modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-25 12:29:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
495 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-25 12:27:57
card
stringlengths
11
1.01M
rmezapi/dementia-vit
rmezapi
2025-03-10T17:40:33Z
0
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "dementia", "en", "dataset:Falah/Alzheimer_MRI", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-03-10T17:30:55Z
--- datasets: - Falah/Alzheimer_MRI base_model: - google/vit-base-patch16-224-in21k pipeline_tag: image-classification tags: - dementia license: mit language: - en library_name: transformers --- This project was intended to test the limits of the ViT on a tough dementia dataset. The data used can be found on HuggingFace at: https://huggingface.co/datasets/Falah/Alzheimer_MRI. The project follows closely the following tutorials: https://www.youtube.com/watch?v=r88L_yLJ4CE&ab_channel=code_your_own_AI https://www.youtube.com/watch?v=qU7wO02urYU&ab_channel=JamesBriggs I modify the code presented in the video and tune all parameters to optimize performance using mostly the same libraries and tools. This is a practice project for myself as I return to coding/designing ML models after dedicating time to AI/ML theory (model architectures, transfer learning) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d291d26130ef7be00c9753/1K_D874KlBp8HWq45NFjq.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d291d26130ef7be00c9753/n1FICtrHxqievgXt0vdXk.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d291d26130ef7be00c9753/YxJjXB3KH5DwufYvaSC2X.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d291d26130ef7be00c9753/nUvQVvbiBUhTSSxR1KK2y.png)
TensorStack/AirtistPhoto-amuse
TensorStack
2025-03-10T17:40:32Z
0
0
null
[ "onnx", "region:us" ]
null
2025-03-10T17:37:29Z
# AIrtist Photo MAL Realistic - Onnx DirectML Optimized ## Original Model https://civitai.com/models/229332/airtist-photo-mal-realistic ## Amuse https://www.amuse-ai.com/
TensorStack/AbsoluteReality_v181-amuse
TensorStack
2025-03-10T17:36:52Z
0
0
null
[ "onnx", "region:us" ]
null
2025-03-10T17:31:51Z
# AbsoluteReality v1.8.1 - Onnx DirectML Optimized ## Original Model https://civitai.com/models/81458/absolutereality?modelVersionId=132760 ## Amuse https://www.amuse-ai.com/
Lettria/grag-go-idf-online_contrastive_8082-v2-trial-5
Lettria
2025-03-10T17:36:30Z
0
0
sentence-transformers
[ "sentence-transformers", "tensorboard", "onnx", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:4861", "loss:OnlineContrastiveLoss", "arxiv:1908.10084", "base_model:intfloat/multilingual-e5-base", "base_model:quantized:intfloat/multilingual-e5-base", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-03-10T17:35:22Z
--- base_model: intfloat/multilingual-e5-base library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4861 - loss:OnlineContrastiveLoss widget: - source_sentence: 'Type de project: Actions de valorisation (expos physiques ou virtuelles, journées d’étude, site internet, publications, documentaires…),Outils de médiation (cartes et itinéraires papier ou numériques, livrets de visite, outils numériques, multimédia, parcours d’interprétation…),Dispositifs pédagogiques (mallettes pédagogiques, Moocs, supports de visite à destination des jeunes…),Événements rayonnant à l’échelle de l’Île-de-France. Une attention particulière sera portée à la qualité des contenus, à l’originalité et la pertinence des outils ou actions proposés, et à leur adéquation avec les publics ciblés.' sentences: - '''Actions de valorisation'':projet|ÉVALUÉ_PAR|''adéquation avec les publics ciblés'':critère' - '''mesdemarches.iledefrance.fr'':plateforme|ACCEPTE_DEMANDE|''Association - Fondation'':entité' - '''projets de coopération'':projet|IMPLIQUE|''agriculteur cédant'':personne' - source_sentence: 'Description: Cet appel à projets vise à soutenir les structures en investissement qui agissent en faveur des jeunes en situation de précarité, suite à une rupture familiale ou sociale pouvant entraîner de graves conséquences sur leur santé ou leur sécurité. Thèmes: Santé & Social : Solidarité Nature de l''aide: Les dépenses éligibles se composent de dépenses de fonctionnement exclusivement imputables à la mise en œuvre des projets retenus dans le cadre de ce dispositif. La subvention régionale est fixée à 50 % maximum de la dépense subventionnable (total des dépenses éligibles), dans la limite d’un plafond de subvention fixé à 75 000 € maximum. Délibération cadre: CR 100-16 du 22 septembre 2016 / CP 2018-428 du 17 octobre 2018' sentences: - '''C''POSSIBLE'':programme|FAVORISE_INSERTION_PROFESSIONNELLE|''lycéens'':groupe' - '''Date de début'':concept|EST|''non précisée'':__inferred__' - '''subvention régionale'':aide|LIMITE|''appel à projets'':projet' - source_sentence: 'Type de project: Le programme propose des rencontres le samedi après-midi dans une université ou une grande école réputée, entre les professionnels bénévoles et les lycéens et collégiens sous la forme d''atelier thématiques. Ces moments de rencontre touchent à une grande multitude de domaines d’activités. L''objectif est de donner l’opportunité aux jeunes les plus enclavés d’échanger avec des intervenants professionnels aux parcours atypiques et inspirants. Les intervenants suscitent les ambitions et élargissent les perspectives des élèves.' sentences: - '''concours'':événement|CIBLE|''jeunes'':groupe' - '''projets'':__inferred__|TÉLÉCHARGER_ET_REMPLIR|''charte des valeurs de la République et de la laïcité'':document' - '''programme'':initiative|IMPLIQUE|''lycéens'':groupe' - source_sentence: 'Type de project: Le Prix des Innovateurs vise à encourager, soutenir et valoriser la recherche, le transfert de technologie et l’émergence d’innovations en santé dont l’impact sociétal et de santé publique est remarquable. Ce prix a ainsi vocation à :  Contribuer à la reconnaissance d’un chercheur et de son équipe menant des recherches dans le secteur de la santé,Encourager la création de spin-off de laboratoires académiques en garantissant les meilleures conditions d’essaimage notamment par l’acquisition des compétences requises par l’ensemble des membres de l’équipe,Renforcer' sentences: - '''2nde session de dépôt'':session|diffusion prévue|''diffusion à partir de novembre 2025'':__inferred__' - '''chercheur'':personne|DIRIGE|''équipe de recherche'':groupe' - '''Collectivité ou institution - Communes de > 20 000 hab'':organisation|éligible pour|''dépôt des demandes de subvention'':procédure' - source_sentence: 'Date de début: non précisée Date de fin (clôture): non précisée Date de début de la future campagne: non précisée' sentences: - '''Date de fin'':concept|EST|''Lundi 18 Novembre 2024'':__inferred__' - '''Région IDF'':organisation|PROPOSE|''Grands Lieux d''Innovation'':programme' - '''Date de fin'':concept|EST|''non précisée'':__inferred__' model-index: - name: SentenceTransformer based on intfloat/multilingual-e5-base results: - task: type: binary-classification name: Binary Classification dataset: name: BinaryClassifEval type: BinaryClassifEval metrics: - type: cosine_accuracy value: 0.723911257189811 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7624340653419495 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.7310344827586207 name: Cosine F1 - type: cosine_f1_threshold value: 0.7544324398040771 name: Cosine F1 Threshold - type: cosine_precision value: 0.6923076923076923 name: Cosine Precision - type: cosine_recall value: 0.7743506493506493 name: Cosine Recall - type: cosine_ap value: 0.7896511495283742 name: Cosine Ap - type: cosine_mcc value: 0.42531138116583356 name: Cosine Mcc --- # SentenceTransformer based on intfloat/multilingual-e5-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision 835193815a3936a24a0ee7dc9e3d48c1fbb19c55 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Lettria/grag-go-idf-online_contrastive_8082-v2-trial-5") # Run inference sentences = [ 'Date de début: non précisée\nDate de fin (clôture): non précisée\nDate de début de la future campagne: non précisée', "'Date de fin':concept|EST|'non précisée':__inferred__", "'Date de fin':concept|EST|'Lundi 18 Novembre 2024':__inferred__", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Binary Classification * Dataset: `BinaryClassifEval` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:--------------------------|:-----------| | cosine_accuracy | 0.7239 | | cosine_accuracy_threshold | 0.7624 | | cosine_f1 | 0.731 | | cosine_f1_threshold | 0.7544 | | cosine_precision | 0.6923 | | cosine_recall | 0.7744 | | **cosine_ap** | **0.7897** | | cosine_mcc | 0.4253 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 4,861 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------| | type | string | string | int | | details | <ul><li>min: 26 tokens</li><li>mean: 191.64 tokens</li><li>max: 429 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 31.2 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> | * Samples: | sentence1 | sentence2 | label | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:---------------| | <code>Type de project: L’excès de précipitations tout au long de l’année a conduit à une chute spectaculaire des rendements des céréales d’été et des protéagineux (blé, orge, pois, féverole, etc.) que produisent 90% des agriculteurs d’Île-de-France, historique grenier à blé du pays. Tributaires naturels du fleurissement des cultures, les apiculteurs professionnels de la région ont également souffert de ces dérèglements climatiques.La Région accompagne les exploitations concernées en leur apportant une aide exceptionnelle.</code> | <code>'excès de précipitations':phénomène|DIMINUE|'rendements des protéagineux':concept</code> | <code>1</code> | | <code>Type de project: Dans le cadre de sa stratégie « Impact 2028 », la Région s’engage dans la défense de la souveraineté industrielle en renforçant son soutien à une industrie circulaire et décarbonée, porteuse d’innovations et créatrice d’emplois. PM'up Jeunes pousses industrielles soutient les projets d’implantation d’une première usine tournée vers la décarbonation, l’efficacité énergétique et la circularité des processus de production. Ces projets peuvent prendre l'une de ces formes : Une première unité de production industrielle, après une phase de prototypage,Une ligne pilote de production industrielle, en interne ou chez un tiers situé en Île-de-France, à condition que sa production soit destinée à de premières commercialisations,La transformation d’une unité de production pilote à une unité de production industrielle</code> | <code>'Région Île-de-France':organisation|soutient|'industrie décarbonée':concept</code> | <code>1</code> | | <code>Procédures et démarches: Le dépôt des demandes de subvention se fait en ligne sur la plateforme régionale mesdemarches.iledefrance.fr : Session de dépôt unique pour les nouvelles demandes : du 30 septembre au 4 novembre 2024 (11 heures) pour des festivals qui se déroulent entre le 1er mars 2025 et le 28 février 2026 (vote à la CP de mars 2025). Pour les demandes de renouvellement, un mail est envoyé aux structures concernées par le service du Spectacle vivant en amont de chaque session de dépôt.<br>Bénéficiaires: Professionnel - Culture, Association - Fondation, Association - Régie par la loi de 1901, Association - ONG, Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité ou institution - Autre (GIP, copropriété, EPA...), Collectivité ou institution - Communes de 2000 à 10 000 hab, Collectivité ou institution - Communes de < 2000 hab, Collectivité ou institution - Communes de > 20 000 hab, Collectivité ou institution - Département, Collectivité ou institution - EPC...</code> | <code>'Collectivité ou institution - EPCI':bénéficiaire|PEUT_BÉNÉFICIER|'demandes de subvention':procédure</code> | <code>1</code> | * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Evaluation Dataset #### json * Dataset: json * Size: 1,217 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 24 tokens</li><li>mean: 188.47 tokens</li><li>max: 394 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 31.22 tokens</li><li>max: 133 tokens</li></ul> | <ul><li>0: ~38.40%</li><li>1: ~61.60%</li></ul> | * Samples: | sentence1 | sentence2 | label | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------| | <code>Type de project: Le programme propose des rencontres le samedi après-midi dans une université ou une grande école réputée, entre les professionnels bénévoles et les lycéens et collégiens sous la forme d'atelier thématiques. Ces moments de rencontre touchent à une grande multitude de domaines d’activités. L'objectif est de donner l’opportunité aux jeunes les plus enclavés d’échanger avec des intervenants professionnels aux parcours atypiques et inspirants. Les intervenants suscitent les ambitions et élargissent les perspectives des élèves.</code> | <code>'rencontres':événement|impliquent|'professionnels bénévoles':groupe</code> | <code>1</code> | | <code>Précision sure les bénéficiaires: Communes,Établissements publics de coopération intercommunale (avec ou sans fiscalité propre),Établissements publics territoriaux franciliens,Départements,Aménageurs publics et privés (lorsque ces derniers interviennent à la demande ou pour le compte d'une collectivité précitée).</code> | <code>'Aménageurs privés':entité|INTERVIENT_POUR|'Départements':entité</code> | <code>1</code> | | <code>Date de début: non précisée<br>Date de fin (clôture): non précisée<br>Date de début de la future campagne: non précisée</code> | <code>'Date de fin':concept|EST|'non précisée':__inferred__</code> | <code>1</code> | * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `gradient_accumulation_steps`: 4 - `learning_rate`: 4.8482667652196246e-05 - `num_train_epochs`: 10 - `lr_scheduler_type`: cosine - `warmup_steps`: 191 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `hub_model_id`: Lettria/grag-go-idf-online_contrastive_8082-v2-trial-5 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 4.8482667652196246e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 191 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: Lettria/grag-go-idf-online_contrastive_8082-v2-trial-5 - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | BinaryClassifEval_cosine_ap | |:-------:|:-------:|:-------------:|:---------------:|:---------------------------:| | 0.1316 | 40 | 0.4716 | - | - | | 0.2632 | 80 | 0.3705 | - | - | | 0.3947 | 120 | 0.406 | - | - | | 0.5263 | 160 | 0.3677 | - | - | | 0.6579 | 200 | 0.39 | - | - | | 0.7895 | 240 | 0.3813 | - | - | | 0.9211 | 280 | 0.3815 | - | - | | **1.0** | **304** | **-** | **0.114** | **0.7897** | | 1.0526 | 320 | 0.3434 | - | - | | 1.1842 | 360 | 0.3049 | - | - | | 1.3158 | 400 | 0.3214 | - | - | | 1.4474 | 440 | 0.3269 | - | - | | 1.5789 | 480 | 0.2828 | - | - | | 1.7105 | 520 | 0.2726 | - | - | | 1.8421 | 560 | 0.3099 | - | - | | 1.9737 | 600 | 0.2944 | - | - | | 2.0 | 608 | - | 0.1362 | 0.7456 | | 2.1053 | 640 | 0.2928 | - | - | | 2.2368 | 680 | 0.2382 | - | - | | 2.3684 | 720 | 0.2369 | - | - | | 2.5 | 760 | 0.2086 | - | - | | 2.6316 | 800 | 0.2401 | - | - | | 2.7632 | 840 | 0.218 | - | - | | 2.8947 | 880 | 0.1988 | - | - | | 3.0 | 912 | - | 0.1510 | 0.7015 | | 3.0263 | 920 | 0.199 | - | - | | 3.1579 | 960 | 0.194 | - | - | | 3.2895 | 1000 | 0.1726 | - | - | | 3.4211 | 1040 | 0.1504 | - | - | | 3.5526 | 1080 | 0.1782 | - | - | | 3.6842 | 1120 | 0.1869 | - | - | | 3.8158 | 1160 | 0.1624 | - | - | | 3.9474 | 1200 | 0.149 | - | - | | 4.0 | 1216 | - | 0.1467 | 0.7468 | | 4.0789 | 1240 | 0.1431 | - | - | | 4.2105 | 1280 | 0.1492 | - | - | | 4.3421 | 1320 | 0.1345 | - | - | | 4.4737 | 1360 | 0.1251 | - | - | | 4.6053 | 1400 | 0.1032 | - | - | | 4.7368 | 1440 | 0.0979 | - | - | | 4.8684 | 1480 | 0.1369 | - | - | | 5.0 | 1520 | 0.1013 | 0.1706 | 0.6860 | | 5.1316 | 1560 | 0.1015 | - | - | | 5.2632 | 1600 | 0.0871 | - | - | | 5.3947 | 1640 | 0.0717 | - | - | | 5.5263 | 1680 | 0.0912 | - | - | | 5.6579 | 1720 | 0.0786 | - | - | | 5.7895 | 1760 | 0.0891 | - | - | | 5.9211 | 1800 | 0.0866 | - | - | | 6.0 | 1824 | - | 0.1822 | 0.6957 | | 6.0526 | 1840 | 0.0692 | - | - | | 6.1842 | 1880 | 0.0543 | - | - | | 6.3158 | 1920 | 0.0528 | - | - | | 6.4474 | 1960 | 0.0644 | - | - | | 6.5789 | 2000 | 0.084 | - | - | | 6.7105 | 2040 | 0.0511 | - | - | | 6.8421 | 2080 | 0.0544 | - | - | | 6.9737 | 2120 | 0.0675 | - | - | | 7.0 | 2128 | - | 0.1909 | 0.6784 | | 7.1053 | 2160 | 0.0351 | - | - | | 7.2368 | 2200 | 0.0492 | - | - | | 7.3684 | 2240 | 0.04 | - | - | | 7.5 | 2280 | 0.0606 | - | - | | 7.6316 | 2320 | 0.0509 | - | - | | 7.7632 | 2360 | 0.0397 | - | - | | 7.8947 | 2400 | 0.0412 | - | - | | 8.0 | 2432 | - | 0.1983 | 0.6886 | | 8.0263 | 2440 | 0.0541 | - | - | | 8.1579 | 2480 | 0.0302 | - | - | | 8.2895 | 2520 | 0.0494 | - | - | | 8.4211 | 2560 | 0.0286 | - | - | | 8.5526 | 2600 | 0.0327 | - | - | | 8.6842 | 2640 | 0.0378 | - | - | | 8.8158 | 2680 | 0.037 | - | - | | 8.9474 | 2720 | 0.0473 | - | - | | 9.0 | 2736 | - | 0.2056 | 0.6887 | | 9.0789 | 2760 | 0.0342 | - | - | | 9.2105 | 2800 | 0.0251 | - | - | | 9.3421 | 2840 | 0.0294 | - | - | | 9.4737 | 2880 | 0.0346 | - | - | | 9.6053 | 2920 | 0.0313 | - | - | | 9.7368 | 2960 | 0.0288 | - | - | | 9.8684 | 3000 | 0.039 | - | - | | 10.0 | 3040 | 0.0426 | 0.1140 | 0.7897 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.9 - Sentence Transformers: 3.4.1 - Transformers: 4.48.3 - PyTorch: 2.3.0 - Accelerate: 1.1.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
alex17cmbs/dqn-SpaceInvadersNoFrameskip-v4
alex17cmbs
2025-03-10T17:36:30Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-10T17:35:51Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 781.50 +/- 214.80 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alex17cmbs -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alex17cmbs -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga alex17cmbs ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 50000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
maisarp/llama-3.1-8B-texto-para-sql
maisarp
2025-03-10T17:35:31Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-10T17:34:14Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** maisarp - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
teo2003zz/Meta-Llama-3.1-8B-Instruct-Second-Brain-Summariztion
teo2003zz
2025-03-10T17:34:32Z
0
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T17:23:06Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** teo2003zz - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mlx-community/miscii-14b-0218-4bit
mlx-community
2025-03-10T17:32:19Z
0
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "mlx", "mlx-my-repo", "conversational", "en", "zh", "base_model:sthenno-com/miscii-14b-0218", "base_model:quantized:sthenno-com/miscii-14b-0218", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2025-03-10T17:31:47Z
--- language: - en - zh license: apache-2.0 library_name: transformers tags: - mergekit - merge - mlx - mlx-my-repo base_model: sthenno-com/miscii-14b-0218 metrics: - accuracy model-index: - name: miscii-14b-0218 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 76.56 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 50.64 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 51.44 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 17.79 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 13.21 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 47.75 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard --- # sthenno/miscii-14b-0218-4bit The Model [sthenno/miscii-14b-0218-4bit](https://huggingface.co/sthenno/miscii-14b-0218-4bit) was converted to MLX format from [sthenno-com/miscii-14b-0218](https://huggingface.co/sthenno-com/miscii-14b-0218) using mlx-lm version **0.21.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("sthenno/miscii-14b-0218-4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
HumanoidTeam/binary_cube_rainbow_local_processing_joint_fixes_40k
HumanoidTeam
2025-03-10T17:30:47Z
0
0
null
[ "safetensors", "dataset:HumanoidTeam/rby_binary_cube_v5", "region:us" ]
null
2025-03-10T16:57:10Z
--- datasets: - HumanoidTeam/rby_binary_cube_v5 ---
shibajustfor/a9cf8dfd-5a10-44ec-8d79-d8f489f57cca
shibajustfor
2025-03-10T17:30:36Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:echarlaix/tiny-random-mistral", "base_model:adapter:echarlaix/tiny-random-mistral", "region:us" ]
null
2025-03-10T17:30:31Z
--- library_name: peft tags: - generated_from_trainer base_model: echarlaix/tiny-random-mistral model-index: - name: shibajustfor/a9cf8dfd-5a10-44ec-8d79-d8f489f57cca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shibajustfor/a9cf8dfd-5a10-44ec-8d79-d8f489f57cca This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.2217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiulawaldev/06c4b1f4-b31d-404f-9265-a839e13373d4
robiulawaldev
2025-03-10T17:29:55Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:tiiuae/falcon-rw-1b", "base_model:adapter:tiiuae/falcon-rw-1b", "region:us" ]
null
2025-03-10T17:29:42Z
--- library_name: peft tags: - generated_from_trainer base_model: tiiuae/falcon-rw-1b model-index: - name: robiulawaldev/06c4b1f4-b31d-404f-9265-a839e13373d4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robiulawaldev/06c4b1f4-b31d-404f-9265-a839e13373d4 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/First_DeepSeek-R1-Medical-COT-GGUF
mradermacher
2025-03-10T17:29:25Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "en", "base_model:rk2903/First_DeepSeek-R1-Medical-COT", "base_model:quantized:rk2903/First_DeepSeek-R1-Medical-COT", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-10T15:35:30Z
--- base_model: rk2903/First_DeepSeek-R1-Medical-COT language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/rk2903/First_DeepSeek-R1-Medical-COT <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/First_DeepSeek-R1-Medical-COT-GGUF/resolve/main/First_DeepSeek-R1-Medical-COT.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/PerpetualNight-12B-GGUF
mradermacher
2025-03-10T17:29:20Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "chatml", "slerp", "en", "ja", "base_model:yamatazen/PerpetualNight-12B", "base_model:quantized:yamatazen/PerpetualNight-12B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-10T16:02:02Z
--- base_model: yamatazen/PerpetualNight-12B language: - en - ja library_name: transformers quantized_by: mradermacher tags: - mergekit - merge - chatml - slerp --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/yamatazen/PerpetualNight-12B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/PerpetualNight-12B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/PerpetualNight-12B-GGUF/resolve/main/PerpetualNight-12B.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
baby-dev/85c544a8-5db1-4394-a425-5a5fa9c64d67
baby-dev
2025-03-10T17:28:51Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:echarlaix/tiny-random-mistral", "base_model:adapter:echarlaix/tiny-random-mistral", "region:us" ]
null
2025-03-10T17:28:47Z
--- library_name: peft tags: - generated_from_trainer base_model: echarlaix/tiny-random-mistral model-index: - name: baby-dev/85c544a8-5db1-4394-a425-5a5fa9c64d67 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baby-dev/85c544a8-5db1-4394-a425-5a5fa9c64d67 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.2223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cutycat2000x/void-1-32b-Q4_K_M-GGUF
cutycat2000x
2025-03-10T17:25:26Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "en", "de", "base_model:voidai-team/void-1-32b", "base_model:quantized:voidai-team/void-1-32b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-10T17:23:53Z
--- base_model: voidai-team/void-1-32b language: - en - de license: apache-2.0 pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # cutycat2000x/void-1-32b-Q4_K_M-GGUF This model was converted to GGUF format from [`voidai-team/void-1-32b`](https://huggingface.co/voidai-team/void-1-32b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/voidai-team/void-1-32b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo cutycat2000x/void-1-32b-Q4_K_M-GGUF --hf-file void-1-32b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo cutycat2000x/void-1-32b-Q4_K_M-GGUF --hf-file void-1-32b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo cutycat2000x/void-1-32b-Q4_K_M-GGUF --hf-file void-1-32b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo cutycat2000x/void-1-32b-Q4_K_M-GGUF --hf-file void-1-32b-q4_k_m.gguf -c 2048 ```
gokulan006/Suicidal-Risk-Analysis-distilbert-base-uncased
gokulan006
2025-03-10T17:25:22Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:gokulan006/Suicidal-Risk-Analysis-distilbert-base-uncased", "base_model:finetune:gokulan006/Suicidal-Risk-Analysis-distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-10T10:50:49Z
--- library_name: transformers license: apache-2.0 base_model: gokulan006/Suicidal-Risk-Analysis-distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: Suicidal-Risk-Analysis-DistilBert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Suicidal-Risk-Analysis-DistilBert-base-uncased This model is a fine-tuned version of [gokulan006/Suicidal-Risk-Analysis-distilbert-base-uncased](https://huggingface.co/gokulan006/Suicidal-Risk-Analysis-distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5168 - Accuracy: 0.8384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4205 | 1.0 | 659 | 0.3784 | 0.8346 | | 0.2791 | 2.0 | 1318 | 0.3904 | 0.8456 | | 0.1506 | 3.0 | 1977 | 0.5168 | 0.8384 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0
Aldey/cahya-distilbert-base-indonesian-smsa
Aldey
2025-03-10T17:25:09Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:cahya/distilbert-base-indonesian", "base_model:finetune:cahya/distilbert-base-indonesian", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-10T12:58:11Z
--- library_name: transformers license: mit base_model: cahya/distilbert-base-indonesian tags: - generated_from_trainer metrics: - accuracy model-index: - name: cahya-distilbert-base-indonesian-smsa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cahya-distilbert-base-indonesian-smsa This model is a fine-tuned version of [cahya/distilbert-base-indonesian](https://huggingface.co/cahya/distilbert-base-indonesian) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2808 - Accuracy: 0.9514 - F1 Score: 0.9517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------:| | 0.3161 | 0.5359 | 500 | 0.2078 | 0.9470 | 0.9468 | | 0.1997 | 1.0718 | 1000 | 0.2636 | 0.9382 | 0.9384 | | 0.1303 | 1.6077 | 1500 | 0.1916 | 0.9558 | 0.9560 | | 0.1184 | 2.1436 | 2000 | 0.2312 | 0.9523 | 0.9526 | | 0.0609 | 2.6795 | 2500 | 0.2396 | 0.9532 | 0.9534 | | 0.055 | 3.2154 | 3000 | 0.2428 | 0.9488 | 0.9489 | | 0.0178 | 3.7513 | 3500 | 0.2742 | 0.9549 | 0.9551 | | 0.0198 | 4.2872 | 4000 | 0.2679 | 0.9549 | 0.9551 | | 0.0129 | 4.8232 | 4500 | 0.2762 | 0.9514 | 0.9516 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.3.2 - Tokenizers 0.21.0
CarsenGafford2/ppo-LunarLander-v2
CarsenGafford2
2025-03-10T17:23:33Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-10T17:23:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.95 +/- 16.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
1kpa/1kpa
1kpa
2025-03-10T17:21:42Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-10T16:38:49Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # 1Kpa <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('1kpa/1kpa', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
omnimodel/nexus-o-v8-update
omnimodel
2025-03-10T17:21:23Z
0
0
transformers
[ "transformers", "safetensors", "hithink_omni", "feature-extraction", "custom_code", "en", "zh", "arxiv:2503.01879", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "region:us" ]
feature-extraction
2025-03-10T17:13:48Z
--- library_name: transformers license: apache-2.0 language: - en - zh base_model: - Qwen/Qwen2.5-VL-7B-Instruct --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> v8: This is the model checkpoint used in the report (v1). ## Model Details ### Model Description NEXUS-O: AN OMNI-PERCEPTIVE AND -INTERACTIVE MODEL FOR LANGUAGE, AUDIO, AND VISION ### Model Sources - **Repository:** [More Information Needed] - **Paper:** https://huggingface.co/papers/2503.01879 - **Demo:** [More Information Needed] ## How to Get Started with the Model Use the code below to get started with the model. ``` Transformers: pip install git+https://github.com/SnowYJ/transformers-omni-v8.git ``` ## 🔥 Training Details ### 🔥 Training Data ``` https://huggingface.co/datasets/omnimodel/nexus-o-v8-audio-data ``` ### 🔥 Training Procedure ``` Train: https://github.com/SnowYJ/train-omni-v8/tree/swift_v3 ``` ## 🌟 Evaluation <!-- This section describes the evaluation protocols and provides the results. --> <!-- ### Testing Data, Factors & Metrics --> ### 🌟 Testing Data <!-- This should link to a Dataset Card if possible. --> ### 🌟 Results | Model | LLM-size | Video-MME | MMMU | MathV | Hal | AI2D | OCR | MMVet | MME | |---------------------|-----------------|-----------|------|--------|------|------|------|------|------| | **Vision-Language Models** | | | | | | | | | | | MiniGPT-V2 6 | Qwen2-7B | 57.5 | 49.8 | 60.6 | 48.1 | 82.1 | 852.0| 60.0 |2268.7| | Qwen2.5-VL | Qwen2.5-7B | 56.0 | 51.8 | 61.1 | 71.7 | 80.7 | 877.0| - |2291.1| | **Omni-modal Models** | | | | | | | | | | | VITA-1.5-Audio | Qwen2-7B | - | 52.1 | 66.2 | 44.9 | 79.3 | 732.0| 49.6 |2352.0| | EMova-8B | LLaMA-3.1-8B | - | - | 61.1 | - | 82.8 | 824.0| 55.8 |2205.0| | Baichuan-Omni-1.5 | - | 58.2 | 47.3 | 51.9 | 47.8 | - | - | 65.4 |2186.9| | Megrez-3B-Omni | Megrez-3B | - | 51.8 | 62.0 | 50.1 | 82.0 | - | - |2315.0| | **Proprietary** | | | | | | | | | | | GPT-4V | - | 50.4 | 59.3 | 48.2 | 39.3 | 71.4 | 678.0| 49.0 |1790.3| | GPT-4o mini | - | 54.8 | 60.0 | 52.4 | 46.1 | 77.8 | 785.0| 66.9 |2003.4| | Gemini-1.5 Pro | 200B | 59.1 | 60.6 | 57.7 | 45.6 | 79.1 | 754.0| 64.0 |2110.6| | GPT-4o | - | 61.6 | 62.8 | 56.5 | 51.7 | 77.4 | 663.0| 66.5 |2328.7| | Claude3.5 Sonnet | 175B | 62.2 | 65.9 | 61.6 | 49.9 | 80.2 | 778.0| 66.0 |1920.0| | **Ours** | | | | | | | | | | | Nexus-O | Qwen2.5-VL-7B | 57.0 | 53.2 | 62.1 | 71.1 | 81.2 | 882.0| - |2315.5| ### ❤️ Citation ```BibTeX @misc{liu2025nexusoomniperceptiveinteractivemodel, title={Nexus-O: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision}, author={Che Liu and Yingji Zhang and Dong Zhang and Weijie Zhang and Chenggong Gong and Haohan Li and Yu Lu and Shilin Zhou and Yue Lu and Ziliang Gan and Ziao Wang and Junwei Liao and Haipang Wu and Ji Liu and André Freitas and Qifan Wang and Zenglin Xu and Rongjuncheng Zhang and Yong Dai}, year={2025}, eprint={2503.01879}, archivePrefix={arXiv}, primaryClass={cs.MM}, url={https://arxiv.org/abs/2503.01879}, } ```
unieai/aqua-u1-micro-2503-b1
unieai
2025-03-10T17:19:29Z
0
0
null
[ "safetensors", "qwen2", "license:apache-2.0", "region:us" ]
null
2025-03-10T17:12:36Z
--- license: apache-2.0 ---
sazzadul/Shrutimala_Bangla_ASR
sazzadul
2025-03-10T17:18:08Z
136
0
transformers
[ "transformers", "safetensors", "wav2vec2-bert", "automatic-speech-recognition", "asr", "bangla", "bangla-asr", "wav2vec-bert", "wav2vec-bert-bangla", "bn", "dataset:mozilla-foundation/common_voice_17_0", "dataset:openslr/openslr", "base_model:facebook/w2v-bert-2.0", "base_model:finetune:facebook/w2v-bert-2.0", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-02-17T17:15:45Z
--- datasets: - mozilla-foundation/common_voice_17_0 - openslr/openslr language: - bn metrics: - wer - cer base_model: - facebook/w2v-bert-2.0 pipeline_tag: automatic-speech-recognition library_name: transformers tags: - asr - bangla - bangla-asr - wav2vec-bert - wav2vec-bert-bangla license: cc-by-sa-4.0 --- # Model Card for Shrutimala Bangla ASR ## Model Details ### Model Description This model is a fine-tuned version of `facebook/w2v-bert-2.0` for automatic speech recognition (ASR) in Bangla. The model has been trained on a large Bangla dataset, primarily sourced from Mozilla Common Voice 17.0, Common Voice 20.0, OpenSLR and achieves a Word Error Rate (WER) of 11%. - **Developed by:** Sazzadul Islam - **Model type:** Wav2Vec-BERT-based Bangla ASR model - **Language(s):** Bangla (bn) - **License:** CC-BY-SA-4.0 - **Fine-tuned from:** `facebook/w2v-bert-2.0` <!-- ### Model Sources - **Repository:** [Add Link] - **Paper [optional]:** [Add Link] - **Demo:** https://huggingface.co/spaces/sazzadul/Shrutimala_Bangla_ASR --> ## Uses ### Direct Use This model can be used for automatic speech recognition (ASR) in Bangla and English, with applications in transcription, voice assistants, and accessibility tools. ### Downstream Use It can be further fine-tuned for domain-specific ASR tasks, including medical or legal transcription in Bangla. ### Out-of-Scope Use - Not suitable for real-time ASR on low-power devices without optimization. - May not perform well on noisy environments or highly accented regional dialects outside the training data. ## Bias, Risks, and Limitations - The model may struggle with low-resource dialects and uncommon speech patterns. - Biases may exist due to dataset imbalances in gender, age, or socio-economic backgrounds. - Ethical considerations should be taken when using the model for surveillance or sensitive applications. ## How to Get Started with the Model Use the following code snippet to load the model: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch processor = Wav2Vec2Processor.from_pretrained("your_model_id") model = Wav2Vec2ForCTC.from_pretrained("your_model_id") # Load and process audio file audio_input = ... # Provide audio tensor inputs = processor(audio_input, return_tensors="pt", sampling_rate=16000) # Perform ASR with torch.no_grad(): logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) print(transcription) ``` ## Training Details ### Training Data The model was trained on the Mozilla Common Voice 17.0, Common Voice 20.0 and OpenSLR dataset for Bangla. ### Training Procedure #### Preprocessing - Audio was resampled to 16kHz-8kHz-16kHz. - Transcripts were normalized to improve ASR performance. #### Training Hyperparameters - **Batch Size:** 16 - **Learning Rate:** 1e-5 - **Training Steps:** 25000 - **Mixed Precision:** FP16 #### Training Time and Compute - **Hardware Used:** RTX 4090 - **Training Time:** 37 Hours - **Dataset Size:** 143k ## Evaluation ### Testing Data & Metrics #### Metrics - **WER:** 11.26% - **CER:** 2.39 #### Factors The model was evaluated on: - Standard Bangla speech - Various speaker demographics ### Results - Performs well on clear, standard Bangla speech. - Struggles with strong regional accents and noisy environments. ## Technical Specifications ### Model Architecture The model is based on `facebook/w2v-bert-2.0`, a hybrid Wav2Vec2-BERT model for ASR. <!-- ### Compute Infrastructure - **Hardware:** [GPU/TPU used] - **Software:** [Transformers version, PyTorch/TensorFlow version] --> ## Contact For any issues or inquiries, please contact [email protected].
TFOCUS/deep-fuk_3
TFOCUS
2025-03-10T17:17:48Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-03-10T17:03:03Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
mradermacher/CardProjector-7B-v2-i1-GGUF
mradermacher
2025-03-10T17:16:08Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-10T16:58:27Z
<!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/AlexBefest/CardProjector-7B-v2
mradermacher/r1-1.5b-longthought-v2-GGUF
mradermacher
2025-03-10T17:14:09Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:mkhalifa/r1-1.5b-longthought-v2", "base_model:quantized:mkhalifa/r1-1.5b-longthought-v2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-10T17:00:44Z
--- base_model: mkhalifa/r1-1.5b-longthought-v2 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mkhalifa/r1-1.5b-longthought-v2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.Q5_K_S.gguf) | Q5_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.Q6_K.gguf) | Q6_K | 1.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.Q8_0.gguf) | Q8_0 | 2.0 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-v2-GGUF/resolve/main/r1-1.5b-longthought-v2.f16.gguf) | f16 | 3.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
TFOCUS/moneytrue-logic_27
TFOCUS
2025-03-10T17:12:24Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T17:07:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MikeZ3/ppo-SnowballTarget
MikeZ3
2025-03-10T17:11:46Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2025-03-10T17:11:43Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: MikeZ3/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
texanrangee/fa812779-cf6c-4eff-a62c-2a3a410c7ebc
texanrangee
2025-03-10T17:09:45Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-10T09:33:53Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mrrans23/Ghetto_Blaster
Mrrans23
2025-03-10T17:08:50Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-10T17:08:50Z
--- license: apache-2.0 ---
looppayments/llama-11b-merged
looppayments
2025-03-10T17:08:15Z
854
0
transformers
[ "transformers", "safetensors", "mllama", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-02-12T22:00:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/ASTAROTH-3.2-1B-GGUF
mradermacher
2025-03-10T17:05:11Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "1b", "nsfw", "uncensored", "abliterated", "rp", "roleplay", "es", "en", "base_model:Novaciano/ASTAROTH-3.2-1B", "base_model:quantized:Novaciano/ASTAROTH-3.2-1B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-10T16:55:20Z
--- base_model: Novaciano/ASTAROTH-3.2-1B language: - es - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge - 1b - nsfw - uncensored - abliterated - rp - roleplay --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Novaciano/ASTAROTH-3.2-1B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.Q3_K_L.gguf) | Q3_K_L | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.Q6_K.gguf) | Q6_K | 1.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ASTAROTH-3.2-1B-GGUF/resolve/main/ASTAROTH-3.2-1B.f16.gguf) | f16 | 3.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
TFOCUS/moneytrue-logic_26
TFOCUS
2025-03-10T17:02:46Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T16:59:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
logasja/auramask-vgg-sutro
logasja
2025-03-10T17:00:31Z
0
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
2025-03-10T17:00:05Z
--- library_name: keras datasets: - logasja/FDF tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance - VGGFace2 Cosine Distance pipeline_tag: image-to-image widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png license: gpl-3.0 base_model: - vnet - logasja/ArcFace - logasja/VGGFace --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/22e222b34c53a124093bd69e9f7e7d1d) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 128, 256, 512, 1024, 1024 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 16, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_VGG-Face": { "d": "cosine_similarity", "f": "VGG-Face", "name": "FEAT_VGG-Face", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "IQASSIMC": { "lower_better": false, "name": "IQASSIMC", "reduction": "sum_over_batch_size", "weight": 0.5 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.5 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
athitiya/personal
athitiya
2025-03-10T16:59:32Z
0
0
null
[ "text-generation", "en", "ta", "te", "ur", "fr", "ml", "ar", "ru", "cs", "fa", "dataset:open-thoughts/OpenThoughts-114k", "base_model:deepseek-ai/DeepSeek-R1", "base_model:finetune:deepseek-ai/DeepSeek-R1", "license:openrail", "region:us" ]
text-generation
2025-03-10T16:53:36Z
--- license: openrail datasets: - open-thoughts/OpenThoughts-114k language: - en - ta - te - ur - fr - ml - ar - ru - cs - fa metrics: - character base_model: - deepseek-ai/DeepSeek-R1 new_version: deepseek-ai/DeepSeek-R1 pipeline_tag: text-generation ---
mradermacher/IRLLM-GGUF
mradermacher
2025-03-10T16:58:13Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Fangyunhua/IRLLM", "base_model:quantized:Fangyunhua/IRLLM", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-10T16:43:36Z
--- base_model: Fangyunhua/IRLLM language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Fangyunhua/IRLLM <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.Q3_K_M.gguf) | Q3_K_M | 1.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.IQ4_XS.gguf) | IQ4_XS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.Q4_K_M.gguf) | Q4_K_M | 1.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.Q5_K_S.gguf) | Q5_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.Q5_K_M.gguf) | Q5_K_M | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.Q6_K.gguf) | Q6_K | 1.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.Q8_0.gguf) | Q8_0 | 2.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/IRLLM-GGUF/resolve/main/IRLLM.f16.gguf) | f16 | 3.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
logasja/auramask-vgg-poprocket
logasja
2025-03-10T16:57:52Z
0
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
2025-03-10T16:57:21Z
--- library_name: keras datasets: - logasja/FDF tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance - VGGFace2 Cosine Distance pipeline_tag: image-to-image widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png license: gpl-3.0 base_model: - vnet - logasja/ArcFace - logasja/VGGFace --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/6e34709da3ee5b585227267c595cccb1) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 128, 256, 512, 1024, 1024 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 16, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_VGG-Face": { "d": "cosine_similarity", "f": "VGG-Face", "name": "FEAT_VGG-Face", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "IQASSIMC": { "lower_better": false, "name": "IQASSIMC", "reduction": "sum_over_batch_size", "weight": 0.5 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.5 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
od2025/dark_kappa
od2025
2025-03-10T16:55:52Z
0
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "text-to-speech", "annotation", "en", "dataset:parler-tts/mls_eng", "dataset:parler-tts/libritts_r_filtered", "dataset:parler-tts/libritts-r-filtered-speaker-descriptions", "dataset:parler-tts/mls-eng-speaker-descriptions", "arxiv:2402.01912", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-speech
2025-03-10T16:22:41Z
--- library_name: transformers tags: - text-to-speech - annotation license: apache-2.0 language: - en pipeline_tag: text-to-speech inference: false datasets: - parler-tts/mls_eng - parler-tts/libritts_r_filtered - parler-tts/libritts-r-filtered-speaker-descriptions - parler-tts/mls-eng-speaker-descriptions --- <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Parler-TTS Mini v1 <a target="_blank" href="https://huggingface.co/spaces/parler-tts/parler_tts"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> **Parler-TTS Mini v1** is a lightweight text-to-speech (TTS) model, trained on 45K hours of audio data, that can generate high-quality, natural sounding speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). With [Parler-TTS Large v1](https://huggingface.co/parler-tts/parler-tts-large-v1), this is the second set of models published as part of the [Parler-TTS](https://github.com/huggingface/parler-tts) project, which aims to provide the community with TTS training resources and dataset pre-processing code. ## 📖 Quick Index * [👨‍💻 Installation](#👨‍💻-installation) * [🎲 Using a random voice](#🎲-random-voice) * [🎯 Using a specific speaker](#🎯-using-a-specific-speaker) * [Motivation](#motivation) * [Optimizing inference](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) ## 🛠️ Usage ### 👨‍💻 Installation Using Parler-TTS is as simple as "bonjour". Simply install the library once: ```sh pip install git+https://github.com/huggingface/parler-tts.git ``` ### 🎲 Random voice **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example: ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` ### 🎯 Using a specific speaker To ensure speaker consistency across generations, this checkpoint was also trained on 34 speakers, characterized by name (e.g. Jon, Lea, Gary, Jenna, Mike, Laura). To take advantage of this, simply adapt your text description to specify which speaker to use: `Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.` ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` **Tips**: * We've set up an [inference guide](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) to make generation faster. Think SDPA, torch.compile, batching and streaming! * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt ## Motivation Parler-TTS is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. Contrarily to other TTS models, Parler-TTS is a **fully open-source** release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside: * [The Parler-TTS repository](https://github.com/huggingface/parler-tts) - you can train and fine-tuned your own version of the model. * [The Data-Speech repository](https://github.com/huggingface/dataspeech) - a suite of utility scripts designed to annotate speech datasets. * [The Parler-TTS organization](https://huggingface.co/parler-tts) - where you can find the annotated datasets as well as the future checkpoints. ## Citation If you found this repository useful, please consider citing this work and also the original Stability AI paper: ``` @misc{lacombe-etal-2024-parler-tts, author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi}, title = {Parler-TTS}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/parler-tts}} } ``` ``` @misc{lyth2024natural, title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations}, author={Dan Lyth and Simon King}, year={2024}, eprint={2402.01912}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## License This model is permissively licensed under the Apache 2.0 license.
glif-loradex-trainer/quitters_BalatroStyle
glif-loradex-trainer
2025-03-10T16:55:48Z
0
0
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
2025-03-10T16:55:42Z
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1741625672323__000001000_0.jpg text: wounded centaur, mythical creature balatro - output: url: samples/1741625697262__000001000_1.jpg text: ruins of athens, snake balatro - output: url: samples/1741625722278__000001000_2.jpg text: silver vampire sword balatro base_model: black-forest-labs/FLUX.1-dev trigger: "balatro" instance_prompt: "balatro" license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # BalatroStyle Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `quitters`. <Gallery /> ## Trigger words You should use `balatro` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/quitters_BalatroStyle/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
Adolfo-GM/AggmGPT-1.5
Adolfo-GM
2025-03-10T16:54:56Z
0
1
null
[ "en", "license:mit", "region:us" ]
null
2025-03-08T19:02:03Z
--- license: mit language: - en --- # AggmGPT-1.5 AggmGPT-1.5 is a lightweight language model developed by Adolfo GM based on AggmGPT-1, designed to generate human-like text using n-gram models combined with self-attention mechanisms. The project is licensed under the MIT License, making it open-source and free for modification and distribution. AggmGPT-1.5 is a far more capable model than its predecessor, AggmGPT-1, and is capable of generating text that is more coherent and human-like, while still being very small compared to other language models. AggmGPT-1.5 is less than 500 KB in size, making it ideal for use in embedded systems and other resource-constrained environments. ## Examples ![example](example.png) AggmGPT-1.5 is great at answering simple questions. ![example](example2.png) The script has a built in grammar correction that most of the time works very well. ![example](example3.png) However with this example we can clearly see that the model is not perfect and sometimes it can generate text that is not coherent. ## Files - `AggmGPT1_5.py`: The main script that generates text using the AggmGPT-1.5 model. - `example.py`: An example of how to use AggmGPT-1.5 to generate text. - `data.py`: The training data used to train the AggmGPT-1.5 model. In conclusion, AggmGPT-1.5 is a powerful and lightweight language model that is capable of generating human-like text. The project is open-source and free for modification and distribution, making it a great choice for developers looking for a lightweight language model that is easy to use and customize.
logasja/auramask-vgg-maven
logasja
2025-03-10T16:52:58Z
0
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
2025-03-10T16:52:26Z
--- library_name: keras datasets: - logasja/FDF tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance - VGGFace2 Cosine Distance pipeline_tag: image-to-image widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png license: gpl-3.0 base_model: - vnet - logasja/ArcFace - logasja/VGGFace --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/e6394c21209cbdc8623c9e5364e51567) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 128, 256, 512, 1024, 1024 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 16, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_VGG-Face": { "d": "cosine_similarity", "f": "VGG-Face", "name": "FEAT_VGG-Face", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "IQASSIMC": { "lower_better": false, "name": "IQASSIMC", "reduction": "sum_over_batch_size", "weight": 0.5 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.5 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF
mradermacher
2025-03-10T16:52:37Z
0
0
transformers
[ "transformers", "gguf", "unsloth", "ja", "dataset:SousiOmine/Japanese-Pythonic-FunctionCall", "dataset:Kendamarron/jimba-instruction-all", "base_model:SousiOmine/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall", "base_model:quantized:SousiOmine/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-10T16:31:07Z
--- base_model: SousiOmine/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall datasets: - SousiOmine/Japanese-Pythonic-FunctionCall - Kendamarron/jimba-instruction-all language: - ja library_name: transformers license: mit quantized_by: mradermacher tags: - unsloth --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/SousiOmine/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.IQ4_XS.gguf) | IQ4_XS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.Q4_K_S.gguf) | Q4_K_S | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.Q4_K_M.gguf) | Q4_K_M | 2.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.Q5_K_M.gguf) | Q5_K_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.Q6_K.gguf) | Q6_K | 2.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.Q8_0.gguf) | Q8_0 | 3.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall-GGUF/resolve/main/sarashina2.2-3b-instruct-v0.1-Pythonic-FunctionCall.f16.gguf) | f16 | 6.8 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
k0n8/Stubb
k0n8
2025-03-10T16:51:24Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-10T16:24:16Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Stu55 --- # Stubb <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Stu55` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('k0n8/Stubb', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Raviravi99/E
Raviravi99
2025-03-10T16:51:22Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-10T16:51:22Z
--- license: apache-2.0 ---
PhongNgoGia/Qwen2.5-1.5B-GRPO_SFT
PhongNgoGia
2025-03-10T16:50:54Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "dataset:passport_en_grpo", "arxiv:2402.03300", "base_model:PhongNgoGia/Qwen2.5-1.5B-Lora", "base_model:finetune:PhongNgoGia/Qwen2.5-1.5B-Lora", "endpoints_compatible", "region:us" ]
null
2025-03-05T07:17:54Z
--- base_model: PhongNgoGia/Qwen2.5-1.5B-Lora datasets: passport_en_grpo library_name: transformers model_name: Qwen2.5-1.5B-GRPO_SFT tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Qwen2.5-1.5B-GRPO_SFT This model is a fine-tuned version of [PhongNgoGia/Qwen2.5-1.5B-Lora](https://huggingface.co/PhongNgoGia/Qwen2.5-1.5B-Lora) on the [passport_en_grpo](https://huggingface.co/datasets/passport_en_grpo) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="PhongNgoGia/Qwen2.5-1.5B-GRPO_SFT", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/k9/grpo/runs/qsuw59w5) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
logasja/auramask-vgg-lark
logasja
2025-03-10T16:50:48Z
0
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
2025-03-10T16:49:59Z
--- library_name: keras datasets: - logasja/FDF tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance - VGGFace2 Cosine Distance pipeline_tag: image-to-image widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png license: gpl-3.0 base_model: - vnet - logasja/ArcFace - logasja/VGGFace --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/50c31e14a8fc5937c0c4f9d3b5488add) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 128, 256, 512, 1024, 1024 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 16, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_VGG-Face": { "d": "cosine_similarity", "f": "VGG-Face", "name": "FEAT_VGG-Face", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "IQASSIMC": { "lower_better": false, "name": "IQASSIMC", "reduction": "sum_over_batch_size", "weight": 0.5 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.5 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
logasja/auramask-vgg-kelvin
logasja
2025-03-10T16:49:20Z
0
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
2025-03-10T16:48:48Z
--- library_name: keras datasets: - logasja/FDF tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance - VGGFace2 Cosine Distance pipeline_tag: image-to-image widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png license: gpl-3.0 base_model: - vnet - logasja/ArcFace - logasja/VGGFace --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/db4f4582c30f387d0bd428355d6fb3db) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 128, 256, 512, 1024, 1024 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 16, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_VGG-Face": { "d": "cosine_similarity", "f": "VGG-Face", "name": "FEAT_VGG-Face", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "IQASSIMC": { "lower_better": false, "name": "IQASSIMC", "reduction": "sum_over_batch_size", "weight": 0.5 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.5 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
logasja/auramask-vgg-juno
logasja
2025-03-10T16:48:32Z
0
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
2025-03-10T16:48:04Z
--- library_name: keras datasets: - logasja/FDF tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance - VGGFace2 Cosine Distance pipeline_tag: image-to-image widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png license: gpl-3.0 base_model: - vnet - logasja/ArcFace - logasja/VGGFace --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/6a2e78f9a239c32742807b26259a5c42) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 128, 256, 512, 1024, 1024 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 16, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_VGG-Face": { "d": "cosine_similarity", "f": "VGG-Face", "name": "FEAT_VGG-Face", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "IQASSIMC": { "lower_better": false, "name": "IQASSIMC", "reduction": "sum_over_batch_size", "weight": 0.5 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.5 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
logasja/auramask-vgg-helena
logasja
2025-03-10T16:47:13Z
0
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
2025-03-10T16:46:40Z
--- library_name: keras datasets: - logasja/FDF tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance - VGGFace2 Cosine Distance pipeline_tag: image-to-image widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png license: gpl-3.0 base_model: - vnet - logasja/ArcFace - logasja/VGGFace --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/00f8f682c9dd7d8116e067e2c9d2dc07) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 128, 256, 512, 1024, 1024 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 16, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_VGG-Face": { "d": "cosine_similarity", "f": "VGG-Face", "name": "FEAT_VGG-Face", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "IQASSIMC": { "lower_better": false, "name": "IQASSIMC", "reduction": "sum_over_batch_size", "weight": 0.5 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.5 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
sharanharsoor/ppo-LunarLander-v2
sharanharsoor
2025-03-10T16:46:39Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-10T16:46:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -480.83 +/- 68.51 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
logasja/auramask-vgg-gingham
logasja
2025-03-10T16:46:34Z
0
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
2025-03-10T16:46:02Z
--- library_name: keras datasets: - logasja/FDF tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance - VGGFace2 Cosine Distance pipeline_tag: image-to-image widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png license: gpl-3.0 base_model: - vnet - logasja/ArcFace - logasja/VGGFace --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/6185ef333f1a4da4770b2c82bd1cf9f8) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 128, 256, 512, 1024, 1024 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 16, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_VGG-Face": { "d": "cosine_similarity", "f": "VGG-Face", "name": "FEAT_VGG-Face", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "IQASSIMC": { "lower_better": false, "name": "IQASSIMC", "reduction": "sum_over_batch_size", "weight": 0.5 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.5 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
ClarenceDan/cf49ed5c-c448-47fb-9709-eda552202831
ClarenceDan
2025-03-10T16:45:00Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M", "base_model:adapter:unsloth/SmolLM-135M", "license:apache-2.0", "region:us" ]
null
2025-03-10T15:28:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M tags: - axolotl - generated_from_trainer model-index: - name: cf49ed5c-c448-47fb-9709-eda552202831 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8394bbed174a5ca4_train_data.json ds_type: json format: custom path: /workspace/input_data/8394bbed174a5ca4_train_data.json type: field_input: subarea field_instruction: principle field_output: goal format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/cf49ed5c-c448-47fb-9709-eda552202831 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/8394bbed174a5ca4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ca99dcef-3003-458a-bed3-6ee4ba42b30d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ca99dcef-3003-458a-bed3-6ee4ba42b30d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cf49ed5c-c448-47fb-9709-eda552202831 This model is a fine-tuned version of [unsloth/SmolLM-135M](https://huggingface.co/unsloth/SmolLM-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 3 | nan | | 0.0 | 0.0002 | 6 | nan | | 0.0 | 0.0002 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
logasja/auramask-vgg-ashby
logasja
2025-03-10T16:44:59Z
0
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
2025-03-10T16:44:32Z
--- library_name: keras datasets: - logasja/FDF tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance - VGGFace2 Cosine Distance pipeline_tag: image-to-image widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png license: gpl-3.0 base_model: - vnet - logasja/ArcFace - logasja/VGGFace --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/96ab8e61346979b3d192883c176d090f) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 128, 256, 512, 1024, 1024 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 16, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_VGG-Face": { "d": "cosine_similarity", "f": "VGG-Face", "name": "FEAT_VGG-Face", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "IQASSIMC": { "lower_better": false, "name": "IQASSIMC", "reduction": "sum_over_batch_size", "weight": 0.5 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.5 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
texanrangee/e11ab0e8-8e09-495f-9c48-3d3005989fe8
texanrangee
2025-03-10T16:44:48Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-10T16:25:30Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
prasenjeet099/zllm2
prasenjeet099
2025-03-10T16:41:29Z
0
0
null
[ "zbrain", "text-classification", "pytorch", "tensorflow", "zero-shot-classification", "multilingual", "en", "fr", "es", "de", "el", "bg", "ru", "tr", "ar", "vi", "th", "zh", "hi", "sw", "ur", "dataset:multi_nli", "dataset:xnli", "arxiv:1911.02116", "license:mit", "region:us" ]
zero-shot-classification
2025-03-10T03:51:02Z
--- language: - multilingual - en - fr - es - de - el - bg - ru - tr - ar - vi - th - zh - hi - sw - ur tags: - text-classification - pytorch - tensorflow datasets: - multi_nli - xnli license: mit pipeline_tag: zero-shot-classification widget: - text: "За кого вы голосуете в 2020 году?" candidate_labels: "politique étrangère, Europe, élections, affaires, politique" multi_class: true - text: "لمن تصوت في 2020؟" candidate_labels: "السياسة الخارجية, أوروبا, الانتخابات, الأعمال, السياسة" multi_class: true - text: "2020'de kime oy vereceksiniz?" candidate_labels: "dış politika, Avrupa, seçimler, ticaret, siyaset" multi_class: true --- # xlm-roberta-large-xnli ## Model Description This model takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a combination of NLI data in 15 languages. It is intended to be used for zero-shot text classification, such as with the Hugging Face [ZeroShotClassificationPipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline). ## Intended Usage This model is intended to be used for zero-shot text classification, especially in languages other than English. It is fine-tuned on XNLI, which is a multilingual NLI dataset. The model can therefore be used with any of the languages in the XNLI corpus: - English - French - Spanish - German - Greek - Bulgarian - Russian - Turkish - Arabic - Vietnamese - Thai - Chinese - Hindi - Swahili - Urdu Since the base model was pre-trained trained on 100 different languages, the model has shown some effectiveness in languages beyond those listed above as well. See the full list of pre-trained languages in appendix A of the [XLM Roberata paper](https://arxiv.org/abs/1911.02116) For English-only classification, it is recommended to use [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) or [a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla). #### With the zero-shot classification pipeline The model can be loaded with the `zero-shot-classification` pipeline like so: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="joeddav/xlm-roberta-large-xnli") ``` You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to classify in another: ```python # we will classify the Russian translation of, "Who are you voting for in 2020?" sequence_to_classify = "За кого вы голосуете в 2020 году?" # we can specify candidate labels in Russian or any other language above: candidate_labels = ["Europe", "public health", "politics"] classifier(sequence_to_classify, candidate_labels) # {'labels': ['politics', 'Europe', 'public health'], # 'scores': [0.9048484563827515, 0.05722189322113991, 0.03792969882488251], # 'sequence': 'За кого вы голосуете в 2020 году?'} ``` The default hypothesis template is the English, `This text is {}`. If you are working strictly within one language, it may be worthwhile to translate this to the language you are working with: ```python sequence_to_classify = "¿A quién vas a votar en 2020?" candidate_labels = ["Europa", "salud pública", "política"] hypothesis_template = "Este ejemplo es {}." classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template) # {'labels': ['política', 'Europa', 'salud pública'], # 'scores': [0.9109585881233215, 0.05954807624220848, 0.029493311420083046], # 'sequence': '¿A quién vas a votar en 2020?'} ``` #### With manual PyTorch ```python # pose sequence as a NLI premise and label as a hypothesis from transformers import AutoModelForSequenceClassification, AutoTokenizer nli_model = AutoModelForSequenceClassification.from_pretrained('joeddav/xlm-roberta-large-xnli') tokenizer = AutoTokenizer.from_pretrained('joeddav/xlm-roberta-large-xnli') premise = sequence hypothesis = f'This example is {label}.' # run through model pre-trained on MNLI x = tokenizer.encode(premise, hypothesis, return_tensors='pt', truncation_strategy='only_first') logits = nli_model(x.to(device))[0] # we throw away "neutral" (dim 1) and take the probability of # "entailment" (2) as the probability of the label being true entail_contradiction_logits = logits[:,[0,2]] probs = entail_contradiction_logits.softmax(dim=1) prob_label_is_true = probs[:,1] ``` ## Training This model was pre-trained on set of 100 languages, as described in [the original paper](https://arxiv.org/abs/1911.02116). It was then fine-tuned on the task of NLI on the concatenated MNLI train set and the XNLI validation and test sets. Finally, it was trained for one additional epoch on only XNLI data where the translations for the premise and hypothesis are shuffled such that the premise and hypothesis for each example come from the same original English example but the premise and hypothesis are of different languages.
ikenna1234/llama_3.2_1b_instruct_custom_reward_model
ikenna1234
2025-03-10T16:40:51Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T16:39:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fire0517/model_test1
fire0517
2025-03-10T16:39:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-08T03:02:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v3 type: LunarLander-v3 metrics: - type: mean_reward value: -1080.50 +/- 1050.26 name: mean_reward verified: false --- # **DQN** Agent playing **LunarLander-v3** This is a trained model of a **DQN** agent playing **LunarLander-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Alphatao/942c4135-e225-4072-a929-7998548563ef
Alphatao
2025-03-10T16:39:23Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:echarlaix/tiny-random-mistral", "base_model:adapter:echarlaix/tiny-random-mistral", "license:apache-2.0", "region:us" ]
null
2025-03-10T16:06:49Z
--- library_name: peft license: apache-2.0 base_model: echarlaix/tiny-random-mistral tags: - axolotl - generated_from_trainer model-index: - name: 942c4135-e225-4072-a929-7998548563ef results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: echarlaix/tiny-random-mistral bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f3d0d4415de730db_train_data.json ds_type: json format: custom path: /workspace/input_data/f3d0d4415de730db_train_data.json type: field_input: Moreinfo field_instruction: Position field_output: CV format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/942c4135-e225-4072-a929-7998548563ef hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 4679 micro_batch_size: 4 mlflow_experiment_name: /tmp/f3d0d4415de730db_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.02390628735357399 wandb_entity: null wandb_mode: online wandb_name: 213b2f40-7d78-40ca-8cc0-85380681cac5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 213b2f40-7d78-40ca-8cc0-85380681cac5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 942c4135-e225-4072-a929-7998548563ef This model is a fine-tuned version of [echarlaix/tiny-random-mistral](https://huggingface.co/echarlaix/tiny-random-mistral) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.2514 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 4679 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 83.0184 | 0.0002 | 1 | 10.3771 | | 82.4725 | 0.0157 | 100 | 10.3081 | | 82.3512 | 0.0313 | 200 | 10.2932 | | 82.3996 | 0.0470 | 300 | 10.2884 | | 82.2037 | 0.0627 | 400 | 10.2842 | | 82.2038 | 0.0784 | 500 | 10.2788 | | 82.1844 | 0.0940 | 600 | 10.2746 | | 82.1807 | 0.1097 | 700 | 10.2714 | | 82.2035 | 0.1254 | 800 | 10.2683 | | 82.1132 | 0.1411 | 900 | 10.2660 | | 82.1501 | 0.1567 | 1000 | 10.2642 | | 82.142 | 0.1724 | 1100 | 10.2630 | | 82.1508 | 0.1881 | 1200 | 10.2616 | | 82.1372 | 0.2038 | 1300 | 10.2606 | | 82.1296 | 0.2194 | 1400 | 10.2596 | | 82.1202 | 0.2351 | 1500 | 10.2590 | | 82.0928 | 0.2508 | 1600 | 10.2583 | | 82.0691 | 0.2665 | 1700 | 10.2577 | | 82.1119 | 0.2821 | 1800 | 10.2569 | | 82.0947 | 0.2978 | 1900 | 10.2563 | | 82.1192 | 0.3135 | 2000 | 10.2560 | | 82.0347 | 0.3292 | 2100 | 10.2555 | | 82.0395 | 0.3448 | 2200 | 10.2551 | | 82.0739 | 0.3605 | 2300 | 10.2547 | | 82.0571 | 0.3762 | 2400 | 10.2543 | | 82.021 | 0.3919 | 2500 | 10.2540 | | 82.0816 | 0.4075 | 2600 | 10.2537 | | 82.0561 | 0.4232 | 2700 | 10.2535 | | 82.049 | 0.4389 | 2800 | 10.2531 | | 82.0867 | 0.4546 | 2900 | 10.2529 | | 82.0198 | 0.4702 | 3000 | 10.2526 | | 82.1186 | 0.4859 | 3100 | 10.2525 | | 82.0431 | 0.5016 | 3200 | 10.2523 | | 82.0169 | 0.5173 | 3300 | 10.2522 | | 82.0835 | 0.5329 | 3400 | 10.2520 | | 82.0196 | 0.5486 | 3500 | 10.2519 | | 82.1073 | 0.5643 | 3600 | 10.2518 | | 82.0386 | 0.5800 | 3700 | 10.2517 | | 82.0942 | 0.5956 | 3800 | 10.2516 | | 82.025 | 0.6113 | 3900 | 10.2516 | | 82.0014 | 0.6270 | 4000 | 10.2515 | | 82.0336 | 0.6427 | 4100 | 10.2515 | | 81.994 | 0.6583 | 4200 | 10.2515 | | 82.1177 | 0.6740 | 4300 | 10.2515 | | 82.0593 | 0.6897 | 4400 | 10.2514 | | 82.0582 | 0.7054 | 4500 | 10.2514 | | 82.0283 | 0.7210 | 4600 | 10.2514 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hieptran318204/Ensemble
hieptran318204
2025-03-10T16:39:04Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-10T13:50:35Z
--- license: apache-2.0 ---
Basharat78/SFT_000-v1a-Experiment06-passed-salad_1096_samples_Mistral-Nemo-Base-2407__10.03.2025__16_27_25
Basharat78
2025-03-10T16:38:30Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-03-10T16:35:09Z
--- base_model: unsloth/mistral-nemo-base-2407-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Basharat78 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-nemo-base-2407-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
12q3s/q-Taxi-v3
12q3s
2025-03-10T16:38:22Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-03-10T16:38:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="12q3s/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
od2025/dark_eta
od2025
2025-03-10T16:34:45Z
0
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "text-to-speech", "annotation", "en", "dataset:parler-tts/mls_eng", "dataset:parler-tts/libritts_r_filtered", "dataset:parler-tts/libritts-r-filtered-speaker-descriptions", "dataset:parler-tts/mls-eng-speaker-descriptions", "arxiv:2402.01912", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-speech
2025-03-10T16:22:36Z
--- library_name: transformers tags: - text-to-speech - annotation license: apache-2.0 language: - en pipeline_tag: text-to-speech inference: false datasets: - parler-tts/mls_eng - parler-tts/libritts_r_filtered - parler-tts/libritts-r-filtered-speaker-descriptions - parler-tts/mls-eng-speaker-descriptions --- <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Parler-TTS Mini v1 <a target="_blank" href="https://huggingface.co/spaces/parler-tts/parler_tts"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> **Parler-TTS Mini v1** is a lightweight text-to-speech (TTS) model, trained on 45K hours of audio data, that can generate high-quality, natural sounding speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). With [Parler-TTS Large v1](https://huggingface.co/parler-tts/parler-tts-large-v1), this is the second set of models published as part of the [Parler-TTS](https://github.com/huggingface/parler-tts) project, which aims to provide the community with TTS training resources and dataset pre-processing code. ## 📖 Quick Index * [👨‍💻 Installation](#👨‍💻-installation) * [🎲 Using a random voice](#🎲-random-voice) * [🎯 Using a specific speaker](#🎯-using-a-specific-speaker) * [Motivation](#motivation) * [Optimizing inference](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) ## 🛠️ Usage ### 👨‍💻 Installation Using Parler-TTS is as simple as "bonjour". Simply install the library once: ```sh pip install git+https://github.com/huggingface/parler-tts.git ``` ### 🎲 Random voice **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example: ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` ### 🎯 Using a specific speaker To ensure speaker consistency across generations, this checkpoint was also trained on 34 speakers, characterized by name (e.g. Jon, Lea, Gary, Jenna, Mike, Laura). To take advantage of this, simply adapt your text description to specify which speaker to use: `Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.` ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` **Tips**: * We've set up an [inference guide](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) to make generation faster. Think SDPA, torch.compile, batching and streaming! * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt ## Motivation Parler-TTS is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. Contrarily to other TTS models, Parler-TTS is a **fully open-source** release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside: * [The Parler-TTS repository](https://github.com/huggingface/parler-tts) - you can train and fine-tuned your own version of the model. * [The Data-Speech repository](https://github.com/huggingface/dataspeech) - a suite of utility scripts designed to annotate speech datasets. * [The Parler-TTS organization](https://huggingface.co/parler-tts) - where you can find the annotated datasets as well as the future checkpoints. ## Citation If you found this repository useful, please consider citing this work and also the original Stability AI paper: ``` @misc{lacombe-etal-2024-parler-tts, author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi}, title = {Parler-TTS}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/parler-tts}} } ``` ``` @misc{lyth2024natural, title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations}, author={Dan Lyth and Simon King}, year={2024}, eprint={2402.01912}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## License This model is permissively licensed under the Apache 2.0 license.
mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF
mradermacher
2025-03-10T16:32:41Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "en", "base_model:linkonx/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0", "base_model:quantized:linkonx/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-10T16:10:29Z
--- base_model: linkonx/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/linkonx/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0-GGUF/resolve/main/llama-3-8b-bnb-4bit-LinkOnX-Modeler-Eng-v1.0.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
texanrangee/ed035835-fd9d-4c0c-ac97-246a8af28ff7
texanrangee
2025-03-10T16:32:40Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-10T16:01:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AlekseyKorshuk/twscrape-prepared-trl-sft-qwen-3b-grpo-1epochs
AlekseyKorshuk
2025-03-10T16:32:14Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "grpo", "conversational", "dataset:AlekseyKorshuk/twscrape-prepared-trl", "arxiv:2402.03300", "base_model:AlekseyKorshuk/twscrape-prepared-trl-sft-qwen-3b-sft-1epochs", "base_model:finetune:AlekseyKorshuk/twscrape-prepared-trl-sft-qwen-3b-sft-1epochs", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T15:50:47Z
--- base_model: AlekseyKorshuk/twscrape-prepared-trl-sft-qwen-3b-sft-1epochs datasets: AlekseyKorshuk/twscrape-prepared-trl library_name: transformers model_name: twscrape-prepared-trl-sft-qwen-3b-grpo-1epochs tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for twscrape-prepared-trl-sft-qwen-3b-grpo-1epochs This model is a fine-tuned version of [AlekseyKorshuk/twscrape-prepared-trl-sft-qwen-3b-sft-1epochs](https://huggingface.co/AlekseyKorshuk/twscrape-prepared-trl-sft-qwen-3b-sft-1epochs) on the [AlekseyKorshuk/twscrape-prepared-trl](https://huggingface.co/datasets/AlekseyKorshuk/twscrape-prepared-trl) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AlekseyKorshuk/twscrape-prepared-trl-sft-qwen-3b-grpo-1epochs", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/aleksey-korshuk/huggingface/runs/1tikjkyr) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.0.1 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
matrixportal/Llama-3.1-8B-SuperTulu-LexiNova-GGUF
matrixportal
2025-03-10T16:31:45Z
0
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "mergekit-community/mergekit-della_linear-cwuosuu", "mergekit-community/mergekit-della_linear-nimxtnw", "mergekit-community/mergekit-della_linear-vpjjtsa", "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova", "base_model:quantized:ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-10T16:05:48Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - mergekit-community/mergekit-della_linear-cwuosuu - mergekit-community/mergekit-della_linear-nimxtnw - mergekit-community/mergekit-della_linear-vpjjtsa - Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 - llama-cpp - gguf-my-repo language: - en base_model: ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova pipeline_tag: text-generation library_name: transformers --- # matrixportal/Llama-3.1-8B-SuperTulu-LexiNova-GGUF This model was converted to GGUF format from [`ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova`](https://huggingface.co/ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo matrixportal/Llama-3.1-8B-SuperTulu-LexiNova-GGUF --hf-file llama-3.1-8b-supertulu-lexinova-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo matrixportal/Llama-3.1-8B-SuperTulu-LexiNova-GGUF --hf-file llama-3.1-8b-supertulu-lexinova-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo matrixportal/Llama-3.1-8B-SuperTulu-LexiNova-GGUF --hf-file llama-3.1-8b-supertulu-lexinova-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo matrixportal/Llama-3.1-8B-SuperTulu-LexiNova-GGUF --hf-file llama-3.1-8b-supertulu-lexinova-q4_k_s.gguf -c 2048 ```
yuhuili/EAGLE-LLaMA3.1-Instruct-8B
yuhuili
2025-03-10T16:31:25Z
0
0
null
[ "pytorch", "llama", "license:apache-2.0", "region:us" ]
null
2025-03-10T16:26:21Z
--- license: apache-2.0 ---
enuma-elis/mistral_3mini_changed_params
enuma-elis
2025-03-10T16:31:18Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-10T14:54:09Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cuong2003/merged-mistral-10032025
cuong2003
2025-03-10T16:30:55Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T16:26:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vevotx/Tahoe-100M-SCVI-v1
vevotx
2025-03-10T16:29:30Z
0
1
scvi-tools
[ "scvi-tools", "biology", "genomics", "single-cell", "model_cls_name:SCVI", "scvi_version:1.2.0", "anndata_version:0.11.1", "modality:rna", "tissue:None", "annotated:True", "doi:10.57967/hf/4704", "license:mit", "region:us" ]
null
2025-01-27T02:06:04Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards library_name: scvi-tools license: mit tags: - biology - genomics - single-cell - model_cls_name:SCVI - scvi_version:1.2.0 - anndata_version:0.11.1 - modality:rna - tissue:None - annotated:True --- # Model Card for Tahoe-100M-SCVI-v1 <!-- Provide a quick summary of what the model is/does. --> An SCVI model and minified AnnData of the [Tahoe-100M](https://doi.org/10.1101/2025.02.20.639398) dataset from Vevo Tx. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> Tahoe-100M-SCVI-v1 - **Developed by:** Vevo Tx - **Model type:** SCVI variational autoencoder - **License:** This model is licensed under the MIT License. ### Model Architecture SCVI model Layers: 1, Hidden Units: 128, Latent Dimensions: 10 ### Parameters 40,390,510 ## Intended Use <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> - Decoding Tahoe-100M data representation vectors to gene expression. - Encoding scRNA-seq data to Tahoe-100M cell state representation space. ### Downstream Use <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> - Adaptation to additional scRNA-seq data ### Intended Users - **Computational biologists** analyzing gene expression responses to drug perturbations. - **Machine learning researchers** developing methods for downstream drug response prediction. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Reconstruced gene expression values may be inaccurate. Calibration analysis shows that the model generates counts that contains the observed counts within the 95% confidence intervals from the posterior predictice distribution 97.7% of the time. However, a naive baseline of producing only 0-counts achieves 97.4% on the same metric. The Tahoe-100M data is based on cancer cell lines under drug treatment, and the model is trained to represent this data. The model may not be directly applicable to other forms of scRNA-seq data, such as that from primary cells. {{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", true)}} ## How to Get Started with the Model Use the code below to get started with the model. Loading the minified AnnData will require 41 GB storage (saved in the `cache-dir`)) and RAM. The model itself requires ~1 GB GPU memory. ``` > import scvi.hub > tahoe_hubmodel = scvi.hub.HubModel.pull_from_huggingface_hub( repo_name = 'vevotx/Tahoe-100M-SCVI-v1', cache_dir = '/path/to/cache' ) > tahoe = tahoe_hubmodel.model > tahoe SCVI model with the following parameters: n_hidden: 128, n_latent: 10, n_layers: 1, dropout_rate: 0.1, dispersion: gene, gene_likelihood: nb, latent_distribution: normal. Training status: Trained Model's adata is minified?: True > tahoe.adata AnnData object with n_obs × n_vars = 95624334 × 62710 obs: 'sample', 'species', 'gene_count', 'tscp_count', 'mread_count', 'bc1_wind', 'bc2_wind', 'bc3_wind', 'bc1_well', 'bc2_well', 'bc3_well', 'id', 'drugname_drugconc', 'drug', 'INT_ID', 'NUM.SNPS', 'NUM.READS', 'demuxlet_call', 'BEST.LLK', 'NEXT.LLK', 'DIFF.LLK.BEST.NEXT', 'BEST.POSTERIOR', 'SNG.POSTERIOR', 'SNG.BEST.LLK', 'SNG.NEXT.LLK', 'SNG.ONLY.POSTERIOR', 'DBL.BEST.LLK', 'DIFF.LLK.SNG.DBL', 'sublibrary', 'BARCODE', 'pcnt_mito', 'S_score', 'G2M_score', 'phase', 'pass_filter', 'dataset', '_scvi_batch', '_scvi_labels', '_scvi_observed_lib_size', 'plate', 'Cell_Name_Vevo', 'Cell_ID_Cellosaur' var: 'gene_id', 'genome', 'SUB_LIB_ID' uns: '_scvi_adata_minify_type', '_scvi_manager_uuid', '_scvi_uuid' obsm: 'X_latent_qzm', 'X_latent_qzv', '_scvi_latent_qzm', '_scvi_latent_qzv' layers: 'counts' > # Take some random genes > gene_list = tahoe.adata.var.sample(10).index > # Take some random cells > cell_indices = tahoe.adata.obs.sample(10).index > # Decoode gene expression > gene_expression = tahoe.get_normalized_expression(tahoe.adata[cell_indices], gene_list = gene_list) > print(gene_expression) gene_name TSPAN13 ZSCAN9 ENSG00000200991 ENSG00000224901 \ BARCODE_SUB_LIB_ID 73_177_027-lib_2615 0.000036 0.000005 4.255257e-10 9.856240e-08 63_080_025-lib_2087 0.000012 0.000012 3.183158e-10 1.124618e-07 01_070_028-lib_1543 0.000005 0.000010 1.604187e-10 1.022676e-07 07_110_046-lib_1885 0.000035 0.000018 2.597950e-09 1.063819e-07 93_082_010-lib_2285 0.000008 0.000009 8.147555e-10 9.102466e-08 94_154_081-lib_2562 0.000035 0.000014 5.600219e-10 6.891351e-08 47_102_103-lib_2596 0.000021 0.000010 7.320031e-10 1.190017e-07 92_138_169-lib_2356 0.000038 0.000015 3.393952e-10 7.600610e-08 35_035_133-lib_2378 0.000041 0.000004 1.503101e-10 9.447428e-08 06_084_182-lib_2611 0.000007 0.000014 5.135248e-10 7.896663e-08 gene_name RN7SL69P ENSG00000263301 ENSG00000269886 \ BARCODE_SUB_LIB_ID 73_177_027-lib_2615 2.390874e-10 1.896764e-07 7.665454e-08 63_080_025-lib_2087 1.934646e-10 2.205981e-07 6.038700e-08 01_070_028-lib_1543 9.687608e-11 9.900592e-08 5.225622e-08 07_110_046-lib_1885 1.694676e-09 2.274248e-07 7.741949e-08 93_082_010-lib_2285 6.253397e-10 2.593786e-07 7.113768e-08 94_154_081-lib_2562 3.700961e-10 2.083358e-07 6.379186e-08 47_102_103-lib_2596 4.534019e-10 2.551739e-07 4.840992e-08 92_138_169-lib_2356 2.018963e-10 2.067301e-07 4.144172e-08 35_035_133-lib_2378 8.090239e-11 1.658230e-07 3.890900e-08 06_084_182-lib_2611 3.474709e-10 1.025397e-07 4.995985e-08 ... 47_102_103-lib_2596 1.975285e-09 7.876221e-08 1.513182e-08 92_138_169-lib_2356 1.214693e-09 4.208334e-08 1.091937e-08 35_035_133-lib_2378 1.049879e-09 8.961482e-08 1.650536e-08 06_084_182-lib_2611 2.311277e-09 5.680565e-08 1.824982e-08 ``` ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Tahoe-100M Zhang, Jesse, Airol A. Ubas, Richard de Borja, Valentine Svensson, Nicole Thomas, Neha Thakar, Ian Lai, et al. 2025. “Tahoe-100M: A Giga-Scale Single-Cell Perturbation Atlas for Context-Dependent Gene Function and Cellular Modeling.” bioRxiv. https://doi.org/10.1101/2025.02.20.639398. ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> The model was trained using the SCVI `.train()` method. One plate (plate 14) of the training data was held out for training to be used for evaluation and criticism. A callback was used to evaluate reconstruction error of the training set and validation set every N minibatch rather than every epoch since a single epoch is too large to give informative training curves. An additional callback function was used to save snapshots of the model state at every epoch. #### Training Hyperparameters - **Training regime:** fp32 precision was used for training. #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> Data in the minified AnnData where the 'plate' column equals '14' was held out from training and used for evaluation and criticism. #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> The main metric is reconstruction error, defined as the average negative log likelihood of the observed counts given the representation vectors. This model uses a negative binomial likelihood.
Thiraput01/WangchanFondue-v2-finetuned
Thiraput01
2025-03-10T16:28:55Z
0
0
transformers
[ "transformers", "safetensors", "camembert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-10T16:28:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
od2025/dark_zeta
od2025
2025-03-10T16:27:30Z
0
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "text-to-speech", "annotation", "en", "dataset:parler-tts/mls_eng", "dataset:parler-tts/libritts_r_filtered", "dataset:parler-tts/libritts-r-filtered-speaker-descriptions", "dataset:parler-tts/mls-eng-speaker-descriptions", "arxiv:2402.01912", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-speech
2025-03-10T16:21:46Z
--- library_name: transformers tags: - text-to-speech - annotation license: apache-2.0 language: - en pipeline_tag: text-to-speech inference: false datasets: - parler-tts/mls_eng - parler-tts/libritts_r_filtered - parler-tts/libritts-r-filtered-speaker-descriptions - parler-tts/mls-eng-speaker-descriptions --- <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Parler-TTS Mini v1 <a target="_blank" href="https://huggingface.co/spaces/parler-tts/parler_tts"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> **Parler-TTS Mini v1** is a lightweight text-to-speech (TTS) model, trained on 45K hours of audio data, that can generate high-quality, natural sounding speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). With [Parler-TTS Large v1](https://huggingface.co/parler-tts/parler-tts-large-v1), this is the second set of models published as part of the [Parler-TTS](https://github.com/huggingface/parler-tts) project, which aims to provide the community with TTS training resources and dataset pre-processing code. ## 📖 Quick Index * [👨‍💻 Installation](#👨‍💻-installation) * [🎲 Using a random voice](#🎲-random-voice) * [🎯 Using a specific speaker](#🎯-using-a-specific-speaker) * [Motivation](#motivation) * [Optimizing inference](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) ## 🛠️ Usage ### 👨‍💻 Installation Using Parler-TTS is as simple as "bonjour". Simply install the library once: ```sh pip install git+https://github.com/huggingface/parler-tts.git ``` ### 🎲 Random voice **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example: ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` ### 🎯 Using a specific speaker To ensure speaker consistency across generations, this checkpoint was also trained on 34 speakers, characterized by name (e.g. Jon, Lea, Gary, Jenna, Mike, Laura). To take advantage of this, simply adapt your text description to specify which speaker to use: `Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.` ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` **Tips**: * We've set up an [inference guide](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) to make generation faster. Think SDPA, torch.compile, batching and streaming! * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt ## Motivation Parler-TTS is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. Contrarily to other TTS models, Parler-TTS is a **fully open-source** release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside: * [The Parler-TTS repository](https://github.com/huggingface/parler-tts) - you can train and fine-tuned your own version of the model. * [The Data-Speech repository](https://github.com/huggingface/dataspeech) - a suite of utility scripts designed to annotate speech datasets. * [The Parler-TTS organization](https://huggingface.co/parler-tts) - where you can find the annotated datasets as well as the future checkpoints. ## Citation If you found this repository useful, please consider citing this work and also the original Stability AI paper: ``` @misc{lacombe-etal-2024-parler-tts, author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi}, title = {Parler-TTS}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/parler-tts}} } ``` ``` @misc{lyth2024natural, title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations}, author={Dan Lyth and Simon King}, year={2024}, eprint={2402.01912}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## License This model is permissively licensed under the Apache 2.0 license.
uriel353/christina-hendricks-flux
uriel353
2025-03-10T16:26:15Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-03-10T16:23:57Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- Fujicolor Superia X-TRA 400, 50mm, analog ultra closeup photo of christina hendricks with sultry azure blue downturned eyes and full lips with an alluring attitude. She has long red hair and makeup combining shades of pastel pink and stylish eyeliner as well as lipgloss, further accessorized by stud earrings. Set inside a vintage design diner in 50s style, on a dark rainy spring night. With natural split lighting, hyperrealistic, very aesthetic, authentic, output: url: images/ComfyUI_00000_2967_.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # christina-hendricks-flux <Gallery /> ## Model description It&#39;s not my model. I just uploaded it here. https://civitai.com/models/641156?modelVersionId=732685 ## Download model Weights for this model are available in Safetensors format. [Download](/uriel353/christina-hendricks-flux/tree/main) them in the Files & versions tab.
jiinking/6_random_MQA_llama_model
jiinking
2025-03-10T16:25:36Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T15:56:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ey-luccas/Nekhor_Buddhism_llm_2.2
Ey-luccas
2025-03-10T16:25:24Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-03-10T16:22:22Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
Yoesph/Changeling-v1.0-24b
Yoesph
2025-03-10T16:23:58Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:PocketDoc/Dans-PersonalityEngine-V1.2.0-24b", "base_model:merge:PocketDoc/Dans-PersonalityEngine-V1.2.0-24b", "base_model:ReadyArt/Forgotten-Safeword-24B-V2.2", "base_model:merge:ReadyArt/Forgotten-Safeword-24B-V2.2", "base_model:arcee-ai/Arcee-Blitz", "base_model:merge:arcee-ai/Arcee-Blitz", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T16:13:52Z
--- base_model: - PocketDoc/Dans-PersonalityEngine-V1.2.0-24b - arcee-ai/Arcee-Blitz - ReadyArt/Forgotten-Safeword-24B-V2.2 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [arcee-ai/Arcee-Blitz](https://huggingface.co/arcee-ai/Arcee-Blitz) as a base. ### Models Merged The following models were included in the merge: * [PocketDoc/Dans-PersonalityEngine-V1.2.0-24b](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.2.0-24b) * [ReadyArt/Forgotten-Safeword-24B-V2.2](https://huggingface.co/ReadyArt/Forgotten-Safeword-24B-V2.2) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: arcee-ai/Arcee-Blitz #no parameters necessary for base model - model: PocketDoc/Dans-PersonalityEngine-V1.2.0-24b parameters: density: 0.5 weight: 0.5 - model: ReadyArt/Forgotten-Safeword-24B-V2.2 parameters: density: 0.5 weight: 0.5 merge_method: ties base_model: arcee-ai/Arcee-Blitz parameters: normalize: false int8_mask: true dtype: float16 ```
bartowski/dnotitia_DNA-R1-GGUF
bartowski
2025-03-10T16:23:35Z
0
0
null
[ "gguf", "dnotitia", "nlp", "llm", "slm", "conversation", "chat", "reasoning", "r1", "text-generation", "en", "ko", "base_model:dnotitia/DNA-R1", "base_model:quantized:dnotitia/DNA-R1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-03-10T15:34:28Z
--- quantized_by: bartowski pipeline_tag: text-generation license: cc-by-nc-4.0 base_model: dnotitia/DNA-R1 tags: - dnotitia - nlp - llm - slm - conversation - chat - reasoning - r1 language: - en - ko --- ## Llamacpp imatrix Quantizations of DNA-R1 by dnotitia Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b4792">b4792</a> for quantization. Original model: https://huggingface.co/dnotitia/DNA-R1 All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) Run them in [LM Studio](https://lmstudio.ai/) Run them directly with [llama.cpp](https://github.com/ggerganov/llama.cpp), or any other llama.cpp based project ## Prompt format ``` <|im_start|>system<|im_sep|>{system_prompt}<|im_end|><|im_start|>user<|im_sep|>{prompt} <|im_end|><|im_start|>assistant<|im_sep|><think> ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Split | Description | | -------- | ---------- | --------- | ----- | ----------- | | [DNA-R1-Q8_0.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q8_0.gguf) | Q8_0 | 15.58GB | false | Extremely high quality, generally unneeded but max available quant. | | [DNA-R1-Q6_K_L.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q6_K_L.gguf) | Q6_K_L | 12.28GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. | | [DNA-R1-Q6_K.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q6_K.gguf) | Q6_K | 12.03GB | false | Very high quality, near perfect, *recommended*. | | [DNA-R1-Q5_K_L.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q5_K_L.gguf) | Q5_K_L | 10.92GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. | | [DNA-R1-Q5_K_M.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q5_K_M.gguf) | Q5_K_M | 10.60GB | false | High quality, *recommended*. | | [DNA-R1-Q5_K_S.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q5_K_S.gguf) | Q5_K_S | 10.15GB | false | High quality, *recommended*. | | [DNA-R1-Q4_K_L.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q4_K_L.gguf) | Q4_K_L | 9.43GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. | | [DNA-R1-Q4_1.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q4_1.gguf) | Q4_1 | 9.27GB | false | Legacy format, similar performance to Q4_K_S but with improved tokens/watt on Apple silicon. | | [DNA-R1-Q4_K_M.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q4_K_M.gguf) | Q4_K_M | 9.05GB | false | Good quality, default size for most use cases, *recommended*. | | [DNA-R1-Q4_K_S.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q4_K_S.gguf) | Q4_K_S | 8.44GB | false | Slightly lower quality with more space savings, *recommended*. | | [DNA-R1-Q4_0.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q4_0.gguf) | Q4_0 | 8.41GB | false | Legacy format, offers online repacking for ARM and AVX CPU inference. | | [DNA-R1-IQ4_NL.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-IQ4_NL.gguf) | IQ4_NL | 8.38GB | false | Similar to IQ4_XS, but slightly larger. Offers online repacking for ARM CPU inference. | | [DNA-R1-Q3_K_XL.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q3_K_XL.gguf) | Q3_K_XL | 8.38GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. | | [DNA-R1-IQ4_XS.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-IQ4_XS.gguf) | IQ4_XS | 7.94GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [DNA-R1-Q3_K_L.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q3_K_L.gguf) | Q3_K_L | 7.93GB | false | Lower quality but usable, good for low RAM availability. | | [DNA-R1-Q3_K_M.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q3_K_M.gguf) | Q3_K_M | 7.36GB | false | Low quality. | | [DNA-R1-IQ3_M.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-IQ3_M.gguf) | IQ3_M | 6.91GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [DNA-R1-Q3_K_S.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q3_K_S.gguf) | Q3_K_S | 6.50GB | false | Low quality, not recommended. | | [DNA-R1-IQ3_XS.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-IQ3_XS.gguf) | IQ3_XS | 6.25GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [DNA-R1-Q2_K_L.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q2_K_L.gguf) | Q2_K_L | 6.05GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. | | [DNA-R1-IQ3_XXS.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-IQ3_XXS.gguf) | IQ3_XXS | 5.85GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. | | [DNA-R1-Q2_K.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-Q2_K.gguf) | Q2_K | 5.55GB | false | Very low quality but surprisingly usable. | | [DNA-R1-IQ2_M.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-IQ2_M.gguf) | IQ2_M | 5.11GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. | | [DNA-R1-IQ2_S.gguf](https://huggingface.co/bartowski/dnotitia_DNA-R1-GGUF/blob/main/dnotitia_DNA-R1-IQ2_S.gguf) | IQ2_S | 4.73GB | false | Low quality, uses SOTA techniques to be usable. | ## Embed/output weights Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to. ## Downloading using huggingface-cli <details> <summary>Click to view download instructions</summary> First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/dnotitia_DNA-R1-GGUF --include "dnotitia_DNA-R1-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/dnotitia_DNA-R1-GGUF --include "dnotitia_DNA-R1-Q8_0/*" --local-dir ./ ``` You can either specify a new local-dir (dnotitia_DNA-R1-Q8_0) or download them all in place (./) </details> ## ARM/AVX information Previously, you would download Q4_0_4_4/4_8/8_8, and these would have their weights interleaved in memory in order to improve performance on ARM and AVX machines by loading up more data in one pass. Now, however, there is something called "online repacking" for weights. details in [this PR](https://github.com/ggerganov/llama.cpp/pull/9921). If you use Q4_0 and your hardware would benefit from repacking weights, it will do it automatically on the fly. As of llama.cpp build [b4282](https://github.com/ggerganov/llama.cpp/releases/tag/b4282) you will not be able to run the Q4_0_X_X files and will instead need to use Q4_0. Additionally, if you want to get slightly better quality for , you can use IQ4_NL thanks to [this PR](https://github.com/ggerganov/llama.cpp/pull/10541) which will also repack the weights for ARM, though only the 4_4 for now. The loading time may be slower but it will result in an overall speed incrase. <details> <summary>Click to view Q4_0_X_X information (deprecated</summary> I'm keeping this section to show the potential theoretical uplift in performance from using the Q4_0 with online repacking. <details> <summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary> | model | size | params | backend | threads | test | t/s | % (vs Q4_0) | | ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% | Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation </details> </details> ## Which file should I choose? <details> <summary>Click here for details</summary> A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. </details> ## Credits Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset. Thank you ZeroWw for the inspiration to experiment with embed/output. Thank you to LM Studio for sponsoring my work. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
telemauritius7/Modi
telemauritius7
2025-03-10T16:22:30Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-10T15:59:31Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Modi --- # Modi <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Modi` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('telemauritius7/Modi', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Sophie-Rain-Spider-Man-hot-Video-Tutorial/Link.Video.Sophie.Rain.Spider-Man.Video
Sophie-Rain-Spider-Man-hot-Video-Tutorial
2025-03-10T16:19:08Z
0
0
null
[ "region:us" ]
null
2025-03-10T16:18:20Z
<animated-image data-catalyst=""><a href="https://viralleakedvideo.com/new-leaked-video/?rain" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
jaywo/huggingfacemodel
jaywo
2025-03-10T16:18:54Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-10T16:18:54Z
--- license: apache-2.0 ---
shrey123354/photoshoot
shrey123354
2025-03-10T16:18:08Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-10T15:50:30Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Sid --- # Photoshoot <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Sid` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('shrey123354/photoshoot', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF
mradermacher
2025-03-10T16:17:38Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "en", "base_model:linkonx/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1", "base_model:quantized:linkonx/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-10T15:55:55Z
--- base_model: linkonx/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/linkonx/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1-GGUF/resolve/main/Llama-3-Open-Ko-8B-LinkOnX-Modeler-Code-v1.3.1.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
cnababaie/midtuti
cnababaie
2025-03-10T16:16:41Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma2", "trl", "en", "base_model:unsloth/gemma-2-9b-bnb-4bit", "base_model:finetune:unsloth/gemma-2-9b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-10T09:58:35Z
--- base_model: unsloth/gemma-2-9b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** cnababaie - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
qqfang97/r1-q
qqfang97
2025-03-10T16:16:40Z
0
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-10T16:15:28Z
--- base_model: unsloth/deepseek-r1-distill-qwen-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** qqfang97 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-qwen-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
aimeri/Rocinante-12B-v1.1-6bit
aimeri
2025-03-10T16:15:27Z
0
0
mlx
[ "mlx", "safetensors", "mistral", "base_model:TheDrummer/Rocinante-12B-v1.1", "base_model:quantized:TheDrummer/Rocinante-12B-v1.1", "license:other", "6-bit", "region:us" ]
null
2025-03-10T16:14:56Z
--- license: other tags: - mlx base_model: TheDrummer/Rocinante-12B-v1.1 --- # aimeri/Rocinante-12B-v1.1-6bit The Model [aimeri/Rocinante-12B-v1.1-6bit](https://huggingface.co/aimeri/Rocinante-12B-v1.1-6bit) was converted to MLX format from [TheDrummer/Rocinante-12B-v1.1](https://huggingface.co/TheDrummer/Rocinante-12B-v1.1) using mlx-lm version **0.21.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("aimeri/Rocinante-12B-v1.1-6bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
od2025/dark_epsilon
od2025
2025-03-10T16:15:17Z
0
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "text-to-speech", "annotation", "en", "dataset:parler-tts/mls_eng", "dataset:parler-tts/libritts_r_filtered", "dataset:parler-tts/libritts-r-filtered-speaker-descriptions", "dataset:parler-tts/mls-eng-speaker-descriptions", "arxiv:2402.01912", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-speech
2025-03-10T16:14:16Z
--- library_name: transformers tags: - text-to-speech - annotation license: apache-2.0 language: - en pipeline_tag: text-to-speech inference: false datasets: - parler-tts/mls_eng - parler-tts/libritts_r_filtered - parler-tts/libritts-r-filtered-speaker-descriptions - parler-tts/mls-eng-speaker-descriptions --- <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Parler-TTS Mini v1 <a target="_blank" href="https://huggingface.co/spaces/parler-tts/parler_tts"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> **Parler-TTS Mini v1** is a lightweight text-to-speech (TTS) model, trained on 45K hours of audio data, that can generate high-quality, natural sounding speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). With [Parler-TTS Large v1](https://huggingface.co/parler-tts/parler-tts-large-v1), this is the second set of models published as part of the [Parler-TTS](https://github.com/huggingface/parler-tts) project, which aims to provide the community with TTS training resources and dataset pre-processing code. ## 📖 Quick Index * [👨‍💻 Installation](#👨‍💻-installation) * [🎲 Using a random voice](#🎲-random-voice) * [🎯 Using a specific speaker](#🎯-using-a-specific-speaker) * [Motivation](#motivation) * [Optimizing inference](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) ## 🛠️ Usage ### 👨‍💻 Installation Using Parler-TTS is as simple as "bonjour". Simply install the library once: ```sh pip install git+https://github.com/huggingface/parler-tts.git ``` ### 🎲 Random voice **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example: ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` ### 🎯 Using a specific speaker To ensure speaker consistency across generations, this checkpoint was also trained on 34 speakers, characterized by name (e.g. Jon, Lea, Gary, Jenna, Mike, Laura). To take advantage of this, simply adapt your text description to specify which speaker to use: `Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.` ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` **Tips**: * We've set up an [inference guide](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) to make generation faster. Think SDPA, torch.compile, batching and streaming! * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt ## Motivation Parler-TTS is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. Contrarily to other TTS models, Parler-TTS is a **fully open-source** release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside: * [The Parler-TTS repository](https://github.com/huggingface/parler-tts) - you can train and fine-tuned your own version of the model. * [The Data-Speech repository](https://github.com/huggingface/dataspeech) - a suite of utility scripts designed to annotate speech datasets. * [The Parler-TTS organization](https://huggingface.co/parler-tts) - where you can find the annotated datasets as well as the future checkpoints. ## Citation If you found this repository useful, please consider citing this work and also the original Stability AI paper: ``` @misc{lacombe-etal-2024-parler-tts, author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi}, title = {Parler-TTS}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/parler-tts}} } ``` ``` @misc{lyth2024natural, title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations}, author={Dan Lyth and Simon King}, year={2024}, eprint={2402.01912}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## License This model is permissively licensed under the Apache 2.0 license.
Alphatao/0a07cf8f-77d2-43ad-a6e9-89f401e8ec49
Alphatao
2025-03-10T16:15:11Z
0
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:fxmarty/really-tiny-falcon-testing", "base_model:adapter:fxmarty/really-tiny-falcon-testing", "license:mit", "region:us" ]
null
2025-03-10T15:58:25Z
--- library_name: peft license: mit base_model: fxmarty/really-tiny-falcon-testing tags: - axolotl - generated_from_trainer model-index: - name: 0a07cf8f-77d2-43ad-a6e9-89f401e8ec49 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/really-tiny-falcon-testing bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e8ef6edb66e20da7_train_data.json ds_type: json format: custom path: /workspace/input_data/e8ef6edb66e20da7_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: false gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/0a07cf8f-77d2-43ad-a6e9-89f401e8ec49 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2520 micro_batch_size: 4 mlflow_experiment_name: /tmp/e8ef6edb66e20da7_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6f911363-8c0f-4331-9742-a2fb57ee53b7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6f911363-8c0f-4331-9742-a2fb57ee53b7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0a07cf8f-77d2-43ad-a6e9-89f401e8ec49 This model is a fine-tuned version of [fxmarty/really-tiny-falcon-testing](https://huggingface.co/fxmarty/really-tiny-falcon-testing) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.7376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2520 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 88.7573 | 0.0005 | 1 | 11.0922 | | 86.6896 | 0.0503 | 100 | 10.8462 | | 86.5276 | 0.1007 | 200 | 10.8125 | | 86.4563 | 0.1510 | 300 | 10.7933 | | 86.4675 | 0.2013 | 400 | 10.7781 | | 86.3597 | 0.2517 | 500 | 10.7711 | | 86.2831 | 0.3020 | 600 | 10.7652 | | 86.2862 | 0.3523 | 700 | 10.7596 | | 86.0115 | 0.4027 | 800 | 10.7555 | | 86.0142 | 0.4530 | 900 | 10.7527 | | 86.0606 | 0.5033 | 1000 | 10.7495 | | 86.0031 | 0.5537 | 1100 | 10.7475 | | 86.0867 | 0.6040 | 1200 | 10.7452 | | 86.0885 | 0.6543 | 1300 | 10.7447 | | 85.8223 | 0.7047 | 1400 | 10.7435 | | 85.5493 | 0.7550 | 1500 | 10.7415 | | 86.2632 | 0.8053 | 1600 | 10.7404 | | 86.1295 | 0.8557 | 1700 | 10.7397 | | 86.1934 | 0.9060 | 1800 | 10.7389 | | 85.7078 | 0.9563 | 1900 | 10.7383 | | 85.986 | 1.0067 | 2000 | 10.7382 | | 86.2705 | 1.0570 | 2100 | 10.7379 | | 86.2735 | 1.1073 | 2200 | 10.7377 | | 86.3739 | 1.1577 | 2300 | 10.7376 | | 86.1081 | 1.2080 | 2400 | 10.7376 | | 85.8134 | 1.2583 | 2500 | 10.7376 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Mantis2024/Dirty-Shirley-Quill-v1-gemma-2-Ifable-9B-Uncensored-slerp
Mantis2024
2025-03-10T16:13:47Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:nkpz/gemma-2-Ifable-9B-Uncensored-DeLMAT", "base_model:merge:nkpz/gemma-2-Ifable-9B-Uncensored-DeLMAT", "base_model:sam-paech/Quill-v1", "base_model:merge:sam-paech/Quill-v1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T16:08:07Z
--- base_model: - sam-paech/Quill-v1 - nkpz/gemma-2-Ifable-9B-Uncensored-DeLMAT library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [sam-paech/Quill-v1](https://huggingface.co/sam-paech/Quill-v1) * [nkpz/gemma-2-Ifable-9B-Uncensored-DeLMAT](https://huggingface.co/nkpz/gemma-2-Ifable-9B-Uncensored-DeLMAT) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: sam-paech/Quill-v1 layer_range: [0, 42] - model: nkpz/gemma-2-Ifable-9B-Uncensored-DeLMAT layer_range: [0, 42] merge_method: slerp base_model: sam-paech/Quill-v1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
StefanStefan/Wav2Vec-100-CSR-70M
StefanStefan
2025-03-10T16:13:42Z
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-03-10T16:11:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/r1-1.5b-longthought-1K-GGUF
mradermacher
2025-03-10T16:12:26Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:mkhalifa/r1-1.5b-longthought-1K", "base_model:quantized:mkhalifa/r1-1.5b-longthought-1K", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-10T16:00:07Z
--- base_model: mkhalifa/r1-1.5b-longthought-1K language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mkhalifa/r1-1.5b-longthought-1K <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.Q5_K_S.gguf) | Q5_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.Q6_K.gguf) | Q6_K | 1.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.Q8_0.gguf) | Q8_0 | 2.0 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/r1-1.5b-longthought-1K-GGUF/resolve/main/r1-1.5b-longthought-1K.f16.gguf) | f16 | 3.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
weathermanj/Menda-3B-500
weathermanj
2025-03-10T16:11:34Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "qwen", "grpo", "instruct", "fine-tuned", "reasoning", "3b", "menda", "chat", "conversational", "en", "dataset:gsm8k", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T15:01:40Z
--- language: en license: other tags: - qwen - grpo - instruct - fine-tuned - reasoning - 3b - menda - chat - transformers library_name: transformers datasets: - gsm8k model-index: - name: Menda-3B-500 results: - task: type: text-generation name: Text Generation dataset: type: arc-challenge name: ARC-Challenge metrics: - name: Accuracy type: accuracy value: 50.0 - task: type: text-generation name: Text Generation dataset: type: boolq name: BoolQ metrics: - name: Accuracy type: accuracy value: 90.0 - task: type: text-generation name: Text Generation dataset: type: hellaswag name: HellaSwag metrics: - name: Accuracy type: accuracy value: 40.0 - task: type: text-generation name: Text Generation dataset: type: mmlu name: MMLU (Overall) metrics: - name: Accuracy type: accuracy value: 68.60 --- # Menda-3B-500: GRPO-Tuned Qwen2.5 Model Menda-3B-500 is a fine-tuned version of Qwen2.5-3B-Instruct, trained with GRPO (Guided Reinforcement from Preference Optimization) for 500 steps. This model shows improved performance on reasoning benchmarks compared to the base model. ## Model Details - **Base Model**: Qwen/Qwen2.5-3B-Instruct - **Training Method**: GRPO (Guided Reinforcement from Preference Optimization) - **Training Steps**: 500 - **Parameters**: 3 billion - **Context Length**: 32K tokens - **Training Data**: GSM8K (mathematical reasoning) - **Chat Template**: Uses the Qwen2 chat template ## Chat Format This model uses the standard Qwen2 chat template. For best results when using the model directly, format your prompts as follows: ``` <|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user Your question here<|im_end|> <|im_start|>assistant ``` When using the model through the Hugging Face Transformers library, the chat template will be applied automatically when using the `chat_template` functionality: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "weathermanj/Menda-3B-500" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "Explain the concept of machine learning in simple terms."} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False) inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=300) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Benchmark Results Menda-3B-500 has been evaluated on several standard benchmarks: | Benchmark | Task Type | Accuracy | |-----------|-----------|----------| | ARC-Challenge | Scientific Reasoning | 50.0% | | BoolQ | Reading Comprehension | 90.0% | | HellaSwag | Common Sense Reasoning | 40.0% | | Lambada | Text Completion | 70.0% | | PIQA | Physical Reasoning | 90.0% | | Winogrande | Commonsense Reasoning | 90.0% | ### MMLU Performance | MMLU Category | Score | |---------------|-------| | Overall | 68.60% | | Humanities | 75.38% | | Social Sciences | 75.83% | | STEM | 60.00% | | Other | 67.69% | ## Key Strengths - **Balanced Performance**: Maintains strong performance across diverse tasks with minimal trade-offs. - **Improved BoolQ**: Achieves 90% on BoolQ, showing excellent reading comprehension capabilities. - **Strong Reasoning**: Maintains 90% on both PIQA and Winogrande, demonstrating robust reasoning abilities. - **Efficient Training**: Achieves impressive results with relatively minimal training (500 steps). - **Stable Knowledge**: Maintains strong MMLU performance (68.60%) across diverse knowledge domains. ## Usage Examples ### Basic Usage with Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "weathermanj/Menda-3B-500" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) prompt = "Explain the concept of machine learning in simple terms." inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=300) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ### Chat Usage with Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "weathermanj/Menda-3B-500" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "Give me a short introduction to large language models."} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ### Using with Ollama You can also use this model with Ollama by converting it to GGUF format: ```bash # Convert to GGUF python -m llama_cpp.convert_hf_to_gguf weathermanj/Menda-3B-500 --outfile menda-3b-500.gguf # Create Ollama model cat > Modelfile << EOF FROM menda-3b-500.gguf TEMPLATE """{{ .Prompt }}""" PARAMETER temperature 0.7 PARAMETER top_p 0.9 PARAMETER top_k 40 EOF ollama create menda-3b-500 -f Modelfile ollama run menda-3b-500 ``` ## Training Configuration The model was trained using the GRPO methodology with the following configuration: - **LoRA Rank**: 128 - **Learning Rate**: 5e-6 - **Optimizer**: AdamW (8-bit) - **Batch Size**: 8 per device - **Gradient Accumulation Steps**: 4 - **Training Samples**: 100 examples from GSM8K ## License This model inherits the license of the base Qwen2.5-3B-Instruct model. Please refer to the [Qwen2 license](https://huggingface.co/Qwen/Qwen2-3B-Instruct/blob/main/LICENSE) for details.
weathermanj/Menda-3B-250
weathermanj
2025-03-10T16:11:28Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "qwen", "grpo", "instruct", "fine-tuned", "reasoning", "3b", "menda", "chat", "conversational", "en", "dataset:gsm8k", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-10T15:00:31Z
--- language: en license: other tags: - qwen - grpo - instruct - fine-tuned - reasoning - 3b - menda - chat - transformers library_name: transformers datasets: - gsm8k model-index: - name: Menda-3B-250 results: - task: type: text-generation name: Text Generation dataset: type: arc-challenge name: ARC-Challenge metrics: - name: Accuracy type: accuracy value: 50.0 - task: type: text-generation name: Text Generation dataset: type: boolq name: BoolQ metrics: - name: Accuracy type: accuracy value: 80.0 - task: type: text-generation name: Text Generation dataset: type: hellaswag name: HellaSwag metrics: - name: Accuracy type: accuracy value: 40.0 - task: type: text-generation name: Text Generation dataset: type: mmlu name: MMLU (Overall) metrics: - name: Accuracy type: accuracy value: 68.95 --- # Menda-3B-250: GRPO-Tuned Qwen2.5 Model Menda-3B-250 is a fine-tuned version of Qwen2.5-3B-Instruct, trained with GRPO (Guided Reinforcement from Preference Optimization) for 250 steps. This model shows improved performance on reasoning benchmarks compared to the base model. ## Model Details - **Base Model**: Qwen/Qwen2.5-3B-Instruct - **Training Method**: GRPO (Guided Reinforcement from Preference Optimization) - **Training Steps**: 250 - **Parameters**: 3 billion - **Context Length**: 32K tokens - **Training Data**: GSM8K (mathematical reasoning) - **Chat Template**: Uses the Qwen2 chat template ## Chat Format This model uses the standard Qwen2 chat template. For best results when using the model directly, format your prompts as follows: ``` <|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user Your question here<|im_end|> <|im_start|>assistant ``` When using the model through the Hugging Face Transformers library, the chat template will be applied automatically when using the `chat_template` functionality: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "weathermanj/Menda-3B-250" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "Explain the concept of machine learning in simple terms."} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False) inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=300) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Benchmark Results Menda-3B-250 has been evaluated on several standard benchmarks: | Benchmark | Task Type | Accuracy | |-----------|-----------|----------| | ARC-Challenge | Scientific Reasoning | 50.0% | | BoolQ | Reading Comprehension | 80.0% | | HellaSwag | Common Sense Reasoning | 40.0% | | Lambada | Text Completion | 70.0% | | PIQA | Physical Reasoning | 90.0% | | Winogrande | Commonsense Reasoning | 90.0% | ### MMLU Performance | MMLU Category | Score | |---------------|-------| | Overall | 68.95% | | Humanities | 76.92% | | Social Sciences | 75.83% | | STEM | 60.00% | | Other | 67.69% | ## Key Strengths - **Highest MMLU Score**: This checkpoint achieves the highest overall MMLU score (68.95%) among all checkpoints in the training progression. - **Strong Humanities Performance**: Exceptional performance in humanities subjects (76.92%). - **Efficient Training**: Achieves impressive results with minimal training (only 250 steps). - **Balanced Capabilities**: Maintains strong performance across diverse tasks without significant trade-offs. ## Usage Examples ### Basic Usage with Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "weathermanj/Menda-3B-250" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) prompt = "Explain the concept of machine learning in simple terms." inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=300) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ### Chat Usage with Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "weathermanj/Menda-3B-250" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "Give me a short introduction to large language models."} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ### Using with Ollama You can also use this model with Ollama by converting it to GGUF format: ```bash # Convert to GGUF python -m llama_cpp.convert_hf_to_gguf weathermanj/Menda-3B-250 --outfile menda-3b-250.gguf # Create Ollama model cat > Modelfile << EOF FROM menda-3b-250.gguf TEMPLATE """{{ .Prompt }}""" PARAMETER temperature 0.7 PARAMETER top_p 0.9 PARAMETER top_k 40 EOF ollama create menda-3b-250 -f Modelfile ollama run menda-3b-250 ``` ## Training Configuration The model was trained using the GRPO methodology with the following configuration: - **LoRA Rank**: 128 - **Learning Rate**: 5e-6 - **Optimizer**: AdamW (8-bit) - **Batch Size**: 8 per device - **Gradient Accumulation Steps**: 4 - **Training Samples**: 100 examples from GSM8K ## License This model inherits the license of the base Qwen2.5-3B-Instruct model. Please refer to the [Qwen2 license](https://huggingface.co/Qwen/Qwen2-3B-Instruct/blob/main/LICENSE) for details.
srjjdoborel/jotajota
srjjdoborel
2025-03-10T16:10:48Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-10T15:44:24Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: JOTA --- # Jotajota <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `JOTA` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('srjjdoborel/jotajota', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
eramth/realism-sdxl
eramth
2025-03-10T16:08:02Z
161
0
diffusers
[ "diffusers", "safetensors", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-02-16T12:03:09Z
--- library_name: diffusers license: openrail++ base_model: - stabilityai/stable-diffusion-xl-base-1.0 --- A realism portrait SDXL model with a memory-efficient SDXL VAE that saves about 3GB of RAM with almost no loss of image quality during VAE decoding. ![Realism_SDXL_1](https://huggingface.co/eramth/realism-sdxl/resolve/main/images/Realism_SDXL_1.PNG) ![Realism_SDXL_2](https://huggingface.co/eramth/realism-sdxl/resolve/main/images/Realism_SDXL_2.PNG) ![Realism_SDXL_3](https://huggingface.co/eramth/realism-sdxl/resolve/main/images/Realism_SDXL_3.PNG) # Recommended arguments step: 20-30, CFG: 2-4 # Usage ```python from diffusers import StableDiffusionXLPipeline import torch pipeline = StableDiffusionXLPipeline.from_pretrained("eramth/realism-sdxl",torch_dtype=torch.float16).to("cuda") # This allows you to generate higher resolution images without much extra VRAM usage. pipeline.vae.enable_tiling() image = pipeline(prompt="a beautiful woman",num_inference_steps=25,guidance_scale=2.5).images[0] image ```
Sapna-Shah-Onlinessss/Sapna.Shah.Viral.Video.Leaked.Original.Link.Trending.X
Sapna-Shah-Onlinessss
2025-03-10T16:07:04Z
0
0
null
[ "region:us" ]
null
2025-03-10T16:06:58Z
<!-- HTML_TAG_END --><div> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sapna+Shah">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sapna+Shah">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sapna+Shah"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a></p> <!-- HTML_TAG_END --></div>
Sophie-Rain-Spider-Man-hot-Video-Tutorial/Hot.Sophie.Rain.Spiderman.Viral.Video.Link.Video.Sophie.Rain.Spider-Man.Video
Sophie-Rain-Spider-Man-hot-Video-Tutorial
2025-03-10T16:06:38Z
0
0
null
[ "region:us" ]
null
2025-03-10T16:04:58Z
<animated-image data-catalyst=""><a href="https://viralleakedvideo.com/new-leaked-video/?rain" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Sapna-Shah-Onlinessss/18.EXCLUSIVE.Sapna.Shah.Viral.Video.Original.Link.Trending.X
Sapna-Shah-Onlinessss
2025-03-10T16:05:22Z
0
0
null
[ "region:us" ]
null
2025-03-10T16:05:07Z
<!-- HTML_TAG_END --><div> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sapna+Shah">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sapna+Shah">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sapna+Shah"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a></p> <!-- HTML_TAG_END --></div>
DBInsight/deepseek-legal-assistant
DBInsight
2025-03-10T16:02:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-10T12:11:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ikenna1234/llama_3.2_1b_instruct_reward_model_iter_1
ikenna1234
2025-03-10T16:02:49Z
0
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-03-10T16:01:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JLTastet/ppo-LunarLander-v2
JLTastet
2025-03-10T16:01:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T05:16:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.02 +/- 43.91 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
od2025/dark_gamma
od2025
2025-03-10T16:00:47Z
0
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "text-to-speech", "annotation", "en", "dataset:parler-tts/mls_eng", "dataset:parler-tts/libritts_r_filtered", "dataset:parler-tts/libritts-r-filtered-speaker-descriptions", "dataset:parler-tts/mls-eng-speaker-descriptions", "arxiv:2402.01912", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-speech
2025-03-10T15:59:47Z
--- library_name: transformers tags: - text-to-speech - annotation license: apache-2.0 language: - en pipeline_tag: text-to-speech inference: false datasets: - parler-tts/mls_eng - parler-tts/libritts_r_filtered - parler-tts/libritts-r-filtered-speaker-descriptions - parler-tts/mls-eng-speaker-descriptions --- <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Parler-TTS Mini v1 <a target="_blank" href="https://huggingface.co/spaces/parler-tts/parler_tts"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> **Parler-TTS Mini v1** is a lightweight text-to-speech (TTS) model, trained on 45K hours of audio data, that can generate high-quality, natural sounding speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). With [Parler-TTS Large v1](https://huggingface.co/parler-tts/parler-tts-large-v1), this is the second set of models published as part of the [Parler-TTS](https://github.com/huggingface/parler-tts) project, which aims to provide the community with TTS training resources and dataset pre-processing code. ## 📖 Quick Index * [👨‍💻 Installation](#👨‍💻-installation) * [🎲 Using a random voice](#🎲-random-voice) * [🎯 Using a specific speaker](#🎯-using-a-specific-speaker) * [Motivation](#motivation) * [Optimizing inference](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) ## 🛠️ Usage ### 👨‍💻 Installation Using Parler-TTS is as simple as "bonjour". Simply install the library once: ```sh pip install git+https://github.com/huggingface/parler-tts.git ``` ### 🎲 Random voice **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example: ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` ### 🎯 Using a specific speaker To ensure speaker consistency across generations, this checkpoint was also trained on 34 speakers, characterized by name (e.g. Jon, Lea, Gary, Jenna, Mike, Laura). To take advantage of this, simply adapt your text description to specify which speaker to use: `Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.` ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` **Tips**: * We've set up an [inference guide](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) to make generation faster. Think SDPA, torch.compile, batching and streaming! * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt ## Motivation Parler-TTS is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. Contrarily to other TTS models, Parler-TTS is a **fully open-source** release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside: * [The Parler-TTS repository](https://github.com/huggingface/parler-tts) - you can train and fine-tuned your own version of the model. * [The Data-Speech repository](https://github.com/huggingface/dataspeech) - a suite of utility scripts designed to annotate speech datasets. * [The Parler-TTS organization](https://huggingface.co/parler-tts) - where you can find the annotated datasets as well as the future checkpoints. ## Citation If you found this repository useful, please consider citing this work and also the original Stability AI paper: ``` @misc{lacombe-etal-2024-parler-tts, author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi}, title = {Parler-TTS}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/parler-tts}} } ``` ``` @misc{lyth2024natural, title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations}, author={Dan Lyth and Simon King}, year={2024}, eprint={2402.01912}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## License This model is permissively licensed under the Apache 2.0 license.