modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-22 06:27:16
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 492
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-22 06:26:41
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
lenatr99/loha_fine_tuned_rte_croslo | lenatr99 | 2024-05-23T20:21:26Z | 1 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:EMBEDDIA/crosloengual-bert",
"base_model:adapter:EMBEDDIA/crosloengual-bert",
"license:cc-by-4.0",
"region:us"
] | null | 2024-05-23T20:21:21Z | ---
license: cc-by-4.0
library_name: peft
tags:
- generated_from_trainer
base_model: EMBEDDIA/crosloengual-bert
metrics:
- accuracy
- f1
model-index:
- name: loha_fine_tuned_rte_croslo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# loha_fine_tuned_rte_croslo
This model is a fine-tuned version of [EMBEDDIA/crosloengual-bert](https://huggingface.co/EMBEDDIA/crosloengual-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6884
- Accuracy: 0.5862
- F1: 0.5862
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 0.7171 | 1.7241 | 50 | 0.6838 | 0.5862 | 0.5483 |
| 0.6991 | 3.4483 | 100 | 0.6843 | 0.6552 | 0.6388 |
| 0.7194 | 5.1724 | 150 | 0.6864 | 0.5862 | 0.5789 |
| 0.7001 | 6.8966 | 200 | 0.6882 | 0.5862 | 0.5862 |
| 0.7079 | 8.6207 | 250 | 0.6884 | 0.5862 | 0.5862 |
| 0.7095 | 10.3448 | 300 | 0.6889 | 0.5862 | 0.5862 |
| 0.705 | 12.0690 | 350 | 0.6884 | 0.5862 | 0.5862 |
| 0.6978 | 13.7931 | 400 | 0.6884 | 0.5862 | 0.5862 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
lenatr99/fine_tuned_rte_croslo | lenatr99 | 2024-05-23T20:19:14Z | 111 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:EMBEDDIA/crosloengual-bert",
"base_model:finetune:EMBEDDIA/crosloengual-bert",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-23T20:18:37Z | ---
license: cc-by-4.0
base_model: EMBEDDIA/crosloengual-bert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: fine_tuned_rte_croslo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine_tuned_rte_croslo
This model is a fine-tuned version of [EMBEDDIA/crosloengual-bert](https://huggingface.co/EMBEDDIA/crosloengual-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7790
- Accuracy: 0.6207
- F1: 0.5951
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 0.6951 | 1.7241 | 50 | 0.6869 | 0.5517 | 0.5549 |
| 0.5952 | 3.4483 | 100 | 0.6381 | 0.6207 | 0.5466 |
| 0.4725 | 5.1724 | 150 | 0.6293 | 0.6207 | 0.6090 |
| 0.3055 | 6.8966 | 200 | 0.6905 | 0.6552 | 0.6018 |
| 0.2004 | 8.6207 | 250 | 0.6624 | 0.6897 | 0.6523 |
| 0.1191 | 10.3448 | 300 | 0.7124 | 0.6552 | 0.6236 |
| 0.0661 | 12.0690 | 350 | 0.7694 | 0.6552 | 0.6236 |
| 0.048 | 13.7931 | 400 | 0.7790 | 0.6207 | 0.5951 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
ManjuRangam/food_classifier | ManjuRangam | 2024-05-23T20:19:08Z | 64 | 0 | transformers | [
"transformers",
"tf",
"vit",
"image-classification",
"generated_from_keras_callback",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2024-05-23T19:47:08Z | ---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_keras_callback
model-index:
- name: ManjuRangam/food_classifier
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ManjuRangam/food_classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3737
- Validation Loss: 0.3714
- Train Accuracy: 0.912
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 2.7536 | 1.5773 | 0.86 | 0 |
| 1.1748 | 0.8043 | 0.894 | 1 |
| 0.6680 | 0.5410 | 0.895 | 2 |
| 0.4813 | 0.4248 | 0.898 | 3 |
| 0.3737 | 0.3714 | 0.912 | 4 |
### Framework versions
- Transformers 4.41.0
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
bartowski/aya-23-8B-exl2 | bartowski | 2024-05-23T20:09:25Z | 1 | 1 | transformers | [
"transformers",
"text-generation",
"en",
"fr",
"de",
"es",
"it",
"pt",
"ja",
"ko",
"zh",
"ar",
"el",
"fa",
"pl",
"id",
"cs",
"he",
"hi",
"nl",
"ro",
"ru",
"tr",
"uk",
"vi",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T20:09:24Z | ---
library_name: transformers
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
- el
- fa
- pl
- id
- cs
- he
- hi
- nl
- ro
- ru
- tr
- uk
- vi
license: cc-by-nc-4.0
quantized_by: bartowski
pipeline_tag: text-generation
---
## Exllama v2 Quantizations of aya-23-8B
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.21">turboderp's ExLlamaV2 v0.0.21</a> for quantization.
<b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b>
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: https://huggingface.co/CohereForAI/aya-23-8B
## Prompt format
```
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{system_prompt}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{prompt}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
```
## Available sizes
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (8K) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/aya-23-8B-exl2/tree/8_0) | 8.0 | 8.0 | 10.1 GB | 10.5 GB | 11.5 GB | 13.6 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/aya-23-8B-exl2/tree/6_5) | 6.5 | 8.0 | 8.9 GB | 9.3 GB | 10.3 GB | 12.4 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/bartowski/aya-23-8B-exl2/tree/5_0) | 5.0 | 6.0 | 7.7 GB | 8.1 GB | 9.1 GB | 11.2 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
| [4_25](https://huggingface.co/bartowski/aya-23-8B-exl2/tree/4_25) | 4.25 | 6.0 | 7.0 GB | 7.4 GB | 8.4 GB | 10.5 GB | GPTQ equivalent bits per weight, slightly higher quality. |
| [3_5](https://huggingface.co/bartowski/aya-23-8B-exl2/tree/3_5) | 3.5 | 6.0 | 6.4 GB | 6.8 GB | 7.8 GB | 9.9 GB | Lower quality, only use if you have to. |
## Download instructions
With git:
```shell
git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/aya-23-8B-exl2 aya-23-8B-exl2-6_5
```
With huggingface hub (credit to TheBloke for instructions):
```shell
pip3 install huggingface-hub
```
To download a specific branch, use the `--revision` parameter. For example, to download the 6.5 bpw branch:
Linux:
```shell
huggingface-cli download bartowski/aya-23-8B-exl2 --revision 6_5 --local-dir aya-23-8B-exl2-6_5
```
Windows (which apparently doesn't like _ in folders sometimes?):
```shell
huggingface-cli download bartowski/aya-23-8B-exl2 --revision 6_5 --local-dir aya-23-8B-exl2-6.5
```
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
|
mrovejaxd/ABL_trad_g | mrovejaxd | 2024-05-23T20:07:44Z | 11 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:dccuchile/bert-base-spanish-wwm-cased",
"base_model:finetune:dccuchile/bert-base-spanish-wwm-cased",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-22T22:19:21Z | ---
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: ABL_trad_g
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ABL_trad_g
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8036
- Accuracy: 0.685
- F1: 0.6817
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 1.0352 | 1.0 | 1000 | 0.9705 | 0.5575 | 0.5434 |
| 0.8786 | 2.0 | 2000 | 0.8527 | 0.6 | 0.5990 |
| 0.7943 | 3.0 | 3000 | 0.8156 | 0.6125 | 0.6097 |
| 0.7544 | 4.0 | 4000 | 0.7883 | 0.6508 | 0.6490 |
| 0.713 | 5.0 | 5000 | 0.7780 | 0.6492 | 0.6455 |
| 0.6854 | 6.0 | 6000 | 0.7630 | 0.675 | 0.6728 |
| 0.644 | 7.0 | 7000 | 0.7692 | 0.6733 | 0.6708 |
| 0.6051 | 8.0 | 8000 | 0.7651 | 0.6808 | 0.6782 |
| 0.5926 | 9.0 | 9000 | 0.7566 | 0.6792 | 0.6772 |
| 0.547 | 10.0 | 10000 | 0.7746 | 0.6858 | 0.6830 |
| 0.5197 | 11.0 | 11000 | 0.7924 | 0.6733 | 0.6697 |
| 0.4762 | 12.0 | 12000 | 0.8036 | 0.685 | 0.6817 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
enigma-112/akai_ner | enigma-112 | 2024-05-23T20:06:26Z | 116 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"token-classification",
"agriculture",
"en",
"dataset:ksgr5566/ner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-05-23T18:03:54Z | ---
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: token-classification
tags:
- agriculture
datasets:
- ksgr5566/ner
metrics:
- f1
widget:
- text: "Which are the best varities of tomatoes?"
example_title: "Example- crop"
- text: "My paddy has been attacked by grasshopper."
example_title: "Example- crop + pest"
- text: "Where can I buy draught resistant paddy ?"
example_title: "Example- seed type"
---
# Model Card for Model ID
The model recognizes 3 types of entities - pest names, seed types, crop names.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** SamagraX | Transforming Governance
- **Shared by [optional]:** SamagraX | Transforming Governance
- **Model type:** Named Entity Recognition for agriculture
- **Language(s) (NLP):** Python
- **License:** MIT
- **Finetuned from model [optional]:** distilbert-base-uncased
## Uses
Helps extracting the crop name, pest names and seed details from a query asked.
|
yihanwang617/tinyllama-sft-vicuna-random-100k | yihanwang617 | 2024-05-23T20:04:21Z | 6 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"dataset:yihanwang617/vicuna_sub_random_100k",
"base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
"base_model:finetune:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T07:22:14Z | ---
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- yihanwang617/vicuna_sub_random_100k
model-index:
- name: tinyllama-sft-vicuna-random-100k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tinyllama-sft-vicuna-random-100k
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the yihanwang617/vicuna_sub_random_100k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7457
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7119 | 1.0 | 732 | 0.7457 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0
|
lenatr99/loha_fine_tuned_copa_XLMroberta | lenatr99 | 2024-05-23T20:03:52Z | 2 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:adapter:FacebookAI/xlm-roberta-base",
"license:mit",
"region:us"
] | null | 2024-05-23T20:03:43Z | ---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: xlm-roberta-base
metrics:
- accuracy
- f1
model-index:
- name: loha_fine_tuned_copa_XLMroberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# loha_fine_tuned_copa_XLMroberta
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6928
- Accuracy: 0.56
- F1: 0.5589
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6957 | 1.0 | 50 | 0.6928 | 0.56 | 0.5575 |
| 0.6944 | 2.0 | 100 | 0.6928 | 0.56 | 0.5589 |
| 0.6904 | 3.0 | 150 | 0.6928 | 0.56 | 0.5589 |
| 0.6902 | 4.0 | 200 | 0.6928 | 0.56 | 0.5589 |
| 0.6948 | 5.0 | 250 | 0.6928 | 0.56 | 0.5589 |
| 0.6961 | 6.0 | 300 | 0.6928 | 0.56 | 0.5589 |
| 0.6979 | 7.0 | 350 | 0.6928 | 0.56 | 0.5589 |
| 0.6903 | 8.0 | 400 | 0.6928 | 0.56 | 0.5589 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
lenatr99/lora_fine_tuned_copa_XLMroberta | lenatr99 | 2024-05-23T20:01:56Z | 1 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:adapter:FacebookAI/xlm-roberta-base",
"license:mit",
"region:us"
] | null | 2024-05-23T20:01:53Z | ---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: xlm-roberta-base
metrics:
- accuracy
- f1
model-index:
- name: lora_fine_tuned_copa_XLMroberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora_fine_tuned_copa_XLMroberta
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6929
- Accuracy: 0.58
- F1: 0.58
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6951 | 1.0 | 50 | 0.6928 | 0.56 | 0.5589 |
| 0.6949 | 2.0 | 100 | 0.6928 | 0.58 | 0.5790 |
| 0.6899 | 3.0 | 150 | 0.6928 | 0.59 | 0.5895 |
| 0.6906 | 4.0 | 200 | 0.6929 | 0.58 | 0.58 |
| 0.6953 | 5.0 | 250 | 0.6929 | 0.58 | 0.58 |
| 0.6949 | 6.0 | 300 | 0.6929 | 0.58 | 0.58 |
| 0.6985 | 7.0 | 350 | 0.6929 | 0.58 | 0.58 |
| 0.6912 | 8.0 | 400 | 0.6929 | 0.58 | 0.58 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
isaaclee/duration_mistral_train_run3 | isaaclee | 2024-05-23T19:57:28Z | 0 | 0 | peft | [
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-Instruct-v0.1",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2024-05-23T18:16:43Z | ---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: duration_mistral_train_run3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# duration_mistral_train_run3
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 |
hgnoi/1fLjPnSpnrOruhEL | hgnoi | 2024-05-23T19:55:51Z | 165 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T19:54:15Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
GovindJo/Fine_Tune_T5_Model_News_Summarization | GovindJo | 2024-05-23T19:50:16Z | 63 | 0 | transformers | [
"transformers",
"tf",
"t5",
"text2text-generation",
"generated_from_keras_callback",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-23T11:26:32Z | ---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_keras_callback
model-index:
- name: GovindJo/Fine_Tune_T5_Model_News_Summarization
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# GovindJo/Fine_Tune_T5_Model_News_Summarization
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.8715
- Validation Loss: 1.6797
- Train Lr: 2e-05
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Lr | Epoch |
|:----------:|:---------------:|:--------:|:-----:|
| 1.9350 | 1.7003 | 2e-05 | 0 |
| 1.8854 | 1.6873 | 2e-05 | 1 |
| 1.8715 | 1.6797 | 2e-05 | 2 |
### Framework versions
- Transformers 4.39.3
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|
lenatr99/loha_fine_tuned_copa_sloberta | lenatr99 | 2024-05-23T19:49:21Z | 1 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:EMBEDDIA/sloberta",
"base_model:adapter:EMBEDDIA/sloberta",
"license:cc-by-sa-4.0",
"region:us"
] | null | 2024-05-23T19:49:19Z | ---
license: cc-by-sa-4.0
library_name: peft
tags:
- generated_from_trainer
base_model: EMBEDDIA/sloberta
metrics:
- accuracy
- f1
model-index:
- name: loha_fine_tuned_copa_sloberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# loha_fine_tuned_copa_sloberta
This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6929
- Accuracy: 0.51
- F1: 0.5104
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7001 | 1.0 | 50 | 0.6935 | 0.47 | 0.4711 |
| 0.6932 | 2.0 | 100 | 0.6931 | 0.48 | 0.48 |
| 0.6913 | 3.0 | 150 | 0.6928 | 0.51 | 0.5112 |
| 0.7055 | 4.0 | 200 | 0.6927 | 0.48 | 0.48 |
| 0.6902 | 5.0 | 250 | 0.6926 | 0.5 | 0.4988 |
| 0.6981 | 6.0 | 300 | 0.6930 | 0.47 | 0.4694 |
| 0.7011 | 7.0 | 350 | 0.6930 | 0.5 | 0.4988 |
| 0.6894 | 8.0 | 400 | 0.6929 | 0.51 | 0.5104 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
tsavage68/MedQA_L3_300steps_1e6rate_01beta_CSFTDPO | tsavage68 | 2024-05-23T19:49:16Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"dpo",
"generated_from_trainer",
"conversational",
"base_model:tsavage68/MedQA_L3_1000steps_1e6rate_SFT",
"base_model:finetune:tsavage68/MedQA_L3_1000steps_1e6rate_SFT",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T19:45:11Z | ---
license: llama3
base_model: tsavage68/MedQA_L3_1000steps_1e6rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: MedQA_L3_300steps_1e6rate_01beta_CSFTDPO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MedQA_L3_300steps_1e6rate_01beta_CSFTDPO
This model is a fine-tuned version of [tsavage68/MedQA_L3_1000steps_1e6rate_SFT](https://huggingface.co/tsavage68/MedQA_L3_1000steps_1e6rate_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4661
- Rewards/chosen: 0.6273
- Rewards/rejected: -0.3771
- Rewards/accuracies: 0.7604
- Rewards/margins: 1.0045
- Logps/rejected: -37.6261
- Logps/chosen: -25.0552
- Logits/rejected: -0.8801
- Logits/chosen: -0.8780
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 300
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6869 | 0.0489 | 50 | 0.6696 | -0.2211 | -0.2710 | 0.7253 | 0.0498 | -36.5645 | -33.5400 | -0.7298 | -0.7290 |
| 0.4779 | 0.0977 | 100 | 0.5887 | 1.4526 | 1.0417 | 0.6945 | 0.4109 | -23.4374 | -16.8024 | -0.8047 | -0.8036 |
| 0.5155 | 0.1466 | 150 | 0.4976 | 0.6394 | -0.2000 | 0.7363 | 0.8394 | -35.8551 | -24.9343 | -0.8636 | -0.8617 |
| 0.4245 | 0.1954 | 200 | 0.4924 | 0.0477 | -0.9077 | 0.7648 | 0.9554 | -42.9321 | -30.8513 | -0.8783 | -0.8762 |
| 0.4563 | 0.2443 | 250 | 0.4675 | 0.6549 | -0.3364 | 0.7560 | 0.9913 | -37.2189 | -24.7791 | -0.8807 | -0.8786 |
| 0.3066 | 0.2931 | 300 | 0.4661 | 0.6273 | -0.3771 | 0.7604 | 1.0045 | -37.6261 | -25.0552 | -0.8801 | -0.8780 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|
moncefem/guillaumetell-7b-awq | moncefem | 2024-05-23T19:48:50Z | 77 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"awq",
"region:us"
] | text-generation | 2024-05-23T19:45:41Z | ---
license: apache-2.0
---
|
lenatr99/lora_fine_tuned_copa_sloberta | lenatr99 | 2024-05-23T19:47:55Z | 2 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:EMBEDDIA/sloberta",
"base_model:adapter:EMBEDDIA/sloberta",
"license:cc-by-sa-4.0",
"region:us"
] | null | 2024-05-23T19:47:50Z | ---
license: cc-by-sa-4.0
library_name: peft
tags:
- generated_from_trainer
base_model: EMBEDDIA/sloberta
metrics:
- accuracy
- f1
model-index:
- name: lora_fine_tuned_copa_sloberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora_fine_tuned_copa_sloberta
This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Accuracy: 0.55
- F1: 0.5509
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7011 | 1.0 | 50 | 0.6931 | 0.52 | 0.5188 |
| 0.6953 | 2.0 | 100 | 0.6931 | 0.59 | 0.5895 |
| 0.6981 | 3.0 | 150 | 0.6931 | 0.57 | 0.5704 |
| 0.6978 | 4.0 | 200 | 0.6931 | 0.55 | 0.5495 |
| 0.692 | 5.0 | 250 | 0.6931 | 0.54 | 0.5411 |
| 0.7014 | 6.0 | 300 | 0.6931 | 0.48 | 0.48 |
| 0.6928 | 7.0 | 350 | 0.6931 | 0.5 | 0.5012 |
| 0.6953 | 8.0 | 400 | 0.6931 | 0.55 | 0.5509 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
bert-base/fun_trained_convbert_epoch_7 | bert-base | 2024-05-23T19:45:40Z | 196 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-23T19:43:54Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
vincentpremise/mps-invoice-product-BAAI_bge_small_en_v1.5 | vincentpremise | 2024-05-23T19:38:45Z | 7 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2024-05-23T19:04:11Z | ---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# vincentpremise/mps-invoice-product-BAAI_bge_small_en_v1.5
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('vincentpremise/mps-invoice-product-BAAI_bge_small_en_v1.5')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('vincentpremise/mps-invoice-product-BAAI_bge_small_en_v1.5')
model = AutoModel.from_pretrained('vincentpremise/mps-invoice-product-BAAI_bge_small_en_v1.5')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=vincentpremise/mps-invoice-product-BAAI_bge_small_en_v1.5)
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 94 with parameters:
```
{'batch_size': 32}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 10,
"evaluation_steps": 10,
"evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 94,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
lenatr99/loha_fine_tuned_copa_croslo | lenatr99 | 2024-05-23T19:38:44Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:EMBEDDIA/crosloengual-bert",
"base_model:adapter:EMBEDDIA/crosloengual-bert",
"license:cc-by-4.0",
"region:us"
] | null | 2024-05-03T18:18:03Z | ---
license: cc-by-4.0
library_name: peft
tags:
- generated_from_trainer
base_model: EMBEDDIA/crosloengual-bert
metrics:
- accuracy
- f1
model-index:
- name: loha_fine_tuned_copa_croslo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# loha_fine_tuned_copa_croslo
This model is a fine-tuned version of [EMBEDDIA/crosloengual-bert](https://huggingface.co/EMBEDDIA/crosloengual-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3989
- Accuracy: 0.65
- F1: 0.6507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7116 | 1.0 | 50 | 0.6663 | 0.57 | 0.5704 |
| 0.657 | 2.0 | 100 | 0.6277 | 0.62 | 0.62 |
| 0.49 | 3.0 | 150 | 0.6608 | 0.67 | 0.6708 |
| 0.3144 | 4.0 | 200 | 0.7786 | 0.68 | 0.6805 |
| 0.099 | 5.0 | 250 | 1.1639 | 0.63 | 0.6303 |
| 0.0377 | 6.0 | 300 | 1.2560 | 0.65 | 0.6496 |
| 0.0216 | 7.0 | 350 | 1.3663 | 0.65 | 0.6503 |
| 0.0107 | 8.0 | 400 | 1.3989 | 0.65 | 0.6507 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
tsavage68/MedQA_L3_1000steps_1e5rate_03beta_CSFTDPO | tsavage68 | 2024-05-23T19:38:42Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"dpo",
"generated_from_trainer",
"conversational",
"base_model:tsavage68/MedQA_L3_1000steps_1e6rate_SFT",
"base_model:finetune:tsavage68/MedQA_L3_1000steps_1e6rate_SFT",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T19:34:12Z | ---
license: llama3
base_model: tsavage68/MedQA_L3_1000steps_1e6rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: MedQA_L3_1000steps_1e5rate_03beta_CSFTDPO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MedQA_L3_1000steps_1e5rate_03beta_CSFTDPO
This model is a fine-tuned version of [tsavage68/MedQA_L3_1000steps_1e6rate_SFT](https://huggingface.co/tsavage68/MedQA_L3_1000steps_1e6rate_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8199
- Rewards/chosen: -5.6953
- Rewards/rejected: -5.2697
- Rewards/accuracies: 0.4571
- Rewards/margins: -0.4255
- Logps/rejected: -51.4207
- Logps/chosen: -50.3128
- Logits/rejected: -1.1748
- Logits/chosen: -1.1747
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6976 | 0.0489 | 50 | 1.6003 | -6.0871 | -6.7321 | 0.5626 | 0.6450 | -56.2952 | -51.6189 | -0.8478 | -0.8474 |
| 2.0492 | 0.0977 | 100 | 1.5171 | -2.8937 | -2.7957 | 0.4791 | -0.0979 | -43.1739 | -40.9741 | -0.7086 | -0.7085 |
| 3.2675 | 0.1466 | 150 | 2.4839 | -9.5405 | -8.8952 | 0.4264 | -0.6452 | -63.5056 | -63.1301 | -0.6090 | -0.6092 |
| 2.5387 | 0.1954 | 200 | 2.8407 | -10.8845 | -10.2333 | 0.4220 | -0.6513 | -67.9657 | -67.6103 | -2.0451 | -2.0454 |
| 3.5954 | 0.2443 | 250 | 5.2964 | -26.2267 | -26.1016 | 0.4725 | -0.1251 | -120.8603 | -118.7509 | -2.7907 | -2.7903 |
| 5.2171 | 0.2931 | 300 | 3.1156 | -11.9636 | -11.4341 | 0.4549 | -0.5294 | -71.9686 | -71.2070 | -1.4795 | -1.4797 |
| 2.6671 | 0.3420 | 350 | 2.8765 | -8.6508 | -8.1258 | 0.4220 | -0.5250 | -60.9407 | -60.1644 | -0.9503 | -0.9502 |
| 3.7894 | 0.3908 | 400 | 2.8694 | -9.8779 | -9.1060 | 0.4242 | -0.7720 | -64.2081 | -64.2550 | -1.0926 | -1.0927 |
| 4.4115 | 0.4397 | 450 | 2.6152 | -9.1581 | -8.5492 | 0.4176 | -0.6089 | -62.3523 | -61.8555 | -1.3932 | -1.3933 |
| 3.6882 | 0.4885 | 500 | 2.5995 | -10.0842 | -9.5563 | 0.4352 | -0.5279 | -65.7092 | -64.9425 | -1.3920 | -1.3918 |
| 4.7478 | 0.5374 | 550 | 3.1439 | -13.8538 | -13.2693 | 0.4264 | -0.5845 | -78.0858 | -77.5078 | -1.4673 | -1.4673 |
| 3.6453 | 0.5862 | 600 | 2.5501 | -10.1562 | -9.6020 | 0.4154 | -0.5542 | -65.8615 | -65.1824 | -1.8008 | -1.8006 |
| 1.9093 | 0.6351 | 650 | 2.0900 | -7.1034 | -6.4496 | 0.4352 | -0.6537 | -55.3536 | -55.0064 | -1.5307 | -1.5306 |
| 1.978 | 0.6839 | 700 | 1.9643 | -5.1638 | -4.6928 | 0.4593 | -0.4710 | -49.4976 | -48.5413 | -1.2420 | -1.2419 |
| 2.6252 | 0.7328 | 750 | 1.8926 | -6.6759 | -6.1506 | 0.4396 | -0.5254 | -54.3567 | -53.5815 | -1.3560 | -1.3560 |
| 2.0384 | 0.7816 | 800 | 1.8552 | -6.4512 | -5.9923 | 0.4374 | -0.4588 | -53.8292 | -52.8324 | -1.2189 | -1.2188 |
| 2.3167 | 0.8305 | 850 | 1.8255 | -5.8191 | -5.3851 | 0.4549 | -0.4341 | -51.8050 | -50.7256 | -1.1902 | -1.1901 |
| 2.1526 | 0.8793 | 900 | 1.8196 | -5.7219 | -5.2966 | 0.4549 | -0.4252 | -51.5102 | -50.4014 | -1.1751 | -1.1750 |
| 2.0182 | 0.9282 | 950 | 1.8220 | -5.6982 | -5.2706 | 0.4593 | -0.4276 | -51.4235 | -50.3224 | -1.1750 | -1.1749 |
| 1.3984 | 0.9770 | 1000 | 1.8199 | -5.6953 | -5.2697 | 0.4571 | -0.4255 | -51.4207 | -50.3128 | -1.1748 | -1.1747 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|
lmstudio-community/aya-23-35B-GGUF | lmstudio-community | 2024-05-23T19:38:06Z | 355 | 14 | transformers | [
"transformers",
"gguf",
"text-generation",
"en",
"fr",
"de",
"es",
"it",
"pt",
"ja",
"ko",
"zh",
"ar",
"el",
"fa",
"pl",
"id",
"cs",
"he",
"hi",
"nl",
"ro",
"ru",
"tr",
"uk",
"vi",
"base_model:CohereForAI/aya-23-35B",
"base_model:quantized:CohereForAI/aya-23-35B",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | text-generation | 2024-05-23T19:33:21Z | ---
library_name: transformers
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
- el
- fa
- pl
- id
- cs
- he
- hi
- nl
- ro
- ru
- tr
- uk
- vi
license: cc-by-nc-4.0
quantized_by: bartowski
pipeline_tag: text-generation
lm_studio:
param_count: 35b
use_case: general
release_date: 23-05-2024
model_creator: CohereForAI
prompt_template: Cohere Command R
system_prompt: You are a helpful AI assistant
base_model: cohere
original_repo: CohereForAI/aya-23-35B
base_model: CohereForAI/aya-23-35B
---
## 💫 Community Model> Aya 23 35B by Cohere For AI
*👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*.
**Model creator:** [Cohere For AI](https://huggingface.co/CohereForAI)<br>
**Original model**: [aya-23-35B](https://huggingface.co/CohereForAI/aya-23-35B)<br>
**GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b2965](https://github.com/ggerganov/llama.cpp/releases/tag/b2965)<br>
## Model Summary:
Aya 23 are brand new instruction tuned multilingual models from Cohere. This model should perform well at logic across a wide variety of languages.<br>
This is the 35B version of the model. The performance is quite high especially when used for multilingual tasks where most other models in this size range lack training data.
## Prompt template:
Choose the `Cohere Command R` preset in your LM Studio.
Under the hood, the model will see a prompt that's formatted like so:
```
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>
{system_prompt}
<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>
{prompt}
<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
```
## Technical Details
Aya 23 covers the following languages:
- Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
The Aya training dataset can be found here:
- https://huggingface.co/datasets/CohereForAI/aya_collection
More technical details can be found from Cohere [here](https://cohere.com/research/papers/aya-command-23-35b-and-35b-technical-report-2024-05-23)
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
🙏 Special thanks to [Kalomaze](https://github.com/kalomaze), [Dampf](https://github.com/Dampfinchen) and [turboderp](https://github.com/turboderp/) for their work on the dataset (linked [here](https://gist.github.com/bartowski1182/b6ac44691e994344625687afe3263b3a)) that was used for calculating the imatrix for all sizes.
## Disclaimers
LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio. |
yifanxie/able-ara-1 | yifanxie | 2024-05-23T19:37:35Z | 147 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"gpt",
"llm",
"large language model",
"h2o-llmstudio",
"conversational",
"en",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] | text-generation | 2024-05-23T19:35:09Z | ---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: false
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
---
# Model Card
## Summary
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [google/gemma-2b](https://huggingface.co/google/gemma-2b)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed.
```bash
pip install transformers==4.40.2
```
Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo.
- Either leave `token=True` in the `pipeline` and login to hugginface_hub by running
```python
import huggingface_hub
huggingface_hub.login(<ACCESS_TOKEN>)
```
- Or directly pass your <ACCESS_TOKEN> to `token` in the `pipeline`
```python
from transformers import pipeline
generate_text = pipeline(
model="yifanxie/able-ara-1",
torch_dtype="auto",
trust_remote_code=True,
use_fast=True,
device_map={"": "cuda:0"},
token=True,
)
# generate configuration can be modified to your needs
# generate_text.model.generation_config.min_new_tokens = 2
# generate_text.model.generation_config.max_new_tokens = 486
# generate_text.model.generation_config.do_sample = False
# generate_text.model.generation_config.num_beams = 1
# generate_text.model.generation_config.temperature = float(0.0)
# generate_text.model.generation_config.repetition_penalty = float(1.0)
messages = [
{
"role": "system",
"content": "You are a friendly and polite chatbot.",
},
{"role": "user", "content": "Hi, how are you?"},
{"role": "assistant", "content": "I'm doing great, how about you?"},
{"role": "user", "content": "Why is drinking water so healthy?"},
]
res = generate_text(
messages,
renormalize_logits=True
)
print(res[0]["generated_text"][-1]['content'])
```
You can print a sample prompt after applying chat template to see how it is feed to the tokenizer:
```python
print(generate_text.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
))
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "yifanxie/able-ara-1" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
messages = [
{
"role": "system",
"content": "You are a friendly and polite chatbot.",
},
{"role": "user", "content": "Hi, how are you?"},
{"role": "assistant", "content": "I'm doing great, how about you?"},
{"role": "user", "content": "Why is drinking water so healthy?"},
]
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
model.cuda().eval()
# generate configuration can be modified to your needs
# model.generation_config.min_new_tokens = 2
# model.generation_config.max_new_tokens = 486
# model.generation_config.do_sample = False
# model.generation_config.num_beams = 1
# model.generation_config.temperature = float(0.0)
# model.generation_config.repetition_penalty = float(1.0)
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Quantization and sharding
You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```.
## Model Architecture
```
GemmaForCausalLM(
(model): GemmaModel(
(embed_tokens): Embedding(256000, 2048, padding_idx=0)
(layers): ModuleList(
(0-17): 18 x GemmaDecoderLayer(
(self_attn): GemmaSdpaAttention(
(q_proj): Linear(in_features=2048, out_features=2048, bias=False)
(k_proj): Linear(in_features=2048, out_features=256, bias=False)
(v_proj): Linear(in_features=2048, out_features=256, bias=False)
(o_proj): Linear(in_features=2048, out_features=2048, bias=False)
(rotary_emb): GemmaRotaryEmbedding()
)
(mlp): GemmaMLP(
(gate_proj): Linear(in_features=2048, out_features=16384, bias=False)
(up_proj): Linear(in_features=2048, out_features=16384, bias=False)
(down_proj): Linear(in_features=16384, out_features=2048, bias=False)
(act_fn): PytorchGELUTanh()
)
(input_layernorm): GemmaRMSNorm()
(post_attention_layernorm): GemmaRMSNorm()
)
)
(norm): GemmaRMSNorm()
)
(lm_head): Linear(in_features=2048, out_features=256000, bias=False)
)
```
## Model Configuration
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it. |
PhillipGuo/hp-lat-llama-No_PCA-epsilon0.5-pgd_layer8_16_24_30-def_layer0-ultrachat-towards1-away0-sft1-8 | PhillipGuo | 2024-05-23T19:30:09Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T19:30:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
PhillipGuo/hp-lat-llama-No_PCA-epsilon3.0-pgd_layer8_16_24_30-def_layer0-ultrachat-towards1-away0-sft1-8 | PhillipGuo | 2024-05-23T19:29:29Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T19:29:17Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
SoumilB7/MathematicalLlama8B | SoumilB7 | 2024-05-23T19:25:17Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"trl",
"mathematical-reasoning",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-23T19:10:37Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- llama
- trl
- mathematical-reasoning
---
# Uploaded model
- **Developed by:** SoumilB7
- **License:** apache-2.0
|
SuYee189/mGPT_V5 | SuYee189 | 2024-05-23T19:18:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T19:18:28Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Rimyy/MISTRAL-finetuneGSMdata3exp | Rimyy | 2024-05-23T19:18:16Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T19:14:19Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
smmgh/distilbert-base-uncased-finetuned-ner | smmgh | 2024-05-23T19:11:53Z | 9 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-05-23T17:07:15Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1955
- Precision: 0.7462
- Recall: 0.7843
- F1: 0.7648
- Accuracy: 0.9395
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.198 | 1.0 | 8236 | 0.1907 | 0.7312 | 0.7762 | 0.7530 | 0.9372 |
| 0.1611 | 2.0 | 16472 | 0.1899 | 0.7492 | 0.7795 | 0.7641 | 0.9395 |
| 0.1324 | 3.0 | 24708 | 0.1955 | 0.7462 | 0.7843 | 0.7648 | 0.9395 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
pchopalli/whisper-small-or | pchopalli | 2024-05-23T19:11:48Z | 52 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"or",
"dataset:mozilla-foundation/common_voice_11_0",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-23T19:10:45Z | ---
language:
- or
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Oriya - Prashant C
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: or
split: test
args: 'config: bg, split: test'
metrics:
- name: Wer
type: wer
value: 26.817933296883545
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Oriya - Prashant C
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3176
- Wer Ortho: 61.6491
- Wer: 26.8179
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.0116 | 9.6154 | 500 | 0.3176 | 61.6491 | 26.8179 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
UtkuCicek/new_marks | UtkuCicek | 2024-05-23T19:09:06Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"diffusers-training",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | 2024-05-22T17:42:28Z | ---
license: creativeml-openrail-m
library_name: diffusers
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers-training
- diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Text-to-image finetuning - UtkuCicek/new_marks
This pipeline was finetuned from **stabilityai/stable-diffusion-xl-base-1.0** on the **UtkuCicek/new-marks-data** dataset. Below are some example images generated with the finetuned pipeline using the following prompt: italian style mini pizza with mozerrella on the side:




Special VAE used for training: None.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
chongdashu/007-alpaca-gemma-7b-16bit_q4_k_m | chongdashu | 2024-05-23T19:06:23Z | 3 | 0 | transformers | [
"transformers",
"gguf",
"gemma",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/gemma-7b-bnb-4bit",
"base_model:quantized:unsloth/gemma-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T19:03:58Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
- gguf
base_model: unsloth/gemma-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** chongdashu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-7b-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
dreamgen/llama3-8b-instruct-align-test1-kto | dreamgen | 2024-05-23T19:05:55Z | 67 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:cc",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T18:49:02Z | ---
license: cc
---
- **What is this?** Nothing interesting, just an experiment.
- **License:** CC-BY-NC
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Aliquet nibh praesent tristique magna sit amet purus. Lacus luctus accumsan tortor posuere ac ut consequat semper. Netus et malesuada fames ac turpis egestas sed. Augue mauris augue neque gravida in. Leo vel orci porta non pulvinar neque. Sagittis purus sit amet volutpat consequat mauris nunc. Sit amet porttitor eget dolor morbi non arcu risus quis. Rutrum quisque non tellus orci. Nunc mi ipsum faucibus vitae aliquet nec ullamcorper sit amet.
Diam phasellus vestibulum lorem sed. Et odio pellentesque diam volutpat commodo sed egestas. Commodo sed egestas egestas fringilla. Fringilla phasellus faucibus scelerisque eleifend donec pretium. Ipsum dolor sit amet consectetur adipiscing elit pellentesque habitant. Ac feugiat sed lectus vestibulum mattis ullamcorper velit sed. Ut etiam sit amet nisl purus in mollis nunc sed. Dolor sit amet consectetur adipiscing elit duis tristique sollicitudin nibh. Nibh nisl condimentum id venenatis a condimentum vitae sapien. Eget mi proin sed libero. Nibh mauris cursus mattis molestie a iaculis at erat. Et egestas quis ipsum suspendisse ultrices. Facilisi etiam dignissim diam quis enim lobortis scelerisque fermentum. Iaculis nunc sed augue lacus viverra. Elementum sagittis vitae et leo. Eu consequat ac felis donec et odio.
Amet mattis vulputate enim nulla aliquet porttitor lacus luctus accumsan. Enim sit amet venenatis urna. Aenean pharetra magna ac placerat vestibulum lectus mauris. Sit amet aliquam id diam maecenas ultricies. Morbi leo urna molestie at elementum eu facilisis. Augue ut lectus arcu bibendum at varius vel pharetra. At lectus urna duis convallis convallis tellus. Duis at tellus at urna condimentum. Quis hendrerit dolor magna eget est lorem. Quis vel eros donec ac odio tempor. Sit amet dictum sit amet justo donec enim diam. Faucibus in ornare quam viverra. Sit amet commodo nulla facilisi nullam vehicula ipsum a arcu. Id velit ut tortor pretium viverra suspendisse. Sit amet nisl purus in mollis nunc sed id. Nec tincidunt praesent semper feugiat nibh sed pulvinar proin. Molestie nunc non blandit massa. Amet dictum sit amet justo donec. Est ante in nibh mauris cursus mattis molestie. Tristique senectus et netus et malesuada.
Sit amet mauris commodo quis imperdiet. Nisi est sit amet facilisis magna etiam tempor orci. Sagittis id consectetur purus ut faucibus pulvinar. Sit amet nulla facilisi morbi tempus iaculis urna. Nulla porttitor massa id neque. Faucibus turpis in eu mi bibendum neque egestas congue quisque. Eu feugiat pretium nibh ipsum consequat nisl vel pretium. Ut lectus arcu bibendum at. At ultrices mi tempus imperdiet nulla malesuada pellentesque. Eget nullam non nisi est sit. Ante in nibh mauris cursus mattis molestie a.
Hendrerit dolor magna eget est lorem ipsum dolor. Odio pellentesque diam volutpat commodo sed. Mauris vitae ultricies leo integer. Enim nunc faucibus a pellentesque sit amet porttitor eget. Bibendum neque egestas congue quisque egestas diam in arcu. Velit euismod in pellentesque massa placerat duis ultricies lacus sed. Tincidunt eget nullam non nisi est sit amet facilisis magna. Neque volutpat ac tincidunt vitae semper. Viverra mauris in aliquam sem fringilla. Purus faucibus ornare suspendisse sed nisi lacus sed. Netus et malesuada fames ac turpis. |
jenniellama/Qwen-Qwen1.5-1.8B1716490325 | jenniellama | 2024-05-23T18:54:46Z | 149 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T18:52:05Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
xuliu15/FT-English-1h | xuliu15 | 2024-05-23T18:50:44Z | 15 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:librispeech-clean",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-23T12:10:05Z | ---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- librispeech-clean
metrics:
- wer
model-index:
- name: Whisper Small English 1h
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Librispeech
type: librispeech-clean
config: default
split: None
args: 'config: english, split: test'
metrics:
- name: Wer
type: wer
value: 53.45675203126608
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small English 1h
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Librispeech dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8110
- Wer: 53.4568
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0582 | 10.0 | 200 | 1.8847 | 56.4620 |
| 0.0495 | 20.0 | 400 | 1.8598 | 55.1579 |
| 0.042 | 30.0 | 600 | 1.8303 | 54.2240 |
| 0.0309 | 40.0 | 800 | 1.8152 | 53.7118 |
| 0.0323 | 50.0 | 1000 | 1.8110 | 53.4568 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
mNLP-project/gpt2-finetuned | mNLP-project | 2024-05-23T18:49:14Z | 18 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-22T08:09:06Z | ---
license: mit
tags:
- generated_from_trainer
metrics:
- bleu
base_model: openai-community/gpt2
model-index:
- name: gpt2-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-finetuned
This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6944
- Bleu: 0.0294
- Bertscore Precision: 0.1536
- Bertscore Recall: 0.1658
- Bertscore F1: 0.1592
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Bertscore Precision | Bertscore Recall | Bertscore F1 |
|:-------------:|:-----:|:------:|:---------------:|:------:|:-------------------:|:----------------:|:------------:|
| 4.716 | 1.0 | 5750 | 3.4413 | 0.0112 | 0.1417 | 0.1575 | 0.1489 |
| 4.5916 | 2.0 | 11500 | 3.2372 | 0.0119 | 0.1424 | 0.1583 | 0.1496 |
| 4.325 | 3.0 | 17250 | 3.0534 | 0.0128 | 0.1430 | 0.1587 | 0.1501 |
| 4.1626 | 4.0 | 23000 | 2.9061 | 0.0136 | 0.1433 | 0.1592 | 0.1505 |
| 4.0255 | 5.0 | 28750 | 2.7554 | 0.0148 | 0.1438 | 0.1599 | 0.1511 |
| 3.862 | 6.0 | 34500 | 2.6185 | 0.0346 | 0.1446 | 0.1605 | 0.1518 |
| 3.7367 | 7.0 | 40250 | 2.4945 | 0.0286 | 0.1456 | 0.1611 | 0.1527 |
| 3.7907 | 8.0 | 46000 | 2.3799 | 0.0401 | 0.1488 | 0.1617 | 0.1548 |
| 3.5181 | 9.0 | 51750 | 2.2704 | 0.0607 | 0.1490 | 0.1623 | 0.1551 |
| 3.3377 | 10.0 | 57500 | 2.1710 | 0.0804 | 0.1498 | 0.1627 | 0.1558 |
| 3.294 | 11.0 | 63250 | 2.0876 | 0.0221 | 0.1512 | 0.1633 | 0.1568 |
| 3.1612 | 12.0 | 69000 | 2.0004 | 0.0234 | 0.1516 | 0.1637 | 0.1572 |
| 3.1257 | 13.0 | 74750 | 1.9356 | 0.0244 | 0.1518 | 0.1642 | 0.1575 |
| 3.1347 | 14.0 | 80500 | 1.8769 | 0.0257 | 0.1525 | 0.1646 | 0.1581 |
| 2.8094 | 15.0 | 86250 | 1.8210 | 0.0268 | 0.1527 | 0.1649 | 0.1584 |
| 2.8519 | 16.0 | 92000 | 1.7776 | 0.0275 | 0.1530 | 0.1652 | 0.1587 |
| 2.782 | 17.0 | 97750 | 1.7438 | 0.0282 | 0.1532 | 0.1654 | 0.1589 |
| 2.9097 | 18.0 | 103500 | 1.7183 | 0.0289 | 0.1535 | 0.1657 | 0.1591 |
| 2.881 | 19.0 | 109250 | 1.6999 | 0.0293 | 0.1536 | 0.1658 | 0.1592 |
| 2.6302 | 20.0 | 115000 | 1.6944 | 0.0294 | 0.1536 | 0.1658 | 0.1592 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
edinlp/zephyr-full-dpo | edinlp | 2024-05-23T18:47:31Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T18:25:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
nisargvp/hc-mistral-alpaca | nisargvp | 2024-05-23T18:44:48Z | 0 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2024-05-23T17:42:03Z | ---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: hc-mistral-alpaca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
lora_fan_in_fan_out: false
data_seed: 49
seed: 49
datasets:
- path: _synth_data/alpaca_synth_queries_healed.jsonl
type: sharegpt
conversation: alpaca
shards: 10 # This will divide the dataset into 10 shards
shards_idx: 2 # This will load only the 3rd shard (indexing starts from 0)
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-alpaca-out
hub_model_id: nisargvp/hc-mistral-alpaca
adapter: qlora
lora_model_dir:
sequence_len: 896
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: hc-axolotl-mistral
wandb_entity: nisargvp
gradient_accumulation_steps: 4
micro_batch_size: 16
eval_batch_size: 16
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
max_grad_norm: 1.0
adam_beta2: 0.95
adam_epsilon: 0.00001
save_total_limit: 12
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 20
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 6
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
save_safetensors: true
```
</details><br>
# hc-mistral-alpaca
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1384
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 49
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1477 | 0.0098 | 1 | 1.1538 |
| 0.1856 | 0.2537 | 26 | 0.1796 |
| 0.1554 | 0.5073 | 52 | 0.1488 |
| 0.1364 | 0.7610 | 78 | 0.1384 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1 |
BWangila/ppo-LunarLander-v2_01 | BWangila | 2024-05-23T18:44:01Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-23T18:43:48Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 275.41 +/- 21.44
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
ZaneHorrible/Adam_ViTL-32_224-2e-4-batch_16_epoch_4_classes_24 | ZaneHorrible | 2024-05-23T18:42:32Z | 197 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-large-patch32-224-in21k",
"base_model:finetune:google/vit-large-patch32-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2024-05-23T17:24:16Z | ---
license: apache-2.0
base_model: google/vit-large-patch32-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Adam_ViTL-32_224-2e-4-batch_16_epoch_4_classes_24
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9482758620689655
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Adam_ViTL-32_224-2e-4-batch_16_epoch_4_classes_24
This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2083
- Accuracy: 0.9483
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7984 | 0.07 | 100 | 0.8039 | 0.8606 |
| 0.4352 | 0.14 | 200 | 0.5735 | 0.8463 |
| 0.3651 | 0.21 | 300 | 0.3951 | 0.8937 |
| 0.3133 | 0.28 | 400 | 0.4525 | 0.8894 |
| 0.2641 | 0.35 | 500 | 0.3618 | 0.9023 |
| 0.2104 | 0.42 | 600 | 0.4240 | 0.8922 |
| 0.1787 | 0.49 | 700 | 0.4070 | 0.8879 |
| 0.1412 | 0.56 | 800 | 0.3259 | 0.9124 |
| 0.2121 | 0.63 | 900 | 0.3575 | 0.8994 |
| 0.1491 | 0.7 | 1000 | 0.2769 | 0.9152 |
| 0.268 | 0.77 | 1100 | 0.3432 | 0.9195 |
| 0.2378 | 0.84 | 1200 | 0.3622 | 0.9109 |
| 0.0812 | 0.91 | 1300 | 0.2857 | 0.9210 |
| 0.127 | 0.97 | 1400 | 0.2787 | 0.9253 |
| 0.0256 | 1.04 | 1500 | 0.3116 | 0.9267 |
| 0.027 | 1.11 | 1600 | 0.2889 | 0.9282 |
| 0.0508 | 1.18 | 1700 | 0.3048 | 0.9310 |
| 0.0932 | 1.25 | 1800 | 0.2732 | 0.9382 |
| 0.0745 | 1.32 | 1900 | 0.3275 | 0.9195 |
| 0.0675 | 1.39 | 2000 | 0.2505 | 0.9440 |
| 0.0347 | 1.46 | 2100 | 0.2686 | 0.9382 |
| 0.0121 | 1.53 | 2200 | 0.2888 | 0.9454 |
| 0.1104 | 1.6 | 2300 | 0.2375 | 0.9440 |
| 0.0778 | 1.67 | 2400 | 0.2345 | 0.9411 |
| 0.0029 | 1.74 | 2500 | 0.2924 | 0.9282 |
| 0.0063 | 1.81 | 2600 | 0.2867 | 0.9353 |
| 0.0394 | 1.88 | 2700 | 0.3384 | 0.9224 |
| 0.0043 | 1.95 | 2800 | 0.2855 | 0.9195 |
| 0.025 | 2.02 | 2900 | 0.3218 | 0.9296 |
| 0.0096 | 2.09 | 3000 | 0.2810 | 0.9368 |
| 0.0018 | 2.16 | 3100 | 0.1971 | 0.9526 |
| 0.0102 | 2.23 | 3200 | 0.2175 | 0.9497 |
| 0.0016 | 2.3 | 3300 | 0.2341 | 0.9454 |
| 0.0024 | 2.37 | 3400 | 0.2607 | 0.9425 |
| 0.0024 | 2.44 | 3500 | 0.2380 | 0.9440 |
| 0.0019 | 2.51 | 3600 | 0.2422 | 0.9382 |
| 0.0062 | 2.58 | 3700 | 0.2191 | 0.9483 |
| 0.0416 | 2.65 | 3800 | 0.2491 | 0.9483 |
| 0.002 | 2.72 | 3900 | 0.2201 | 0.9497 |
| 0.0013 | 2.79 | 4000 | 0.2242 | 0.9468 |
| 0.0012 | 2.86 | 4100 | 0.2182 | 0.9440 |
| 0.0011 | 2.92 | 4200 | 0.2079 | 0.9497 |
| 0.001 | 2.99 | 4300 | 0.2083 | 0.9483 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
SoorajK1/Data_Analysis_Workflow_model_test | SoorajK1 | 2024-05-23T18:38:36Z | 107 | 0 | transformers | [
"transformers",
"onnx",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-23T17:41:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
chongdashu/007-alpaca-gemma-7b-q8_0 | chongdashu | 2024-05-23T18:37:45Z | 5 | 0 | transformers | [
"transformers",
"gguf",
"gemma",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/gemma-7b-bnb-4bit",
"base_model:quantized:unsloth/gemma-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T18:33:34Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
- gguf
base_model: unsloth/gemma-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** chongdashu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-7b-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
toghrultahirov/pii_mbert_az | toghrultahirov | 2024-05-23T18:36:07Z | 21 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-05-23T15:34:05Z | ---
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: pii_mbert_az
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pii_mbert_az
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1319
- Precision: 0.8726
- Recall: 0.9026
- F1: 0.8874
- Accuracy: 0.9619
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: reduce_lr_on_plateau
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 313 | 0.1464 | 0.8797 | 0.8615 | 0.8705 | 0.9587 |
| 0.2128 | 2.0 | 626 | 0.1319 | 0.8726 | 0.9026 | 0.8874 | 0.9619 |
| 0.2128 | 3.0 | 939 | 0.1461 | 0.8689 | 0.8924 | 0.8805 | 0.9596 |
| 0.0783 | 4.0 | 1252 | 0.1529 | 0.8837 | 0.9049 | 0.8942 | 0.9620 |
| 0.0443 | 5.0 | 1565 | 0.1921 | 0.8657 | 0.9157 | 0.8900 | 0.9615 |
| 0.0443 | 6.0 | 1878 | 0.1647 | 0.8975 | 0.9224 | 0.9098 | 0.9685 |
| 0.0201 | 7.0 | 2191 | 0.1725 | 0.8904 | 0.9183 | 0.9041 | 0.9674 |
| 0.0098 | 8.0 | 2504 | 0.1766 | 0.8917 | 0.9199 | 0.9056 | 0.9682 |
| 0.0098 | 9.0 | 2817 | 0.1756 | 0.8926 | 0.9202 | 0.9062 | 0.9686 |
| 0.007 | 10.0 | 3130 | 0.1763 | 0.8916 | 0.9189 | 0.9051 | 0.9684 |
| 0.007 | 11.0 | 3443 | 0.1772 | 0.8907 | 0.9183 | 0.9043 | 0.9682 |
| 0.007 | 12.0 | 3756 | 0.1773 | 0.8895 | 0.9173 | 0.9032 | 0.9680 |
| 0.0067 | 13.0 | 4069 | 0.1775 | 0.8892 | 0.9170 | 0.9029 | 0.9680 |
| 0.0067 | 14.0 | 4382 | 0.1775 | 0.8897 | 0.9170 | 0.9032 | 0.9679 |
| 0.0062 | 15.0 | 4695 | 0.1775 | 0.8897 | 0.9170 | 0.9032 | 0.9679 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
Shotaro30678/sentiment-analysis-ncu-chat-bot | Shotaro30678 | 2024-05-23T18:33:17Z | 0 | 0 | null | [
"safetensors",
"region:us"
] | null | 2024-05-23T17:06:42Z | ## config:
```json
num_labels = 7
id2label = {
0: "neutral",
1: "anger",
2: "disgust",
3: "fear",
4: "happiness",
5: "sadness",
6: "surprise"
}
label2id = {
"neutral": 0,
"anger": 1,
"disgust": 2,
"fear": 3,
"happiness": 4,
"sadness": 5,
"surprise": 6
}
``` |
tsavage68/MedQA_L3_1000steps_1e6rate_01beta_CSFTDPO | tsavage68 | 2024-05-23T18:30:29Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"dpo",
"generated_from_trainer",
"conversational",
"base_model:tsavage68/MedQA_L3_1000steps_1e6rate_SFT",
"base_model:finetune:tsavage68/MedQA_L3_1000steps_1e6rate_SFT",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T18:26:08Z | ---
license: llama3
base_model: tsavage68/MedQA_L3_1000steps_1e6rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: MedQA_L3_1000steps_1e6rate_01beta_CSFTDPO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MedQA_L3_1000steps_1e6rate_01beta_CSFTDPO
This model is a fine-tuned version of [tsavage68/MedQA_L3_1000steps_1e6rate_SFT](https://huggingface.co/tsavage68/MedQA_L3_1000steps_1e6rate_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4143
- Rewards/chosen: -0.2461
- Rewards/rejected: -2.6298
- Rewards/accuracies: 0.8088
- Rewards/margins: 2.3838
- Logps/rejected: -60.1531
- Logps/chosen: -33.7891
- Logits/rejected: -1.3940
- Logits/chosen: -1.3910
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6869 | 0.0489 | 50 | 0.6696 | -0.2211 | -0.2710 | 0.7253 | 0.0498 | -36.5645 | -33.5400 | -0.7298 | -0.7290 |
| 0.4779 | 0.0977 | 100 | 0.5887 | 1.4526 | 1.0417 | 0.6945 | 0.4109 | -23.4374 | -16.8024 | -0.8047 | -0.8036 |
| 0.5752 | 0.1466 | 150 | 0.4975 | 0.5331 | -0.2997 | 0.7473 | 0.8328 | -36.8518 | -25.9976 | -0.8723 | -0.8705 |
| 0.4157 | 0.1954 | 200 | 0.5087 | -0.0815 | -1.0065 | 0.7538 | 0.9250 | -43.9199 | -32.1434 | -0.9039 | -0.9019 |
| 0.4271 | 0.2443 | 250 | 0.4619 | 0.5202 | -0.5333 | 0.7648 | 1.0535 | -39.1874 | -26.1265 | -0.9341 | -0.9319 |
| 0.3162 | 0.2931 | 300 | 0.4272 | 0.2052 | -1.3157 | 0.8110 | 1.5209 | -47.0122 | -29.2765 | -1.0303 | -1.0281 |
| 0.3868 | 0.3420 | 350 | 0.4366 | 0.0191 | -1.4354 | 0.7868 | 1.4545 | -48.2090 | -31.1376 | -1.1172 | -1.1146 |
| 0.4267 | 0.3908 | 400 | 0.4253 | 0.8142 | -0.6501 | 0.8044 | 1.4642 | -40.3556 | -23.1869 | -1.2091 | -1.2069 |
| 0.4816 | 0.4397 | 450 | 0.4235 | 0.7057 | -0.6954 | 0.7978 | 1.4011 | -40.8093 | -24.2719 | -1.2618 | -1.2590 |
| 0.5777 | 0.4885 | 500 | 0.4147 | 0.5199 | -1.2061 | 0.8088 | 1.7260 | -45.9158 | -26.1293 | -1.3148 | -1.3119 |
| 0.3051 | 0.5374 | 550 | 0.4133 | 0.2933 | -1.3715 | 0.8022 | 1.6647 | -47.5694 | -28.3956 | -1.3646 | -1.3616 |
| 0.5378 | 0.5862 | 600 | 0.4219 | -0.4403 | -2.6925 | 0.8088 | 2.2522 | -60.7803 | -35.7319 | -1.3525 | -1.3496 |
| 0.359 | 0.6351 | 650 | 0.4122 | -0.0585 | -2.2242 | 0.8132 | 2.1656 | -56.0965 | -31.9139 | -1.3793 | -1.3763 |
| 0.4137 | 0.6839 | 700 | 0.4019 | 0.0561 | -2.0220 | 0.8066 | 2.0781 | -54.0746 | -30.7675 | -1.3921 | -1.3890 |
| 0.3899 | 0.7328 | 750 | 0.4093 | -0.1488 | -2.4231 | 0.8110 | 2.2743 | -58.0863 | -32.8165 | -1.3920 | -1.3890 |
| 0.3645 | 0.7816 | 800 | 0.4095 | -0.2104 | -2.5505 | 0.8132 | 2.3401 | -59.3594 | -33.4322 | -1.3965 | -1.3935 |
| 0.4993 | 0.8305 | 850 | 0.4157 | -0.2412 | -2.6172 | 0.8088 | 2.3760 | -60.0272 | -33.7410 | -1.3947 | -1.3918 |
| 0.6907 | 0.8793 | 900 | 0.4164 | -0.2462 | -2.6292 | 0.8110 | 2.3829 | -60.1466 | -33.7908 | -1.3944 | -1.3914 |
| 0.3846 | 0.9282 | 950 | 0.4140 | -0.2447 | -2.6315 | 0.8110 | 2.3868 | -60.1702 | -33.7755 | -1.3939 | -1.3909 |
| 0.3404 | 0.9770 | 1000 | 0.4143 | -0.2461 | -2.6298 | 0.8088 | 2.3838 | -60.1531 | -33.7891 | -1.3940 | -1.3910 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|
chongdashu/007-alpaca-gemma-7b-merged-16bit | chongdashu | 2024-05-23T18:24:23Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"base_model:unsloth/gemma-7b-bnb-4bit",
"base_model:finetune:unsloth/gemma-7b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T18:18:54Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
- trl
base_model: unsloth/gemma-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** chongdashu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-7b-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Dmitry282/test1 | Dmitry282 | 2024-05-23T18:24:13Z | 0 | 0 | null | [
"ru",
"license:apache-2.0",
"region:us"
] | null | 2024-05-23T18:23:20Z | ---
license: apache-2.0
language:
- ru
--- |
14rohnisingh/autotrain-9bnwq-plawx | 14rohnisingh | 2024-05-23T18:22:24Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"autotrain",
"text-generation-inference",
"text-generation",
"peft",
"conversational",
"license:other",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T18:22:13Z | ---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft
library_name: transformers
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` |
hgnoi/rQxglXT9wkGMvNul | hgnoi | 2024-05-23T18:21:50Z | 135 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T18:20:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
bert-base/fun_trained_convbert_epoch_5 | bert-base | 2024-05-23T18:18:56Z | 167 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-23T18:15:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
alejandrovil/llama3-AWQ | alejandrovil | 2024-05-23T18:15:11Z | 78 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"4-bit",
"AWQ",
"autotrain_compatible",
"endpoints_compatible",
"Llama-3",
"instruct",
"finetune",
"chatml",
"DPO",
"RLHF",
"gpt4",
"synthetic data",
"distillation",
"function calling",
"json mode",
"axolotl",
"conversational",
"en",
"dataset:teknium/OpenHermes-2.5",
"license:apache-2.0",
"text-generation-inference",
"awq",
"region:us"
] | text-generation | 2024-05-03T23:08:35Z | ---
library_name: transformers
tags:
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
- Llama-3
- instruct
- finetune
- chatml
- DPO
- RLHF
- gpt4
- synthetic data
- distillation
- function calling
- json mode
- axolotl
model-index:
- name: Hermes-2-Pro-Llama-3-8B
results: []
license: apache-2.0
language:
- en
datasets:
- teknium/OpenHermes-2.5
widget:
- example_title: Hermes 2 Pro
messages:
- role: system
content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.
- role: user
content: Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.
pipeline_tag: text-generation
inference: false
quantized_by: Suparious
---
# NousResearch/Hermes-2-Pro-Llama-3-8B AWQ
- Original model: [Hermes-2-Pro-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B)
```bash
pip install --upgrade autoawq autoawq-kernels
```
### Example Python code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/Hermes-2-Pro-Llama-3-8B-AWQ"
system_message = "You are Hermes-2-Pro-Llama-3-8B, incarnated as a powerful AI. You were created by NousResearch."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
```
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|
Apness/rururu | Apness | 2024-05-23T18:13:18Z | 90 | 0 | transformers | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"ru",
"dataset:mozilla-foundation/common_voice_11_0",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-23T18:10:24Z | ---
language:
- ru
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: Whisper Small Ru - BMSTU
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Ru - BMSTU
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1876
- Cer: 3.9623
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.1707 | 0.4924 | 1000 | 0.2238 | 4.8641 |
| 0.1641 | 0.9847 | 2000 | 0.1984 | 4.1821 |
| 0.0696 | 1.4771 | 3000 | 0.1921 | 4.1234 |
| 0.0712 | 1.9695 | 4000 | 0.1876 | 3.9623 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.0.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
|
SamariTanOG/Finetuned-BioMed | SamariTanOG | 2024-05-23T18:06:09Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-v0.3-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-v0.3-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T18:05:45Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
---
# Uploaded model
- **Developed by:** SamariTanOG
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
PhillipGuo/hp-lat-llama-No_PCA-epsilon1.5-pgd_layer16_24_30-def_layer0-ultrachat-towards1-away0-sft1-104 | PhillipGuo | 2024-05-23T18:00:59Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T18:00:49Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
antony-pk/Phi-3-mini-4k-instruct-ultrachat200k | antony-pk | 2024-05-23T17:58:28Z | 150 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"trl",
"sft",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T17:53:51Z | ---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
KKdu/MEDOVUCHA-gpt2-Q4_K_M-GGUF | KKdu | 2024-05-23T17:49:38Z | 1 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T17:49:36Z | ---
library_name: transformers
tags:
- llama-cpp
- gguf-my-repo
---
# KKdu/MEDOVUCHA-gpt2-Q4_K_M-GGUF
This model was converted to GGUF format from [`KKdu/MEDOVUCHA-gpt2`](https://huggingface.co/KKdu/MEDOVUCHA-gpt2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/KKdu/MEDOVUCHA-gpt2) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo KKdu/MEDOVUCHA-gpt2-Q4_K_M-GGUF --model medovucha-gpt2.Q4_K_M.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo KKdu/MEDOVUCHA-gpt2-Q4_K_M-GGUF --model medovucha-gpt2.Q4_K_M.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m medovucha-gpt2.Q4_K_M.gguf -n 128
```
|
nayaniiii/whisper-small-punjabi | nayaniiii | 2024-05-23T17:47:48Z | 77 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"pa",
"dataset:mozilla-foundation/common_voice_11_0",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-23T15:17:51Z | ---
language:
- pa
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-small
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Punjabi - Nayani Jindal
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: pa-IN
split: None
args: 'config: mr, split: test'
metrics:
- type: wer
value: 49.85875706214689
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Punjabi - Nayani Jindal
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4789
- Wer: 49.8588
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.0003 | 16.3934 | 1000 | 0.4789 | 49.8588 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
|
LoneStriker/aya-23-35B-6.0bpw-h6-exl2 | LoneStriker | 2024-05-23T17:47:38Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"cohere",
"text-generation",
"conversational",
"en",
"fr",
"de",
"es",
"it",
"pt",
"ja",
"ko",
"zh",
"ar",
"el",
"fa",
"pl",
"id",
"cs",
"he",
"hi",
"nl",
"ro",
"ru",
"tr",
"uk",
"vi",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"6-bit",
"exl2",
"region:us"
] | text-generation | 2024-05-23T17:34:26Z | ---
library_name: transformers
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
- el
- fa
- pl
- id
- cs
- he
- hi
- nl
- ro
- ru
- tr
- uk
- vi
license: cc-by-nc-4.0
---
# Model Card for Aya-23-35B
## Model Summary
Aya 23 is an open weights research release of an instruction fine-tuned model with highly advanced multilingual capabilities. Aya 23 focuses on pairing a highly performant pre-trained [Command family](https://huggingface.co/CohereForAI/c4ai-command-r-plus) of models with the recently released [Aya Collection](https://huggingface.co/datasets/CohereForAI/aya_collection). The result is a powerful multilingual large language model serving 23 languages.
This model card corresponds to the 35-billion version of the Aya 23 model. We also released an 8-billion version which you can find [here](https://huggingface.co/CohereForAI/aya-23-8B).
We cover 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
Developed by: [Cohere For AI](https://cohere.for.ai) and [Cohere](https://cohere.com/)
- Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/)
- License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
- Model: aya-23-8B
- Model Size: 35 billion parameters
**Try Aya 23**
You can try out Aya 23 (35B) before downloading the weights in our hosted Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/aya-23).
### Usage
Please install transformers from the source repository that includes the necessary changes for this model
```python
# pip install 'git+https://github.com/huggingface/transformers.git'
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "CohereForAI/aya-23-35B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Format message with the command-r-plus chat template
messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
```
### Example Notebook
[This notebook](https://huggingface.co/CohereForAI/aya-23-35B/blob/main/Aya_23_notebook.ipynb) showcases a detailed use of Aya 23 (8B) including inference and fine-tuning with [QLoRA](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
## Model Details
**Input**: Models input text only.
**Output**: Models generate text only.
**Model Architecture**: Aya-23-35B is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model is fine-tuned (IFT) to follow human instructions.
**Languages covered**: The model is particularly optimized for multilinguality and supports the following languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
**Context length**: 8192
### Evaluation
<img src="benchmarks.png" alt="multilingual benchmarks" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
<img src="winrates.png" alt="average win rates" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
Please refer to the [Aya 23 technical report](https://drive.google.com/file/d/1YKBPo61pnl97C1c_1C2ZVOnPhqf7MLSc/view) for further details about the base model, data, instruction tuning, and evaluation.
### Model Card Contact
For errors or additional questions about details in this model card, contact [email protected].
### Terms of Use
We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant multilingual model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy).
### Try the model today
You can try Aya 23 in the Cohere [playground](https://dashboard.cohere.com/playground/chat) here. You can also use it in our dedicated Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/aya-23).
### Citation info
```bibtex
@misc{aya23technicalreport,
title={Aya 23: Open Weight Releases to Further Multilingual Progress},
author={Viraat Aryabumi, John Dang, Dwarak Talupuru, Saurabh Dash, David Cairuz, Hangyu Lin, Bharat Venkitesh, Madeline Smith, Kelly Marchisio, Sebastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick Frosst, Phil Blunsom, Marzieh Fadaee, Ahmet Üstün, and Sara Hooker},
url={https://drive.google.com/file/d/1YKBPo61pnl97C1c_1C2ZVOnPhqf7MLSc/view},
year={2024}
} |
hgnoi/FsC7wABLoMmX9RNp | hgnoi | 2024-05-23T17:35:10Z | 133 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T17:33:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
fearlessdots/WizardLM-2-7B-abliterated-GGUF | fearlessdots | 2024-05-23T17:34:32Z | 43 | 8 | null | [
"gguf",
"arxiv:2304.12244",
"arxiv:2306.08568",
"arxiv:2308.09583",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T16:57:24Z | ---
license: apache-2.0
---
# WizardLM-2-7B-abliterated
This is the **WizardLM-2-7B** model with orthogonalized bfloat16 safetensor weights, based on the implementation by `@failspy`. For more info:
- Original paper preview presenting the methodology: <https://www.alignmentforum.org/posts/jGuXSZgv6qfdhMCuJ/refusal-in-llms-is-mediated-by-a-single-direction>
- Jupyter notebook containing a implementation of the methodology, by `@failspy`: <https://huggingface.co/failspy/llama-3-70B-Instruct-abliterated/blob/main/ortho_cookbook.ipynb>
## Prompt Template
This model uses the prompt format from **Vicuna** and supports **multi-turn** conversation.
---
# Original model card:
<p style="font-size:20px;" align="center">
🏠 <a href="https://wizardlm.github.io/WizardLM2" target="_blank">WizardLM-2 Release Blog</a> </p>
<p align="center">
🤗 <a href="https://huggingface.co/collections/microsoft/wizardlm-2-661d403f71e6c8257dbd598a" target="_blank">HF Repo</a> •🐱 <a href="https://github.com/victorsungo/WizardLM/tree/main/WizardLM-2" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> • 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> • 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
</p>
<p align="center">
👋 Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
</p>
## News 🔥🔥🔥 [2024/04/15]
We introduce and opensource WizardLM-2, our next generation state-of-the-art large language models,
which have improved performance on complex chat, multilingual, reasoning and agent.
New family includes three cutting-edge models: WizardLM-2 8x22B, WizardLM-2 70B, and WizardLM-2 7B.
- WizardLM-2 8x22B is our most advanced model, demonstrates highly competitive performance compared to those leading proprietary works
and consistently outperforms all the existing state-of-the-art opensource models.
- WizardLM-2 70B reaches top-tier reasoning capabilities and is the first choice in the same size.
- WizardLM-2 7B is the fastest and achieves comparable performance with existing 10x larger opensource leading models.
For more details of WizardLM-2 please read our [release blog post](https://wizardlm.github.io/WizardLM2) and upcoming paper.
## Model Details
* **Model name**: WizardLM-2 7B
* **Developed by**: WizardLM@Microsoft AI
* **Base model**: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
* **Parameters**: 7B
* **Language(s)**: Multilingual
* **Blog**: [Introducing WizardLM-2](https://wizardlm.github.io/WizardLM2)
* **Repository**: [https://github.com/nlpxucan/WizardLM](https://github.com/nlpxucan/WizardLM)
* **Paper**: WizardLM-2 (Upcoming)
* **License**: Apache2.0
## Model Capacities
**MT-Bench**
We also adopt the automatic MT-Bench evaluation framework based on GPT-4 proposed by lmsys to assess the performance of models.
The WizardLM-2 8x22B even demonstrates highly competitive performance compared to the most advanced proprietary models.
Meanwhile, WizardLM-2 7B and WizardLM-2 70B are all the top-performing models among the other leading baselines at 7B to 70B model scales.
<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/mtbench.png" alt="MTBench" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>
**Human Preferences Evaluation**
We carefully collected a complex and challenging set consisting of real-world instructions, which includes main requirements of humanity, such as writing, coding, math, reasoning, agent, and multilingual.
We report the win:loss rate without tie:
- WizardLM-2 8x22B is just slightly falling behind GPT-4-1106-preview, and significantly stronger than Command R Plus and GPT4-0314.
- WizardLM-2 70B is better than GPT4-0613, Mistral-Large, and Qwen1.5-72B-Chat.
- WizardLM-2 7B is comparable with Qwen1.5-32B-Chat, and surpasses Qwen1.5-14B-Chat and Starling-LM-7B-beta.
<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/winall.png" alt="Win" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>
## Method Overview
We built a **fully AI powered synthetic training system** to train WizardLM-2 models, please refer to our [blog](https://wizardlm.github.io/WizardLM2) for more details of this system.
<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/exp_1.png" alt="Method" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>
## Usage
❗<b>Note for model system prompts usage:</b>
<b>WizardLM-2</b> adopts the prompt format from <b>Vicuna</b> and supports **multi-turn** conversation. The prompt should be as following:
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>
USER: Who are you? ASSISTANT: I am WizardLM.</s>......
```
<b> Inference WizardLM-2 Demo Script</b>
We provide a WizardLM-2 inference demo [code](https://github.com/nlpxucan/WizardLM/tree/main/demo) on our github.
|
bert-base/fun_trained_convbert_epoch_4 | bert-base | 2024-05-23T17:34:12Z | 184 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-23T17:33:45Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
GENIAC-Team-Ozaki/full-sft-finetuned-stage4-iter86000-v2 | GENIAC-Team-Ozaki | 2024-05-23T17:29:36Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T17:24:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
LoneStriker/aya-23-35B-4.65bpw-h6-exl2 | LoneStriker | 2024-05-23T17:22:55Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"cohere",
"text-generation",
"conversational",
"en",
"fr",
"de",
"es",
"it",
"pt",
"ja",
"ko",
"zh",
"ar",
"el",
"fa",
"pl",
"id",
"cs",
"he",
"hi",
"nl",
"ro",
"ru",
"tr",
"uk",
"vi",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
] | text-generation | 2024-05-23T17:12:04Z | ---
library_name: transformers
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
- el
- fa
- pl
- id
- cs
- he
- hi
- nl
- ro
- ru
- tr
- uk
- vi
license: cc-by-nc-4.0
---
# Model Card for Aya-23-35B
## Model Summary
Aya 23 is an open weights research release of an instruction fine-tuned model with highly advanced multilingual capabilities. Aya 23 focuses on pairing a highly performant pre-trained [Command family](https://huggingface.co/CohereForAI/c4ai-command-r-plus) of models with the recently released [Aya Collection](https://huggingface.co/datasets/CohereForAI/aya_collection). The result is a powerful multilingual large language model serving 23 languages.
This model card corresponds to the 35-billion version of the Aya 23 model. We also released an 8-billion version which you can find [here](https://huggingface.co/CohereForAI/aya-23-8B).
We cover 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
Developed by: [Cohere For AI](https://cohere.for.ai) and [Cohere](https://cohere.com/)
- Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/)
- License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
- Model: aya-23-8B
- Model Size: 35 billion parameters
**Try Aya 23**
You can try out Aya 23 (35B) before downloading the weights in our hosted Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/aya-23).
### Usage
Please install transformers from the source repository that includes the necessary changes for this model
```python
# pip install 'git+https://github.com/huggingface/transformers.git'
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "CohereForAI/aya-23-35B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Format message with the command-r-plus chat template
messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
```
### Example Notebook
[This notebook](https://huggingface.co/CohereForAI/aya-23-35B/blob/main/Aya_23_notebook.ipynb) showcases a detailed use of Aya 23 (8B) including inference and fine-tuning with [QLoRA](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
## Model Details
**Input**: Models input text only.
**Output**: Models generate text only.
**Model Architecture**: Aya-23-35B is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model is fine-tuned (IFT) to follow human instructions.
**Languages covered**: The model is particularly optimized for multilinguality and supports the following languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
**Context length**: 8192
### Evaluation
<img src="benchmarks.png" alt="multilingual benchmarks" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
<img src="winrates.png" alt="average win rates" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
Please refer to the [Aya 23 technical report](https://drive.google.com/file/d/1YKBPo61pnl97C1c_1C2ZVOnPhqf7MLSc/view) for further details about the base model, data, instruction tuning, and evaluation.
### Model Card Contact
For errors or additional questions about details in this model card, contact [email protected].
### Terms of Use
We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant multilingual model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy).
### Try the model today
You can try Aya 23 in the Cohere [playground](https://dashboard.cohere.com/playground/chat) here. You can also use it in our dedicated Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/aya-23).
### Citation info
```bibtex
@misc{aya23technicalreport,
title={Aya 23: Open Weight Releases to Further Multilingual Progress},
author={Viraat Aryabumi, John Dang, Dwarak Talupuru, Saurabh Dash, David Cairuz, Hangyu Lin, Bharat Venkitesh, Madeline Smith, Kelly Marchisio, Sebastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick Frosst, Phil Blunsom, Marzieh Fadaee, Ahmet Üstün, and Sara Hooker},
url={https://drive.google.com/file/d/1YKBPo61pnl97C1c_1C2ZVOnPhqf7MLSc/view},
year={2024}
} |
Raidenv/autotrain-1igto-kytcv | Raidenv | 2024-05-23T17:22:20Z | 0 | 0 | null | [
"dataset:cifar10",
"region:us"
] | null | 2024-05-23T16:44:16Z | ---
datasets:
- cifar10
metrics:
- accuracy
--- |
devjwsong/ppo-CartPole-v1 | devjwsong | 2024-05-23T17:19:45Z | 0 | 0 | null | [
"tensorboard",
"CartPole-v1",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-23T17:19:38Z | ---
tags:
- CartPole-v1
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 193.40 +/- 54.35
name: mean_reward
verified: false
---
# PPO Agent Playing CartPole-v1
This is a trained model of a PPO agent playing CartPole-v1.
# Hyperparameters
```python
{'exp_name': 'Carpole'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'CartPole-v1'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'devjwsong/ppo-CartPole-v1'
'batch_size': 512
'minibatch_size': 128}
```
|
khof312/mms-tts-swh-female-1 | khof312 | 2024-05-23T17:17:13Z | 114 | 0 | transformers | [
"transformers",
"safetensors",
"vits",
"text-to-audio",
"mms",
"mms-tts-swh",
"audio",
"text-to-speech",
"sw",
"dataset:mozilla-foundation/common_voice_16_1",
"endpoints_compatible",
"region:us"
] | text-to-speech | 2024-04-25T20:14:21Z | ---
datasets:
- mozilla-foundation/common_voice_16_1
language:
- sw
pipeline_tag: text-to-speech
tags:
- mms
- vits
- mms-tts-swh
- audio
--- |
abhi-8/Age-gender-predictor | abhi-8 | 2024-05-23T17:16:16Z | 0 | 1 | null | [
"code",
"video",
"photo",
"age",
"gender",
"image-text-to-text",
"en",
"dataset:nlphuji/utk_faces",
"dataset:cledoux42/AGEGENDERETHINCITY",
"license:mit",
"region:us"
] | image-text-to-text | 2024-05-23T17:07:42Z | ---
license: mit
datasets:
- nlphuji/utk_faces
- cledoux42/AGEGENDERETHINCITY
language:
- en
metrics:
- accuracy
- mae
- mse
pipeline_tag: image-text-to-text
tags:
- code
- video
- photo
- age
- gender
--- |
ZaneHorrible/Adam_ViTL-16_224-2e-4-batch_16_epoch_4_classes_24 | ZaneHorrible | 2024-05-23T17:15:21Z | 197 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-large-patch16-224",
"base_model:finetune:google/vit-large-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2024-05-23T15:06:08Z | ---
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Adam_ViTL-16_224-2e-4-batch_16_epoch_4_classes_24
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9683908045977011
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Adam_ViTL-16_224-2e-4-batch_16_epoch_4_classes_24
This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1211
- Accuracy: 0.9684
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6934 | 0.07 | 100 | 0.4138 | 0.8477 |
| 0.4815 | 0.14 | 200 | 0.7227 | 0.8103 |
| 0.3952 | 0.21 | 300 | 0.5867 | 0.8491 |
| 0.6095 | 0.28 | 400 | 0.5975 | 0.8448 |
| 0.3448 | 0.35 | 500 | 0.4000 | 0.8721 |
| 0.2604 | 0.42 | 600 | 0.3335 | 0.9080 |
| 0.3734 | 0.49 | 700 | 0.4264 | 0.875 |
| 0.3074 | 0.56 | 800 | 0.3634 | 0.8908 |
| 0.312 | 0.63 | 900 | 0.4347 | 0.875 |
| 0.1076 | 0.7 | 1000 | 0.3203 | 0.9052 |
| 0.2001 | 0.77 | 1100 | 0.2668 | 0.9224 |
| 0.0507 | 0.84 | 1200 | 0.2265 | 0.9353 |
| 0.0767 | 0.91 | 1300 | 0.2797 | 0.9239 |
| 0.3201 | 0.97 | 1400 | 0.2977 | 0.9109 |
| 0.0293 | 1.04 | 1500 | 0.2849 | 0.9239 |
| 0.0353 | 1.11 | 1600 | 0.2918 | 0.9339 |
| 0.0787 | 1.18 | 1700 | 0.3012 | 0.9253 |
| 0.0749 | 1.25 | 1800 | 0.2383 | 0.9454 |
| 0.0233 | 1.32 | 1900 | 0.3272 | 0.9152 |
| 0.1635 | 1.39 | 2000 | 0.2857 | 0.9124 |
| 0.0586 | 1.46 | 2100 | 0.3785 | 0.9109 |
| 0.0103 | 1.53 | 2200 | 0.2032 | 0.9468 |
| 0.0082 | 1.6 | 2300 | 0.2091 | 0.9397 |
| 0.0695 | 1.67 | 2400 | 0.1739 | 0.9526 |
| 0.0253 | 1.74 | 2500 | 0.2056 | 0.9511 |
| 0.0648 | 1.81 | 2600 | 0.1803 | 0.9526 |
| 0.0286 | 1.88 | 2700 | 0.2018 | 0.9440 |
| 0.0057 | 1.95 | 2800 | 0.2332 | 0.9483 |
| 0.0056 | 2.02 | 2900 | 0.3459 | 0.9267 |
| 0.0111 | 2.09 | 3000 | 0.1954 | 0.9540 |
| 0.0001 | 2.16 | 3100 | 0.1586 | 0.9626 |
| 0.0059 | 2.23 | 3200 | 0.1716 | 0.9526 |
| 0.0063 | 2.3 | 3300 | 0.1548 | 0.9612 |
| 0.0003 | 2.37 | 3400 | 0.1813 | 0.9569 |
| 0.0006 | 2.44 | 3500 | 0.1339 | 0.9626 |
| 0.0004 | 2.51 | 3600 | 0.1492 | 0.9583 |
| 0.0004 | 2.58 | 3700 | 0.1238 | 0.9698 |
| 0.0001 | 2.65 | 3800 | 0.1156 | 0.9713 |
| 0.0001 | 2.72 | 3900 | 0.1272 | 0.9684 |
| 0.0 | 2.79 | 4000 | 0.1303 | 0.9698 |
| 0.0001 | 2.86 | 4100 | 0.1269 | 0.9684 |
| 0.0001 | 2.92 | 4200 | 0.1209 | 0.9684 |
| 0.0 | 2.99 | 4300 | 0.1211 | 0.9684 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
LoneStriker/aya-23-35B-4.0bpw-h6-exl2 | LoneStriker | 2024-05-23T17:12:02Z | 8 | 1 | transformers | [
"transformers",
"safetensors",
"cohere",
"text-generation",
"conversational",
"en",
"fr",
"de",
"es",
"it",
"pt",
"ja",
"ko",
"zh",
"ar",
"el",
"fa",
"pl",
"id",
"cs",
"he",
"hi",
"nl",
"ro",
"ru",
"tr",
"uk",
"vi",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"exl2",
"region:us"
] | text-generation | 2024-05-23T17:02:24Z | ---
library_name: transformers
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
- el
- fa
- pl
- id
- cs
- he
- hi
- nl
- ro
- ru
- tr
- uk
- vi
license: cc-by-nc-4.0
---
# Model Card for Aya-23-35B
## Model Summary
Aya 23 is an open weights research release of an instruction fine-tuned model with highly advanced multilingual capabilities. Aya 23 focuses on pairing a highly performant pre-trained [Command family](https://huggingface.co/CohereForAI/c4ai-command-r-plus) of models with the recently released [Aya Collection](https://huggingface.co/datasets/CohereForAI/aya_collection). The result is a powerful multilingual large language model serving 23 languages.
This model card corresponds to the 35-billion version of the Aya 23 model. We also released an 8-billion version which you can find [here](https://huggingface.co/CohereForAI/aya-23-8B).
We cover 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
Developed by: [Cohere For AI](https://cohere.for.ai) and [Cohere](https://cohere.com/)
- Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/)
- License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
- Model: aya-23-8B
- Model Size: 35 billion parameters
**Try Aya 23**
You can try out Aya 23 (35B) before downloading the weights in our hosted Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/aya-23).
### Usage
Please install transformers from the source repository that includes the necessary changes for this model
```python
# pip install 'git+https://github.com/huggingface/transformers.git'
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "CohereForAI/aya-23-35B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Format message with the command-r-plus chat template
messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
```
### Example Notebook
[This notebook](https://huggingface.co/CohereForAI/aya-23-35B/blob/main/Aya_23_notebook.ipynb) showcases a detailed use of Aya 23 (8B) including inference and fine-tuning with [QLoRA](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
## Model Details
**Input**: Models input text only.
**Output**: Models generate text only.
**Model Architecture**: Aya-23-35B is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model is fine-tuned (IFT) to follow human instructions.
**Languages covered**: The model is particularly optimized for multilinguality and supports the following languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
**Context length**: 8192
### Evaluation
<img src="benchmarks.png" alt="multilingual benchmarks" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
<img src="winrates.png" alt="average win rates" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
Please refer to the [Aya 23 technical report](https://drive.google.com/file/d/1YKBPo61pnl97C1c_1C2ZVOnPhqf7MLSc/view) for further details about the base model, data, instruction tuning, and evaluation.
### Model Card Contact
For errors or additional questions about details in this model card, contact [email protected].
### Terms of Use
We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant multilingual model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy).
### Try the model today
You can try Aya 23 in the Cohere [playground](https://dashboard.cohere.com/playground/chat) here. You can also use it in our dedicated Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/aya-23).
### Citation info
```bibtex
@misc{aya23technicalreport,
title={Aya 23: Open Weight Releases to Further Multilingual Progress},
author={Viraat Aryabumi, John Dang, Dwarak Talupuru, Saurabh Dash, David Cairuz, Hangyu Lin, Bharat Venkitesh, Madeline Smith, Kelly Marchisio, Sebastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick Frosst, Phil Blunsom, Marzieh Fadaee, Ahmet Üstün, and Sara Hooker},
url={https://drive.google.com/file/d/1YKBPo61pnl97C1c_1C2ZVOnPhqf7MLSc/view},
year={2024}
} |
adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1 | adalbertojunior | 2024-05-23T17:11:19Z | 267 | 1 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-04-30T00:41:59Z | ---
library_name: transformers
tags: []
model-index:
- name: Qwen1.5-32B-Dolphin-Portuguese-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 74.74
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 66.34
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 53.71
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 93.66
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 77.7
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 82.14
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 86.71
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 68.68
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 72.82
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1
name: Open Portuguese LLM Leaderboard
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
# Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/adalbertojunior/Qwen1.5-32B-Dolphin-Portuguese-v0.1) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
| Metric | Value |
|--------------------------|---------|
|Average |**75.17**|
|ENEM Challenge (No Images)| 74.74|
|BLUEX (No Images) | 66.34|
|OAB Exams | 53.71|
|Assin2 RTE | 93.66|
|Assin2 STS | 77.70|
|FaQuAD NLI | 82.14|
|HateBR Binary | 86.71|
|PT Hate Speech Binary | 68.68|
|tweetSentBR | 72.82|
|
CXDuncan/whisper-small-ml-ct2 | CXDuncan | 2024-05-23T17:10:15Z | 4 | 0 | transformers | [
"transformers",
"ml",
"dataset:CXDuncan/Malayalam-IndicVoices",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T14:54:06Z | ---
datasets:
- CXDuncan/Malayalam-IndicVoices
language:
- ml
--- |
quannv/ATP | quannv | 2024-05-23T17:05:04Z | 0 | 0 | null | [
"pytorch",
"license:apache-2.0",
"region:us"
] | null | 2024-05-17T16:11:43Z | ---
license: apache-2.0
---
|
kaleinaNyan/kolibri-mistral-0427-upd | kaleinaNyan | 2024-05-23T17:00:40Z | 7 | 1 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"en",
"ru",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-22T16:48:12Z | ---
license: apache-2.0
language:
- en
- ru
---
## Description
This is an instruction following model (based on Mistral v0.1 Base) optimized for Russian language.
It was trained using [kolibrify](https://github.com/oKatanaaa/kolibrify) on a multitude of instruction datasets.
The model uses ChatML template. It was trained to be sensitive to the system prompt, experiment with it.
Currently in pre-alpha, later releases will include more details regarding training procedure and data mix.
> [!NOTE]
> This model is an improved version of older kolibri-mistral-0427.
## Instruction following evals
The model was tested using the following benchmarks:
- [ruIFEval](https://github.com/NLP-Core-Team/ruIFEval)
- [ifeval](https://github.com/google-research/google-research/tree/master/instruction_following_eval)
| Eval name |Strict Value| Loose Value
|---------------------------------|----|----|
|Avg. |*53.81*|*56.57*|
|ifeval-prompt-level |52.68|56.19|
|ifeval-instruction-level |62.82|66.18|
|ru-ifeval-prompt-level |44.36|46.39|
|ru-ifeval-instruction-level |55.39|57.55|
|
kaleinaNyan/kolibri-mistral-0427-upd.gguf | kaleinaNyan | 2024-05-23T16:59:39Z | 13 | 0 | transformers | [
"transformers",
"gguf",
"mistral",
"en",
"ru",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-22T10:45:41Z | ---
license: apache-2.0
language:
- en
- ru
---
## Description
This is an instruction following model (based on Mistral v0.1 Base) optimized for Russian language.
It was trained using [kolibrify](https://github.com/oKatanaaa/kolibrify) on a multitude of instruction datasets.
The model uses ChatML template. It was trained to be sensitive to the system prompt, experiment with it.
I recommend using the model with LMStudio.
Currently in pre-alpha, later releases will include more details regarding training procedure and data mix.
> [!NOTE]
> This model is an improved version of older kolibri-mistral-0427.
## Instruction following evals
The model was tested using the following benchmarks:
- [ruIFEval](https://github.com/NLP-Core-Team/ruIFEval)
- [ifeval](https://github.com/google-research/google-research/tree/master/instruction_following_eval)
| Eval name |Strict Value| Loose Value
|---------------------------------|----|----|
|Avg. |*53.81*|*56.57*|
|ifeval-prompt-level |52.68|56.19|
|ifeval-instruction-level |62.82|66.18|
|ru-ifeval-prompt-level |44.36|46.39|
|ru-ifeval-instruction-level |55.39|57.55|
|
DZoo/ppo-Huggy | DZoo | 2024-05-23T16:57:16Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2024-05-23T16:56:16Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: DZoo/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
satish860/hc-tinyllama-alpaca | satish860 | 2024-05-23T16:55:03Z | 2 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
"base_model:adapter:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2024-05-23T16:51:15Z | ---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model-index:
- name: hc-tinyllama-alpaca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: imdb_1k_alpaca.jsonl
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/qlora-out
hub_model_id: satish860/hc-tinyllama-alpaca
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# hc-tinyllama-alpaca
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0225
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 8.0151 | 0.0851 | 1 | 7.9045 |
| 7.967 | 0.2553 | 3 | 7.7350 |
| 6.5633 | 0.5106 | 6 | 4.8012 |
| 1.5838 | 0.7660 | 9 | 0.7756 |
| 0.2319 | 1.0213 | 12 | 0.1592 |
| 0.0669 | 1.2340 | 15 | 0.0973 |
| 0.0344 | 1.4894 | 18 | 0.0453 |
| 0.1146 | 1.7447 | 21 | 0.0754 |
| 0.0896 | 2.0 | 24 | 0.0517 |
| 0.0293 | 2.2340 | 27 | 0.0486 |
| 0.0378 | 2.4894 | 30 | 0.0566 |
| 0.0523 | 2.7447 | 33 | 0.0270 |
| 0.0886 | 3.0 | 36 | 0.0226 |
| 0.0504 | 3.2128 | 39 | 0.0232 |
| 0.089 | 3.4681 | 42 | 0.0225 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1 |
nccsnlp/Meta-Llama-3-8B_ct_prompt1b_ft200_v1_merged | nccsnlp | 2024-05-23T16:53:09Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T16:48:14Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
bferrando/git-base-naruto2 | bferrando | 2024-05-23T16:47:06Z | 5 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"git",
"image-text-to-text",
"generated_from_trainer",
"base_model:microsoft/git-base",
"base_model:finetune:microsoft/git-base",
"license:mit",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2024-05-23T15:55:19Z | ---
license: mit
base_model: microsoft/git-base
tags:
- generated_from_trainer
model-index:
- name: git-base-naruto2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# git-base-naruto2
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0286
- Wer Score: 0.3515
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 3
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|:-------------:|:------:|:----:|:---------------:|:---------:|
| 10.2502 | 0.0909 | 5 | 9.1485 | 62.2485 |
| 8.8428 | 0.1818 | 10 | 8.3401 | 80.6545 |
| 8.1981 | 0.2727 | 15 | 7.8041 | 80.8121 |
| 7.7018 | 0.3636 | 20 | 7.3280 | 80.3636 |
| 7.2331 | 0.4545 | 25 | 6.8603 | 40.0485 |
| 6.7819 | 0.5455 | 30 | 6.3932 | 20.9152 |
| 6.3079 | 0.6364 | 35 | 5.9241 | 22.0424 |
| 5.8546 | 0.7273 | 40 | 5.4566 | 6.7515 |
| 5.3926 | 0.8182 | 45 | 4.9938 | 6.9636 |
| 4.9258 | 0.9091 | 50 | 4.5336 | 6.8909 |
| 4.4733 | 1.0 | 55 | 4.0808 | 7.4061 |
| 4.0241 | 1.0909 | 60 | 3.6383 | 6.9273 |
| 3.5895 | 1.1818 | 65 | 3.2081 | 7.2121 |
| 3.1657 | 1.2727 | 70 | 2.7929 | 7.2121 |
| 2.7513 | 1.3636 | 75 | 2.3954 | 7.8303 |
| 2.3667 | 1.4545 | 80 | 2.0232 | 8.1576 |
| 1.9959 | 1.5455 | 85 | 1.6770 | 8.8727 |
| 1.6518 | 1.6364 | 90 | 1.3655 | 9.2242 |
| 1.349 | 1.7273 | 95 | 1.0882 | 9.3758 |
| 1.081 | 1.8182 | 100 | 0.8536 | 9.1939 |
| 0.8455 | 1.9091 | 105 | 0.6599 | 8.8667 |
| 0.6619 | 2.0 | 110 | 0.5056 | 9.2727 |
| 0.5017 | 2.0909 | 115 | 0.3868 | 9.3636 |
| 0.385 | 2.1818 | 120 | 0.2934 | 10.9758 |
| 0.2916 | 2.2727 | 125 | 0.2254 | 10.6848 |
| 0.2292 | 2.3636 | 130 | 0.1742 | 9.3758 |
| 0.1773 | 2.4545 | 135 | 0.1368 | 8.8909 |
| 0.1397 | 2.5455 | 140 | 0.1088 | 8.4364 |
| 0.1214 | 2.6364 | 145 | 0.0907 | 0.4121 |
| 0.0964 | 2.7273 | 150 | 0.0764 | 0.3939 |
| 0.0812 | 2.8182 | 155 | 0.0649 | 0.3818 |
| 0.07 | 2.9091 | 160 | 0.0597 | 0.3818 |
| 0.0613 | 3.0 | 165 | 0.0516 | 0.4121 |
| 0.0454 | 3.0909 | 170 | 0.0472 | 0.3879 |
| 0.0492 | 3.1818 | 175 | 0.0422 | 0.4 |
| 0.0411 | 3.2727 | 180 | 0.0411 | 0.4364 |
| 0.035 | 3.3636 | 185 | 0.0394 | 0.4303 |
| 0.0378 | 3.4545 | 190 | 0.0370 | 0.3879 |
| 0.0389 | 3.5455 | 195 | 0.0348 | 0.3939 |
| 0.0341 | 3.6364 | 200 | 0.0335 | 0.3636 |
| 0.0391 | 3.7273 | 205 | 0.0327 | 0.3697 |
| 0.0266 | 3.8182 | 210 | 0.0314 | 0.5212 |
| 0.0282 | 3.9091 | 215 | 0.0308 | 2.6364 |
| 0.0306 | 4.0 | 220 | 0.0300 | 0.4848 |
| 0.0263 | 4.0909 | 225 | 0.0306 | 0.3758 |
| 0.0237 | 4.1818 | 230 | 0.0300 | 0.3697 |
| 0.0255 | 4.2727 | 235 | 0.0292 | 0.3515 |
| 0.0232 | 4.3636 | 240 | 0.0290 | 0.3576 |
| 0.024 | 4.4545 | 245 | 0.0291 | 0.3515 |
| 0.0243 | 4.5455 | 250 | 0.0294 | 0.3636 |
| 0.0245 | 4.6364 | 255 | 0.0296 | 0.3697 |
| 0.022 | 4.7273 | 260 | 0.0294 | 0.3576 |
| 0.0228 | 4.8182 | 265 | 0.0291 | 0.3576 |
| 0.0255 | 4.9091 | 270 | 0.0287 | 0.3515 |
| 0.025 | 5.0 | 275 | 0.0286 | 0.3515 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
cccmatthew/model_test | cccmatthew | 2024-05-23T16:45:33Z | 107 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"token-classification",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-05-23T16:40:25Z | ---
license: apache-2.0
language:
- en
metrics:
- f1
--- |
lmstudio-community/aya-23-8B-GGUF | lmstudio-community | 2024-05-23T16:43:17Z | 2,968 | 6 | transformers | [
"transformers",
"gguf",
"text-generation",
"en",
"fr",
"de",
"es",
"it",
"pt",
"ja",
"ko",
"zh",
"ar",
"el",
"fa",
"pl",
"id",
"cs",
"he",
"hi",
"nl",
"ro",
"ru",
"tr",
"uk",
"vi",
"base_model:CohereForAI/aya-23-8B",
"base_model:quantized:CohereForAI/aya-23-8B",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-05-23T16:02:11Z | ---
library_name: transformers
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
- el
- fa
- pl
- id
- cs
- he
- hi
- nl
- ro
- ru
- tr
- uk
- vi
license: cc-by-nc-4.0
quantized_by: bartowski
pipeline_tag: text-generation
lm_studio:
param_count: 8b
use_case: general
release_date: 23-05-2024
model_creator: CohereForAI
prompt_template: Cohere Command R
system_prompt: You are a helpful AI assistant
base_model: cohere
original_repo: CohereForAI/aya-23-8B
base_model: CohereForAI/aya-23-8B
---
## 💫 Community Model> Aya 23 8B by Cohere For AI
*👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*.
**Model creator:** [Cohere For AI](https://huggingface.co/CohereForAI)<br>
**Original model**: [aya-23-8B](https://huggingface.co/CohereForAI/aya-23-8B)<br>
**GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b2965](https://github.com/ggerganov/llama.cpp/releases/tag/b2965)<br>
## Model Summary:
Aya 23 are brand new instruction tuned multilingual models from Cohere. This model should perform well at logic across a wide variety of languages.<br>
This is the 8B version of the model, and seems to perform well for its size across multi-lingual benchmarks.
## Prompt template:
Choose the `Cohere Command R` preset in your LM Studio.
Under the hood, the model will see a prompt that's formatted like so:
```
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>
{system_prompt}
<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>
{prompt}
<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
```
## Technical Details
Aya 23 covers the following languages:
- Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
The Aya training dataset can be found here:
- https://huggingface.co/datasets/CohereForAI/aya_collection
More technical details can be found from Cohere [here](https://cohere.com/research/papers/aya-command-23-8b-and-35b-technical-report-2024-05-23)
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
🙏 Special thanks to [Kalomaze](https://github.com/kalomaze), [Dampf](https://github.com/Dampfinchen) and [turboderp](https://github.com/turboderp/) for their work on the dataset (linked [here](https://gist.github.com/bartowski1182/b6ac44691e994344625687afe3263b3a)) that was used for calculating the imatrix for all sizes.
## Disclaimers
LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio. |
bsmadhu/my_awesome_qa_model | bsmadhu | 2024-05-23T16:42:07Z | 63 | 0 | transformers | [
"transformers",
"tf",
"distilbert",
"question-answering",
"generated_from_keras_callback",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2024-05-23T16:29:43Z | ---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: bsmadhu/my_awesome_qa_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bsmadhu/my_awesome_qa_model
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.5903
- Validation Loss: 1.8578
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.4043 | 2.2286 | 0 |
| 1.8482 | 1.8578 | 1 |
| 1.5903 | 1.8578 | 2 |
### Framework versions
- Transformers 4.41.0
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
ymechqrane/llama3-8b-sft-qlora-regex_v240524 | ymechqrane | 2024-05-23T16:41:16Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:adapter:meta-llama/Meta-Llama-3-8B",
"license:llama3",
"region:us"
] | null | 2024-05-23T16:28:13Z | ---
license: llama3
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
model-index:
- name: llama3-8b-sft-qlora-regex_v240524
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3-8b-sft-qlora-regex_v240524
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
hyojin99/whisper-large | hyojin99 | 2024-05-23T16:40:29Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T16:40:28Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
hyojin99/whisper_large | hyojin99 | 2024-05-23T16:40:27Z | 76 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"ko",
"dataset:hyojin99/EBRC",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-23T02:51:49Z | ---
language:
- ko
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
base_model: openai/whisper-small
datasets:
- hyojin99/EBRC
model-index:
- name: ft_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ft_model
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the EBRC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2978
- Cer: 10.5708
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 6000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3829 | 1.0 | 1500 | 0.3817 | 15.4574 |
| 0.1779 | 2.0 | 3000 | 0.3238 | 13.5614 |
| 0.0732 | 3.0 | 4500 | 0.2954 | 11.2004 |
| 0.0228 | 4.0 | 6000 | 0.2978 | 10.5708 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
AmrutaMuthal/mero_controlnet_inpaint_obj_segmask_with_warmup | AmrutaMuthal | 2024-05-23T16:38:11Z | 3 | 0 | diffusers | [
"diffusers",
"safetensors",
"arxiv:1910.09700",
"region:us"
] | null | 2024-05-17T07:02:20Z | ---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ShahlaDnshi96/mobile_mistral_3 | ShahlaDnshi96 | 2024-05-23T16:32:21Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2024-04-07T09:18:57Z | ---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
- generator
model-index:
- name: mobile_mistral_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobile_mistral_3
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 |
MrezaPRZ/codellama_high_quality_sft_postgres | MrezaPRZ | 2024-05-23T16:30:55Z | 9 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T16:26:58Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
hgnoi/nsmGBNKmOwJRJkSo | hgnoi | 2024-05-23T16:26:07Z | 131 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T16:24:30Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
GENIAC-Team-Ozaki/lora-dpo-finetuned-stage4-full-sft-0.1_1e-6_ep-1 | GENIAC-Team-Ozaki | 2024-05-23T16:24:43Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T05:48:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ehristoforu/BoW-v1-768px | ehristoforu | 2024-05-23T16:21:33Z | 4 | 1 | diffusers | [
"diffusers",
"safetensors",
"stable-diffusion",
"BoW",
"sd2.1-768px",
"sd2",
"realism",
"art",
"anime",
"merge",
"text-to-image",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2024-02-19T20:23:20Z | ---
license: creativeml-openrail-m
library_name: diffusers
pipeline_tag: text-to-image
inference: false
tags: [safetensors, stable-diffusion, BoW, sd2.1-768px, sd2, realism, art, anime, merge]
--- |
IMFisa/mukadas_quantized_model | IMFisa | 2024-05-23T16:15:30Z | 2 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:quantized:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T16:12:32Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** IMFisa
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mika5883/inverse_gec_finetuned | mika5883 | 2024-05-23T16:09:21Z | 114 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:mika5883/inverse_gec",
"base_model:finetune:mika5883/inverse_gec",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-23T15:06:00Z | ---
base_model: mika5883/inverse_gec
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: inverse_gec_finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# inverse_gec_finetuned
This model is a fine-tuned version of [mika5883/inverse_gec](https://huggingface.co/mika5883/inverse_gec) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4594
- Bleu: 82.2574
- Gen Len: 22.4784
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 40 | 0.3337 | 84.782 | 22.4412 |
| No log | 2.0 | 80 | 0.2966 | 84.9348 | 22.4536 |
| No log | 3.0 | 120 | 0.2708 | 85.0786 | 22.4484 |
| No log | 4.0 | 160 | 0.2561 | 85.1691 | 22.4416 |
| No log | 5.0 | 200 | 0.2517 | 85.2139 | 22.44 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
vonvolous/tattoo_oldschool_LoRA | vonvolous | 2024-05-23T16:08:16Z | 11 | 0 | diffusers | [
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2024-05-23T14:52:32Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: In the style of TOK tattoo
widget: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - vonvolous/tattoo_oldschool_LoRA
<Gallery />
## Model description
These are vonvolous/tattoo_oldschool_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use In the style of TOK tattoo to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](vonvolous/tattoo_oldschool_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
AI-Trailblazer/ddpm-celebahq-finetuned-butterflies-2epochs | AI-Trailblazer | 2024-05-23T16:07:31Z | 44 | 0 | diffusers | [
"diffusers",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] | unconditional-image-generation | 2024-05-23T16:07:16Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
Describe your model here
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('AI-Trailblazer/ddpm-celebahq-finetuned-butterflies-2epochs')
image = pipeline().images[0]
image
```
|
hgnoi/xnFYq3Pcj03yo6K4 | hgnoi | 2024-05-23T16:03:20Z | 131 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T16:01:43Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Jaman/gemma-Code-Instruct-Finetune-test | Jaman | 2024-05-23T16:02:00Z | 105 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-23T15:51:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
VictorSanh/idefics2-8b-docvqa-finetuned-tutorial | VictorSanh | 2024-05-23T15:59:36Z | 0 | 0 | null | [
"safetensors",
"generated_from_trainer",
"base_model:HuggingFaceM4/idefics2-8b",
"base_model:finetune:HuggingFaceM4/idefics2-8b",
"license:apache-2.0",
"region:us"
] | null | 2024-04-12T20:58:26Z | ---
license: apache-2.0
base_model: HuggingFaceM4/idefics2-8b
tags:
- generated_from_trainer
model-index:
- name: idefics2-8b-docvqa-finetuned-tutorial
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# idefics2-8b-docvqa-finetuned-tutorial
This model is a fine-tuned version of [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
mmnga/Mistral-7B-Instruct-v0.3-gguf | mmnga | 2024-05-23T15:58:46Z | 815 | 2 | null | [
"gguf",
"mistral",
"en",
"ja",
"dataset:TFMC/imatrix-dataset-for-japanese-llm",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2024-05-23T14:44:25Z | ---
license: apache-2.0
language:
- en
- ja
datasets:
- TFMC/imatrix-dataset-for-japanese-llm
tags:
- mistral
---
# Mistral-7B-Instruct-v0.3-gguf
[mistralaiさんが公開しているMistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3)のggufフォーマット変換版です。
imatrixのデータは[TFMC/imatrix-dataset-for-japanese-llm](https://huggingface.co/datasets/TFMC/imatrix-dataset-for-japanese-llm)を使用して作成しました。
## Usage
```
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp
make -j
./main -m 'Mistral-7B-Instruct-v0.3-Q4_0.gguf' -n 128 -p '[INST] 今晩の夕食のレシピを教え て [/INST] '
``` |
chchen/Mistral-7B-Instruct-v0.3-ORPO | chchen | 2024-05-23T15:48:59Z | 2 | 0 | peft | [
"peft",
"safetensors",
"llama-factory",
"lora",
"trl",
"dpo",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-Instruct-v0.3",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3",
"license:apache-2.0",
"region:us"
] | null | 2024-05-23T08:38:42Z | ---
license: apache-2.0
library_name: peft
tags:
- llama-factory
- lora
- trl
- dpo
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.3
model-index:
- name: Mistral-7B-Instruct-v0.3-ORPO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-Instruct-v0.3-ORPO
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the dpo_mix_en dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8734
- Rewards/chosen: -0.0810
- Rewards/rejected: -0.1017
- Rewards/accuracies: 0.5720
- Rewards/margins: 0.0208
- Logps/rejected: -1.0175
- Logps/chosen: -0.8098
- Logits/rejected: -3.1455
- Logits/chosen: -3.1171
- Sft Loss: 0.8098
- Odds Ratio Loss: 0.6360
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.1
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:|
| 0.9464 | 0.8891 | 500 | 0.8919 | -0.0828 | -0.1031 | 0.5690 | 0.0202 | -1.0306 | -0.8281 | -3.1432 | -3.1149 | 0.8281 | 0.6374 |
| 0.8737 | 1.7782 | 1000 | 0.8774 | -0.0814 | -0.1019 | 0.5760 | 0.0205 | -1.0186 | -0.8136 | -3.1431 | -3.1139 | 0.8136 | 0.6371 |
| 0.8923 | 2.6673 | 1500 | 0.8734 | -0.0810 | -0.1017 | 0.5720 | 0.0208 | -1.0175 | -0.8098 | -3.1455 | -3.1171 | 0.8098 | 0.6360 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1 |
SpeechResearch/whisper-ft-normal | SpeechResearch | 2024-05-23T15:46:06Z | 147 | 0 | transformers | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-23T15:45:26Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
yasirchemmakh/log-rabbit-7b-lora | yasirchemmakh | 2024-05-23T15:43:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:WhiteRabbitNeo/WhiteRabbitNeo-7B-v1.5a",
"base_model:finetune:WhiteRabbitNeo/WhiteRabbitNeo-7B-v1.5a",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-23T15:43:31Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: WhiteRabbitNeo/WhiteRabbitNeo-7B-v1.5a
---
# Uploaded model
- **Developed by:** yasirchemmakh
- **License:** apache-2.0
- **Finetuned from model :** WhiteRabbitNeo/WhiteRabbitNeo-7B-v1.5a
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Subsets and Splits