Malay (4 batch size) - Gab
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the malay-conversational-speech-corpus dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7126
- Wer: 27.3945
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.0217 | 6.1728 | 1000 | 0.5993 | 28.8586 |
| 0.0013 | 12.3457 | 2000 | 0.6816 | 28.0397 |
| 0.0003 | 18.5185 | 3000 | 0.7018 | 27.8660 |
| 0.0002 | 24.6914 | 4000 | 0.7126 | 27.3945 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
samim2024/llama2test1 | samim2024 | 2024-05-30T05:01:28Z | 2 | 0 | peft | [
"peft",
"pytorch",
"llama",
"region:us"
] | null | 2024-05-30T04:49:05Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
QuantFactory/Llama-3-Instruct-8B-DPO-GGUF | QuantFactory | 2024-05-30T04:55:44Z | 56 | 0 | transformers | [
"transformers",
"gguf",
"text-generation",
"arxiv:2405.14734",
"base_model:princeton-nlp/Llama-3-Instruct-8B-DPO",
"base_model:quantized:princeton-nlp/Llama-3-Instruct-8B-DPO",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T03:42:50Z | ---
library_name: transformers
pipeline_tag: text-generation
base_model: princeton-nlp/Llama-3-Instruct-8B-DPO
---
# QuantFactory/Llama-3-Instruct-8B-DPO-GGUF
This is quantized version of [princeton-nlp/Llama-3-Instruct-8B-DPO](https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-DPO) created using llama.cpp
# Model Description
This is a model released from the preprint: *[SimPO: Simple Preference Optimization with a Reference-Free Reward](https://arxiv.org/abs/2405.14734)* Please refer to our [repository](https://github.com/princeton-nlp/SimPO) for more details.
|
HyperdustProtocol/HyperAutoGGUF-q4 | HyperdustProtocol | 2024-05-30T04:45:43Z | 6 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-2-7b-bnb-4bit",
"base_model:quantized:unsloth/llama-2-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T04:32:01Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: unsloth/llama-2-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** HyperdustProtocol
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-2-7b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/Llama-3-Neurona-8b-GGUF | mradermacher | 2024-05-30T04:45:03Z | 114 | 0 | transformers | [
"transformers",
"gguf",
"synthetic",
"es",
"en",
"dataset:pinzhenchen/alpaca-cleaned-es",
"dataset:Danielbrdz/Barcenas-Economia",
"dataset:HiTZ/casimedicos-exp",
"dataset:somosnlp/coser_resumenes",
"dataset:csebuetnlp/CrossSum",
"dataset:Iker/Document-Translation-en-es",
"dataset:somosnlp/es-inclusive-language-it",
"dataset:FreedomIntelligence/evol-instruct-spanish",
"dataset:glaiveai/glaive-code-assistant-v3",
"dataset:glaiveai/glaive-function-calling-v2",
"dataset:Iker/InstructTranslation-EN-ES",
"dataset:somosnlp/lenguaje-claro-dataset",
"dataset:somosnlp/LingComp_QA",
"dataset:bltlab/lr-sum",
"dataset:Iker/NoticIA",
"dataset:xaviviro/oasst2_es_gpt",
"dataset:teknium/OpenHermes-2.5",
"dataset:Iker/OpenHermes-2.5-Spanish",
"dataset:Helsinki-NLP/opus-100",
"dataset:projecte-aina/RAG_Multilingual",
"dataset:sem_eval_2018_task_1",
"dataset:davidstap/ted_talks",
"dataset:HiTZ/This-is-not-a-dataset",
"dataset:wikipedia",
"base_model:Iker/Llama-3-Neurona-8b",
"base_model:quantized:Iker/Llama-3-Neurona-8b",
"license:llama3",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-23T10:33:31Z | ---
base_model: Iker/Llama-3-Neurona-8b
datasets:
- pinzhenchen/alpaca-cleaned-es
- Danielbrdz/Barcenas-Economia
- HiTZ/casimedicos-exp
- somosnlp/coser_resumenes
- csebuetnlp/CrossSum
- Iker/Document-Translation-en-es
- somosnlp/es-inclusive-language-it
- FreedomIntelligence/evol-instruct-spanish
- glaiveai/glaive-code-assistant-v3
- glaiveai/glaive-function-calling-v2
- Iker/InstructTranslation-EN-ES
- somosnlp/lenguaje-claro-dataset
- somosnlp/LingComp_QA
- bltlab/lr-sum
- Iker/NoticIA
- xaviviro/oasst2_es_gpt
- teknium/OpenHermes-2.5
- Iker/OpenHermes-2.5-Spanish
- Helsinki-NLP/opus-100
- projecte-aina/RAG_Multilingual
- sem_eval_2018_task_1
- davidstap/ted_talks
- HiTZ/This-is-not-a-dataset
- wikipedia
language:
- es
- en
library_name: transformers
license: llama3
quantized_by: mradermacher
tags:
- synthetic
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/Iker/Llama-3-Neurona-8b
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.IQ3_M.gguf) | IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Neurona-8b-GGUF/resolve/main/Llama-3-Neurona-8b.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/AtomPro-7B-GGUF | mradermacher | 2024-05-30T04:42:24Z | 19 | 0 | transformers | [
"transformers",
"gguf",
"merge",
"mergekit",
"lazymergekit",
"GritLM/GritLM-7B",
"NousResearch/Hermes-2-Pro-Mistral-7B",
"en",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-29T00:52:25Z | ---
base_model: powermove72/AtomPro-7B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- merge
- mergekit
- lazymergekit
- GritLM/GritLM-7B
- NousResearch/Hermes-2-Pro-Mistral-7B
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/powermove72/AtomPro-7B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-7B-GGUF/resolve/main/AtomPro-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF | mradermacher | 2024-05-30T04:42:12Z | 13 | 0 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"sft",
"en",
"fr",
"dataset:jpacifico/French-Alpaca-dataset-Instruct-110K",
"base_model:AdrienB134/French-Alpaca-Mistral-7B-v0.3",
"base_model:quantized:AdrienB134/French-Alpaca-Mistral-7B-v0.3",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-29T03:03:07Z | ---
base_model: AdrienB134/French-Alpaca-Mistral-7B-v0.3
datasets:
- jpacifico/French-Alpaca-dataset-Instruct-110K
language:
- en
- fr
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/AdrienB134/French-Alpaca-Mistral-7B-v0.3
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/French-Alpaca-Mistral-7B-v0.3-GGUF/resolve/main/French-Alpaca-Mistral-7B-v0.3.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/ReflectionCoder-DS-33B-GGUF | mradermacher | 2024-05-30T04:42:04Z | 10 | 0 | transformers | [
"transformers",
"gguf",
"en",
"dataset:SenseLLM/ReflectionSeq-GPT",
"dataset:SenseLLM/ReflectionSeq-DS",
"base_model:SenseLLM/ReflectionCoder-DS-33B",
"base_model:quantized:SenseLLM/ReflectionCoder-DS-33B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-29T04:24:02Z | ---
base_model: SenseLLM/ReflectionCoder-DS-33B
datasets:
- SenseLLM/ReflectionSeq-GPT
- SenseLLM/ReflectionSeq-DS
language:
- en
library_name: transformers
license: apache-2.0
no_imatrix: nan1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/SenseLLM/ReflectionCoder-DS-33B
<!-- provided-files -->
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ReflectionCoder-DS-33B-GGUF/resolve/main/ReflectionCoder-DS-33B.Q2_K.gguf) | Q2_K | 12.5 | |
| [GGUF](https://huggingface.co/mradermacher/ReflectionCoder-DS-33B-GGUF/resolve/main/ReflectionCoder-DS-33B.Q3_K_S.gguf) | Q3_K_S | 14.5 | |
| [GGUF](https://huggingface.co/mradermacher/ReflectionCoder-DS-33B-GGUF/resolve/main/ReflectionCoder-DS-33B.IQ3_S.gguf) | IQ3_S | 14.6 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/ReflectionCoder-DS-33B-GGUF/resolve/main/ReflectionCoder-DS-33B.IQ3_M.gguf) | IQ3_M | 15.1 | |
| [GGUF](https://huggingface.co/mradermacher/ReflectionCoder-DS-33B-GGUF/resolve/main/ReflectionCoder-DS-33B.Q3_K_M.gguf) | Q3_K_M | 16.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ReflectionCoder-DS-33B-GGUF/resolve/main/ReflectionCoder-DS-33B.Q3_K_L.gguf) | Q3_K_L | 17.7 | |
| [GGUF](https://huggingface.co/mradermacher/ReflectionCoder-DS-33B-GGUF/resolve/main/ReflectionCoder-DS-33B.Q4_K_S.gguf) | Q4_K_S | 19.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ReflectionCoder-DS-33B-GGUF/resolve/main/ReflectionCoder-DS-33B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ReflectionCoder-DS-33B-GGUF/resolve/main/ReflectionCoder-DS-33B.Q6_K.gguf) | Q6_K | 27.5 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/ReflectionCoder-DS-33B-GGUF/resolve/main/ReflectionCoder-DS-33B.Q8_0.gguf) | Q8_0 | 35.5 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/Flammen-Mahou-mistral-7B-GGUF | mradermacher | 2024-05-30T04:41:53Z | 22 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:nbeerbower/Flammen-Mahou-mistral-7B",
"base_model:quantized:nbeerbower/Flammen-Mahou-mistral-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-29T05:54:21Z | ---
base_model: nbeerbower/Flammen-Mahou-mistral-7B
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/nbeerbower/Flammen-Mahou-mistral-7B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Flammen-Mahou-mistral-7B-GGUF/resolve/main/Flammen-Mahou-mistral-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
asiansoul/U-GO-GIRL-Remix-Llama-3-KoEn-8B | asiansoul | 2024-05-30T04:41:07Z | 9 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"base_model:NousResearch/Hermes-2-Theta-Llama-3-8B",
"base_model:merge:NousResearch/Hermes-2-Theta-Llama-3-8B",
"base_model:NousResearch/Meta-Llama-3-8B",
"base_model:merge:NousResearch/Meta-Llama-3-8B",
"base_model:NousResearch/Meta-Llama-3-8B-Instruct",
"base_model:merge:NousResearch/Meta-Llama-3-8B-Instruct",
"base_model:allganize/Llama-3-Alpha-Ko-8B-Instruct",
"base_model:merge:allganize/Llama-3-Alpha-Ko-8B-Instruct",
"base_model:asiansoul/U-GO-GIRL-Llama-3-KoEn-8B",
"base_model:merge:asiansoul/U-GO-GIRL-Llama-3-KoEn-8B",
"base_model:nayohan/llama3-instrucTrans-enko-8b",
"base_model:merge:nayohan/llama3-instrucTrans-enko-8b",
"base_model:rombodawg/Llama-3-8B-Instruct-Coder",
"base_model:merge:rombodawg/Llama-3-8B-Instruct-Coder",
"base_model:saltlux/Ko-Llama3-Luxia-8B",
"base_model:merge:saltlux/Ko-Llama3-Luxia-8B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T00:51:53Z | ---
base_model:
- saltlux/Ko-Llama3-Luxia-8B
- allganize/Llama-3-Alpha-Ko-8B-Instruct
- nayohan/llama3-instrucTrans-enko-8b
- NousResearch/Meta-Llama-3-8B
- asiansoul/U-GO-GIRL-Llama-3-KoEn-8B
- rombodawg/Llama-3-8B-Instruct-Coder
- NousResearch/Hermes-2-Theta-Llama-3-8B
- NousResearch/Meta-Llama-3-8B-Instruct
library_name: transformers
tags:
- mergekit
- merge
---
# U-GO-GIRL-Remix-Llama-3-KoEn-8B
<a href="https://ibb.co/jDSymM3"><img src="https://i.ibb.co/Hqjt6zG/vibe.png" alt="vibe" border="0"></a><br />
There are millions of people in the world who like me, but there are probably tens of millions of people who hate me. I will focus on those who like me. Because they made me who I am today.
Because eventually you guys will come back here to watch me play~~~
"Back to the basics"
[Allen Iverson](https://en.wikipedia.org/wiki/Allen_Iverson)
[Toonation Donation](https://toon.at/donate/asiansoul)
ETH/USDT(ERC20) Donation : 0x8BB117dD4Cc0E19E5536ab211070c0dE039a85c0
### Models Merged
The following models were included in the merge:
* [asiansoul/U-GO-GIRL-Llama-3-KoEn-8B](https://huggingface.co/asiansoul/U-GO-GIRL-Llama-3-KoEn-8B)
* [saltlux/Ko-Llama3-Luxia-8B](https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B)
* [allganize/Llama-3-Alpha-Ko-8B-Instruct](https://huggingface.co/allganize/Llama-3-Alpha-Ko-8B-Instruct)
* [nayohan/llama3-instrucTrans-enko-8b](https://huggingface.co/nayohan/llama3-instrucTrans-enko-8b)
* [rombodawg/Llama-3-8B-Instruct-Coder](https://huggingface.co/rombodawg/Llama-3-8B-Instruct-Coder)
* [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B)
* [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct)
## Citation
**Language Mix Model**
```text
@misc{U-GO_GIRL,
author = {JayLee aka "asiansoul"},
title = {U-GO_GIRL Mix Model},
year = {2024},
},
}
```
|
ahmedesmail16/Train-Test-Augmentation-V4-beit-base | ahmedesmail16 | 2024-05-30T04:38:45Z | 202 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"beit",
"image-classification",
"generated_from_trainer",
"base_model:microsoft/beit-base-patch16-224-pt22k-ft22k",
"base_model:finetune:microsoft/beit-base-patch16-224-pt22k-ft22k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2024-05-30T02:14:20Z | ---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Train-Test-Augmentation-V4-beit-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Train-Test-Augmentation-V4-beit-base
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4701
- Accuracy: 0.8557
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6584 | 1.0 | 55 | 0.6744 | 0.7946 |
| 0.2762 | 2.0 | 110 | 0.5429 | 0.8234 |
| 0.1144 | 3.0 | 165 | 0.5259 | 0.8336 |
| 0.0487 | 4.0 | 220 | 0.5111 | 0.8404 |
| 0.0218 | 5.0 | 275 | 0.4701 | 0.8557 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.15.2
|
jspr/talosian_v3_instruct_peft | jspr | 2024-05-30T04:38:21Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.3",
"base_model:finetune:unsloth/mistral-7b-instruct-v0.3",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T04:38:09Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: unsloth/mistral-7b-instruct-v0.3
---
# Uploaded model
- **Developed by:** jspr
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ebowwa/human-biases-people-v0.5-gguf | ebowwa | 2024-05-30T04:30:48Z | 4 | 0 | transformers | [
"transformers",
"gguf",
"mistral",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"base_model:quantized:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-30T04:28:36Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- gguf
base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
---
# Uploaded model
- **Developed by:** ebowwa
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/AlchemistCoder-L-7B-GGUF | mradermacher | 2024-05-30T04:29:18Z | 21 | 0 | transformers | [
"transformers",
"gguf",
"code generation",
"en",
"base_model:internlm/AlchemistCoder-L-7B",
"base_model:quantized:internlm/AlchemistCoder-L-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T04:05:08Z | ---
base_model: internlm/AlchemistCoder-L-7B
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- code generation
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/internlm/AlchemistCoder-L-7B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.Q2_K.gguf) | Q2_K | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.IQ3_XS.gguf) | IQ3_XS | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.IQ3_S.gguf) | IQ3_S | 3.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.Q3_K_S.gguf) | Q3_K_S | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.IQ3_M.gguf) | IQ3_M | 3.2 | |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.Q3_K_L.gguf) | Q3_K_L | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.IQ4_XS.gguf) | IQ4_XS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.Q5_K_S.gguf) | Q5_K_S | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.Q5_K_M.gguf) | Q5_K_M | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.Q6_K.gguf) | Q6_K | 5.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/AlchemistCoder-L-7B-GGUF/resolve/main/AlchemistCoder-L-7B.f16.gguf) | f16 | 13.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
ahmedgongi/Llama_dev3tokenizer_finale16 | ahmedgongi | 2024-05-30T04:28:59Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T04:28:58Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Bagus/wav2vec2_swbd_emodb | Bagus | 2024-05-30T04:26:28Z | 2 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"generated_from_trainer",
"base_model:facebook/wav2vec2-large-robust-ft-swbd-300h",
"base_model:finetune:facebook/wav2vec2-large-robust-ft-swbd-300h",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T02:59:58Z | ---
license: apache-2.0
base_model: facebook/wav2vec2-large-robust-ft-swbd-300h
tags:
- generated_from_trainer
model-index:
- name: wav2vec2_swbd_emodb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned
This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0281
- Uar: 0.7318
- Acc: 0.7721
For the test set:
- UAR: 0.74
- ACC: 0.794
## Model description
This model is to predict four emotion categories given and audio file. Labels are anger', 'happiness', 'sadness', 'neutral'. This wav2vec2-based model is known cannot detect 'happiness'.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Uar | Acc |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| No log | 0.15 | 1 | 1.3899 | 0.25 | 0.1985 |
| No log | 0.31 | 2 | 1.3850 | 0.25 | 0.1985 |
| No log | 0.46 | 3 | 1.3815 | 0.25 | 0.1985 |
| No log | 0.62 | 4 | 1.3772 | 0.25 | 0.1985 |
| No log | 0.77 | 5 | 1.3714 | 0.25 | 0.4044 |
| No log | 0.92 | 6 | 1.3656 | 0.25 | 0.4044 |
| 1.4878 | 1.08 | 7 | 1.3610 | 0.25 | 0.4044 |
| 1.4878 | 1.23 | 8 | 1.3583 | 0.25 | 0.4044 |
| 1.4878 | 1.38 | 9 | 1.3549 | 0.25 | 0.4044 |
| 1.4878 | 1.54 | 10 | 1.3518 | 0.25 | 0.4044 |
| 1.4878 | 1.69 | 11 | 1.3491 | 0.25 | 0.4044 |
| 1.4878 | 1.85 | 12 | 1.3458 | 0.25 | 0.4044 |
| 1.4878 | 2.0 | 13 | 1.3425 | 0.25 | 0.4044 |
| 1.2316 | 2.15 | 14 | 1.3401 | 0.25 | 0.4044 |
| 1.2316 | 2.31 | 15 | 1.3380 | 0.25 | 0.4044 |
| 1.2316 | 2.46 | 16 | 1.3354 | 0.25 | 0.4044 |
| 1.2316 | 2.62 | 17 | 1.3326 | 0.25 | 0.4044 |
| 1.2316 | 2.77 | 18 | 1.3292 | 0.2778 | 0.4265 |
| 1.2316 | 2.92 | 19 | 1.3250 | 0.2963 | 0.4412 |
| 1.3835 | 3.08 | 20 | 1.3212 | 0.3519 | 0.4853 |
| 1.3835 | 3.23 | 21 | 1.3158 | 0.4029 | 0.5221 |
| 1.3835 | 3.38 | 22 | 1.3096 | 0.5047 | 0.6029 |
| 1.3835 | 3.54 | 23 | 1.3019 | 0.5695 | 0.6544 |
| 1.3835 | 3.69 | 24 | 1.2944 | 0.6485 | 0.7059 |
| 1.3835 | 3.85 | 25 | 1.2856 | 0.6534 | 0.6985 |
| 1.3835 | 4.0 | 26 | 1.2773 | 0.6768 | 0.7059 |
| 1.1038 | 4.15 | 27 | 1.2688 | 0.6540 | 0.6691 |
| 1.1038 | 4.31 | 28 | 1.2554 | 0.6404 | 0.6471 |
| 1.1038 | 4.46 | 29 | 1.2404 | 0.6359 | 0.6397 |
| 1.1038 | 4.62 | 30 | 1.2222 | 0.6586 | 0.6765 |
| 1.1038 | 4.77 | 31 | 1.2057 | 0.6631 | 0.6838 |
| 1.1038 | 4.92 | 32 | 1.1874 | 0.6769 | 0.6985 |
| 1.075 | 5.08 | 33 | 1.1624 | 0.6953 | 0.7206 |
| 1.075 | 5.23 | 34 | 1.1427 | 0.7182 | 0.75 |
| 1.075 | 5.38 | 35 | 1.1270 | 0.7182 | 0.75 |
| 1.075 | 5.54 | 36 | 1.1085 | 0.7227 | 0.7574 |
| 1.075 | 5.69 | 37 | 1.0982 | 0.7227 | 0.7574 |
| 1.075 | 5.85 | 38 | 1.0943 | 0.7227 | 0.7574 |
| 1.075 | 6.0 | 39 | 1.0930 | 0.7136 | 0.7426 |
| 0.7211 | 6.15 | 40 | 1.0903 | 0.7091 | 0.7353 |
| 0.7211 | 6.31 | 41 | 1.0858 | 0.7091 | 0.7353 |
| 0.7211 | 6.46 | 42 | 1.0816 | 0.7045 | 0.7279 |
| 0.7211 | 6.62 | 43 | 1.0734 | 0.7091 | 0.7353 |
| 0.7211 | 6.77 | 44 | 1.0617 | 0.7136 | 0.7426 |
| 0.7211 | 6.92 | 45 | 1.0536 | 0.7136 | 0.7426 |
| 0.6595 | 7.08 | 46 | 1.0450 | 0.7318 | 0.7721 |
| 0.6595 | 7.23 | 47 | 1.0370 | 0.7364 | 0.7794 |
| 0.6595 | 7.38 | 48 | 1.0323 | 0.7364 | 0.7794 |
| 0.6595 | 7.54 | 49 | 1.0301 | 0.7364 | 0.7794 |
| 0.6595 | 7.69 | 50 | 1.0307 | 0.7364 | 0.7794 |
| 0.6595 | 7.85 | 51 | 1.0302 | 0.7318 | 0.7721 |
| 0.6595 | 8.0 | 52 | 1.0307 | 0.7318 | 0.7721 |
| 0.5067 | 8.15 | 53 | 1.0317 | 0.7318 | 0.7721 |
| 0.5067 | 8.31 | 54 | 1.0324 | 0.7318 | 0.7721 |
| 0.5067 | 8.46 | 55 | 1.0324 | 0.7318 | 0.7721 |
| 0.5067 | 8.62 | 56 | 1.0326 | 0.7273 | 0.7647 |
| 0.5067 | 8.77 | 57 | 1.0315 | 0.7318 | 0.7721 |
| 0.5067 | 8.92 | 58 | 1.0297 | 0.7318 | 0.7721 |
| 0.5617 | 9.08 | 59 | 1.0287 | 0.7318 | 0.7721 |
| 0.5617 | 9.23 | 60 | 1.0281 | 0.7318 | 0.7721 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.13.3
|
mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF | mradermacher | 2024-05-30T04:21:48Z | 89 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:svjack/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged",
"base_model:quantized:svjack/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-30T03:35:11Z | ---
base_model: svjack/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/svjack/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged-GGUF/resolve/main/Genshin_Impact_Mistral_v3_Plot_Chat_roleplay_chat_merged.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/AtomPro-Coder-7B-GGUF | mradermacher | 2024-05-30T04:20:42Z | 39 | 0 | transformers | [
"transformers",
"gguf",
"merge",
"mergekit",
"lazymergekit",
"GritLM/GritLM-7B",
"Nexusflow/Starling-LM-7B-beta",
"en",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-30T03:23:49Z | ---
base_model: powermove72/AtomPro-Coder-7B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- merge
- mergekit
- lazymergekit
- GritLM/GritLM-7B
- Nexusflow/Starling-LM-7B-beta
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/powermove72/AtomPro-Coder-7B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/AtomPro-Coder-7B-GGUF/resolve/main/AtomPro-Coder-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
EleutherAI/Meta-Llama-3-8B-population-random-standardized-random-names | EleutherAI | 2024-05-30T04:18:23Z | 11 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T01:31:26Z | ---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
soufiane001/NeuralPipe-7B-slerp | soufiane001 | 2024-05-30T04:16:10Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"OpenPipe/mistral-ft-optimized-1218",
"mlabonne/NeuralHermes-2.5-Mistral-7B",
"base_model:OpenPipe/mistral-ft-optimized-1218",
"base_model:merge:OpenPipe/mistral-ft-optimized-1218",
"base_model:mlabonne/NeuralHermes-2.5-Mistral-7B",
"base_model:merge:mlabonne/NeuralHermes-2.5-Mistral-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T04:12:10Z | ---
tags:
- merge
- mergekit
- lazymergekit
- OpenPipe/mistral-ft-optimized-1218
- mlabonne/NeuralHermes-2.5-Mistral-7B
base_model:
- OpenPipe/mistral-ft-optimized-1218
- mlabonne/NeuralHermes-2.5-Mistral-7B
---
# NeuralPipe-7B-slerp
NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
* [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: OpenPipe/mistral-ft-optimized-1218
layer_range: [0, 32]
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "soufiane001/NeuralPipe-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |
sunoaiysha/gpt2-company | sunoaiysha | 2024-05-30T04:15:58Z | 148 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T04:15:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ebowwa/human-biases-people-v0.5 | ebowwa | 2024-05-30T04:14:06Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T04:13:57Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
---
# Uploaded model
- **Developed by:** ebowwa
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
acl-srw-2024/llama3-8b-unsloth-sft-awq-4bit-v2 | acl-srw-2024 | 2024-05-30T04:12:35Z | 74 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"awq",
"region:us"
] | text-generation | 2024-05-30T04:09:58Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
NikolayKozloff/AutoCoder_S_6.7B-Q8_0-GGUF | NikolayKozloff | 2024-05-30T04:05:55Z | 1 | 2 | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-30T04:05:33Z | ---
license: apache-2.0
tags:
- llama-cpp
- gguf-my-repo
---
# NikolayKozloff/AutoCoder_S_6.7B-Q8_0-GGUF
This model was converted to GGUF format from [`Bin12345/AutoCoder_S_6.7B`](https://huggingface.co/Bin12345/AutoCoder_S_6.7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Bin12345/AutoCoder_S_6.7B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo NikolayKozloff/AutoCoder_S_6.7B-Q8_0-GGUF --model autocoder_s_6.7b-q8_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo NikolayKozloff/AutoCoder_S_6.7B-Q8_0-GGUF --model autocoder_s_6.7b-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && \
cd llama.cpp && \
make && \
./main -m autocoder_s_6.7b-q8_0.gguf -n 128
```
|
mateomarin/dqn-SpaceInvadersNoFrameskip-v4 | mateomarin | 2024-05-30T04:03:21Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-30T04:02:56Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 329.00 +/- 157.97
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mateomarin -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mateomarin -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mateomarin
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 500000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.01),
('learning_starts', 100000),
('n_timesteps', 100000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
galocher/mistral-7b-v0.3-8b | galocher | 2024-05-30T04:03:13Z | 5 | 0 | transformers | [
"transformers",
"gguf",
"mistral",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/mistral-7b-v0.3-bnb-4bit",
"base_model:quantized:unsloth/mistral-7b-v0.3-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T03:58:59Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- gguf
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
---
# Uploaded model
- **Developed by:** galocher
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
alpha-brain/llama3-mermaid-v1-full-q4 | alpha-brain | 2024-05-30T03:55:13Z | 6 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:quantized:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-30T03:52:19Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** alpha-brain
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ard2020/l3_pt_ALL_data | ard2020 | 2024-05-30T03:54:31Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"unsloth",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:adapter:meta-llama/Meta-Llama-3-8B",
"license:llama3",
"region:us"
] | null | 2024-05-30T03:54:24Z | ---
license: llama3
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
model-index:
- name: l3_pt_ALL_data
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# l3_pt_ALL_data
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4816
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 3407
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.01
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.476 | 0.8003 | 1644 | 0.5334 |
| 0.4679 | 1.6007 | 3288 | 0.4984 |
| 0.3466 | 2.4010 | 4932 | 0.4764 |
| 0.245 | 3.2014 | 6576 | 0.4816 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
njprogrammer/e5-large-mounjaro | njprogrammer | 2024-05-30T03:51:19Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T03:51:13Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
hdve/google-gemma-7b-1717040730 | hdve | 2024-05-30T03:48:57Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T03:45:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
sridhar1ga/wav2vec-dys-large | sridhar1ga | 2024-05-30T03:45:07Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T03:15:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
imdatta0/llama_2_7b_Magiccoder_evol_10k_ortho_scale15 | imdatta0 | 2024-05-30T03:43:54Z | 0 | 0 | peft | [
"peft",
"safetensors",
"unsloth",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-05-30T03:43:50Z | ---
license: llama2
library_name: peft
tags:
- unsloth
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-hf
model-index:
- name: llama_2_7b_Magiccoder_evol_10k_ortho_scale15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama_2_7b_Magiccoder_evol_10k_ortho_scale15
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1550
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.02
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2864 | 0.0262 | 4 | 1.2873 |
| 1.2462 | 0.0523 | 8 | 1.2294 |
| 1.1767 | 0.0785 | 12 | 1.2139 |
| 1.1283 | 0.1047 | 16 | 1.2055 |
| 1.1715 | 0.1308 | 20 | 1.2003 |
| 1.1311 | 0.1570 | 24 | 1.1935 |
| 1.131 | 0.1832 | 28 | 1.1888 |
| 1.1799 | 0.2093 | 32 | 1.1842 |
| 1.1067 | 0.2355 | 36 | 1.1788 |
| 1.1915 | 0.2617 | 40 | 1.1765 |
| 1.1642 | 0.2878 | 44 | 1.1740 |
| 1.2078 | 0.3140 | 48 | 1.1730 |
| 1.1847 | 0.3401 | 52 | 1.1706 |
| 1.1519 | 0.3663 | 56 | 1.1696 |
| 1.2085 | 0.3925 | 60 | 1.1681 |
| 1.203 | 0.4186 | 64 | 1.1656 |
| 1.145 | 0.4448 | 68 | 1.1631 |
| 1.1622 | 0.4710 | 72 | 1.1613 |
| 1.113 | 0.4971 | 76 | 1.1610 |
| 1.2004 | 0.5233 | 80 | 1.1615 |
| 1.2185 | 0.5495 | 84 | 1.1603 |
| 1.1484 | 0.5756 | 88 | 1.1595 |
| 1.1036 | 0.6018 | 92 | 1.1584 |
| 1.1038 | 0.6280 | 96 | 1.1575 |
| 1.1618 | 0.6541 | 100 | 1.1569 |
| 1.1547 | 0.6803 | 104 | 1.1563 |
| 1.1405 | 0.7065 | 108 | 1.1562 |
| 1.1723 | 0.7326 | 112 | 1.1558 |
| 1.1195 | 0.7588 | 116 | 1.1554 |
| 1.1408 | 0.7850 | 120 | 1.1550 |
| 1.1683 | 0.8111 | 124 | 1.1547 |
| 1.129 | 0.8373 | 128 | 1.1548 |
| 1.0604 | 0.8635 | 132 | 1.1550 |
| 1.1764 | 0.8896 | 136 | 1.1551 |
| 1.0874 | 0.9158 | 140 | 1.1551 |
| 1.1365 | 0.9419 | 144 | 1.1551 |
| 1.1552 | 0.9681 | 148 | 1.1550 |
| 1.1481 | 0.9943 | 152 | 1.1550 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
ElevenHu/ruozhiba-llama3-chines | ElevenHu | 2024-05-30T03:43:29Z | 2 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T03:28:37Z | ---
license: apache-2.0
---
|
lrycro/bert-phishing-categorization-tokenizer | lrycro | 2024-05-30T03:40:23Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-28T06:15:52Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
lrycro/bert-phishing-categorization-model | lrycro | 2024-05-30T03:40:21Z | 184 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-30T03:39:53Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
EddiVincent/QA-Dataset-KR-familyLaw | EddiVincent | 2024-05-30T03:40:13Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-30T03:40:13Z | ---
license: apache-2.0
---
|
OwOpeepeepoopoo/TheDumpheys6 | OwOpeepeepoopoo | 2024-05-30T03:33:58Z | 132 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"mergekit",
"merge",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T03:32:46Z | ---
base_model: []
library_name: transformers
tags:
- mergekit
- merge
---
# output_diff1_4_deci1
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* /notebooks/dippy-bittensor-subnet/clone_baxtos_bax09-39
* /notebooks/dippy-bittensor-subnet/clone_tistak_F4Pz0cGuDztfU49T
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: /notebooks/dippy-bittensor-subnet/clone_tistak_F4Pz0cGuDztfU49T
layer_range: [0, 24]
- model: /notebooks/dippy-bittensor-subnet/clone_baxtos_bax09-39
layer_range: [0, 24]
merge_method: slerp
base_model: /notebooks/dippy-bittensor-subnet/clone_tistak_F4Pz0cGuDztfU49T
parameters:
t:
- filter: self_attn
value: [0.1, 0.3, 0.5, 0.7, 0.9]
- filter: mlp
value: [0.9, 0.7, 0.5, 0.3, 0.1]
- value: 0.5
dtype: bfloat16
```
|
Paulie-Aditya/sign-language-detection | Paulie-Aditya | 2024-05-30T03:31:36Z | 0 | 0 | null | [
"medical",
"image-classification",
"region:us"
] | image-classification | 2024-03-26T07:43:13Z | ---
pipeline_tag: image-classification
tags:
- medical
---
# Novel Approach 1
## Stacked Classifier: RF + SVM + XGB
metrics:
- Accuracy: 0.9911734164070612
- Balanced Accuracy: 0.9903422714760236
- MCC: 0.990784932183338
- ROC AUC Score: 0.999934898058849
- F1 Score: 0.9911734164070612
- Jaccard Score: 0.9825012866700978
- Log Loss: 0.033553756349283356
- Precision: 0.9911734164070612
- Recall: 0.9911734164070612
# Novel Approach 2
## Stacked Classifier: RF + SVM + KNN + XGB
metrics:
- Accuracy: 0.9922118380062306
- Balanced Accuracy: 0.9913200369813552
- MCC: 0.9918690348004674
- ROC AUC Score: 0.9999193482927975
- F1 Score: 0.9922118380062306
- Jaccard Score: 0.9845440494590417
- Log Loss: 0.03136301122428542
- Precision: 0.9922118380062306
- Recall: 0.9922118380062306
|
ReySajju742/Sajjad_NLP | ReySajju742 | 2024-05-30T03:28:29Z | 0 | 0 | transformers | [
"transformers",
"nlp",
"nltk",
"en",
"ur",
"dataset:wikipedia",
"doi:10.57967/hf/2339",
"license:cc",
"endpoints_compatible",
"region:us"
] | null | 2024-05-29T10:35:41Z | ---
license: cc
datasets:
- wikipedia
language:
- en
- ur
tags:
- nlp
- nltk
library_name: transformers
--- |
MdGolamMostofa/Mr.X | MdGolamMostofa | 2024-05-30T03:26:51Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-30T03:22:16Z | ---
license: apache-2.0
---
|
QuantFactory/NeuralLlama-3-8B-Instruct-abliterated-GGUF | QuantFactory | 2024-05-30T03:24:41Z | 150 | 0 | null | [
"gguf",
"abliterated",
"text-generation",
"dataset:mlabonne/orpo-dpo-mix-40k",
"base_model:mlabonne/NeuralLlama-3-8B-Instruct-abliterated",
"base_model:quantized:mlabonne/NeuralLlama-3-8B-Instruct-abliterated",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-05-29T23:58:17Z | ---
license: other
datasets:
- mlabonne/orpo-dpo-mix-40k
tags:
- abliterated
pipeline_tag: text-generation
base_model: mlabonne/NeuralLlama-3-8B-Instruct-abliterated
---
# Llama-3-8B-Instruct-abliterated-dpomix-GGUF
This is quantized version of [mlabonne/NeuralLlama-3-8B-Instruct-abliterated](https://huggingface.co/mlabonne/NeuralLlama-3-8B-Instruct-abliterated) created using llama.cpp
# Model Description
This model is an experimental DPO fine-tune of an abliterated Llama 3 8B Instruct model on the full [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k) dataset.
It improves Llama 3 8B Instruct's performance while being uncensored.
## 🔎 Applications
This is an uncensored model. You can use it for any application that doesn't require alignment, like role-playing.
Tested on LM Studio using the "Llama 3" preset.
## 🏆 Evaluation
### Open LLM Leaderboard
This model improves the performance of the abliterated source model and recovers the MMLU that was lost in the abliteration process.

### Nous
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**mlabonne/Llama-3-8B-Instruct-abliterated-dpomix**](https://huggingface.co/mlabonne/Llama-3-8B-Instruct-abliterated-dpomix) [📄](https://gist.github.com/mlabonne/d711548df70e2c04771cc68ab33fe2b9) | **52.26** | **41.6** | **69.95** | **54.22** | **43.26** |
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [📄](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
| [failspy/Meta-Llama-3-8B-Instruct-abliterated-v3](https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3) [📄](https://gist.github.com/mlabonne/f46cce0262443365e4cce2b6fa7507fc) | 51.21 | 40.23 | 69.5 | 52.44 | 42.69 |
| [abacusai/Llama-3-Smaug-8B](https://huggingface.co/abacusai/Llama-3-Smaug-8B) [📄](https://gist.github.com/mlabonne/91369d9c372f80b6a42a978b454d3b5e) | 49.65 | 37.15 | 69.12 | 51.66 | 40.67 |
| [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B) [📄](https://gist.github.com/mlabonne/22896a1ae164859931cc8f4858c97f6f) | 48.63 | 34.17 | 70.59 | 52.39 | 37.36 |
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [📄](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847) | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 | |
Crysiss/llama-3-8B-welfare-sft-test | Crysiss | 2024-05-30T03:22:46Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T03:22:04Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** Crysiss
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
leoli04/code-search-net-tokenizer | leoli04 | 2024-05-30T03:21:58Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T03:21:57Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
nsugianto/tblstructrecog_finetuned_tbltransstrucrecog_v1_s1_394s | nsugianto | 2024-05-30T03:19:15Z | 27 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"table-transformer",
"object-detection",
"generated_from_trainer",
"base_model:microsoft/table-transformer-structure-recognition",
"base_model:finetune:microsoft/table-transformer-structure-recognition",
"license:mit",
"endpoints_compatible",
"region:us"
] | object-detection | 2024-05-29T09:10:27Z | ---
license: mit
base_model: microsoft/table-transformer-structure-recognition
tags:
- generated_from_trainer
model-index:
- name: tblstructrecog_finetuned_tbltransstrucrecog_v1_s1_394s
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tblstructrecog_finetuned_tbltransstrucrecog_v1_s1_394s
This model is a fine-tuned version of [microsoft/table-transformer-structure-recognition](https://huggingface.co/microsoft/table-transformer-structure-recognition) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 750
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.19.1
|
AmilaUvaz/autotrain-ml35h-mm87t | AmilaUvaz | 2024-05-30T03:17:58Z | 2 | 0 | diffusers | [
"diffusers",
"autotrain",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"template:sd-lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-30T03:17:53Z |
---
tags:
- autotrain
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: <A man John Barrowman>
license: openrail++
---
# AutoTrain LoRA DreamBooth - AmilaUvaz/autotrain-ml35h-mm87t
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on <A man John Barrowman> using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
|
trailios/h | trailios | 2024-05-30T03:17:30Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-30T03:17:30Z | ---
license: apache-2.0
---
|
eeeyounglee/EEVE-10.8B-mean-2048-5 | eeeyounglee | 2024-05-30T03:14:41Z | 10 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"llama",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2024-05-30T03:11:55Z | ---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# eeeyounglee/EEVE-10.8B-mean-2048-5
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('eeeyounglee/EEVE-10.8B-mean-2048-5')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=eeeyounglee/EEVE-10.8B-mean-2048-5)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 224 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`__main__.MultipleNegativesRankingLoss_with_logging`
Parameters of the fit()-Method:
```
{
"epochs": 5,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 112,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LlamaModel
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 4096, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
indirajith-jithu/llama-3-8b-tenjin-Q4_0-GGUF | indirajith-jithu | 2024-05-30T03:06:23Z | 1 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-30T03:06:05Z | ---
library_name: transformers
tags:
- llama-cpp
- gguf-my-repo
---
# indirajith-jithu/llama-3-8b-tenjin-Q4_0-GGUF
This model was converted to GGUF format from [`indirajith-jithu/llama-3-8b-tenjin`](https://huggingface.co/indirajith-jithu/llama-3-8b-tenjin) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/indirajith-jithu/llama-3-8b-tenjin) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo indirajith-jithu/llama-3-8b-tenjin-Q4_0-GGUF --model llama-3-8b-tenjin-q4_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo indirajith-jithu/llama-3-8b-tenjin-Q4_0-GGUF --model llama-3-8b-tenjin-q4_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && \
cd llama.cpp && \
make && \
./main -m llama-3-8b-tenjin-q4_0.gguf -n 128
```
|
alpha-brain/llama-mermaid-v1 | alpha-brain | 2024-05-30T03:03:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T03:03:45Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** alpha-brain
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
wuttong/drivelm_ft_visualglm | wuttong | 2024-05-30T03:02:26Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-27T13:22:31Z | ---
license: apache-2.0
---
|
mradermacher/Mahou-1.3-mistral-7B-GGUF | mradermacher | 2024-05-30T02:57:39Z | 22 | 0 | transformers | [
"transformers",
"gguf",
"en",
"dataset:flammenai/MahouMix-v1",
"base_model:flammenai/Mahou-1.3-mistral-7B",
"base_model:quantized:flammenai/Mahou-1.3-mistral-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-30T02:31:53Z | ---
base_model: flammenai/Mahou-1.3-mistral-7B
datasets:
- flammenai/MahouMix-v1
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/flammenai/Mahou-1.3-mistral-7B
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Mahou-1.3-mistral-7B-GGUF/resolve/main/Mahou-1.3-mistral-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
hdve/google-gemma-2b-1717037104 | hdve | 2024-05-30T02:48:07Z | 146 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T02:45:06Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
datek/google-gemma-2b-1717037059 | datek | 2024-05-30T02:46:54Z | 146 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-30T02:44:21Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ismichel/humor_model_v2 | ismichel | 2024-05-30T02:45:46Z | 167 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"base_model:facebook/wav2vec2-base",
"base_model:finetune:facebook/wav2vec2-base",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | audio-classification | 2024-05-30T02:28:44Z | ---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: humor_model_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# humor_model_v2
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2683
- Accuracy: 0.9639
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.9524 | 5 | 0.6652 | 0.9157 |
| 0.6722 | 1.9048 | 10 | 0.5931 | 0.9217 |
| 0.6722 | 2.8571 | 15 | 0.5272 | 0.9337 |
| 0.5461 | 4.0 | 21 | 0.4712 | 0.8554 |
| 0.5461 | 4.9524 | 26 | 0.3943 | 0.8916 |
| 0.3891 | 5.9048 | 31 | 0.3369 | 0.9337 |
| 0.3891 | 6.8571 | 36 | 0.3099 | 0.9398 |
| 0.2976 | 8.0 | 42 | 0.2811 | 0.9578 |
| 0.2976 | 8.9524 | 47 | 0.2713 | 0.9578 |
| 0.2393 | 9.5238 | 50 | 0.2683 | 0.9639 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
QuantFactory/Codestral-22B-v0.1-GGUF | QuantFactory | 2024-05-30T02:41:23Z | 321 | 10 | null | [
"gguf",
"code",
"text-generation",
"base_model:mistralai/Codestral-22B-v0.1",
"base_model:quantized:mistralai/Codestral-22B-v0.1",
"license:other",
"region:us"
] | text-generation | 2024-05-30T00:12:40Z | ---
inference: false
license: other
license_name: mnpl
license_link: https://mistral.ai/licences/MNPL-0.1.md
tags:
- code
language:
- code
base_model: mistralai/Codestral-22B-v0.1
pipeline_tag: text-generation
---
# QuantFactory/Codestral-22B-v0.1-GGUF
- This is quantized version of [mistralai/Codestral-22B-v0.1](https://huggingface.co/mistralai/Codestral-22B-v0.1) created using llama.cpp
- Thanks to @bullerwins for conversion ot HF format
# Model Description
Codestrall-22B-v0.1 is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash (more details in the [Blogpost](https://mistral.ai/news/codestral/)). The model can be queried:
- As instruct, for instance to answer any questions about a code snippet (write documentation, explain, factorize) or to generate code following specific indications
- As Fill in the Middle (FIM), to predict the middle tokens between a prefix and a suffix (very useful for software development add-ons like in VS Code)
## Installation
It is recommended to use `mistralai/Codestral-22B-v0.1` with [mistral-inference](https://github.com/mistralai/mistral-inference).
```
pip install mistral_inference
```
## Download
```py
from huggingface_hub import snapshot_download
from pathlib import Path
mistral_models_path = Path.home().joinpath('mistral_models', 'Codestral-22B-v0.1')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistralai/Codestral-22B-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
```
### Chat
After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment.
```
mistral-chat $HOME/mistral_models/Codestral-22B-v0.1 --instruct --max_tokens 256
```
Will generate an answer to "Write me a function that computes fibonacci in Rust" and should give something along the following lines:
```
Sure, here's a simple implementation of a function that computes the Fibonacci sequence in Rust. This function takes an integer `n` as an argument and returns the `n`th Fibonacci number.
fn fibonacci(n: u32) -> u32 {
match n {
0 => 0,
1 => 1,
_ => fibonacci(n - 1) + fibonacci(n - 2),
}
}
fn main() {
let n = 10;
println!("The {}th Fibonacci number is: {}", n, fibonacci(n));
}
This function uses recursion to calculate the Fibonacci number. However, it's not the most efficient solution because it performs a lot of redundant calculations. A more efficient solution would use a loop to iteratively calculate the Fibonacci numbers.
```
### Fill-in-the-middle (FIM)
After installing `mistral_inference` and running `pip install --upgrade mistral_common` to make sure to have mistral_common>=1.2 installed:
```py
from mistral_inference.model import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.instruct.request import FIMRequest
tokenizer = MistralTokenizer.v3()
model = Transformer.from_folder("~/codestral-22B-240529")
prefix = """def add("""
suffix = """ return sum"""
request = FIMRequest(prompt=prefix, suffix=suffix)
tokens = tokenizer.encode_fim(request).tokens
out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])
middle = result.split(suffix)[0].strip()
print(middle)
```
Should give something along the following lines:
```
num1, num2):
# Add two numbers
sum = num1 + num2
# return the sum
```
## Limitations
The Codestral-22B-v0.1 does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
## License
Codestral-22B-v0.1 is released under the `MNLP-0.1` license.
## The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Jean-Malo Delignon, Jia Li, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickael Seznec, Nicolas Schuhl, Patrick von Platen, Romain Sauvestre, Pierre Stock, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Thibault Schueller, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall |
Sayan01/CKA-T5-CoT-b-T1 | Sayan01 | 2024-05-30T02:35:26Z | 14 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-04-22T02:38:36Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Spatiallysaying/detr-finetuned-runwaymarkings-Horizontal-v1 | Spatiallysaying | 2024-05-30T02:33:18Z | 188 | 0 | transformers | [
"transformers",
"safetensors",
"detr",
"object-detection",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | object-detection | 2024-04-28T02:14:25Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
HyperdustProtocol/HyperAuto | HyperdustProtocol | 2024-05-30T02:32:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-2-7b-bnb-4bit",
"base_model:finetune:unsloth/llama-2-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T02:31:50Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-2-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** HyperdustProtocol
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-2-7b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
radia/Qwen1.5-1.8B-Q4_K_M-GGUF | radia | 2024-05-30T02:29:20Z | 1 | 0 | null | [
"gguf",
"pretrained",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-05-30T02:29:13Z | ---
language:
- en
license: other
tags:
- pretrained
- llama-cpp
- gguf-my-repo
license_name: tongyi-qianwen-research
license_link: https://huggingface.co/Qwen/Qwen1.5-1.8B/blob/main/LICENSE
pipeline_tag: text-generation
---
# radia/Qwen1.5-1.8B-Q4_K_M-GGUF
This model was converted to GGUF format from [`Qwen/Qwen1.5-1.8B`](https://huggingface.co/Qwen/Qwen1.5-1.8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen1.5-1.8B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo radia/Qwen1.5-1.8B-Q4_K_M-GGUF --model qwen1.5-1.8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo radia/Qwen1.5-1.8B-Q4_K_M-GGUF --model qwen1.5-1.8b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && \
cd llama.cpp && \
make && \
./main -m qwen1.5-1.8b-q4_k_m.gguf -n 128
```
|
Subsets and Splits