modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 00:42:13
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
499 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 00:40:00
card
stringlengths
11
1.01M
mini1013/master_cate_ac8
mini1013
2024-11-25T10:14:43Z
77
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-25T10:14:16Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[10%+๋ณต์ˆ˜620]๊ตญ๋‚ด์ƒ์‚ฐ ๋‚จ์ž์—ฌ์ž ์ตœ๋Œ€15์ผค๋ ˆ ํŽ˜์ดํฌ์‚ญ์Šค ์‹ค๋ฆฌ์ฝ˜ ๋ง์‹  ์–‘๋ง ํ•™์ƒ ๋ฌด์ง€ 25_์ฑ ๋ฐ๋ ˆ์ด์Šค์‹ค๋ฆฌ์ฝ˜_์—ฌ์„ฑ_๋ฒ ์ด์ง€(4์ผค๋ ˆ) ๋ฐœ์žฅ๋‚œ์–‘๋ง' - text: W616 ๋”ฐ๋œปํ•œ ๋‘๊บผ์šด ์ˆœ๋ฉด ํ†ตํŒŒ์ผ ๋ฌด์ง€ ๊ธด ์–‘๋ง ์—ฌ์ž ๋‚จ์ž ๋น…์‚ฌ์ด์ฆˆ ์ˆ˜๋ฉด ๊ฒจ์šธ ๋ง์‹  ๋‹ˆ์‚ญ์Šค W432 ๊ณจ์ง€ ํ†ตํŒŒ์ผ ๋ง์‹ _S(225-245mm)_๋ธ”๋ž™ ์‚ญ์Šค์—์ด - text: '[2์ฐจ 11/14 ์˜ˆ์•ฝ๋ฐฐ์†ก][23FW] HEMISH LEG WARMER - MELANGE GREY MELANGE GREY_FREE ์ฃผ์‹ํšŒ์‚ฌ ํƒ€์ž…์Šค(Types Co.,Ltd)' - text: ๋„ํ†ฐํ•œ ๋ฉด๋‘์˜ฌ ์–‘๋ง ๊ตญ๋‚ด์ƒ์‚ฐ/์ค‘๋ชฉ/์žฅ๋ชฉ/์Šค๋‹ˆ์ปค์ฆˆ/ํŒจ์…˜/ํ•™์ƒ 25~26_26.๋‚จ๋…€ ๊ธฐ๋ชจ๋ง์‹ _์—ฌ)2์ผค๋ ˆ / ๋ธ”๋ž™ ํˆฌํˆฌ์‚ญ์Šค - text: ๋„ํ†ฐ ์—„์ง€ ์–‘๋ง ๋ฐœ๊ฐ€๋ฝ ์—ฌ ํƒ€๋น„ ์‚ญ์Šค ๊ธฐ๋ชจ ๋ณด์˜จ ์ปฌ๋Ÿฌ ์—ฌ์ž ๋‘๊บผ์šด ๋ฌด์ง€ ์—ฐ๋ธŒ๋ผ์šด ๊น€๋ฏผ์ฃผ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.7735123253257968 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | <ul><li>'์ž์ „๊ฑฐ ๋“ฑ์‚ฐ ๊ณจํ”„ ๊ฒจ์šธ ๋ฐœ ๋‹ค๋ฆฌํ† ์‹œ ๋ ˆ๊ทธ์›Œ๋จธ ๋ธŒ๋ผ์šด ๋””ํ”Œ์ฝ”๋ฆฌ์•„ (Digital Plus Korea)'</li><li>'๊ตญ์‚ฐ ๋ฉด ํƒํ…” ๊ฒจ์šธ ๋ฐฉํ•œ ํŒ” ๋‹ค๋ฆฌ ์ˆ˜๋ฉด ํ† ์‹œ ๋ฐœ ์ž„์‚ฐ๋ถ€ ์‚ฐํ›„์šฉํ’ˆ ์ˆ˜์กฑ๋ƒ‰์ฆ ๊ฒจ์šธ ๋ฐฉํ•œ ๋ณด์˜จ ๊ธฐ๋ณธ ์ˆ˜๋ฉดํ† ์‹œ ๊ทธ๋ ˆ์ด ์„ธ์ž๋งค ์–‘๋ง'</li><li>'์„ธ๋ธ๋‹ค์Šค ์—ฌ์ž ๋ ˆ๊ทธ์›Œ๋จธ ์ˆ˜๋ฉด ์—ฌ์„ฑ ๋ฐœํ† ์‹œ ๊ฒจ์šธ ๋ณด์˜จ SD001 ๊ทธ๋ ˆ์ด_FREE ์•„์ด๋ณด๋ฆฌ'</li></ul> | | 0.0 | <ul><li>'[๋งค์žฅ๋ฐœ์†ก] ๋งˆ๋ฆฌ๋–ผ 11/6 ๋ฐฐ์†ก 3PACK EMBROIDERY SOCKS multi OS ์™€์ด์—์Šค๋งˆ์ผ“'</li><li>'์—๋ธŒ๋ฆฌ๋ฐ์ด ํ”Œ๋Ÿฌ์Šค ์ฟ ์…˜ ํŠธ๋ ˆ์ด๋‹ ํฌ๋ฃจ ์‚ญ์Šค(3์ผค๋ ˆ) SX6888-100 024 '</li><li>'[๋กฏ๋ฐ๋ฐฑํ™”์ ]์–ธ๋”์•„๋จธ(๋ฐฑ) ์œ ๋‹ˆ์„น์Šค UA ์ฝ”์–ด ์ฟผํ„ฐ ์–‘๋ง - 3์ผค๋ ˆ 1358344-100 1.LG ๋กฏ๋ฐ๋ฐฑํ™”์ _'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.7735 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_ac8") # Run inference preds = model("๋„ํ†ฐ ์—„์ง€ ์–‘๋ง ๋ฐœ๊ฐ€๋ฝ ์—ฌ ํƒ€๋น„ ์‚ญ์Šค ๊ธฐ๋ชจ ๋ณด์˜จ ์ปฌ๋Ÿฌ ์—ฌ์ž ๋‘๊บผ์šด ๋ฌด์ง€ ์—ฐ๋ธŒ๋ผ์šด ๊น€๋ฏผ์ฃผ") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 10.82 | 24 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0625 | 1 | 0.4226 | - | | 3.125 | 50 | 0.0022 | - | | 6.25 | 100 | 0.0001 | - | | 9.375 | 150 | 0.0001 | - | | 12.5 | 200 | 0.0001 | - | | 15.625 | 250 | 0.0001 | - | | 18.75 | 300 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mini1013/master_cate_ac7
mini1013
2024-11-25T10:12:50Z
137
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-25T10:12:28Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ๊ฐ€์Šค์ฝ” ๊ฐ€์ฃฝ์ „์šฉ์—ผ์ƒ‰์•ฝ ์†ŒํŒŒ ์นด์‹œํŠธ ์Šค๋‹ˆ์ปค์ฆˆ 33์ƒ‰์ƒ 100ml ๋‹คํฌ๋ธŒ๋ผ์šด ์ฃผ์‹ํšŒ์‚ฌ๊ฐ€์Šค์ฝ” - text: ๋ ˆ์ธ์Šˆ์ฆˆ ์žฅํ™” ๋ฐฉ์ˆ˜ ๋ถ€์ธ  ์ˆ˜์ค‘์ž‘์—… ์‹ ๋ฐœ๋ณดํ˜ธ ๊ณ ๋ฌด ๋ฏธ๋„๋Ÿผ๋ฐฉ์ง€ ์—ฌ์„ฑ์šฉ H_M 34-36 ์ง€์—์Šค - text: ๊ฐ€์Šค์ฝ” ๊ฐ€์ฃฝ์ „์šฉ์—ผ์ƒ‰์•ฝ ๋„๊ตฌ ํ’€์„ธํŠธ ๊ฐ€์ฃฝ์˜ท 100ml ๋ธŒ๋ผ์šด_๋ฌด๊ด‘ ์ฃผ์‹ํšŒ์‚ฌ ๊ฐ€์Šค์ฝ” - text: ์—‘์Šค์†” ์—์–ด์Šฌ๋ฆผ ์ธ์†” ๊ธฐ๋Šฅ์„ฑ ์‹ ๋ฐœ ๊น”์ฐฝ 245mm ์ฃผ์‹ํšŒ์‚ฌ ์˜์ฐฝ์—์ฝ” - text: ๊น์Šค ์–‘๋ง ์‹ธ๊ฐœ ๋ฐœ ๋ณดํ˜ธ ๋ณด์˜จ ๋ฐฉํ•œ ํŽธํ•œ ์ด์œ ๋กฑ ๋ถ€์ธ ํ˜• ์—ฌ์„ฑ ๋ฐฉ์ˆ˜์ปค๋ฒ„ ์ƒค์›Œ ํŒ” ๋‚จ์„ฑ์šฉ ํ”Œ๋Ÿฌ์‹œ ์Šฌ๋ฆฌ๋ธŒ/๋‘๊บผ์šด ๋ฒ„์ „ ๋†’์ด 35_45 ํ•‘ํฌ๊ณ ๋ฆด๋ผ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9254610935283204 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 7 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | <ul><li>'๋“ฑ์‚ฐํ™”๋ˆ 1+1 ํ†ต๋ˆ_๋ผ์ธ๋„ค์ด๋น„ ์‹ ์„ธ๊ณ„๋ชฐ'</li><li>'๋“ฑ์‚ฐํ™”๋ˆ 1+1 ํŠธ์œ„์ŠคํŠธ_๋ธŒ๋ผ์šด ์‹ ์„ธ๊ณ„๋ชฐ'</li><li>'๋ชฝ๋ฒจ ์Šˆ๋ ˆ์ด์Šค ํ”Œ๋žซ 4MM YELLOW JBSXXUZZ105 ์‹ ๋ฐœ๋ˆ ํ‰๋ˆ ๋“ฑ์‚ฐํ™”๋ˆ 140 (์ฃผ)์ฝ”์–ด๋ฐธ๋ฅ˜'</li></ul> | | 2.0 | <ul><li>'๊ณ ๊ธ‰ ๊ฐ•๋‚จ์Šคํƒ€ํž ๊ตฌ๋‘๊ตฝ/์†Œ์Œ๋ฐฉ์ง€/์ถฉ๊ฒฉ์™„ํ™”/ํ•˜์ดํž๊ตฝ ๋ธ”๋ž™_DD-107 ์Šˆ๋ฏธ์ฆˆ'</li><li>'๋ฐœ ๋’ค๊ฟˆ์น˜ ํŒจ๋“œ ์ฟ ์…˜ ์‹ ๋ฐœ ๊ตฌ๋‘ ์šด๋™ํ™” ์‚ฌ์ด์ฆˆ ํด๋•Œ ์ค„์ด๊ธฐ ํŒจ๋“œ 6-ํ”ผ๋„›_์•„์ด๋ณด๋ฆฌํ™”์ดํŠธ_One Size(2P) ์ €์ŠคํŠธ์—์ž‡'</li><li>'๊ณ ๊ธ‰ ๊ฐ•๋‚จ์Šคํƒ€ํž ๊ตฌ๋‘๊ตฝ/์†Œ์Œ๋ฐฉ์ง€/์ถฉ๊ฒฉ์™„ํ™”/ํ•˜์ดํž๊ตฝ ๋ธ”๋ž™_DD-092 ์Šˆ๋ฏธ์ฆˆ'</li></ul> | | 5.0 | <ul><li>'[์›ฐ๋Ÿฝ] ์‹œ๊ทธ๋‹ˆ์ฒ˜ ๊น”์ฐฝ ์•„์น˜ ์šด๋™ํ™” ๋“ฑ์‚ฐํ™” ๊ตฐ๋Œ€ ๊ตฐ์ธ ๊ตฐํ™” ์•ˆ์ „ํ™” ํ‰๋ฐœ ๊ธฐ๋Šฅ์„ฑ ํ‚ค๋†’์ด [0008]๊ทธ๋ฆฐ M(255 270) CJONSTYLE'</li><li>'[๋กฏ๋ฐ๋ฐฑํ™”์ ]์—์ฝ”(์Šˆ์ฆˆ) ์ปดํฌํŠธ ์—๋ธŒ๋ฆฌ๋ฐ์ด ์ธ์†” ๋ฉ˜์ฆˆ 9059029-00101 ๋ธ”๋ž™_EU 39 ๋กฏ๋ฐ๋ฐฑํ™”์ _'</li><li>'๋“ฑ์‚ฐํ™” ๊น”์ฐฝ ๊ธฐ๋Šฅ์„ฑ ์šด๋™ํ™” ํŠน์ˆ˜ ์Šคํฌ์ธ  ์‹ ๋ฐœ ํ‚ค๋†’์ด ๊ณจํ”„ํ™” XL275-295 ๋งˆ์ผ“ํ€ธ์ฆˆ'</li></ul> | | 0.0 | <ul><li>'[ํ˜„๋Œ€๋ฐฑํ™”์ ]๊ธˆ๊ฐ•์ œํ™” ๋žœ๋“œ๋กœ๋ฐ” SHOSC0150SAM ํœด๋Œ€์šฉ ๋ฏธ๋‹ˆ ๊ตฌ๋‘ํ—ค๋ผ [00001] ํœด๋Œ€์šฉ ๊ตฌ๋‘์นผ (์ฃผ)ํ˜„๋Œ€ํ™ˆ์‡ผํ•‘'</li><li>'์—๋“œ๊ฐ€ ์ฒดํฌ ์†Œ๊ฐ€์ฃฝ ํœด๋Œ€์šฉ ์Šˆํ˜ผ navy 000 (์ฃผ)ํŠธ๋ผ์ด๋ณธ์ฆˆ'</li><li>'[๊ธˆ๊ฐ•์ œํ™”](๊ด‘์ฃผ์‹ ์„ธ๊ณ„) ์ฝœ๋ ‰์…˜ ํœด๋Œ€์šฉ ์Šˆํ˜ผ ์Šคํ‹ธ ๋ฏธ๋‹ˆ ๊ตฌ๋‘ ํ—ค๋ผ N8MKA150/SHOSC0150SAM 10.5cm ์‹ ์„ธ๊ณ„๋ฐฑํ™”์ '</li></ul> | | 4.0 | <ul><li>'๋น„์˜ค๋Š”๋‚  ๋‚จ์„ฑ ์—ฌ์„ฑ 1ํšŒ์šฉ๋น„๋‹๋ง์‹  S M L ๋น„์˜ฌ๋•Œ์‹ ๋ฐœ ์—ฌ๋ฆ„ํ•„์ˆ˜ํ’ˆ ์‹ ๋ฐœ์šฐ๋น„ ์ƒ‰์ƒ_๋ ˆ์ธ์‹ ๋ฐœ์ปค๋ฒ„ ํˆฌ๋ช…๋ธ”๋ฃจM ์˜คํ”ˆ๋ฆฌ๋น™'</li><li>'๋น„์˜ฌ๋•Œ ์ด์ƒ‰์ ์ธ ์—ฌ์„ฑ์šฉ ์‹ฑ๊ธ€ ์Šˆ์ฆˆ ๊ฐ€์ฃฝ ์‹ ๋ฐœ ์—ฌ์„ฑ ํŒจ์…˜ ๋ ˆ์ธ์‹ ๋ฐœ์ปค๋ฒ„ ๋ฉ‹์Šค๋Ÿฌ์šด์ฝ”๋”” 13_39 ์Šคํ†ฐ๋ธŒ๋žœ์ƒ๋ฒ”'</li><li>'ํˆฌ๋ช… ์Šˆ์ฆˆ ํŒจ์…˜ ์›Œํ„ฐ ์žฅ๋งˆ ์—ฌ์„ฑ์žฅํ™” ๋ฏธ๋„๋Ÿผ๋ฐฉ์ง€ ํ•™์ƒ XXL(43-45 ์ ํ•ฉ)_๋ธ”๋ฃจ-ํ•˜์ด [๋ฏธ๋„๋Ÿผ๋ฐฉ์ง€์ฐฝx2๋…„ ํ’ˆ์งˆ] ๊ตฌ๋ฃก๊ธ€๋กœ๋ฒŒ'</li></ul> | | 1.0 | <ul><li>'๊ณฐ๋Œ์ด ๋ธ”๋ž™ ๊ฒ€์ •ํ•˜ํŠธ ํ™”์ดํŠธ ๋‚จ์ž ์„ฑ์ธ ์ปคํ”Œ ์ง€๋น„์ถ” ์ž๋น„์ธ  ์‹ฌํ”Œ ํŒŒ์ธ  ํด๋กœ๊ทธ ์ฐธ ์žฅ์‹์‹ ๋ฐœ A set (๋ธ”๋ž™-ํ™”์ดํŠธ) ๋‰ด์ง€(NYUZY)'</li><li>'์ŠˆํŒ ๊ธˆ์†ํŒ ๋ฉ”ํƒˆ๋ฝํŒ ๋“€๋ธŒ๋ ˆ ๋ฉ”ํƒˆ๋ฐด๋“œ ์•…์–ดํด๋ฆฝ ๋ฉ”ํƒˆ๊ณ ์ •ํ•€ ํ”Œ๋ผ์Šคํ‹ฑ๊ณ ์ •ํ•€ ๊ณจ๋“œ์ŠˆํŒ ํ™ฉ๋™์ŠˆํŒ ์‹ค๋ฒ„์ŠˆํŒ ๊ธˆ์†์ŠˆํŒ ๊ตต์€๊ณจ๋“œ(4๊ฐœ) ์Šˆ๋ ˆ์ด์Šค'</li><li>'(SAPHIR) ์‚ฌํ”ผ๋ฅด ๋ ˆ๋…ธ๋ฒ ์ดํŒ… ์ปฌ๋Ÿฌ ์žฌ์ƒํฌ๋ฆผ / ๊ฐ€์ฃฝ ์—ผ์ƒ‰์ œ ๋ฆฌ๋…ธ๋ฒ ์ดํŒ… ๋ฏธ๋””์—„๋ธŒ๋ผ์šด ์ œ์ด์— ์ปดํผ๋‹ˆ'</li></ul> | | 3.0 | <ul><li>'STRATTON ๋‚จ์„ฑ์šฉ ์‚ผ๋‚˜๋ฌด ์ŠˆํŠธ๋ฆฌ- ๋ฏธ๊ตญ์‚ฐ, m / 9 - 10 ์•Œ์“ฐ๋ฆฌ์ปดํผ๋‹ˆ'</li><li>'๋ฐœ๋ณผ ์—ฌ์ž ์‹ ๋ฐœ ๋‚จ์ž ์ œ๊ณจ๊ธฐ ๋ฐœ๋“ฑ ์—ฌ์„ฑํ•˜์ดํž ๋ฐœ๋“ฑ ์ฝ”์ฝ”๋‚˜๋ผ'</li><li>'์Šˆ์ƒค์ด๋„ˆ ์ „๊ธฐ ๊ธˆ์†์ œ๊ณจ๊ธฐ ๊ฒฝ์ฒฉํƒ€์ž… ์ „๋ฌธ๊ฐ€์šฉ ๋ ˆ์ง€๊ฐ€๋‹ค ์—…์†Œ์šฉ ์—ฌ์„ฑ์šฉ js9997'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9255 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_ac7") # Run inference preds = model("์—‘์Šค์†” ์—์–ด์Šฌ๋ฆผ ์ธ์†” ๊ธฐ๋Šฅ์„ฑ ์‹ ๋ฐœ ๊น”์ฐฝ 245mm ์ฃผ์‹ํšŒ์‚ฌ ์˜์ฐฝ์—์ฝ”") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.4257 | 27 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0182 | 1 | 0.3761 | - | | 0.9091 | 50 | 0.2291 | - | | 1.8182 | 100 | 0.033 | - | | 2.7273 | 150 | 0.018 | - | | 3.6364 | 200 | 0.0001 | - | | 4.5455 | 250 | 0.0001 | - | | 5.4545 | 300 | 0.0001 | - | | 6.3636 | 350 | 0.0001 | - | | 7.2727 | 400 | 0.0001 | - | | 8.1818 | 450 | 0.0 | - | | 9.0909 | 500 | 0.0 | - | | 10.0 | 550 | 0.0 | - | | 10.9091 | 600 | 0.0 | - | | 11.8182 | 650 | 0.0 | - | | 12.7273 | 700 | 0.0 | - | | 13.6364 | 750 | 0.0 | - | | 14.5455 | 800 | 0.0 | - | | 15.4545 | 850 | 0.0 | - | | 16.3636 | 900 | 0.0 | - | | 17.2727 | 950 | 0.0001 | - | | 18.1818 | 1000 | 0.0 | - | | 19.0909 | 1050 | 0.0 | - | | 20.0 | 1100 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k3_task3_organization_fold1
MayBashendy
2024-11-25T10:12:48Z
161
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T10:11:10Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k3_task3_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k3_task3_organization_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6023 - Qwk: 0.1852 - Mse: 0.6023 - Rmse: 0.7761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.1111 | 2 | 3.2691 | 0.0041 | 3.2691 | 1.8081 | | No log | 0.2222 | 4 | 1.5440 | -0.0168 | 1.5440 | 1.2426 | | No log | 0.3333 | 6 | 1.0494 | -0.4426 | 1.0494 | 1.0244 | | No log | 0.4444 | 8 | 0.7627 | 0.0 | 0.7627 | 0.8733 | | No log | 0.5556 | 10 | 0.7207 | -0.0421 | 0.7207 | 0.8489 | | No log | 0.6667 | 12 | 1.1277 | -0.1000 | 1.1277 | 1.0619 | | No log | 0.7778 | 14 | 0.7978 | -0.2791 | 0.7978 | 0.8932 | | No log | 0.8889 | 16 | 0.6799 | 0.0 | 0.6799 | 0.8246 | | No log | 1.0 | 18 | 0.6912 | 0.0 | 0.6912 | 0.8314 | | No log | 1.1111 | 20 | 0.7478 | -0.0233 | 0.7478 | 0.8647 | | No log | 1.2222 | 22 | 0.7894 | -0.2692 | 0.7894 | 0.8885 | | No log | 1.3333 | 24 | 0.8841 | -0.1074 | 0.8841 | 0.9403 | | No log | 1.4444 | 26 | 0.9616 | 0.1646 | 0.9616 | 0.9806 | | No log | 1.5556 | 28 | 0.8752 | 0.0403 | 0.8752 | 0.9355 | | No log | 1.6667 | 30 | 0.7599 | -0.2655 | 0.7599 | 0.8717 | | No log | 1.7778 | 32 | 0.8963 | 0.0571 | 0.8963 | 0.9467 | | No log | 1.8889 | 34 | 1.2057 | 0.0 | 1.2057 | 1.0980 | | No log | 2.0 | 36 | 1.1424 | 0.0 | 1.1424 | 1.0688 | | No log | 2.1111 | 38 | 0.9274 | 0.0 | 0.9274 | 0.9630 | | No log | 2.2222 | 40 | 0.6915 | 0.0 | 0.6915 | 0.8316 | | No log | 2.3333 | 42 | 0.6934 | -0.0577 | 0.6934 | 0.8327 | | No log | 2.4444 | 44 | 1.0658 | 0.0120 | 1.0658 | 1.0324 | | No log | 2.5556 | 46 | 2.2327 | -0.0267 | 2.2327 | 1.4942 | | No log | 2.6667 | 48 | 1.8881 | 0.0 | 1.8881 | 1.3741 | | No log | 2.7778 | 50 | 1.3046 | 0.0 | 1.3046 | 1.1422 | | No log | 2.8889 | 52 | 0.8297 | 0.1879 | 0.8297 | 0.9109 | | No log | 3.0 | 54 | 0.6838 | 0.0 | 0.6838 | 0.8269 | | No log | 3.1111 | 56 | 0.6598 | 0.0 | 0.6598 | 0.8123 | | No log | 3.2222 | 58 | 0.6455 | 0.0 | 0.6455 | 0.8034 | | No log | 3.3333 | 60 | 0.6495 | 0.0 | 0.6495 | 0.8059 | | No log | 3.4444 | 62 | 0.6547 | 0.0 | 0.6547 | 0.8092 | | No log | 3.5556 | 64 | 0.6983 | 0.0 | 0.6983 | 0.8357 | | No log | 3.6667 | 66 | 0.8622 | -0.1074 | 0.8622 | 0.9286 | | No log | 3.7778 | 68 | 1.0773 | 0.0 | 1.0773 | 1.0379 | | No log | 3.8889 | 70 | 1.0490 | 0.0 | 1.0490 | 1.0242 | | No log | 4.0 | 72 | 1.0322 | 0.0 | 1.0322 | 1.0160 | | No log | 4.1111 | 74 | 0.9420 | 0.0 | 0.9420 | 0.9706 | | No log | 4.2222 | 76 | 0.8430 | 0.0571 | 0.8430 | 0.9181 | | No log | 4.3333 | 78 | 0.7792 | -0.0577 | 0.7792 | 0.8827 | | No log | 4.4444 | 80 | 0.7126 | -0.0233 | 0.7126 | 0.8441 | | No log | 4.5556 | 82 | 0.6694 | 0.0 | 0.6694 | 0.8182 | | No log | 4.6667 | 84 | 0.6598 | 0.0 | 0.6598 | 0.8123 | | No log | 4.7778 | 86 | 0.6827 | 0.0 | 0.6827 | 0.8263 | | No log | 4.8889 | 88 | 0.7243 | 0.1239 | 0.7243 | 0.8511 | | No log | 5.0 | 90 | 0.7197 | 0.1239 | 0.7197 | 0.8484 | | No log | 5.1111 | 92 | 0.7406 | 0.0984 | 0.7406 | 0.8606 | | No log | 5.2222 | 94 | 0.7973 | 0.0984 | 0.7973 | 0.8929 | | No log | 5.3333 | 96 | 0.7799 | 0.0984 | 0.7799 | 0.8831 | | No log | 5.4444 | 98 | 0.7187 | 0.1239 | 0.7187 | 0.8478 | | No log | 5.5556 | 100 | 0.6871 | 0.1239 | 0.6871 | 0.8289 | | No log | 5.6667 | 102 | 0.6141 | 0.0 | 0.6141 | 0.7836 | | No log | 5.7778 | 104 | 0.5736 | 0.0 | 0.5736 | 0.7574 | | No log | 5.8889 | 106 | 0.5768 | 0.0 | 0.5768 | 0.7595 | | No log | 6.0 | 108 | 0.5742 | 0.0 | 0.5742 | 0.7577 | | No log | 6.1111 | 110 | 0.5836 | 0.0 | 0.5836 | 0.7640 | | No log | 6.2222 | 112 | 0.5875 | 0.0 | 0.5875 | 0.7665 | | No log | 6.3333 | 114 | 0.5939 | 0.0 | 0.5939 | 0.7706 | | No log | 6.4444 | 116 | 0.6115 | 0.0 | 0.6115 | 0.7820 | | No log | 6.5556 | 118 | 0.6120 | 0.0 | 0.6120 | 0.7823 | | No log | 6.6667 | 120 | 0.6020 | -0.0233 | 0.6020 | 0.7759 | | No log | 6.7778 | 122 | 0.6050 | 0.1895 | 0.6050 | 0.7778 | | No log | 6.8889 | 124 | 0.6034 | -0.0233 | 0.6034 | 0.7768 | | No log | 7.0 | 126 | 0.6037 | -0.0233 | 0.6037 | 0.7770 | | No log | 7.1111 | 128 | 0.6084 | -0.0233 | 0.6084 | 0.7800 | | No log | 7.2222 | 130 | 0.6394 | 0.0 | 0.6394 | 0.7996 | | No log | 7.3333 | 132 | 0.6494 | 0.0 | 0.6494 | 0.8059 | | No log | 7.4444 | 134 | 0.6215 | -0.0233 | 0.6215 | 0.7884 | | No log | 7.5556 | 136 | 0.6098 | 0.1895 | 0.6098 | 0.7809 | | No log | 7.6667 | 138 | 0.6302 | 0.1538 | 0.6302 | 0.7939 | | No log | 7.7778 | 140 | 0.6763 | 0.1239 | 0.6763 | 0.8224 | | No log | 7.8889 | 142 | 0.6795 | 0.1239 | 0.6795 | 0.8243 | | No log | 8.0 | 144 | 0.6233 | 0.1538 | 0.6233 | 0.7895 | | No log | 8.1111 | 146 | 0.5968 | 0.1895 | 0.5968 | 0.7725 | | No log | 8.2222 | 148 | 0.6159 | 0.0 | 0.6159 | 0.7848 | | No log | 8.3333 | 150 | 0.6337 | 0.0 | 0.6337 | 0.7961 | | No log | 8.4444 | 152 | 0.6319 | 0.0 | 0.6319 | 0.7949 | | No log | 8.5556 | 154 | 0.6303 | 0.0 | 0.6303 | 0.7939 | | No log | 8.6667 | 156 | 0.6209 | 0.0 | 0.6209 | 0.7880 | | No log | 8.7778 | 158 | 0.6141 | 0.1852 | 0.6141 | 0.7837 | | No log | 8.8889 | 160 | 0.6148 | 0.1852 | 0.6148 | 0.7841 | | No log | 9.0 | 162 | 0.6149 | 0.1852 | 0.6149 | 0.7842 | | No log | 9.1111 | 164 | 0.6135 | 0.1852 | 0.6135 | 0.7832 | | No log | 9.2222 | 166 | 0.6099 | 0.1852 | 0.6099 | 0.7810 | | No log | 9.3333 | 168 | 0.6068 | 0.1852 | 0.6068 | 0.7790 | | No log | 9.4444 | 170 | 0.6060 | 0.1852 | 0.6060 | 0.7784 | | No log | 9.5556 | 172 | 0.6050 | 0.1852 | 0.6050 | 0.7778 | | No log | 9.6667 | 174 | 0.6033 | 0.1852 | 0.6033 | 0.7767 | | No log | 9.7778 | 176 | 0.6029 | 0.1852 | 0.6029 | 0.7765 | | No log | 9.8889 | 178 | 0.6023 | 0.1852 | 0.6023 | 0.7761 | | No log | 10.0 | 180 | 0.6023 | 0.1852 | 0.6023 | 0.7761 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
braindao/iq-code-evmind-14b-instruct-v0.2411.1
braindao
2024-11-25T10:10:34Z
8
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T10:05:01Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k2_task3_organization_fold1
MayBashendy
2024-11-25T10:07:49Z
162
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T10:05:33Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k2_task3_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k2_task3_organization_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6027 - Qwk: 0.0222 - Mse: 0.6027 - Rmse: 0.7763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.1429 | 2 | 3.6943 | 0.0 | 3.6943 | 1.9220 | | No log | 0.2857 | 4 | 1.8695 | 0.0 | 1.8695 | 1.3673 | | No log | 0.4286 | 6 | 1.0940 | 0.0 | 1.0940 | 1.0459 | | No log | 0.5714 | 8 | 0.7397 | 0.3654 | 0.7397 | 0.8601 | | No log | 0.7143 | 10 | 0.6617 | -0.0233 | 0.6617 | 0.8135 | | No log | 0.8571 | 12 | 0.6396 | -0.0233 | 0.6396 | 0.7997 | | No log | 1.0 | 14 | 0.7214 | -0.0577 | 0.7214 | 0.8493 | | No log | 1.1429 | 16 | 0.8774 | 0.2143 | 0.8774 | 0.9367 | | No log | 1.2857 | 18 | 0.7807 | 0.0984 | 0.7807 | 0.8836 | | No log | 1.4286 | 20 | 0.6395 | 0.0 | 0.6395 | 0.7997 | | No log | 1.5714 | 22 | 0.6691 | 0.0 | 0.6691 | 0.8180 | | No log | 1.7143 | 24 | 0.8455 | -0.0916 | 0.8455 | 0.9195 | | No log | 1.8571 | 26 | 1.2566 | 0.0 | 1.2566 | 1.1210 | | No log | 2.0 | 28 | 1.9493 | 0.0 | 1.9493 | 1.3962 | | No log | 2.1429 | 30 | 1.9458 | 0.0 | 1.9458 | 1.3949 | | No log | 2.2857 | 32 | 1.4166 | 0.0 | 1.4166 | 1.1902 | | No log | 2.4286 | 34 | 1.0109 | 0.0 | 1.0109 | 1.0054 | | No log | 2.5714 | 36 | 0.7919 | 0.2143 | 0.7919 | 0.8899 | | No log | 2.7143 | 38 | 0.8311 | 0.1879 | 0.8311 | 0.9117 | | No log | 2.8571 | 40 | 0.9516 | 0.0 | 0.9516 | 0.9755 | | No log | 3.0 | 42 | 0.9142 | 0.0 | 0.9142 | 0.9562 | | No log | 3.1429 | 44 | 0.7883 | 0.0763 | 0.7883 | 0.8879 | | No log | 3.2857 | 46 | 0.8340 | 0.0571 | 0.8340 | 0.9132 | | No log | 3.4286 | 48 | 0.8201 | 0.0571 | 0.8201 | 0.9056 | | No log | 3.5714 | 50 | 0.7335 | 0.1239 | 0.7335 | 0.8565 | | No log | 3.7143 | 52 | 0.6410 | 0.0 | 0.6410 | 0.8006 | | No log | 3.8571 | 54 | 0.6221 | 0.0 | 0.6221 | 0.7887 | | No log | 4.0 | 56 | 0.6607 | 0.0 | 0.6607 | 0.8128 | | No log | 4.1429 | 58 | 0.8841 | -0.0820 | 0.8841 | 0.9403 | | No log | 4.2857 | 60 | 0.9114 | -0.0820 | 0.9114 | 0.9547 | | No log | 4.4286 | 62 | 0.7034 | -0.0421 | 0.7034 | 0.8387 | | No log | 4.5714 | 64 | 0.6314 | 0.0 | 0.6314 | 0.7946 | | No log | 4.7143 | 66 | 0.5949 | 0.0 | 0.5949 | 0.7713 | | No log | 4.8571 | 68 | 0.5761 | 0.0 | 0.5761 | 0.7590 | | No log | 5.0 | 70 | 0.5803 | 0.0 | 0.5803 | 0.7618 | | No log | 5.1429 | 72 | 0.6058 | 0.1895 | 0.6058 | 0.7783 | | No log | 5.2857 | 74 | 0.5757 | 0.1895 | 0.5757 | 0.7588 | | No log | 5.4286 | 76 | 0.5368 | 0.0 | 0.5368 | 0.7327 | | No log | 5.5714 | 78 | 0.5330 | 0.0 | 0.5330 | 0.7301 | | No log | 5.7143 | 80 | 0.5448 | 0.0 | 0.5448 | 0.7381 | | No log | 5.8571 | 82 | 0.5658 | 0.0 | 0.5658 | 0.7522 | | No log | 6.0 | 84 | 0.6706 | 0.0 | 0.6706 | 0.8189 | | No log | 6.1429 | 86 | 0.8092 | 0.0222 | 0.8092 | 0.8996 | | No log | 6.2857 | 88 | 0.8005 | 0.0222 | 0.8005 | 0.8947 | | No log | 6.4286 | 90 | 0.6768 | 0.0222 | 0.6768 | 0.8227 | | No log | 6.5714 | 92 | 0.5966 | 0.0 | 0.5966 | 0.7724 | | No log | 6.7143 | 94 | 0.6005 | -0.0233 | 0.6005 | 0.7749 | | No log | 6.8571 | 96 | 0.5849 | -0.0233 | 0.5849 | 0.7648 | | No log | 7.0 | 98 | 0.5442 | 0.0 | 0.5442 | 0.7377 | | No log | 7.1429 | 100 | 0.5926 | 0.0222 | 0.5926 | 0.7698 | | No log | 7.2857 | 102 | 0.5723 | 0.0222 | 0.5723 | 0.7565 | | No log | 7.4286 | 104 | 0.5054 | 0.0 | 0.5054 | 0.7109 | | No log | 7.5714 | 106 | 0.4898 | 0.0 | 0.4898 | 0.6999 | | No log | 7.7143 | 108 | 0.5001 | 0.0 | 0.5001 | 0.7072 | | No log | 7.8571 | 110 | 0.5214 | -0.0421 | 0.5214 | 0.7221 | | No log | 8.0 | 112 | 0.5205 | 0.0 | 0.5205 | 0.7215 | | No log | 8.1429 | 114 | 0.5150 | 0.0 | 0.5150 | 0.7177 | | No log | 8.2857 | 116 | 0.5367 | 0.2667 | 0.5367 | 0.7326 | | No log | 8.4286 | 118 | 0.6132 | 0.2414 | 0.6132 | 0.7830 | | No log | 8.5714 | 120 | 0.6227 | 0.2326 | 0.6227 | 0.7891 | | No log | 8.7143 | 122 | 0.6027 | 0.2524 | 0.6027 | 0.7764 | | No log | 8.8571 | 124 | 0.5833 | 0.0222 | 0.5833 | 0.7637 | | No log | 9.0 | 126 | 0.5827 | 0.0222 | 0.5827 | 0.7634 | | No log | 9.1429 | 128 | 0.5799 | 0.0 | 0.5799 | 0.7615 | | No log | 9.2857 | 130 | 0.5873 | 0.0 | 0.5873 | 0.7664 | | No log | 9.4286 | 132 | 0.5931 | 0.0222 | 0.5931 | 0.7701 | | No log | 9.5714 | 134 | 0.5958 | 0.0222 | 0.5958 | 0.7719 | | No log | 9.7143 | 136 | 0.5963 | 0.0222 | 0.5963 | 0.7722 | | No log | 9.8571 | 138 | 0.6013 | 0.0222 | 0.6013 | 0.7754 | | No log | 10.0 | 140 | 0.6027 | 0.0222 | 0.6027 | 0.7763 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
QuantFactory/Llama-Sentient-3.2-3B-Instruct-GGUF
QuantFactory
2024-11-25T10:05:13Z
406
2
transformers
[ "transformers", "gguf", "Llama", "Llama-Cpp", "Llama3.2", "Instruct", "3B", "bin", "Sentient", "text-generation", "en", "dataset:mlabonne/lmsys-arena-human-preference-55k-sharegpt", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-3B-Instruct", "license:creativeml-openrail-m", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-22T04:56:16Z
--- license: creativeml-openrail-m datasets: - mlabonne/lmsys-arena-human-preference-55k-sharegpt language: - en base_model: - meta-llama/Llama-3.2-3B-Instruct pipeline_tag: text-generation library_name: transformers tags: - Llama - Llama-Cpp - Llama3.2 - Instruct - 3B - bin - Sentient --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/Llama-Sentient-3.2-3B-Instruct-GGUF This is quantized version of [prithivMLmods/Llama-Sentient-3.2-3B-Instruct](https://huggingface.co/prithivMLmods/Llama-Sentient-3.2-3B-Instruct) created using llama.cpp # Original Model Card ## Llama-Sentient-3.2-3B-Instruct Modelfile | File Name | Size | Description | Upload Status | |-----------------------------------------|--------------|-----------------------------------------|----------------| | `.gitattributes` | 1.57 kB | Git attributes configuration file | Uploaded | | `README.md` | 42 Bytes | Initial commit README | Uploaded | | `config.json` | 1.04 kB | Configuration file | Uploaded | | `generation_config.json` | 248 Bytes | Generation configuration file | Uploaded | | `pytorch_model-00001-of-00002.bin` | 4.97 GB | PyTorch model file (part 1) | Uploaded (LFS) | | `pytorch_model-00002-of-00002.bin` | 1.46 GB | PyTorch model file (part 2) | Uploaded (LFS) | | `pytorch_model.bin.index.json` | 21.2 kB | Model index file | Uploaded | | `special_tokens_map.json` | 477 Bytes | Special tokens mapping | Uploaded | | `tokenizer.json` | 17.2 MB | Tokenizer JSON file | Uploaded (LFS) | | `tokenizer_config.json` | 57.4 kB | Tokenizer configuration file | Uploaded | | Model Type | Size | Context Length | Link | |------------|------|----------------|------| | GGUF | 3B | - | [๐Ÿค— Llama-Sentient-3.2-3B-Instruct-GGUF](https://huggingface.co/prithivMLmods/Llama-Sentient-3.2-3B-Instruct-GGUF) | The **Llama-Sentient-3.2-3B-Instruct** model is a fine-tuned version of the **Llama-3.2-3B-Instruct** model, optimized for **text generation** tasks, particularly where instruction-following abilities are critical. This model is trained on the **mlabonne/lmsys-arena-human-preference-55k-sharegpt** dataset, which enhances its performance in conversational and advisory contexts, making it suitable for a wide range of applications. ### Key Use Cases: 1. **Conversational AI**: Engage in intelligent dialogue, offering coherent responses and following instructions, useful for customer support and virtual assistants. 2. **Text Generation**: Generate high-quality, contextually appropriate content such as articles, summaries, explanations, and other forms of written communication based on user prompts. 3. **Instruction Following**: Follow specific instructions with accuracy, making it ideal for tasks that require structured guidance, such as technical troubleshooting or educational assistance. The model uses a **PyTorch-based architecture** and includes a range of necessary files such as configuration files, tokenizer files, and model weight files for deployment. ### Intended Applications: - **Chatbots** for virtual assistance, customer support, or as personal digital assistants. - **Content Creation Tools**, aiding in the generation of written materials, blog posts, or automated responses based on user inputs. - **Educational and Training Systems**, providing explanations and guided learning experiences in various domains. - **Human-AI Interaction** platforms, where the model can follow user instructions to provide personalized assistance or perform specific tasks. With its strong foundation in instruction-following and conversational contexts, the **Llama-Sentient-3.2-3B-Instruct** model offers versatile applications for both general and specialized domains.
PotatoB/task_3-exp
PotatoB
2024-11-25T10:03:32Z
5
0
null
[ "safetensors", "mistral", "merge", "mergekit", "potatoB/task_2-1", "potatoB/task_1-2", "license:apache-2.0", "region:us" ]
null
2024-11-25T10:00:36Z
--- license: apache-2.0 tags: - merge - mergekit - potatoB/task_2-1 - potatoB/task_1-2 --- # task_3-exp task_3-exp is a merged model generated for Model Kinship experiments, originating from * [potatoB/task_2-1](https://huggingface.co/potatoB/task_2-1) * [potatoB/task_1-2](https://huggingface.co/potatoB/task_1-2) ## ๐Ÿงฉ Configuration ```yaml slices: - sources: - model: potatoB/task_2-1 layer_range: [0, 32] - model: potatoB/task_1-2 layer_range: [0, 32] merge_method: slerp base_model: potatoB/task_2-1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 ```
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k1_task3_organization_fold1
MayBashendy
2024-11-25T10:02:13Z
181
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T10:00:46Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k1_task3_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k1_task3_organization_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4881 - Qwk: 0.3654 - Mse: 0.4881 - Rmse: 0.6987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.2 | 2 | 4.3733 | 0.0 | 4.3733 | 2.0912 | | No log | 0.4 | 4 | 3.0656 | 0.0041 | 3.0656 | 1.7509 | | No log | 0.6 | 6 | 1.9187 | 0.0 | 1.9187 | 1.3852 | | No log | 0.8 | 8 | 1.2784 | 0.0 | 1.2784 | 1.1307 | | No log | 1.0 | 10 | 1.0288 | 0.0 | 1.0288 | 1.0143 | | No log | 1.2 | 12 | 0.8073 | 0.2143 | 0.8073 | 0.8985 | | No log | 1.4 | 14 | 0.8244 | -0.0708 | 0.8244 | 0.9080 | | No log | 1.6 | 16 | 0.8426 | -0.0708 | 0.8426 | 0.9179 | | No log | 1.8 | 18 | 0.8425 | -0.2623 | 0.8425 | 0.9179 | | No log | 2.0 | 20 | 0.7834 | -0.2737 | 0.7834 | 0.8851 | | No log | 2.2 | 22 | 0.7676 | -0.0233 | 0.7676 | 0.8761 | | No log | 2.4 | 24 | 0.7458 | -0.0233 | 0.7458 | 0.8636 | | No log | 2.6 | 26 | 0.7393 | -0.0233 | 0.7393 | 0.8598 | | No log | 2.8 | 28 | 0.7465 | -0.0233 | 0.7465 | 0.8640 | | No log | 3.0 | 30 | 0.7807 | -0.0708 | 0.7807 | 0.8836 | | No log | 3.2 | 32 | 0.7686 | -0.0708 | 0.7686 | 0.8767 | | No log | 3.4 | 34 | 0.7733 | 0.1239 | 0.7733 | 0.8794 | | No log | 3.6 | 36 | 0.7919 | -0.0820 | 0.7919 | 0.8899 | | No log | 3.8 | 38 | 0.8260 | 0.0571 | 0.8260 | 0.9088 | | No log | 4.0 | 40 | 0.8921 | 0.0253 | 0.8921 | 0.9445 | | No log | 4.2 | 42 | 0.9072 | 0.0253 | 0.9072 | 0.9524 | | No log | 4.4 | 44 | 0.8748 | 0.0403 | 0.8748 | 0.9353 | | No log | 4.6 | 46 | 0.7669 | 0.1538 | 0.7669 | 0.8757 | | No log | 4.8 | 48 | 0.7034 | 0.0 | 0.7034 | 0.8387 | | No log | 5.0 | 50 | 0.7061 | 0.0 | 0.7061 | 0.8403 | | No log | 5.2 | 52 | 0.7177 | -0.0233 | 0.7177 | 0.8472 | | No log | 5.4 | 54 | 0.7338 | -0.0233 | 0.7338 | 0.8566 | | No log | 5.6 | 56 | 0.7832 | 0.4590 | 0.7832 | 0.8850 | | No log | 5.8 | 58 | 0.8263 | 0.0571 | 0.8263 | 0.9090 | | No log | 6.0 | 60 | 0.9227 | 0.0253 | 0.9227 | 0.9606 | | No log | 6.2 | 62 | 0.8976 | 0.0253 | 0.8976 | 0.9474 | | No log | 6.4 | 64 | 0.8543 | 0.0403 | 0.8543 | 0.9243 | | No log | 6.6 | 66 | 0.7962 | 0.2443 | 0.7962 | 0.8923 | | No log | 6.8 | 68 | 0.7551 | 0.1239 | 0.7551 | 0.8690 | | No log | 7.0 | 70 | 0.7269 | 0.0984 | 0.7269 | 0.8526 | | No log | 7.2 | 72 | 0.6806 | 0.0984 | 0.6806 | 0.8250 | | No log | 7.4 | 74 | 0.6234 | 0.1239 | 0.6234 | 0.7896 | | No log | 7.6 | 76 | 0.5757 | 0.0984 | 0.5757 | 0.7587 | | No log | 7.8 | 78 | 0.5394 | 0.3529 | 0.5394 | 0.7345 | | No log | 8.0 | 80 | 0.4984 | 0.1239 | 0.4984 | 0.7059 | | No log | 8.2 | 82 | 0.4521 | 0.3654 | 0.4521 | 0.6724 | | No log | 8.4 | 84 | 0.4245 | 0.4884 | 0.4245 | 0.6516 | | No log | 8.6 | 86 | 0.4220 | 0.4884 | 0.4220 | 0.6496 | | No log | 8.8 | 88 | 0.4231 | 0.4884 | 0.4231 | 0.6505 | | No log | 9.0 | 90 | 0.4275 | 0.4211 | 0.4275 | 0.6538 | | No log | 9.2 | 92 | 0.4397 | 0.4211 | 0.4397 | 0.6631 | | No log | 9.4 | 94 | 0.4567 | 0.4211 | 0.4567 | 0.6758 | | No log | 9.6 | 96 | 0.4734 | 0.4211 | 0.4734 | 0.6880 | | No log | 9.8 | 98 | 0.4866 | 0.3654 | 0.4866 | 0.6975 | | No log | 10.0 | 100 | 0.4881 | 0.3654 | 0.4881 | 0.6987 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
mini1013/master_cate_ac4
mini1013
2024-11-25T10:01:43Z
89
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-25T10:01:22Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ๊ธธ์ด์กฐ์ ˆ ์•ˆ๊ฒฝ๊ณ ์ • ๋ฐด๋“œ ์ฝ”๋ฐ›์นจ ํŒจ๋“œ ์šด๋™ ์บ ํ•‘ ๋“ฑ์‚ฐ ์ง„๋ธŒ๋ผ์šด ์•Œ๋ฆฌ๋ชฝ๋“œ - text: ๋ ˆ์ด๋ฐด ์•ˆ๊ฒฝํ…Œ RB3691VF 2509 ๋‚จ์ž ์—ฌ์ž ๋™๊ทธ๋ž€์•ˆ๊ฒฝ ์•„์‹œ์•ˆํ• ์‹œ์˜จ์•„์ด์—”ํ‹ฐ - text: ๋ฐ€์ฐฉ ์Šคํฌ์ธ ์•ˆ๊ฒฝ์ค„ ํ”๋“ค๋ฆผ๋ฐฉ์ง€ ์•ˆ๊ฒฝ์ŠคํŠธ๋žฉ ๋น„์•ค๋น„ - text: '[ํ…๋ฐ”์ดํ…]๋ฐ”์ฒดํƒ€ํŒฉํ† ๋ฆฌ ๊ฐ€์ฃฝ ์•ˆ๊ฒฝ ์ผ€์ด์Šค 08 ์˜ค๋ Œ์ง€_์ถ”๊ฐ€ ์•ˆ ํ•จ_์ถ”๊ฐ€ ์•ˆ ํ•จ ์‹ ์„ธ๊ณ„๋ชฐ' - text: TUMI ํˆฌ๋ฏธ ์นด๋ณธ ํ‹ฐํƒ€๋Š„ ๋ช…ํ’ˆ ์•ˆ๊ฒฝํ…Œ ๋ฉ”ํƒˆ ์Šคํ€˜์–ด ๋‚จ์ž ์—ฌ์ž ๊ณต์šฉ ์•ˆ๊ฒฝ 04.TU10-0003-01 LFmall02 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9104360692836626 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 5.0 | <ul><li>'์ดˆ๊ฒฝ๋Ÿ‰ ๊ตญ์‚ฐ ์•ˆ๊ฒฝํ…Œ ๋ฒ ํƒ€ ์šธํ…œ ์นด๋ณธ ํ‹ฐํƒ€๋Š„ ๋ฟ”ํ…Œ์•ˆ๊ฒฝ 551-599_S571-2 ๋ธŒ๋ผ์šดํˆฌํ†ค ENA์•„์ด์›จ์–ด'</li><li>'B019 ORIGINAL GLASS CRYSTAL GREEN '</li><li>'๋‹ˆ์‹œ๋ฐ์นด์ฆˆ์˜ค BROWLINE2 ํ•˜๊ธˆํ…Œ ๊ทผ์ ์™ธ์„  ์ฐจ๋‹จ๋ Œ์ฆˆ ์•„์ด๋ผ์ดํฌ(EYE LIKE)'</li></ul> | | 1.0 | <ul><li>'๋ ˆ๋”๋ ›์†Œ๊ฐ€์ฃฝ์„ ๊ธ€๋ผ์ŠคํŒŒ์šฐ์น˜ํœด๋Œ€์šฉ์•ˆ๊ฒฝ์ผ€์ด์Šค ์ด์ •๋ฏผ'</li><li>'์œ„์— ์•ˆ๊ฒฝ ์“ฐ๋Š” ํŒŒ์šฐ์น˜ ํŽธ๊ด‘ ๋ผ์šฐ๋Š” ์„ ๊ธ€๋ผ์Šค 3์ข… ์„ธํŠธ ์„ ๊ทธ๋ผ์Šค ํด๋ฆฝ ์—๋ผ์šฐ๋Š” ํ”Œ๋ฆฝ ์˜จ ํด๋ฆฝ์„ ๊ธ€๋ผ์Šค3์ข…์„ธํŠธ_์ผ๋ฐ˜๋ธ”๋ž™ ํ™‰ํฌ์—˜'</li><li>'ํœด๋Œ€์šฉ ๊ฐ€์ฃฝ ์„ ๊ธ€๋ผ์Šค ์•ˆ๊ฒฝ ํŒŒ์šฐ์น˜ ์ผ€์ด์Šค ๋ณด๊ด€ํ•จ ์•ˆ PU์•ˆ๊ฒฝ์ผ€์ด์Šค_๊ทธ๋ ˆ์ด ๋ผ์ดํ”„ํŒจ์…˜'</li></ul> | | 3.0 | <ul><li>'์•„์ด์—…๊ฝˆ๋ฐฐ๊ธฐ์ธ์กฐ๊ฐ€์ฃฝ์•ˆ๊ฒฝ์ค„10p์„ธํŠธ์„ ๊ธ€๋ผ์Šค์ค„ ์œ ์–ด๋“œ๋ฆผ์ปค๋จธ์Šค'</li><li>'์ŠคํŠธ๋žฉ ์บ์ฃผ์–ผ๋””์ž์ธ์ค„ ์Šคํ† ํผ์ค„ ์•ˆ๊ฒฝ๊ฑธ์ด ๋ˆ B ๋”ํŽญ๊ท„์ƒต'</li><li>'์ฒœ์—ฐ ํฌ๋ฆฌ์Šคํƒˆ ์•ˆ๊ฒฝ ์„ ๊ธ€๋ผ์Šค ๊ฑธ์ด ์ค„ ์›์„ ๋น„์ฆˆ ๋นˆํ‹ฐ์ง€ ์—์Šค๋‹‰ ๋งˆ์Šคํฌ ์ŠคํŠธ๋žฉ ๊ฒธ์šฉ ๋ธ”๋ฃจ 3mm 70-75CM nouville'</li></ul> | | 0.0 | <ul><li>'๊ฐค๋Ÿฌ๋ฆฌ์•„ NIRNIR SUNGLASS 5 COLOR GREEN ๊ฐค๋Ÿฌ๋ฆฌ์•„๋ชฐ'</li><li>'์—ฌ์ž ์ผ“์•„์ด ๋ฟ”ํ…Œ ์„ ๊ทธ๋ผ์Šค ์ฌ๊ทธ๋ผ์Šค ๋‚จ์ž RORGGE 2111 ์ƒํ’ˆ์„ ํƒ_2์œ ๊ด‘๋ธ”๋ž™ ์˜จ๋‹ฌ์ด'</li><li>'๋ฎค์ฆˆ ์„œํด ๋ฟ”ํ…Œ์„ ๊ธ€๋ผ์Šค ์ฝ”์ฝ”์•„ ํ‘ธ์น˜๋ฐฑ'</li></ul> | | 2.0 | <ul><li>'๋กœ์—๋“œ ์•ˆ๊ฒฝ ์ž๊ตญ ์ฝ”ํŒจ๋“œ ์ฝ”๋ฐ›์นจ ๋ˆŒ๋ฆผ ์„ ๊ธ€๋ผ์Šค ์ฝ” ํ†ต์ฆ ๋ฐฉ์ง€ ํŒจ๋“œ ๊ต์ฒด ์Šคํ‹ฐ์ปค ์•ˆ๊ฒฝ์ฝ”ํŒจ๋“œ 1.8mm๏ผˆํ™”์ดํŠธ๏ผ‰_2.8mm(ํ™”์ดํŠธ) ๋กœ์—๋“œ'</li><li>'[ํžํฌ]๊ตญ์‚ฐ ๊ณ ๊ธ‰ ์ดˆ๊ทน์„ธ์‚ฌ ๋ Œ์ฆˆ ์•ˆ๊ฒฝ๋‹ฆ์ด ๊น€์„œ๋ฆผ๋ฐฉ์ง€ ํด๋ฆฌ๋„ˆ ํฌ๋ฆฌ๋„ˆ ์•…๊ธฐ์ˆ˜๊ฑด ์•ˆ๊ฒฝ์ฒœ ์œตs 05. knit ์•ˆ๊ฒฝ๋‹ฆ์ด30๋งค 15x18cm_๋ธ”๋ฃจ ๋ชจ์•„ํ…์Šค'</li><li>'์ž์šฐ๋ฒ„ ๋ Œ์ฆˆ ์ผ€์–ด ํด๋ฆฌ๋‹ ํ‹ฐ์Šˆ 200๋งค ๋ฉ”๋””์œ„'</li></ul> | | 4.0 | <ul><li>'์‚ฐ๋ฆฌ์˜ค ์•ˆ๊ฒฝ์ •๋ฆฌํ•จ ์•ˆ๊ฒฝ์ผ€์ด์Šค ์„ธํŠธ 6์ข… ์•ˆ๊ฒฝ์ผ€์ด์Šค์‹œ๋‚˜๋ชจ๋กค ์ง€์—์ด์น˜๊ธ€๋กœ๋ฒŒ'</li><li>'(์ด๊ฑฐ์ฐœ) ํ”„๋ฆฌ๋ฏธ์—„ ๊ฐ€์ฃฝ ์•ˆ๊ฒฝ์ง‘ ์•ˆ๊ฒฝ์ผ€์ด์Šค ๊ฐ€์ฃฝ์•ˆ๊ฒฝ์ง‘ ์Šค์นด์ด ์ œ์ด์ผ€์ด'</li><li>'์ŠคํŠธ๋žฉ ์•ˆ๊ฒฝ์ผ€์ด์Šค ํœด๋Œ€์šฉ ์•ˆ๊ฒฝํŒŒ์šฐ์น˜ ๊ฐ€์ฃฝ์•ˆ๊ฒฝ๋ณด๊ด€์ง‘ ์„ ๊ธ€๋ผ์Šค๋ณด๊ด€์ผ€์ด์Šค No.01 ์ŠคํŠธ๋žฉ ์•ˆ๊ฒฝ์ผ€์ด์Šค ๋ธ”๋ž™ ์—ฌ์„ ์˜'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9104 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_ac4") # Run inference preds = model("๋ฐ€์ฐฉ ์Šคํฌ์ธ ์•ˆ๊ฒฝ์ค„ ํ”๋“ค๋ฆผ๋ฐฉ์ง€ ์•ˆ๊ฒฝ์ŠคํŠธ๋žฉ ๋น„์•ค๋น„") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.53 | 20 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0213 | 1 | 0.4524 | - | | 1.0638 | 50 | 0.2583 | - | | 2.1277 | 100 | 0.0642 | - | | 3.1915 | 150 | 0.0781 | - | | 4.2553 | 200 | 0.0806 | - | | 5.3191 | 250 | 0.0391 | - | | 6.3830 | 300 | 0.0011 | - | | 7.4468 | 350 | 0.0003 | - | | 8.5106 | 400 | 0.0001 | - | | 9.5745 | 450 | 0.0001 | - | | 10.6383 | 500 | 0.0 | - | | 11.7021 | 550 | 0.0 | - | | 12.7660 | 600 | 0.0 | - | | 13.8298 | 650 | 0.0 | - | | 14.8936 | 700 | 0.0 | - | | 15.9574 | 750 | 0.0 | - | | 17.0213 | 800 | 0.0 | - | | 18.0851 | 850 | 0.0 | - | | 19.1489 | 900 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mini1013/master_cate_ac3
mini1013
2024-11-25T09:57:32Z
85
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-25T09:57:06Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ์˜ด๋ฏ€ ๊ต์ฒด์šฉ ๊ฐ€์ฃฝ ๋ฒจํŠธ๋ˆ ๋ฒจํŠธ์ค„ ํ—ˆ๋ฆฌ๋  ๋ฒจํŠธ ๊ฐ€์ฃฝ ์ˆ˜๋™ ์ž๋™์šฉ 22_์ˆ˜๋™๋ฒจํŠธ์šฉ ์ดํƒœ๋ฆฌ๊ฐ€์ฃฝ 3.3cm_์นด๋ฉœ(42์ธ์น˜) ์—์Šค์ปดํผ๋‹ˆ - text: ์—ฌ์„ฑ ์—ฌ์ž ํŒจ์…˜ ์™€์ด๋“œ ๋ฐด๋”ฉ ๋ฒจํŠธ ํŒจ๋”ฉ ์ฝ”ํŠธ ํ—ˆ๋ฆฌ ํ—ˆ๋ฆฌ๋  ์›ํ”ผ์Šค ๊ฐ€๋””๊ฑด ์ฝ”๋”” ํŒจ๋”ฉ๋ฒจํŠธ 088_(SH30)_์•„์ด๋ณด๋ฆฌ {SH30-Ivory} ์Šค์›ฐswell - text: '[1 + 1]์ญ‰์ญ‰์ŠคํŒ ๋Š˜์–ด๋‚˜๋Š” ๋ฐด๋”ฉ ๋ฒจํŠธ ๋‚จ์—ฌ๊ณต์šฉ ์บ์ฅฌ์–ผ ๋ฐ์ผ๋ฆฌ ๊ตฐ์šฉ ํ…ํ‹ฐ์ปฌ ๋ฒจํŠธ 01. ๋Š˜์–ด๋‚˜๋Š” ๋ฒจํŠธ 1+1_05. ๋‹คํฌ๋ธŒ๋ผ์šด_๋ผ์ดํŠธ๋ธŒ๋ผ์šด ์Šคํ† ๋ฆฌ๋ชฐ2' - text: '[๋กœ์ œ์ด] ์ •์žฅ ์บ์ฃผ์–ผ ๊ฐ€์ฃฝ ๋”๋ธ” ์„œ์ŠคํŽœ๋” ๋ฉœ๋นต NRMGSN011_BL ๋ธ”๋ž™_free ' - text: ๋ชจ๋‘์ƒต ๋‚จ์ž ๊ฐ€์ฃฝ ์ฒญ๋ฐ”์ง€๋ฒจํŠธ ์บ์ฃผ์–ผ๋ฒจํŠธ ํ—ˆ๋ฆฌ๋  ์ด๋‹ˆ์…œ๊ฐ์ธ 7. ๋ธŒ๋ผ์šด D107_ํ•œ๊ธ€(์ •์ž์ฒด)_๋ณดํ†ต๊ธธ์ด(36๊นŒ์ง€์ฐฉ์šฉ๊ฐ€๋Šฅ) ๋ชจ๋‘์ƒพ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9649836541954232 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | <ul><li>'๊ณ ๋ฆฌ ์ง‘๊ฒŒ ๊ฐ€๋ฐฉ ์—ฌํ–‰์šฉ ๋ฉœ๋นต ํด๋ฆฝ ๋‹ค์šฉ๋„ ์‚ผ๊ฐ๋ฒ„ํด ํ›„ํฌ ์˜๋กœ์šฐ๋ชฐ'</li><li>'ํŒจ์…˜ ์—ฌ์„ฑ์„œ์ŠคํŽœ๋” ์ŠคํŠธ๋žฉ ์–‘๋ณต ์ถœ๊ทผ๋ฃฉ ์ •์žฅ ์ฝ”์ŠคํŠฌ ํฐ์ƒ‰ ํญ 2.5cm 120cm ๋งด๋งค2'</li><li>'ํŒจ์…˜ ์—ฌ์„ฑ์„œ์ŠคํŽœ๋” ์ŠคํŠธ๋žฉ ์–‘๋ณต ์ถœ๊ทผ๋ฃฉ ์ •์žฅ ์ฝ”์ŠคํŠฌ ํŒŒ๋ž€์ƒ‰ ํฐ์ƒ‰ ๋นจ๊ฐ„์ƒ‰ ์ค„๋ฌด๋Šฌ ํญ2.5 120cm ๋งด๋งค2'</li></ul> | | 2.0 | <ul><li>'Basic Leather Belt ๋„ค์ด๋น„_100cm ๋งŒ๋‹ฌ๋ฌธํ™”์—ฌํ–‰์‚ฌ'</li><li>'๋‹ค์ด์—๋‚˜๋กค๋ž‘ ๋Ÿฌ๋ธ”๋ฆฌ ์—ฌ์ž๋ฒจํŠธ 146276 ์€์žฅ ๋ธŒ๋ผ์šด FCB0012CM_L 105 ๋„ค์žŽํด๋กœ๋ฒ„๋งˆ์ผ“'</li><li>'[๊ฐค๋Ÿฌ๋ฆฌ์•„] ํ—ค์ง€์Šคํ•ธ๋“œ๋ฐฑHJBE2F406W2๋ธŒ๋ผ์šด ์Šคํ‹ฐ์น˜์žฅ์‹ ์†Œ๊ฐ€์ฃฝ ์—ฌ์„ฑ ๋ฒจํŠธ(ํƒ€์ž„์›”๋“œ) ํ•œํ™”๊ฐค๋Ÿฌ๋ฆฌ์•„(์ฃผ)'</li></ul> | | 0.0 | <ul><li>'(์•„ํฌํ…Œ๋ฆญ์Šค)(๊ณต์‹ํŒ๋งค์ฒ˜)(23SS) ์ปจ๋ฒ ์ด์–ด ๋ฒจํŠธ 32mm (AENSUX5577) BLACK_SM '</li><li>'[๊ฐค๋Ÿฌ๋ฆฌ์•„] ํ—ค์ง€์Šคํ•ธ๋“œ๋ฐฑ HJBE2F775BK_ ๋ธ”๋ž™ ๋น…๋กœ๊ณ  ๋ฒ„ํด ๊ฐ€์ฃฝ ์ž๋™๋ฒจํŠธ(ํƒ€์ž„์›”๋“œ) ํ•œํ™”๊ฐค๋Ÿฌ๋ฆฌ์•„(์ฃผ)'</li><li>'๋‹ฅ์Šค_ํ•ธ๋“œ๋ฐฑ (์„ ๋ฌผํฌ์žฅ/์‡ผํ•‘๋ฐฑ๋™๋ด‰) ๋ธ”๋ž™ ์ฒดํฌ๋ฐฐ์ƒ‰ ๊ฐ€์ฃฝ ์ž๋™๋ฒจํŠธ DBBE3E990BK ๋กฏ๋ฐ๋ฐฑํ™”์ 2๊ด€'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9650 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_ac3") # Run inference preds = model("[๋กœ์ œ์ด] ์ •์žฅ ์บ์ฃผ์–ผ ๊ฐ€์ฃฝ ๋”๋ธ” ์„œ์ŠคํŽœ๋” ๋ฉœ๋นต NRMGSN011_BL ๋ธ”๋ž™_free ") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.6133 | 17 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0417 | 1 | 0.394 | - | | 2.0833 | 50 | 0.0731 | - | | 4.1667 | 100 | 0.0 | - | | 6.25 | 150 | 0.0 | - | | 8.3333 | 200 | 0.0 | - | | 10.4167 | 250 | 0.0 | - | | 12.5 | 300 | 0.0 | - | | 14.5833 | 350 | 0.0 | - | | 16.6667 | 400 | 0.0 | - | | 18.75 | 450 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
omarelsayeed/LayoutReader90Small
omarelsayeed
2024-11-25T09:55:03Z
131
0
transformers
[ "transformers", "safetensors", "layoutlmv3", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-25T09:54:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mini1013/master_cate_ac2
mini1013
2024-11-25T09:55:02Z
95
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-25T09:54:41Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: MLB [MLB] ๋ฃจํ‚ค ์–ธ์ŠคํŠธ๋Ÿญ์ณ ๋ณผ์บก 24์ข… ํƒ1 203993 ์„ ํƒ 20) 3ACP7701N-07ORL_F ์œ„๋“œํ™€๋ฆฌํˆฌ - text: ๋‚จ์—ฌ๊ณต์šฉ ๊ธฐ๋ณธ๊ตฐ๋ชจ 4์ปฌ๋Ÿฌ EVE ์นดํ‚ค ์—๋ธŒ๋ฆฌ์”ฝ๊ตฟ - text: ๊ณจ๋ด์™€์ด์–ด๋ฒ„ํ‚ทํ–‡(T)7252 ๋ธŒ๋ผ์šด ๋ชจํ‹ฐ๋ธŒ์ฝ”๋ฆฌ์•„ - text: ํŒจ์…˜์šธ๋ฒ™๊ฑฐ์ง€97 ๋ฒ ์ด์ง€ ๋””ํ”Œ์ฝ”๋ฆฌ์•„ (Digital Plus Korea) - text: '[๋‹ฅ์Šค](๊ฐ•๋‚จ์ )DBHE4EL01W2 ๋ธŒ๋ผ์šด ์ฒดํฌ ๋ฉด ํ—ŒํŒ…์บก ์‹ ์„ธ๊ณ„๋ฐฑํ™”์ ' inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.8489339496048904 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 13 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 10.0 | <ul><li>'๋ฐ€๋กœ [Exclusive] Holiday Signature Ball Cap (20Colors) MINT GRAY ํฌ์ฑŒ๋ฆฐ์ง€'</li><li>'(๊ณจ๋ผ) ๋‚จ๋…€๊ณต์šฉ (GL)CONTRAST STITCHED CAP (3 COLOR) WW9G3SAAC101 ์—ฐํ•‘ํฌ_FRE '</li><li>'๋ฐ€๋กœ [Exclusive] Holiday Signature Ball Cap (20Colors) STONE BLACK ํฌ์ฑŒ๋ฆฐ์ง€'</li></ul> | | 4.0 | <ul><li>'๊ฝˆ๋ฐฐ๊ธฐ ๋น„๋‹ˆ ๋ชจ์ž ๋‘๊บผ์šด ๊ณจ๋ฌด ํ„ธ ๋œจ๊ฐœ ์—ฌ์„ฑ ๊ฒจ์šธ ์บก ์•ŒํŒŒ์นด ๋‚จ์ž ์ปคํ”Œ ๋‹ˆํŠธ ์ฃผํ™ฉ์ƒ‰_S(์•„์ด 32-52 cm) ์•ค๋””์ผ๋ ˆ๋ธ'</li><li>'ํŒจ์…˜๋ชจ์ž ๋ฐฉํ•œ ๋‚จ์ž ๋‹ˆํŠธ ํ›„๋“œ ๊ฒจ์šธ ์žฅ๊ฐ‘ ๊ฐ€์„ ์›Œ๋จธ ๋„ํ†ฐํ•œ 3์ข…์„ธํŠธ ๊ธฐ๋ชจ ๋ธ”๋ž™ ๋งˆ์ดํด๋กœ๋“œ'</li><li>'ํ„ธ๋ชจ์ž ๋”ฐ๋œปํ•œ ๋‚š์‹œ ๋ชจ์ž ์•„๋น  ์ค‘๋…„๋‚จ์„ฑ ๋…ธ์ธ ๊ฒจ์šธ ์˜ต์…˜06 ์—์Šค์•ค์ง€์ƒต'</li></ul> | | 7.0 | <ul><li>'[ํ•˜ํ”„ํด๋Ÿฝ/๊ตฌ๊น€์Šค]๊ตฌ๊น€์Šค ๋ชจ์ž(์Šคํฌ์ธ /๋“ฑ์‚ฐ/์—ฌํ–‰/๋ฐฉ์ˆ˜) BEST 7์ข… ๊ท ์ผ๊ฐ€ 763_๋ธ”๋ž™_D type ํ•˜ํ”„ํด๋Ÿฝ'</li><li>'์บ‰๊ณจ ์•„์›ƒ๋„์–ด ์•กํ‹ฐ๋น„ํ‹ฐ ๋ฒ„์ผ“ 4480 ์—ํฌ๋ฃจ M AKํ”Œ๋ผ์ž1๊ด€'</li><li>'[๋ฒค์‹œ๋ชฝ](์‹ ์„ธ๊ณ„์„ผํ…€์ )[23FW] WINTER BUCKET HAT - 2color NAVY_FREE ์ฃผ์‹ํšŒ์‚ฌ ์—์Šค์—์Šค์ง€๋‹ท์ปด'</li></ul> | | 3.0 | <ul><li>'๊ณ ํƒ„์„ฑ ๋ถ€๋“œ๋Ÿฌ์šด ๋ฉ”์‰ฌ ์›๋‹จ ์šด๋™์•ผ์™ธํ™œ๋™ ์Šค์นดํ”„ ๋‘๊ฑด ์—ฐ๊ทธ๋ ˆ์ด ๋“œ๋ฆผํ”ฝ์ณ์Šค'</li><li>'[๋กœ์Šค์ฝ”]๋ฐ˜๋‹ค๋‚˜ ์Šค์นดํ”„ ํ—ค์–ด๋ฐด๋“œ ํŽ˜์ด์ฆ๋ฆฌ ์†์ˆ˜๊ฑด OLIVE DRAB_4051/Freesize ํŒจ์…˜ํ”Œ๋Ÿฌ์Šค'</li><li>'ํŽ˜์ด์ฆ๋ฆฌ ๋ฐ˜๋‹ค๋‚˜ ํ—ค์–ด ๋จธ๋ฆฌ๋‘๊ฑด ๋น„ ์†์ˆ˜๊ฑด ์Šค์นดํ”„ ๊ทธ๋ฆฐ ๋ณด๋ฌผ์‚ผ'</li></ul> | | 1.0 | <ul><li>'๋ฐฉํ•œ๋ชจ์ž2์ข… ๊ท€๋‹ฌ์ด ํ„ธ๋ชจ์ž ๊ตฐ๋ฐค ์Šคํ‚ค ์šฉํ’ˆ ํŠธ๋ž˜ํผํ–‡ ๋งˆ์Šคํฌ ์บก๋ฐฉํ•œ๋ชจ์ž 01.๋ถˆ๊ตฌ๋ฉ์ด๊ตฐ๋ฐฉ๋ชจ์ž ์ œ์ด์ผ€์ด ์•„ํŠธ ๊ฐค๋Ÿฌ๋ฆฌ'</li><li>'[MLB] ํŒจ๋”ฉ ํŠธ๋ฃจํผ ๊ท€๋‹ฌ์ด ํ–‡(3AWMPH136-50BKS) ๋ธ”๋ž™-50BKS/59H ์—์ด์ผ€์ด์—์Šค์•ค๋””(์ฃผ) AKํ”Œ๋ผ์ž ํ‰ํƒ์ '</li><li>'๊ฒจ์šธ ๊ณฐ๋Œ์ด ํ›„๋“œ ๊ท€๋‹ฌ์ด ๋ชจ์ž ๋ชฉ๋Œ์ด ๋™๋ฌผ ํ„ธ๋ชจ์ž 05.๋ธŒ๋ผ์šด ์„์ง„์ผ€์ด ์ฃผ์‹ํšŒ์‚ฌ'</li></ul> | | 9.0 | <ul><li>'์Šค๋ƒ…๋ฐฑ ํŒจ์…˜๋ชจ์ž snapback (ํˆฌํ†ค)๊ทธ๋ ˆ์ด์˜ค๋ Œ์ง€ ๋ฃจ๋‚˜๋งˆ์ผ“'</li><li>'์Šค๋ƒ…๋ฐฑ ํŒจ์…˜๋ชจ์ž snapback ๋ ˆ๋“œ ๋ฃจ๋‚˜๋งˆ์ผ“'</li><li>'๊ณต์šฉ ๋ฉ”ํƒˆ ์›ํฌ์ธํŠธ ์Šค๋ƒ…๋ฐฑ ๋‰ด์š•์–‘ํ‚ค์Šค (32CP57111-50L) '</li></ul> | | 0.0 | <ul><li>'๊ธฐ๋ณธ ๊ตฐ๋ชจ ๋ฒ„ํ‚ทํ–‡ ๋ฐ€๋ฆฌํ„ฐ๋ฆฌ ์—ฌ์ž ๋นˆํ‹ฐ์ง€๊ตฐ๋ชจ ๋ชจ์ž ๋‚จ์ž ๋ฒ„์บฃํ–‡ ๋ธ”๋ž™ ์นดํ‚ค / FREE ์ฒด์ธ์ง€๋น„'</li><li>'๋นˆํ‹ฐ์ง€ ์›Œ์‹ฑ ๋А๋‚Œ ์˜๋ฌธ ๋ ˆํ„ฐ๋ง ์žฅ์‹ ํฌ์ธํŠธ ์—ฃ์ง€ ๊ตฐ๋ชจ ๊ทธ๋ ˆ์ด (์ฃผ)์˜ค๋„ˆํด๋žœ'</li><li>'์งˆ์ข‹์€ ๊ตฐ๋ชจ ๋ชจ์ž(์ฐจ์ฝœ/๊ตญ๋‚ด์ƒ์‚ฐ) ๋„ค์ด๋น„ ํ”„๋ฆฌ๋งˆ์ผ“'</li></ul> | | 2.0 | <ul><li>'์—ฌ์ž ๊ฒจ์šธํ…œ ๋”ฐ๋œป ๊ทน์„ธ์‚ฌ ์–‘ํ„ธ๊ณฐ๋Œ์ด๋จธ๋ฆฌ๋  ๊ท€๋งˆ๊ฐœ A24973_๋ฒ ์ด์ง€_FREE ์„ธ๋ธ์ œ์ด์Šค(7JS)'</li><li>'์–‘ํ„ธ ๊ณฐ๋Œ์ด๊ท€๋งˆ๊ฐœ ๊ท€๋„๋ฆฌ ๋ฝ€๊ธ€์ด ๊ท€๋งˆ๊ฐœ ๋ฐฉํ•œ๊ท€๋งˆ๊ฐœ ๋ชฉ๋„๋ฆฌ ํ™”์ดํŠธ ํ˜„์„ฑ๋งˆ์ผ“'</li><li>'์Šคํƒ€์ผ ๋”ํ•˜๊ธฐ-36-๊ฝˆ๋ฐฐ๊ธฐ๋ฐฉํ•œ๊ท€๋งˆ๊ฐœ ํ•‘ํฌ ์ด๋ฏธ์—ฐ'</li></ul> | | 6.0 | <ul><li>'๊ตญ๋‚ด๋ฐœ์†ก MARITHE FRANCOIS GIRBAUD ๋งˆ๋ฆฌ๋–ผ CABLE KNIT BEANIE blue 1MG23SHG112 ONE SIZE ์”จ์ด๋žฉ'</li><li>'[๋งค์žฅ๋ฐœ์†ก] ๋งˆ๋ฆฌ๋–ผ CLASSIC LOGO BEANIE black OS ์™€์ด์—์Šค๋งˆ์ผ“'</li><li>'MARITHE FRANCOIS GIRBAUD CABLE KNIT BEANIE gray 1MG23SHG112 227185 ONE SIZE ์›ํ”Œ๋ ‰์Šค'</li></ul> | | 8.0 | <ul><li>'๋น„์•™์นด BIANCA (์—ฌ์„ฑ์šฉ) ๋ˆ„๊ฐ€/๋‚ด์ถ”๋Ÿด๋กœ๊ณ _OS '</li><li>'[๋กฏ๋ฐ๋ฐฑํ™”์ ]ํ™”์ดํŠธ์ƒŒ์ฆˆ ๊ณต์šฉ UV ํ”„๋กœํ…์…˜ ๋ฐ”์ด์ € ์†Œ๋‹ˆ์•„ 2.์•„์ด๋ณด๋ฆฌ ๋กฏ๋ฐ๋ฐฑํ™”์ _'</li><li>'ํ™”์ดํŠธ์ƒŒ์ฆˆ ์†Œ๋‹ˆ์•„ UV ํ”„๋กœํ…์…˜ ์ฌ๋ฐ”์ด์ € 1์ข… [00003] ์•„์ด๋ณด๋ฆฌ ํ˜„๋Œ€ํ™ˆ์‡ผํ•‘'</li></ul> | | 12.0 | <ul><li>'์บ‰๊ณจ ํ—ŒํŒ…์บก ์šธ ํ”Œ๋ ‰์Šคํ• 504 K0873 ์‹ฌ๋ฆฌ์Šค ์šธ 507 K0875 3107 ๋‚จ๋…€๊ณต์šฉ ๋ฒ ๋ ˆ๋ชจ 3. K3107ST (Black)_SMALL ์–ด์ธ์šฐ์ฆˆ'</li><li>'๋‹ค์šฉ๋„ ํ™œ์šฉ ์ง์› ์ข…์—…์› ๋‹จ์ฒด ํŒจ์…˜ ๋ชจ์ž ํ—ŒํŒ…์บก ํ™”์ดํŠธ ๊ฐ€์˜จ'</li><li>'์•จ๋ฆฌ ์นดํŽ˜ ๋ฐ”๋ฆฌ์Šคํƒ€ ๋ชจ์ž ๋ฒ ์ด์ปค ์บก ๋งˆ๋„๋กœ์Šคํ–‡[๋ฃจ์ฆˆ๋ฃจ๋‚˜์ฃผ์–ผ๋ฆฌ] ๋ธ”๋ž™ ์ฃผ์‹ํšŒ์‚ฌ ์›น์ด์ฆˆ'</li></ul> | | 11.0 | <ul><li>'1631๋‰ด์š• ๋ณผ์บก 6color / ๋‚จ๋…€๊ณต์šฉ๋ชจ์ž ์บก๋ชจ์ž ๊ทธ๋ฆฐ ๋ ˆ์ด์–ด๋“œ์ปดํผ๋‹ˆ'</li><li>'ํŒจ์…˜๋ฒ™๊ฑฐ์ง€0009 ๋ฒ™๊ฑฐ์ง€ ๊ฐ€์„ ๋ชจ์ž ์—ฌ์„ฑ ํŒจ์…˜ ๋ฐค์ƒ‰ ๊ณจ๋“œ์ฝ”์ŠคํŠธ'</li><li>'๊ฝˆ๋ฐฐ๊ธฐ๋‹ˆํŠธ๋ฒ™๊ฑฐ์ง€๋ชจ์žB28016 ๊ฒ€์ • ํ”„๋ ˆ์ž„๋ฐ”์ด๋ธŒ'</li></ul> | | 5.0 | <ul><li>'๋‹ˆํŠธ ๋ฒ ๋ ˆ๋ชจ S1450 ์ง„์ฃผ๋ฐฉ์šธ ํ•‘ํฌ ์ง€์—์ด์น˜๊ธ€๋กœ๋ฒŒ'</li><li>'[๋ฐ•๋ฏผ์˜, ๋ผ์ด์ฆˆ ์›๋นˆ ์ฐฉ์šฉ] ์Šคํ„ฐ๋“œ ๋กœ๊ณ  ์šธ ๋ฒ ๋ ˆ๋ชจ ๋ธ”๋ž™ '</li><li>'/ ๋ฒ ์ด์ง ๋ ˆ๋” ๋‰ด์Šค๋ณด์ด์บก ๋นต๋ชจ์ž (2color) ์•„์ด๋ณด๋ฆฌ_one size ๋กญ์Šค(robs)'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.8489 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_ac2") # Run inference preds = model("๋‚จ์—ฌ๊ณต์šฉ ๊ธฐ๋ณธ๊ตฐ๋ชจ 4์ปฌ๋Ÿฌ EVE ์นดํ‚ค ์—๋ธŒ๋ฆฌ์”ฝ๊ตฟ") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.5523 | 21 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0098 | 1 | 0.4348 | - | | 0.4902 | 50 | 0.3427 | - | | 0.9804 | 100 | 0.1921 | - | | 1.4706 | 150 | 0.1061 | - | | 1.9608 | 200 | 0.0544 | - | | 2.4510 | 250 | 0.0384 | - | | 2.9412 | 300 | 0.0155 | - | | 3.4314 | 350 | 0.0128 | - | | 3.9216 | 400 | 0.0177 | - | | 4.4118 | 450 | 0.0082 | - | | 4.9020 | 500 | 0.005 | - | | 5.3922 | 550 | 0.0007 | - | | 5.8824 | 600 | 0.0004 | - | | 6.3725 | 650 | 0.0003 | - | | 6.8627 | 700 | 0.0003 | - | | 7.3529 | 750 | 0.0003 | - | | 7.8431 | 800 | 0.0003 | - | | 8.3333 | 850 | 0.0003 | - | | 8.8235 | 900 | 0.0002 | - | | 9.3137 | 950 | 0.0002 | - | | 9.8039 | 1000 | 0.0001 | - | | 10.2941 | 1050 | 0.0001 | - | | 10.7843 | 1100 | 0.0001 | - | | 11.2745 | 1150 | 0.0001 | - | | 11.7647 | 1200 | 0.0001 | - | | 12.2549 | 1250 | 0.0001 | - | | 12.7451 | 1300 | 0.0001 | - | | 13.2353 | 1350 | 0.0001 | - | | 13.7255 | 1400 | 0.0001 | - | | 14.2157 | 1450 | 0.0001 | - | | 14.7059 | 1500 | 0.0001 | - | | 15.1961 | 1550 | 0.0001 | - | | 15.6863 | 1600 | 0.0001 | - | | 16.1765 | 1650 | 0.0001 | - | | 16.6667 | 1700 | 0.0001 | - | | 17.1569 | 1750 | 0.0001 | - | | 17.6471 | 1800 | 0.0001 | - | | 18.1373 | 1850 | 0.0001 | - | | 18.6275 | 1900 | 0.0001 | - | | 19.1176 | 1950 | 0.0001 | - | | 19.6078 | 2000 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
ClaudeRitchie/tinyllama-vels-v1
ClaudeRitchie
2024-11-25T09:52:51Z
130
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T09:50:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BoltMonkey/SuperNeuralDreadDevil-8b
BoltMonkey
2024-11-25T09:46:12Z
43
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated", "BoltMonkey/DreadMix", "conversational", "base_model:BoltMonkey/DreadMix", "base_model:merge:BoltMonkey/DreadMix", "base_model:BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated", "base_model:merge:BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-13T03:25:41Z
--- library_name: transformers base_model: - BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated - BoltMonkey/DreadMix tags: - merge - mergekit - lazymergekit - BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated - BoltMonkey/DreadMix pipeline_tag: text-generation --- # SuperNeuralDreadDevil-8b SuperNeuralDreadDevil-8b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated](https://huggingface.co/BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated) * [BoltMonkey/DreadMix](https://huggingface.co/BoltMonkey/DreadMix) ## ๐Ÿงฉ Configuration ```yamlmodels: - model: NousResearch/Meta-Llama-3.1-8B-Instruct - model: BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated parameters: density: 0.53 weight: 0.55 - model: BoltMonkey/DreadMix parameters: density: 0.53 weight: 0.45 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3.1-8B-Instruct parameters: int8_mask: true dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "BoltMonkey/SuperNeuralDreadDevil-8b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
PrunaAI/AmberYifan-Mistral-7B-v0.1-sft-dpo-10k-bnb-8bit-smashed
PrunaAI
2024-11-25T09:42:42Z
6
0
null
[ "safetensors", "mistral", "pruna-ai", "base_model:AmberYifan/Mistral-7B-v0.1-sft-dpo-10k", "base_model:quantized:AmberYifan/Mistral-7B-v0.1-sft-dpo-10k", "8-bit", "bitsandbytes", "region:us" ]
null
2024-11-25T09:33:11Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: AmberYifan/Mistral-7B-v0.1-sft-dpo-10k metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo AmberYifan/Mistral-7B-v0.1-sft-dpo-10k installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/AmberYifan-Mistral-7B-v0.1-sft-dpo-10k-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("AmberYifan/Mistral-7B-v0.1-sft-dpo-10k") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model AmberYifan/Mistral-7B-v0.1-sft-dpo-10k before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
glif-loradex-trainer/fabian3000_chillguy
glif-loradex-trainer
2024-11-25T09:40:56Z
846
1
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
2024-11-25T09:40:37Z
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1732527571108__000001500_0.jpg text: chillguy as a spartan warrior - output: url: samples/1732527596137__000001500_1.jpg text: chillguy with text saying I AM CHILL - output: url: samples/1732527621130__000001500_2.jpg text: black and white photographic portrait of chillguy base_model: black-forest-labs/FLUX.1-dev trigger: chillguy instance_prompt: chillguy license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # chillguy Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `fabian3000`. <Gallery /> ## Trigger words You should use `chillguy` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/fabian3000_chillguy/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
huihui-ai/Llama-3.2-3B-Instruct-abliterated
huihui-ai
2024-11-25T09:39:09Z
3,315
50
transformers
[ "transformers", "safetensors", "llama", "text-generation", "abliterated", "uncensored", "conversational", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-28T05:20:02Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B-Instruct tags: - abliterated - uncensored --- # ๐Ÿฆ™ Llama-3.2-3B-Instruct-abliterated This is an uncensored version of Llama 3.2 3B Instruct created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it). Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models. ## ollama You can use [huihui_ai/llama3.2-abliterate:3b](https://ollama.com/huihui_ai/llama3.2-abliterate:3b) directly, ``` ollama run huihui_ai/llama3.2-abliterate ``` or create your own model using the following methods. 1. Download this model. ``` huggingface-cli download huihui-ai/Llama-3.2-3B-Instruct-abliterated --local-dir ./huihui-ai/Llama-3.2-3B-Instruct-abliterated ``` 2. Get Llama-3.2-3B-Instruct model for reference. ``` ollama pull llama3.2 ``` 3. Export Llama-3.2-3B-Instruct model parameters. ``` ollama show llama3.2 --modelfile > Modelfile ``` 4. Modify Modelfile, Remove all comment lines (indicated by #) before the "FROM" keyword. Replace the "FROM" with the following content. ``` FROM huihui-ai/Llama-3.2-3B-Instruct-abliterated ``` 5. Use ollama create to then create the quantized model. ``` ollama create --quantize q4_K_M -f Modelfile Llama-3.2-3B-Instruct-abliterated-q4_K_M ``` 6. Run model ``` ollama run Llama-3.2-3B-Instruct-abliterated-q4_K_M ``` The running architecture is llama. ## Evaluations The following data has been re-evaluated and calculated as the average for each test. | Benchmark | Llama-3.2-3B-Instruct | Llama-3.2-3B-Instruct-abliterated | |-------------|-----------------------|-----------------------------------| | IF_Eval | 76.55 | **76.76** | | MMLU Pro | 27.88 | **28.00** | | TruthfulQA | 50.55 | **50.73** | | BBH | 41.81 | **41.86** | | GPQA | 28.39 | **28.41** | The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated/blob/main/eval.sh)
huihui-ai/Llama-3.2-1B-Instruct-abliterated
huihui-ai
2024-11-25T09:36:23Z
632
6
transformers
[ "transformers", "safetensors", "llama", "text-generation", "abliterated", "uncensored", "conversational", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-01T18:46:39Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B-Instruct tags: - abliterated - uncensored --- # ๐Ÿฆ™ Llama-3.2-1B-Instruct-abliterated This is an uncensored version of Llama 3.2 1B Instruct created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it). Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models. ## ollama You can use [huihui_ai/llama3.2-abliterate:1b](https://ollama.com/huihui_ai/llama3.2-abliterate:1b) directly, ``` ollama run huihui_ai/llama3.2-abliterate:1b ``` ## Evaluations The following data has been re-evaluated and calculated as the average for each test. | Benchmark | Llama-3.2-1B-Instruct | Llama-3.2-1B-Instruct-abliterated | |-------------|-----------------------|-----------------------------------| | IF_Eval | **58.50** | 56.88 | | MMLU Pro | **16.35** | 14.35 | | TruthfulQA | **43.08** | 38.96 | | BBH | **33.75** | 31.83 | | GPQA | 25.96 | **26.39** | The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/huihui-ai/Llama-3.2-1B-Instruct-abliterated/blob/main/eval.sh)
mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF
mradermacher
2024-11-25T09:34:00Z
34
0
transformers
[ "transformers", "gguf", "text-generation-inference", "sft", "chocolatine", "fr", "dataset:jpacifico/french-orca-pairs-culinary-9865", "dataset:jpacifico/finetome_french_cook_definitions_v2", "base_model:jpacifico/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1", "base_model:quantized:jpacifico/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-25T09:10:57Z
--- base_model: jpacifico/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1 datasets: - jpacifico/french-orca-pairs-culinary-9865 - jpacifico/finetome_french_cook_definitions_v2 language: - fr library_name: transformers license: mit quantized_by: mradermacher tags: - text-generation-inference - transformers - sft - chocolatine --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jpacifico/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ1_S.gguf) | i1-IQ1_S | 1.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ1_M.gguf) | i1-IQ1_M | 1.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ2_S.gguf) | i1-IQ2_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ2_M.gguf) | i1-IQ2_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q2_K.gguf) | i1-Q2_K | 1.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ3_S.gguf) | i1-IQ3_S | 1.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ3_M.gguf) | i1-IQ3_M | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.1 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 2.3 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 2.3 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 2.3 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q4_0.gguf) | i1-Q4_0 | 2.3 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.i1-Q6_K.gguf) | i1-Q6_K | 3.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mini1013/master_cate_ac0
mini1013
2024-11-25T09:33:58Z
154
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-25T09:33:32Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[ํ—ค์ง€์ŠคACC]HJBA3F885BK[13์ธ์น˜ ๋…ธํŠธ๋ถ ์ˆ˜๋‚ฉ๊ฐ€๋Šฅ][KEVIN]๋ธ”๋ž™ ์ฐธ์žฅ์‹ ํฌ๋กœ์Šค ๊ฒธ์šฉ ๋ฏธ๋‹ˆ ํ† ํŠธ๋ฐฑ ์—์ด์ผ€์ด์—์Šค์•ค๋”” (์ฃผ) AK์ธํ„ฐ๋„ท์‡ผํ•‘๋ชฐ' - text: ๋งˆ์ ค๋ž€ ๋ฉ”์‹ ์ €๋ฐฑ ํฌ๋กœ์Šค๋ฐฑ ์Šฌ๋ง๋ฐฑ ํž™์ƒ‰ ํž™์Œ• ํ•™์ƒ ์—ฌ์„ฑ ๋‚จ์ž ์บ์ฃผ์–ผ ํฌ๋กœ์Šค ์—ฌํ–‰์šฉ ์—ฌ๊ถŒ ํ•ธ๋“œํฐ ๋ณด์กฐ ํ•™์› ๊ฐ€๋ฐฉ LKHS-304_B-์—ฐํ•‘ํฌ(+ํ‚คํ™€๋”) ๋”๋ธ”์œ ํŒ - text: ๋งˆ์ ค๋ž€ ๋ฉ”์‹ ์ €๋ฐฑ ํฌ๋กœ์Šค๋ฐฑ ์Šฌ๋ง๋ฐฑ ํž™์ƒ‰ ํž™์Œ• ํ•™์ƒ ์—ฌ์„ฑ ๋‚จ์ž ์บ์ฃผ์–ผ ํฌ๋กœ์Šค ์—ฌํ–‰์šฉ ์—ฌ๊ถŒ ํ•ธ๋“œํฐ ๋ณด์กฐ ํ•™์› ๊ฐ€๋ฐฉ ML-1928_์—ฐ๊ทธ๋ ˆ์ด ๋”๋ธ”์œ ํŒ - text: '[๊ฐค๋Ÿฌ๋ฆฌ์•„] JUBA4E021G2 [MATEO] ๊ทธ๋ ˆ์ด ๋กœ๊ณ ํ”„๋ฆฐํŠธ ์ˆ„๋”๋ฐฑ JUBA4E021G2 [MATEO] ๊ทธ๋ ˆ์ด ๋กœ๊ณ ํ”„๋ฆฐํŠธ ์ˆ„๋”๋ฐฑ NSํ™ˆ์‡ผํ•‘_NS๋ชฐ' - text: '[๋””์Šค์ปค๋ฒ„๋ฆฌ](์‹ ์„ธ๊ณ„๊ฐ•๋‚จ์ )[23N] ๋””์Šค์ปค๋ฒ„๋ฆฌ ๋ฏธ๋‹ˆ ์Šฌ๋ง๋ฐฑ (DXSG0043N) IVD ๋‹คํฌ ์•„์ด๋ณด๋ฆฌ_F ์ฃผ์‹ํšŒ์‚ฌ ์—์Šค์—์Šค์ง€๋‹ท์ปด' inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.8488667448221962 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 9 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | <ul><li>'[์งˆ์ŠคํŠœ์–ดํŠธ](๊ด‘์ฃผ์‹ ์„ธ๊ณ„)๋ธ”๋ž™ ํด๋ž˜์‹ ํด๋Ÿฌ์น˜๋ฐฑ [JUWA2F392BK] ์ฃผ์‹ํšŒ์‚ฌ ์—์Šค์—์Šค์ง€๋‹ท์ปด'</li><li>'์‹ฌํ”Œ ํด๋Ÿฌ์น˜๋ฐฑ EOCFHX257BK/์—์Šค์ฝฐ์ด์•„ ๋ธ”๋ž™ ๋กฏ๋ฐ์‡ผํ•‘(์ฃผ)'</li><li>'[๋“€ํ] ์†Œํ”„ํŠธ๊ทธ๋ ˆ์ธ ํŒŒ์šฐ์น˜ ๋ฒ ์ด์ง€ CG180263CL ๋ฒ ์ด์ง€ (์ฃผ)์”จ์ œ์ด์ด์—”์— '</li></ul> | | 3.0 | <ul><li>'์—”์ง€๋‹ˆ์–ด๋“œ๊ฐ€๋จผ์ธ  ๋ธ”๋ž™ ๋‚˜์ผ๋ก  ํ† ํŠธ๋ฐฑ 23F1H034BLACK ์ฃผ์‹ํšŒ์‚ฌ ์–ด๋„์–ด๋Ÿญ์Šค'</li><li>'[๊ฐ€์ด๊ฑฐ] ํ€ผํŒ… ๋ ˆ๋” ์ฒด์ธ ์ˆ„๋”๋ฐฑ (+ํ”Œ๋žฉ์ง€๊ฐ‘) ์บ๋Ÿฌ๋ฉœ ๋ธŒ๋ผ์šด (์ฃผ)์šฐ๋ฆฌํ™ˆ์‡ผํ•‘'</li><li>'ํ† ํŠธ ๋ธŒ๋ฆฌํ”„ ํฌ๋กœ์Šค๋ฐฑ FT8570 ๋ธ”๋ž™ ๊ธ€๋กœ๋ฆฌํ™ˆ'</li></ul> | | 4.0 | <ul><li>'์—ฌ์ž์บ”๋ฒ„์Šค ๊ฐ€๋ฐฉ ์ฝ”๋”” ํฌ๋กœ์Šค๋ฐฑ ๋‚จ์ž์—์ฝ”๋ฐฑ ์‹ ๋ฐœ BLUE ๊ณ ์•ค๋Ÿฐ'</li><li>'์—ฌํ•™์ƒ ์—์ฝ”๋ฐฑ ์•„์ด๋ณด๋ฆฌ ๊ฐ€๋ฐฉ ๋‚จ๋…€๊ณต์šฉ ์บ์ฃผ์–ผ ์‡ผํผ๋ฐฑ ์—˜์ผ€์ด์— '</li><li>'ํŒจ์…˜ ์—์ฝ”๋ฐฑ ๋ฐ์ผ๋ฆฌ ๊ฐ€๋ฐฉ ์บ์ฃผ์–ผ ์ˆ„๋”๋ฐฑ ๋ธŒ๋ผ์šด ์‹ฌ์ •'</li></ul> | | 7.0 | <ul><li>'[๊ฐค๋Ÿฌ๋ฆฌ์•„] 644040 2BKPI 1000 ONE SIZE ํ•œํ™”๊ฐค๋Ÿฌ๋ฆฌ์•„(์ฃผ)'</li><li>'[๊ฐค๋Ÿฌ๋ฆฌ์•„] ํ—ค์ง€์Šคํ•ธ๋“œ๋ฐฑ ๊ทธ๋ฆฐ ์›Œ์‹ฑ๊ฐ€์ฃฝ ํฌ๋กœ์Šค ๊ฒธ์šฉ ํ† ํŠธ๋ฐฑ HJBA3E301E2(ํƒ€์ž„์›”๋“œ) ํ•œํ™”๊ฐค๋Ÿฌ๋ฆฌ์•„(์ฃผ)'</li><li>'[๋ฉ”์ข…ํ‚ค์ธ ๋„ค] ๋กœ๊ณ  ํ”„๋ฆฐํŠธ ์ฝ”ํŠผ ํ† ํŠธ๋ฐฑ ๋ธ”๋ฃจ LW05102WW0008 BLUE_FREE ์‹ ์„ธ๊ณ„๋ชฐ'</li></ul> | | 2.0 | <ul><li>'๋ฐ”๋ฒ„ ๊ฐ€์ฃฝ ์ฝ”ํŒ… ์„œ๋ฅ˜ ๊ฐ€๋ฐฉ ๋ธŒ๋ฆฌํ”„ ์ผ€์ด์Šค UBA0004 NAVY ๋‰ด์š•ํŠธ๋ ˆ์ด๋”ฉ'</li><li>'[๋กฏ๋ฐ๋ฐฑํ™”์ ]์—์Šค์ฝฐ์ด์•„ 23FW ์‹ ์ƒ ๊ฒฝ๋Ÿ‰ ๋‚˜์ผ๋ก  ๋…ธํŠธ๋ถ ์ˆ˜๋‚ฉ ๋‚จ์—ฌ ๋ฐ์ผ๋ฆฌ ํ† ํŠธ ํฌ๋กœ์Šค๋ฐฑ EOCFHX258BK ๋กฏ๋ฐ๋ฐฑํ™”์ _'</li><li>'22FW ์‹ ์ƒ ๋‰ด ํฌ๋ฉ€ ์Šฌ๋ฆผ ์Šคํ€˜์–ด ์‹ฌํ”Œ ๋น„์ฆˆ๋‹ˆ์Šค ์บ์ฃผ์–ผ ์„œ๋ฅ˜๊ฐ€๋ฐฉ ECBFHX227GY ๋กฏ๋ฐ๋ฐฑํ™”์ 1๊ด€'</li></ul> | | 1.0 | <ul><li>'NATIONALGEOGRAPHIC N225USD340 ๋‹ค์ด๋ธŒ ํ”Œ๋Ÿฌ์Šค V3 BLACK 240 ๋งฅ์Šคํˆฌ'</li><li>'๋ ˆ์Šคํฌ์‚ญ ๋ณด์ด์ € ๋ฐฑํŒฉ ๊ฒฝ๋Ÿ‰ ๋‚˜์ผ๋ก  ๋ณด๋ถ€์ƒ ๋ณต์กฐ๋ฆฌ ๊ฐ€๋ฐฉ 7839 ํ”Œ๋ผ์›Œ ํ–‰์šด์ƒต'</li><li>'๋ ˆ์Šคํฌ์‚ญ ๋ณด์ด์ € ๋ฐฑํŒฉ ๊ฒฝ๋Ÿ‰ Voyager Backpack 7839 ๋ธ”๋ž™ ํ•˜ํ•˜๋Œ€ํ–‰'</li></ul> | | 0.0 | <ul><li>'[๊ฐค๋Ÿฌ๋ฆฌ์•„] ํ—ค์ง€์Šคํ•ธ๋“œ๋ฐฑHJBA2F770BK_ ๋ธ”๋ž™ ๋กœ๊ณ  ์žฅ์‹ ์†”๋ฆฌ๋“œ ๋ฉ”์‹ ์ ธ๋ฐฑ(ํƒ€์ž„์›”๋“œ) ํ•œํ™”๊ฐค๋Ÿฌ๋ฆฌ์•„(์ฃผ)'</li><li>'๋กœ์•„๋“œ๋กœ์•„ ํ—ˆ์‰ฌ ๋ฉ”์‰ฌ ํฌ์ผ“ ํฌ๋กœ์Šค ๋ฉ”์‹ ์ €๋ฐฑ (์•„์ด๋ณด๋ฆฌ) ํฌ๋กœ์Šค๋ฐฑ FREE ๊ฐ€๋ฐฉํŒ'</li><li>'[๋ณธ์‚ฌ๊ณต์‹] ํƒ€ํ”„ ๋ฉ”์‹ ์ €๋ฐฑ ์‚ฌ์ฒผ S EOCBS04 008 ๋กฏ๋ฐ์•„์ด๋ชฐ'</li></ul> | | 5.0 | <ul><li>'ํŒฉ์„ธ์ดํ”„ ๊ฐ€๋ฐฉ GO ํฌ๋กœ์Šค๋ฐ”๋”” ๋ฐฑ 2.5L / PACSAFE URBAN ๋„๋‚œ๋ฐฉ์ง€ ์œ ๋Ÿฝ ํ•ด์™ธ ์—ฌํ–‰ ๋“ฑ์‚ฐ ์Šฌ๋ง๋ฐฑ ํฌ๋กœ์Šค๋ฐฑ RFID์ฐจ๋‹จ 1. ์ œํŠธ ๋ธ”๋ž™ (JET BLACK) ์‹œ๊ณ„1์œ„ํŒ์›Œ์น˜'</li><li>'์ƒจํƒ€์ฝ”[Chantaco] ๋ ˆ๋” ํฌ๋กœ์Šค๋ฐฑ BB NH3271C53N 000/๋ผ์ฝ”์Šคํ…Œ ๋กฏ๋ฐ์‡ผํ•‘(์ฃผ)'</li><li>'ํŒฉ์„ธ์ดํ”„ ๊ฐ€๋ฐฉ GO ํฌ๋กœ์Šค๋ฐ”๋”” ๋ฐฑ 2.5L / PACSAFE URBAN ๋„๋‚œ๋ฐฉ์ง€ ์œ ๋Ÿฝ ํ•ด์™ธ ์—ฌํ–‰ ๋“ฑ์‚ฐ ์Šฌ๋ง๋ฐฑ ํฌ๋กœ์Šค๋ฐฑ RFID์ฐจ๋‹จ 2. ๋กœ์ฆˆ (ROSE) ์‹œ๊ณ„1์œ„ํŒ์›Œ์น˜'</li></ul> | | 8.0 | <ul><li>'[๊ธฐํšŒ๊ณต์ž‘์†Œ] ๋ฐ์ผ๋ฆฌ ์Šฌ๋ง๋ฐฑ ํฌ๋กœ์Šค ํž™์ƒ‰ ํ—ˆ๋ฆฌ๊ฐ€๋ฐฉ ์Šคํฌ์ธ  ๋“ฑ์‚ฐ ํž™์ƒ‰ ํ—ˆ๋ฆฌ์ƒ‰ ์Šฌ๋ง๋ฐฑ ๋ณด์กฐ๊ฐ€๋ฐฉ ๊ธ€๋กœ๋ฆฌ์ปค๋จธ์Šค'</li><li>'๊ตฌ์ฐŒ GG ์บ”๋ฒ„์Šค ํˆฌ์›จ์ด ๋ฐธํŠธ๋ฐฑ ํž™์ƒ‰ 630915 KY9KN 9886 ์ ๋‚˜์ธ'</li><li>'๋ฒจํŠธํ˜• ํ•ธ๋“œํฐ ํ—ˆ๋ฆฌ๊ฐ€๋ฐฉ ๋‚จ์ž ๋ฒจํŠธ๋ฐฑ ์„ธ๋กœํ˜• ๊ฐ€์ฃฝ ๋ฒจํŠธํŒŒ์šฐ์น˜ ์ง€๊ฐ‘ ํ—ˆ๋ฆฌ๋ฒจํŠธ์ผ€์ด์Šค ๋ธŒ๋ผ์šด ์ž์ฃผ๊ตฌ๋งค'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.8489 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_ac0") # Run inference preds = model("[๋””์Šค์ปค๋ฒ„๋ฆฌ](์‹ ์„ธ๊ณ„๊ฐ•๋‚จ์ )[23N] ๋””์Šค์ปค๋ฒ„๋ฆฌ ๋ฏธ๋‹ˆ ์Šฌ๋ง๋ฐฑ (DXSG0043N) IVD ๋‹คํฌ ์•„์ด๋ณด๋ฆฌ_F ์ฃผ์‹ํšŒ์‚ฌ ์—์Šค์—์Šค์ง€๋‹ท์ปด") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 9.2289 | 29 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0141 | 1 | 0.3958 | - | | 0.7042 | 50 | 0.3012 | - | | 1.4085 | 100 | 0.1811 | - | | 2.1127 | 150 | 0.0599 | - | | 2.8169 | 200 | 0.0333 | - | | 3.5211 | 250 | 0.0169 | - | | 4.2254 | 300 | 0.0005 | - | | 4.9296 | 350 | 0.0003 | - | | 5.6338 | 400 | 0.0002 | - | | 6.3380 | 450 | 0.0003 | - | | 7.0423 | 500 | 0.0001 | - | | 7.7465 | 550 | 0.0001 | - | | 8.4507 | 600 | 0.0001 | - | | 9.1549 | 650 | 0.0001 | - | | 9.8592 | 700 | 0.0001 | - | | 10.5634 | 750 | 0.0 | - | | 11.2676 | 800 | 0.0001 | - | | 11.9718 | 850 | 0.0001 | - | | 12.6761 | 900 | 0.0001 | - | | 13.3803 | 950 | 0.0 | - | | 14.0845 | 1000 | 0.0 | - | | 14.7887 | 1050 | 0.0 | - | | 15.4930 | 1100 | 0.0 | - | | 16.1972 | 1150 | 0.0 | - | | 16.9014 | 1200 | 0.0 | - | | 17.6056 | 1250 | 0.0 | - | | 18.3099 | 1300 | 0.0 | - | | 19.0141 | 1350 | 0.0 | - | | 19.7183 | 1400 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF
mradermacher
2024-11-25T09:31:34Z
83
0
transformers
[ "transformers", "gguf", "text-generation-inference", "sft", "chocolatine", "fr", "dataset:jpacifico/french-orca-pairs-culinary-9865", "dataset:jpacifico/finetome_french_cook_definitions_v2", "base_model:jpacifico/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1", "base_model:quantized:jpacifico/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T09:00:57Z
--- base_model: jpacifico/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1 datasets: - jpacifico/french-orca-pairs-culinary-9865 - jpacifico/finetome_french_cook_definitions_v2 language: - fr library_name: transformers license: mit quantized_by: mradermacher tags: - text-generation-inference - transformers - sft - chocolatine --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/jpacifico/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q3_K_S.gguf) | Q3_K_S | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q3_K_M.gguf) | Q3_K_M | 2.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q3_K_L.gguf) | Q3_K_L | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.IQ4_XS.gguf) | IQ4_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q4_0_4_4.gguf) | Q4_0_4_4 | 2.3 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q4_K_S.gguf) | Q4_K_S | 2.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q4_K_M.gguf) | Q4_K_M | 2.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q5_K_S.gguf) | Q5_K_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q5_K_M.gguf) | Q5_K_M | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q6_K.gguf) | Q6_K | 3.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1-GGUF/resolve/main/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1.f16.gguf) | f16 | 7.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
leinad-deinor/Llama3.2-3b-redeIT-XML-GGUF
leinad-deinor
2024-11-25T09:22:10Z
9
0
null
[ "gguf", "llama", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T08:13:52Z
--- license: apache-2.0 ---
mini1013/master_item_ac
mini1013
2024-11-25T09:19:32Z
423
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:klue/roberta-base", "base_model:finetune:klue/roberta-base", "model-index", "region:us" ]
text-classification
2024-11-25T09:19:09Z
--- base_model: klue/roberta-base library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[์ž์ฒด์ œ์ž‘] 14k ์ฝฉ์‚ฌ๋‹ค๋ฆฌ ์ฒด์ธ ๋ฐ˜์ง€ ํ•‘ํฌ_D style(1ํ‘ผ ๊ตต๊ธฐ)_10ํ˜ธ (์ฃผ)์ œ์ด๋””์•„์ด์ธํ„ฐ๋‚ด์…”๋„' - text: ์‹ค๋ฆฌ์ฝ˜ ๋™์ „ ์ง€๊ฐ‘ ์‹ฌํ”Œ ์บ๋ฆญํ„ฐ [on] ๋ธ”๋ž™์บฃ(๋™์ „์ง€๊ฐ‘) ๋น„150 - text: ์ฒดํฌ ๋‚จ์ž ๋ฒ ๋ ˆ๋ชจ ์•„๋น  ๋ชจ์ž ํ—ŒํŒ…์บก ํŒจ์…˜ ๋นต๋ชจ์ž ์™ธ์ถœ ๋ฒ ์ด์ง€์ฒดํฌ (4JS) ํฌ์ œ์ด์Šค - text: TIMBERLAND ๋‚จ์„ฑ ์•จ๋ฒˆ 6์ธ์น˜ ์›Œํ„ฐํ”„๋ฃจํ”„ ์›Œ์ปค๋ถ€์ธ _TB0A1OIZC641 070(250) ๋น„์ธ ์ปดํผ๋‹ˆ - text: ๋ผ์ธ๋Œ„์Šคํ™” ํ—ฌ์Šคํ™” ์Šคํฌ์ธ  ์—ฌ์„ฑ ์žฌ์ฆˆํ™” ๋Œ„์Šคํ™” ๋ณผ๋ฃธ ๋ชจ๋˜ ๋ฏธ๋“œํž 37_๋ธ”๋ž™ ์ŠคํŠธ๋ ˆ์ดํŠธ 3.5cm/๊ตฝ(๋ฉ”์‰ฌ) ์‚ฌ๋ž‘์˜ต๋‹ค inference: true model-index: - name: SetFit with klue/roberta-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9385943021823656 name: Metric --- # SetFit with klue/roberta-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 17 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2.0 | <ul><li>'๋‚จ๋…€๊ณต์šฉ ๋ฉ€ํ‹ฐ์Šค์นดํ”„ ๋ชฉํ† ์‹œ ๋ฐ˜๋‹ค๋‚˜ ํ—ค์–ด๋ฐด๋“œ ๋‘๊ฑด ๋ธ”๋ž™ ๋น„์˜ค๋Š”๋ฐค'</li><li>'ํ›„๋“œ ๋ชจ์ž ๊ท€๋‹ฌ์ด ๊ฒจ์šธ ํ„ธ๋ชจ์ž ๋™๋ฌผ ๋ชฉ๋Œ์ด 03.๋ธŒ๋ผ์šด ๋ฟ”์ƒต'</li><li>'ํ–‡๋น› ๋’ท๋ชฉ๊ฐ€๋ฆฌ๊ฐœ ๋ฉ”์‰ฌ ํ†ตํ’ ์„ ๊ฐ€๋“œ ์ž์™ธ์„ ์ฐจ๋‹จ์ฌ์บก๊ฐ€๋“œ ๊ทธ๋Š˜๋ชจ์ž ์ฟจ๋ฉ”์‰ฌ๋ชจ์ž_๊ทธ๋ ˆ์ด ์—์Šค๋”๋ธ”์œ ์ปดํผ๋‹ˆ'</li></ul> | | 9.0 | <ul><li>'[LAP](๊ฐ•๋‚จ์ )์•„๋ธ๋ผ ํ•ธ๋“ค ๋ฏธ๋‹ˆ ํฌ๋กœ์Šค๋ฐฑ (AP7AB208) ์ œํŠธ๋ธ”๋ž™(ZB)_FREE ์‹ ์„ธ๊ณ„๋ฐฑํ™”์ '</li><li>'ํŒŒ์Šคํ…”์Šฌ๋ง๋ฐฑ ํž™์ƒ‰ ๋ฏธ๋‹ˆ ํฌ๋กœ์Šค ์ˆ„๋”๋ฐฑ ๊ทธ๋ฆฐ ๊น€ํ›„์ฒ '</li><li>'[๋ฉ”ํŠธ๋กœ์‹œํ‹ฐ]๋ด‰๋ด‰๋ฐฑ ํด๋Ÿฌ์น˜๋ฐฑ ๋ฏธ๋“ M233MQ3852Z ์—์ด์ผ€์ด์—์Šค์•ค๋”” (์ฃผ) AK์ธํ„ฐ๋„ท์‡ผํ•‘๋ชฐ'</li></ul> | | 15.0 | <ul><li>'ํฌ๋ฆฌ์Šค๋งˆ์Šค ๋ฑƒ์ง€ ๋ธŒ๋กœ์น˜ ๋ฐฐ์ง€ 19์ข… ์„ธํŠธ ๋ฐ ๋‚ฑ๊ฐœ ๋ด‰์ œ ์‚ฌ์Šด 5 ๊ตฌ๋งค๋Œ€ํ–‰ ์ด์Œ'</li><li>'์˜ค๋“œ์ŠคํŠœ๋””์˜ค ODDSTUDIO ๋ฒ ์ด์ง ๋‹ˆํŠธ ์ฒดํฌ ๋จธํ”Œ๋Ÿฌ - 21COLOR ๋ธ”๋ž™ CS์ŠคํŽ˜์ด์Šค'</li><li>'๋„ฅ์ผ€์ดํ”„ ๋„ฅ์ปคํ”„์Šค ํŽ˜์ดํฌ์นด๋ผ ๋ ˆ์ด์–ด๋“œ์นด๋ผ ์…”์ธ ์นด๋ผ 1-์นด๋ผ-ํ™”์ดํŠธ ํ–‰๋ณต๋‚˜๋ผ'</li></ul> | | 13.0 | <ul><li>'ํŽ„ ์ฅฌ์–ผ๋ฆฌ ๋ณด์„ํ•จ ์—ฌํ–‰์šฉ ํฌ์ผ“ ๋ฏธ๋‹ˆ ์•…์„ธ์‚ฌ๋ฆฌ ๋ณด๊ด€ํ•จ ์ผ€์ด์Šค Cํƒ€์ž…-๋ฒ ์ด๋น„ํ•‘ํฌ ์ œ์ผ์‚ฌ'</li><li>'[๊ฐค๋Ÿฌ๋ฆฌ์•„] [๋น„์•ค๋น„๊ณจ๋“œ] 14K ์ด˜์ด˜๋ณผ ๋ธ”๋ฃจํ๋น… ๋„๋„›๋ง ๋ฐ˜์ง€ SRS39135 14K ํ™”์ดํŠธ๊ณจ๋“œ_1ํ˜ธ ํ•œํ™”๊ฐค๋Ÿฌ๋ฆฌ์•„(์ฃผ)'</li><li>'๋ฏธ๋‹ˆ๊ณจ๋“œ ๊น€์ฒœ์  14K 18K ํŠธ๋ ˆ๋ฒ„ ์ปคํ”Œ๋ง ๋‚จ์ž ์—ฌ์ž ๊ธˆ๋ฐ˜์ง€ RJUC4047 RJUC4048 ๋ฒ ์ด์งํ•˜๊ณ  ์‹ฌํ”Œํ•œ ๋””์ž์ธ ์—ฌ์ž_14K์˜๋กœ์šฐ๊ณจ๋“œ ๋ฏธ๋‹ˆ๊ณจ๋“œ ๊น€์ฒœ์ '</li></ul> | | 1.0 | <ul><li>'[๋ฒ ์–ดํŒŒ์šฐ](์‹ ์„ธ๊ณ„๊ฐ•๋‚จ์ )(BEARPAW) ๋‚จ์„ฑ ํ„ธ ์Šฌ๋ฆฌํผ MARY MENS ๋ธ”๋ž™ K814001ND-M BLACK (K814001ND)_280 ์ฃผ์‹ํšŒ์‚ฌ ์—์Šค์—์Šค์ง€๋‹ท์ปด'</li><li>'๋…ธ์ŠคํŽ˜์ด์Šค ๋ฎฌ ์Šฌ๋ฆฝ์˜จ ๋ธŒ์ด๋ชจ์…˜ - NS93P53A ๋ธ”๋ž™_290 ๋กฏ๋ฐ๋ฐฑํ™”์ 2๊ด€'</li><li>'์‚ฌ๋ฌด์‹ค ๋‚จ์ž ์Šฌ๋ฆฌํผ ๊ฐ€์ฃฝ ๋‚จ์„ฑ ๋น… ์‚ฌ์ด์ฆˆ 48 47 ์‚ฌ๋ฌด์šฉ ์‹ ์ž…์ƒ์ฝ”๋””์‹ค๋‚ดํ™” blue_38 ๋ฆฌ๋งˆ106'</li></ul> | | 7.0 | <ul><li>'๋ถ€๋“œ๋Ÿฌ์šด ์ŠˆํŠธ๋ฆฌ ์‹ ๋ฐœ์ฃผ๋ฆ„๋ฐฉ์ง€ ์‹ ๋ฐœ๋ชจ์–‘์œ ์ง€ ์‹ ๋ฐœ์ง€ํƒฑ 225 245 mm ์ปคํ”ผ์™€ ๊ธฐ์ €๊ท€'</li><li>'[๊ฐ“์„ฑ๋น„] ๊ฟ€์กฐํ•ฉ ์• ๋‹ˆ๋น„์ธ  ์„ธํŠธ ์บ๋ฆญํ„ฐ ์‹ ๋ฐœ ์•…์„ธ์‚ฌ๋ฆฌ ํฌ์ผ“๋ชฌ ์Šค๋ˆ„ํ”ผ ์ปค๋น„ํŽธ์˜์ SET ์• ๋‹ˆํŒ'</li><li>'MSMAX Jazz Dance Shoes Split Sole Men Dancing Sneakers High Top Boots for Women Silver 10.5 M Silver_11 Narrow ๋””์•„ํŠธ479'</li></ul> | | 11.0 | <ul><li>'์บ๋ฆฌ์–ด ์ˆ˜ํŠธ์ผ€์ด์Šค ์–‘๋ฉด ๊ฐœ๋ฐฉํ˜• ๊ธฐ๋‚ด์šฉ ๋ฐ”ํ€ด๊ฐ€๋ฐฉ ํ™”์ดํŠธ_26์ธ์น˜ ํ”ผ์Šค์˜จํŠธ๋ ˆ์ด๋“œ'</li><li>'ํด๋ž˜์‹œ ํŒจ์Šค ์ปค๋ฒ„์—ฌ๊ถŒ ํฌํŠธ์›”๋ › ํฌํŠธํŒŒ์šฐ์น˜ ํŒŒ์šฐ์น˜ ์—ฌํ–‰์ง€๊ฐ‘ ํฌํŠธ ์ผ€์ด์Šค (01 ๋ ˆ๋ชจ๋‹ˆ) ์ฃผ์‹ํšŒ์‚ฌ์œ ๋งˆ์ผ“'</li><li>'ํด๋ž˜์‹œํŒจ์Šค์ปค๋ฒ„ (์•ˆํ‹ฐ์Šคํ‚ค๋ฐ ์—ฌ๊ถŒ์ผ€์ด์Šค) (10๋ธ”๋ž™) JTEC'</li></ul> | | 4.0 | <ul><li>'๊ณ ๊ธ‰ ์•ˆ๊ฒฝ์ง‘ ์„ ๊ธ€๋ผ์Šค์ง‘ ํœด๋Œ€์šฉ ์ผ€์ด์Šค ํŒŒ์šฐ์น˜ ํ•˜๋“œ ๋ณด๊ด€ํ•จ ๋ธ”๋ž™ ๋‹ค์˜จ๋งˆ์ผ“'</li><li>'๊ณ ๊ธ‰ ์˜ฌ ์นผ๋ผ ํฌ๋ฆฌ์Šคํƒˆ ๋‹ค์ค‘ ๋น„์ฆˆ ์•ˆ๊ฒฝ ์ค„ ๋งˆ์Šคํฌ ๊ฑธ์ด ์ƒํ’ˆ์„ ํƒ_๋ธ”๋ž™(๊ณจ๋“œ) ๋ฆฌ๋ฏธ๋ชฐ'</li><li>'์•„์ด์—…๊ฝˆ๋ฐฐ๊ธฐ์ธ์กฐ๊ฐ€์ฃฝ์•ˆ๊ฒฝ์ค„10p์„ธํŠธ์„ ๊ธ€๋ผ์Šค์ค„ ๋งˆ๋‹ˆ๋˜์•ผ'</li></ul> | | 14.0 | <ul><li>'[๊ฐค๋Ÿฌ๋ฆฌ์•„] [Prada]ํ”„๋ผ๋‹ค 23FW ์‚ฌํ”ผ์•„๋…ธ ๋ฐ˜์ง€๊ฐ‘ ๋ธ”๋ž™ 2MO004 QME F0002 2MO004 QME F0002 FREE ํ•œํ™”๊ฐค๋Ÿฌ๋ฆฌ์•„(์ฃผ)'</li><li>'๋‹ฅ์Šค ์•ก์„ธ์„œ๋ฆฌ [OSCAR][์˜ค์Šค์นด][์ œ๋„ค์‹œ์Šค ์ „์šฉ] ๋„ค์ด๋น„ ํ”„๋ฆฌ๋ฏธ์—„ ํ† ๊ณ  ์ˆ˜์ž… ๊ฐ€์ฃฝ ์ฐจํ‚ค์ผ€์ด์Šค DBHO2F573N2 XXX ์ฃผ์‹ํšŒ์‚ฌ LF'</li><li>'ํ†ฐ๋ธŒ๋ผ์šด 23SS ๋‚จ์„ฑ ํŽ˜๋ธ”๊ทธ๋ ˆ์ธ ๋จธ๋‹ˆํด๋ฆฝ ๋ธ”๋ž™ MAW025L 00198 001 ONE SIZE ์ฃผ์‹ํšŒ์‚ฌ ์ด์ง€๊ฒŸ์ธํ„ฐ๋‚ด์…”๋„'</li></ul> | | 0.0 | <ul><li>'[๋กฏ๋ฐ๋ฐฑํ™”์ ]๋‹ฅ์ŠคACC [์„ ๋ฌผํฌ์žฅ/์‡ผํ•‘๋ฐฑ๋™๋ด‰] [GRIDโ…ก] ๋ธŒ๋ผ์šด ํŒจํ„ด๋ฐฐ์ƒ‰ ์†Œ๊ฐ€์ฃฝ ํด๋Ÿฌ์น˜๋ฐฑ DBBA2F266W3 ๋กฏ๋ฐ๋ฐฑํ™”์ _'</li><li>'๋งŒ๋‹ค๋ฆฌ๋‚˜๋• ํ† ํŠธ๋ฐฑ PIETRO P4T05163 ์€ํ•˜์ˆ˜๋ชฐ'</li><li>'๋‚ด์…”๋„์ง€์˜ค๊ทธ๋ž˜ํ”ฝ N245ATO510 ๋ฒ ์ด์ง ์—์ฝ”๋ฐฑ BLACK TNSC'</li></ul> | | 16.0 | <ul><li>'์˜ฌ๋ฆผ๋จธ๋ฆฌ ๋ฉ”ํƒˆํ”„๋ ˆ์ž„ ๋ฐ˜๋จธ๋ฆฌ ๊ผฌ์ž„ ์ง‘๊ฒŒํ•€ 114 ์œ ๊ด‘์Šคํ‹ธ 7cm ์ด์ง€ ์•„ํŠธ ํ”„๋กœ๋•์…˜ (EG ART PRODUCTION)'</li><li>'๊ผฌ์ž„ ๋ฉ”ํƒˆํ”„๋ ˆ์ž„ ๋ฐ˜๋จธ๋ฆฌ ์˜ฌ๋ฆผ๋จธ๋ฆฌ ์ง‘๊ฒŒํ•€ 114 ๋ฌด๊ด‘๋กœ์ฆˆ 7cm ๋„ค์˜ค๋ชฐ'</li><li>'ํผํผ ๋ฐฉ์šธํ„ธ ์žฅ์‹ ๋ฏธ๋‹ˆ ๋จธ๋ฆฌ๋ˆ ํฌ์ธํŠธ ํ—ค์–ด๋ˆ ํผํ”Œ 1P ์€๊ฐ•'</li></ul> | | 8.0 | <ul><li>'๊ธฐ๋ชจ ๋กฑ ์˜ค๋ฒ„ ๋‹ˆ์‚ญ์Šค ๊ฒจ์šธ ์Šคํƒ€ํ‚น ๋‹ค๋ฆฌ ์›Œ๋จธ ๋กฑ์‚ญ์Šค ๋กฑ์–‘๋ง ๋ฌด๋ฆŽ ๋‹ˆํ•˜์ด ๋ธŒ๋ผ์šด ๋ฆฐ์ดํŒธ'</li><li>'์ตœ๋Œ€12์ผค๋ ˆ ๋‚จ์—ฌ ๊ตญ์‚ฐ์–‘๋ง ์žฅ๋ชฉ/๋‹ˆํŠธ/๊ท ์ผ๊ฐ€/์‹ ์ƒ/์ค‘๋ชฉ/๋ฐœ๋ชฉ/์ˆ˜๋ฉด/ํ•™์ƒ 37~38_37.์—ฌ)ํ„ธ์‹ค ์ค‘๋ชฉ_4์ผค๋ ˆ / ๋ฒ„๊ฑด๋”” ํˆฌํˆฌ์‚ญ์Šค'</li><li>'NY์ฝ”ํŠผํด๋Ÿฝ 5์ผค๋ ˆ ๊ตญ์‚ฐ ๊ทน์„ธ์‚ฌ ๊ธฐ๋ชจ ๋กฑ ๋ฌด์••๋ฐ• ์ž„์‚ฐ๋ถ€ ์ˆ˜๋ฉด์–‘๋ง W8001-์—ฌ์„ฑ-์นด๋ฉœ5์กฑ GSSHOP_'</li></ul> | | 5.0 | <ul><li>'[ํ•œ๊ตญ๊ธˆ๊ฑฐ๋ž˜์†Œ] ์ˆœ๊ธˆ ์นด๋„ค์ด์…˜ ๋ฐฐ์ง€ 1.875g ๋ถ€๋ชจ๋‹˜ ์ถ”์„ ๋ช…์ ˆ ์ƒ์‹  ์ƒ์ผ ๊ธฐ๋…์ผ ๊ธฐ๋… ์ถ•ํ•˜ ๊ฐ์‚ฌ์„ ๋ฌผ ์ฃผ์‹ํšŒ์‚ฌ ํ•œ๊ตญ๊ธˆ๊ฑฐ๋ž˜์†Œ๋””์ง€ํ„ธ์—์…‹'</li><li>'[ํ•œ๊ตญ๊ธˆ๊ฑฐ๋ž˜์†Œ]ํ•œ๊ตญ๊ธˆ๊ฑฐ๋ž˜์†Œ ์ˆœ๊ธˆ ์šฉ 37.5g [์ˆœ๊ธˆ24K] ๋กฏ๋ฐ์•„์ด๋ชฐ'</li><li>'ํ•œ๊ตญ๊ธˆ๊ฑฐ๋ž˜์†Œ ์‹ค๋ฒ„๋ฐ” 1kg(1000g) ์ฃผ์‹ํšŒ์‚ฌ ํ•œ๊ตญ๊ธˆ๊ฑฐ๋ž˜์†Œ๋””์ง€ํ„ธ์—์…‹'</li></ul> | | 10.0 | <ul><li>'์บ ํผ ๋ธŒ๋ฃจํˆฌ์Šค ํŠธ๋ ‰ ์ฒผ์‹œ ์•ตํด๋ถ€์ธ  346335 EU 39 ์ฃผ์‹ํšŒ์‚ฌ ์ˆ˜๋น„๋ฅด๊ธ€๋กœ๋ฒŒ์ปค๋จธ์Šค(SUBIR Global Commerce)'</li><li>'์Šˆ์ฝค๋งˆ๋ณด๋‹ˆ ์›Œ์ปค ๋ถ€์ธ  DG3CW22519BLK ๋ธ”๋ž™_250 ๋กฏ๋ฐ์‡ผํ•‘(์ฃผ) ํ”„๋ฆฌ๋ฏธ์—„์•„์šธ๋ › ํƒ€์ž„๋นŒ๋ผ์Šค'</li><li>'๋ง๋ž‘ ์ฟ ํ‚ค ๊ฑฐ์‹คํ™” ์‹ค๋‚ดํ™” ๊ฑฐ์‹ค์Šฌ๋ฆฌํผ ์‹ค๋‚ด์Šฌ๋ฆฌํผ LWS ๊ทธ๋ ˆ์ด265mm ์ƒํ™œ๊ณต์ž‘์†Œ365'</li></ul> | | 6.0 | <ul><li>'BOXY ๋ฐ•์‹œ ์›Œ์น˜์™€์ธ๋” BWS-S / BWS-F 1๊ตฌ ์•„๋‹ตํ„ฐ1๊ฐœ๋กœ ์Œ“์•„์„œ ์‚ฌ์šฉ๊ฐ€๋Šฅ BWS-S(DG)์•„๋‹ตํ„ฐ๋ฏธํฌํ•จ ์™€์น˜๋‹ท์ปด'</li><li>'์ง€์ƒฅ GA-2100 2110 ์ง€์–„์˜คํฌ ๋ฒ ์ ค ๋ฐด๋“œ ์ผ์ฒดํ˜• ์šฉ๋‘ ๋ฉ”ํƒˆ ์šฐ๋ ˆํƒ„๋ฐด๋“œ ์ปค์Šคํ…€ ์˜ต์…˜5:์‹ค๋ฒ„+๋ธ”๋ž™๋ฒ ์ ค_1.์ผ๋ฐ˜๋ฒ„ํด_ํ™”์ดํŠธ ๋ฐฉ์šธ๋ฐฉ์šธ'</li><li>'์Šคํƒ€์ƒต ์นด์‹œ์˜ค MRW-200H-2B2 ๋‚จ์„ฑ ์†๋ชฉ์‹œ๊ณ„ c57 ์„ ํƒ19. AW-49H-1B ์Šคํƒ€์ƒต'</li></ul> | | 3.0 | <ul><li>'๋‚จ์ž ๋ฉœ๋นต 2 5CM ๋‚จ์„ฑ ๋ฐ ์—ฌ์„ฑ ์„œ์ŠคํŽœ๋” ํด๋ฆฝ ์‚ฌ์ด๋“œ ํ™€์Šคํ„ฐ ์Šคํƒ€์ผ ํƒ„์„ฑ ๋ฐฑ ์„œ์ŠคํŽœ๋” 05 ๋ฐ์€ ๋นจ๊ฐ„์ƒ‰ ํ—ฌ๋กœ์šฐ์Šคํ† ์–ด'</li><li>'๋ฉœ๋นต ์†Œํ˜•๋ฉœ๋นต ์šฉ ๋ฉœ๋นต ์–ด๋ฆฐ์ด๋ฉœ๋นต ๋ฉœ๋นต ๋งฌ๋นต MinSellAmount ๋ชจ๋ฃจ๋ชจ๋ฃจ'</li><li>'[๋‹ฅ์Šค ์•ก์„ธ์„œ๋ฆฌ] [23FW] DBBE3F097BK ์—ฌ์„ฑ๋ฒจํŠธDD Symbol ๋ธ”๋ž™ DD๋ฉ”ํƒˆ๋ฆญ ๊ณจ๋“œ ๋ฒ„ํด ์†Œ XXX '</li></ul> | | 12.0 | <ul><li>'๋ฏธ๋‹ˆ ํ† ์‹œ ์‚ฌ๋ฌด์šฉ ๊ด‘๋ชฉ ์ž์ˆ˜ ํŒ”ํ† ์‹œ ๋ ˆ๋“œ๋กœ์ฆˆ ๋‹ค์†œ์ด๋„ค'</li><li>'๋ฐฑํ™”์  ์—ฌ์„ฑ ๋‚จ์„ฑ ์ฒœ์—ฐ ์–‘๊ฐ€์ฃฝ ์žฅ๊ฐ‘ ์Šค๋งˆํŠธํฐ ํ„ฐ์น˜ ํ„ธ ์†๊ฐ€๋ฝ ๊ฒจ์šธ ๋ฐฉํ•œ ๊ฐ€์ฃฝ ์ปคํ”Œ ์žฅ๊ฐ‘ 2.์—ฌ์„ฑ์šฉ/์Šค์›จ์ด๋“œ/์ฐจ์ฝœ ํž๋ ‰์Šค'</li><li>'[์„ ๋ฌผํฌ์žฅ] ์šธ ์บ์‹œ๋ฏธ์–ดํ˜ผ๋ฐฉ ํ•‘๊ฑฐํ™€ ์žฅ๊ฐ‘ JAGV2F310G2,JAGV2F311W2,JAGV2F312E2,JAGV2F313/์งˆ์ŠคํŠœ์–ดํŠธ ๊ทธ๋ฆฐ ๋กฏ๋ฐ์‡ผํ•‘(์ฃผ)'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9386 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_item_ac") # Run inference preds = model("์‹ค๋ฆฌ์ฝ˜ ๋™์ „ ์ง€๊ฐ‘ ์‹ฌํ”Œ ์บ๋ฆญํ„ฐ [on] ๋ธ”๋ž™์บฃ(๋™์ „์ง€๊ฐ‘) ๋น„150") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.2537 | 30 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 450 | | 1.0 | 650 | | 2.0 | 650 | | 3.0 | 150 | | 4.0 | 300 | | 5.0 | 120 | | 6.0 | 224 | | 7.0 | 350 | | 8.0 | 100 | | 9.0 | 467 | | 10.0 | 500 | | 11.0 | 600 | | 12.0 | 150 | | 13.0 | 450 | | 14.0 | 400 | | 15.0 | 1000 | | 16.0 | 250 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-----:|:-------------:|:---------------:| | 0.0009 | 1 | 0.407 | - | | 0.0469 | 50 | 0.3772 | - | | 0.0939 | 100 | 0.3062 | - | | 0.1408 | 150 | 0.2861 | - | | 0.1878 | 200 | 0.2513 | - | | 0.2347 | 250 | 0.2284 | - | | 0.2817 | 300 | 0.1952 | - | | 0.3286 | 350 | 0.149 | - | | 0.3756 | 400 | 0.1154 | - | | 0.4225 | 450 | 0.1042 | - | | 0.4695 | 500 | 0.0802 | - | | 0.5164 | 550 | 0.0765 | - | | 0.5634 | 600 | 0.0767 | - | | 0.6103 | 650 | 0.0475 | - | | 0.6573 | 700 | 0.0535 | - | | 0.7042 | 750 | 0.0293 | - | | 0.7512 | 800 | 0.0388 | - | | 0.7981 | 850 | 0.0156 | - | | 0.8451 | 900 | 0.0348 | - | | 0.8920 | 950 | 0.0241 | - | | 0.9390 | 1000 | 0.023 | - | | 0.9859 | 1050 | 0.0166 | - | | 1.0329 | 1100 | 0.0124 | - | | 1.0798 | 1150 | 0.0139 | - | | 1.1268 | 1200 | 0.0122 | - | | 1.1737 | 1250 | 0.0111 | - | | 1.2207 | 1300 | 0.0062 | - | | 1.2676 | 1350 | 0.0106 | - | | 1.3146 | 1400 | 0.0112 | - | | 1.3615 | 1450 | 0.0137 | - | | 1.4085 | 1500 | 0.0154 | - | | 1.4554 | 1550 | 0.0185 | - | | 1.5023 | 1600 | 0.0248 | - | | 1.5493 | 1650 | 0.0128 | - | | 1.5962 | 1700 | 0.018 | - | | 1.6432 | 1750 | 0.0013 | - | | 1.6901 | 1800 | 0.0151 | - | | 1.7371 | 1850 | 0.0208 | - | | 1.7840 | 1900 | 0.0076 | - | | 1.8310 | 1950 | 0.0138 | - | | 1.8779 | 2000 | 0.0133 | - | | 1.9249 | 2050 | 0.0131 | - | | 1.9718 | 2100 | 0.0123 | - | | 2.0188 | 2150 | 0.0165 | - | | 2.0657 | 2200 | 0.0084 | - | | 2.1127 | 2250 | 0.0062 | - | | 2.1596 | 2300 | 0.0068 | - | | 2.2066 | 2350 | 0.0023 | - | | 2.2535 | 2400 | 0.006 | - | | 2.3005 | 2450 | 0.0048 | - | | 2.3474 | 2500 | 0.0016 | - | | 2.3944 | 2550 | 0.0046 | - | | 2.4413 | 2600 | 0.001 | - | | 2.4883 | 2650 | 0.0022 | - | | 2.5352 | 2700 | 0.0014 | - | | 2.5822 | 2750 | 0.0004 | - | | 2.6291 | 2800 | 0.0002 | - | | 2.6761 | 2850 | 0.0004 | - | | 2.7230 | 2900 | 0.0016 | - | | 2.7700 | 2950 | 0.0018 | - | | 2.8169 | 3000 | 0.0004 | - | | 2.8638 | 3050 | 0.0001 | - | | 2.9108 | 3100 | 0.0002 | - | | 2.9577 | 3150 | 0.0018 | - | | 3.0047 | 3200 | 0.0019 | - | | 3.0516 | 3250 | 0.0001 | - | | 3.0986 | 3300 | 0.0011 | - | | 3.1455 | 3350 | 0.0001 | - | | 3.1925 | 3400 | 0.0001 | - | | 3.2394 | 3450 | 0.0002 | - | | 3.2864 | 3500 | 0.0007 | - | | 3.3333 | 3550 | 0.0001 | - | | 3.3803 | 3600 | 0.0002 | - | | 3.4272 | 3650 | 0.0001 | - | | 3.4742 | 3700 | 0.0011 | - | | 3.5211 | 3750 | 0.0013 | - | | 3.5681 | 3800 | 0.0014 | - | | 3.6150 | 3850 | 0.0001 | - | | 3.6620 | 3900 | 0.0001 | - | | 3.7089 | 3950 | 0.0002 | - | | 3.7559 | 4000 | 0.0001 | - | | 3.8028 | 4050 | 0.0014 | - | | 3.8498 | 4100 | 0.0002 | - | | 3.8967 | 4150 | 0.0001 | - | | 3.9437 | 4200 | 0.0 | - | | 3.9906 | 4250 | 0.0 | - | | 4.0376 | 4300 | 0.0001 | - | | 4.0845 | 4350 | 0.0002 | - | | 4.1315 | 4400 | 0.0 | - | | 4.1784 | 4450 | 0.0001 | - | | 4.2254 | 4500 | 0.0 | - | | 4.2723 | 4550 | 0.0 | - | | 4.3192 | 4600 | 0.0003 | - | | 4.3662 | 4650 | 0.0007 | - | | 4.4131 | 4700 | 0.0 | - | | 4.4601 | 4750 | 0.0001 | - | | 4.5070 | 4800 | 0.0011 | - | | 4.5540 | 4850 | 0.0003 | - | | 4.6009 | 4900 | 0.0005 | - | | 4.6479 | 4950 | 0.0001 | - | | 4.6948 | 5000 | 0.0001 | - | | 4.7418 | 5050 | 0.0001 | - | | 4.7887 | 5100 | 0.0001 | - | | 4.8357 | 5150 | 0.0 | - | | 4.8826 | 5200 | 0.0 | - | | 4.9296 | 5250 | 0.0 | - | | 4.9765 | 5300 | 0.0001 | - | | 5.0235 | 5350 | 0.0 | - | | 5.0704 | 5400 | 0.0 | - | | 5.1174 | 5450 | 0.0 | - | | 5.1643 | 5500 | 0.0 | - | | 5.2113 | 5550 | 0.0 | - | | 5.2582 | 5600 | 0.0001 | - | | 5.3052 | 5650 | 0.0 | - | | 5.3521 | 5700 | 0.0 | - | | 5.3991 | 5750 | 0.0 | - | | 5.4460 | 5800 | 0.0 | - | | 5.4930 | 5850 | 0.0 | - | | 5.5399 | 5900 | 0.0 | - | | 5.5869 | 5950 | 0.0 | - | | 5.6338 | 6000 | 0.0 | - | | 5.6808 | 6050 | 0.0 | - | | 5.7277 | 6100 | 0.0 | - | | 5.7746 | 6150 | 0.0 | - | | 5.8216 | 6200 | 0.0 | - | | 5.8685 | 6250 | 0.0 | - | | 5.9155 | 6300 | 0.0001 | - | | 5.9624 | 6350 | 0.0004 | - | | 6.0094 | 6400 | 0.0007 | - | | 6.0563 | 6450 | 0.0 | - | | 6.1033 | 6500 | 0.0001 | - | | 6.1502 | 6550 | 0.0 | - | | 6.1972 | 6600 | 0.0001 | - | | 6.2441 | 6650 | 0.0 | - | | 6.2911 | 6700 | 0.0 | - | | 6.3380 | 6750 | 0.0009 | - | | 6.3850 | 6800 | 0.0 | - | | 6.4319 | 6850 | 0.0001 | - | | 6.4789 | 6900 | 0.0 | - | | 6.5258 | 6950 | 0.0001 | - | | 6.5728 | 7000 | 0.0 | - | | 6.6197 | 7050 | 0.0 | - | | 6.6667 | 7100 | 0.0 | - | | 6.7136 | 7150 | 0.0 | - | | 6.7606 | 7200 | 0.0001 | - | | 6.8075 | 7250 | 0.0 | - | | 6.8545 | 7300 | 0.0 | - | | 6.9014 | 7350 | 0.0 | - | | 6.9484 | 7400 | 0.0 | - | | 6.9953 | 7450 | 0.0 | - | | 7.0423 | 7500 | 0.0 | - | | 7.0892 | 7550 | 0.0 | - | | 7.1362 | 7600 | 0.0 | - | | 7.1831 | 7650 | 0.0 | - | | 7.2300 | 7700 | 0.0 | - | | 7.2770 | 7750 | 0.0001 | - | | 7.3239 | 7800 | 0.0 | - | | 7.3709 | 7850 | 0.0 | - | | 7.4178 | 7900 | 0.0 | - | | 7.4648 | 7950 | 0.0 | - | | 7.5117 | 8000 | 0.0 | - | | 7.5587 | 8050 | 0.0 | - | | 7.6056 | 8100 | 0.0 | - | | 7.6526 | 8150 | 0.0024 | - | | 7.6995 | 8200 | 0.0 | - | | 7.7465 | 8250 | 0.0 | - | | 7.7934 | 8300 | 0.0 | - | | 7.8404 | 8350 | 0.0 | - | | 7.8873 | 8400 | 0.0 | - | | 7.9343 | 8450 | 0.0 | - | | 7.9812 | 8500 | 0.0 | - | | 8.0282 | 8550 | 0.0 | - | | 8.0751 | 8600 | 0.0 | - | | 8.1221 | 8650 | 0.0 | - | | 8.1690 | 8700 | 0.0 | - | | 8.2160 | 8750 | 0.0 | - | | 8.2629 | 8800 | 0.0 | - | | 8.3099 | 8850 | 0.0 | - | | 8.3568 | 8900 | 0.0 | - | | 8.4038 | 8950 | 0.0 | - | | 8.4507 | 9000 | 0.0 | - | | 8.4977 | 9050 | 0.0 | - | | 8.5446 | 9100 | 0.0 | - | | 8.5915 | 9150 | 0.0 | - | | 8.6385 | 9200 | 0.0002 | - | | 8.6854 | 9250 | 0.0003 | - | | 8.7324 | 9300 | 0.0005 | - | | 8.7793 | 9350 | 0.0001 | - | | 8.8263 | 9400 | 0.0001 | - | | 8.8732 | 9450 | 0.0001 | - | | 8.9202 | 9500 | 0.0 | - | | 8.9671 | 9550 | 0.0 | - | | 9.0141 | 9600 | 0.0001 | - | | 9.0610 | 9650 | 0.0001 | - | | 9.1080 | 9700 | 0.0 | - | | 9.1549 | 9750 | 0.0 | - | | 9.2019 | 9800 | 0.0001 | - | | 9.2488 | 9850 | 0.0 | - | | 9.2958 | 9900 | 0.0 | - | | 9.3427 | 9950 | 0.0 | - | | 9.3897 | 10000 | 0.0 | - | | 9.4366 | 10050 | 0.0 | - | | 9.4836 | 10100 | 0.0 | - | | 9.5305 | 10150 | 0.0 | - | | 9.5775 | 10200 | 0.0 | - | | 9.6244 | 10250 | 0.0 | - | | 9.6714 | 10300 | 0.0 | - | | 9.7183 | 10350 | 0.0 | - | | 9.7653 | 10400 | 0.0 | - | | 9.8122 | 10450 | 0.0 | - | | 9.8592 | 10500 | 0.0016 | - | | 9.9061 | 10550 | 0.0 | - | | 9.9531 | 10600 | 0.0 | - | | 10.0 | 10650 | 0.0 | - | | 10.0469 | 10700 | 0.0003 | - | | 10.0939 | 10750 | 0.0 | - | | 10.1408 | 10800 | 0.0 | - | | 10.1878 | 10850 | 0.0 | - | | 10.2347 | 10900 | 0.0 | - | | 10.2817 | 10950 | 0.0 | - | | 10.3286 | 11000 | 0.0 | - | | 10.3756 | 11050 | 0.0 | - | | 10.4225 | 11100 | 0.0 | - | | 10.4695 | 11150 | 0.0 | - | | 10.5164 | 11200 | 0.0 | - | | 10.5634 | 11250 | 0.0 | - | | 10.6103 | 11300 | 0.0 | - | | 10.6573 | 11350 | 0.0 | - | | 10.7042 | 11400 | 0.0 | - | | 10.7512 | 11450 | 0.0 | - | | 10.7981 | 11500 | 0.0 | - | | 10.8451 | 11550 | 0.0 | - | | 10.8920 | 11600 | 0.0 | - | | 10.9390 | 11650 | 0.0 | - | | 10.9859 | 11700 | 0.0 | - | | 11.0329 | 11750 | 0.0 | - | | 11.0798 | 11800 | 0.0 | - | | 11.1268 | 11850 | 0.0 | - | | 11.1737 | 11900 | 0.0 | - | | 11.2207 | 11950 | 0.0 | - | | 11.2676 | 12000 | 0.0 | - | | 11.3146 | 12050 | 0.0 | - | | 11.3615 | 12100 | 0.0 | - | | 11.4085 | 12150 | 0.0 | - | | 11.4554 | 12200 | 0.0 | - | | 11.5023 | 12250 | 0.0015 | - | | 11.5493 | 12300 | 0.0 | - | | 11.5962 | 12350 | 0.0 | - | | 11.6432 | 12400 | 0.0 | - | | 11.6901 | 12450 | 0.0 | - | | 11.7371 | 12500 | 0.0 | - | | 11.7840 | 12550 | 0.0002 | - | | 11.8310 | 12600 | 0.0 | - | | 11.8779 | 12650 | 0.0 | - | | 11.9249 | 12700 | 0.0 | - | | 11.9718 | 12750 | 0.0001 | - | | 12.0188 | 12800 | 0.0 | - | | 12.0657 | 12850 | 0.0 | - | | 12.1127 | 12900 | 0.0 | - | | 12.1596 | 12950 | 0.0001 | - | | 12.2066 | 13000 | 0.0001 | - | | 12.2535 | 13050 | 0.0 | - | | 12.3005 | 13100 | 0.0 | - | | 12.3474 | 13150 | 0.0001 | - | | 12.3944 | 13200 | 0.0 | - | | 12.4413 | 13250 | 0.0 | - | | 12.4883 | 13300 | 0.0 | - | | 12.5352 | 13350 | 0.0 | - | | 12.5822 | 13400 | 0.0 | - | | 12.6291 | 13450 | 0.0 | - | | 12.6761 | 13500 | 0.0 | - | | 12.7230 | 13550 | 0.0 | - | | 12.7700 | 13600 | 0.0 | - | | 12.8169 | 13650 | 0.0 | - | | 12.8638 | 13700 | 0.0 | - | | 12.9108 | 13750 | 0.0 | - | | 12.9577 | 13800 | 0.0 | - | | 13.0047 | 13850 | 0.0 | - | | 13.0516 | 13900 | 0.0 | - | | 13.0986 | 13950 | 0.0 | - | | 13.1455 | 14000 | 0.0 | - | | 13.1925 | 14050 | 0.0 | - | | 13.2394 | 14100 | 0.0 | - | | 13.2864 | 14150 | 0.0 | - | | 13.3333 | 14200 | 0.0 | - | | 13.3803 | 14250 | 0.0 | - | | 13.4272 | 14300 | 0.0 | - | | 13.4742 | 14350 | 0.0 | - | | 13.5211 | 14400 | 0.0 | - | | 13.5681 | 14450 | 0.0 | - | | 13.6150 | 14500 | 0.0 | - | | 13.6620 | 14550 | 0.0 | - | | 13.7089 | 14600 | 0.0 | - | | 13.7559 | 14650 | 0.0 | - | | 13.8028 | 14700 | 0.0 | - | | 13.8498 | 14750 | 0.0 | - | | 13.8967 | 14800 | 0.0 | - | | 13.9437 | 14850 | 0.0 | - | | 13.9906 | 14900 | 0.0 | - | | 14.0376 | 14950 | 0.0 | - | | 14.0845 | 15000 | 0.0 | - | | 14.1315 | 15050 | 0.0 | - | | 14.1784 | 15100 | 0.0001 | - | | 14.2254 | 15150 | 0.0 | - | | 14.2723 | 15200 | 0.0 | - | | 14.3192 | 15250 | 0.0 | - | | 14.3662 | 15300 | 0.0 | - | | 14.4131 | 15350 | 0.0 | - | | 14.4601 | 15400 | 0.0 | - | | 14.5070 | 15450 | 0.0 | - | | 14.5540 | 15500 | 0.0 | - | | 14.6009 | 15550 | 0.0 | - | | 14.6479 | 15600 | 0.0 | - | | 14.6948 | 15650 | 0.0 | - | | 14.7418 | 15700 | 0.0 | - | | 14.7887 | 15750 | 0.0 | - | | 14.8357 | 15800 | 0.0 | - | | 14.8826 | 15850 | 0.0 | - | | 14.9296 | 15900 | 0.0 | - | | 14.9765 | 15950 | 0.0 | - | | 15.0235 | 16000 | 0.0 | - | | 15.0704 | 16050 | 0.0 | - | | 15.1174 | 16100 | 0.0 | - | | 15.1643 | 16150 | 0.0 | - | | 15.2113 | 16200 | 0.0 | - | | 15.2582 | 16250 | 0.0 | - | | 15.3052 | 16300 | 0.0 | - | | 15.3521 | 16350 | 0.0 | - | | 15.3991 | 16400 | 0.0 | - | | 15.4460 | 16450 | 0.0 | - | | 15.4930 | 16500 | 0.0 | - | | 15.5399 | 16550 | 0.0 | - | | 15.5869 | 16600 | 0.0 | - | | 15.6338 | 16650 | 0.0 | - | | 15.6808 | 16700 | 0.0 | - | | 15.7277 | 16750 | 0.0 | - | | 15.7746 | 16800 | 0.0 | - | | 15.8216 | 16850 | 0.0 | - | | 15.8685 | 16900 | 0.0 | - | | 15.9155 | 16950 | 0.0 | - | | 15.9624 | 17000 | 0.0 | - | | 16.0094 | 17050 | 0.0 | - | | 16.0563 | 17100 | 0.0 | - | | 16.1033 | 17150 | 0.0 | - | | 16.1502 | 17200 | 0.0 | - | | 16.1972 | 17250 | 0.0 | - | | 16.2441 | 17300 | 0.0 | - | | 16.2911 | 17350 | 0.0 | - | | 16.3380 | 17400 | 0.0 | - | | 16.3850 | 17450 | 0.0 | - | | 16.4319 | 17500 | 0.0 | - | | 16.4789 | 17550 | 0.0 | - | | 16.5258 | 17600 | 0.0 | - | | 16.5728 | 17650 | 0.0 | - | | 16.6197 | 17700 | 0.0 | - | | 16.6667 | 17750 | 0.0 | - | | 16.7136 | 17800 | 0.0 | - | | 16.7606 | 17850 | 0.0 | - | | 16.8075 | 17900 | 0.0 | - | | 16.8545 | 17950 | 0.0 | - | | 16.9014 | 18000 | 0.0 | - | | 16.9484 | 18050 | 0.0 | - | | 16.9953 | 18100 | 0.0 | - | | 17.0423 | 18150 | 0.0 | - | | 17.0892 | 18200 | 0.0 | - | | 17.1362 | 18250 | 0.0 | - | | 17.1831 | 18300 | 0.0 | - | | 17.2300 | 18350 | 0.0 | - | | 17.2770 | 18400 | 0.0 | - | | 17.3239 | 18450 | 0.0 | - | | 17.3709 | 18500 | 0.0 | - | | 17.4178 | 18550 | 0.0 | - | | 17.4648 | 18600 | 0.0 | - | | 17.5117 | 18650 | 0.0 | - | | 17.5587 | 18700 | 0.0 | - | | 17.6056 | 18750 | 0.0 | - | | 17.6526 | 18800 | 0.0 | - | | 17.6995 | 18850 | 0.0 | - | | 17.7465 | 18900 | 0.0 | - | | 17.7934 | 18950 | 0.0 | - | | 17.8404 | 19000 | 0.0 | - | | 17.8873 | 19050 | 0.0 | - | | 17.9343 | 19100 | 0.0 | - | | 17.9812 | 19150 | 0.0 | - | | 18.0282 | 19200 | 0.0 | - | | 18.0751 | 19250 | 0.0 | - | | 18.1221 | 19300 | 0.0 | - | | 18.1690 | 19350 | 0.0 | - | | 18.2160 | 19400 | 0.0 | - | | 18.2629 | 19450 | 0.0 | - | | 18.3099 | 19500 | 0.0 | - | | 18.3568 | 19550 | 0.0 | - | | 18.4038 | 19600 | 0.0 | - | | 18.4507 | 19650 | 0.0 | - | | 18.4977 | 19700 | 0.0 | - | | 18.5446 | 19750 | 0.0 | - | | 18.5915 | 19800 | 0.0 | - | | 18.6385 | 19850 | 0.0 | - | | 18.6854 | 19900 | 0.0 | - | | 18.7324 | 19950 | 0.0 | - | | 18.7793 | 20000 | 0.0 | - | | 18.8263 | 20050 | 0.0 | - | | 18.8732 | 20100 | 0.0 | - | | 18.9202 | 20150 | 0.0 | - | | 18.9671 | 20200 | 0.0 | - | | 19.0141 | 20250 | 0.0 | - | | 19.0610 | 20300 | 0.0 | - | | 19.1080 | 20350 | 0.0 | - | | 19.1549 | 20400 | 0.0 | - | | 19.2019 | 20450 | 0.0 | - | | 19.2488 | 20500 | 0.0 | - | | 19.2958 | 20550 | 0.0 | - | | 19.3427 | 20600 | 0.0 | - | | 19.3897 | 20650 | 0.0 | - | | 19.4366 | 20700 | 0.0 | - | | 19.4836 | 20750 | 0.0 | - | | 19.5305 | 20800 | 0.0 | - | | 19.5775 | 20850 | 0.0 | - | | 19.6244 | 20900 | 0.0 | - | | 19.6714 | 20950 | 0.0 | - | | 19.7183 | 21000 | 0.0 | - | | 19.7653 | 21050 | 0.0 | - | | 19.8122 | 21100 | 0.0 | - | | 19.8592 | 21150 | 0.0 | - | | 19.9061 | 21200 | 0.0 | - | | 19.9531 | 21250 | 0.0 | - | | 20.0 | 21300 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mradermacher/Ice0.41-22.11-RP-i1-GGUF
mradermacher
2024-11-25T09:18:22Z
179
3
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:icefog72/Ice0.41-22.11-RP", "base_model:quantized:icefog72/Ice0.41-22.11-RP", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T09:21:22Z
--- base_model: icefog72/Ice0.41-22.11-RP language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/icefog72/Ice0.41-22.11-RP <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF/resolve/main/Ice0.41-22.11-RP.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF
mradermacher
2024-11-25T09:17:42Z
263
2
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:bunnycore/Tulu-3.1-8B-SuperNova", "base_model:quantized:bunnycore/Tulu-3.1-8B-SuperNova", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T04:51:17Z
--- base_model: bunnycore/Tulu-3.1-8B-SuperNova language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/bunnycore/Tulu-3.1-8B-SuperNova <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Tulu-3.1-8B-SuperNova-i1-GGUF/resolve/main/Tulu-3.1-8B-SuperNova.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF
mradermacher
2024-11-25T09:17:34Z
38
2
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-23T06:30:46Z
--- base_model: ddh0/Qwen2.5-14B-Mixed-Instruct language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/ddh0/Qwen2.5-14B-Mixed-Instruct <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q4_0_4_4.gguf) | Q4_0_4_4 | 8.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Mixed-Instruct-GGUF/resolve/main/Qwen2.5-14B-Mixed-Instruct.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Sakalti/Kan1-2.5b
Sakalti
2024-11-25T09:17:28Z
129
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T09:15:02Z
--- base_model: - Qwen/Qwen2.5-7B-Instruct library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) as a base. ### Models Merged The following models were included in the merge: ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Qwen/Qwen2.5-7B-Instruct layer_range: [0, 6] - model: Qwen/Qwen2.5-7B-Instruct layer_range: [7, 13] - model: Qwen/Qwen2.5-7B-Instruct layer_range: [14, 20] - model: Qwen/Qwen2.5-7B-Instruct layer_range: [21, 27] merge_method: model_stock base_model: Qwen/Qwen2.5-7B-Instruct dtype: bfloat16 ```
mradermacher/NeuralDaredevil-12b-32k-GGUF
mradermacher
2024-11-25T09:17:19Z
121
2
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "mlabonne/NeuralDaredevil-7B", "en", "base_model:mvpmaster/NeuralDaredevil-12b-32k", "base_model:quantized:mvpmaster/NeuralDaredevil-12b-32k", "endpoints_compatible", "region:us" ]
null
2024-11-23T18:19:56Z
--- base_model: mvpmaster/NeuralDaredevil-12b-32k language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - mlabonne/NeuralDaredevil-7B - mlabonne/NeuralDaredevil-7B - mlabonne/NeuralDaredevil-7B - mlabonne/NeuralDaredevil-7B - mlabonne/NeuralDaredevil-7B - mlabonne/NeuralDaredevil-7B - mlabonne/NeuralDaredevil-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/mvpmaster/NeuralDaredevil-12b-32k <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q2_K.gguf) | Q2_K | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q3_K_S.gguf) | Q3_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q3_K_M.gguf) | Q3_K_M | 6.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q5_K_S.gguf) | Q5_K_S | 8.7 | | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q5_K_M.gguf) | Q5_K_M | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q6_K.gguf) | Q6_K | 10.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NeuralDaredevil-12b-32k-GGUF/resolve/main/NeuralDaredevil-12b-32k.Q8_0.gguf) | Q8_0 | 13.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
SeppeV/xlnet_ft_pref_10pc
SeppeV
2024-11-25T09:10:11Z
89
0
transformers
[ "transformers", "safetensors", "xlnet", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-23T15:02:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PrunaAI/ahmedheakl-asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer-bnb-8bit-smashed
PrunaAI
2024-11-25T09:09:29Z
6
0
null
[ "safetensors", "qwen2", "pruna-ai", "base_model:ahmedheakl/asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer", "base_model:quantized:ahmedheakl/asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer", "8-bit", "bitsandbytes", "region:us" ]
null
2024-11-24T09:08:22Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ahmedheakl/asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ahmedheakl/asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/ahmedheakl-asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("ahmedheakl/asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ahmedheakl/asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
July-Tokyo/xlm-roberta-base-finetuned-panx-de
July-Tokyo
2024-11-25T09:09:10Z
133
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-25T07:10:45Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1377 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2592 | 1.0 | 525 | 0.1594 | 0.8243 | | 0.126 | 2.0 | 1050 | 0.1390 | 0.8513 | | 0.0802 | 3.0 | 1575 | 0.1377 | 0.8627 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k60_task2_organization_fold0
MayBashendy
2024-11-25T09:09:00Z
164
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T08:30:51Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k60_task2_organization_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k60_task2_organization_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5654 - Qwk: 0.4661 - Mse: 0.5654 - Rmse: 0.7519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0049 | 2 | 3.7329 | 0.0 | 3.7329 | 1.9321 | | No log | 0.0098 | 4 | 3.0481 | 0.0233 | 3.0481 | 1.7459 | | No log | 0.0147 | 6 | 1.8078 | -0.0157 | 1.8078 | 1.3445 | | No log | 0.0196 | 8 | 1.2965 | 0.0 | 1.2965 | 1.1386 | | No log | 0.0245 | 10 | 1.2090 | 0.0 | 1.2090 | 1.0996 | | No log | 0.0294 | 12 | 1.2281 | -0.0302 | 1.2281 | 1.1082 | | No log | 0.0343 | 14 | 1.4012 | -0.0302 | 1.4012 | 1.1837 | | No log | 0.0392 | 16 | 1.3026 | 0.0 | 1.3026 | 1.1413 | | No log | 0.0441 | 18 | 1.2453 | 0.0 | 1.2453 | 1.1159 | | No log | 0.0490 | 20 | 1.0166 | 0.0 | 1.0166 | 1.0083 | | No log | 0.0539 | 22 | 0.7326 | 0.1213 | 0.7326 | 0.8559 | | No log | 0.0588 | 24 | 0.8443 | 0.0 | 0.8443 | 0.9188 | | No log | 0.0637 | 26 | 1.5283 | -0.0302 | 1.5283 | 1.2362 | | No log | 0.0686 | 28 | 1.8904 | -0.1442 | 1.8904 | 1.3749 | | No log | 0.0735 | 30 | 1.7874 | -0.1282 | 1.7874 | 1.3369 | | No log | 0.0784 | 32 | 1.5789 | 0.0 | 1.5789 | 1.2566 | | No log | 0.0833 | 34 | 1.5011 | 0.0 | 1.5011 | 1.2252 | | No log | 0.0882 | 36 | 1.2510 | 0.0 | 1.2510 | 1.1185 | | No log | 0.0931 | 38 | 1.0157 | 0.0 | 1.0157 | 1.0078 | | No log | 0.0980 | 40 | 1.1595 | 0.0 | 1.1595 | 1.0768 | | No log | 0.1029 | 42 | 1.1783 | 0.0 | 1.1783 | 1.0855 | | No log | 0.1078 | 44 | 1.3290 | 0.0 | 1.3290 | 1.1528 | | No log | 0.1127 | 46 | 1.7079 | 0.1811 | 1.7079 | 1.3069 | | No log | 0.1176 | 48 | 1.5984 | 0.0577 | 1.5984 | 1.2643 | | No log | 0.1225 | 50 | 1.5642 | 0.1550 | 1.5642 | 1.2507 | | No log | 0.1275 | 52 | 1.5572 | 0.1811 | 1.5572 | 1.2479 | | No log | 0.1324 | 54 | 1.3567 | 0.0491 | 1.3567 | 1.1648 | | No log | 0.1373 | 56 | 1.5691 | 0.1811 | 1.5691 | 1.2526 | | No log | 0.1422 | 58 | 1.4052 | 0.0924 | 1.4052 | 1.1854 | | No log | 0.1471 | 60 | 0.8369 | 0.0 | 0.8369 | 0.9148 | | No log | 0.1520 | 62 | 0.7136 | 0.2452 | 0.7136 | 0.8448 | | No log | 0.1569 | 64 | 0.7666 | 0.1213 | 0.7666 | 0.8756 | | No log | 0.1618 | 66 | 1.0461 | 0.0 | 1.0461 | 1.0228 | | No log | 0.1667 | 68 | 1.6175 | 0.0641 | 1.6175 | 1.2718 | | No log | 0.1716 | 70 | 1.8439 | 0.0265 | 1.8439 | 1.3579 | | No log | 0.1765 | 72 | 1.6212 | 0.0924 | 1.6212 | 1.2733 | | No log | 0.1814 | 74 | 1.2282 | 0.0 | 1.2282 | 1.1082 | | No log | 0.1863 | 76 | 1.0309 | 0.0 | 1.0309 | 1.0153 | | No log | 0.1912 | 78 | 1.2423 | 0.0491 | 1.2423 | 1.1146 | | No log | 0.1961 | 80 | 1.8788 | 0.1170 | 1.8788 | 1.3707 | | No log | 0.2010 | 82 | 2.6548 | 0.0 | 2.6548 | 1.6294 | | No log | 0.2059 | 84 | 2.5991 | 0.0 | 2.5991 | 1.6122 | | No log | 0.2108 | 86 | 2.1897 | -0.0073 | 2.1897 | 1.4798 | | No log | 0.2157 | 88 | 1.4933 | 0.0491 | 1.4933 | 1.2220 | | No log | 0.2206 | 90 | 0.9251 | 0.0 | 0.9251 | 0.9618 | | No log | 0.2255 | 92 | 0.7122 | 0.2821 | 0.7122 | 0.8439 | | No log | 0.2304 | 94 | 0.6805 | 0.2289 | 0.6805 | 0.8249 | | No log | 0.2353 | 96 | 0.7859 | -0.0544 | 0.7859 | 0.8865 | | No log | 0.2402 | 98 | 1.3142 | 0.0 | 1.3142 | 1.1464 | | No log | 0.2451 | 100 | 1.8197 | 0.0955 | 1.8197 | 1.3490 | | No log | 0.25 | 102 | 2.1004 | 0.0499 | 2.1004 | 1.4493 | | No log | 0.2549 | 104 | 1.9572 | 0.1170 | 1.9572 | 1.3990 | | No log | 0.2598 | 106 | 1.6868 | 0.125 | 1.6868 | 1.2988 | | No log | 0.2647 | 108 | 1.4735 | 0.0 | 1.4735 | 1.2139 | | No log | 0.2696 | 110 | 1.1563 | 0.0 | 1.1563 | 1.0753 | | No log | 0.2745 | 112 | 1.0011 | 0.0 | 1.0011 | 1.0006 | | No log | 0.2794 | 114 | 1.1042 | 0.0 | 1.1042 | 1.0508 | | No log | 0.2843 | 116 | 1.0354 | 0.0 | 1.0354 | 1.0176 | | No log | 0.2892 | 118 | 0.9569 | 0.0 | 0.9569 | 0.9782 | | No log | 0.2941 | 120 | 1.0087 | 0.0 | 1.0087 | 1.0043 | | No log | 0.2990 | 122 | 0.9712 | 0.0 | 0.9712 | 0.9855 | | No log | 0.3039 | 124 | 0.8387 | -0.0544 | 0.8387 | 0.9158 | | No log | 0.3088 | 126 | 0.8373 | -0.1667 | 0.8373 | 0.9150 | | No log | 0.3137 | 128 | 0.9305 | 0.0335 | 0.9305 | 0.9646 | | No log | 0.3186 | 130 | 1.0780 | 0.0 | 1.0780 | 1.0383 | | No log | 0.3235 | 132 | 1.2888 | 0.0 | 1.2888 | 1.1352 | | No log | 0.3284 | 134 | 1.3256 | 0.0 | 1.3256 | 1.1513 | | No log | 0.3333 | 136 | 1.4511 | 0.0 | 1.4511 | 1.2046 | | No log | 0.3382 | 138 | 1.4020 | 0.0 | 1.4020 | 1.1841 | | No log | 0.3431 | 140 | 1.2453 | 0.0 | 1.2453 | 1.1159 | | No log | 0.3480 | 142 | 1.0186 | 0.0 | 1.0186 | 1.0093 | | No log | 0.3529 | 144 | 0.9046 | -0.1099 | 0.9046 | 0.9511 | | No log | 0.3578 | 146 | 1.1096 | 0.0162 | 1.1096 | 1.0534 | | No log | 0.3627 | 148 | 1.9099 | 0.0808 | 1.9099 | 1.3820 | | No log | 0.3676 | 150 | 2.2249 | 0.0538 | 2.2249 | 1.4916 | | No log | 0.3725 | 152 | 1.9898 | 0.0455 | 1.9898 | 1.4106 | | No log | 0.3775 | 154 | 1.3677 | 0.0605 | 1.3677 | 1.1695 | | No log | 0.3824 | 156 | 0.8731 | -0.0548 | 0.8731 | 0.9344 | | No log | 0.3873 | 158 | 0.8028 | 0.2150 | 0.8028 | 0.8960 | | No log | 0.3922 | 160 | 0.8322 | -0.0548 | 0.8322 | 0.9123 | | No log | 0.3971 | 162 | 1.0129 | 0.0 | 1.0129 | 1.0064 | | No log | 0.4020 | 164 | 1.3319 | 0.0491 | 1.3319 | 1.1541 | | No log | 0.4069 | 166 | 1.5114 | -0.0096 | 1.5114 | 1.2294 | | No log | 0.4118 | 168 | 1.4833 | -0.0328 | 1.4833 | 1.2179 | | No log | 0.4167 | 170 | 1.3613 | 0.0173 | 1.3613 | 1.1667 | | No log | 0.4216 | 172 | 1.1971 | 0.0491 | 1.1971 | 1.0941 | | No log | 0.4265 | 174 | 1.0106 | 0.0 | 1.0106 | 1.0053 | | No log | 0.4314 | 176 | 0.8181 | 0.1564 | 0.8181 | 0.9045 | | No log | 0.4363 | 178 | 0.7188 | -0.0312 | 0.7188 | 0.8478 | | No log | 0.4412 | 180 | 0.7157 | 0.0993 | 0.7157 | 0.8460 | | No log | 0.4461 | 182 | 0.7602 | 0.0265 | 0.7602 | 0.8719 | | No log | 0.4510 | 184 | 0.8625 | -0.0087 | 0.8625 | 0.9287 | | No log | 0.4559 | 186 | 1.0581 | 0.0 | 1.0581 | 1.0287 | | No log | 0.4608 | 188 | 1.1478 | 0.1213 | 1.1478 | 1.0714 | | No log | 0.4657 | 190 | 1.1894 | 0.1213 | 1.1894 | 1.0906 | | No log | 0.4706 | 192 | 1.1746 | 0.0436 | 1.1746 | 1.0838 | | No log | 0.4755 | 194 | 1.2390 | 0.0109 | 1.2390 | 1.1131 | | No log | 0.4804 | 196 | 1.1443 | 0.1939 | 1.1443 | 1.0697 | | No log | 0.4853 | 198 | 1.0193 | 0.1429 | 1.0193 | 1.0096 | | No log | 0.4902 | 200 | 0.9713 | -0.0185 | 0.9713 | 0.9855 | | No log | 0.4951 | 202 | 0.9346 | 0.0411 | 0.9346 | 0.9667 | | No log | 0.5 | 204 | 1.0566 | 0.1765 | 1.0566 | 1.0279 | | No log | 0.5049 | 206 | 1.1853 | 0.1600 | 1.1853 | 1.0887 | | No log | 0.5098 | 208 | 1.1745 | 0.0491 | 1.1745 | 1.0838 | | No log | 0.5147 | 210 | 1.0121 | 0.1923 | 1.0121 | 1.0060 | | No log | 0.5196 | 212 | 0.7318 | 0.2329 | 0.7318 | 0.8554 | | No log | 0.5245 | 214 | 0.6922 | 0.0957 | 0.6922 | 0.8320 | | No log | 0.5294 | 216 | 0.7221 | 0.0567 | 0.7221 | 0.8498 | | No log | 0.5343 | 218 | 0.7596 | 0.1600 | 0.7596 | 0.8716 | | No log | 0.5392 | 220 | 0.7837 | 0.1600 | 0.7837 | 0.8853 | | No log | 0.5441 | 222 | 0.7752 | 0.0567 | 0.7752 | 0.8804 | | No log | 0.5490 | 224 | 0.7915 | 0.2184 | 0.7915 | 0.8897 | | No log | 0.5539 | 226 | 0.7819 | 0.2184 | 0.7819 | 0.8842 | | No log | 0.5588 | 228 | 0.7789 | 0.1600 | 0.7789 | 0.8825 | | No log | 0.5637 | 230 | 1.0059 | 0.1800 | 1.0059 | 1.0030 | | No log | 0.5686 | 232 | 0.9666 | 0.0701 | 0.9666 | 0.9832 | | No log | 0.5735 | 234 | 0.7999 | 0.1370 | 0.7999 | 0.8944 | | No log | 0.5784 | 236 | 0.7399 | 0.1168 | 0.7399 | 0.8602 | | No log | 0.5833 | 238 | 0.7587 | 0.1168 | 0.7587 | 0.8711 | | No log | 0.5882 | 240 | 0.8089 | 0.0045 | 0.8089 | 0.8994 | | No log | 0.5931 | 242 | 0.8514 | 0.0045 | 0.8514 | 0.9227 | | No log | 0.5980 | 244 | 0.9308 | -0.0312 | 0.9308 | 0.9648 | | No log | 0.6029 | 246 | 0.9141 | -0.0312 | 0.9141 | 0.9561 | | No log | 0.6078 | 248 | 0.8402 | -0.0548 | 0.8402 | 0.9166 | | No log | 0.6127 | 250 | 0.7696 | -0.0048 | 0.7696 | 0.8773 | | No log | 0.6176 | 252 | 0.7865 | -0.0943 | 0.7865 | 0.8868 | | No log | 0.6225 | 254 | 0.8473 | 0.1356 | 0.8473 | 0.9205 | | No log | 0.6275 | 256 | 0.9396 | 0.1064 | 0.9396 | 0.9693 | | No log | 0.6324 | 258 | 1.0712 | -0.0483 | 1.0712 | 1.0350 | | No log | 0.6373 | 260 | 1.1024 | -0.0909 | 1.1024 | 1.0500 | | No log | 0.6422 | 262 | 1.0499 | 0.0297 | 1.0499 | 1.0246 | | No log | 0.6471 | 264 | 1.0232 | 0.1765 | 1.0232 | 1.0115 | | No log | 0.6520 | 266 | 1.0093 | -0.0553 | 1.0093 | 1.0046 | | No log | 0.6569 | 268 | 0.9457 | -0.0153 | 0.9457 | 0.9725 | | No log | 0.6618 | 270 | 0.8648 | -0.0153 | 0.8648 | 0.9300 | | No log | 0.6667 | 272 | 0.8738 | -0.0553 | 0.8738 | 0.9348 | | No log | 0.6716 | 274 | 0.9585 | 0.0903 | 0.9585 | 0.9790 | | No log | 0.6765 | 276 | 1.0674 | 0.1408 | 1.0674 | 1.0332 | | No log | 0.6814 | 278 | 1.1280 | 0.0455 | 1.1280 | 1.0621 | | No log | 0.6863 | 280 | 1.0904 | 0.1408 | 1.0904 | 1.0442 | | No log | 0.6912 | 282 | 1.0795 | 0.0455 | 1.0795 | 1.0390 | | No log | 0.6961 | 284 | 1.0543 | 0.0720 | 1.0543 | 1.0268 | | No log | 0.7010 | 286 | 0.9815 | 0.0473 | 0.9815 | 0.9907 | | No log | 0.7059 | 288 | 0.9048 | 0.1765 | 0.9048 | 0.9512 | | No log | 0.7108 | 290 | 0.8590 | 0.1765 | 0.8590 | 0.9268 | | No log | 0.7157 | 292 | 0.8301 | 0.1765 | 0.8301 | 0.9111 | | No log | 0.7206 | 294 | 0.8156 | 0.0567 | 0.8156 | 0.9031 | | No log | 0.7255 | 296 | 0.8623 | 0.0785 | 0.8623 | 0.9286 | | No log | 0.7304 | 298 | 0.8934 | 0.0375 | 0.8934 | 0.9452 | | No log | 0.7353 | 300 | 0.9323 | 0.0038 | 0.9323 | 0.9656 | | No log | 0.7402 | 302 | 0.9764 | 0.0038 | 0.9764 | 0.9882 | | No log | 0.7451 | 304 | 0.9810 | -0.0460 | 0.9810 | 0.9904 | | No log | 0.75 | 306 | 0.9550 | 0.0170 | 0.9550 | 0.9773 | | No log | 0.7549 | 308 | 0.9805 | 0.0375 | 0.9805 | 0.9902 | | No log | 0.7598 | 310 | 0.9342 | 0.0041 | 0.9342 | 0.9665 | | No log | 0.7647 | 312 | 0.9290 | -0.0286 | 0.9290 | 0.9638 | | No log | 0.7696 | 314 | 0.8797 | -0.0185 | 0.8797 | 0.9379 | | No log | 0.7745 | 316 | 0.8227 | -0.0794 | 0.8227 | 0.9070 | | No log | 0.7794 | 318 | 0.7853 | 0.0957 | 0.7853 | 0.8861 | | No log | 0.7843 | 320 | 0.7605 | 0.1356 | 0.7605 | 0.8721 | | No log | 0.7892 | 322 | 0.7714 | 0.1765 | 0.7714 | 0.8783 | | No log | 0.7941 | 324 | 0.7959 | 0.1765 | 0.7959 | 0.8921 | | No log | 0.7990 | 326 | 0.8596 | 0.1765 | 0.8596 | 0.9271 | | No log | 0.8039 | 328 | 0.9724 | 0.3029 | 0.9724 | 0.9861 | | No log | 0.8088 | 330 | 0.9962 | 0.3029 | 0.9962 | 0.9981 | | No log | 0.8137 | 332 | 0.9977 | 0.1635 | 0.9977 | 0.9988 | | No log | 0.8186 | 334 | 1.0736 | 0.0321 | 1.0736 | 1.0362 | | No log | 0.8235 | 336 | 1.0085 | 0.1818 | 1.0085 | 1.0042 | | No log | 0.8284 | 338 | 0.9455 | 0.0099 | 0.9455 | 0.9724 | | No log | 0.8333 | 340 | 0.9222 | 0.1356 | 0.9222 | 0.9603 | | No log | 0.8382 | 342 | 0.8597 | 0.0957 | 0.8597 | 0.9272 | | No log | 0.8431 | 344 | 0.8225 | 0.1356 | 0.8225 | 0.9069 | | No log | 0.8480 | 346 | 0.7537 | 0.1765 | 0.7537 | 0.8682 | | No log | 0.8529 | 348 | 0.7236 | 0.2184 | 0.7236 | 0.8506 | | No log | 0.8578 | 350 | 0.7374 | 0.0503 | 0.7374 | 0.8587 | | No log | 0.8627 | 352 | 0.8519 | 0.0099 | 0.8519 | 0.9230 | | No log | 0.8676 | 354 | 0.9807 | 0.1765 | 0.9807 | 0.9903 | | No log | 0.8725 | 356 | 1.0893 | 0.0516 | 1.0893 | 1.0437 | | No log | 0.8775 | 358 | 1.1002 | -0.0876 | 1.1002 | 1.0489 | | No log | 0.8824 | 360 | 1.0915 | 0.1429 | 1.0915 | 1.0448 | | No log | 0.8873 | 362 | 1.0676 | 0.1715 | 1.0676 | 1.0332 | | No log | 0.8922 | 364 | 0.9708 | 0.0833 | 0.9708 | 0.9853 | | No log | 0.8971 | 366 | 0.8791 | 0.0916 | 0.8791 | 0.9376 | | No log | 0.9020 | 368 | 0.7827 | 0.0099 | 0.7827 | 0.8847 | | No log | 0.9069 | 370 | 0.7366 | 0.1356 | 0.7366 | 0.8582 | | No log | 0.9118 | 372 | 0.7425 | 0.1168 | 0.7425 | 0.8617 | | No log | 0.9167 | 374 | 0.7658 | 0.0045 | 0.7658 | 0.8751 | | No log | 0.9216 | 376 | 0.7434 | 0.0567 | 0.7434 | 0.8622 | | No log | 0.9265 | 378 | 0.7418 | 0.1356 | 0.7418 | 0.8613 | | No log | 0.9314 | 380 | 0.8042 | 0.0099 | 0.8042 | 0.8968 | | No log | 0.9363 | 382 | 0.9116 | 0.0099 | 0.9116 | 0.9548 | | No log | 0.9412 | 384 | 0.9422 | 0.1765 | 0.9422 | 0.9707 | | No log | 0.9461 | 386 | 0.9646 | 0.1765 | 0.9646 | 0.9821 | | No log | 0.9510 | 388 | 0.9366 | 0.1765 | 0.9366 | 0.9678 | | No log | 0.9559 | 390 | 0.8935 | 0.1765 | 0.8935 | 0.9452 | | No log | 0.9608 | 392 | 0.8234 | 0.1765 | 0.8234 | 0.9074 | | No log | 0.9657 | 394 | 0.7723 | 0.1356 | 0.7723 | 0.8788 | | No log | 0.9706 | 396 | 0.7751 | 0.1356 | 0.7751 | 0.8804 | | No log | 0.9755 | 398 | 0.7900 | 0.1962 | 0.7900 | 0.8888 | | No log | 0.9804 | 400 | 0.8108 | 0.1962 | 0.8108 | 0.9005 | | No log | 0.9853 | 402 | 0.8253 | 0.1765 | 0.8253 | 0.9085 | | No log | 0.9902 | 404 | 0.8073 | 0.0099 | 0.8073 | 0.8985 | | No log | 0.9951 | 406 | 0.8569 | 0.0099 | 0.8569 | 0.9257 | | No log | 1.0 | 408 | 0.9797 | 0.0503 | 0.9797 | 0.9898 | | No log | 1.0049 | 410 | 1.0478 | 0.0503 | 1.0478 | 1.0236 | | No log | 1.0098 | 412 | 1.0258 | 0.0503 | 1.0258 | 1.0128 | | No log | 1.0147 | 414 | 0.9693 | 0.0503 | 0.9693 | 0.9845 | | No log | 1.0196 | 416 | 0.8774 | 0.0503 | 0.8774 | 0.9367 | | No log | 1.0245 | 418 | 0.8861 | 0.0099 | 0.8861 | 0.9413 | | No log | 1.0294 | 420 | 0.9214 | 0.0099 | 0.9214 | 0.9599 | | No log | 1.0343 | 422 | 0.8879 | 0.0099 | 0.8879 | 0.9423 | | No log | 1.0392 | 424 | 0.8490 | 0.1231 | 0.8490 | 0.9214 | | No log | 1.0441 | 426 | 0.8146 | 0.0870 | 0.8146 | 0.9025 | | No log | 1.0490 | 428 | 0.7657 | 0.1356 | 0.7657 | 0.8750 | | No log | 1.0539 | 430 | 0.7545 | 0.0503 | 0.7545 | 0.8686 | | No log | 1.0588 | 432 | 0.7598 | 0.0503 | 0.7598 | 0.8717 | | No log | 1.0637 | 434 | 0.7718 | -0.0825 | 0.7718 | 0.8785 | | No log | 1.0686 | 436 | 0.8087 | -0.0825 | 0.8086 | 0.8992 | | No log | 1.0735 | 438 | 0.8054 | -0.0825 | 0.8054 | 0.8974 | | No log | 1.0784 | 440 | 0.8101 | 0.0503 | 0.8101 | 0.9000 | | No log | 1.0833 | 442 | 0.8115 | 0.0503 | 0.8115 | 0.9008 | | No log | 1.0882 | 444 | 0.7931 | 0.2184 | 0.7931 | 0.8906 | | No log | 1.0931 | 446 | 0.7737 | 0.1765 | 0.7737 | 0.8796 | | No log | 1.0980 | 448 | 0.7484 | 0.1765 | 0.7484 | 0.8651 | | No log | 1.1029 | 450 | 0.7459 | 0.2184 | 0.7459 | 0.8637 | | No log | 1.1078 | 452 | 0.7613 | 0.2184 | 0.7613 | 0.8725 | | No log | 1.1127 | 454 | 0.7604 | 0.2184 | 0.7604 | 0.8720 | | No log | 1.1176 | 456 | 0.7483 | 0.2184 | 0.7483 | 0.8651 | | No log | 1.1225 | 458 | 0.7503 | 0.2613 | 0.7503 | 0.8662 | | No log | 1.1275 | 460 | 0.7585 | 0.0916 | 0.7585 | 0.8709 | | No log | 1.1324 | 462 | 0.7548 | 0.2613 | 0.7548 | 0.8688 | | No log | 1.1373 | 464 | 0.7606 | 0.1765 | 0.7606 | 0.8721 | | No log | 1.1422 | 466 | 0.7849 | 0.1765 | 0.7849 | 0.8859 | | No log | 1.1471 | 468 | 0.8086 | 0.1765 | 0.8086 | 0.8992 | | No log | 1.1520 | 470 | 0.8458 | 0.1765 | 0.8458 | 0.9197 | | No log | 1.1569 | 472 | 0.8762 | 0.1765 | 0.8762 | 0.9360 | | No log | 1.1618 | 474 | 0.9001 | 0.1356 | 0.9001 | 0.9487 | | No log | 1.1667 | 476 | 0.9094 | 0.1356 | 0.9094 | 0.9536 | | No log | 1.1716 | 478 | 0.9015 | 0.1356 | 0.9015 | 0.9495 | | No log | 1.1765 | 480 | 0.8821 | 0.1765 | 0.8821 | 0.9392 | | No log | 1.1814 | 482 | 0.8844 | 0.3029 | 0.8844 | 0.9404 | | No log | 1.1863 | 484 | 0.9158 | 0.1992 | 0.9158 | 0.9570 | | No log | 1.1912 | 486 | 0.9036 | 0.1600 | 0.9036 | 0.9506 | | No log | 1.1961 | 488 | 0.8359 | 0.0258 | 0.8359 | 0.9143 | | No log | 1.2010 | 490 | 0.7704 | 0.0258 | 0.7704 | 0.8777 | | No log | 1.2059 | 492 | 0.7179 | 0.0916 | 0.7179 | 0.8473 | | No log | 1.2108 | 494 | 0.6796 | 0.2184 | 0.6796 | 0.8244 | | No log | 1.2157 | 496 | 0.6828 | 0.1765 | 0.6828 | 0.8263 | | No log | 1.2206 | 498 | 0.6992 | 0.2184 | 0.6992 | 0.8362 | | 0.5578 | 1.2255 | 500 | 0.7241 | 0.2184 | 0.7241 | 0.8510 | | 0.5578 | 1.2304 | 502 | 0.7504 | 0.0503 | 0.7504 | 0.8663 | | 0.5578 | 1.2353 | 504 | 0.8165 | 0.0679 | 0.8165 | 0.9036 | | 0.5578 | 1.2402 | 506 | 0.8493 | 0.0679 | 0.8493 | 0.9216 | | 0.5578 | 1.2451 | 508 | 0.8073 | 0.0679 | 0.8073 | 0.8985 | | 0.5578 | 1.25 | 510 | 0.7283 | 0.0258 | 0.7283 | 0.8534 | | 0.5578 | 1.2549 | 512 | 0.6871 | 0.0503 | 0.6871 | 0.8289 | | 0.5578 | 1.2598 | 514 | 0.6995 | 0.1783 | 0.6995 | 0.8364 | | 0.5578 | 1.2647 | 516 | 0.6958 | 0.1783 | 0.6958 | 0.8341 | | 0.5578 | 1.2696 | 518 | 0.6776 | 0.1356 | 0.6776 | 0.8232 | | 0.5578 | 1.2745 | 520 | 0.6641 | 0.0503 | 0.6641 | 0.8149 | | 0.5578 | 1.2794 | 522 | 0.6771 | 0.0258 | 0.6771 | 0.8228 | | 0.5578 | 1.2843 | 524 | 0.7397 | 0.0258 | 0.7397 | 0.8601 | | 0.5578 | 1.2892 | 526 | 0.7622 | 0.0258 | 0.7622 | 0.8731 | | 0.5578 | 1.2941 | 528 | 0.7170 | 0.0258 | 0.7170 | 0.8468 | | 0.5578 | 1.2990 | 530 | 0.6831 | -0.0153 | 0.6831 | 0.8265 | | 0.5578 | 1.3039 | 532 | 0.6822 | -0.0153 | 0.6822 | 0.8259 | | 0.5578 | 1.3088 | 534 | 0.6797 | -0.0153 | 0.6797 | 0.8244 | | 0.5578 | 1.3137 | 536 | 0.6996 | -0.0153 | 0.6996 | 0.8364 | | 0.5578 | 1.3186 | 538 | 0.7385 | 0.0258 | 0.7385 | 0.8594 | | 0.5578 | 1.3235 | 540 | 0.7466 | -0.0153 | 0.7466 | 0.8641 | | 0.5578 | 1.3284 | 542 | 0.7164 | -0.0153 | 0.7164 | 0.8464 | | 0.5578 | 1.3333 | 544 | 0.7053 | -0.0153 | 0.7053 | 0.8398 | | 0.5578 | 1.3382 | 546 | 0.7006 | 0.0503 | 0.7006 | 0.8370 | | 0.5578 | 1.3431 | 548 | 0.7064 | 0.0099 | 0.7064 | 0.8405 | | 0.5578 | 1.3480 | 550 | 0.7086 | 0.1765 | 0.7086 | 0.8418 | | 0.5578 | 1.3529 | 552 | 0.7189 | 0.1765 | 0.7189 | 0.8479 | | 0.5578 | 1.3578 | 554 | 0.7168 | 0.1765 | 0.7168 | 0.8466 | | 0.5578 | 1.3627 | 556 | 0.7376 | 0.1765 | 0.7376 | 0.8588 | | 0.5578 | 1.3676 | 558 | 0.7608 | 0.0828 | 0.7608 | 0.8723 | | 0.5578 | 1.3725 | 560 | 0.7547 | 0.0503 | 0.7547 | 0.8688 | | 0.5578 | 1.3775 | 562 | 0.7262 | 0.1765 | 0.7262 | 0.8522 | | 0.5578 | 1.3824 | 564 | 0.7455 | 0.0503 | 0.7455 | 0.8634 | | 0.5578 | 1.3873 | 566 | 0.8094 | 0.1818 | 0.8094 | 0.8997 | | 0.5578 | 1.3922 | 568 | 0.7910 | 0.1209 | 0.7910 | 0.8894 | | 0.5578 | 1.3971 | 570 | 0.7395 | 0.0916 | 0.7395 | 0.8599 | | 0.5578 | 1.4020 | 572 | 0.6950 | 0.0503 | 0.6950 | 0.8336 | | 0.5578 | 1.4069 | 574 | 0.6585 | 0.1765 | 0.6585 | 0.8115 | | 0.5578 | 1.4118 | 576 | 0.6510 | 0.1765 | 0.6510 | 0.8068 | | 0.5578 | 1.4167 | 578 | 0.6428 | 0.1765 | 0.6428 | 0.8018 | | 0.5578 | 1.4216 | 580 | 0.6618 | 0.0503 | 0.6618 | 0.8135 | | 0.5578 | 1.4265 | 582 | 0.6488 | 0.0099 | 0.6488 | 0.8055 | | 0.5578 | 1.4314 | 584 | 0.6235 | -0.0294 | 0.6235 | 0.7896 | | 0.5578 | 1.4363 | 586 | 0.6235 | 0.0735 | 0.6235 | 0.7896 | | 0.5578 | 1.4412 | 588 | 0.6686 | 0.0099 | 0.6686 | 0.8177 | | 0.5578 | 1.4461 | 590 | 0.7365 | 0.0916 | 0.7365 | 0.8582 | | 0.5578 | 1.4510 | 592 | 0.7768 | 0.1793 | 0.7768 | 0.8814 | | 0.5578 | 1.4559 | 594 | 0.7998 | 0.1793 | 0.7998 | 0.8943 | | 0.5578 | 1.4608 | 596 | 0.8258 | 0.1635 | 0.8258 | 0.9087 | | 0.5578 | 1.4657 | 598 | 0.8195 | 0.1765 | 0.8195 | 0.9053 | | 0.5578 | 1.4706 | 600 | 0.8337 | 0.0455 | 0.8337 | 0.9131 | | 0.5578 | 1.4755 | 602 | 0.7986 | 0.0503 | 0.7986 | 0.8936 | | 0.5578 | 1.4804 | 604 | 0.7542 | 0.0099 | 0.7542 | 0.8684 | | 0.5578 | 1.4853 | 606 | 0.7238 | 0.0503 | 0.7238 | 0.8508 | | 0.5578 | 1.4902 | 608 | 0.7202 | 0.0503 | 0.7202 | 0.8486 | | 0.5578 | 1.4951 | 610 | 0.6943 | 0.0503 | 0.6943 | 0.8333 | | 0.5578 | 1.5 | 612 | 0.7182 | -0.0153 | 0.7182 | 0.8475 | | 0.5578 | 1.5049 | 614 | 0.7282 | 0.0258 | 0.7282 | 0.8534 | | 0.5578 | 1.5098 | 616 | 0.7412 | 0.0258 | 0.7412 | 0.8609 | | 0.5578 | 1.5147 | 618 | 0.7442 | 0.0258 | 0.7442 | 0.8627 | | 0.5578 | 1.5196 | 620 | 0.7727 | 0.0258 | 0.7727 | 0.8790 | | 0.5578 | 1.5245 | 622 | 0.7509 | -0.0153 | 0.7509 | 0.8666 | | 0.5578 | 1.5294 | 624 | 0.7460 | 0.0503 | 0.7460 | 0.8637 | | 0.5578 | 1.5343 | 626 | 0.7664 | 0.2184 | 0.7664 | 0.8754 | | 0.5578 | 1.5392 | 628 | 0.7797 | 0.0503 | 0.7797 | 0.8830 | | 0.5578 | 1.5441 | 630 | 0.8092 | 0.0503 | 0.8092 | 0.8996 | | 0.5578 | 1.5490 | 632 | 0.8579 | -0.0153 | 0.8579 | 0.9262 | | 0.5578 | 1.5539 | 634 | 0.8892 | -0.0153 | 0.8892 | 0.9430 | | 0.5578 | 1.5588 | 636 | 0.8795 | -0.0153 | 0.8795 | 0.9378 | | 0.5578 | 1.5637 | 638 | 0.8237 | 0.0503 | 0.8237 | 0.9076 | | 0.5578 | 1.5686 | 640 | 0.7623 | 0.0503 | 0.7623 | 0.8731 | | 0.5578 | 1.5735 | 642 | 0.7500 | 0.0503 | 0.7500 | 0.8660 | | 0.5578 | 1.5784 | 644 | 0.7688 | 0.0503 | 0.7688 | 0.8768 | | 0.5578 | 1.5833 | 646 | 0.7593 | 0.0503 | 0.7593 | 0.8714 | | 0.5578 | 1.5882 | 648 | 0.7676 | 0.0916 | 0.7676 | 0.8761 | | 0.5578 | 1.5931 | 650 | 0.7992 | 0.2355 | 0.7992 | 0.8940 | | 0.5578 | 1.5980 | 652 | 0.7329 | 0.0916 | 0.7329 | 0.8561 | | 0.5578 | 1.6029 | 654 | 0.6586 | 0.1765 | 0.6586 | 0.8116 | | 0.5578 | 1.6078 | 656 | 0.6617 | 0.2725 | 0.6617 | 0.8135 | | 0.5578 | 1.6127 | 658 | 0.7002 | 0.2329 | 0.7002 | 0.8368 | | 0.5578 | 1.6176 | 660 | 0.7021 | 0.2725 | 0.7021 | 0.8379 | | 0.5578 | 1.6225 | 662 | 0.6746 | 0.3131 | 0.6746 | 0.8214 | | 0.5578 | 1.6275 | 664 | 0.6984 | 0.2921 | 0.6984 | 0.8357 | | 0.5578 | 1.6324 | 666 | 0.8072 | 0.1992 | 0.8072 | 0.8984 | | 0.5578 | 1.6373 | 668 | 0.8233 | 0.1992 | 0.8233 | 0.9074 | | 0.5578 | 1.6422 | 670 | 0.8055 | 0.2355 | 0.8055 | 0.8975 | | 0.5578 | 1.6471 | 672 | 0.7299 | 0.2921 | 0.7299 | 0.8543 | | 0.5578 | 1.6520 | 674 | 0.6800 | 0.1765 | 0.6800 | 0.8246 | | 0.5578 | 1.6569 | 676 | 0.7202 | 0.1783 | 0.7202 | 0.8487 | | 0.5578 | 1.6618 | 678 | 0.7445 | 0.1797 | 0.7445 | 0.8629 | | 0.5578 | 1.6667 | 680 | 0.7278 | 0.1419 | 0.7278 | 0.8531 | | 0.5578 | 1.6716 | 682 | 0.6878 | 0.0957 | 0.6878 | 0.8293 | | 0.5578 | 1.6765 | 684 | 0.7109 | 0.1356 | 0.7109 | 0.8432 | | 0.5578 | 1.6814 | 686 | 0.7583 | 0.2921 | 0.7583 | 0.8708 | | 0.5578 | 1.6863 | 688 | 0.7626 | 0.2921 | 0.7626 | 0.8733 | | 0.5578 | 1.6912 | 690 | 0.7425 | 0.1765 | 0.7425 | 0.8617 | | 0.5578 | 1.6961 | 692 | 0.7350 | 0.1765 | 0.7350 | 0.8573 | | 0.5578 | 1.7010 | 694 | 0.7285 | 0.1765 | 0.7285 | 0.8535 | | 0.5578 | 1.7059 | 696 | 0.7034 | 0.1765 | 0.7034 | 0.8387 | | 0.5578 | 1.7108 | 698 | 0.6936 | 0.1765 | 0.6936 | 0.8328 | | 0.5578 | 1.7157 | 700 | 0.6978 | 0.1765 | 0.6978 | 0.8354 | | 0.5578 | 1.7206 | 702 | 0.7344 | 0.1765 | 0.7344 | 0.8570 | | 0.5578 | 1.7255 | 704 | 0.7590 | 0.2921 | 0.7590 | 0.8712 | | 0.5578 | 1.7304 | 706 | 0.7798 | 0.2921 | 0.7798 | 0.8831 | | 0.5578 | 1.7353 | 708 | 0.7821 | 0.1992 | 0.7821 | 0.8843 | | 0.5578 | 1.7402 | 710 | 0.7444 | 0.2921 | 0.7444 | 0.8628 | | 0.5578 | 1.7451 | 712 | 0.6936 | 0.2921 | 0.6936 | 0.8328 | | 0.5578 | 1.75 | 714 | 0.6691 | 0.1765 | 0.6691 | 0.8180 | | 0.5578 | 1.7549 | 716 | 0.6563 | 0.1356 | 0.6563 | 0.8101 | | 0.5578 | 1.7598 | 718 | 0.6508 | 0.1356 | 0.6508 | 0.8067 | | 0.5578 | 1.7647 | 720 | 0.6493 | 0.0099 | 0.6493 | 0.8058 | | 0.5578 | 1.7696 | 722 | 0.6629 | 0.0503 | 0.6629 | 0.8142 | | 0.5578 | 1.7745 | 724 | 0.7317 | 0.2186 | 0.7317 | 0.8554 | | 0.5578 | 1.7794 | 726 | 0.8393 | 0.2727 | 0.8393 | 0.9162 | | 0.5578 | 1.7843 | 728 | 0.8773 | 0.2846 | 0.8773 | 0.9367 | | 0.5578 | 1.7892 | 730 | 0.7873 | 0.2186 | 0.7873 | 0.8873 | | 0.5578 | 1.7941 | 732 | 0.7080 | 0.2184 | 0.7080 | 0.8414 | | 0.5578 | 1.7990 | 734 | 0.6906 | 0.1356 | 0.6906 | 0.8310 | | 0.5578 | 1.8039 | 736 | 0.6882 | 0.1356 | 0.6882 | 0.8296 | | 0.5578 | 1.8088 | 738 | 0.6746 | 0.1356 | 0.6746 | 0.8213 | | 0.5578 | 1.8137 | 740 | 0.6798 | 0.1765 | 0.6798 | 0.8245 | | 0.5578 | 1.8186 | 742 | 0.6784 | 0.1765 | 0.6784 | 0.8236 | | 0.5578 | 1.8235 | 744 | 0.6669 | 0.1765 | 0.6669 | 0.8167 | | 0.5578 | 1.8284 | 746 | 0.6734 | 0.2184 | 0.6734 | 0.8206 | | 0.5578 | 1.8333 | 748 | 0.6727 | 0.2184 | 0.6727 | 0.8202 | | 0.5578 | 1.8382 | 750 | 0.6770 | 0.2613 | 0.6770 | 0.8228 | | 0.5578 | 1.8431 | 752 | 0.6828 | 0.0916 | 0.6828 | 0.8263 | | 0.5578 | 1.8480 | 754 | 0.6833 | 0.0258 | 0.6833 | 0.8266 | | 0.5578 | 1.8529 | 756 | 0.7135 | 0.0258 | 0.7135 | 0.8447 | | 0.5578 | 1.8578 | 758 | 0.7219 | -0.0153 | 0.7219 | 0.8496 | | 0.5578 | 1.8627 | 760 | 0.7159 | -0.0153 | 0.7159 | 0.8461 | | 0.5578 | 1.8676 | 762 | 0.7267 | 0.0099 | 0.7267 | 0.8525 | | 0.5578 | 1.8725 | 764 | 0.7224 | 0.1356 | 0.7224 | 0.8499 | | 0.5578 | 1.8775 | 766 | 0.7271 | 0.1356 | 0.7271 | 0.8527 | | 0.5578 | 1.8824 | 768 | 0.7485 | 0.1765 | 0.7485 | 0.8651 | | 0.5578 | 1.8873 | 770 | 0.7799 | 0.1765 | 0.7799 | 0.8831 | | 0.5578 | 1.8922 | 772 | 0.7954 | 0.0099 | 0.7954 | 0.8919 | | 0.5578 | 1.8971 | 774 | 0.7923 | 0.0099 | 0.7923 | 0.8901 | | 0.5578 | 1.9020 | 776 | 0.7898 | 0.0099 | 0.7898 | 0.8887 | | 0.5578 | 1.9069 | 778 | 0.8181 | 0.1793 | 0.8181 | 0.9045 | | 0.5578 | 1.9118 | 780 | 0.8152 | 0.0503 | 0.8152 | 0.9029 | | 0.5578 | 1.9167 | 782 | 0.7926 | 0.1765 | 0.7926 | 0.8903 | | 0.5578 | 1.9216 | 784 | 0.7978 | 0.1765 | 0.7978 | 0.8932 | | 0.5578 | 1.9265 | 786 | 0.8013 | 0.2184 | 0.8013 | 0.8951 | | 0.5578 | 1.9314 | 788 | 0.8023 | 0.2184 | 0.8023 | 0.8957 | | 0.5578 | 1.9363 | 790 | 0.7933 | 0.1765 | 0.7933 | 0.8907 | | 0.5578 | 1.9412 | 792 | 0.7900 | 0.3318 | 0.7900 | 0.8888 | | 0.5578 | 1.9461 | 794 | 0.7859 | 0.3318 | 0.7859 | 0.8865 | | 0.5578 | 1.9510 | 796 | 0.7713 | 0.3318 | 0.7713 | 0.8782 | | 0.5578 | 1.9559 | 798 | 0.7542 | 0.1765 | 0.7542 | 0.8685 | | 0.5578 | 1.9608 | 800 | 0.7744 | 0.3318 | 0.7744 | 0.8800 | | 0.5578 | 1.9657 | 802 | 0.8383 | 0.2186 | 0.8383 | 0.9156 | | 0.5578 | 1.9706 | 804 | 0.8534 | 0.2186 | 0.8534 | 0.9238 | | 0.5578 | 1.9755 | 806 | 0.8328 | 0.1793 | 0.8328 | 0.9126 | | 0.5578 | 1.9804 | 808 | 0.7872 | 0.2921 | 0.7872 | 0.8872 | | 0.5578 | 1.9853 | 810 | 0.7593 | 0.1765 | 0.7593 | 0.8714 | | 0.5578 | 1.9902 | 812 | 0.7483 | 0.1765 | 0.7483 | 0.8651 | | 0.5578 | 1.9951 | 814 | 0.7205 | 0.1765 | 0.7205 | 0.8488 | | 0.5578 | 2.0 | 816 | 0.7090 | 0.0099 | 0.7090 | 0.8420 | | 0.5578 | 2.0049 | 818 | 0.7199 | 0.0503 | 0.7199 | 0.8485 | | 0.5578 | 2.0098 | 820 | 0.7702 | 0.1600 | 0.7702 | 0.8776 | | 0.5578 | 2.0147 | 822 | 0.7948 | 0.1600 | 0.7948 | 0.8915 | | 0.5578 | 2.0196 | 824 | 0.7714 | 0.1209 | 0.7714 | 0.8783 | | 0.5578 | 2.0245 | 826 | 0.7442 | 0.0503 | 0.7442 | 0.8626 | | 0.5578 | 2.0294 | 828 | 0.7438 | 0.0503 | 0.7438 | 0.8625 | | 0.5578 | 2.0343 | 830 | 0.7616 | 0.0099 | 0.7616 | 0.8727 | | 0.5578 | 2.0392 | 832 | 0.7911 | 0.0099 | 0.7911 | 0.8894 | | 0.5578 | 2.0441 | 834 | 0.8279 | 0.0099 | 0.8279 | 0.9099 | | 0.5578 | 2.0490 | 836 | 0.8528 | 0.0099 | 0.8528 | 0.9235 | | 0.5578 | 2.0539 | 838 | 0.8694 | 0.1409 | 0.8694 | 0.9324 | | 0.5578 | 2.0588 | 840 | 0.8550 | 0.0099 | 0.8550 | 0.9247 | | 0.5578 | 2.0637 | 842 | 0.8447 | 0.0099 | 0.8447 | 0.9191 | | 0.5578 | 2.0686 | 844 | 0.8239 | 0.0099 | 0.8239 | 0.9077 | | 0.5578 | 2.0735 | 846 | 0.7818 | 0.0099 | 0.7818 | 0.8842 | | 0.5578 | 2.0784 | 848 | 0.7487 | 0.0099 | 0.7487 | 0.8653 | | 0.5578 | 2.0833 | 850 | 0.7326 | 0.0099 | 0.7326 | 0.8559 | | 0.5578 | 2.0882 | 852 | 0.7200 | 0.0099 | 0.7200 | 0.8485 | | 0.5578 | 2.0931 | 854 | 0.7178 | 0.0099 | 0.7178 | 0.8472 | | 0.5578 | 2.0980 | 856 | 0.7123 | 0.0099 | 0.7123 | 0.8440 | | 0.5578 | 2.1029 | 858 | 0.7103 | 0.0503 | 0.7103 | 0.8428 | | 0.5578 | 2.1078 | 860 | 0.7040 | 0.0099 | 0.7040 | 0.8391 | | 0.5578 | 2.1127 | 862 | 0.7110 | 0.0099 | 0.7110 | 0.8432 | | 0.5578 | 2.1176 | 864 | 0.7208 | 0.0099 | 0.7208 | 0.8490 | | 0.5578 | 2.1225 | 866 | 0.7310 | 0.0099 | 0.7310 | 0.8550 | | 0.5578 | 2.1275 | 868 | 0.7427 | 0.0099 | 0.7427 | 0.8618 | | 0.5578 | 2.1324 | 870 | 0.7558 | 0.0099 | 0.7558 | 0.8694 | | 0.5578 | 2.1373 | 872 | 0.7712 | 0.0099 | 0.7712 | 0.8782 | | 0.5578 | 2.1422 | 874 | 0.8072 | 0.0099 | 0.8072 | 0.8984 | | 0.5578 | 2.1471 | 876 | 0.8080 | 0.1793 | 0.8080 | 0.8989 | | 0.5578 | 2.1520 | 878 | 0.7558 | 0.0099 | 0.7558 | 0.8694 | | 0.5578 | 2.1569 | 880 | 0.7004 | 0.0099 | 0.7004 | 0.8369 | | 0.5578 | 2.1618 | 882 | 0.6875 | 0.0099 | 0.6875 | 0.8292 | | 0.5578 | 2.1667 | 884 | 0.6856 | 0.0099 | 0.6856 | 0.8280 | | 0.5578 | 2.1716 | 886 | 0.6961 | 0.0099 | 0.6961 | 0.8343 | | 0.5578 | 2.1765 | 888 | 0.7183 | 0.0099 | 0.7183 | 0.8475 | | 0.5578 | 2.1814 | 890 | 0.7322 | 0.0099 | 0.7322 | 0.8557 | | 0.5578 | 2.1863 | 892 | 0.7432 | 0.0099 | 0.7432 | 0.8621 | | 0.5578 | 2.1912 | 894 | 0.7627 | 0.0099 | 0.7627 | 0.8733 | | 0.5578 | 2.1961 | 896 | 0.7871 | 0.0099 | 0.7871 | 0.8872 | | 0.5578 | 2.2010 | 898 | 0.8083 | 0.0099 | 0.8083 | 0.8990 | | 0.5578 | 2.2059 | 900 | 0.8043 | 0.0503 | 0.8043 | 0.8968 | | 0.5578 | 2.2108 | 902 | 0.7885 | 0.0916 | 0.7885 | 0.8880 | | 0.5578 | 2.2157 | 904 | 0.7669 | 0.2186 | 0.7669 | 0.8757 | | 0.5578 | 2.2206 | 906 | 0.7204 | 0.2186 | 0.7204 | 0.8488 | | 0.5578 | 2.2255 | 908 | 0.7269 | 0.2186 | 0.7269 | 0.8526 | | 0.5578 | 2.2304 | 910 | 0.7296 | 0.2186 | 0.7296 | 0.8542 | | 0.5578 | 2.2353 | 912 | 0.7265 | 0.1793 | 0.7265 | 0.8523 | | 0.5578 | 2.2402 | 914 | 0.7163 | 0.1793 | 0.7163 | 0.8464 | | 0.5578 | 2.2451 | 916 | 0.7555 | 0.1793 | 0.7555 | 0.8692 | | 0.5578 | 2.25 | 918 | 0.7513 | 0.1793 | 0.7513 | 0.8668 | | 0.5578 | 2.2549 | 920 | 0.7326 | 0.1793 | 0.7326 | 0.8559 | | 0.5578 | 2.2598 | 922 | 0.7222 | 0.1793 | 0.7222 | 0.8498 | | 0.5578 | 2.2647 | 924 | 0.7370 | 0.1793 | 0.7370 | 0.8585 | | 0.5578 | 2.2696 | 926 | 0.7920 | 0.1992 | 0.7920 | 0.8900 | | 0.5578 | 2.2745 | 928 | 0.8360 | 0.1992 | 0.8360 | 0.9143 | | 0.5578 | 2.2794 | 930 | 0.7819 | 0.1992 | 0.7819 | 0.8843 | | 0.5578 | 2.2843 | 932 | 0.7211 | 0.2533 | 0.7211 | 0.8492 | | 0.5578 | 2.2892 | 934 | 0.6942 | 0.1356 | 0.6942 | 0.8332 | | 0.5578 | 2.2941 | 936 | 0.6928 | 0.1356 | 0.6928 | 0.8323 | | 0.5578 | 2.2990 | 938 | 0.6936 | 0.2533 | 0.6936 | 0.8328 | | 0.5578 | 2.3039 | 940 | 0.6979 | 0.1409 | 0.6979 | 0.8354 | | 0.5578 | 2.3088 | 942 | 0.6968 | 0.1409 | 0.6968 | 0.8347 | | 0.5578 | 2.3137 | 944 | 0.6995 | 0.1409 | 0.6995 | 0.8363 | | 0.5578 | 2.3186 | 946 | 0.7280 | 0.1409 | 0.7280 | 0.8532 | | 0.5578 | 2.3235 | 948 | 0.7728 | 0.1635 | 0.7728 | 0.8791 | | 0.5578 | 2.3284 | 950 | 0.7729 | 0.1635 | 0.7729 | 0.8792 | | 0.5578 | 2.3333 | 952 | 0.7663 | 0.1635 | 0.7663 | 0.8754 | | 0.5578 | 2.3382 | 954 | 0.7735 | 0.1635 | 0.7735 | 0.8795 | | 0.5578 | 2.3431 | 956 | 0.7792 | 0.1409 | 0.7792 | 0.8827 | | 0.5578 | 2.3480 | 958 | 0.7592 | 0.2921 | 0.7592 | 0.8713 | | 0.5578 | 2.3529 | 960 | 0.7620 | 0.1409 | 0.7620 | 0.8729 | | 0.5578 | 2.3578 | 962 | 0.7656 | 0.1793 | 0.7656 | 0.8750 | | 0.5578 | 2.3627 | 964 | 0.7905 | 0.2588 | 0.7905 | 0.8891 | | 0.5578 | 2.3676 | 966 | 0.7927 | 0.2588 | 0.7927 | 0.8904 | | 0.5578 | 2.3725 | 968 | 0.7444 | 0.2588 | 0.7444 | 0.8628 | | 0.5578 | 2.3775 | 970 | 0.7016 | 0.2186 | 0.7016 | 0.8376 | | 0.5578 | 2.3824 | 972 | 0.6727 | 0.0503 | 0.6727 | 0.8202 | | 0.5578 | 2.3873 | 974 | 0.6824 | 0.0099 | 0.6824 | 0.8261 | | 0.5578 | 2.3922 | 976 | 0.6995 | 0.1409 | 0.6995 | 0.8364 | | 0.5578 | 2.3971 | 978 | 0.7122 | 0.1409 | 0.7122 | 0.8439 | | 0.5578 | 2.4020 | 980 | 0.7272 | 0.1793 | 0.7272 | 0.8528 | | 0.5578 | 2.4069 | 982 | 0.7788 | 0.1793 | 0.7788 | 0.8825 | | 0.5578 | 2.4118 | 984 | 0.8050 | 0.1793 | 0.8050 | 0.8972 | | 0.5578 | 2.4167 | 986 | 0.8236 | 0.2186 | 0.8236 | 0.9075 | | 0.5578 | 2.4216 | 988 | 0.7882 | 0.2588 | 0.7882 | 0.8878 | | 0.5578 | 2.4265 | 990 | 0.7090 | 0.1793 | 0.7090 | 0.8420 | | 0.5578 | 2.4314 | 992 | 0.6612 | 0.1793 | 0.6612 | 0.8132 | | 0.5578 | 2.4363 | 994 | 0.6352 | 0.0099 | 0.6352 | 0.7970 | | 0.5578 | 2.4412 | 996 | 0.6234 | 0.2553 | 0.6234 | 0.7895 | | 0.5578 | 2.4461 | 998 | 0.6244 | 0.2553 | 0.6244 | 0.7902 | | 0.1212 | 2.4510 | 1000 | 0.6264 | 0.2373 | 0.6264 | 0.7914 | | 0.1212 | 2.4559 | 1002 | 0.6482 | 0.1409 | 0.6482 | 0.8051 | | 0.1212 | 2.4608 | 1004 | 0.6848 | 0.1409 | 0.6848 | 0.8275 | | 0.1212 | 2.4657 | 1006 | 0.7350 | 0.1793 | 0.7350 | 0.8573 | | 0.1212 | 2.4706 | 1008 | 0.7820 | 0.1793 | 0.7820 | 0.8843 | | 0.1212 | 2.4755 | 1010 | 0.8048 | 0.1793 | 0.8048 | 0.8971 | | 0.1212 | 2.4804 | 1012 | 0.8372 | 0.2881 | 0.8372 | 0.9150 | | 0.1212 | 2.4853 | 1014 | 0.8292 | 0.2881 | 0.8292 | 0.9106 | | 0.1212 | 2.4902 | 1016 | 0.7600 | 0.1978 | 0.7600 | 0.8718 | | 0.1212 | 2.4951 | 1018 | 0.7176 | 0.1978 | 0.7176 | 0.8471 | | 0.1212 | 2.5 | 1020 | 0.6963 | 0.1978 | 0.6963 | 0.8344 | | 0.1212 | 2.5049 | 1022 | 0.7406 | 0.2364 | 0.7406 | 0.8606 | | 0.1212 | 2.5098 | 1024 | 0.7410 | 0.1793 | 0.7410 | 0.8608 | | 0.1212 | 2.5147 | 1026 | 0.6967 | 0.2364 | 0.6967 | 0.8347 | | 0.1212 | 2.5196 | 1028 | 0.6256 | 0.1978 | 0.6256 | 0.7910 | | 0.1212 | 2.5245 | 1030 | 0.6013 | 0.1978 | 0.6013 | 0.7754 | | 0.1212 | 2.5294 | 1032 | 0.6069 | 0.1141 | 0.6069 | 0.7790 | | 0.1212 | 2.5343 | 1034 | 0.6189 | 0.0503 | 0.6189 | 0.7867 | | 0.1212 | 2.5392 | 1036 | 0.6228 | 0.0503 | 0.6228 | 0.7892 | | 0.1212 | 2.5441 | 1038 | 0.6630 | 0.0099 | 0.6630 | 0.8143 | | 0.1212 | 2.5490 | 1040 | 0.6965 | 0.1765 | 0.6965 | 0.8346 | | 0.1212 | 2.5539 | 1042 | 0.7601 | 0.2921 | 0.7601 | 0.8718 | | 0.1212 | 2.5588 | 1044 | 0.8109 | 0.2921 | 0.8109 | 0.9005 | | 0.1212 | 2.5637 | 1046 | 0.8554 | 0.2921 | 0.8554 | 0.9249 | | 0.1212 | 2.5686 | 1048 | 0.9004 | 0.1503 | 0.9004 | 0.9489 | | 0.1212 | 2.5735 | 1050 | 0.9211 | 0.0928 | 0.9211 | 0.9597 | | 0.1212 | 2.5784 | 1052 | 0.9303 | 0.1463 | 0.9303 | 0.9645 | | 0.1212 | 2.5833 | 1054 | 0.9738 | 0.1463 | 0.9738 | 0.9868 | | 0.1212 | 2.5882 | 1056 | 0.9299 | 0.1463 | 0.9299 | 0.9643 | | 0.1212 | 2.5931 | 1058 | 0.8688 | 0.2186 | 0.8688 | 0.9321 | | 0.1212 | 2.5980 | 1060 | 0.7843 | 0.3318 | 0.7843 | 0.8856 | | 0.1212 | 2.6029 | 1062 | 0.7275 | 0.1765 | 0.7275 | 0.8529 | | 0.1212 | 2.6078 | 1064 | 0.7032 | 0.1356 | 0.7032 | 0.8386 | | 0.1212 | 2.6127 | 1066 | 0.7016 | 0.0957 | 0.7016 | 0.8376 | | 0.1212 | 2.6176 | 1068 | 0.7012 | 0.1356 | 0.7012 | 0.8374 | | 0.1212 | 2.6225 | 1070 | 0.7049 | 0.1765 | 0.7049 | 0.8396 | | 0.1212 | 2.6275 | 1072 | 0.7225 | 0.1765 | 0.7225 | 0.8500 | | 0.1212 | 2.6324 | 1074 | 0.7325 | 0.1765 | 0.7325 | 0.8558 | | 0.1212 | 2.6373 | 1076 | 0.7354 | 0.2921 | 0.7354 | 0.8575 | | 0.1212 | 2.6422 | 1078 | 0.7511 | 0.2921 | 0.7511 | 0.8667 | | 0.1212 | 2.6471 | 1080 | 0.7452 | 0.2921 | 0.7452 | 0.8633 | | 0.1212 | 2.6520 | 1082 | 0.7244 | 0.3318 | 0.7244 | 0.8511 | | 0.1212 | 2.6569 | 1084 | 0.7004 | 0.2921 | 0.7004 | 0.8369 | | 0.1212 | 2.6618 | 1086 | 0.6903 | 0.2533 | 0.6903 | 0.8308 | | 0.1212 | 2.6667 | 1088 | 0.6843 | 0.2533 | 0.6843 | 0.8272 | | 0.1212 | 2.6716 | 1090 | 0.6789 | 0.3318 | 0.6789 | 0.8240 | | 0.1212 | 2.6765 | 1092 | 0.6671 | 0.2533 | 0.6671 | 0.8168 | | 0.1212 | 2.6814 | 1094 | 0.6698 | 0.2921 | 0.6698 | 0.8184 | | 0.1212 | 2.6863 | 1096 | 0.6922 | 0.1793 | 0.6922 | 0.8320 | | 0.1212 | 2.6912 | 1098 | 0.7097 | 0.2186 | 0.7097 | 0.8424 | | 0.1212 | 2.6961 | 1100 | 0.7115 | 0.2588 | 0.7115 | 0.8435 | | 0.1212 | 2.7010 | 1102 | 0.6823 | 0.2588 | 0.6823 | 0.8260 | | 0.1212 | 2.7059 | 1104 | 0.6424 | 0.1793 | 0.6424 | 0.8015 | | 0.1212 | 2.7108 | 1106 | 0.6226 | 0.1765 | 0.6226 | 0.7891 | | 0.1212 | 2.7157 | 1108 | 0.6197 | 0.1765 | 0.6197 | 0.7872 | | 0.1212 | 2.7206 | 1110 | 0.6313 | 0.1765 | 0.6313 | 0.7946 | | 0.1212 | 2.7255 | 1112 | 0.6564 | 0.1793 | 0.6564 | 0.8102 | | 0.1212 | 2.7304 | 1114 | 0.7129 | 0.2588 | 0.7129 | 0.8443 | | 0.1212 | 2.7353 | 1116 | 0.7700 | 0.2588 | 0.7700 | 0.8775 | | 0.1212 | 2.7402 | 1118 | 0.8459 | 0.3636 | 0.8459 | 0.9197 | | 0.1212 | 2.7451 | 1120 | 0.8834 | 0.3687 | 0.8834 | 0.9399 | | 0.1212 | 2.75 | 1122 | 0.8543 | 0.3687 | 0.8543 | 0.9243 | | 0.1212 | 2.7549 | 1124 | 0.7792 | 0.1793 | 0.7792 | 0.8827 | | 0.1212 | 2.7598 | 1126 | 0.7107 | 0.2154 | 0.7107 | 0.8430 | | 0.1212 | 2.7647 | 1128 | 0.6777 | 0.2154 | 0.6777 | 0.8232 | | 0.1212 | 2.7696 | 1130 | 0.6717 | 0.2154 | 0.6717 | 0.8196 | | 0.1212 | 2.7745 | 1132 | 0.6612 | 0.0957 | 0.6612 | 0.8131 | | 0.1212 | 2.7794 | 1134 | 0.6444 | 0.1560 | 0.6444 | 0.8028 | | 0.1212 | 2.7843 | 1136 | 0.6364 | 0.1560 | 0.6364 | 0.7978 | | 0.1212 | 2.7892 | 1138 | 0.6291 | 0.1560 | 0.6291 | 0.7932 | | 0.1212 | 2.7941 | 1140 | 0.6268 | 0.1560 | 0.6268 | 0.7917 | | 0.1212 | 2.7990 | 1142 | 0.6319 | 0.1560 | 0.6319 | 0.7949 | | 0.1212 | 2.8039 | 1144 | 0.6426 | 0.0957 | 0.6426 | 0.8016 | | 0.1212 | 2.8088 | 1146 | 0.6633 | 0.0099 | 0.6633 | 0.8144 | | 0.1212 | 2.8137 | 1148 | 0.7144 | 0.2186 | 0.7144 | 0.8452 | | 0.1212 | 2.8186 | 1150 | 0.7613 | 0.2186 | 0.7613 | 0.8726 | | 0.1212 | 2.8235 | 1152 | 0.7801 | 0.1409 | 0.7801 | 0.8832 | | 0.1212 | 2.8284 | 1154 | 0.7979 | 0.2533 | 0.7979 | 0.8933 | | 0.1212 | 2.8333 | 1156 | 0.8013 | 0.2533 | 0.8013 | 0.8951 | | 0.1212 | 2.8382 | 1158 | 0.8101 | 0.2533 | 0.8101 | 0.9001 | | 0.1212 | 2.8431 | 1160 | 0.8162 | 0.1409 | 0.8162 | 0.9034 | | 0.1212 | 2.8480 | 1162 | 0.7858 | 0.1793 | 0.7858 | 0.8864 | | 0.1212 | 2.8529 | 1164 | 0.7463 | 0.1409 | 0.7463 | 0.8639 | | 0.1212 | 2.8578 | 1166 | 0.7142 | 0.1409 | 0.7142 | 0.8451 | | 0.1212 | 2.8627 | 1168 | 0.6781 | 0.0099 | 0.6781 | 0.8235 | | 0.1212 | 2.8676 | 1170 | 0.6558 | -0.0294 | 0.6558 | 0.8098 | | 0.1212 | 2.8725 | 1172 | 0.6414 | 0.1034 | 0.6414 | 0.8009 | | 0.1212 | 2.8775 | 1174 | 0.6365 | -0.0294 | 0.6365 | 0.7978 | | 0.1212 | 2.8824 | 1176 | 0.6352 | 0.1962 | 0.6352 | 0.7970 | | 0.1212 | 2.8873 | 1178 | 0.6246 | 0.1962 | 0.6246 | 0.7903 | | 0.1212 | 2.8922 | 1180 | 0.6277 | -0.0294 | 0.6277 | 0.7923 | | 0.1212 | 2.8971 | 1182 | 0.6271 | 0.0339 | 0.6271 | 0.7919 | | 0.1212 | 2.9020 | 1184 | 0.6218 | 0.1409 | 0.6218 | 0.7886 | | 0.1212 | 2.9069 | 1186 | 0.6191 | 0.1793 | 0.6191 | 0.7868 | | 0.1212 | 2.9118 | 1188 | 0.6122 | 0.0099 | 0.6122 | 0.7824 | | 0.1212 | 2.9167 | 1190 | 0.6226 | 0.1962 | 0.6226 | 0.7890 | | 0.1212 | 2.9216 | 1192 | 0.6327 | 0.1962 | 0.6327 | 0.7954 | | 0.1212 | 2.9265 | 1194 | 0.6284 | 0.1962 | 0.6284 | 0.7927 | | 0.1212 | 2.9314 | 1196 | 0.6272 | 0.0503 | 0.6272 | 0.7920 | | 0.1212 | 2.9363 | 1198 | 0.6282 | 0.0916 | 0.6282 | 0.7926 | | 0.1212 | 2.9412 | 1200 | 0.6260 | 0.0916 | 0.6260 | 0.7912 | | 0.1212 | 2.9461 | 1202 | 0.6322 | 0.0916 | 0.6322 | 0.7951 | | 0.1212 | 2.9510 | 1204 | 0.6453 | 0.2186 | 0.6453 | 0.8033 | | 0.1212 | 2.9559 | 1206 | 0.6579 | 0.1793 | 0.6579 | 0.8111 | | 0.1212 | 2.9608 | 1208 | 0.6697 | 0.2186 | 0.6697 | 0.8183 | | 0.1212 | 2.9657 | 1210 | 0.6697 | 0.1793 | 0.6697 | 0.8183 | | 0.1212 | 2.9706 | 1212 | 0.6698 | 0.1793 | 0.6698 | 0.8184 | | 0.1212 | 2.9755 | 1214 | 0.6784 | 0.1793 | 0.6784 | 0.8236 | | 0.1212 | 2.9804 | 1216 | 0.6913 | 0.1793 | 0.6913 | 0.8315 | | 0.1212 | 2.9853 | 1218 | 0.6965 | 0.1793 | 0.6965 | 0.8346 | | 0.1212 | 2.9902 | 1220 | 0.7009 | 0.1409 | 0.7009 | 0.8372 | | 0.1212 | 2.9951 | 1222 | 0.7186 | 0.1034 | 0.7186 | 0.8477 | | 0.1212 | 3.0 | 1224 | 0.7407 | 0.2154 | 0.7407 | 0.8606 | | 0.1212 | 3.0049 | 1226 | 0.7650 | 0.2154 | 0.7650 | 0.8746 | | 0.1212 | 3.0098 | 1228 | 0.7814 | 0.2154 | 0.7814 | 0.8840 | | 0.1212 | 3.0147 | 1230 | 0.7895 | 0.2154 | 0.7895 | 0.8885 | | 0.1212 | 3.0196 | 1232 | 0.7814 | 0.2154 | 0.7814 | 0.8840 | | 0.1212 | 3.0245 | 1234 | 0.7751 | 0.0957 | 0.7751 | 0.8804 | | 0.1212 | 3.0294 | 1236 | 0.7702 | 0.0957 | 0.7702 | 0.8776 | | 0.1212 | 3.0343 | 1238 | 0.7634 | 0.1034 | 0.7634 | 0.8737 | | 0.1212 | 3.0392 | 1240 | 0.7536 | 0.1034 | 0.7536 | 0.8681 | | 0.1212 | 3.0441 | 1242 | 0.7258 | 0.1793 | 0.7258 | 0.8519 | | 0.1212 | 3.0490 | 1244 | 0.6818 | 0.0503 | 0.6818 | 0.8257 | | 0.1212 | 3.0539 | 1246 | 0.6520 | -0.0678 | 0.6520 | 0.8075 | | 0.1212 | 3.0588 | 1248 | 0.6756 | 0.2150 | 0.6756 | 0.8219 | | 0.1212 | 3.0637 | 1250 | 0.7224 | 0.2150 | 0.7224 | 0.8500 | | 0.1212 | 3.0686 | 1252 | 0.7444 | 0.1755 | 0.7444 | 0.8628 | | 0.1212 | 3.0735 | 1254 | 0.7450 | 0.2150 | 0.7450 | 0.8631 | | 0.1212 | 3.0784 | 1256 | 0.7266 | 0.2150 | 0.7266 | 0.8524 | | 0.1212 | 3.0833 | 1258 | 0.7112 | 0.0957 | 0.7112 | 0.8433 | | 0.1212 | 3.0882 | 1260 | 0.7306 | -0.0294 | 0.7306 | 0.8548 | | 0.1212 | 3.0931 | 1262 | 0.7970 | 0.2186 | 0.7970 | 0.8928 | | 0.1212 | 3.0980 | 1264 | 0.8659 | 0.1162 | 0.8659 | 0.9305 | | 0.1212 | 3.1029 | 1266 | 0.8734 | 0.1162 | 0.8734 | 0.9346 | | 0.1212 | 3.1078 | 1268 | 0.8305 | 0.1992 | 0.8305 | 0.9113 | | 0.1212 | 3.1127 | 1270 | 0.7934 | 0.2317 | 0.7934 | 0.8907 | | 0.1212 | 3.1176 | 1272 | 0.7629 | 0.2696 | 0.7629 | 0.8735 | | 0.1212 | 3.1225 | 1274 | 0.7458 | 0.3226 | 0.7458 | 0.8636 | | 0.1212 | 3.1275 | 1276 | 0.7510 | 0.2696 | 0.7510 | 0.8666 | | 0.1212 | 3.1324 | 1278 | 0.7766 | 0.2317 | 0.7766 | 0.8813 | | 0.1212 | 3.1373 | 1280 | 0.8266 | 0.1848 | 0.8266 | 0.9092 | | 0.1212 | 3.1422 | 1282 | 0.8591 | 0.2734 | 0.8591 | 0.9269 | | 0.1212 | 3.1471 | 1284 | 0.8567 | 0.3037 | 0.8567 | 0.9256 | | 0.1212 | 3.1520 | 1286 | 0.8112 | 0.3687 | 0.8112 | 0.9007 | | 0.1212 | 3.1569 | 1288 | 0.7511 | 0.2588 | 0.7511 | 0.8666 | | 0.1212 | 3.1618 | 1290 | 0.6872 | 0.2588 | 0.6872 | 0.8290 | | 0.1212 | 3.1667 | 1292 | 0.6302 | 0.1978 | 0.6302 | 0.7939 | | 0.1212 | 3.1716 | 1294 | 0.6109 | 0.0735 | 0.6109 | 0.7816 | | 0.1212 | 3.1765 | 1296 | 0.6134 | 0.2553 | 0.6134 | 0.7832 | | 0.1212 | 3.1814 | 1298 | 0.6129 | 0.2553 | 0.6129 | 0.7829 | | 0.1212 | 3.1863 | 1300 | 0.6005 | 0.0339 | 0.6005 | 0.7749 | | 0.1212 | 3.1912 | 1302 | 0.6036 | 0.0735 | 0.6036 | 0.7769 | | 0.1212 | 3.1961 | 1304 | 0.6201 | 0.0503 | 0.6201 | 0.7875 | | 0.1212 | 3.2010 | 1306 | 0.6512 | 0.2588 | 0.6512 | 0.8070 | | 0.1212 | 3.2059 | 1308 | 0.7153 | 0.2588 | 0.7153 | 0.8457 | | 0.1212 | 3.2108 | 1310 | 0.7597 | 0.2588 | 0.7597 | 0.8716 | | 0.1212 | 3.2157 | 1312 | 0.7538 | 0.2588 | 0.7538 | 0.8682 | | 0.1212 | 3.2206 | 1314 | 0.7161 | 0.2588 | 0.7161 | 0.8462 | | 0.1212 | 3.2255 | 1316 | 0.6582 | 0.2588 | 0.6582 | 0.8113 | | 0.1212 | 3.2304 | 1318 | 0.6287 | 0.0099 | 0.6287 | 0.7929 | | 0.1212 | 3.2353 | 1320 | 0.6382 | 0.1560 | 0.6382 | 0.7989 | | 0.1212 | 3.2402 | 1322 | 0.6511 | 0.1560 | 0.6511 | 0.8069 | | 0.1212 | 3.2451 | 1324 | 0.6503 | 0.1356 | 0.6503 | 0.8064 | | 0.1212 | 3.25 | 1326 | 0.6509 | -0.0294 | 0.6509 | 0.8068 | | 0.1212 | 3.2549 | 1328 | 0.6657 | 0.1793 | 0.6657 | 0.8159 | | 0.1212 | 3.2598 | 1330 | 0.6928 | 0.2186 | 0.6928 | 0.8323 | | 0.1212 | 3.2647 | 1332 | 0.7036 | 0.2186 | 0.7036 | 0.8388 | | 0.1212 | 3.2696 | 1334 | 0.7117 | 0.2186 | 0.7117 | 0.8436 | | 0.1212 | 3.2745 | 1336 | 0.6872 | 0.1793 | 0.6872 | 0.8290 | | 0.1212 | 3.2794 | 1338 | 0.6692 | 0.1409 | 0.6692 | 0.8181 | | 0.1212 | 3.2843 | 1340 | 0.6413 | 0.0099 | 0.6413 | 0.8008 | | 0.1212 | 3.2892 | 1342 | 0.6219 | 0.0735 | 0.6219 | 0.7886 | | 0.1212 | 3.2941 | 1344 | 0.6120 | 0.1141 | 0.6120 | 0.7823 | | 0.1212 | 3.2990 | 1346 | 0.6147 | 0.1558 | 0.6147 | 0.7840 | | 0.1212 | 3.3039 | 1348 | 0.6333 | 0.1340 | 0.6333 | 0.7958 | | 0.1212 | 3.3088 | 1350 | 0.6374 | 0.1340 | 0.6374 | 0.7984 | | 0.1212 | 3.3137 | 1352 | 0.6323 | 0.1985 | 0.6323 | 0.7952 | | 0.1212 | 3.3186 | 1354 | 0.6119 | 0.1985 | 0.6119 | 0.7822 | | 0.1212 | 3.3235 | 1356 | 0.5826 | 0.1558 | 0.5826 | 0.7633 | | 0.1212 | 3.3284 | 1358 | 0.5638 | 0.1141 | 0.5638 | 0.7508 | | 0.1212 | 3.3333 | 1360 | 0.5615 | 0.2794 | 0.5615 | 0.7493 | | 0.1212 | 3.3382 | 1362 | 0.5737 | 0.2794 | 0.5737 | 0.7574 | | 0.1212 | 3.3431 | 1364 | 0.5984 | 0.2794 | 0.5984 | 0.7735 | | 0.1212 | 3.3480 | 1366 | 0.6173 | 0.2794 | 0.6173 | 0.7857 | | 0.1212 | 3.3529 | 1368 | 0.6508 | 0.3865 | 0.6508 | 0.8067 | | 0.1212 | 3.3578 | 1370 | 0.7077 | 0.3163 | 0.7077 | 0.8412 | | 0.1212 | 3.3627 | 1372 | 0.7377 | 0.3163 | 0.7377 | 0.8589 | | 0.1212 | 3.3676 | 1374 | 0.7257 | 0.3163 | 0.7257 | 0.8519 | | 0.1212 | 3.3725 | 1376 | 0.6912 | 0.3163 | 0.6912 | 0.8314 | | 0.1212 | 3.3775 | 1378 | 0.6567 | 0.3163 | 0.6567 | 0.8104 | | 0.1212 | 3.3824 | 1380 | 0.6102 | 0.3163 | 0.6102 | 0.7812 | | 0.1212 | 3.3873 | 1382 | 0.6045 | 0.3163 | 0.6045 | 0.7775 | | 0.1212 | 3.3922 | 1384 | 0.6079 | 0.3163 | 0.6079 | 0.7797 | | 0.1212 | 3.3971 | 1386 | 0.6079 | 0.3163 | 0.6079 | 0.7797 | | 0.1212 | 3.4020 | 1388 | 0.6066 | 0.3163 | 0.6066 | 0.7788 | | 0.1212 | 3.4069 | 1390 | 0.5949 | 0.3163 | 0.5949 | 0.7713 | | 0.1212 | 3.4118 | 1392 | 0.5952 | 0.3163 | 0.5952 | 0.7715 | | 0.1212 | 3.4167 | 1394 | 0.6242 | 0.2588 | 0.6242 | 0.7901 | | 0.1212 | 3.4216 | 1396 | 0.6646 | 0.2588 | 0.6646 | 0.8152 | | 0.1212 | 3.4265 | 1398 | 0.6828 | 0.2588 | 0.6828 | 0.8263 | | 0.1212 | 3.4314 | 1400 | 0.6958 | 0.2588 | 0.6958 | 0.8342 | | 0.1212 | 3.4363 | 1402 | 0.6845 | 0.2588 | 0.6845 | 0.8274 | | 0.1212 | 3.4412 | 1404 | 0.6459 | 0.2186 | 0.6459 | 0.8037 | | 0.1212 | 3.4461 | 1406 | 0.6205 | 0.2154 | 0.6205 | 0.7877 | | 0.1212 | 3.4510 | 1408 | 0.6152 | 0.2696 | 0.6152 | 0.7844 | | 0.1212 | 3.4559 | 1410 | 0.6115 | 0.1560 | 0.6115 | 0.7820 | | 0.1212 | 3.4608 | 1412 | 0.5999 | 0.2150 | 0.5999 | 0.7745 | | 0.1212 | 3.4657 | 1414 | 0.5983 | 0.1978 | 0.5983 | 0.7735 | | 0.1212 | 3.4706 | 1416 | 0.6313 | 0.3163 | 0.6313 | 0.7945 | | 0.1212 | 3.4755 | 1418 | 0.6568 | 0.2588 | 0.6568 | 0.8105 | | 0.1212 | 3.4804 | 1420 | 0.7026 | 0.2588 | 0.7026 | 0.8382 | | 0.1212 | 3.4853 | 1422 | 0.7229 | 0.2588 | 0.7229 | 0.8503 | | 0.1212 | 3.4902 | 1424 | 0.7069 | 0.2588 | 0.7069 | 0.8408 | | 0.1212 | 3.4951 | 1426 | 0.6812 | 0.2588 | 0.6812 | 0.8253 | | 0.1212 | 3.5 | 1428 | 0.6720 | 0.2588 | 0.6720 | 0.8197 | | 0.1212 | 3.5049 | 1430 | 0.6791 | 0.2588 | 0.6791 | 0.8241 | | 0.1212 | 3.5098 | 1432 | 0.6596 | 0.2588 | 0.6596 | 0.8121 | | 0.1212 | 3.5147 | 1434 | 0.6479 | 0.1340 | 0.6479 | 0.8049 | | 0.1212 | 3.5196 | 1436 | 0.6485 | -0.0048 | 0.6485 | 0.8053 | | 0.1212 | 3.5245 | 1438 | 0.6534 | 0.0503 | 0.6534 | 0.8083 | | 0.1212 | 3.5294 | 1440 | 0.6638 | 0.2588 | 0.6638 | 0.8147 | | 0.1212 | 3.5343 | 1442 | 0.6916 | 0.2588 | 0.6916 | 0.8316 | | 0.1212 | 3.5392 | 1444 | 0.7170 | 0.2588 | 0.7170 | 0.8468 | | 0.1212 | 3.5441 | 1446 | 0.7221 | 0.2588 | 0.7221 | 0.8498 | | 0.1212 | 3.5490 | 1448 | 0.7272 | 0.1793 | 0.7272 | 0.8528 | | 0.1212 | 3.5539 | 1450 | 0.7159 | 0.2154 | 0.7159 | 0.8461 | | 0.1212 | 3.5588 | 1452 | 0.7029 | 0.2696 | 0.7029 | 0.8384 | | 0.1212 | 3.5637 | 1454 | 0.6966 | 0.2696 | 0.6966 | 0.8346 | | 0.1212 | 3.5686 | 1456 | 0.6862 | 0.2696 | 0.6862 | 0.8284 | | 0.1212 | 3.5735 | 1458 | 0.6811 | 0.2696 | 0.6811 | 0.8253 | | 0.1212 | 3.5784 | 1460 | 0.6799 | 0.1978 | 0.6799 | 0.8246 | | 0.1212 | 3.5833 | 1462 | 0.7066 | 0.1793 | 0.7066 | 0.8406 | | 0.1212 | 3.5882 | 1464 | 0.7253 | 0.2588 | 0.7253 | 0.8517 | | 0.1212 | 3.5931 | 1466 | 0.7126 | 0.2588 | 0.7126 | 0.8442 | | 0.1212 | 3.5980 | 1468 | 0.7129 | 0.2588 | 0.7129 | 0.8443 | | 0.1212 | 3.6029 | 1470 | 0.7152 | 0.2588 | 0.7152 | 0.8457 | | 0.1212 | 3.6078 | 1472 | 0.7071 | 0.2588 | 0.7071 | 0.8409 | | 0.1212 | 3.6127 | 1474 | 0.6837 | 0.1793 | 0.6837 | 0.8269 | | 0.1212 | 3.6176 | 1476 | 0.6841 | 0.1978 | 0.6841 | 0.8271 | | 0.1212 | 3.6225 | 1478 | 0.6879 | 0.3077 | 0.6879 | 0.8294 | | 0.1212 | 3.6275 | 1480 | 0.6937 | 0.2696 | 0.6937 | 0.8329 | | 0.1212 | 3.6324 | 1482 | 0.6995 | 0.2696 | 0.6995 | 0.8364 | | 0.1212 | 3.6373 | 1484 | 0.7072 | 0.2696 | 0.7072 | 0.8409 | | 0.1212 | 3.6422 | 1486 | 0.7205 | 0.2533 | 0.7205 | 0.8488 | | 0.1212 | 3.6471 | 1488 | 0.7153 | 0.2533 | 0.7153 | 0.8457 | | 0.1212 | 3.6520 | 1490 | 0.7201 | 0.1409 | 0.7201 | 0.8486 | | 0.1212 | 3.6569 | 1492 | 0.7354 | 0.1793 | 0.7354 | 0.8576 | | 0.1212 | 3.6618 | 1494 | 0.7457 | 0.2186 | 0.7457 | 0.8635 | | 0.1212 | 3.6667 | 1496 | 0.7241 | 0.1793 | 0.7241 | 0.8510 | | 0.1212 | 3.6716 | 1498 | 0.6961 | 0.1409 | 0.6961 | 0.8343 | | 0.0791 | 3.6765 | 1500 | 0.6778 | 0.1356 | 0.6778 | 0.8233 | | 0.0791 | 3.6814 | 1502 | 0.6761 | 0.1356 | 0.6761 | 0.8222 | | 0.0791 | 3.6863 | 1504 | 0.6859 | 0.0957 | 0.6859 | 0.8282 | | 0.0791 | 3.6912 | 1506 | 0.6944 | 0.0957 | 0.6944 | 0.8333 | | 0.0791 | 3.6961 | 1508 | 0.7040 | 0.0957 | 0.7040 | 0.8390 | | 0.0791 | 3.7010 | 1510 | 0.7152 | 0.1356 | 0.7152 | 0.8457 | | 0.0791 | 3.7059 | 1512 | 0.7406 | 0.2588 | 0.7406 | 0.8606 | | 0.0791 | 3.7108 | 1514 | 0.7760 | 0.2588 | 0.7760 | 0.8809 | | 0.0791 | 3.7157 | 1516 | 0.7728 | 0.2588 | 0.7728 | 0.8791 | | 0.0791 | 3.7206 | 1518 | 0.7336 | 0.2588 | 0.7336 | 0.8565 | | 0.0791 | 3.7255 | 1520 | 0.7011 | 0.2588 | 0.7011 | 0.8373 | | 0.0791 | 3.7304 | 1522 | 0.6835 | 0.1793 | 0.6835 | 0.8267 | | 0.0791 | 3.7353 | 1524 | 0.6768 | 0.1409 | 0.6768 | 0.8227 | | 0.0791 | 3.7402 | 1526 | 0.6799 | 0.1409 | 0.6799 | 0.8245 | | 0.0791 | 3.7451 | 1528 | 0.6861 | 0.2921 | 0.6861 | 0.8283 | | 0.0791 | 3.75 | 1530 | 0.6959 | 0.2533 | 0.6959 | 0.8342 | | 0.0791 | 3.7549 | 1532 | 0.6940 | 0.2154 | 0.6940 | 0.8331 | | 0.0791 | 3.7598 | 1534 | 0.6892 | 0.2154 | 0.6892 | 0.8302 | | 0.0791 | 3.7647 | 1536 | 0.7028 | 0.2154 | 0.7028 | 0.8383 | | 0.0791 | 3.7696 | 1538 | 0.7101 | 0.0957 | 0.7101 | 0.8427 | | 0.0791 | 3.7745 | 1540 | 0.7086 | 0.2154 | 0.7086 | 0.8418 | | 0.0791 | 3.7794 | 1542 | 0.7038 | 0.2154 | 0.7038 | 0.8389 | | 0.0791 | 3.7843 | 1544 | 0.6954 | 0.2154 | 0.6954 | 0.8339 | | 0.0791 | 3.7892 | 1546 | 0.7015 | 0.3318 | 0.7015 | 0.8376 | | 0.0791 | 3.7941 | 1548 | 0.7003 | 0.1793 | 0.7003 | 0.8368 | | 0.0791 | 3.7990 | 1550 | 0.6815 | 0.1793 | 0.6815 | 0.8255 | | 0.0791 | 3.8039 | 1552 | 0.6841 | 0.2186 | 0.6841 | 0.8271 | | 0.0791 | 3.8088 | 1554 | 0.6907 | 0.2186 | 0.6907 | 0.8311 | | 0.0791 | 3.8137 | 1556 | 0.6936 | 0.2186 | 0.6936 | 0.8328 | | 0.0791 | 3.8186 | 1558 | 0.6869 | 0.2186 | 0.6869 | 0.8288 | | 0.0791 | 3.8235 | 1560 | 0.6744 | 0.2921 | 0.6744 | 0.8212 | | 0.0791 | 3.8284 | 1562 | 0.6651 | 0.2154 | 0.6651 | 0.8156 | | 0.0791 | 3.8333 | 1564 | 0.6676 | 0.2154 | 0.6676 | 0.8171 | | 0.0791 | 3.8382 | 1566 | 0.6710 | 0.2154 | 0.6710 | 0.8191 | | 0.0791 | 3.8431 | 1568 | 0.6762 | 0.2533 | 0.6762 | 0.8223 | | 0.0791 | 3.8480 | 1570 | 0.6898 | 0.1034 | 0.6898 | 0.8305 | | 0.0791 | 3.8529 | 1572 | 0.6950 | 0.2186 | 0.6950 | 0.8337 | | 0.0791 | 3.8578 | 1574 | 0.6865 | 0.2186 | 0.6865 | 0.8286 | | 0.0791 | 3.8627 | 1576 | 0.6698 | 0.1409 | 0.6698 | 0.8184 | | 0.0791 | 3.8676 | 1578 | 0.6508 | 0.2154 | 0.6508 | 0.8067 | | 0.0791 | 3.8725 | 1580 | 0.6741 | 0.2150 | 0.6741 | 0.8210 | | 0.0791 | 3.8775 | 1582 | 0.7014 | 0.1755 | 0.7014 | 0.8375 | | 0.0791 | 3.8824 | 1584 | 0.6867 | 0.2851 | 0.6867 | 0.8286 | | 0.0791 | 3.8873 | 1586 | 0.6669 | 0.3226 | 0.6669 | 0.8166 | | 0.0791 | 3.8922 | 1588 | 0.6563 | 0.3226 | 0.6563 | 0.8101 | | 0.0791 | 3.8971 | 1590 | 0.6450 | 0.3077 | 0.6450 | 0.8031 | | 0.0791 | 3.9020 | 1592 | 0.6484 | 0.3467 | 0.6484 | 0.8053 | | 0.0791 | 3.9069 | 1594 | 0.6492 | 0.3467 | 0.6492 | 0.8057 | | 0.0791 | 3.9118 | 1596 | 0.6567 | 0.3077 | 0.6567 | 0.8104 | | 0.0791 | 3.9167 | 1598 | 0.6630 | 0.3077 | 0.6630 | 0.8143 | | 0.0791 | 3.9216 | 1600 | 0.6768 | 0.3077 | 0.6768 | 0.8227 | | 0.0791 | 3.9265 | 1602 | 0.6933 | 0.3077 | 0.6933 | 0.8327 | | 0.0791 | 3.9314 | 1604 | 0.7030 | 0.1600 | 0.7030 | 0.8385 | | 0.0791 | 3.9363 | 1606 | 0.7104 | 0.1978 | 0.7104 | 0.8428 | | 0.0791 | 3.9412 | 1608 | 0.7090 | 0.1978 | 0.7090 | 0.8420 | | 0.0791 | 3.9461 | 1610 | 0.7204 | 0.2364 | 0.7204 | 0.8488 | | 0.0791 | 3.9510 | 1612 | 0.7198 | 0.2364 | 0.7198 | 0.8484 | | 0.0791 | 3.9559 | 1614 | 0.7037 | 0.2364 | 0.7037 | 0.8388 | | 0.0791 | 3.9608 | 1616 | 0.6855 | 0.2364 | 0.6855 | 0.8279 | | 0.0791 | 3.9657 | 1618 | 0.6595 | 0.1600 | 0.6595 | 0.8121 | | 0.0791 | 3.9706 | 1620 | 0.6500 | 0.1600 | 0.6500 | 0.8063 | | 0.0791 | 3.9755 | 1622 | 0.6526 | 0.1600 | 0.6526 | 0.8078 | | 0.0791 | 3.9804 | 1624 | 0.6712 | 0.2364 | 0.6712 | 0.8193 | | 0.0791 | 3.9853 | 1626 | 0.7021 | 0.2186 | 0.7021 | 0.8379 | | 0.0791 | 3.9902 | 1628 | 0.7048 | 0.2186 | 0.7048 | 0.8395 | | 0.0791 | 3.9951 | 1630 | 0.6990 | 0.2186 | 0.6990 | 0.8360 | | 0.0791 | 4.0 | 1632 | 0.7031 | 0.2186 | 0.7031 | 0.8385 | | 0.0791 | 4.0049 | 1634 | 0.6996 | 0.2186 | 0.6996 | 0.8364 | | 0.0791 | 4.0098 | 1636 | 0.6952 | 0.1409 | 0.6952 | 0.8338 | | 0.0791 | 4.0147 | 1638 | 0.7047 | 0.1034 | 0.7047 | 0.8395 | | 0.0791 | 4.0196 | 1640 | 0.7232 | 0.1034 | 0.7232 | 0.8504 | | 0.0791 | 4.0245 | 1642 | 0.7470 | 0.1034 | 0.7470 | 0.8643 | | 0.0791 | 4.0294 | 1644 | 0.7678 | 0.1409 | 0.7678 | 0.8762 | | 0.0791 | 4.0343 | 1646 | 0.8113 | 0.1793 | 0.8113 | 0.9007 | | 0.0791 | 4.0392 | 1648 | 0.8505 | 0.3255 | 0.8505 | 0.9222 | | 0.0791 | 4.0441 | 1650 | 0.8698 | 0.3255 | 0.8698 | 0.9326 | | 0.0791 | 4.0490 | 1652 | 0.8610 | 0.3255 | 0.8610 | 0.9279 | | 0.0791 | 4.0539 | 1654 | 0.8489 | 0.3255 | 0.8489 | 0.9213 | | 0.0791 | 4.0588 | 1656 | 0.8233 | 0.1409 | 0.8233 | 0.9073 | | 0.0791 | 4.0637 | 1658 | 0.8296 | 0.1409 | 0.8296 | 0.9108 | | 0.0791 | 4.0686 | 1660 | 0.8387 | 0.2186 | 0.8387 | 0.9158 | | 0.0791 | 4.0735 | 1662 | 0.8289 | 0.2186 | 0.8289 | 0.9104 | | 0.0791 | 4.0784 | 1664 | 0.8289 | 0.2186 | 0.8289 | 0.9104 | | 0.0791 | 4.0833 | 1666 | 0.8186 | 0.2186 | 0.8186 | 0.9048 | | 0.0791 | 4.0882 | 1668 | 0.8049 | 0.1793 | 0.8049 | 0.8972 | | 0.0791 | 4.0931 | 1670 | 0.7837 | 0.1793 | 0.7837 | 0.8853 | | 0.0791 | 4.0980 | 1672 | 0.7665 | 0.1409 | 0.7665 | 0.8755 | | 0.0791 | 4.1029 | 1674 | 0.7436 | 0.1600 | 0.7436 | 0.8623 | | 0.0791 | 4.1078 | 1676 | 0.7272 | 0.1600 | 0.7272 | 0.8528 | | 0.0791 | 4.1127 | 1678 | 0.7201 | 0.1978 | 0.7201 | 0.8486 | | 0.0791 | 4.1176 | 1680 | 0.7042 | 0.1409 | 0.7042 | 0.8392 | | 0.0791 | 4.1225 | 1682 | 0.6854 | 0.1409 | 0.6854 | 0.8279 | | 0.0791 | 4.1275 | 1684 | 0.6862 | 0.1409 | 0.6862 | 0.8284 | | 0.0791 | 4.1324 | 1686 | 0.6993 | 0.1793 | 0.6993 | 0.8362 | | 0.0791 | 4.1373 | 1688 | 0.7311 | 0.2186 | 0.7311 | 0.8550 | | 0.0791 | 4.1422 | 1690 | 0.7596 | 0.2186 | 0.7596 | 0.8715 | | 0.0791 | 4.1471 | 1692 | 0.7471 | 0.2186 | 0.7471 | 0.8644 | | 0.0791 | 4.1520 | 1694 | 0.7068 | 0.2186 | 0.7068 | 0.8407 | | 0.0791 | 4.1569 | 1696 | 0.6582 | 0.1034 | 0.6582 | 0.8113 | | 0.0791 | 4.1618 | 1698 | 0.6384 | 0.1962 | 0.6384 | 0.7990 | | 0.0791 | 4.1667 | 1700 | 0.6446 | 0.2150 | 0.6446 | 0.8029 | | 0.0791 | 4.1716 | 1702 | 0.6478 | 0.2150 | 0.6478 | 0.8048 | | 0.0791 | 4.1765 | 1704 | 0.6374 | 0.2150 | 0.6374 | 0.7983 | | 0.0791 | 4.1814 | 1706 | 0.6339 | 0.2553 | 0.6339 | 0.7962 | | 0.0791 | 4.1863 | 1708 | 0.6347 | 0.1356 | 0.6347 | 0.7967 | | 0.0791 | 4.1912 | 1710 | 0.6393 | 0.2921 | 0.6393 | 0.7996 | | 0.0791 | 4.1961 | 1712 | 0.6482 | 0.1793 | 0.6482 | 0.8051 | | 0.0791 | 4.2010 | 1714 | 0.6547 | 0.2186 | 0.6547 | 0.8091 | | 0.0791 | 4.2059 | 1716 | 0.6433 | 0.2186 | 0.6433 | 0.8021 | | 0.0791 | 4.2108 | 1718 | 0.6339 | 0.2186 | 0.6339 | 0.7962 | | 0.0791 | 4.2157 | 1720 | 0.6289 | 0.0503 | 0.6289 | 0.7930 | | 0.0791 | 4.2206 | 1722 | 0.6347 | 0.1793 | 0.6347 | 0.7967 | | 0.0791 | 4.2255 | 1724 | 0.6359 | 0.1765 | 0.6359 | 0.7974 | | 0.0791 | 4.2304 | 1726 | 0.6393 | 0.2921 | 0.6393 | 0.7996 | | 0.0791 | 4.2353 | 1728 | 0.6440 | 0.3318 | 0.6440 | 0.8025 | | 0.0791 | 4.2402 | 1730 | 0.6491 | 0.3318 | 0.6491 | 0.8056 | | 0.0791 | 4.2451 | 1732 | 0.6437 | 0.2921 | 0.6437 | 0.8023 | | 0.0791 | 4.25 | 1734 | 0.6366 | 0.1765 | 0.6366 | 0.7979 | | 0.0791 | 4.2549 | 1736 | 0.6388 | 0.1560 | 0.6388 | 0.7992 | | 0.0791 | 4.2598 | 1738 | 0.6462 | 0.2150 | 0.6462 | 0.8039 | | 0.0791 | 4.2647 | 1740 | 0.6544 | 0.2150 | 0.6544 | 0.8089 | | 0.0791 | 4.2696 | 1742 | 0.6589 | 0.2696 | 0.6589 | 0.8117 | | 0.0791 | 4.2745 | 1744 | 0.6620 | 0.2696 | 0.6620 | 0.8136 | | 0.0791 | 4.2794 | 1746 | 0.6786 | 0.3318 | 0.6786 | 0.8237 | | 0.0791 | 4.2843 | 1748 | 0.7055 | 0.2186 | 0.7055 | 0.8400 | | 0.0791 | 4.2892 | 1750 | 0.7199 | 0.2186 | 0.7199 | 0.8485 | | 0.0791 | 4.2941 | 1752 | 0.7248 | 0.2186 | 0.7248 | 0.8513 | | 0.0791 | 4.2990 | 1754 | 0.7232 | 0.2186 | 0.7232 | 0.8504 | | 0.0791 | 4.3039 | 1756 | 0.7045 | 0.1793 | 0.7045 | 0.8393 | | 0.0791 | 4.3088 | 1758 | 0.6700 | 0.2921 | 0.6700 | 0.8185 | | 0.0791 | 4.3137 | 1760 | 0.6459 | 0.3077 | 0.6459 | 0.8037 | | 0.0791 | 4.3186 | 1762 | 0.6375 | 0.2696 | 0.6375 | 0.7984 | | 0.0791 | 4.3235 | 1764 | 0.6266 | 0.3226 | 0.6266 | 0.7916 | | 0.0791 | 4.3284 | 1766 | 0.6143 | 0.3609 | 0.6143 | 0.7838 | | 0.0791 | 4.3333 | 1768 | 0.6055 | 0.3467 | 0.6055 | 0.7781 | | 0.0791 | 4.3382 | 1770 | 0.6156 | 0.1409 | 0.6156 | 0.7846 | | 0.0791 | 4.3431 | 1772 | 0.6485 | 0.2186 | 0.6485 | 0.8053 | | 0.0791 | 4.3480 | 1774 | 0.6657 | 0.2588 | 0.6657 | 0.8159 | | 0.0791 | 4.3529 | 1776 | 0.6797 | 0.2588 | 0.6797 | 0.8244 | | 0.0791 | 4.3578 | 1778 | 0.6674 | 0.2588 | 0.6674 | 0.8170 | | 0.0791 | 4.3627 | 1780 | 0.6352 | 0.2186 | 0.6352 | 0.7970 | | 0.0791 | 4.3676 | 1782 | 0.6177 | 0.1793 | 0.6177 | 0.7859 | | 0.0791 | 4.3725 | 1784 | 0.6099 | 0.2921 | 0.6099 | 0.7810 | | 0.0791 | 4.3775 | 1786 | 0.6069 | 0.3467 | 0.6069 | 0.7791 | | 0.0791 | 4.3824 | 1788 | 0.6065 | 0.2921 | 0.6065 | 0.7788 | | 0.0791 | 4.3873 | 1790 | 0.6111 | 0.3318 | 0.6111 | 0.7817 | | 0.0791 | 4.3922 | 1792 | 0.6225 | 0.2186 | 0.6225 | 0.7890 | | 0.0791 | 4.3971 | 1794 | 0.6230 | 0.2186 | 0.6230 | 0.7893 | | 0.0791 | 4.4020 | 1796 | 0.6145 | 0.2186 | 0.6145 | 0.7839 | | 0.0791 | 4.4069 | 1798 | 0.6213 | 0.2186 | 0.6213 | 0.7882 | | 0.0791 | 4.4118 | 1800 | 0.6351 | 0.2588 | 0.6351 | 0.7970 | | 0.0791 | 4.4167 | 1802 | 0.6360 | 0.2186 | 0.6360 | 0.7975 | | 0.0791 | 4.4216 | 1804 | 0.6447 | 0.2186 | 0.6447 | 0.8029 | | 0.0791 | 4.4265 | 1806 | 0.6423 | 0.2186 | 0.6423 | 0.8015 | | 0.0791 | 4.4314 | 1808 | 0.6185 | 0.3724 | 0.6185 | 0.7864 | | 0.0791 | 4.4363 | 1810 | 0.6105 | 0.3724 | 0.6105 | 0.7814 | | 0.0791 | 4.4412 | 1812 | 0.6064 | 0.3724 | 0.6064 | 0.7787 | | 0.0791 | 4.4461 | 1814 | 0.6078 | 0.3724 | 0.6078 | 0.7796 | | 0.0791 | 4.4510 | 1816 | 0.6086 | 0.3724 | 0.6086 | 0.7801 | | 0.0791 | 4.4559 | 1818 | 0.5950 | 0.3318 | 0.5950 | 0.7713 | | 0.0791 | 4.4608 | 1820 | 0.5914 | 0.1962 | 0.5914 | 0.7690 | | 0.0791 | 4.4657 | 1822 | 0.5938 | 0.1962 | 0.5938 | 0.7706 | | 0.0791 | 4.4706 | 1824 | 0.5969 | 0.1962 | 0.5969 | 0.7726 | | 0.0791 | 4.4755 | 1826 | 0.6043 | 0.1962 | 0.6043 | 0.7774 | | 0.0791 | 4.4804 | 1828 | 0.6081 | 0.1962 | 0.6081 | 0.7798 | | 0.0791 | 4.4853 | 1830 | 0.5997 | 0.1962 | 0.5997 | 0.7744 | | 0.0791 | 4.4902 | 1832 | 0.5905 | 0.1962 | 0.5905 | 0.7685 | | 0.0791 | 4.4951 | 1834 | 0.5845 | 0.2373 | 0.5845 | 0.7645 | | 0.0791 | 4.5 | 1836 | 0.5791 | 0.2373 | 0.5791 | 0.7610 | | 0.0791 | 4.5049 | 1838 | 0.5741 | 0.2373 | 0.5741 | 0.7577 | | 0.0791 | 4.5098 | 1840 | 0.5715 | 0.2373 | 0.5715 | 0.7560 | | 0.0791 | 4.5147 | 1842 | 0.5695 | 0.1765 | 0.5695 | 0.7547 | | 0.0791 | 4.5196 | 1844 | 0.5697 | 0.2184 | 0.5697 | 0.7548 | | 0.0791 | 4.5245 | 1846 | 0.5658 | 0.2184 | 0.5658 | 0.7522 | | 0.0791 | 4.5294 | 1848 | 0.5707 | 0.3724 | 0.5707 | 0.7555 | | 0.0791 | 4.5343 | 1850 | 0.5879 | 0.3724 | 0.5879 | 0.7667 | | 0.0791 | 4.5392 | 1852 | 0.6251 | 0.2186 | 0.6251 | 0.7907 | | 0.0791 | 4.5441 | 1854 | 0.6718 | 0.2186 | 0.6718 | 0.8197 | | 0.0791 | 4.5490 | 1856 | 0.6709 | 0.2186 | 0.6709 | 0.8191 | | 0.0791 | 4.5539 | 1858 | 0.6502 | 0.2186 | 0.6502 | 0.8064 | | 0.0791 | 4.5588 | 1860 | 0.6372 | 0.3724 | 0.6372 | 0.7982 | | 0.0791 | 4.5637 | 1862 | 0.6120 | 0.3467 | 0.6120 | 0.7823 | | 0.0791 | 4.5686 | 1864 | 0.5944 | 0.3077 | 0.5944 | 0.7710 | | 0.0791 | 4.5735 | 1866 | 0.5952 | 0.3077 | 0.5952 | 0.7715 | | 0.0791 | 4.5784 | 1868 | 0.6035 | 0.3077 | 0.6035 | 0.7769 | | 0.0791 | 4.5833 | 1870 | 0.6174 | 0.3077 | 0.6174 | 0.7857 | | 0.0791 | 4.5882 | 1872 | 0.6202 | 0.3077 | 0.6202 | 0.7875 | | 0.0791 | 4.5931 | 1874 | 0.6141 | 0.3077 | 0.6141 | 0.7836 | | 0.0791 | 4.5980 | 1876 | 0.6143 | 0.3077 | 0.6143 | 0.7838 | | 0.0791 | 4.6029 | 1878 | 0.6190 | 0.3077 | 0.6190 | 0.7868 | | 0.0791 | 4.6078 | 1880 | 0.6174 | 0.3609 | 0.6174 | 0.7858 | | 0.0791 | 4.6127 | 1882 | 0.6118 | 0.3609 | 0.6118 | 0.7822 | | 0.0791 | 4.6176 | 1884 | 0.5976 | 0.3077 | 0.5976 | 0.7731 | | 0.0791 | 4.6225 | 1886 | 0.5875 | 0.3609 | 0.5875 | 0.7665 | | 0.0791 | 4.6275 | 1888 | 0.5813 | 0.3609 | 0.5813 | 0.7624 | | 0.0791 | 4.6324 | 1890 | 0.5859 | 0.3609 | 0.5859 | 0.7655 | | 0.0791 | 4.6373 | 1892 | 0.5935 | 0.3787 | 0.5935 | 0.7704 | | 0.0791 | 4.6422 | 1894 | 0.5933 | 0.3609 | 0.5933 | 0.7703 | | 0.0791 | 4.6471 | 1896 | 0.5921 | 0.3609 | 0.5921 | 0.7695 | | 0.0791 | 4.6520 | 1898 | 0.5860 | 0.3077 | 0.5860 | 0.7655 | | 0.0791 | 4.6569 | 1900 | 0.5861 | 0.3467 | 0.5861 | 0.7655 | | 0.0791 | 4.6618 | 1902 | 0.5949 | 0.3865 | 0.5949 | 0.7713 | | 0.0791 | 4.6667 | 1904 | 0.5916 | 0.4273 | 0.5916 | 0.7692 | | 0.0791 | 4.6716 | 1906 | 0.5844 | 0.4273 | 0.5844 | 0.7645 | | 0.0791 | 4.6765 | 1908 | 0.5682 | 0.3163 | 0.5682 | 0.7538 | | 0.0791 | 4.6814 | 1910 | 0.5449 | 0.3163 | 0.5449 | 0.7382 | | 0.0791 | 4.6863 | 1912 | 0.5272 | 0.2759 | 0.5272 | 0.7261 | | 0.0791 | 4.6912 | 1914 | 0.5094 | 0.2364 | 0.5094 | 0.7137 | | 0.0791 | 4.6961 | 1916 | 0.4956 | 0.2794 | 0.4956 | 0.7040 | | 0.0791 | 4.7010 | 1918 | 0.4901 | 0.2794 | 0.4901 | 0.7001 | | 0.0791 | 4.7059 | 1920 | 0.4917 | 0.3390 | 0.4917 | 0.7012 | | 0.0791 | 4.7108 | 1922 | 0.4968 | 0.3390 | 0.4968 | 0.7048 | | 0.0791 | 4.7157 | 1924 | 0.5044 | 0.2967 | 0.5044 | 0.7102 | | 0.0791 | 4.7206 | 1926 | 0.5157 | 0.4400 | 0.5157 | 0.7181 | | 0.0791 | 4.7255 | 1928 | 0.5382 | 0.3865 | 0.5382 | 0.7336 | | 0.0791 | 4.7304 | 1930 | 0.5782 | 0.3318 | 0.5782 | 0.7604 | | 0.0791 | 4.7353 | 1932 | 0.6183 | 0.3318 | 0.6183 | 0.7863 | | 0.0791 | 4.7402 | 1934 | 0.6317 | 0.3318 | 0.6317 | 0.7948 | | 0.0791 | 4.7451 | 1936 | 0.6400 | 0.3318 | 0.6400 | 0.8000 | | 0.0791 | 4.75 | 1938 | 0.6419 | 0.3318 | 0.6419 | 0.8012 | | 0.0791 | 4.7549 | 1940 | 0.6341 | 0.3318 | 0.6341 | 0.7963 | | 0.0791 | 4.7598 | 1942 | 0.6109 | 0.3318 | 0.6109 | 0.7816 | | 0.0791 | 4.7647 | 1944 | 0.5942 | 0.3467 | 0.5942 | 0.7708 | | 0.0791 | 4.7696 | 1946 | 0.5860 | 0.3077 | 0.5860 | 0.7655 | | 0.0791 | 4.7745 | 1948 | 0.5697 | 0.3077 | 0.5697 | 0.7548 | | 0.0791 | 4.7794 | 1950 | 0.5595 | 0.3467 | 0.5595 | 0.7480 | | 0.0791 | 4.7843 | 1952 | 0.5565 | 0.3467 | 0.5565 | 0.7460 | | 0.0791 | 4.7892 | 1954 | 0.5562 | 0.3467 | 0.5562 | 0.7458 | | 0.0791 | 4.7941 | 1956 | 0.5550 | 0.3467 | 0.5550 | 0.7450 | | 0.0791 | 4.7990 | 1958 | 0.5606 | 0.3467 | 0.5606 | 0.7488 | | 0.0791 | 4.8039 | 1960 | 0.5687 | 0.3318 | 0.5687 | 0.7541 | | 0.0791 | 4.8088 | 1962 | 0.5724 | 0.1793 | 0.5724 | 0.7566 | | 0.0791 | 4.8137 | 1964 | 0.5674 | 0.3865 | 0.5674 | 0.7532 | | 0.0791 | 4.8186 | 1966 | 0.5649 | 0.3467 | 0.5649 | 0.7516 | | 0.0791 | 4.8235 | 1968 | 0.5609 | 0.2373 | 0.5609 | 0.7489 | | 0.0791 | 4.8284 | 1970 | 0.5599 | 0.1962 | 0.5599 | 0.7482 | | 0.0791 | 4.8333 | 1972 | 0.5604 | 0.4000 | 0.5604 | 0.7486 | | 0.0791 | 4.8382 | 1974 | 0.5587 | 0.3609 | 0.5587 | 0.7475 | | 0.0791 | 4.8431 | 1976 | 0.5640 | 0.4000 | 0.5640 | 0.7510 | | 0.0791 | 4.8480 | 1978 | 0.5731 | 0.3467 | 0.5731 | 0.7570 | | 0.0791 | 4.8529 | 1980 | 0.5777 | 0.3865 | 0.5777 | 0.7601 | | 0.0791 | 4.8578 | 1982 | 0.5758 | 0.3865 | 0.5758 | 0.7588 | | 0.0791 | 4.8627 | 1984 | 0.5747 | 0.2364 | 0.5747 | 0.7581 | | 0.0791 | 4.8676 | 1986 | 0.5802 | 0.2759 | 0.5802 | 0.7617 | | 0.0791 | 4.8725 | 1988 | 0.5758 | 0.2759 | 0.5758 | 0.7588 | | 0.0791 | 4.8775 | 1990 | 0.5640 | 0.2759 | 0.5640 | 0.7510 | | 0.0791 | 4.8824 | 1992 | 0.5500 | 0.2364 | 0.5500 | 0.7416 | | 0.0791 | 4.8873 | 1994 | 0.5369 | 0.3865 | 0.5369 | 0.7327 | | 0.0791 | 4.8922 | 1996 | 0.5348 | 0.3865 | 0.5348 | 0.7313 | | 0.0791 | 4.8971 | 1998 | 0.5365 | 0.3865 | 0.5365 | 0.7325 | | 0.0614 | 4.9020 | 2000 | 0.5377 | 0.3467 | 0.5377 | 0.7333 | | 0.0614 | 4.9069 | 2002 | 0.5395 | 0.4000 | 0.5395 | 0.7345 | | 0.0614 | 4.9118 | 2004 | 0.5483 | 0.3609 | 0.5483 | 0.7405 | | 0.0614 | 4.9167 | 2006 | 0.5586 | 0.3609 | 0.5586 | 0.7474 | | 0.0614 | 4.9216 | 2008 | 0.5619 | 0.3609 | 0.5619 | 0.7496 | | 0.0614 | 4.9265 | 2010 | 0.5632 | 0.3609 | 0.5632 | 0.7504 | | 0.0614 | 4.9314 | 2012 | 0.5689 | 0.4000 | 0.5689 | 0.7542 | | 0.0614 | 4.9363 | 2014 | 0.5818 | 0.2364 | 0.5818 | 0.7628 | | 0.0614 | 4.9412 | 2016 | 0.6181 | 0.3163 | 0.6181 | 0.7862 | | 0.0614 | 4.9461 | 2018 | 0.6791 | 0.3163 | 0.6791 | 0.8241 | | 0.0614 | 4.9510 | 2020 | 0.7314 | 0.4154 | 0.7314 | 0.8552 | | 0.0614 | 4.9559 | 2022 | 0.7389 | 0.3636 | 0.7389 | 0.8596 | | 0.0614 | 4.9608 | 2024 | 0.7179 | 0.2588 | 0.7179 | 0.8473 | | 0.0614 | 4.9657 | 2026 | 0.6848 | 0.2588 | 0.6848 | 0.8275 | | 0.0614 | 4.9706 | 2028 | 0.6596 | 0.2588 | 0.6596 | 0.8122 | | 0.0614 | 4.9755 | 2030 | 0.6251 | 0.3163 | 0.6251 | 0.7906 | | 0.0614 | 4.9804 | 2032 | 0.6034 | 0.3163 | 0.6034 | 0.7768 | | 0.0614 | 4.9853 | 2034 | 0.5772 | 0.3163 | 0.5772 | 0.7597 | | 0.0614 | 4.9902 | 2036 | 0.5650 | 0.3163 | 0.5650 | 0.7517 | | 0.0614 | 4.9951 | 2038 | 0.5640 | 0.2759 | 0.5640 | 0.7510 | | 0.0614 | 5.0 | 2040 | 0.5614 | 0.2759 | 0.5614 | 0.7493 | | 0.0614 | 5.0049 | 2042 | 0.5694 | 0.2759 | 0.5694 | 0.7546 | | 0.0614 | 5.0098 | 2044 | 0.5940 | 0.3163 | 0.5940 | 0.7707 | | 0.0614 | 5.0147 | 2046 | 0.6169 | 0.2588 | 0.6169 | 0.7854 | | 0.0614 | 5.0196 | 2048 | 0.6261 | 0.2588 | 0.6261 | 0.7913 | | 0.0614 | 5.0245 | 2050 | 0.6128 | 0.3163 | 0.6128 | 0.7828 | | 0.0614 | 5.0294 | 2052 | 0.6006 | 0.3163 | 0.6006 | 0.7750 | | 0.0614 | 5.0343 | 2054 | 0.5880 | 0.2759 | 0.5880 | 0.7668 | | 0.0614 | 5.0392 | 2056 | 0.5835 | 0.2759 | 0.5835 | 0.7639 | | 0.0614 | 5.0441 | 2058 | 0.5798 | 0.2759 | 0.5798 | 0.7614 | | 0.0614 | 5.0490 | 2060 | 0.5838 | 0.2759 | 0.5838 | 0.7640 | | 0.0614 | 5.0539 | 2062 | 0.5912 | 0.2759 | 0.5912 | 0.7689 | | 0.0614 | 5.0588 | 2064 | 0.5955 | 0.2759 | 0.5955 | 0.7717 | | 0.0614 | 5.0637 | 2066 | 0.6004 | 0.2759 | 0.6004 | 0.7749 | | 0.0614 | 5.0686 | 2068 | 0.5992 | 0.0916 | 0.5992 | 0.7741 | | 0.0614 | 5.0735 | 2070 | 0.5929 | 0.1558 | 0.5929 | 0.7700 | | 0.0614 | 5.0784 | 2072 | 0.5890 | 0.1558 | 0.5890 | 0.7675 | | 0.0614 | 5.0833 | 2074 | 0.5808 | 0.1141 | 0.5808 | 0.7621 | | 0.0614 | 5.0882 | 2076 | 0.5731 | 0.1141 | 0.5731 | 0.7570 | | 0.0614 | 5.0931 | 2078 | 0.5785 | 0.1141 | 0.5785 | 0.7606 | | 0.0614 | 5.0980 | 2080 | 0.5892 | 0.1141 | 0.5892 | 0.7676 | | 0.0614 | 5.1029 | 2082 | 0.5970 | 0.1141 | 0.5970 | 0.7727 | | 0.0614 | 5.1078 | 2084 | 0.6177 | 0.1793 | 0.6177 | 0.7859 | | 0.0614 | 5.1127 | 2086 | 0.6396 | 0.2186 | 0.6396 | 0.7998 | | 0.0614 | 5.1176 | 2088 | 0.6584 | 0.2186 | 0.6584 | 0.8114 | | 0.0614 | 5.1225 | 2090 | 0.6824 | 0.2186 | 0.6824 | 0.8261 | | 0.0614 | 5.1275 | 2092 | 0.6983 | 0.2186 | 0.6983 | 0.8357 | | 0.0614 | 5.1324 | 2094 | 0.7067 | 0.2186 | 0.7067 | 0.8407 | | 0.0614 | 5.1373 | 2096 | 0.7107 | 0.2186 | 0.7107 | 0.8430 | | 0.0614 | 5.1422 | 2098 | 0.6967 | 0.2186 | 0.6967 | 0.8347 | | 0.0614 | 5.1471 | 2100 | 0.6927 | 0.2186 | 0.6927 | 0.8323 | | 0.0614 | 5.1520 | 2102 | 0.6830 | 0.2186 | 0.6830 | 0.8265 | | 0.0614 | 5.1569 | 2104 | 0.6678 | 0.2186 | 0.6678 | 0.8172 | | 0.0614 | 5.1618 | 2106 | 0.6531 | 0.2186 | 0.6531 | 0.8081 | | 0.0614 | 5.1667 | 2108 | 0.6331 | 0.2186 | 0.6331 | 0.7957 | | 0.0614 | 5.1716 | 2110 | 0.6273 | 0.2186 | 0.6273 | 0.7920 | | 0.0614 | 5.1765 | 2112 | 0.6299 | 0.2186 | 0.6299 | 0.7936 | | 0.0614 | 5.1814 | 2114 | 0.6357 | 0.2186 | 0.6357 | 0.7973 | | 0.0614 | 5.1863 | 2116 | 0.6402 | 0.2186 | 0.6402 | 0.8001 | | 0.0614 | 5.1912 | 2118 | 0.6259 | 0.2186 | 0.6259 | 0.7912 | | 0.0614 | 5.1961 | 2120 | 0.6253 | 0.2186 | 0.6253 | 0.7908 | | 0.0614 | 5.2010 | 2122 | 0.6312 | 0.2588 | 0.6312 | 0.7945 | | 0.0614 | 5.2059 | 2124 | 0.6262 | 0.2588 | 0.6262 | 0.7913 | | 0.0614 | 5.2108 | 2126 | 0.6246 | 0.2588 | 0.6246 | 0.7903 | | 0.0614 | 5.2157 | 2128 | 0.6368 | 0.2588 | 0.6368 | 0.7980 | | 0.0614 | 5.2206 | 2130 | 0.6516 | 0.2588 | 0.6516 | 0.8072 | | 0.0614 | 5.2255 | 2132 | 0.6769 | 0.2588 | 0.6769 | 0.8227 | | 0.0614 | 5.2304 | 2134 | 0.6758 | 0.2588 | 0.6758 | 0.8221 | | 0.0614 | 5.2353 | 2136 | 0.6577 | 0.2588 | 0.6577 | 0.8110 | | 0.0614 | 5.2402 | 2138 | 0.6295 | 0.2186 | 0.6295 | 0.7934 | | 0.0614 | 5.2451 | 2140 | 0.6117 | 0.2186 | 0.6117 | 0.7821 | | 0.0614 | 5.25 | 2142 | 0.6120 | 0.2186 | 0.6120 | 0.7823 | | 0.0614 | 5.2549 | 2144 | 0.6369 | 0.2588 | 0.6369 | 0.7980 | | 0.0614 | 5.2598 | 2146 | 0.6788 | 0.2588 | 0.6788 | 0.8239 | | 0.0614 | 5.2647 | 2148 | 0.7103 | 0.3636 | 0.7103 | 0.8428 | | 0.0614 | 5.2696 | 2150 | 0.7214 | 0.3636 | 0.7214 | 0.8494 | | 0.0614 | 5.2745 | 2152 | 0.6943 | 0.3636 | 0.6943 | 0.8332 | | 0.0614 | 5.2794 | 2154 | 0.6540 | 0.2588 | 0.6540 | 0.8087 | | 0.0614 | 5.2843 | 2156 | 0.6182 | 0.2588 | 0.6182 | 0.7863 | | 0.0614 | 5.2892 | 2158 | 0.5937 | 0.2186 | 0.5937 | 0.7705 | | 0.0614 | 5.2941 | 2160 | 0.5796 | 0.2186 | 0.5796 | 0.7613 | | 0.0614 | 5.2990 | 2162 | 0.5847 | 0.2186 | 0.5847 | 0.7646 | | 0.0614 | 5.3039 | 2164 | 0.6082 | 0.2186 | 0.6082 | 0.7799 | | 0.0614 | 5.3088 | 2166 | 0.6444 | 0.2186 | 0.6444 | 0.8027 | | 0.0614 | 5.3137 | 2168 | 0.6782 | 0.3255 | 0.6782 | 0.8235 | | 0.0614 | 5.3186 | 2170 | 0.6920 | 0.3255 | 0.6920 | 0.8319 | | 0.0614 | 5.3235 | 2172 | 0.7042 | 0.3255 | 0.7042 | 0.8392 | | 0.0614 | 5.3284 | 2174 | 0.7288 | 0.3255 | 0.7288 | 0.8537 | | 0.0614 | 5.3333 | 2176 | 0.7344 | 0.3255 | 0.7344 | 0.8570 | | 0.0614 | 5.3382 | 2178 | 0.7464 | 0.3255 | 0.7464 | 0.8640 | | 0.0614 | 5.3431 | 2180 | 0.7523 | 0.3255 | 0.7523 | 0.8673 | | 0.0614 | 5.3480 | 2182 | 0.7357 | 0.3255 | 0.7357 | 0.8577 | | 0.0614 | 5.3529 | 2184 | 0.7328 | 0.3255 | 0.7328 | 0.8560 | | 0.0614 | 5.3578 | 2186 | 0.7272 | 0.2186 | 0.7272 | 0.8527 | | 0.0614 | 5.3627 | 2188 | 0.7104 | 0.2186 | 0.7104 | 0.8429 | | 0.0614 | 5.3676 | 2190 | 0.6987 | 0.1793 | 0.6987 | 0.8359 | | 0.0614 | 5.3725 | 2192 | 0.6896 | 0.1793 | 0.6896 | 0.8304 | | 0.0614 | 5.3775 | 2194 | 0.6858 | 0.1793 | 0.6858 | 0.8282 | | 0.0614 | 5.3824 | 2196 | 0.6823 | 0.1793 | 0.6823 | 0.8260 | | 0.0614 | 5.3873 | 2198 | 0.6700 | 0.1793 | 0.6700 | 0.8185 | | 0.0614 | 5.3922 | 2200 | 0.6680 | 0.1793 | 0.6680 | 0.8173 | | 0.0614 | 5.3971 | 2202 | 0.6586 | 0.1793 | 0.6586 | 0.8115 | | 0.0614 | 5.4020 | 2204 | 0.6395 | 0.1793 | 0.6395 | 0.7997 | | 0.0614 | 5.4069 | 2206 | 0.6233 | 0.1793 | 0.6233 | 0.7895 | | 0.0614 | 5.4118 | 2208 | 0.6176 | 0.1793 | 0.6176 | 0.7859 | | 0.0614 | 5.4167 | 2210 | 0.6240 | 0.1793 | 0.6240 | 0.7899 | | 0.0614 | 5.4216 | 2212 | 0.6289 | 0.1793 | 0.6289 | 0.7931 | | 0.0614 | 5.4265 | 2214 | 0.6382 | 0.2186 | 0.6382 | 0.7989 | | 0.0614 | 5.4314 | 2216 | 0.6462 | 0.2186 | 0.6462 | 0.8039 | | 0.0614 | 5.4363 | 2218 | 0.6551 | 0.2186 | 0.6551 | 0.8094 | | 0.0614 | 5.4412 | 2220 | 0.6627 | 0.2186 | 0.6627 | 0.8141 | | 0.0614 | 5.4461 | 2222 | 0.6976 | 0.2186 | 0.6976 | 0.8352 | | 0.0614 | 5.4510 | 2224 | 0.7623 | 0.3636 | 0.7623 | 0.8731 | | 0.0614 | 5.4559 | 2226 | 0.7952 | 0.3687 | 0.7952 | 0.8917 | | 0.0614 | 5.4608 | 2228 | 0.7802 | 0.3255 | 0.7802 | 0.8833 | | 0.0614 | 5.4657 | 2230 | 0.7324 | 0.2186 | 0.7324 | 0.8558 | | 0.0614 | 5.4706 | 2232 | 0.6900 | 0.2186 | 0.6900 | 0.8307 | | 0.0614 | 5.4755 | 2234 | 0.6697 | 0.2186 | 0.6697 | 0.8184 | | 0.0614 | 5.4804 | 2236 | 0.6738 | 0.2186 | 0.6738 | 0.8209 | | 0.0614 | 5.4853 | 2238 | 0.6660 | 0.2186 | 0.6660 | 0.8161 | | 0.0614 | 5.4902 | 2240 | 0.6609 | 0.2186 | 0.6609 | 0.8130 | | 0.0614 | 5.4951 | 2242 | 0.6573 | 0.2186 | 0.6573 | 0.8107 | | 0.0614 | 5.5 | 2244 | 0.6559 | 0.2186 | 0.6559 | 0.8099 | | 0.0614 | 5.5049 | 2246 | 0.6564 | 0.2186 | 0.6564 | 0.8102 | | 0.0614 | 5.5098 | 2248 | 0.6626 | 0.2186 | 0.6626 | 0.8140 | | 0.0614 | 5.5147 | 2250 | 0.6437 | 0.2186 | 0.6437 | 0.8023 | | 0.0614 | 5.5196 | 2252 | 0.6196 | 0.2186 | 0.6196 | 0.7871 | | 0.0614 | 5.5245 | 2254 | 0.6034 | 0.3724 | 0.6034 | 0.7768 | | 0.0614 | 5.5294 | 2256 | 0.6037 | 0.3724 | 0.6037 | 0.7770 | | 0.0614 | 5.5343 | 2258 | 0.6203 | 0.2186 | 0.6203 | 0.7876 | | 0.0614 | 5.5392 | 2260 | 0.6469 | 0.2186 | 0.6469 | 0.8043 | | 0.0614 | 5.5441 | 2262 | 0.6694 | 0.2186 | 0.6694 | 0.8182 | | 0.0614 | 5.5490 | 2264 | 0.6919 | 0.2186 | 0.6919 | 0.8318 | | 0.0614 | 5.5539 | 2266 | 0.6978 | 0.2186 | 0.6978 | 0.8354 | | 0.0614 | 5.5588 | 2268 | 0.6986 | 0.2186 | 0.6986 | 0.8358 | | 0.0614 | 5.5637 | 2270 | 0.6926 | 0.2186 | 0.6926 | 0.8323 | | 0.0614 | 5.5686 | 2272 | 0.6569 | 0.2186 | 0.6569 | 0.8105 | | 0.0614 | 5.5735 | 2274 | 0.6151 | 0.2186 | 0.6151 | 0.7843 | | 0.0614 | 5.5784 | 2276 | 0.5745 | 0.3318 | 0.5745 | 0.7580 | | 0.0614 | 5.5833 | 2278 | 0.5459 | 0.3467 | 0.5459 | 0.7388 | | 0.0614 | 5.5882 | 2280 | 0.5401 | 0.3467 | 0.5401 | 0.7349 | | 0.0614 | 5.5931 | 2282 | 0.5416 | 0.3467 | 0.5416 | 0.7359 | | 0.0614 | 5.5980 | 2284 | 0.5397 | 0.3467 | 0.5397 | 0.7347 | | 0.0614 | 5.6029 | 2286 | 0.5499 | 0.3865 | 0.5499 | 0.7416 | | 0.0614 | 5.6078 | 2288 | 0.5791 | 0.3724 | 0.5791 | 0.7610 | | 0.0614 | 5.6127 | 2290 | 0.6159 | 0.3724 | 0.6159 | 0.7848 | | 0.0614 | 5.6176 | 2292 | 0.6454 | 0.3255 | 0.6454 | 0.8033 | | 0.0614 | 5.6225 | 2294 | 0.6487 | 0.3255 | 0.6487 | 0.8054 | | 0.0614 | 5.6275 | 2296 | 0.6381 | 0.2186 | 0.6381 | 0.7988 | | 0.0614 | 5.6324 | 2298 | 0.6163 | 0.2186 | 0.6163 | 0.7851 | | 0.0614 | 5.6373 | 2300 | 0.5910 | 0.3724 | 0.5910 | 0.7688 | | 0.0614 | 5.6422 | 2302 | 0.5704 | 0.3724 | 0.5704 | 0.7552 | | 0.0614 | 5.6471 | 2304 | 0.5536 | 0.4273 | 0.5536 | 0.7440 | | 0.0614 | 5.6520 | 2306 | 0.5563 | 0.3865 | 0.5563 | 0.7458 | | 0.0614 | 5.6569 | 2308 | 0.5666 | 0.3865 | 0.5666 | 0.7527 | | 0.0614 | 5.6618 | 2310 | 0.5782 | 0.4273 | 0.5782 | 0.7604 | | 0.0614 | 5.6667 | 2312 | 0.5814 | 0.4273 | 0.5814 | 0.7625 | | 0.0614 | 5.6716 | 2314 | 0.5907 | 0.4273 | 0.5907 | 0.7686 | | 0.0614 | 5.6765 | 2316 | 0.5889 | 0.3865 | 0.5889 | 0.7674 | | 0.0614 | 5.6814 | 2318 | 0.5885 | 0.4273 | 0.5885 | 0.7672 | | 0.0614 | 5.6863 | 2320 | 0.5983 | 0.3724 | 0.5983 | 0.7735 | | 0.0614 | 5.6912 | 2322 | 0.6071 | 0.3724 | 0.6071 | 0.7791 | | 0.0614 | 5.6961 | 2324 | 0.6186 | 0.3724 | 0.6186 | 0.7865 | | 0.0614 | 5.7010 | 2326 | 0.6283 | 0.3724 | 0.6283 | 0.7927 | | 0.0614 | 5.7059 | 2328 | 0.6276 | 0.3724 | 0.6276 | 0.7922 | | 0.0614 | 5.7108 | 2330 | 0.6149 | 0.3724 | 0.6149 | 0.7842 | | 0.0614 | 5.7157 | 2332 | 0.6086 | 0.3724 | 0.6086 | 0.7801 | | 0.0614 | 5.7206 | 2334 | 0.6033 | 0.3724 | 0.6033 | 0.7767 | | 0.0614 | 5.7255 | 2336 | 0.5917 | 0.3724 | 0.5917 | 0.7692 | | 0.0614 | 5.7304 | 2338 | 0.5824 | 0.3318 | 0.5824 | 0.7632 | | 0.0614 | 5.7353 | 2340 | 0.5792 | 0.3318 | 0.5792 | 0.7610 | | 0.0614 | 5.7402 | 2342 | 0.5761 | 0.3318 | 0.5761 | 0.7590 | | 0.0614 | 5.7451 | 2344 | 0.5759 | 0.2533 | 0.5759 | 0.7589 | | 0.0614 | 5.75 | 2346 | 0.5735 | 0.3318 | 0.5735 | 0.7573 | | 0.0614 | 5.7549 | 2348 | 0.5756 | 0.3724 | 0.5756 | 0.7587 | | 0.0614 | 5.7598 | 2350 | 0.5897 | 0.3724 | 0.5897 | 0.7679 | | 0.0614 | 5.7647 | 2352 | 0.6112 | 0.3724 | 0.6112 | 0.7818 | | 0.0614 | 5.7696 | 2354 | 0.6272 | 0.3724 | 0.6272 | 0.7919 | | 0.0614 | 5.7745 | 2356 | 0.6303 | 0.3724 | 0.6303 | 0.7939 | | 0.0614 | 5.7794 | 2358 | 0.6222 | 0.3724 | 0.6222 | 0.7888 | | 0.0614 | 5.7843 | 2360 | 0.6133 | 0.3724 | 0.6133 | 0.7831 | | 0.0614 | 5.7892 | 2362 | 0.6069 | 0.3724 | 0.6069 | 0.7790 | | 0.0614 | 5.7941 | 2364 | 0.6120 | 0.3724 | 0.6120 | 0.7823 | | 0.0614 | 5.7990 | 2366 | 0.6179 | 0.3724 | 0.6179 | 0.7860 | | 0.0614 | 5.8039 | 2368 | 0.6327 | 0.4140 | 0.6327 | 0.7954 | | 0.0614 | 5.8088 | 2370 | 0.6337 | 0.2588 | 0.6337 | 0.7960 | | 0.0614 | 5.8137 | 2372 | 0.6242 | 0.4140 | 0.6242 | 0.7901 | | 0.0614 | 5.8186 | 2374 | 0.6180 | 0.4140 | 0.6180 | 0.7861 | | 0.0614 | 5.8235 | 2376 | 0.6003 | 0.3724 | 0.6003 | 0.7748 | | 0.0614 | 5.8284 | 2378 | 0.5881 | 0.3724 | 0.5881 | 0.7669 | | 0.0614 | 5.8333 | 2380 | 0.5781 | 0.3724 | 0.5781 | 0.7603 | | 0.0614 | 5.8382 | 2382 | 0.5773 | 0.3724 | 0.5773 | 0.7598 | | 0.0614 | 5.8431 | 2384 | 0.5765 | 0.3865 | 0.5765 | 0.7593 | | 0.0614 | 5.8480 | 2386 | 0.5628 | 0.3865 | 0.5628 | 0.7502 | | 0.0614 | 5.8529 | 2388 | 0.5582 | 0.3865 | 0.5582 | 0.7471 | | 0.0614 | 5.8578 | 2390 | 0.5647 | 0.3865 | 0.5647 | 0.7514 | | 0.0614 | 5.8627 | 2392 | 0.5633 | 0.3865 | 0.5633 | 0.7505 | | 0.0614 | 5.8676 | 2394 | 0.5591 | 0.4400 | 0.5591 | 0.7477 | | 0.0614 | 5.8725 | 2396 | 0.5588 | 0.4400 | 0.5588 | 0.7475 | | 0.0614 | 5.8775 | 2398 | 0.5587 | 0.4400 | 0.5587 | 0.7475 | | 0.0614 | 5.8824 | 2400 | 0.5598 | 0.3318 | 0.5598 | 0.7482 | | 0.0614 | 5.8873 | 2402 | 0.5681 | 0.3724 | 0.5681 | 0.7537 | | 0.0614 | 5.8922 | 2404 | 0.5759 | 0.3724 | 0.5759 | 0.7589 | | 0.0614 | 5.8971 | 2406 | 0.6007 | 0.4140 | 0.6007 | 0.7750 | | 0.0614 | 5.9020 | 2408 | 0.6132 | 0.2588 | 0.6132 | 0.7831 | | 0.0614 | 5.9069 | 2410 | 0.6169 | 0.3636 | 0.6169 | 0.7854 | | 0.0614 | 5.9118 | 2412 | 0.6200 | 0.3636 | 0.6200 | 0.7874 | | 0.0614 | 5.9167 | 2414 | 0.6188 | 0.4661 | 0.6188 | 0.7866 | | 0.0614 | 5.9216 | 2416 | 0.6097 | 0.4661 | 0.6097 | 0.7808 | | 0.0614 | 5.9265 | 2418 | 0.6117 | 0.4661 | 0.6117 | 0.7821 | | 0.0614 | 5.9314 | 2420 | 0.6331 | 0.4661 | 0.6331 | 0.7957 | | 0.0614 | 5.9363 | 2422 | 0.6584 | 0.4661 | 0.6584 | 0.8114 | | 0.0614 | 5.9412 | 2424 | 0.6692 | 0.3255 | 0.6692 | 0.8180 | | 0.0614 | 5.9461 | 2426 | 0.6618 | 0.3255 | 0.6618 | 0.8135 | | 0.0614 | 5.9510 | 2428 | 0.6336 | 0.4661 | 0.6336 | 0.7960 | | 0.0614 | 5.9559 | 2430 | 0.6206 | 0.4661 | 0.6206 | 0.7878 | | 0.0614 | 5.9608 | 2432 | 0.6073 | 0.4661 | 0.6073 | 0.7793 | | 0.0614 | 5.9657 | 2434 | 0.5952 | 0.4661 | 0.5952 | 0.7715 | | 0.0614 | 5.9706 | 2436 | 0.6036 | 0.3255 | 0.6036 | 0.7769 | | 0.0614 | 5.9755 | 2438 | 0.6183 | 0.3636 | 0.6183 | 0.7863 | | 0.0614 | 5.9804 | 2440 | 0.6499 | 0.3636 | 0.6499 | 0.8062 | | 0.0614 | 5.9853 | 2442 | 0.6780 | 0.3636 | 0.6780 | 0.8234 | | 0.0614 | 5.9902 | 2444 | 0.7000 | 0.3636 | 0.7000 | 0.8367 | | 0.0614 | 5.9951 | 2446 | 0.7083 | 0.3636 | 0.7083 | 0.8416 | | 0.0614 | 6.0 | 2448 | 0.7052 | 0.3636 | 0.7052 | 0.8397 | | 0.0614 | 6.0049 | 2450 | 0.7019 | 0.3636 | 0.7019 | 0.8378 | | 0.0614 | 6.0098 | 2452 | 0.6930 | 0.3636 | 0.6930 | 0.8324 | | 0.0614 | 6.0147 | 2454 | 0.6944 | 0.3636 | 0.6944 | 0.8333 | | 0.0614 | 6.0196 | 2456 | 0.7027 | 0.3636 | 0.7027 | 0.8383 | | 0.0614 | 6.0245 | 2458 | 0.6920 | 0.3636 | 0.6920 | 0.8319 | | 0.0614 | 6.0294 | 2460 | 0.6733 | 0.2588 | 0.6733 | 0.8205 | | 0.0614 | 6.0343 | 2462 | 0.6524 | 0.2588 | 0.6524 | 0.8077 | | 0.0614 | 6.0392 | 2464 | 0.6511 | 0.2588 | 0.6511 | 0.8069 | | 0.0614 | 6.0441 | 2466 | 0.6484 | 0.2588 | 0.6484 | 0.8052 | | 0.0614 | 6.0490 | 2468 | 0.6634 | 0.3636 | 0.6634 | 0.8145 | | 0.0614 | 6.0539 | 2470 | 0.6881 | 0.3636 | 0.6881 | 0.8295 | | 0.0614 | 6.0588 | 2472 | 0.6930 | 0.3636 | 0.6930 | 0.8325 | | 0.0614 | 6.0637 | 2474 | 0.6936 | 0.3636 | 0.6936 | 0.8328 | | 0.0614 | 6.0686 | 2476 | 0.6729 | 0.3636 | 0.6729 | 0.8203 | | 0.0614 | 6.0735 | 2478 | 0.6464 | 0.3636 | 0.6464 | 0.8040 | | 0.0614 | 6.0784 | 2480 | 0.6377 | 0.3636 | 0.6377 | 0.7986 | | 0.0614 | 6.0833 | 2482 | 0.6405 | 0.3636 | 0.6405 | 0.8003 | | 0.0614 | 6.0882 | 2484 | 0.6337 | 0.3255 | 0.6337 | 0.7961 | | 0.0614 | 6.0931 | 2486 | 0.6346 | 0.3255 | 0.6346 | 0.7966 | | 0.0614 | 6.0980 | 2488 | 0.6329 | 0.3255 | 0.6329 | 0.7955 | | 0.0614 | 6.1029 | 2490 | 0.6558 | 0.3255 | 0.6558 | 0.8098 | | 0.0614 | 6.1078 | 2492 | 0.6809 | 0.3636 | 0.6809 | 0.8252 | | 0.0614 | 6.1127 | 2494 | 0.7015 | 0.3636 | 0.7015 | 0.8376 | | 0.0614 | 6.1176 | 2496 | 0.6841 | 0.3636 | 0.6841 | 0.8271 | | 0.0614 | 6.1225 | 2498 | 0.6441 | 0.3255 | 0.6441 | 0.8026 | | 0.0484 | 6.1275 | 2500 | 0.6127 | 0.2186 | 0.6127 | 0.7828 | | 0.0484 | 6.1324 | 2502 | 0.6060 | 0.2186 | 0.6060 | 0.7785 | | 0.0484 | 6.1373 | 2504 | 0.6087 | 0.2186 | 0.6087 | 0.7802 | | 0.0484 | 6.1422 | 2506 | 0.6224 | 0.2588 | 0.6224 | 0.7889 | | 0.0484 | 6.1471 | 2508 | 0.6370 | 0.2588 | 0.6370 | 0.7981 | | 0.0484 | 6.1520 | 2510 | 0.6629 | 0.3636 | 0.6629 | 0.8142 | | 0.0484 | 6.1569 | 2512 | 0.6811 | 0.3636 | 0.6811 | 0.8253 | | 0.0484 | 6.1618 | 2514 | 0.7128 | 0.3636 | 0.7128 | 0.8442 | | 0.0484 | 6.1667 | 2516 | 0.7161 | 0.3636 | 0.7161 | 0.8462 | | 0.0484 | 6.1716 | 2518 | 0.6999 | 0.3636 | 0.6999 | 0.8366 | | 0.0484 | 6.1765 | 2520 | 0.6761 | 0.3636 | 0.6761 | 0.8223 | | 0.0484 | 6.1814 | 2522 | 0.6490 | 0.2588 | 0.6490 | 0.8056 | | 0.0484 | 6.1863 | 2524 | 0.6282 | 0.2588 | 0.6282 | 0.7926 | | 0.0484 | 6.1912 | 2526 | 0.6187 | 0.2588 | 0.6187 | 0.7866 | | 0.0484 | 6.1961 | 2528 | 0.6129 | 0.2588 | 0.6129 | 0.7829 | | 0.0484 | 6.2010 | 2530 | 0.6103 | 0.2588 | 0.6103 | 0.7812 | | 0.0484 | 6.2059 | 2532 | 0.6198 | 0.2588 | 0.6198 | 0.7873 | | 0.0484 | 6.2108 | 2534 | 0.6412 | 0.2588 | 0.6412 | 0.8008 | | 0.0484 | 6.2157 | 2536 | 0.6727 | 0.3636 | 0.6727 | 0.8202 | | 0.0484 | 6.2206 | 2538 | 0.6996 | 0.3636 | 0.6996 | 0.8364 | | 0.0484 | 6.2255 | 2540 | 0.7080 | 0.3636 | 0.7080 | 0.8414 | | 0.0484 | 6.2304 | 2542 | 0.7206 | 0.3636 | 0.7206 | 0.8489 | | 0.0484 | 6.2353 | 2544 | 0.7063 | 0.3636 | 0.7063 | 0.8404 | | 0.0484 | 6.2402 | 2546 | 0.6860 | 0.3636 | 0.6860 | 0.8283 | | 0.0484 | 6.2451 | 2548 | 0.6647 | 0.3255 | 0.6647 | 0.8153 | | 0.0484 | 6.25 | 2550 | 0.6601 | 0.3255 | 0.6601 | 0.8125 | | 0.0484 | 6.2549 | 2552 | 0.6519 | 0.3255 | 0.6519 | 0.8074 | | 0.0484 | 6.2598 | 2554 | 0.6432 | 0.3724 | 0.6432 | 0.8020 | | 0.0484 | 6.2647 | 2556 | 0.6465 | 0.3724 | 0.6465 | 0.8040 | | 0.0484 | 6.2696 | 2558 | 0.6502 | 0.3318 | 0.6502 | 0.8064 | | 0.0484 | 6.2745 | 2560 | 0.6516 | 0.2533 | 0.6516 | 0.8072 | | 0.0484 | 6.2794 | 2562 | 0.6555 | 0.2154 | 0.6555 | 0.8096 | | 0.0484 | 6.2843 | 2564 | 0.6617 | 0.2154 | 0.6617 | 0.8134 | | 0.0484 | 6.2892 | 2566 | 0.6590 | 0.2154 | 0.6590 | 0.8118 | | 0.0484 | 6.2941 | 2568 | 0.6497 | 0.2154 | 0.6497 | 0.8061 | | 0.0484 | 6.2990 | 2570 | 0.6417 | 0.2533 | 0.6417 | 0.8011 | | 0.0484 | 6.3039 | 2572 | 0.6340 | 0.3318 | 0.6340 | 0.7962 | | 0.0484 | 6.3088 | 2574 | 0.6232 | 0.3724 | 0.6232 | 0.7895 | | 0.0484 | 6.3137 | 2576 | 0.6147 | 0.3724 | 0.6147 | 0.7841 | | 0.0484 | 6.3186 | 2578 | 0.6080 | 0.3724 | 0.6080 | 0.7797 | | 0.0484 | 6.3235 | 2580 | 0.6087 | 0.3724 | 0.6087 | 0.7802 | | 0.0484 | 6.3284 | 2582 | 0.6127 | 0.3724 | 0.6127 | 0.7827 | | 0.0484 | 6.3333 | 2584 | 0.6291 | 0.2186 | 0.6291 | 0.7932 | | 0.0484 | 6.3382 | 2586 | 0.6663 | 0.3255 | 0.6663 | 0.8163 | | 0.0484 | 6.3431 | 2588 | 0.7074 | 0.3255 | 0.7074 | 0.8411 | | 0.0484 | 6.3480 | 2590 | 0.7460 | 0.3636 | 0.7460 | 0.8637 | | 0.0484 | 6.3529 | 2592 | 0.7678 | 0.3636 | 0.7678 | 0.8762 | | 0.0484 | 6.3578 | 2594 | 0.7978 | 0.2948 | 0.7978 | 0.8932 | | 0.0484 | 6.3627 | 2596 | 0.8107 | 0.2948 | 0.8107 | 0.9004 | | 0.0484 | 6.3676 | 2598 | 0.7841 | 0.2948 | 0.7841 | 0.8855 | | 0.0484 | 6.3725 | 2600 | 0.7430 | 0.3636 | 0.7430 | 0.8620 | | 0.0484 | 6.3775 | 2602 | 0.6871 | 0.3255 | 0.6871 | 0.8289 | | 0.0484 | 6.3824 | 2604 | 0.6371 | 0.2186 | 0.6371 | 0.7982 | | 0.0484 | 6.3873 | 2606 | 0.6100 | 0.2186 | 0.6100 | 0.7810 | | 0.0484 | 6.3922 | 2608 | 0.5906 | 0.3724 | 0.5906 | 0.7685 | | 0.0484 | 6.3971 | 2610 | 0.5793 | 0.2794 | 0.5793 | 0.7611 | | 0.0484 | 6.4020 | 2612 | 0.5736 | 0.2794 | 0.5736 | 0.7573 | | 0.0484 | 6.4069 | 2614 | 0.5737 | 0.2794 | 0.5737 | 0.7574 | | 0.0484 | 6.4118 | 2616 | 0.5758 | 0.2184 | 0.5758 | 0.7588 | | 0.0484 | 6.4167 | 2618 | 0.5824 | 0.0916 | 0.5824 | 0.7631 | | 0.0484 | 6.4216 | 2620 | 0.6002 | 0.2186 | 0.6002 | 0.7747 | | 0.0484 | 6.4265 | 2622 | 0.6291 | 0.2588 | 0.6291 | 0.7931 | | 0.0484 | 6.4314 | 2624 | 0.6543 | 0.2588 | 0.6543 | 0.8089 | | 0.0484 | 6.4363 | 2626 | 0.6780 | 0.3636 | 0.6780 | 0.8234 | | 0.0484 | 6.4412 | 2628 | 0.6863 | 0.3636 | 0.6863 | 0.8284 | | 0.0484 | 6.4461 | 2630 | 0.6714 | 0.3636 | 0.6714 | 0.8194 | | 0.0484 | 6.4510 | 2632 | 0.6420 | 0.2588 | 0.6420 | 0.8012 | | 0.0484 | 6.4559 | 2634 | 0.6160 | 0.2186 | 0.6160 | 0.7848 | | 0.0484 | 6.4608 | 2636 | 0.6051 | 0.2186 | 0.6051 | 0.7779 | | 0.0484 | 6.4657 | 2638 | 0.5968 | 0.2186 | 0.5968 | 0.7725 | | 0.0484 | 6.4706 | 2640 | 0.5931 | 0.2186 | 0.5931 | 0.7701 | | 0.0484 | 6.4755 | 2642 | 0.5914 | 0.1793 | 0.5914 | 0.7690 | | 0.0484 | 6.4804 | 2644 | 0.5892 | 0.1793 | 0.5892 | 0.7676 | | 0.0484 | 6.4853 | 2646 | 0.5866 | 0.1793 | 0.5866 | 0.7659 | | 0.0484 | 6.4902 | 2648 | 0.5893 | 0.1793 | 0.5893 | 0.7677 | | 0.0484 | 6.4951 | 2650 | 0.5929 | 0.1793 | 0.5929 | 0.7700 | | 0.0484 | 6.5 | 2652 | 0.5972 | 0.1793 | 0.5972 | 0.7728 | | 0.0484 | 6.5049 | 2654 | 0.6033 | 0.1793 | 0.6033 | 0.7768 | | 0.0484 | 6.5098 | 2656 | 0.6103 | 0.1793 | 0.6103 | 0.7812 | | 0.0484 | 6.5147 | 2658 | 0.6120 | 0.1793 | 0.6120 | 0.7823 | | 0.0484 | 6.5196 | 2660 | 0.6065 | 0.3318 | 0.6065 | 0.7788 | | 0.0484 | 6.5245 | 2662 | 0.6071 | 0.3865 | 0.6071 | 0.7792 | | 0.0484 | 6.5294 | 2664 | 0.6065 | 0.3865 | 0.6065 | 0.7788 | | 0.0484 | 6.5343 | 2666 | 0.6056 | 0.3865 | 0.6056 | 0.7782 | | 0.0484 | 6.5392 | 2668 | 0.6064 | 0.3865 | 0.6064 | 0.7787 | | 0.0484 | 6.5441 | 2670 | 0.6086 | 0.3865 | 0.6086 | 0.7801 | | 0.0484 | 6.5490 | 2672 | 0.6113 | 0.3865 | 0.6113 | 0.7819 | | 0.0484 | 6.5539 | 2674 | 0.6099 | 0.3318 | 0.6099 | 0.7809 | | 0.0484 | 6.5588 | 2676 | 0.6092 | 0.3318 | 0.6092 | 0.7805 | | 0.0484 | 6.5637 | 2678 | 0.6099 | 0.3318 | 0.6099 | 0.7810 | | 0.0484 | 6.5686 | 2680 | 0.6109 | 0.1793 | 0.6109 | 0.7816 | | 0.0484 | 6.5735 | 2682 | 0.6145 | 0.2186 | 0.6145 | 0.7839 | | 0.0484 | 6.5784 | 2684 | 0.6220 | 0.2588 | 0.6220 | 0.7887 | | 0.0484 | 6.5833 | 2686 | 0.6172 | 0.2588 | 0.6172 | 0.7856 | | 0.0484 | 6.5882 | 2688 | 0.6112 | 0.2588 | 0.6112 | 0.7818 | | 0.0484 | 6.5931 | 2690 | 0.6046 | 0.2588 | 0.6046 | 0.7776 | | 0.0484 | 6.5980 | 2692 | 0.5943 | 0.2588 | 0.5943 | 0.7709 | | 0.0484 | 6.6029 | 2694 | 0.5916 | 0.2588 | 0.5916 | 0.7692 | | 0.0484 | 6.6078 | 2696 | 0.5931 | 0.3636 | 0.5931 | 0.7701 | | 0.0484 | 6.6127 | 2698 | 0.5978 | 0.3255 | 0.5978 | 0.7732 | | 0.0484 | 6.6176 | 2700 | 0.6067 | 0.3255 | 0.6067 | 0.7789 | | 0.0484 | 6.6225 | 2702 | 0.6134 | 0.3255 | 0.6134 | 0.7832 | | 0.0484 | 6.6275 | 2704 | 0.6143 | 0.3255 | 0.6143 | 0.7838 | | 0.0484 | 6.6324 | 2706 | 0.6157 | 0.2186 | 0.6157 | 0.7847 | | 0.0484 | 6.6373 | 2708 | 0.6146 | 0.3724 | 0.6146 | 0.7840 | | 0.0484 | 6.6422 | 2710 | 0.6124 | 0.3724 | 0.6124 | 0.7826 | | 0.0484 | 6.6471 | 2712 | 0.6135 | 0.3724 | 0.6135 | 0.7832 | | 0.0484 | 6.6520 | 2714 | 0.6120 | 0.3724 | 0.6120 | 0.7823 | | 0.0484 | 6.6569 | 2716 | 0.6095 | 0.3318 | 0.6095 | 0.7807 | | 0.0484 | 6.6618 | 2718 | 0.6086 | 0.3865 | 0.6086 | 0.7801 | | 0.0484 | 6.6667 | 2720 | 0.6084 | 0.3077 | 0.6084 | 0.7800 | | 0.0484 | 6.6716 | 2722 | 0.6088 | 0.3077 | 0.6088 | 0.7802 | | 0.0484 | 6.6765 | 2724 | 0.6084 | 0.3077 | 0.6084 | 0.7800 | | 0.0484 | 6.6814 | 2726 | 0.6100 | 0.3865 | 0.6100 | 0.7810 | | 0.0484 | 6.6863 | 2728 | 0.6099 | 0.3865 | 0.6099 | 0.7810 | | 0.0484 | 6.6912 | 2730 | 0.6075 | 0.3865 | 0.6075 | 0.7795 | | 0.0484 | 6.6961 | 2732 | 0.6094 | 0.3865 | 0.6094 | 0.7806 | | 0.0484 | 6.7010 | 2734 | 0.6067 | 0.3865 | 0.6067 | 0.7789 | | 0.0484 | 6.7059 | 2736 | 0.6002 | 0.3865 | 0.6002 | 0.7747 | | 0.0484 | 6.7108 | 2738 | 0.5945 | 0.3865 | 0.5945 | 0.7711 | | 0.0484 | 6.7157 | 2740 | 0.5854 | 0.3865 | 0.5854 | 0.7651 | | 0.0484 | 6.7206 | 2742 | 0.5839 | 0.3724 | 0.5839 | 0.7641 | | 0.0484 | 6.7255 | 2744 | 0.5930 | 0.3724 | 0.5930 | 0.7701 | | 0.0484 | 6.7304 | 2746 | 0.6021 | 0.3724 | 0.6021 | 0.7760 | | 0.0484 | 6.7353 | 2748 | 0.6130 | 0.2186 | 0.6130 | 0.7830 | | 0.0484 | 6.7402 | 2750 | 0.6345 | 0.2588 | 0.6345 | 0.7966 | | 0.0484 | 6.7451 | 2752 | 0.6582 | 0.3636 | 0.6582 | 0.8113 | | 0.0484 | 6.75 | 2754 | 0.6611 | 0.3636 | 0.6611 | 0.8131 | | 0.0484 | 6.7549 | 2756 | 0.6475 | 0.3636 | 0.6475 | 0.8047 | | 0.0484 | 6.7598 | 2758 | 0.6347 | 0.2588 | 0.6347 | 0.7967 | | 0.0484 | 6.7647 | 2760 | 0.6102 | 0.3724 | 0.6102 | 0.7812 | | 0.0484 | 6.7696 | 2762 | 0.5882 | 0.3724 | 0.5882 | 0.7670 | | 0.0484 | 6.7745 | 2764 | 0.5803 | 0.3724 | 0.5803 | 0.7618 | | 0.0484 | 6.7794 | 2766 | 0.5746 | 0.3724 | 0.5746 | 0.7580 | | 0.0484 | 6.7843 | 2768 | 0.5763 | 0.3724 | 0.5763 | 0.7591 | | 0.0484 | 6.7892 | 2770 | 0.5820 | 0.3724 | 0.5820 | 0.7629 | | 0.0484 | 6.7941 | 2772 | 0.5859 | 0.3724 | 0.5859 | 0.7655 | | 0.0484 | 6.7990 | 2774 | 0.5917 | 0.3724 | 0.5917 | 0.7692 | | 0.0484 | 6.8039 | 2776 | 0.6052 | 0.3724 | 0.6052 | 0.7779 | | 0.0484 | 6.8088 | 2778 | 0.6158 | 0.3724 | 0.6158 | 0.7847 | | 0.0484 | 6.8137 | 2780 | 0.6289 | 0.3724 | 0.6289 | 0.7930 | | 0.0484 | 6.8186 | 2782 | 0.6449 | 0.3724 | 0.6449 | 0.8031 | | 0.0484 | 6.8235 | 2784 | 0.6509 | 0.4140 | 0.6509 | 0.8068 | | 0.0484 | 6.8284 | 2786 | 0.6423 | 0.4140 | 0.6423 | 0.8015 | | 0.0484 | 6.8333 | 2788 | 0.6323 | 0.4140 | 0.6323 | 0.7952 | | 0.0484 | 6.8382 | 2790 | 0.6192 | 0.3724 | 0.6192 | 0.7869 | | 0.0484 | 6.8431 | 2792 | 0.6140 | 0.3724 | 0.6140 | 0.7836 | | 0.0484 | 6.8480 | 2794 | 0.6046 | 0.3724 | 0.6046 | 0.7776 | | 0.0484 | 6.8529 | 2796 | 0.5935 | 0.4273 | 0.5935 | 0.7704 | | 0.0484 | 6.8578 | 2798 | 0.5860 | 0.3226 | 0.5860 | 0.7655 | | 0.0484 | 6.8627 | 2800 | 0.5835 | 0.4273 | 0.5835 | 0.7639 | | 0.0484 | 6.8676 | 2802 | 0.5858 | 0.3724 | 0.5858 | 0.7654 | | 0.0484 | 6.8725 | 2804 | 0.5940 | 0.3724 | 0.5940 | 0.7707 | | 0.0484 | 6.8775 | 2806 | 0.6006 | 0.4140 | 0.6006 | 0.7750 | | 0.0484 | 6.8824 | 2808 | 0.5999 | 0.3724 | 0.5999 | 0.7746 | | 0.0484 | 6.8873 | 2810 | 0.6014 | 0.3724 | 0.6014 | 0.7755 | | 0.0484 | 6.8922 | 2812 | 0.6036 | 0.3724 | 0.6036 | 0.7769 | | 0.0484 | 6.8971 | 2814 | 0.6012 | 0.3724 | 0.6012 | 0.7754 | | 0.0484 | 6.9020 | 2816 | 0.5993 | 0.3724 | 0.5993 | 0.7742 | | 0.0484 | 6.9069 | 2818 | 0.6011 | 0.3724 | 0.6011 | 0.7753 | | 0.0484 | 6.9118 | 2820 | 0.6006 | 0.3724 | 0.6006 | 0.7750 | | 0.0484 | 6.9167 | 2822 | 0.5976 | 0.3318 | 0.5976 | 0.7731 | | 0.0484 | 6.9216 | 2824 | 0.5950 | 0.2921 | 0.5950 | 0.7713 | | 0.0484 | 6.9265 | 2826 | 0.5923 | 0.3077 | 0.5923 | 0.7696 | | 0.0484 | 6.9314 | 2828 | 0.5876 | 0.1962 | 0.5876 | 0.7666 | | 0.0484 | 6.9363 | 2830 | 0.5836 | 0.2373 | 0.5836 | 0.7640 | | 0.0484 | 6.9412 | 2832 | 0.5781 | 0.2373 | 0.5781 | 0.7604 | | 0.0484 | 6.9461 | 2834 | 0.5741 | 0.2794 | 0.5741 | 0.7577 | | 0.0484 | 6.9510 | 2836 | 0.5697 | 0.3226 | 0.5697 | 0.7548 | | 0.0484 | 6.9559 | 2838 | 0.5672 | 0.2613 | 0.5672 | 0.7531 | | 0.0484 | 6.9608 | 2840 | 0.5661 | 0.2613 | 0.5661 | 0.7524 | | 0.0484 | 6.9657 | 2842 | 0.5678 | 0.3724 | 0.5678 | 0.7535 | | 0.0484 | 6.9706 | 2844 | 0.5757 | 0.3724 | 0.5757 | 0.7587 | | 0.0484 | 6.9755 | 2846 | 0.5816 | 0.3724 | 0.5816 | 0.7626 | | 0.0484 | 6.9804 | 2848 | 0.5889 | 0.3724 | 0.5889 | 0.7674 | | 0.0484 | 6.9853 | 2850 | 0.5996 | 0.3724 | 0.5996 | 0.7744 | | 0.0484 | 6.9902 | 2852 | 0.6045 | 0.3724 | 0.6045 | 0.7775 | | 0.0484 | 6.9951 | 2854 | 0.6024 | 0.3724 | 0.6024 | 0.7762 | | 0.0484 | 7.0 | 2856 | 0.5987 | 0.3724 | 0.5987 | 0.7737 | | 0.0484 | 7.0049 | 2858 | 0.5955 | 0.3724 | 0.5955 | 0.7717 | | 0.0484 | 7.0098 | 2860 | 0.5973 | 0.3724 | 0.5973 | 0.7729 | | 0.0484 | 7.0147 | 2862 | 0.6018 | 0.3724 | 0.6018 | 0.7758 | | 0.0484 | 7.0196 | 2864 | 0.6024 | 0.3724 | 0.6024 | 0.7761 | | 0.0484 | 7.0245 | 2866 | 0.5999 | 0.3724 | 0.5999 | 0.7745 | | 0.0484 | 7.0294 | 2868 | 0.5949 | 0.3724 | 0.5949 | 0.7713 | | 0.0484 | 7.0343 | 2870 | 0.5896 | 0.3724 | 0.5896 | 0.7678 | | 0.0484 | 7.0392 | 2872 | 0.5883 | 0.3724 | 0.5883 | 0.7670 | | 0.0484 | 7.0441 | 2874 | 0.5895 | 0.3724 | 0.5895 | 0.7678 | | 0.0484 | 7.0490 | 2876 | 0.5927 | 0.3724 | 0.5927 | 0.7699 | | 0.0484 | 7.0539 | 2878 | 0.5880 | 0.2186 | 0.5880 | 0.7668 | | 0.0484 | 7.0588 | 2880 | 0.5826 | 0.2186 | 0.5826 | 0.7633 | | 0.0484 | 7.0637 | 2882 | 0.5830 | 0.2588 | 0.5830 | 0.7636 | | 0.0484 | 7.0686 | 2884 | 0.5818 | 0.2588 | 0.5818 | 0.7627 | | 0.0484 | 7.0735 | 2886 | 0.5761 | 0.2588 | 0.5761 | 0.7590 | | 0.0484 | 7.0784 | 2888 | 0.5695 | 0.2588 | 0.5695 | 0.7546 | | 0.0484 | 7.0833 | 2890 | 0.5596 | 0.2588 | 0.5596 | 0.7480 | | 0.0484 | 7.0882 | 2892 | 0.5524 | 0.2186 | 0.5524 | 0.7433 | | 0.0484 | 7.0931 | 2894 | 0.5499 | 0.2186 | 0.5499 | 0.7416 | | 0.0484 | 7.0980 | 2896 | 0.5533 | 0.2186 | 0.5533 | 0.7438 | | 0.0484 | 7.1029 | 2898 | 0.5597 | 0.2186 | 0.5597 | 0.7481 | | 0.0484 | 7.1078 | 2900 | 0.5655 | 0.2186 | 0.5655 | 0.7520 | | 0.0484 | 7.1127 | 2902 | 0.5726 | 0.2186 | 0.5726 | 0.7567 | | 0.0484 | 7.1176 | 2904 | 0.5815 | 0.2186 | 0.5815 | 0.7625 | | 0.0484 | 7.1225 | 2906 | 0.5797 | 0.2186 | 0.5797 | 0.7614 | | 0.0484 | 7.1275 | 2908 | 0.5757 | 0.3724 | 0.5757 | 0.7587 | | 0.0484 | 7.1324 | 2910 | 0.5769 | 0.3724 | 0.5769 | 0.7595 | | 0.0484 | 7.1373 | 2912 | 0.5821 | 0.3724 | 0.5821 | 0.7630 | | 0.0484 | 7.1422 | 2914 | 0.5868 | 0.2186 | 0.5868 | 0.7660 | | 0.0484 | 7.1471 | 2916 | 0.5949 | 0.2588 | 0.5949 | 0.7713 | | 0.0484 | 7.1520 | 2918 | 0.6055 | 0.2588 | 0.6055 | 0.7782 | | 0.0484 | 7.1569 | 2920 | 0.6056 | 0.2588 | 0.6056 | 0.7782 | | 0.0484 | 7.1618 | 2922 | 0.5956 | 0.2186 | 0.5956 | 0.7718 | | 0.0484 | 7.1667 | 2924 | 0.5841 | 0.2186 | 0.5841 | 0.7643 | | 0.0484 | 7.1716 | 2926 | 0.5740 | 0.3724 | 0.5740 | 0.7576 | | 0.0484 | 7.1765 | 2928 | 0.5638 | 0.4273 | 0.5638 | 0.7509 | | 0.0484 | 7.1814 | 2930 | 0.5598 | 0.4273 | 0.5598 | 0.7482 | | 0.0484 | 7.1863 | 2932 | 0.5587 | 0.4273 | 0.5587 | 0.7475 | | 0.0484 | 7.1912 | 2934 | 0.5577 | 0.4273 | 0.5577 | 0.7468 | | 0.0484 | 7.1961 | 2936 | 0.5575 | 0.4273 | 0.5575 | 0.7466 | | 0.0484 | 7.2010 | 2938 | 0.5605 | 0.4273 | 0.5605 | 0.7486 | | 0.0484 | 7.2059 | 2940 | 0.5650 | 0.4273 | 0.5650 | 0.7516 | | 0.0484 | 7.2108 | 2942 | 0.5784 | 0.4273 | 0.5784 | 0.7605 | | 0.0484 | 7.2157 | 2944 | 0.5920 | 0.3724 | 0.5920 | 0.7694 | | 0.0484 | 7.2206 | 2946 | 0.5985 | 0.2186 | 0.5985 | 0.7736 | | 0.0484 | 7.2255 | 2948 | 0.6026 | 0.2588 | 0.6026 | 0.7762 | | 0.0484 | 7.2304 | 2950 | 0.6018 | 0.3724 | 0.6018 | 0.7758 | | 0.0484 | 7.2353 | 2952 | 0.5978 | 0.3724 | 0.5978 | 0.7732 | | 0.0484 | 7.2402 | 2954 | 0.6014 | 0.3724 | 0.6014 | 0.7755 | | 0.0484 | 7.2451 | 2956 | 0.5995 | 0.4273 | 0.5995 | 0.7743 | | 0.0484 | 7.25 | 2958 | 0.5931 | 0.4273 | 0.5931 | 0.7701 | | 0.0484 | 7.2549 | 2960 | 0.5918 | 0.4273 | 0.5918 | 0.7693 | | 0.0484 | 7.2598 | 2962 | 0.5924 | 0.4273 | 0.5924 | 0.7697 | | 0.0484 | 7.2647 | 2964 | 0.5894 | 0.4273 | 0.5894 | 0.7677 | | 0.0484 | 7.2696 | 2966 | 0.5884 | 0.3865 | 0.5884 | 0.7671 | | 0.0484 | 7.2745 | 2968 | 0.5891 | 0.3077 | 0.5891 | 0.7675 | | 0.0484 | 7.2794 | 2970 | 0.5899 | 0.3077 | 0.5899 | 0.7680 | | 0.0484 | 7.2843 | 2972 | 0.5917 | 0.1962 | 0.5917 | 0.7693 | | 0.0484 | 7.2892 | 2974 | 0.5945 | 0.1962 | 0.5945 | 0.7711 | | 0.0484 | 7.2941 | 2976 | 0.5986 | 0.1962 | 0.5986 | 0.7737 | | 0.0484 | 7.2990 | 2978 | 0.5996 | 0.1962 | 0.5996 | 0.7743 | | 0.0484 | 7.3039 | 2980 | 0.5938 | 0.1962 | 0.5938 | 0.7706 | | 0.0484 | 7.3088 | 2982 | 0.5896 | 0.1962 | 0.5896 | 0.7679 | | 0.0484 | 7.3137 | 2984 | 0.5903 | 0.4273 | 0.5903 | 0.7683 | | 0.0484 | 7.3186 | 2986 | 0.6007 | 0.4273 | 0.6007 | 0.7750 | | 0.0484 | 7.3235 | 2988 | 0.6197 | 0.2588 | 0.6197 | 0.7872 | | 0.0484 | 7.3284 | 2990 | 0.6438 | 0.2588 | 0.6438 | 0.8024 | | 0.0484 | 7.3333 | 2992 | 0.6531 | 0.2588 | 0.6531 | 0.8081 | | 0.0484 | 7.3382 | 2994 | 0.6506 | 0.2588 | 0.6506 | 0.8066 | | 0.0484 | 7.3431 | 2996 | 0.6399 | 0.2588 | 0.6399 | 0.8000 | | 0.0484 | 7.3480 | 2998 | 0.6246 | 0.2588 | 0.6246 | 0.7903 | | 0.0411 | 7.3529 | 3000 | 0.6190 | 0.2588 | 0.6190 | 0.7868 | | 0.0411 | 7.3578 | 3002 | 0.6147 | 0.2588 | 0.6147 | 0.7840 | | 0.0411 | 7.3627 | 3004 | 0.6192 | 0.2588 | 0.6192 | 0.7869 | | 0.0411 | 7.3676 | 3006 | 0.6184 | 0.2588 | 0.6184 | 0.7864 | | 0.0411 | 7.3725 | 3008 | 0.6144 | 0.2588 | 0.6144 | 0.7838 | | 0.0411 | 7.3775 | 3010 | 0.6032 | 0.2588 | 0.6032 | 0.7767 | | 0.0411 | 7.3824 | 3012 | 0.5871 | 0.3724 | 0.5871 | 0.7662 | | 0.0411 | 7.3873 | 3014 | 0.5713 | 0.4273 | 0.5713 | 0.7558 | | 0.0411 | 7.3922 | 3016 | 0.5613 | 0.4273 | 0.5613 | 0.7492 | | 0.0411 | 7.3971 | 3018 | 0.5541 | 0.4273 | 0.5541 | 0.7443 | | 0.0411 | 7.4020 | 3020 | 0.5492 | 0.3467 | 0.5492 | 0.7411 | | 0.0411 | 7.4069 | 3022 | 0.5470 | 0.3077 | 0.5470 | 0.7396 | | 0.0411 | 7.4118 | 3024 | 0.5447 | 0.3467 | 0.5447 | 0.7380 | | 0.0411 | 7.4167 | 3026 | 0.5460 | 0.4273 | 0.5460 | 0.7389 | | 0.0411 | 7.4216 | 3028 | 0.5570 | 0.4273 | 0.5570 | 0.7463 | | 0.0411 | 7.4265 | 3030 | 0.5654 | 0.3724 | 0.5654 | 0.7519 | | 0.0411 | 7.4314 | 3032 | 0.5718 | 0.4661 | 0.5718 | 0.7562 | | 0.0411 | 7.4363 | 3034 | 0.5704 | 0.4661 | 0.5704 | 0.7552 | | 0.0411 | 7.4412 | 3036 | 0.5678 | 0.4661 | 0.5678 | 0.7536 | | 0.0411 | 7.4461 | 3038 | 0.5751 | 0.4661 | 0.5751 | 0.7583 | | 0.0411 | 7.4510 | 3040 | 0.5945 | 0.4661 | 0.5945 | 0.7710 | | 0.0411 | 7.4559 | 3042 | 0.6046 | 0.4661 | 0.6046 | 0.7776 | | 0.0411 | 7.4608 | 3044 | 0.6135 | 0.3255 | 0.6135 | 0.7833 | | 0.0411 | 7.4657 | 3046 | 0.6191 | 0.3255 | 0.6191 | 0.7869 | | 0.0411 | 7.4706 | 3048 | 0.6098 | 0.3255 | 0.6098 | 0.7809 | | 0.0411 | 7.4755 | 3050 | 0.5983 | 0.3255 | 0.5983 | 0.7735 | | 0.0411 | 7.4804 | 3052 | 0.5858 | 0.3255 | 0.5858 | 0.7654 | | 0.0411 | 7.4853 | 3054 | 0.5704 | 0.2186 | 0.5704 | 0.7552 | | 0.0411 | 7.4902 | 3056 | 0.5561 | 0.3724 | 0.5561 | 0.7458 | | 0.0411 | 7.4951 | 3058 | 0.5418 | 0.3724 | 0.5418 | 0.7361 | | 0.0411 | 7.5 | 3060 | 0.5366 | 0.4273 | 0.5366 | 0.7325 | | 0.0411 | 7.5049 | 3062 | 0.5382 | 0.3724 | 0.5382 | 0.7336 | | 0.0411 | 7.5098 | 3064 | 0.5390 | 0.3724 | 0.5390 | 0.7341 | | 0.0411 | 7.5147 | 3066 | 0.5369 | 0.3724 | 0.5369 | 0.7327 | | 0.0411 | 7.5196 | 3068 | 0.5412 | 0.3724 | 0.5412 | 0.7357 | | 0.0411 | 7.5245 | 3070 | 0.5541 | 0.3724 | 0.5541 | 0.7444 | | 0.0411 | 7.5294 | 3072 | 0.5643 | 0.4661 | 0.5643 | 0.7512 | | 0.0411 | 7.5343 | 3074 | 0.5738 | 0.4661 | 0.5738 | 0.7575 | | 0.0411 | 7.5392 | 3076 | 0.5723 | 0.4661 | 0.5723 | 0.7565 | | 0.0411 | 7.5441 | 3078 | 0.5720 | 0.4661 | 0.5720 | 0.7563 | | 0.0411 | 7.5490 | 3080 | 0.5743 | 0.4661 | 0.5743 | 0.7578 | | 0.0411 | 7.5539 | 3082 | 0.5861 | 0.4661 | 0.5861 | 0.7656 | | 0.0411 | 7.5588 | 3084 | 0.6017 | 0.4661 | 0.6017 | 0.7757 | | 0.0411 | 7.5637 | 3086 | 0.6255 | 0.3255 | 0.6255 | 0.7909 | | 0.0411 | 7.5686 | 3088 | 0.6465 | 0.3255 | 0.6465 | 0.8041 | | 0.0411 | 7.5735 | 3090 | 0.6455 | 0.3255 | 0.6455 | 0.8034 | | 0.0411 | 7.5784 | 3092 | 0.6340 | 0.3255 | 0.6340 | 0.7962 | | 0.0411 | 7.5833 | 3094 | 0.6106 | 0.3255 | 0.6106 | 0.7814 | | 0.0411 | 7.5882 | 3096 | 0.5799 | 0.4661 | 0.5799 | 0.7615 | | 0.0411 | 7.5931 | 3098 | 0.5602 | 0.4661 | 0.5602 | 0.7484 | | 0.0411 | 7.5980 | 3100 | 0.5480 | 0.3724 | 0.5480 | 0.7402 | | 0.0411 | 7.6029 | 3102 | 0.5363 | 0.4273 | 0.5363 | 0.7324 | | 0.0411 | 7.6078 | 3104 | 0.5275 | 0.4273 | 0.5275 | 0.7263 | | 0.0411 | 7.6127 | 3106 | 0.5241 | 0.4273 | 0.5241 | 0.7240 | | 0.0411 | 7.6176 | 3108 | 0.5264 | 0.4273 | 0.5264 | 0.7255 | | 0.0411 | 7.6225 | 3110 | 0.5288 | 0.4273 | 0.5288 | 0.7272 | | 0.0411 | 7.6275 | 3112 | 0.5320 | 0.4273 | 0.5320 | 0.7294 | | 0.0411 | 7.6324 | 3114 | 0.5335 | 0.3865 | 0.5335 | 0.7304 | | 0.0411 | 7.6373 | 3116 | 0.5385 | 0.3865 | 0.5385 | 0.7338 | | 0.0411 | 7.6422 | 3118 | 0.5465 | 0.3467 | 0.5465 | 0.7393 | | 0.0411 | 7.6471 | 3120 | 0.5531 | 0.3467 | 0.5531 | 0.7437 | | 0.0411 | 7.6520 | 3122 | 0.5552 | 0.3467 | 0.5552 | 0.7451 | | 0.0411 | 7.6569 | 3124 | 0.5537 | 0.3865 | 0.5537 | 0.7441 | | 0.0411 | 7.6618 | 3126 | 0.5555 | 0.3865 | 0.5555 | 0.7453 | | 0.0411 | 7.6667 | 3128 | 0.5601 | 0.3865 | 0.5601 | 0.7484 | | 0.0411 | 7.6716 | 3130 | 0.5727 | 0.4273 | 0.5727 | 0.7568 | | 0.0411 | 7.6765 | 3132 | 0.5882 | 0.3724 | 0.5882 | 0.7669 | | 0.0411 | 7.6814 | 3134 | 0.6032 | 0.3724 | 0.6032 | 0.7767 | | 0.0411 | 7.6863 | 3136 | 0.6175 | 0.2186 | 0.6175 | 0.7858 | | 0.0411 | 7.6912 | 3138 | 0.6188 | 0.2186 | 0.6188 | 0.7867 | | 0.0411 | 7.6961 | 3140 | 0.6089 | 0.2186 | 0.6089 | 0.7803 | | 0.0411 | 7.7010 | 3142 | 0.6012 | 0.2186 | 0.6012 | 0.7754 | | 0.0411 | 7.7059 | 3144 | 0.5923 | 0.2186 | 0.5923 | 0.7696 | | 0.0411 | 7.7108 | 3146 | 0.5804 | 0.3724 | 0.5804 | 0.7618 | | 0.0411 | 7.7157 | 3148 | 0.5662 | 0.4273 | 0.5662 | 0.7525 | | 0.0411 | 7.7206 | 3150 | 0.5564 | 0.4273 | 0.5564 | 0.7459 | | 0.0411 | 7.7255 | 3152 | 0.5497 | 0.4273 | 0.5497 | 0.7414 | | 0.0411 | 7.7304 | 3154 | 0.5447 | 0.4273 | 0.5447 | 0.7380 | | 0.0411 | 7.7353 | 3156 | 0.5450 | 0.4273 | 0.5450 | 0.7382 | | 0.0411 | 7.7402 | 3158 | 0.5508 | 0.4273 | 0.5508 | 0.7422 | | 0.0411 | 7.7451 | 3160 | 0.5564 | 0.4273 | 0.5564 | 0.7459 | | 0.0411 | 7.75 | 3162 | 0.5608 | 0.4273 | 0.5608 | 0.7489 | | 0.0411 | 7.7549 | 3164 | 0.5661 | 0.3724 | 0.5662 | 0.7524 | | 0.0411 | 7.7598 | 3166 | 0.5762 | 0.2186 | 0.5762 | 0.7591 | | 0.0411 | 7.7647 | 3168 | 0.5785 | 0.2186 | 0.5785 | 0.7606 | | 0.0411 | 7.7696 | 3170 | 0.5750 | 0.2186 | 0.5750 | 0.7583 | | 0.0411 | 7.7745 | 3172 | 0.5703 | 0.2186 | 0.5703 | 0.7552 | | 0.0411 | 7.7794 | 3174 | 0.5662 | 0.2186 | 0.5662 | 0.7525 | | 0.0411 | 7.7843 | 3176 | 0.5640 | 0.2186 | 0.5640 | 0.7510 | | 0.0411 | 7.7892 | 3178 | 0.5623 | 0.2186 | 0.5623 | 0.7498 | | 0.0411 | 7.7941 | 3180 | 0.5666 | 0.2186 | 0.5666 | 0.7527 | | 0.0411 | 7.7990 | 3182 | 0.5736 | 0.2186 | 0.5736 | 0.7574 | | 0.0411 | 7.8039 | 3184 | 0.5749 | 0.2186 | 0.5749 | 0.7582 | | 0.0411 | 7.8088 | 3186 | 0.5747 | 0.3255 | 0.5747 | 0.7581 | | 0.0411 | 7.8137 | 3188 | 0.5698 | 0.3255 | 0.5698 | 0.7549 | | 0.0411 | 7.8186 | 3190 | 0.5756 | 0.3255 | 0.5756 | 0.7587 | | 0.0411 | 7.8235 | 3192 | 0.5875 | 0.3636 | 0.5875 | 0.7665 | | 0.0411 | 7.8284 | 3194 | 0.5931 | 0.3636 | 0.5931 | 0.7701 | | 0.0411 | 7.8333 | 3196 | 0.5926 | 0.3636 | 0.5926 | 0.7698 | | 0.0411 | 7.8382 | 3198 | 0.5871 | 0.3636 | 0.5871 | 0.7662 | | 0.0411 | 7.8431 | 3200 | 0.5834 | 0.3636 | 0.5834 | 0.7638 | | 0.0411 | 7.8480 | 3202 | 0.5857 | 0.3636 | 0.5857 | 0.7653 | | 0.0411 | 7.8529 | 3204 | 0.5867 | 0.3255 | 0.5867 | 0.7659 | | 0.0411 | 7.8578 | 3206 | 0.5769 | 0.2186 | 0.5769 | 0.7596 | | 0.0411 | 7.8627 | 3208 | 0.5661 | 0.2186 | 0.5661 | 0.7524 | | 0.0411 | 7.8676 | 3210 | 0.5590 | 0.2186 | 0.5590 | 0.7476 | | 0.0411 | 7.8725 | 3212 | 0.5509 | 0.3724 | 0.5509 | 0.7422 | | 0.0411 | 7.8775 | 3214 | 0.5431 | 0.3724 | 0.5431 | 0.7369 | | 0.0411 | 7.8824 | 3216 | 0.5374 | 0.3724 | 0.5374 | 0.7331 | | 0.0411 | 7.8873 | 3218 | 0.5318 | 0.3724 | 0.5318 | 0.7292 | | 0.0411 | 7.8922 | 3220 | 0.5291 | 0.3724 | 0.5291 | 0.7274 | | 0.0411 | 7.8971 | 3222 | 0.5220 | 0.3724 | 0.5220 | 0.7225 | | 0.0411 | 7.9020 | 3224 | 0.5191 | 0.3724 | 0.5191 | 0.7205 | | 0.0411 | 7.9069 | 3226 | 0.5246 | 0.3724 | 0.5246 | 0.7243 | | 0.0411 | 7.9118 | 3228 | 0.5357 | 0.3724 | 0.5357 | 0.7319 | | 0.0411 | 7.9167 | 3230 | 0.5448 | 0.3724 | 0.5448 | 0.7381 | | 0.0411 | 7.9216 | 3232 | 0.5568 | 0.2186 | 0.5568 | 0.7462 | | 0.0411 | 7.9265 | 3234 | 0.5743 | 0.3255 | 0.5743 | 0.7579 | | 0.0411 | 7.9314 | 3236 | 0.5857 | 0.3255 | 0.5857 | 0.7653 | | 0.0411 | 7.9363 | 3238 | 0.5902 | 0.3255 | 0.5902 | 0.7682 | | 0.0411 | 7.9412 | 3240 | 0.5941 | 0.3255 | 0.5941 | 0.7708 | | 0.0411 | 7.9461 | 3242 | 0.5940 | 0.3255 | 0.5940 | 0.7707 | | 0.0411 | 7.9510 | 3244 | 0.5792 | 0.3255 | 0.5792 | 0.7611 | | 0.0411 | 7.9559 | 3246 | 0.5686 | 0.2186 | 0.5686 | 0.7541 | | 0.0411 | 7.9608 | 3248 | 0.5643 | 0.2186 | 0.5643 | 0.7512 | | 0.0411 | 7.9657 | 3250 | 0.5577 | 0.3724 | 0.5577 | 0.7468 | | 0.0411 | 7.9706 | 3252 | 0.5513 | 0.3724 | 0.5513 | 0.7425 | | 0.0411 | 7.9755 | 3254 | 0.5494 | 0.3724 | 0.5494 | 0.7412 | | 0.0411 | 7.9804 | 3256 | 0.5517 | 0.3724 | 0.5517 | 0.7428 | | 0.0411 | 7.9853 | 3258 | 0.5462 | 0.3724 | 0.5462 | 0.7391 | | 0.0411 | 7.9902 | 3260 | 0.5383 | 0.4273 | 0.5383 | 0.7337 | | 0.0411 | 7.9951 | 3262 | 0.5321 | 0.4273 | 0.5321 | 0.7295 | | 0.0411 | 8.0 | 3264 | 0.5273 | 0.4273 | 0.5273 | 0.7262 | | 0.0411 | 8.0049 | 3266 | 0.5219 | 0.4273 | 0.5219 | 0.7224 | | 0.0411 | 8.0098 | 3268 | 0.5199 | 0.4273 | 0.5199 | 0.7211 | | 0.0411 | 8.0147 | 3270 | 0.5266 | 0.4273 | 0.5266 | 0.7257 | | 0.0411 | 8.0196 | 3272 | 0.5405 | 0.3724 | 0.5405 | 0.7352 | | 0.0411 | 8.0245 | 3274 | 0.5558 | 0.3724 | 0.5558 | 0.7455 | | 0.0411 | 8.0294 | 3276 | 0.5620 | 0.3724 | 0.5620 | 0.7497 | | 0.0411 | 8.0343 | 3278 | 0.5611 | 0.3724 | 0.5611 | 0.7490 | | 0.0411 | 8.0392 | 3280 | 0.5626 | 0.3724 | 0.5626 | 0.7501 | | 0.0411 | 8.0441 | 3282 | 0.5697 | 0.3724 | 0.5697 | 0.7548 | | 0.0411 | 8.0490 | 3284 | 0.5774 | 0.3724 | 0.5774 | 0.7599 | | 0.0411 | 8.0539 | 3286 | 0.5862 | 0.3724 | 0.5862 | 0.7656 | | 0.0411 | 8.0588 | 3288 | 0.5873 | 0.3724 | 0.5873 | 0.7663 | | 0.0411 | 8.0637 | 3290 | 0.5762 | 0.3724 | 0.5762 | 0.7591 | | 0.0411 | 8.0686 | 3292 | 0.5645 | 0.3724 | 0.5645 | 0.7513 | | 0.0411 | 8.0735 | 3294 | 0.5631 | 0.3724 | 0.5631 | 0.7504 | | 0.0411 | 8.0784 | 3296 | 0.5640 | 0.3724 | 0.5640 | 0.7510 | | 0.0411 | 8.0833 | 3298 | 0.5624 | 0.3724 | 0.5624 | 0.7499 | | 0.0411 | 8.0882 | 3300 | 0.5652 | 0.3724 | 0.5652 | 0.7518 | | 0.0411 | 8.0931 | 3302 | 0.5702 | 0.3724 | 0.5702 | 0.7551 | | 0.0411 | 8.0980 | 3304 | 0.5709 | 0.3724 | 0.5709 | 0.7556 | | 0.0411 | 8.1029 | 3306 | 0.5677 | 0.3724 | 0.5677 | 0.7534 | | 0.0411 | 8.1078 | 3308 | 0.5623 | 0.3724 | 0.5623 | 0.7499 | | 0.0411 | 8.1127 | 3310 | 0.5543 | 0.3724 | 0.5543 | 0.7445 | | 0.0411 | 8.1176 | 3312 | 0.5523 | 0.3724 | 0.5523 | 0.7432 | | 0.0411 | 8.1225 | 3314 | 0.5503 | 0.3724 | 0.5503 | 0.7418 | | 0.0411 | 8.1275 | 3316 | 0.5503 | 0.3724 | 0.5503 | 0.7418 | | 0.0411 | 8.1324 | 3318 | 0.5545 | 0.3724 | 0.5545 | 0.7447 | | 0.0411 | 8.1373 | 3320 | 0.5562 | 0.3724 | 0.5562 | 0.7458 | | 0.0411 | 8.1422 | 3322 | 0.5553 | 0.3724 | 0.5553 | 0.7452 | | 0.0411 | 8.1471 | 3324 | 0.5520 | 0.3724 | 0.5520 | 0.7430 | | 0.0411 | 8.1520 | 3326 | 0.5528 | 0.3724 | 0.5528 | 0.7435 | | 0.0411 | 8.1569 | 3328 | 0.5582 | 0.3724 | 0.5582 | 0.7471 | | 0.0411 | 8.1618 | 3330 | 0.5704 | 0.4661 | 0.5704 | 0.7552 | | 0.0411 | 8.1667 | 3332 | 0.5821 | 0.4661 | 0.5821 | 0.7630 | | 0.0411 | 8.1716 | 3334 | 0.6006 | 0.4661 | 0.6006 | 0.7750 | | 0.0411 | 8.1765 | 3336 | 0.6148 | 0.4661 | 0.6148 | 0.7841 | | 0.0411 | 8.1814 | 3338 | 0.6344 | 0.4661 | 0.6344 | 0.7965 | | 0.0411 | 8.1863 | 3340 | 0.6494 | 0.3255 | 0.6494 | 0.8059 | | 0.0411 | 8.1912 | 3342 | 0.6600 | 0.3255 | 0.6600 | 0.8124 | | 0.0411 | 8.1961 | 3344 | 0.6578 | 0.3255 | 0.6578 | 0.8110 | | 0.0411 | 8.2010 | 3346 | 0.6555 | 0.3255 | 0.6555 | 0.8097 | | 0.0411 | 8.2059 | 3348 | 0.6544 | 0.3255 | 0.6544 | 0.8090 | | 0.0411 | 8.2108 | 3350 | 0.6493 | 0.3255 | 0.6493 | 0.8058 | | 0.0411 | 8.2157 | 3352 | 0.6386 | 0.4661 | 0.6386 | 0.7991 | | 0.0411 | 8.2206 | 3354 | 0.6250 | 0.4661 | 0.6250 | 0.7906 | | 0.0411 | 8.2255 | 3356 | 0.6029 | 0.4661 | 0.6029 | 0.7765 | | 0.0411 | 8.2304 | 3358 | 0.5803 | 0.4661 | 0.5803 | 0.7618 | | 0.0411 | 8.2353 | 3360 | 0.5643 | 0.4661 | 0.5643 | 0.7512 | | 0.0411 | 8.2402 | 3362 | 0.5510 | 0.4273 | 0.5510 | 0.7423 | | 0.0411 | 8.2451 | 3364 | 0.5470 | 0.4273 | 0.5470 | 0.7396 | | 0.0411 | 8.25 | 3366 | 0.5462 | 0.4273 | 0.5462 | 0.7390 | | 0.0411 | 8.2549 | 3368 | 0.5461 | 0.4273 | 0.5461 | 0.7390 | | 0.0411 | 8.2598 | 3370 | 0.5462 | 0.4273 | 0.5462 | 0.7390 | | 0.0411 | 8.2647 | 3372 | 0.5451 | 0.4273 | 0.5451 | 0.7383 | | 0.0411 | 8.2696 | 3374 | 0.5457 | 0.4273 | 0.5457 | 0.7387 | | 0.0411 | 8.2745 | 3376 | 0.5488 | 0.4273 | 0.5488 | 0.7408 | | 0.0411 | 8.2794 | 3378 | 0.5547 | 0.4273 | 0.5547 | 0.7448 | | 0.0411 | 8.2843 | 3380 | 0.5624 | 0.4273 | 0.5624 | 0.7499 | | 0.0411 | 8.2892 | 3382 | 0.5724 | 0.4273 | 0.5724 | 0.7566 | | 0.0411 | 8.2941 | 3384 | 0.5800 | 0.4273 | 0.5800 | 0.7616 | | 0.0411 | 8.2990 | 3386 | 0.5879 | 0.4661 | 0.5879 | 0.7667 | | 0.0411 | 8.3039 | 3388 | 0.5921 | 0.4661 | 0.5921 | 0.7695 | | 0.0411 | 8.3088 | 3390 | 0.5915 | 0.4661 | 0.5915 | 0.7691 | | 0.0411 | 8.3137 | 3392 | 0.5945 | 0.4661 | 0.5945 | 0.7710 | | 0.0411 | 8.3186 | 3394 | 0.5942 | 0.4661 | 0.5942 | 0.7708 | | 0.0411 | 8.3235 | 3396 | 0.5920 | 0.4661 | 0.5920 | 0.7694 | | 0.0411 | 8.3284 | 3398 | 0.5883 | 0.4661 | 0.5883 | 0.7670 | | 0.0411 | 8.3333 | 3400 | 0.5803 | 0.5157 | 0.5803 | 0.7618 | | 0.0411 | 8.3382 | 3402 | 0.5729 | 0.4273 | 0.5729 | 0.7569 | | 0.0411 | 8.3431 | 3404 | 0.5660 | 0.4273 | 0.5660 | 0.7523 | | 0.0411 | 8.3480 | 3406 | 0.5620 | 0.4273 | 0.5620 | 0.7497 | | 0.0411 | 8.3529 | 3408 | 0.5580 | 0.4273 | 0.5580 | 0.7470 | | 0.0411 | 8.3578 | 3410 | 0.5587 | 0.4273 | 0.5587 | 0.7475 | | 0.0411 | 8.3627 | 3412 | 0.5578 | 0.4273 | 0.5578 | 0.7469 | | 0.0411 | 8.3676 | 3414 | 0.5577 | 0.4273 | 0.5577 | 0.7468 | | 0.0411 | 8.3725 | 3416 | 0.5602 | 0.4273 | 0.5602 | 0.7485 | | 0.0411 | 8.3775 | 3418 | 0.5601 | 0.4273 | 0.5601 | 0.7484 | | 0.0411 | 8.3824 | 3420 | 0.5637 | 0.4273 | 0.5637 | 0.7508 | | 0.0411 | 8.3873 | 3422 | 0.5684 | 0.4273 | 0.5684 | 0.7539 | | 0.0411 | 8.3922 | 3424 | 0.5722 | 0.4273 | 0.5722 | 0.7565 | | 0.0411 | 8.3971 | 3426 | 0.5776 | 0.3724 | 0.5776 | 0.7600 | | 0.0411 | 8.4020 | 3428 | 0.5828 | 0.3724 | 0.5828 | 0.7634 | | 0.0411 | 8.4069 | 3430 | 0.5846 | 0.3724 | 0.5846 | 0.7646 | | 0.0411 | 8.4118 | 3432 | 0.5913 | 0.3724 | 0.5913 | 0.7690 | | 0.0411 | 8.4167 | 3434 | 0.6020 | 0.4661 | 0.6020 | 0.7759 | | 0.0411 | 8.4216 | 3436 | 0.6085 | 0.3255 | 0.6085 | 0.7801 | | 0.0411 | 8.4265 | 3438 | 0.6069 | 0.3255 | 0.6069 | 0.7790 | | 0.0411 | 8.4314 | 3440 | 0.6069 | 0.3255 | 0.6069 | 0.7791 | | 0.0411 | 8.4363 | 3442 | 0.6114 | 0.3255 | 0.6114 | 0.7819 | | 0.0411 | 8.4412 | 3444 | 0.6174 | 0.3255 | 0.6174 | 0.7858 | | 0.0411 | 8.4461 | 3446 | 0.6170 | 0.3255 | 0.6170 | 0.7855 | | 0.0411 | 8.4510 | 3448 | 0.6171 | 0.3255 | 0.6171 | 0.7855 | | 0.0411 | 8.4559 | 3450 | 0.6143 | 0.3255 | 0.6143 | 0.7838 | | 0.0411 | 8.4608 | 3452 | 0.6091 | 0.3255 | 0.6091 | 0.7804 | | 0.0411 | 8.4657 | 3454 | 0.6011 | 0.3255 | 0.6011 | 0.7753 | | 0.0411 | 8.4706 | 3456 | 0.5933 | 0.4661 | 0.5933 | 0.7703 | | 0.0411 | 8.4755 | 3458 | 0.5810 | 0.4661 | 0.5810 | 0.7622 | | 0.0411 | 8.4804 | 3460 | 0.5703 | 0.4661 | 0.5703 | 0.7552 | | 0.0411 | 8.4853 | 3462 | 0.5600 | 0.3724 | 0.5600 | 0.7483 | | 0.0411 | 8.4902 | 3464 | 0.5534 | 0.4273 | 0.5534 | 0.7439 | | 0.0411 | 8.4951 | 3466 | 0.5496 | 0.4273 | 0.5496 | 0.7414 | | 0.0411 | 8.5 | 3468 | 0.5488 | 0.4273 | 0.5488 | 0.7408 | | 0.0411 | 8.5049 | 3470 | 0.5537 | 0.4273 | 0.5537 | 0.7441 | | 0.0411 | 8.5098 | 3472 | 0.5573 | 0.5157 | 0.5573 | 0.7465 | | 0.0411 | 8.5147 | 3474 | 0.5669 | 0.4661 | 0.5669 | 0.7529 | | 0.0411 | 8.5196 | 3476 | 0.5744 | 0.4661 | 0.5744 | 0.7579 | | 0.0411 | 8.5245 | 3478 | 0.5785 | 0.4661 | 0.5785 | 0.7606 | | 0.0411 | 8.5294 | 3480 | 0.5774 | 0.4661 | 0.5774 | 0.7599 | | 0.0411 | 8.5343 | 3482 | 0.5785 | 0.4661 | 0.5785 | 0.7606 | | 0.0411 | 8.5392 | 3484 | 0.5789 | 0.4661 | 0.5789 | 0.7609 | | 0.0411 | 8.5441 | 3486 | 0.5788 | 0.4661 | 0.5788 | 0.7608 | | 0.0411 | 8.5490 | 3488 | 0.5818 | 0.4661 | 0.5818 | 0.7628 | | 0.0411 | 8.5539 | 3490 | 0.5864 | 0.4661 | 0.5864 | 0.7658 | | 0.0411 | 8.5588 | 3492 | 0.5885 | 0.4661 | 0.5885 | 0.7671 | | 0.0411 | 8.5637 | 3494 | 0.5878 | 0.4661 | 0.5878 | 0.7667 | | 0.0411 | 8.5686 | 3496 | 0.5867 | 0.4661 | 0.5867 | 0.7660 | | 0.0411 | 8.5735 | 3498 | 0.5905 | 0.4661 | 0.5905 | 0.7684 | | 0.0395 | 8.5784 | 3500 | 0.5949 | 0.4661 | 0.5949 | 0.7713 | | 0.0395 | 8.5833 | 3502 | 0.6033 | 0.4661 | 0.6033 | 0.7767 | | 0.0395 | 8.5882 | 3504 | 0.6088 | 0.4661 | 0.6088 | 0.7803 | | 0.0395 | 8.5931 | 3506 | 0.6136 | 0.3255 | 0.6136 | 0.7834 | | 0.0395 | 8.5980 | 3508 | 0.6195 | 0.3255 | 0.6195 | 0.7871 | | 0.0395 | 8.6029 | 3510 | 0.6209 | 0.3255 | 0.6209 | 0.7880 | | 0.0395 | 8.6078 | 3512 | 0.6172 | 0.3255 | 0.6172 | 0.7856 | | 0.0395 | 8.6127 | 3514 | 0.6131 | 0.3255 | 0.6131 | 0.7830 | | 0.0395 | 8.6176 | 3516 | 0.6108 | 0.3255 | 0.6108 | 0.7815 | | 0.0395 | 8.6225 | 3518 | 0.6101 | 0.3255 | 0.6101 | 0.7811 | | 0.0395 | 8.6275 | 3520 | 0.6114 | 0.3255 | 0.6114 | 0.7819 | | 0.0395 | 8.6324 | 3522 | 0.6152 | 0.3255 | 0.6152 | 0.7843 | | 0.0395 | 8.6373 | 3524 | 0.6157 | 0.3255 | 0.6157 | 0.7847 | | 0.0395 | 8.6422 | 3526 | 0.6097 | 0.3255 | 0.6097 | 0.7809 | | 0.0395 | 8.6471 | 3528 | 0.5981 | 0.3255 | 0.5981 | 0.7734 | | 0.0395 | 8.6520 | 3530 | 0.5852 | 0.3255 | 0.5852 | 0.7650 | | 0.0395 | 8.6569 | 3532 | 0.5769 | 0.3255 | 0.5769 | 0.7595 | | 0.0395 | 8.6618 | 3534 | 0.5712 | 0.2186 | 0.5712 | 0.7558 | | 0.0395 | 8.6667 | 3536 | 0.5646 | 0.3724 | 0.5646 | 0.7514 | | 0.0395 | 8.6716 | 3538 | 0.5561 | 0.3724 | 0.5561 | 0.7457 | | 0.0395 | 8.6765 | 3540 | 0.5544 | 0.3724 | 0.5544 | 0.7446 | | 0.0395 | 8.6814 | 3542 | 0.5542 | 0.3724 | 0.5542 | 0.7445 | | 0.0395 | 8.6863 | 3544 | 0.5583 | 0.3724 | 0.5583 | 0.7472 | | 0.0395 | 8.6912 | 3546 | 0.5577 | 0.3724 | 0.5577 | 0.7468 | | 0.0395 | 8.6961 | 3548 | 0.5577 | 0.3724 | 0.5577 | 0.7468 | | 0.0395 | 8.7010 | 3550 | 0.5605 | 0.3724 | 0.5605 | 0.7486 | | 0.0395 | 8.7059 | 3552 | 0.5652 | 0.3724 | 0.5652 | 0.7518 | | 0.0395 | 8.7108 | 3554 | 0.5696 | 0.3724 | 0.5696 | 0.7547 | | 0.0395 | 8.7157 | 3556 | 0.5758 | 0.3724 | 0.5758 | 0.7588 | | 0.0395 | 8.7206 | 3558 | 0.5789 | 0.3724 | 0.5789 | 0.7609 | | 0.0395 | 8.7255 | 3560 | 0.5809 | 0.3724 | 0.5809 | 0.7622 | | 0.0395 | 8.7304 | 3562 | 0.5822 | 0.3724 | 0.5822 | 0.7630 | | 0.0395 | 8.7353 | 3564 | 0.5844 | 0.3724 | 0.5844 | 0.7645 | | 0.0395 | 8.7402 | 3566 | 0.5884 | 0.3724 | 0.5884 | 0.7671 | | 0.0395 | 8.7451 | 3568 | 0.5900 | 0.3724 | 0.5900 | 0.7681 | | 0.0395 | 8.75 | 3570 | 0.5911 | 0.3724 | 0.5911 | 0.7688 | | 0.0395 | 8.7549 | 3572 | 0.5946 | 0.3724 | 0.5946 | 0.7711 | | 0.0395 | 8.7598 | 3574 | 0.5956 | 0.3724 | 0.5956 | 0.7718 | | 0.0395 | 8.7647 | 3576 | 0.5976 | 0.3724 | 0.5976 | 0.7731 | | 0.0395 | 8.7696 | 3578 | 0.5984 | 0.3724 | 0.5984 | 0.7736 | | 0.0395 | 8.7745 | 3580 | 0.5987 | 0.3724 | 0.5987 | 0.7738 | | 0.0395 | 8.7794 | 3582 | 0.5977 | 0.3724 | 0.5977 | 0.7731 | | 0.0395 | 8.7843 | 3584 | 0.5946 | 0.3724 | 0.5946 | 0.7711 | | 0.0395 | 8.7892 | 3586 | 0.5934 | 0.3724 | 0.5934 | 0.7703 | | 0.0395 | 8.7941 | 3588 | 0.5942 | 0.3724 | 0.5942 | 0.7709 | | 0.0395 | 8.7990 | 3590 | 0.5933 | 0.3724 | 0.5933 | 0.7702 | | 0.0395 | 8.8039 | 3592 | 0.5892 | 0.3724 | 0.5892 | 0.7676 | | 0.0395 | 8.8088 | 3594 | 0.5852 | 0.3724 | 0.5852 | 0.7650 | | 0.0395 | 8.8137 | 3596 | 0.5821 | 0.3724 | 0.5821 | 0.7629 | | 0.0395 | 8.8186 | 3598 | 0.5784 | 0.3724 | 0.5784 | 0.7605 | | 0.0395 | 8.8235 | 3600 | 0.5757 | 0.3724 | 0.5757 | 0.7588 | | 0.0395 | 8.8284 | 3602 | 0.5732 | 0.3724 | 0.5732 | 0.7571 | | 0.0395 | 8.8333 | 3604 | 0.5686 | 0.3724 | 0.5686 | 0.7541 | | 0.0395 | 8.8382 | 3606 | 0.5621 | 0.4273 | 0.5621 | 0.7497 | | 0.0395 | 8.8431 | 3608 | 0.5570 | 0.4273 | 0.5570 | 0.7463 | | 0.0395 | 8.8480 | 3610 | 0.5540 | 0.4273 | 0.5540 | 0.7443 | | 0.0395 | 8.8529 | 3612 | 0.5528 | 0.3865 | 0.5528 | 0.7435 | | 0.0395 | 8.8578 | 3614 | 0.5531 | 0.4273 | 0.5531 | 0.7437 | | 0.0395 | 8.8627 | 3616 | 0.5538 | 0.4273 | 0.5538 | 0.7442 | | 0.0395 | 8.8676 | 3618 | 0.5534 | 0.4273 | 0.5534 | 0.7439 | | 0.0395 | 8.8725 | 3620 | 0.5550 | 0.4273 | 0.5550 | 0.7450 | | 0.0395 | 8.8775 | 3622 | 0.5559 | 0.4273 | 0.5559 | 0.7456 | | 0.0395 | 8.8824 | 3624 | 0.5563 | 0.4273 | 0.5563 | 0.7458 | | 0.0395 | 8.8873 | 3626 | 0.5566 | 0.4273 | 0.5566 | 0.7461 | | 0.0395 | 8.8922 | 3628 | 0.5598 | 0.4273 | 0.5598 | 0.7482 | | 0.0395 | 8.8971 | 3630 | 0.5633 | 0.4273 | 0.5633 | 0.7506 | | 0.0395 | 8.9020 | 3632 | 0.5721 | 0.4273 | 0.5721 | 0.7563 | | 0.0395 | 8.9069 | 3634 | 0.5803 | 0.2186 | 0.5803 | 0.7618 | | 0.0395 | 8.9118 | 3636 | 0.5836 | 0.2186 | 0.5836 | 0.7640 | | 0.0395 | 8.9167 | 3638 | 0.5866 | 0.2186 | 0.5866 | 0.7659 | | 0.0395 | 8.9216 | 3640 | 0.5892 | 0.2186 | 0.5892 | 0.7676 | | 0.0395 | 8.9265 | 3642 | 0.5961 | 0.2186 | 0.5961 | 0.7721 | | 0.0395 | 8.9314 | 3644 | 0.6027 | 0.2186 | 0.6027 | 0.7764 | | 0.0395 | 8.9363 | 3646 | 0.6056 | 0.3255 | 0.6056 | 0.7782 | | 0.0395 | 8.9412 | 3648 | 0.6084 | 0.3636 | 0.6084 | 0.7800 | | 0.0395 | 8.9461 | 3650 | 0.6100 | 0.3636 | 0.6100 | 0.7810 | | 0.0395 | 8.9510 | 3652 | 0.6083 | 0.3636 | 0.6083 | 0.7799 | | 0.0395 | 8.9559 | 3654 | 0.6041 | 0.3636 | 0.6041 | 0.7772 | | 0.0395 | 8.9608 | 3656 | 0.5978 | 0.3636 | 0.5978 | 0.7732 | | 0.0395 | 8.9657 | 3658 | 0.5888 | 0.2588 | 0.5888 | 0.7673 | | 0.0395 | 8.9706 | 3660 | 0.5776 | 0.2186 | 0.5776 | 0.7600 | | 0.0395 | 8.9755 | 3662 | 0.5683 | 0.2186 | 0.5683 | 0.7539 | | 0.0395 | 8.9804 | 3664 | 0.5618 | 0.2186 | 0.5618 | 0.7495 | | 0.0395 | 8.9853 | 3666 | 0.5585 | 0.3724 | 0.5585 | 0.7473 | | 0.0395 | 8.9902 | 3668 | 0.5572 | 0.3724 | 0.5572 | 0.7465 | | 0.0395 | 8.9951 | 3670 | 0.5576 | 0.3724 | 0.5576 | 0.7467 | | 0.0395 | 9.0 | 3672 | 0.5591 | 0.2186 | 0.5591 | 0.7477 | | 0.0395 | 9.0049 | 3674 | 0.5627 | 0.2186 | 0.5627 | 0.7501 | | 0.0395 | 9.0098 | 3676 | 0.5669 | 0.2186 | 0.5669 | 0.7529 | | 0.0395 | 9.0147 | 3678 | 0.5710 | 0.2186 | 0.5710 | 0.7556 | | 0.0395 | 9.0196 | 3680 | 0.5723 | 0.2186 | 0.5723 | 0.7565 | | 0.0395 | 9.0245 | 3682 | 0.5713 | 0.2186 | 0.5713 | 0.7559 | | 0.0395 | 9.0294 | 3684 | 0.5690 | 0.2186 | 0.5690 | 0.7543 | | 0.0395 | 9.0343 | 3686 | 0.5685 | 0.2186 | 0.5685 | 0.7540 | | 0.0395 | 9.0392 | 3688 | 0.5687 | 0.2186 | 0.5687 | 0.7541 | | 0.0395 | 9.0441 | 3690 | 0.5692 | 0.2186 | 0.5692 | 0.7544 | | 0.0395 | 9.0490 | 3692 | 0.5677 | 0.2186 | 0.5677 | 0.7535 | | 0.0395 | 9.0539 | 3694 | 0.5653 | 0.2186 | 0.5653 | 0.7519 | | 0.0395 | 9.0588 | 3696 | 0.5648 | 0.2186 | 0.5648 | 0.7516 | | 0.0395 | 9.0637 | 3698 | 0.5657 | 0.2186 | 0.5657 | 0.7521 | | 0.0395 | 9.0686 | 3700 | 0.5678 | 0.2186 | 0.5678 | 0.7536 | | 0.0395 | 9.0735 | 3702 | 0.5700 | 0.2186 | 0.5700 | 0.7550 | | 0.0395 | 9.0784 | 3704 | 0.5745 | 0.2186 | 0.5745 | 0.7579 | | 0.0395 | 9.0833 | 3706 | 0.5772 | 0.2186 | 0.5772 | 0.7597 | | 0.0395 | 9.0882 | 3708 | 0.5789 | 0.2186 | 0.5789 | 0.7609 | | 0.0395 | 9.0931 | 3710 | 0.5789 | 0.2186 | 0.5789 | 0.7609 | | 0.0395 | 9.0980 | 3712 | 0.5778 | 0.2759 | 0.5778 | 0.7602 | | 0.0395 | 9.1029 | 3714 | 0.5768 | 0.4273 | 0.5768 | 0.7595 | | 0.0395 | 9.1078 | 3716 | 0.5758 | 0.4273 | 0.5758 | 0.7588 | | 0.0395 | 9.1127 | 3718 | 0.5743 | 0.4273 | 0.5743 | 0.7579 | | 0.0395 | 9.1176 | 3720 | 0.5733 | 0.4273 | 0.5733 | 0.7571 | | 0.0395 | 9.1225 | 3722 | 0.5704 | 0.4273 | 0.5704 | 0.7553 | | 0.0395 | 9.1275 | 3724 | 0.5683 | 0.4273 | 0.5683 | 0.7539 | | 0.0395 | 9.1324 | 3726 | 0.5648 | 0.4273 | 0.5648 | 0.7515 | | 0.0395 | 9.1373 | 3728 | 0.5603 | 0.4273 | 0.5603 | 0.7485 | | 0.0395 | 9.1422 | 3730 | 0.5565 | 0.4273 | 0.5565 | 0.7460 | | 0.0395 | 9.1471 | 3732 | 0.5521 | 0.3865 | 0.5521 | 0.7431 | | 0.0395 | 9.1520 | 3734 | 0.5487 | 0.3865 | 0.5487 | 0.7407 | | 0.0395 | 9.1569 | 3736 | 0.5448 | 0.3865 | 0.5448 | 0.7381 | | 0.0395 | 9.1618 | 3738 | 0.5402 | 0.3865 | 0.5402 | 0.7350 | | 0.0395 | 9.1667 | 3740 | 0.5361 | 0.3865 | 0.5361 | 0.7322 | | 0.0395 | 9.1716 | 3742 | 0.5336 | 0.3865 | 0.5336 | 0.7305 | | 0.0395 | 9.1765 | 3744 | 0.5327 | 0.3865 | 0.5327 | 0.7299 | | 0.0395 | 9.1814 | 3746 | 0.5325 | 0.3865 | 0.5325 | 0.7297 | | 0.0395 | 9.1863 | 3748 | 0.5332 | 0.3865 | 0.5332 | 0.7302 | | 0.0395 | 9.1912 | 3750 | 0.5334 | 0.3865 | 0.5334 | 0.7304 | | 0.0395 | 9.1961 | 3752 | 0.5338 | 0.3865 | 0.5338 | 0.7306 | | 0.0395 | 9.2010 | 3754 | 0.5335 | 0.3865 | 0.5335 | 0.7304 | | 0.0395 | 9.2059 | 3756 | 0.5345 | 0.3865 | 0.5345 | 0.7311 | | 0.0395 | 9.2108 | 3758 | 0.5365 | 0.3865 | 0.5365 | 0.7325 | | 0.0395 | 9.2157 | 3760 | 0.5391 | 0.3865 | 0.5391 | 0.7342 | | 0.0395 | 9.2206 | 3762 | 0.5403 | 0.4273 | 0.5403 | 0.7350 | | 0.0395 | 9.2255 | 3764 | 0.5400 | 0.4273 | 0.5400 | 0.7349 | | 0.0395 | 9.2304 | 3766 | 0.5395 | 0.4273 | 0.5395 | 0.7345 | | 0.0395 | 9.2353 | 3768 | 0.5383 | 0.3865 | 0.5383 | 0.7337 | | 0.0395 | 9.2402 | 3770 | 0.5370 | 0.3865 | 0.5370 | 0.7328 | | 0.0395 | 9.2451 | 3772 | 0.5368 | 0.3865 | 0.5368 | 0.7327 | | 0.0395 | 9.25 | 3774 | 0.5364 | 0.4273 | 0.5364 | 0.7324 | | 0.0395 | 9.2549 | 3776 | 0.5382 | 0.4273 | 0.5382 | 0.7336 | | 0.0395 | 9.2598 | 3778 | 0.5408 | 0.4273 | 0.5408 | 0.7354 | | 0.0395 | 9.2647 | 3780 | 0.5430 | 0.4273 | 0.5430 | 0.7369 | | 0.0395 | 9.2696 | 3782 | 0.5467 | 0.4273 | 0.5467 | 0.7394 | | 0.0395 | 9.2745 | 3784 | 0.5521 | 0.4273 | 0.5521 | 0.7430 | | 0.0395 | 9.2794 | 3786 | 0.5571 | 0.3724 | 0.5571 | 0.7464 | | 0.0395 | 9.2843 | 3788 | 0.5607 | 0.2186 | 0.5607 | 0.7488 | | 0.0395 | 9.2892 | 3790 | 0.5620 | 0.2186 | 0.5620 | 0.7496 | | 0.0395 | 9.2941 | 3792 | 0.5625 | 0.3724 | 0.5625 | 0.7500 | | 0.0395 | 9.2990 | 3794 | 0.5618 | 0.3724 | 0.5618 | 0.7496 | | 0.0395 | 9.3039 | 3796 | 0.5623 | 0.3724 | 0.5623 | 0.7499 | | 0.0395 | 9.3088 | 3798 | 0.5630 | 0.3724 | 0.5630 | 0.7503 | | 0.0395 | 9.3137 | 3800 | 0.5649 | 0.3724 | 0.5649 | 0.7516 | | 0.0395 | 9.3186 | 3802 | 0.5654 | 0.3724 | 0.5654 | 0.7519 | | 0.0395 | 9.3235 | 3804 | 0.5646 | 0.3724 | 0.5646 | 0.7514 | | 0.0395 | 9.3284 | 3806 | 0.5633 | 0.3724 | 0.5633 | 0.7506 | | 0.0395 | 9.3333 | 3808 | 0.5630 | 0.3724 | 0.5630 | 0.7503 | | 0.0395 | 9.3382 | 3810 | 0.5640 | 0.3724 | 0.5640 | 0.7510 | | 0.0395 | 9.3431 | 3812 | 0.5662 | 0.3724 | 0.5662 | 0.7525 | | 0.0395 | 9.3480 | 3814 | 0.5707 | 0.4661 | 0.5707 | 0.7555 | | 0.0395 | 9.3529 | 3816 | 0.5756 | 0.4661 | 0.5756 | 0.7587 | | 0.0395 | 9.3578 | 3818 | 0.5784 | 0.4661 | 0.5784 | 0.7605 | | 0.0395 | 9.3627 | 3820 | 0.5805 | 0.4661 | 0.5805 | 0.7619 | | 0.0395 | 9.3676 | 3822 | 0.5831 | 0.4661 | 0.5831 | 0.7636 | | 0.0395 | 9.3725 | 3824 | 0.5853 | 0.4661 | 0.5853 | 0.7651 | | 0.0395 | 9.3775 | 3826 | 0.5859 | 0.3255 | 0.5859 | 0.7654 | | 0.0395 | 9.3824 | 3828 | 0.5855 | 0.3255 | 0.5855 | 0.7652 | | 0.0395 | 9.3873 | 3830 | 0.5837 | 0.4661 | 0.5837 | 0.7640 | | 0.0395 | 9.3922 | 3832 | 0.5815 | 0.4661 | 0.5815 | 0.7626 | | 0.0395 | 9.3971 | 3834 | 0.5779 | 0.4661 | 0.5779 | 0.7602 | | 0.0395 | 9.4020 | 3836 | 0.5757 | 0.4661 | 0.5757 | 0.7587 | | 0.0395 | 9.4069 | 3838 | 0.5724 | 0.4661 | 0.5724 | 0.7566 | | 0.0395 | 9.4118 | 3840 | 0.5706 | 0.4661 | 0.5706 | 0.7554 | | 0.0395 | 9.4167 | 3842 | 0.5696 | 0.4661 | 0.5696 | 0.7547 | | 0.0395 | 9.4216 | 3844 | 0.5677 | 0.4661 | 0.5677 | 0.7535 | | 0.0395 | 9.4265 | 3846 | 0.5645 | 0.3724 | 0.5645 | 0.7514 | | 0.0395 | 9.4314 | 3848 | 0.5597 | 0.3724 | 0.5597 | 0.7481 | | 0.0395 | 9.4363 | 3850 | 0.5552 | 0.4273 | 0.5552 | 0.7451 | | 0.0395 | 9.4412 | 3852 | 0.5515 | 0.4273 | 0.5515 | 0.7426 | | 0.0395 | 9.4461 | 3854 | 0.5495 | 0.4273 | 0.5495 | 0.7413 | | 0.0395 | 9.4510 | 3856 | 0.5481 | 0.4273 | 0.5481 | 0.7403 | | 0.0395 | 9.4559 | 3858 | 0.5491 | 0.4273 | 0.5491 | 0.7410 | | 0.0395 | 9.4608 | 3860 | 0.5512 | 0.4273 | 0.5512 | 0.7424 | | 0.0395 | 9.4657 | 3862 | 0.5539 | 0.4273 | 0.5539 | 0.7443 | | 0.0395 | 9.4706 | 3864 | 0.5568 | 0.4273 | 0.5568 | 0.7462 | | 0.0395 | 9.4755 | 3866 | 0.5586 | 0.4273 | 0.5586 | 0.7474 | | 0.0395 | 9.4804 | 3868 | 0.5591 | 0.4273 | 0.5591 | 0.7477 | | 0.0395 | 9.4853 | 3870 | 0.5600 | 0.3724 | 0.5600 | 0.7483 | | 0.0395 | 9.4902 | 3872 | 0.5613 | 0.3724 | 0.5613 | 0.7492 | | 0.0395 | 9.4951 | 3874 | 0.5638 | 0.3724 | 0.5638 | 0.7509 | | 0.0395 | 9.5 | 3876 | 0.5661 | 0.3724 | 0.5661 | 0.7524 | | 0.0395 | 9.5049 | 3878 | 0.5688 | 0.4661 | 0.5688 | 0.7542 | | 0.0395 | 9.5098 | 3880 | 0.5699 | 0.4661 | 0.5699 | 0.7549 | | 0.0395 | 9.5147 | 3882 | 0.5689 | 0.4661 | 0.5689 | 0.7543 | | 0.0395 | 9.5196 | 3884 | 0.5698 | 0.4661 | 0.5698 | 0.7549 | | 0.0395 | 9.5245 | 3886 | 0.5715 | 0.4661 | 0.5715 | 0.7560 | | 0.0395 | 9.5294 | 3888 | 0.5728 | 0.4661 | 0.5728 | 0.7569 | | 0.0395 | 9.5343 | 3890 | 0.5726 | 0.4661 | 0.5726 | 0.7567 | | 0.0395 | 9.5392 | 3892 | 0.5726 | 0.4661 | 0.5726 | 0.7567 | | 0.0395 | 9.5441 | 3894 | 0.5726 | 0.4661 | 0.5726 | 0.7567 | | 0.0395 | 9.5490 | 3896 | 0.5733 | 0.4661 | 0.5733 | 0.7572 | | 0.0395 | 9.5539 | 3898 | 0.5744 | 0.4661 | 0.5744 | 0.7579 | | 0.0395 | 9.5588 | 3900 | 0.5754 | 0.4661 | 0.5754 | 0.7585 | | 0.0395 | 9.5637 | 3902 | 0.5769 | 0.4661 | 0.5769 | 0.7595 | | 0.0395 | 9.5686 | 3904 | 0.5777 | 0.4661 | 0.5777 | 0.7601 | | 0.0395 | 9.5735 | 3906 | 0.5774 | 0.4661 | 0.5774 | 0.7599 | | 0.0395 | 9.5784 | 3908 | 0.5773 | 0.4661 | 0.5773 | 0.7598 | | 0.0395 | 9.5833 | 3910 | 0.5783 | 0.4661 | 0.5783 | 0.7604 | | 0.0395 | 9.5882 | 3912 | 0.5782 | 0.4661 | 0.5782 | 0.7604 | | 0.0395 | 9.5931 | 3914 | 0.5770 | 0.4661 | 0.5770 | 0.7596 | | 0.0395 | 9.5980 | 3916 | 0.5759 | 0.4661 | 0.5759 | 0.7589 | | 0.0395 | 9.6029 | 3918 | 0.5747 | 0.4661 | 0.5747 | 0.7581 | | 0.0395 | 9.6078 | 3920 | 0.5728 | 0.4661 | 0.5728 | 0.7568 | | 0.0395 | 9.6127 | 3922 | 0.5706 | 0.3724 | 0.5706 | 0.7554 | | 0.0395 | 9.6176 | 3924 | 0.5685 | 0.3724 | 0.5685 | 0.7540 | | 0.0395 | 9.6225 | 3926 | 0.5657 | 0.3724 | 0.5657 | 0.7521 | | 0.0395 | 9.6275 | 3928 | 0.5639 | 0.3724 | 0.5639 | 0.7509 | | 0.0395 | 9.6324 | 3930 | 0.5626 | 0.3724 | 0.5626 | 0.7501 | | 0.0395 | 9.6373 | 3932 | 0.5616 | 0.3724 | 0.5616 | 0.7494 | | 0.0395 | 9.6422 | 3934 | 0.5607 | 0.3724 | 0.5607 | 0.7488 | | 0.0395 | 9.6471 | 3936 | 0.5582 | 0.3724 | 0.5582 | 0.7471 | | 0.0395 | 9.6520 | 3938 | 0.5567 | 0.3724 | 0.5567 | 0.7461 | | 0.0395 | 9.6569 | 3940 | 0.5553 | 0.3724 | 0.5553 | 0.7452 | | 0.0395 | 9.6618 | 3942 | 0.5543 | 0.3724 | 0.5543 | 0.7445 | | 0.0395 | 9.6667 | 3944 | 0.5538 | 0.3724 | 0.5538 | 0.7441 | | 0.0395 | 9.6716 | 3946 | 0.5537 | 0.3724 | 0.5537 | 0.7441 | | 0.0395 | 9.6765 | 3948 | 0.5541 | 0.3724 | 0.5541 | 0.7444 | | 0.0395 | 9.6814 | 3950 | 0.5545 | 0.3724 | 0.5545 | 0.7447 | | 0.0395 | 9.6863 | 3952 | 0.5553 | 0.3724 | 0.5553 | 0.7452 | | 0.0395 | 9.6912 | 3954 | 0.5557 | 0.3724 | 0.5557 | 0.7455 | | 0.0395 | 9.6961 | 3956 | 0.5560 | 0.3724 | 0.5560 | 0.7456 | | 0.0395 | 9.7010 | 3958 | 0.5553 | 0.3724 | 0.5553 | 0.7452 | | 0.0395 | 9.7059 | 3960 | 0.5555 | 0.3724 | 0.5555 | 0.7453 | | 0.0395 | 9.7108 | 3962 | 0.5563 | 0.3724 | 0.5563 | 0.7459 | | 0.0395 | 9.7157 | 3964 | 0.5571 | 0.3724 | 0.5571 | 0.7464 | | 0.0395 | 9.7206 | 3966 | 0.5581 | 0.3724 | 0.5581 | 0.7471 | | 0.0395 | 9.7255 | 3968 | 0.5588 | 0.3724 | 0.5588 | 0.7475 | | 0.0395 | 9.7304 | 3970 | 0.5593 | 0.3724 | 0.5593 | 0.7478 | | 0.0395 | 9.7353 | 3972 | 0.5601 | 0.3724 | 0.5601 | 0.7484 | | 0.0395 | 9.7402 | 3974 | 0.5604 | 0.3724 | 0.5604 | 0.7486 | | 0.0395 | 9.7451 | 3976 | 0.5609 | 0.3724 | 0.5609 | 0.7490 | | 0.0395 | 9.75 | 3978 | 0.5611 | 0.3724 | 0.5611 | 0.7490 | | 0.0395 | 9.7549 | 3980 | 0.5616 | 0.4661 | 0.5616 | 0.7494 | | 0.0395 | 9.7598 | 3982 | 0.5622 | 0.4661 | 0.5622 | 0.7498 | | 0.0395 | 9.7647 | 3984 | 0.5627 | 0.4661 | 0.5627 | 0.7501 | | 0.0395 | 9.7696 | 3986 | 0.5633 | 0.4661 | 0.5633 | 0.7505 | | 0.0395 | 9.7745 | 3988 | 0.5643 | 0.4661 | 0.5643 | 0.7512 | | 0.0395 | 9.7794 | 3990 | 0.5650 | 0.4661 | 0.5650 | 0.7517 | | 0.0395 | 9.7843 | 3992 | 0.5657 | 0.4661 | 0.5657 | 0.7522 | | 0.0395 | 9.7892 | 3994 | 0.5667 | 0.3255 | 0.5667 | 0.7528 | | 0.0395 | 9.7941 | 3996 | 0.5677 | 0.3255 | 0.5677 | 0.7535 | | 0.0395 | 9.7990 | 3998 | 0.5690 | 0.3255 | 0.5690 | 0.7543 | | 0.0358 | 9.8039 | 4000 | 0.5703 | 0.3255 | 0.5703 | 0.7552 | | 0.0358 | 9.8088 | 4002 | 0.5722 | 0.3255 | 0.5722 | 0.7564 | | 0.0358 | 9.8137 | 4004 | 0.5739 | 0.3255 | 0.5739 | 0.7576 | | 0.0358 | 9.8186 | 4006 | 0.5745 | 0.3255 | 0.5745 | 0.7580 | | 0.0358 | 9.8235 | 4008 | 0.5747 | 0.3255 | 0.5747 | 0.7581 | | 0.0358 | 9.8284 | 4010 | 0.5741 | 0.3255 | 0.5741 | 0.7577 | | 0.0358 | 9.8333 | 4012 | 0.5736 | 0.3255 | 0.5736 | 0.7574 | | 0.0358 | 9.8382 | 4014 | 0.5741 | 0.3255 | 0.5741 | 0.7577 | | 0.0358 | 9.8431 | 4016 | 0.5744 | 0.3255 | 0.5744 | 0.7579 | | 0.0358 | 9.8480 | 4018 | 0.5741 | 0.3255 | 0.5741 | 0.7577 | | 0.0358 | 9.8529 | 4020 | 0.5739 | 0.3255 | 0.5739 | 0.7576 | | 0.0358 | 9.8578 | 4022 | 0.5734 | 0.3255 | 0.5734 | 0.7572 | | 0.0358 | 9.8627 | 4024 | 0.5731 | 0.3255 | 0.5731 | 0.7570 | | 0.0358 | 9.8676 | 4026 | 0.5723 | 0.3255 | 0.5723 | 0.7565 | | 0.0358 | 9.8725 | 4028 | 0.5719 | 0.3255 | 0.5719 | 0.7562 | | 0.0358 | 9.8775 | 4030 | 0.5717 | 0.3255 | 0.5717 | 0.7561 | | 0.0358 | 9.8824 | 4032 | 0.5713 | 0.3255 | 0.5713 | 0.7558 | | 0.0358 | 9.8873 | 4034 | 0.5709 | 0.3255 | 0.5709 | 0.7556 | | 0.0358 | 9.8922 | 4036 | 0.5706 | 0.3255 | 0.5706 | 0.7554 | | 0.0358 | 9.8971 | 4038 | 0.5701 | 0.3255 | 0.5701 | 0.7550 | | 0.0358 | 9.9020 | 4040 | 0.5696 | 0.3255 | 0.5696 | 0.7547 | | 0.0358 | 9.9069 | 4042 | 0.5691 | 0.3255 | 0.5691 | 0.7544 | | 0.0358 | 9.9118 | 4044 | 0.5685 | 0.3255 | 0.5685 | 0.7540 | | 0.0358 | 9.9167 | 4046 | 0.5679 | 0.3255 | 0.5679 | 0.7536 | | 0.0358 | 9.9216 | 4048 | 0.5674 | 0.3255 | 0.5674 | 0.7533 | | 0.0358 | 9.9265 | 4050 | 0.5670 | 0.3255 | 0.5670 | 0.7530 | | 0.0358 | 9.9314 | 4052 | 0.5666 | 0.3255 | 0.5666 | 0.7527 | | 0.0358 | 9.9363 | 4054 | 0.5663 | 0.4661 | 0.5663 | 0.7525 | | 0.0358 | 9.9412 | 4056 | 0.5662 | 0.4661 | 0.5662 | 0.7524 | | 0.0358 | 9.9461 | 4058 | 0.5659 | 0.4661 | 0.5659 | 0.7523 | | 0.0358 | 9.9510 | 4060 | 0.5657 | 0.4661 | 0.5657 | 0.7521 | | 0.0358 | 9.9559 | 4062 | 0.5656 | 0.4661 | 0.5656 | 0.7521 | | 0.0358 | 9.9608 | 4064 | 0.5656 | 0.4661 | 0.5656 | 0.7521 | | 0.0358 | 9.9657 | 4066 | 0.5656 | 0.4661 | 0.5656 | 0.7520 | | 0.0358 | 9.9706 | 4068 | 0.5655 | 0.4661 | 0.5655 | 0.7520 | | 0.0358 | 9.9755 | 4070 | 0.5654 | 0.4661 | 0.5654 | 0.7519 | | 0.0358 | 9.9804 | 4072 | 0.5654 | 0.4661 | 0.5654 | 0.7519 | | 0.0358 | 9.9853 | 4074 | 0.5654 | 0.4661 | 0.5654 | 0.7519 | | 0.0358 | 9.9902 | 4076 | 0.5654 | 0.4661 | 0.5654 | 0.7519 | | 0.0358 | 9.9951 | 4078 | 0.5654 | 0.4661 | 0.5654 | 0.7519 | | 0.0358 | 10.0 | 4080 | 0.5654 | 0.4661 | 0.5654 | 0.7519 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
SeppeV/ernie2p0_ft_pref_10pc
SeppeV
2024-11-25T09:09:00Z
89
0
transformers
[ "transformers", "safetensors", "ernie", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-23T15:34:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
allknowingroger/Marco-01-slerp7-7B
allknowingroger
2024-11-25T09:08:36Z
10
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:AIDC-AI/Marco-o1", "base_model:merge:AIDC-AI/Marco-o1", "base_model:ZeroXClem/Qwen2.5-7B-HomerCreative-Mix", "base_model:merge:ZeroXClem/Qwen2.5-7B-HomerCreative-Mix", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T08:54:00Z
--- base_model: - ZeroXClem/Qwen2.5-7B-HomerCreative-Mix - AIDC-AI/Marco-o1 library_name: transformers tags: - mergekit - merge license: apache-2.0 --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [ZeroXClem/Qwen2.5-7B-HomerCreative-Mix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerCreative-Mix) * [AIDC-AI/Marco-o1](https://huggingface.co/AIDC-AI/Marco-o1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: AIDC-AI/Marco-o1 - model: ZeroXClem/Qwen2.5-7B-HomerCreative-Mix merge_method: slerp base_model: AIDC-AI/Marco-o1 dtype: bfloat16 parameters: t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers ```
jebish7/cde-small-v1_MNR_3
jebish7
2024-11-25T09:06:55Z
6
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:29545", "loss:MultipleNegativesRankingLoss", "custom_code", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:jxm/cde-small-v1", "base_model:finetune:jxm/cde-small-v1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-25T09:06:28Z
--- base_model: jxm/cde-small-v1 library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:29545 - loss:MultipleNegativesRankingLoss widget: - source_sentence: In terms of audited accounts submission for an Applicant, could you clarify the scenarios in which the Regulator might agree that a reviewed pro forma statement of financial position is not needed, and what factors would be considered in making that determination? sentences: - "DocumentID: 1 | PassageID: 4.2.1.(3) | Passage: Where the regulator in another\ \ jurisdiction does not permit the implementation of policies, procedures, systems\ \ and controls consistent with these Rules, the Relevant Person must:\n(a)\tinform\ \ the Regulator in writing immediately; and\n(b)\tapply appropriate additional\ \ measures to manage the money laundering risks posed by the relevant branch or\ \ subsidiary." - "DocumentID: 11 | PassageID: 2.3.15.(4) | Passage: The Applicant must submit to\ \ the Regulator the following records, as applicable:\n(a)\tAudited accounts,\ \ for the purposes of this Rule and Rule 2.3.2(1), for the last three full financial\ \ years, noting that:\n(i)\tif the Applicant applies for admission less than ninety\ \ days after the end of its last financial year, unless the Applicant has audited\ \ accounts for its latest full financial year, the accounts may be for the three\ \ years to the end of the previous financial year, but must also include audited\ \ or reviewed accounts for its most recent semi-annual financial reporting period;\ \ and\n(ii)\tif the Applicant applies for admission more than six months and seventy-five\ \ days after the end of its last financial year, audited or reviewed accounts\ \ for its most recent semi-annual financial reporting period (or longer period\ \ if available).\n(b)\tUnless the Regulator agrees it is not needed, a reviewed\ \ pro forma statement of financial position. The review must be conducted by an\ \ accredited professional auditor of the company or an independent accountant." - 'DocumentID: 36 | PassageID: D.1.3. | Passage: Principle 1 โ€“ Oversight and responsibility of climate-related financial risk exposures.Certain functions related to the management of climate-related financial risks may be delegated, but, as with other risks, the board is ultimately responsible and accountable for monitoring, managing and overseeing climate-related risks for the financial firm. ' - source_sentence: A financial institution is interested in multiple designations, including the ADGM Green Fund and ADGM Green Bond. For each application, what fee will the institution incur? sentences: - 'DocumentID: 31 | PassageID: 63) | Passage: INITIAL DISCLOSURE OF MATERIAL ESTIMATES. Disclosure of material estimates of Contingent Resources Section 2.3 of the PRMS Guidelines states that Contingent Resources may be assigned for Petroleum Projects that are dependent on โ€˜technology under developmentโ€™, and further recommended that a number of guidelines are followed in order to distinguish these estimates from those that should be classified as Unrecoverable Petroleum. By way of Rule 12.10.1(3), the FSRA fully supports and requires compliance with what is set out in the PRMS Guidelines. ' - 'DocumentID: 19 | PassageID: 40) | Passage: REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS Anti-Money Laundering and Countering Financing of Terrorism On 21 June 2019, FATF released a revised Guidance for a Risk-Based Approach (RBA) for VAs and VASPs, as well as an Interpretative Note for Recommendation 15. This built upon previous FATF statements by clarifying a RBA for Anti-Money Laundering and Countering the Financing of Terrorism (โ€œAML/CFTโ€) purposes. The basic principle underlying the FATF Guidelines is that VASPs are expected to โ€œidentify, assess, and take effective action to mitigate their ML/TF risksโ€ with respect to VAs. ' - "DocumentID: 4 | PassageID: 10.1.1 | Passage: A Person applying to the Regulator\ \ for any of the following designations:\n(a)\tADGM Green Fund;\n(b)\tADGM Climate\ \ Transition Fund;\n(c)\tADGM Green Portfolio;\n(d)\tADGM Climate Transition Portfolio;\n\ (e)\tADGM Green Bond; or\n(f)\tADGM Sustainability Linked Bond\nmust pay to the\ \ Regulator an application fee of $2,000." - source_sentence: How does the ADGM expect Authorised Persons to incorporate the eligibility of collateral types into their overall risk management framework, particularly concerning Islamic finance principles? sentences: - 'DocumentID: 17 | PassageID: Schedule 1.Part 2.Chapter 5.42.(2) | Passage: In determining for the purposes of sub-paragraph โ€Ž(1)โ€Ž(b) whether Deposits are accepted only on particular occasions, regard is to be had to the frequency of those occasions and to any characteristics distinguishing them from each other.' - "DocumentID: 9 | PassageID: 6.8.5 | Passage: \n(a)\tA Fund Manager of an Islamic\ \ REIT may obtain financing either directly or through its Special Purpose Vehicle\ \ up to 65% of the total gross asset value of the Fund provided that such financing\ \ is provided in a Shari'a-compliant manner.\n(b)\tUpon becoming aware that the\ \ borrowing limit set out in 6.8.5(a) has been exceeded, the Fund Manager shall:\n\ (c)\timmediately inform Unitholders and the Regulator of the details of the breach\ \ and the proposed remedial action;\n(d)\tuse its best endeavours to reduce the\ \ excess borrowings;\n(e)\tnot permit the Fund to engage in additional borrowing;\ \ and\n(f)\tinform Unitholders and the Regulator on a regular basis as to the\ \ progress of the remedial action." - 'DocumentID: 9 | PassageID: 5.1.1.Guidance.(ii) | Passage: The prudential Category for Islamic Financial Institutions and other Authorised Persons (acting through an Islamic Window) undertaking the Regulated Activity of Managing PSIAs (which may be either a Restricted PSIA or an Unrestricted PSIA) is determined in accordance with PRU Rule 1.3. An Authorised Person which Manages PSIAs (whether as an Islamic Financial Institution or through an Islamic Window) must comply with the requirements in PRU in relation to specific prudential requirements relating to Trading Book and Non-Trading Book activities, including Credit Risk, Market Risk, Liquidity Risk and Group Risk.' - source_sentence: Can you please detail the specific Anti-Money Laundering (AML) and Countering Financing of Terrorism (CFT) measures and controls that our firm must have in place when dealing with Spot Commodities as per the FSRA's requirements? sentences: - 'DocumentID: 34 | PassageID: 65) | Passage: REGULATORY REQUIREMENTS - SPOT COMMODITY ACTIVITIES Sanctions Pursuant to AML Rule 11.2.1(1), an Authorised Person must have arrangements in place to ensure that only Spot Commodities that are not subject to sanctions or associated with an entity in the supply chain that is itself subject to a sanction, are used as part of its Regulated Activities, or utilised as part of a delivery and/or storage facility operated by itself (or by any third parties it uses). In demonstrating compliance with the Rule, an Authorised Person must have powers to resolve any breach in a timely fashion, such as taking emergency action itself or by compelling the delivery and/or storage facility to take appropriate action. The FSRA expects this to include the Authorised Person having the ability to sanction a Member, market participant or the delivery and/or storage facility for acts or omissions that compromise compliance with applicable sanctions. ' - "DocumentID: 18 | PassageID: 3.2 | Passage: Financial Services Permissions. VC\ \ Managers operating in ADGM require a Financial Services Permission (โ€œFSPโ€) to\ \ undertake any Regulated Activity pertaining to VC Funds and/or co-investments\ \ by third parties in VC Funds. The Regulated Activities covered by the FSP will\ \ be dependent on the VC Managersโ€™ investment strategy and business model.\n(a)\t\ Managing a Collective Investment Fund: this includes carrying out fund management\ \ activities in respect of a VC Fund.\n(b)\tAdvising on Investments or Credit\ \ : for VC Managers these activities will be restricted to activities related\ \ to co-investment alongside a VC Fund which the VC Manager manages, such as recommending\ \ that a client invest in an investee company alongside the VC Fund and on the\ \ strategy and structure required to make the investment.\n(c)\tArranging Deals\ \ in Investments: VC Managers may also wish to make arrangements to facilitate\ \ co-investments in the investee company.\nAuthorisation fees and supervision\ \ fees for a VC Manager are capped at USD 10,000 regardless of whether one or\ \ both of the additional Regulated Activities in b) and c) above in relation to\ \ co-investments are included in its FSP. The FSP will include restrictions appropriate\ \ to the business model of a VC Manager." - 'DocumentID: 24 | PassageID: 3.9 | Passage: Principle 2 โ€“ High Standards for Authorisation. This discerning approach is shown by the FSRAโ€™s power to only permit VAs that it deems โ€˜acceptableโ€™, as determined by risk factors such as security and traceability, in order to prevent the build-up of risk from illiquid or immature assets. Additionally, we do not permit stablecoins based on the algorithmic model of valuation to the underlying fiat currency.' - source_sentence: What are the common scenarios or instances where assets and liabilities are not covered by the bases of accounting in Rule 5.3.2, and how should an Insurer address these in their reporting? sentences: - 'DocumentID: 1 | PassageID: 14.4.1.Guidance.1. | Passage: Relevant Persons are reminded that in accordance with Federal AML Legislation, Relevant Persons or any of their Employees must not tip off any Person, that is, inform any Person that he is being scrutinised, or investigated by any other competent authority, for possible involvement in suspicious Transactions or activity related to money laundering or terrorist financing.' - "DocumentID: 12 | PassageID: 5.3.1.Guidance | Passage: \nThe exceptions provided\ \ in this Chapter relate to the following:\na.\tspecific Rules in respect of certain\ \ assets and liabilities, intended to achieve a regulatory objective not achieved\ \ by application of either or both of the bases of accounting set out in Rule\ \ โ€Ž5.3.2;\nb.\tassets and liabilities that are not dealt with in either or both\ \ of the bases of accounting set out in Rule โ€Ž5.3.2; and\nc.\tthe overriding power\ \ of the Regulator, set out in Rule โ€Ž5.1.6, to require an Insurer to adopt a particular\ \ measurement for a specific asset or liability." - 'DocumentID: 1 | PassageID: 6.2.1.Guidance.2. | Passage: The risk assessment under Rule โ€Ž6.2.1(c) should identify actions to mitigate risks associated with undertaking NFTF business generally, and the use of eKYC specifically. This is because distinct risks are often likely to arise where business is conducted entirely in an NFTF manner, compared to when the business relationship includes a mix of face-to-face and NFTF interactions. The assessment should make reference to risk mitigation measures recommended by the Regulator, a competent authority of the U.A.E., FATF, and other relevant bodies. ' --- # SentenceTransformer based on jxm/cde-small-v1 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jxm/cde-small-v1](https://huggingface.co/jxm/cde-small-v1) on the csv dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [jxm/cde-small-v1](https://huggingface.co/jxm/cde-small-v1) <!-- at revision 9e2ed1d8d569d34458913d2d246935c1b2324d11 --> - **Maximum Sequence Length:** None tokens - **Output Dimensionality:** None tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({}) with Transformer model: DatasetTransformer ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("jebish7/cde-small-v1_MNR_3") # Run inference sentences = [ 'What are the common scenarios or instances where assets and liabilities are not covered by the bases of accounting in Rule 5.3.2, and how should an Insurer address these in their reporting?', 'DocumentID: 12 | PassageID: 5.3.1.Guidance | Passage: \nThe exceptions provided in this Chapter relate to the following:\na.\tspecific Rules in respect of certain assets and liabilities, intended to achieve a regulatory objective not achieved by application of either or both of the bases of accounting set out in Rule \u200e5.3.2;\nb.\tassets and liabilities that are not dealt with in either or both of the bases of accounting set out in Rule \u200e5.3.2; and\nc.\tthe overriding power of the Regulator, set out in Rule \u200e5.1.6, to require an Insurer to adopt a particular measurement for a specific asset or liability.', 'DocumentID: 1 | PassageID: 14.4.1.Guidance.1. | Passage: Relevant Persons are reminded that in accordance with Federal AML Legislation, Relevant Persons or any of their Employees must not tip off any Person, that is, inform any Person that he is being scrutinised, or investigated by any other competent authority, for possible involvement in suspicious Transactions or activity related to money laundering or terrorist financing.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 29,545 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 16 tokens</li><li>mean: 34.95 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 35 tokens</li><li>mean: 132.0 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>If a financial institution offers Money Remittance as one of its services, under what circumstances is it deemed to be holding Relevant Money and therefore subject to regulatory compliance (a)?</code> | <code>DocumentID: 13 | PassageID: 3.7.1.Guidance.1. | Passage: An Authorised Person is considered to be holding Relevant Money and subject to (a) where it offers Payment Services alongside currency exchange or Money Remittance.<br></code> | | <code>What are the consequences for a Recognised Body or Authorised Person if they fail to comply with ADGM's requirements regarding severance payments?</code> | <code>DocumentID: 7 | PassageID: APP1.A1.2.Guidance.9. | Passage: Severance payments. Where an Authorised Person or Recognised Body provides discretionary payouts on termination of employment ("severance payments", also called "golden parachutes"), such payment should generally be subject to appropriate limits or shareholder approval. In any case, such payouts should be aligned with the Authorised Person or Recognised Body's overall financial condition and performance over an appropriate time horizon and should not be payable in the case of failure or threatened failure of the Authorised Person or Recognised Body, particularly to an individual whose actions may have contributed to the failure or potential failure of the Authorised Person or Recognised Body.<br></code> | | <code>If a Public Fund is structured as an Investment Trust, to whom should the Fund Manager report the review findings regarding delegated Regulated Activities or outsourced functions?</code> | <code>DocumentID: 6 | PassageID: PART 5.12.12.8.(1) | Passage: A Fund Manager or the Trustee of a Public Fund, which has delegated any Regulated Activities or outsourced any functions, must conduct a review of the carrying out of the relevant activities or functions by the Service Provider and present the findings of the review to either:<br>(a) the Fund's Governing Body every 6 months at the Fund's board meeting; or<br>(b) in the case of a Fund structured as an Investment Trust, to the Trustee.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `learning_rate`: 2e-05 - `warmup_ratio`: 0.1 - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.1082 | 100 | 1.9962 | | 0.2165 | 200 | 1.1626 | | 0.3247 | 300 | 0.9907 | | 0.4329 | 400 | 0.8196 | | 0.5411 | 500 | 0.8082 | | 0.6494 | 600 | 0.6944 | | 0.7576 | 700 | 0.6559 | | 0.8658 | 800 | 0.6242 | | 0.9740 | 900 | 0.6299 | | 1.0823 | 1000 | 0.6051 | | 1.1905 | 1100 | 0.567 | | 1.2987 | 1200 | 0.4679 | | 1.4069 | 1300 | 0.3443 | | 1.5152 | 1400 | 0.3356 | | 1.6234 | 1500 | 0.2958 | | 1.7316 | 1600 | 0.254 | | 1.8398 | 1700 | 0.2694 | | 1.9481 | 1800 | 0.2497 | | 2.0563 | 1900 | 0.2671 | | 2.1645 | 2000 | 0.2558 | | 2.2727 | 2100 | 0.1943 | | 2.3810 | 2200 | 0.1242 | | 2.4892 | 2300 | 0.116 | | 2.5974 | 2400 | 0.1081 | | 2.7056 | 2500 | 0.1056 | | 2.8139 | 2600 | 0.107 | | 2.9221 | 2700 | 0.1154 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.4.0 - Accelerate: 0.34.2 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
nuyyep81/results
nuyyep81
2024-11-25T09:04:27Z
176
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-25T08:38:06Z
--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-base tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 352 | 1.4879 | | 1.8923 | 2.0 | 704 | 1.4566 | | 1.5369 | 3.0 | 1056 | 1.4484 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
mradermacher/BioinspiredLLM-GGUF
mradermacher
2024-11-25T09:00:52Z
138
1
transformers
[ "transformers", "gguf", "biology", "materials science", "code", "scientific AI", "biological materials", "bioinspiration", "machine learning", "generative", "en", "base_model:lamm-mit/BioinspiredLLM", "base_model:quantized:lamm-mit/BioinspiredLLM", "endpoints_compatible", "region:us" ]
null
2024-11-22T23:58:59Z
--- base_model: lamm-mit/BioinspiredLLM language: - en library_name: transformers quantized_by: mradermacher tags: - biology - materials science - code - scientific AI - biological materials - bioinspiration - machine learning - generative --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/lamm-mit/BioinspiredLLM <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q5_K_M.gguf) | Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-GGUF/resolve/main/BioinspiredLLM.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF
mradermacher
2024-11-25T09:00:29Z
9
1
transformers
[ "transformers", "gguf", "chocolatine", "fr", "en", "dataset:jpacifico/french-orca-dpo-pairs-revised", "base_model:jpacifico/Chocolatine-32B-Instruct-DPO-v1.2", "base_model:quantized:jpacifico/Chocolatine-32B-Instruct-DPO-v1.2", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T00:20:45Z
--- base_model: jpacifico/Chocolatine-32B-Instruct-DPO-v1.2 datasets: - jpacifico/french-orca-dpo-pairs-revised language: - fr - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - chocolatine --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jpacifico/Chocolatine-32B-Instruct-DPO-v1.2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-32B-Instruct-DPO-v1.2-i1-GGUF/resolve/main/Chocolatine-32B-Instruct-DPO-v1.2.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/ECE-TW3-JRGL-V5-GGUF
mradermacher
2024-11-25T09:00:23Z
28
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "davidkim205/Rhea-72b-v0.5", "abacusai/Smaug-72B-v0.1", "en", "base_model:MatthieuJ/ECE-TW3-JRGL-V5", "base_model:quantized:MatthieuJ/ECE-TW3-JRGL-V5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-23T01:16:48Z
--- base_model: MatthieuJ/ECE-TW3-JRGL-V5 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - davidkim205/Rhea-72b-v0.5 - abacusai/Smaug-72B-v0.1 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/MatthieuJ/ECE-TW3-JRGL-V5 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q2_K.gguf) | Q2_K | 27.2 | | | [GGUF](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q3_K_S.gguf) | Q3_K_S | 31.7 | | | [GGUF](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q3_K_M.gguf) | Q3_K_M | 35.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q3_K_L.gguf) | Q3_K_L | 38.6 | | | [GGUF](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.IQ4_XS.gguf) | IQ4_XS | 39.2 | | | [GGUF](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q4_K_S.gguf) | Q4_K_S | 41.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q4_K_M.gguf) | Q4_K_M | 43.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q5_K_S.gguf) | Q5_K_S | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q5_K_M.gguf.part2of2) | Q5_K_M | 51.4 | | | [PART 1](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q6_K.gguf.part2of2) | Q6_K | 59.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ECE-TW3-JRGL-V5-GGUF/resolve/main/ECE-TW3-JRGL-V5.Q8_0.gguf.part2of2) | Q8_0 | 76.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF
mradermacher
2024-11-25T09:00:17Z
38
1
transformers
[ "transformers", "gguf", "en", "base_model:Deev124/hermes-llama3-roleplay-3500-v1", "base_model:quantized:Deev124/hermes-llama3-roleplay-3500-v1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T01:28:41Z
--- base_model: Deev124/hermes-llama3-roleplay-3500-v1 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Deev124/hermes-llama3-roleplay-3500-v1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-3500-v1-i1-GGUF/resolve/main/hermes-llama3-roleplay-3500-v1.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/blossom-v5.1-34b-i1-GGUF
mradermacher
2024-11-25T08:59:58Z
347
1
transformers
[ "transformers", "gguf", "zh", "en", "dataset:Azure99/blossom-chat-v3", "dataset:Azure99/blossom-math-v4", "dataset:Azure99/blossom-wizard-v3", "dataset:Azure99/blossom-orca-v3", "base_model:Azure99/blossom-v5.1-34b", "base_model:quantized:Azure99/blossom-v5.1-34b", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T03:42:15Z
--- base_model: Azure99/blossom-v5.1-34b datasets: - Azure99/blossom-chat-v3 - Azure99/blossom-math-v4 - Azure99/blossom-wizard-v3 - Azure99/blossom-orca-v3 language: - zh - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Azure99/blossom-v5.1-34b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/blossom-v5.1-34b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ1_S.gguf) | i1-IQ1_S | 7.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ1_M.gguf) | i1-IQ1_M | 8.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ2_S.gguf) | i1-IQ2_S | 11.0 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ2_M.gguf) | i1-IQ2_M | 11.9 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-Q2_K.gguf) | i1-Q2_K | 12.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 13.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.3 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ3_S.gguf) | i1-IQ3_S | 15.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ3_M.gguf) | i1-IQ3_M | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 18.6 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-Q4_0.gguf) | i1-Q4_0 | 19.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 19.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 23.8 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5.1-34b-i1-GGUF/resolve/main/blossom-v5.1-34b.i1-Q6_K.gguf) | i1-Q6_K | 28.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Ice0.41-22.11-RP-GGUF
mradermacher
2024-11-25T08:59:30Z
24
2
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:icefog72/Ice0.41-22.11-RP", "base_model:quantized:icefog72/Ice0.41-22.11-RP", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-23T04:28:09Z
--- base_model: icefog72/Ice0.41-22.11-RP language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/icefog72/Ice0.41-22.11-RP <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Ice0.41-22.11-RP-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Ice0.41-22.11-RP-GGUF/resolve/main/Ice0.41-22.11-RP.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF
mradermacher
2024-11-25T08:59:05Z
13
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:win10/EVA-Meissa-Coder-14B-Instruct", "base_model:quantized:win10/EVA-Meissa-Coder-14B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-23T05:10:49Z
--- base_model: win10/EVA-Meissa-Coder-14B-Instruct language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/win10/EVA-Meissa-Coder-14B-Instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q4_0_4_4.gguf) | Q4_0_4_4 | 8.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
MakiAi/Llama-3-2-3B-Instruct-bnb-4bit-OKU-v1-1epochs_GGUF
MakiAi
2024-11-25T08:58:44Z
13
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Llama-3.2-3B-Instruct-bnb-4bit", "base_model:quantized:unsloth/Llama-3.2-3B-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T08:58:01Z
--- base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MakiAi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF
mradermacher
2024-11-25T08:58:36Z
13
1
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "dataset:anthracite-org/kalo-opus-instruct-22k-no-refusal", "dataset:Nopm/Opus_WritingStruct", "dataset:Gryphe/Sonnet3.5-SlimOrcaDedupCleaned", "dataset:Gryphe/Sonnet3.5-Charcard-Roleplay", "dataset:Gryphe/ChatGPT-4o-Writing-Prompts", "dataset:Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned", "dataset:Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned", "dataset:nothingiisreal/Reddit-Dirty-And-WritingPrompts", "dataset:allura-org/Celeste-1.x-data-mixture", "dataset:cognitivecomputations/dolphin-2.9.3", "base_model:EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2", "base_model:quantized:EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-23T07:28:40Z
--- base_model: EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2 datasets: - anthracite-org/kalo-opus-instruct-22k-no-refusal - Nopm/Opus_WritingStruct - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - Gryphe/Sonnet3.5-Charcard-Roleplay - Gryphe/ChatGPT-4o-Writing-Prompts - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - nothingiisreal/Reddit-Dirty-And-WritingPrompts - allura-org/Celeste-1.x-data-mixture - cognitivecomputations/dolphin-2.9.3 language: - en library_name: transformers license: other license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE license_name: qwen quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q2_K.gguf) | Q2_K | 29.9 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q3_K_S.gguf) | Q3_K_S | 34.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q3_K_M.gguf) | Q3_K_M | 37.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q3_K_L.gguf) | Q3_K_L | 39.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.IQ4_XS.gguf) | IQ4_XS | 40.3 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q4_K_S.gguf) | Q4_K_S | 44.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q4_K_M.gguf) | Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q5_K_S.gguf.part2of2) | Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q5_K_M.gguf.part2of2) | Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q6_K.gguf.part2of2) | Q6_K | 64.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.Q8_0.gguf.part2of2) | Q8_0 | 77.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF
mradermacher
2024-11-25T08:58:23Z
42
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:win10/EVA-Meissa-big-pro-v2", "base_model:quantized:win10/EVA-Meissa-big-pro-v2", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T08:16:24Z
--- base_model: win10/EVA-Meissa-big-pro-v2 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/win10/EVA-Meissa-big-pro-v2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ1_S.gguf) | i1-IQ1_S | 5.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ1_M.gguf) | i1-IQ1_M | 5.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 6.3 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ2_S.gguf) | i1-IQ2_S | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ2_M.gguf) | i1-IQ2_M | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-Q2_K.gguf) | i1-Q2_K | 8.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 8.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 9.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ3_S.gguf) | i1-IQ3_S | 9.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ3_M.gguf) | i1-IQ3_M | 10.2 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 10.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 11.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 12.0 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-Q4_0.gguf) | i1-Q4_0 | 12.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 12.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 13.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 15.3 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-big-pro-v2-i1-GGUF/resolve/main/EVA-Meissa-big-pro-v2.i1-Q6_K.gguf) | i1-Q6_K | 18.1 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/BioinspiredLLM-i1-GGUF
mradermacher
2024-11-25T08:57:49Z
202
1
transformers
[ "transformers", "gguf", "biology", "materials science", "code", "scientific AI", "biological materials", "bioinspiration", "machine learning", "generative", "en", "base_model:lamm-mit/BioinspiredLLM", "base_model:quantized:lamm-mit/BioinspiredLLM", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-23T08:42:52Z
--- base_model: lamm-mit/BioinspiredLLM language: - en library_name: transformers quantized_by: mradermacher tags: - biology - materials science - code - scientific AI - biological materials - bioinspiration - machine learning - generative --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/lamm-mit/BioinspiredLLM <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/BioinspiredLLM-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ1_S.gguf) | i1-IQ1_S | 3.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ1_M.gguf) | i1-IQ1_M | 3.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ2_S.gguf) | i1-IQ2_S | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ2_M.gguf) | i1-IQ2_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q2_K.gguf) | i1-Q2_K | 5.0 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ3_S.gguf) | i1-IQ3_S | 5.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ3_M.gguf) | i1-IQ3_M | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q3_K_L.gguf) | i1-Q3_K_L | 7.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-IQ4_XS.gguf) | i1-IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 7.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 7.5 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 7.5 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q4_0.gguf) | i1-Q4_0 | 7.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q4_K_M.gguf) | i1-Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q5_K_S.gguf) | i1-Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q5_K_M.gguf) | i1-Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/BioinspiredLLM-i1-GGUF/resolve/main/BioinspiredLLM.i1-Q6_K.gguf) | i1-Q6_K | 10.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF
mradermacher
2024-11-25T08:57:45Z
29
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "ChaoticNeutrals/Eris_Remix_7B", "Virt-io/Erebus-Holodeck-7B", "jeiku/Eros_Prodigadigm_7B", "Epiculous/Mika-7B", "en", "base_model:weezywitasneezy/OxytocinErosEngineering_v0-4x7B-passthrough", "base_model:quantized:weezywitasneezy/OxytocinErosEngineering_v0-4x7B-passthrough", "endpoints_compatible", "region:us" ]
null
2024-11-23T08:43:07Z
--- base_model: weezywitasneezy/OxytocinErosEngineering_v0-4x7B-passthrough language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - ChaoticNeutrals/Eris_Remix_7B - Virt-io/Erebus-Holodeck-7B - jeiku/Eros_Prodigadigm_7B - Epiculous/Mika-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/weezywitasneezy/OxytocinErosEngineering_v0-4x7B-passthrough <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.Q2_K.gguf) | Q2_K | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.Q3_K_S.gguf) | Q3_K_S | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.Q3_K_M.gguf) | Q3_K_M | 8.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.Q3_K_L.gguf) | Q3_K_L | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.IQ4_XS.gguf) | IQ4_XS | 9.7 | | | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.Q4_K_S.gguf) | Q4_K_S | 10.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.Q4_K_M.gguf) | Q4_K_M | 10.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.Q5_K_S.gguf) | Q5_K_S | 12.3 | | | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.Q5_K_M.gguf) | Q5_K_M | 12.6 | | | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.Q6_K.gguf) | Q6_K | 14.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineering_v0-4x7B-passthrough-GGUF/resolve/main/OxytocinErosEngineering_v0-4x7B-passthrough.Q8_0.gguf) | Q8_0 | 18.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF
mradermacher
2024-11-25T08:57:36Z
67
1
transformers
[ "transformers", "gguf", "ko", "en", "base_model:gwonny/nox-solar-10.7b-v4-kolon-all-5-v3.0", "base_model:quantized:gwonny/nox-solar-10.7b-v4-kolon-all-5-v3.0", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-23T08:43:54Z
--- base_model: gwonny/nox-solar-10.7b-v4-kolon-all-5-v3.0 language: - ko - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5-v3.0 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q2_K.gguf) | Q2_K | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q3_K_S.gguf) | Q3_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q3_K_M.gguf) | Q3_K_M | 5.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q3_K_L.gguf) | Q3_K_L | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.IQ4_XS.gguf) | IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q4_0_4_4.gguf) | Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q4_K_S.gguf) | Q4_K_S | 6.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q4_K_M.gguf) | Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q5_K_S.gguf) | Q5_K_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q5_K_M.gguf) | Q5_K_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q6_K.gguf) | Q6_K | 8.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.Q8_0.gguf) | Q8_0 | 11.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.f16.gguf) | f16 | 21.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF
mradermacher
2024-11-25T08:57:30Z
123
2
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "dataset:anthracite-org/kalo-opus-instruct-22k-no-refusal", "dataset:Nopm/Opus_WritingStruct", "dataset:Gryphe/Sonnet3.5-SlimOrcaDedupCleaned", "dataset:Gryphe/Sonnet3.5-Charcard-Roleplay", "dataset:Gryphe/ChatGPT-4o-Writing-Prompts", "dataset:Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned", "dataset:Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned", "dataset:nothingiisreal/Reddit-Dirty-And-WritingPrompts", "dataset:allura-org/Celeste-1.x-data-mixture", "dataset:cognitivecomputations/dolphin-2.9.3", "base_model:EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2", "base_model:quantized:EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T09:13:55Z
--- base_model: EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2 datasets: - anthracite-org/kalo-opus-instruct-22k-no-refusal - Nopm/Opus_WritingStruct - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - Gryphe/Sonnet3.5-Charcard-Roleplay - Gryphe/ChatGPT-4o-Writing-Prompts - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - nothingiisreal/Reddit-Dirty-And-WritingPrompts - allura-org/Celeste-1.x-data-mixture - cognitivecomputations/dolphin-2.9.3 language: - en library_name: transformers license: other license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE license_name: qwen quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ1_S.gguf) | i1-IQ1_S | 22.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ1_M.gguf) | i1-IQ1_M | 23.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 27.2 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ2_S.gguf) | i1-IQ2_S | 28.0 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ2_M.gguf) | i1-IQ2_M | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q2_K.gguf) | i1-Q2_K | 29.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 31.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 32.9 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ3_S.gguf) | i1-IQ3_S | 34.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 34.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ3_M.gguf) | i1-IQ3_M | 35.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 37.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 39.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 39.8 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q4_0.gguf) | i1-Q4_0 | 41.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 44.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 64.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/mixtral-4x7b_slerp-GGUF
mradermacher
2024-11-25T08:57:19Z
14
1
transformers
[ "transformers", "gguf", "en", "base_model:isemmanuelolowe/mixtral-4x7b_slerp", "base_model:quantized:isemmanuelolowe/mixtral-4x7b_slerp", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-11-23T10:34:25Z
--- base_model: isemmanuelolowe/mixtral-4x7b_slerp language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/isemmanuelolowe/mixtral-4x7b_slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.Q2_K.gguf) | Q2_K | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.Q3_K_S.gguf) | Q3_K_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.Q3_K_M.gguf) | Q3_K_M | 11.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.Q3_K_L.gguf) | Q3_K_L | 12.6 | | | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.IQ4_XS.gguf) | IQ4_XS | 13.1 | | | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.Q4_K_S.gguf) | Q4_K_S | 13.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.Q4_K_M.gguf) | Q4_K_M | 14.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.Q5_K_S.gguf) | Q5_K_S | 16.7 | | | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.Q5_K_M.gguf) | Q5_K_M | 17.2 | | | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.Q6_K.gguf) | Q6_K | 19.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/mixtral-4x7b_slerp-GGUF/resolve/main/mixtral-4x7b_slerp.Q8_0.gguf) | Q8_0 | 25.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/llama-2-13b-cf-GGUF
mradermacher
2024-11-25T08:56:53Z
5
1
transformers
[ "transformers", "gguf", "en", "base_model:iestynmullinor/llama-2-13b-cf", "base_model:quantized:iestynmullinor/llama-2-13b-cf", "endpoints_compatible", "region:us" ]
null
2024-11-23T12:50:07Z
--- base_model: iestynmullinor/llama-2-13b-cf language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/iestynmullinor/llama-2-13b-cf <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q5_K_M.gguf) | Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-GGUF/resolve/main/llama-2-13b-cf.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF
mradermacher
2024-11-25T08:56:46Z
24
1
transformers
[ "transformers", "gguf", "ko", "en", "base_model:KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0", "base_model:quantized:KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T13:25:35Z
--- base_model: KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0 language: - ko - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ1_M.gguf) | i1-IQ1_M | 2.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ2_S.gguf) | i1-IQ2_S | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ2_M.gguf) | i1-IQ2_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q2_K.gguf) | i1-Q2_K | 4.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ3_S.gguf) | i1-IQ3_S | 4.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ3_M.gguf) | i1-IQ3_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q3_K_M.gguf) | i1-Q3_K_M | 5.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 6.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 6.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q4_0.gguf) | i1-Q4_0 | 6.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q4_K_S.gguf) | i1-Q4_K_S | 6.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q4_K_M.gguf) | i1-Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q5_K_S.gguf) | i1-Q5_K_S | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q5_K_M.gguf) | i1-Q5_K_M | 7.8 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-i1-GGUF/resolve/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0.i1-Q6_K.gguf) | i1-Q6_K | 9.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/llama-2-13b-cf-ds-GGUF
mradermacher
2024-11-25T08:56:41Z
8
1
transformers
[ "transformers", "gguf", "en", "base_model:iestynmullinor/llama-2-13b-cf-ds", "base_model:quantized:iestynmullinor/llama-2-13b-cf-ds", "endpoints_compatible", "region:us" ]
null
2024-11-23T13:56:00Z
--- base_model: iestynmullinor/llama-2-13b-cf-ds language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/iestynmullinor/llama-2-13b-cf-ds <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q5_K_M.gguf) | Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-ds-GGUF/resolve/main/llama-2-13b-cf-ds.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF
mradermacher
2024-11-25T08:56:31Z
11
1
transformers
[ "transformers", "gguf", "ko", "en", "base_model:gwonny/nox-solar-10.7b-v4-kolon-all-5-v3.0", "base_model:quantized:gwonny/nox-solar-10.7b-v4-kolon-all-5-v3.0", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T15:12:29Z
--- base_model: gwonny/nox-solar-10.7b-v4-kolon-all-5-v3.0 language: - ko - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5-v3.0 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ1_M.gguf) | i1-IQ1_M | 2.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ2_S.gguf) | i1-IQ2_S | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ2_M.gguf) | i1-IQ2_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q2_K.gguf) | i1-Q2_K | 4.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ3_S.gguf) | i1-IQ3_S | 4.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ3_M.gguf) | i1-IQ3_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q3_K_M.gguf) | i1-Q3_K_M | 5.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 6.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 6.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q4_0.gguf) | i1-Q4_0 | 6.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q4_K_S.gguf) | i1-Q4_K_S | 6.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q4_K_M.gguf) | i1-Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q5_K_S.gguf) | i1-Q5_K_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q5_K_M.gguf) | i1-Q5_K_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-5-v3.0-i1-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-5-v3.0.i1-Q6_K.gguf) | i1-Q6_K | 8.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF
mradermacher
2024-11-25T08:56:27Z
15
1
transformers
[ "transformers", "gguf", "ko", "base_model:juengsi/DT-EQ-SOLAR-10.7B-v0.1", "base_model:quantized:juengsi/DT-EQ-SOLAR-10.7B-v0.1", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-23T16:30:10Z
--- base_model: juengsi/DT-EQ-SOLAR-10.7B-v0.1 language: - ko library_name: transformers license: cc-by-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/juengsi/DT-EQ-SOLAR-10.7B-v0.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q2_K.gguf) | Q2_K | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q3_K_S.gguf) | Q3_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q3_K_M.gguf) | Q3_K_M | 5.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q3_K_L.gguf) | Q3_K_L | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.IQ4_XS.gguf) | IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q4_0_4_4.gguf) | Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q4_K_S.gguf) | Q4_K_S | 6.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q4_K_M.gguf) | Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q5_K_S.gguf) | Q5_K_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q5_K_M.gguf) | Q5_K_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q6_K.gguf) | Q6_K | 8.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.Q8_0.gguf) | Q8_0 | 11.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DT-EQ-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-EQ-SOLAR-10.7B-v0.1.f16.gguf) | f16 | 21.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/occiglot-10b-de-en-instruct-GGUF
mradermacher
2024-11-25T08:56:23Z
7
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:mayflowergmbh/occiglot-10b-de-en-instruct", "base_model:quantized:mayflowergmbh/occiglot-10b-de-en-instruct", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-23T16:57:11Z
--- base_model: mayflowergmbh/occiglot-10b-de-en-instruct language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mayflowergmbh/occiglot-10b-de-en-instruct <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q2_K.gguf) | Q2_K | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q3_K_L.gguf) | Q3_K_L | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.IQ4_XS.gguf) | IQ4_XS | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q4_0_4_4.gguf) | Q4_0_4_4 | 5.7 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q4_K_S.gguf) | Q4_K_S | 5.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q4_K_M.gguf) | Q4_K_M | 6.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q5_K_S.gguf) | Q5_K_S | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q5_K_M.gguf) | Q5_K_M | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q6_K.gguf) | Q6_K | 8.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.Q8_0.gguf) | Q8_0 | 10.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/occiglot-10b-de-en-instruct-GGUF/resolve/main/occiglot-10b-de-en-instruct.f16.gguf) | f16 | 19.8 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF
mradermacher
2024-11-25T08:56:19Z
42
1
transformers
[ "transformers", "gguf", "llama-2", "code", "base_model:opencsg/opencsg-CodeLlama-34b-v0.1", "base_model:quantized:opencsg/opencsg-CodeLlama-34b-v0.1", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-11-23T17:27:45Z
--- base_model: opencsg/opencsg-CodeLlama-34b-v0.1 language: - code library_name: transformers license: llama2 quantized_by: mradermacher tags: - llama-2 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/opencsg/opencsg-CodeLlama-34b-v0.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.Q2_K.gguf) | Q2_K | 12.6 | | | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.Q3_K_S.gguf) | Q3_K_S | 14.7 | | | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.Q3_K_M.gguf) | Q3_K_M | 16.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.Q3_K_L.gguf) | Q3_K_L | 17.9 | | | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.IQ4_XS.gguf) | IQ4_XS | 18.3 | | | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.Q4_K_S.gguf) | Q4_K_S | 19.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.Q4_K_M.gguf) | Q4_K_M | 20.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.Q5_K_S.gguf) | Q5_K_S | 23.3 | | | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.Q5_K_M.gguf) | Q5_K_M | 23.9 | | | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.Q6_K.gguf) | Q6_K | 27.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/opencsg-CodeLlama-34b-v0.1-GGUF/resolve/main/opencsg-CodeLlama-34b-v0.1.Q8_0.gguf) | Q8_0 | 36.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF
mradermacher
2024-11-25T08:56:15Z
55
1
transformers
[ "transformers", "gguf", "merge", "wizardlm", "mique", "en", "base_model:MaziyarPanahi/WizardLM-Math-70B-v0.1", "base_model:quantized:MaziyarPanahi/WizardLM-Math-70B-v0.1", "license:agpl-3.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-23T17:31:48Z
--- base_model: MaziyarPanahi/WizardLM-Math-70B-v0.1 language: - en library_name: transformers license: agpl-3.0 quantized_by: mradermacher tags: - merge - wizardlm - mique --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/MaziyarPanahi/WizardLM-Math-70B-v0.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ1_S.gguf) | i1-IQ1_S | 14.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ1_M.gguf) | i1-IQ1_M | 16.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.4 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.4 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ2_S.gguf) | i1-IQ2_S | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ2_M.gguf) | i1-IQ2_M | 23.3 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q2_K.gguf) | i1-Q2_K | 25.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 26.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.4 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ3_S.gguf) | i1-IQ3_S | 30.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ3_M.gguf) | i1-IQ3_M | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 36.9 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q4_0.gguf) | i1-Q4_0 | 39.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.6 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 48.9 | | | [PART 1](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/WizardLM-Math-70B-v0.1-i1-GGUF/resolve/main/WizardLM-Math-70B-v0.1.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 56.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/free-solar-slerp-v0.3-i1-GGUF
mradermacher
2024-11-25T08:56:07Z
31
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:freewheelin/free-solar-slerp-v0.3", "base_model:quantized:freewheelin/free-solar-slerp-v0.3", "license:mit", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-23T17:55:36Z
--- base_model: freewheelin/free-solar-slerp-v0.3 language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/freewheelin/free-solar-slerp-v0.3 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/free-solar-slerp-v0.3-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ1_M.gguf) | i1-IQ1_M | 2.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ2_S.gguf) | i1-IQ2_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ2_M.gguf) | i1-IQ2_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q2_K.gguf) | i1-Q2_K | 4.2 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ3_S.gguf) | i1-IQ3_S | 4.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ3_M.gguf) | i1-IQ3_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q3_K_M.gguf) | i1-Q3_K_M | 5.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 6.3 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 6.3 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 6.3 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q4_0.gguf) | i1-Q4_0 | 6.3 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q4_K_S.gguf) | i1-Q4_K_S | 6.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q4_K_M.gguf) | i1-Q4_K_M | 6.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q5_K_S.gguf) | i1-Q5_K_S | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q5_K_M.gguf) | i1-Q5_K_M | 7.8 | | | [GGUF](https://huggingface.co/mradermacher/free-solar-slerp-v0.3-i1-GGUF/resolve/main/free-solar-slerp-v0.3.i1-Q6_K.gguf) | i1-Q6_K | 9.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF
mradermacher
2024-11-25T08:55:42Z
5
1
transformers
[ "transformers", "gguf", "ko", "base_model:juengsi/DT-SL-MLP-SOLAR-10.7B-v0.1", "base_model:quantized:juengsi/DT-SL-MLP-SOLAR-10.7B-v0.1", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-23T18:34:56Z
--- base_model: juengsi/DT-SL-MLP-SOLAR-10.7B-v0.1 language: - ko library_name: transformers license: cc-by-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/juengsi/DT-SL-MLP-SOLAR-10.7B-v0.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q2_K.gguf) | Q2_K | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q3_K_S.gguf) | Q3_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q3_K_M.gguf) | Q3_K_M | 5.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q3_K_L.gguf) | Q3_K_L | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.IQ4_XS.gguf) | IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q4_0_4_4.gguf) | Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q4_K_S.gguf) | Q4_K_S | 6.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q4_K_M.gguf) | Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q5_K_S.gguf) | Q5_K_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q5_K_M.gguf) | Q5_K_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q6_K.gguf) | Q6_K | 8.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.Q8_0.gguf) | Q8_0 | 11.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.f16.gguf) | f16 | 21.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF
mradermacher
2024-11-25T08:55:36Z
15
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:win10/EVA-Meissa-Coder-14B-Instruct", "base_model:quantized:win10/EVA-Meissa-Coder-14B-Instruct", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T19:00:49Z
--- base_model: win10/EVA-Meissa-Coder-14B-Instruct language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/win10/EVA-Meissa-Coder-14B-Instruct <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 4.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 8.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 8.6 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 8.6 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Meissa-Coder-14B-Instruct-i1-GGUF/resolve/main/EVA-Meissa-Coder-14B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Fusion-7B-Quintessence-GGUF
mradermacher
2024-11-25T08:55:32Z
6
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:ilevytate/Fusion-7B-Quintessence", "base_model:quantized:ilevytate/Fusion-7B-Quintessence", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-23T19:03:24Z
--- base_model: ilevytate/Fusion-7B-Quintessence language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/ilevytate/Fusion-7B-Quintessence <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Fusion-7B-Quintessence-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.Q2_K.gguf) | Q2_K | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.Q3_K_S.gguf) | Q3_K_S | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.Q3_K_M.gguf) | Q3_K_M | 10.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.Q3_K_L.gguf) | Q3_K_L | 11.2 | | | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.IQ4_XS.gguf) | IQ4_XS | 11.6 | | | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.Q4_K_S.gguf) | Q4_K_S | 12.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.Q4_K_M.gguf) | Q4_K_M | 12.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.Q5_K_S.gguf) | Q5_K_S | 14.7 | | | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.Q5_K_M.gguf) | Q5_K_M | 15.1 | | | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.Q6_K.gguf) | Q6_K | 17.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Fusion-7B-Quintessence-GGUF/resolve/main/Fusion-7B-Quintessence.Q8_0.gguf) | Q8_0 | 22.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/llm4decompile-6.7b-nsp-GGUF
mradermacher
2024-11-25T08:55:28Z
37
1
transformers
[ "transformers", "gguf", "decompile", "binary", "en", "base_model:arise-sustech/llm4decompile-6.7b-nsp", "base_model:quantized:arise-sustech/llm4decompile-6.7b-nsp", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-11-23T19:31:46Z
--- base_model: arise-sustech/llm4decompile-6.7b-nsp language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - decompile - binary --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/arise-sustech/llm4decompile-6.7b-nsp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q3_K_S.gguf) | Q3_K_S | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q4_0_4_4.gguf) | Q4_0_4_4 | 3.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/llm4decompile-6.7b-nsp-GGUF/resolve/main/llm4decompile-6.7b-nsp.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF
mradermacher
2024-11-25T08:55:04Z
340
1
transformers
[ "transformers", "gguf", "T3Q-ko-solar-sft-v3.0", "kyujinpy/KoCommercial-NoSSL", "en", "dataset:davidkim205/ko_common_gen", "base_model:chlee10/T3Q-ko-solar-sft-v3.0", "base_model:quantized:chlee10/T3Q-ko-solar-sft-v3.0", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-23T20:21:26Z
--- base_model: chlee10/T3Q-ko-solar-sft-v3.0 datasets: - davidkim205/ko_common_gen language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - T3Q-ko-solar-sft-v3.0 - kyujinpy/KoCommercial-NoSSL --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/chlee10/T3Q-ko-solar-sft-v3.0 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ1_M.gguf) | i1-IQ1_M | 2.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ2_S.gguf) | i1-IQ2_S | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ2_M.gguf) | i1-IQ2_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q2_K.gguf) | i1-Q2_K | 4.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ3_S.gguf) | i1-IQ3_S | 4.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ3_M.gguf) | i1-IQ3_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q3_K_M.gguf) | i1-Q3_K_M | 5.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 6.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 6.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q4_0.gguf) | i1-Q4_0 | 6.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q4_K_S.gguf) | i1-Q4_K_S | 6.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q4_K_M.gguf) | i1-Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q5_K_S.gguf) | i1-Q5_K_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q5_K_M.gguf) | i1-Q5_K_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/T3Q-ko-solar-sft-v3.0-i1-GGUF/resolve/main/T3Q-ko-solar-sft-v3.0.i1-Q6_K.gguf) | i1-Q6_K | 8.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF
mradermacher
2024-11-25T08:55:00Z
34
1
transformers
[ "transformers", "gguf", "ko", "base_model:juengsi/DT-SL-MLP-SOLAR-10.7B-v0.1", "base_model:quantized:juengsi/DT-SL-MLP-SOLAR-10.7B-v0.1", "license:cc-by-4.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-23T20:36:50Z
--- base_model: juengsi/DT-SL-MLP-SOLAR-10.7B-v0.1 language: - ko library_name: transformers license: cc-by-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/juengsi/DT-SL-MLP-SOLAR-10.7B-v0.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ1_M.gguf) | i1-IQ1_M | 2.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ2_S.gguf) | i1-IQ2_S | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ2_M.gguf) | i1-IQ2_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q2_K.gguf) | i1-Q2_K | 4.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ3_S.gguf) | i1-IQ3_S | 4.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ3_M.gguf) | i1-IQ3_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 5.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 6.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 6.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q4_0.gguf) | i1-Q4_0 | 6.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 6.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-MLP-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-MLP-SOLAR-10.7B-v0.1.i1-Q6_K.gguf) | i1-Q6_K | 8.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/BioMistral-7B-finetuned-GGUF
mradermacher
2024-11-25T08:54:51Z
10
1
transformers
[ "transformers", "gguf", "en", "dataset:camel-ai/biology", "base_model:mridul3301/BioMistral-7B-finetuned", "base_model:quantized:mridul3301/BioMistral-7B-finetuned", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-11-23T20:42:34Z
--- base_model: mridul3301/BioMistral-7B-finetuned datasets: - camel-ai/biology language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mridul3301/BioMistral-7B-finetuned <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/BioMistral-7B-finetuned-GGUF/resolve/main/BioMistral-7B-finetuned.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/llama-2-13b-cf-of-GGUF
mradermacher
2024-11-25T08:54:31Z
5
1
transformers
[ "transformers", "gguf", "en", "base_model:iestynmullinor/llama-2-13b-cf-of", "base_model:quantized:iestynmullinor/llama-2-13b-cf-of", "endpoints_compatible", "region:us" ]
null
2024-11-23T21:21:58Z
--- base_model: iestynmullinor/llama-2-13b-cf-of language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/iestynmullinor/llama-2-13b-cf-of <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q5_K_M.gguf) | Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-13b-cf-of-GGUF/resolve/main/llama-2-13b-cf-of.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/NEBULA-XB-v1.0-GGUF
mradermacher
2024-11-25T08:54:09Z
8
0
transformers
[ "transformers", "gguf", "en", "dataset:Open-Orca/SlimOrca", "base_model:TeeZee/NEBULA-XB-v1.0", "base_model:quantized:TeeZee/NEBULA-XB-v1.0", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T04:52:10Z
--- base_model: TeeZee/NEBULA-XB-v1.0 datasets: - Open-Orca/SlimOrca language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/TeeZee/NEBULA-XB-v1.0 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/NEBULA-XB-v1.0-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.Q2_K.gguf) | Q2_K | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.Q3_K_S.gguf) | Q3_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.Q3_K_M.gguf) | Q3_K_M | 11.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.Q3_K_L.gguf) | Q3_K_L | 12.6 | | | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.IQ4_XS.gguf) | IQ4_XS | 13.0 | | | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.Q4_K_S.gguf) | Q4_K_S | 13.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.Q4_K_M.gguf) | Q4_K_M | 14.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.Q5_K_S.gguf) | Q5_K_S | 16.5 | | | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.Q5_K_M.gguf) | Q5_K_M | 16.9 | | | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.Q6_K.gguf) | Q6_K | 19.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NEBULA-XB-v1.0-GGUF/resolve/main/NEBULA-XB-v1.0.Q8_0.gguf) | Q8_0 | 25.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF
mradermacher
2024-11-25T08:54:03Z
35
2
transformers
[ "transformers", "gguf", "en", "base_model:EmilMarian/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned", "base_model:quantized:EmilMarian/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-23T22:24:58Z
--- base_model: EmilMarian/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/EmilMarian/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned-GGUF/resolve/main/OpenHermes-2.5-Mistral-7B-BOLA-Karate-Fine-Tuned.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF
mradermacher
2024-11-25T08:53:46Z
14
1
transformers
[ "transformers", "gguf", "ko", "en", "base_model:gwonny/nox-solar-10.7b-v4-kolon-all-10", "base_model:quantized:gwonny/nox-solar-10.7b-v4-kolon-all-10", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-23T23:34:17Z
--- base_model: gwonny/nox-solar-10.7b-v4-kolon-all-10 language: - ko - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-10 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q2_K.gguf) | Q2_K | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q3_K_S.gguf) | Q3_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q3_K_M.gguf) | Q3_K_M | 5.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q3_K_L.gguf) | Q3_K_L | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.IQ4_XS.gguf) | IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q4_0_4_4.gguf) | Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q4_K_S.gguf) | Q4_K_S | 6.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q4_K_M.gguf) | Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q5_K_S.gguf) | Q5_K_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q5_K_M.gguf) | Q5_K_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q6_K.gguf) | Q6_K | 8.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.Q8_0.gguf) | Q8_0 | 11.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/nox-solar-10.7b-v4-kolon-all-10-GGUF/resolve/main/nox-solar-10.7b-v4-kolon-all-10.f16.gguf) | f16 | 21.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Hermes-2-Pro-11B-GGUF
mradermacher
2024-11-25T08:53:39Z
81
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "NousResearch/Hermes-2-Pro-Mistral-7B", "en", "base_model:mattshumer/Hermes-2-Pro-11B", "base_model:quantized:mattshumer/Hermes-2-Pro-11B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-24T01:01:56Z
--- base_model: mattshumer/Hermes-2-Pro-11B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - NousResearch/Hermes-2-Pro-Mistral-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mattshumer/Hermes-2-Pro-11B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q2_K.gguf) | Q2_K | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q3_K_S.gguf) | Q3_K_S | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q3_K_M.gguf) | Q3_K_M | 5.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q3_K_L.gguf) | Q3_K_L | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.IQ4_XS.gguf) | IQ4_XS | 6.2 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q4_0_4_4.gguf) | Q4_0_4_4 | 6.4 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q4_K_S.gguf) | Q4_K_S | 6.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q4_K_M.gguf) | Q4_K_M | 6.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q5_K_S.gguf) | Q5_K_S | 7.8 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q5_K_M.gguf) | Q5_K_M | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q6_K.gguf) | Q6_K | 9.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Hermes-2-Pro-11B-GGUF/resolve/main/Hermes-2-Pro-11B.Q8_0.gguf) | Q8_0 | 12.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF
mradermacher
2024-11-25T08:48:40Z
9
1
transformers
[ "transformers", "gguf", "en", "base_model:migtissera/Tess-2.0-Mixtral-8x7B-v0.2", "base_model:quantized:migtissera/Tess-2.0-Mixtral-8x7B-v0.2", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-24T19:49:30Z
--- base_model: migtissera/Tess-2.0-Mixtral-8x7B-v0.2 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/migtissera/Tess-2.0-Mixtral-8x7B-v0.2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ1_S.gguf) | i1-IQ1_S | 9.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ1_M.gguf) | i1-IQ1_M | 10.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 12.7 | | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 14.0 | | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ2_S.gguf) | i1-IQ2_S | 14.2 | | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ2_M.gguf) | i1-IQ2_M | 15.6 | | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-Q2_K.gguf) | i1-Q2_K | 17.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 18.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 19.5 | | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ3_S.gguf) | i1-IQ3_S | 20.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 20.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ3_M.gguf) | i1-IQ3_M | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 22.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 24.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 25.2 | | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-Q4_0.gguf) | i1-Q4_0 | 26.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 26.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 28.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 32.3 | | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 33.3 | | | [GGUF](https://huggingface.co/mradermacher/Tess-2.0-Mixtral-8x7B-v0.2-i1-GGUF/resolve/main/Tess-2.0-Mixtral-8x7B-v0.2.i1-Q6_K.gguf) | i1-Q6_K | 38.5 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ibrahimchristopher/whisper-small-dv
ibrahimchristopher
2024-11-25T08:44:29Z
78
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ha", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-25T06:15:00Z
--- library_name: transformers language: - ha license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Ha - Ibrahim Ibrahim results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 metrics: - name: Wer type: wer value: 45.91914569031274 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Ha - Ibrahim Ibrahim This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.6920 - Wer Ortho: 48.8189 - Wer: 45.9191 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.0754 | 3.1847 | 500 | 0.6920 | 48.8189 | 45.9191 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Tokenizers 0.20.3
nonhmello/whisper_medium_nonhmello
nonhmello
2024-11-25T08:37:56Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "asr", "speech-recognition", "thai", "custom-model", "generated_from_trainer", "th", "base_model:biodatlab/whisper-th-medium-combined", "base_model:finetune:biodatlab/whisper-th-medium-combined", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-25T02:25:57Z
--- library_name: transformers language: - th license: apache-2.0 base_model: biodatlab/whisper-th-medium-combined tags: - asr - speech-recognition - thai - custom-model - generated_from_trainer metrics: - wer model-index: - name: Whisper Medium TH - Nonhmello results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium TH - Nonhmello This model is a fine-tuned version of [biodatlab/whisper-th-medium-combined](https://huggingface.co/biodatlab/whisper-th-medium-combined) on the Custom dataset on local machine dataset. It achieves the following results on the evaluation set: - Loss: 0.3068 - Wer: 77.4194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-------:| | 0.0092 | 83.3333 | 500 | 0.2586 | 90.3226 | | 0.0006 | 166.6667 | 1000 | 0.3068 | 77.4194 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Cylingo/Xinyuan-VL-2B
Cylingo
2024-11-25T08:24:55Z
134
7
transformers
[ "transformers", "safetensors", "qwen2_vl", "image-text-to-text", "multimodal", "visual-question-answering", "en", "zh", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
visual-question-answering
2024-09-24T12:45:20Z
--- license: apache-2.0 language: - en - zh pipeline_tag: visual-question-answering tags: - multimodal library_name: transformers --- <div align=center><img src ="https://cdn-uploads.huggingface.co/production/uploads/6299c90ef1f2a097fcaa1293/XEfp5nnJOixkGAOyF8UtN.png"/></div> ## Introduction **Xinyuan-VL-2B** is a high-performance multimodal large model for the end-side from the Cylingo Group, which is fine-tuned with `Qwen/Qwen2-VL-2B-Instruct`, and uses more than 5M of multimodal data as well as a small amount of plain text data. It performs well on several authoritative Benchmarks. ## How to use In order to rely on the thriving ecology of the open source community, we chose to fine-tune [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) to form our `Cylingo/Xinyuan-VL- 2B`. Thus, using `Cylingo/Xinyuan-VL-2B` is consistent with using `Qwen/Qwen2-VL-2B-Instruct`: ```Python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # default: Load the model on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "Cylingo/Xinyuan-VL-2B", torch_dtype="auto", device_map="auto" ) # default processer processor = AutoProcessor.from_pretrained("Cylingo/Xinyuan-VL-2B") messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ## Evaluation We evaluated **[XinYuan-VL-2B](https://huggingface.co/thomas-yanxin/XinYuan-VL-2B)** using the [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) toolkit across the following benchmarks and found that **XinYuan-VL-2B** **outperformed** [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) released by Alibaba Cloud, as well as other models of comparable parameter scale that have significant influence in the open-source community. <p align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/6299c90ef1f2a097fcaa1293/7ThTCYfd_lDzsvaFLlUv2.png"> </p> You can see the results in [opencompass/open_vlm_leaderboard](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard): | Benchamrk | MiniCPM-2B | InternVL-2B | Qwen2-VL-2B | **XinYuan-VL-2B** | | :---: | :---: | :---: | :---: | :---: | | MMB-CN-V11-Test | 64.5 | 68.9 | 71.2 | **74.3** | | MMB-EN-V11-Test | 65.8 | 70.2 | 73.2 | **76.5** | | MMB-EN | 69.1 | 74.4 | 74.3 | **78.9** | | MMB-CN | 66.5 | 71.2 | 73.8 | **76.12** | | CCBench | 45.3 | 74.7 | 53.7 | 55.5 | | MMT-Bench | 53.5 | 50.8 | 54.5 | **55.2** | | RealWorld | 55.8 | 57.3 | 62.9 | **63.9** | | SEEDBench\_IMG | 67.1 | 70.9 | 72.86 | **73.4** | | AI2D | 56.3 | 74.1 | **74.7** | 74.2 | | MMMU | 38.2 | 36.3 | **41.1** | 40.9 | | HallusionBench | 36.2 | 36.2 | 42.4 | **55.00** | | POPE | 86.3 | 86.3 | 86.82 | **89.42** | | MME | 1808.6 | **1876.8** | 1872.0 | 1854.9 | | MMStar | 39.1 | 49.8 | 47.5 | **51.87** | | SEEDBench2\_Plus | 51.9 | 59.9 | 62.23 | **62.98** | | BLINK | 41.2 | 42.8 | **43.92** | 42.98 | | OCRBench | 605 | 781 | **794** | 782 | | TextVQA | 74.1 | 73.4 | **79.7** | 77.6 |
Miyoki/cve-mistral-7b-instruct-v0.3-bnb-4bit-02
Miyoki
2024-11-25T08:21:37Z
12
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T08:18:38Z
--- base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Miyoki - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tl81092/my-drug-model_2
tl81092
2024-11-25T08:14:46Z
105
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T08:14:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JNolet/Qwen2.5-Coder-14B_v11.25.24.0_CodeInstruct
JNolet
2024-11-25T08:13:51Z
18
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:Qwen/Qwen2.5-Coder-14B", "base_model:merge:Qwen/Qwen2.5-Coder-14B", "base_model:Qwen/Qwen2.5-Coder-14B-Instruct", "base_model:merge:Qwen/Qwen2.5-Coder-14B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T08:05:29Z
--- base_model: - Qwen/Qwen2.5-Coder-14B - Qwen/Qwen2.5-Coder-14B-Instruct library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-Coder-14B](https://huggingface.co/Qwen/Qwen2.5-Coder-14B) as a base. ### Models Merged The following models were included in the merge: * [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Qwen/Qwen2.5-Coder-14B-Instruct parameters: weight: 1 density: 1 merge_method: ties base_model: Qwen/Qwen2.5-Coder-14B parameters: weight: 1 density: 1 normalise: true int8_mask: true dtype: bfloat16 ```
Kasobi/distilbert-base-uncased-finetuned-emotion
Kasobi
2024-11-25T08:09:49Z
105
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-23T12:39:59Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2250 - Accuracy: 0.9245 - F1: 0.9245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3164 | 0.901 | 0.8999 | | No log | 2.0 | 500 | 0.2250 | 0.9245 | 0.9245 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cpu - Datasets 3.1.0 - Tokenizers 0.20.3
Shinyaaa/Face-travel-05-v1
Shinyaaa
2024-11-25T08:05:00Z
103
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-11-25T08:04:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
msr2903/mrm8488-distilroberta-fine-tuned-financial-sentiment
msr2903
2024-11-25T07:58:40Z
134
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "dataset:NickyNicky/finance-financialmodelingprep-stock-news-sentiments-rss-feed", "base_model:mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis", "base_model:finetune:mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T07:35:07Z
--- library_name: transformers datasets: - NickyNicky/finance-financialmodelingprep-stock-news-sentiments-rss-feed base_model: - mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis --- ### Model Description <!-- Provide a longer summary of what this model is. --> This model is a fine-tuned version of [mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis](https://huggingface.co/mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis) on the [NickyNicky/finance-financialmodelingprep-stock-news-sentiments-rss-feed](https://huggingface.co/datasets/NickyNicky/finance-financialmodelingprep-stock-news-sentiments-rss-feed) dataset. It achieves the following results on the evaluation set: - Loss: 0.4090 - Accuracy: 0.9171 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - num_epochs: 5 ### Training results | Training Loss | Epoch | Validation Loss | |:-------------:|:-----:|:---------------:| | 0.318500 | 1.0 | 0.294045 | | 0.281700 | 2.0 | 0.298364 | | 0.250100 | 3.0 | 0.302255 | | 0.186400 | 4.0 | 0.380530 | | 0.179100 | 5.0 | 0.409072 |
SMARTICT/paraphrase-multilingual-MiniLM-L12-v2-ft-tr-rag-v1
SMARTICT
2024-11-25T07:48:31Z
44
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:8970", "loss:MultipleNegativesRankingLoss", "en", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "base_model:finetune:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-22T13:26:33Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:8970 - loss:MultipleNegativesRankingLoss base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 widget: - source_sentence: 'Seri konum efekti tarafฤฑndan oluลŸturulan ลŸeklindeki seri konum eฤŸrisini gรถsteren grafik. ''''''Seri konum etkisi'''''', bir kiลŸinin, bir serideki ilk ve son รถgeleri en iyi; ortanca รถgeleri en kรถtรผ hatฤฑrlama eฤŸilimidir. Bu terim, Hermann Ebbinghaus tarafฤฑndan kendi รผzerine yaptฤฑฤŸฤฑ รงalฤฑลŸmalar ile ve bu terim, hatฤฑrlama doฤŸruluฤŸunun, bir รถgenin bir รงalฤฑลŸma listesindeki konumunun bir fonksiyonu olarak deฤŸiลŸtiฤŸi bulgusuna deฤŸinmektedir. Sฤฑrasฤฑ fark etmeksizin (serbest hatฤฑrlama) listedeki รถgelerin hatฤฑrlanmasฤฑ istenildiฤŸinde, insanlar listenin sonundaki รถgeleri hatฤฑrlamaya baลŸlama eฤŸilimindedir ve bu รถgeleri en iyi ลŸekilde hatฤฑrlarlar (''''''sonluk etkisi''''''). Daha รถnceki liste รถgeleri arasฤฑnda, ilk birkaรง รถge, orta รถgelerden daha sฤฑk hatฤฑrlanฤฑr (''''''ilklik etkisi''''''). ฤฐlklik etkisi iรงin รถnerilen bir neden, sunulan ilk รถgelerin kendilerine ayrฤฑlmฤฑลŸ daha fazla miktarda iลŸlem nedeniyle en etkin ลŸekilde hareketsiz bellekte depolanmasฤฑdฤฑr. (ฤฐlk liste รถgesi kendi baลŸฤฑna prova edilebilir; ikincisi, birincisi ile birlikte prova edilmek zorundadฤฑr, รผรงรผncรผ, birincisi ve ikincisi ile birlikte, ve bรถyle devam eder.) ร–geler hฤฑzlฤฑ bir ลŸekilde sunulduฤŸunda ilklik etkisi azalฤฑr ve yavaลŸ sunulduฤŸunda artar (her bir รถgenin iลŸlenmesini ve bรถylece kalฤฑcฤฑ depolanmasฤฑnฤฑ azaltan ve arttฤฑran faktรถrler). Daha uzun sunum listelerinin ilklik etkisini azalttฤฑฤŸฤฑ bulunmuลŸtur. Sonluk etkisi iรงin teorileลŸmiลŸ bir neden, bu รถgelerin geri hatฤฑrlanmasฤฑ talep edildiฤŸinde hala aktif hafฤฑzada bulunmasฤฑdฤฑr. Hiรงbirinden yararlanmayan รถgeler (ortanca รถgeler) en kรถtรผ ลŸekilde geri รงaฤŸrฤฑlฤฑr. Sonluk etkisi iรงin ek bir aรงฤฑklama zamansal baฤŸlamla ilgilidir: Mevcut zamansal baฤŸlam, daha yeni รถgelerin, farklฤฑ bir zamansal baฤŸlamda (listenin baลŸlarฤฑnda) incelenen รถgelere gรถre daha yรผksek geri hatฤฑrlama olasฤฑlฤฑฤŸฤฑna sahip olacaฤŸฤฑnฤฑ haber veren bir geri hatฤฑrlama iลŸareti olarak kullanฤฑlabilir. Araya giren bir gรถrev verildiฤŸinde sonluk etkisi azalฤฑr. Araya giren gรถrevler, รงalฤฑลŸan belleฤŸi kullanฤฑr, ve dikkat daฤŸฤฑtฤฑcฤฑ aktivite sรผresi 15 ila 30 saniyeyi aลŸarsa, sonluk etkisini bozabilir. Ek olarak, geri hatฤฑrlama testten hemen sonra gelirse, sonluk etkisi รงalฤฑลŸฤฑlan listenin uzunluฤŸuna, veya sunum hฤฑzฤฑna bakฤฑlmaksฤฑzฤฑn istikrarlฤฑdฤฑr. Kalฤฑcฤฑ uzun sรผreli hafฤฑza oluลŸturma kabiliyeti zayฤฑf olan amnezyaklar ilklik etkisi gรถstermezler, ancak hatฤฑrlama รงalฤฑลŸmadan hemen sonra gelirse bir sonluk etkisi gรถsterirler. Alzheimer hastalฤฑฤŸฤฑ olan kiลŸiler daha dรผลŸรผk bir ilklik etkisi sergiler, ancak hatฤฑrlamada bir sonluk etkisi gรถstermezler. ฤฐlklik etkisi ฤฐlklik etkisi, psikolojide ve sosyolojide, kiลŸinin ilk verilen bilgiyi daha sonra verilen bilgiden daha iyi hatฤฑrlamasฤฑna neden olan bir biliลŸsel รถnyargฤฑdฤฑr. ร–rneฤŸin, yeterince uzun bir kelime listesini okuyan bir kiลŸinin, listenin baลŸฤฑndaki kelimeleri hatฤฑrlamasฤฑ listenin ortasฤฑndakileri hatฤฑrlamasฤฑndan daha yรผksek ihtimallidir. Birรงok araลŸtฤฑrmacฤฑ bu olguyu serbest hatฤฑrlama null testler yoluyla aรงฤฑklamaya รงalฤฑลŸmฤฑลŸtฤฑr. Coluccia, Gamboz ve Brandimonte (2011), serbest hatฤฑrlamayฤฑ katฤฑlฤฑmcฤฑlarฤฑn herhangi bir telkin olmaksฤฑzฤฑn bilgileri hatฤฑrlamaya รงalฤฑลŸmasฤฑ olarak aรงฤฑklamaktadฤฑr. 20. yรผzyฤฑlฤฑn sonlarฤฑndaki bazฤฑ deneylerde, kendilerine sunulan bir listede test edileceklerini bilen katฤฑlฤฑmcฤฑlarฤฑn รถgeleri prova edeceฤŸi kaydedildi: ร–geler sunulduฤŸunda katฤฑlฤฑmcฤฑlar bu รถgeleri kendilerine tekrar edecek ve yeni รถgeler sunuldukรงa katฤฑlฤฑmcฤฑlar daha yeni maddelerle birlikte รถnceki รถgeleri prova etmeye devam edeceklerdi. ฤฐlklik etkisinin รถgelerin sunumu arasฤฑnda daha fazla zaman olduฤŸunda hatฤฑrlama รผzerinde daha bรผyรผk bir etkisi olduฤŸu, bรถylece katฤฑlฤฑmcฤฑlarฤฑn รถnceki (asal) รถgeleri prova etme ลŸansฤฑnฤฑn daha yรผksek olacaฤŸฤฑ gรถsterilmiลŸtir. Aรงฤฑk prova katฤฑlฤฑmcฤฑlarฤฑn prova รถrรผntรผlerini test etmek iรงin kullanฤฑlan bir teknikti. Bu tekniฤŸin kullanฤฑldฤฑฤŸฤฑ bir deneyde, katฤฑlฤฑmcฤฑlardan akla gelen รถgeleri yรผksek sesle sรถylemeleri istendi. Bu ลŸekilde deneyci, katฤฑlฤฑmcฤฑlarฤฑn listenin baลŸฤฑndaki รถgeleri listenin ortasฤฑndaki รถgelerden daha รงok bรถylece onlarฤฑ daha sฤฑk prova yapacaฤŸฤฑnฤฑ ve daha sonra listenin ortasฤฑndaki รถgelerden daha iyi hatฤฑrlayacaฤŸฤฑnฤฑ gรถrebildi. Brodie ve Murdock tarafฤฑndan yapฤฑlan baลŸka bir deneyde, sonluk etkisinin ilklik etkisinden kฤฑsmen sorumlu olduฤŸu bulunmuลŸtur. Deneylerinde, aynฤฑ zamanda aรงฤฑk prova tekniฤŸini kullandฤฑlar ve katฤฑlฤฑmcฤฑlarฤฑn daha รถnceki รถgeleri daha fazla prova yapmasฤฑnฤฑn yanฤฑ sฤฑra, listenin baลŸฤฑndaki kelimeleri provada daha sonra sรถylediklerini keลŸfettiler. Bu ลŸekilde, daha รถnceki รถgeler prova yolu sayesinde test sonuna daha yakฤฑndฤฑ ve kฤฑsmen sonluk etkisi ile 2013 yฤฑlฤฑnda yapฤฑlan bir araลŸtฤฑrma, ilklik etkisinin, edimsel koลŸullama olarak da bilinen bir รถฤŸrenme sรผreci olan tekrarlanan seรงim deneyime dayalฤฑ karar verme sรผrecinde de รถnemli olduฤŸunu gรถstermiลŸtir. Yazarlar, takip eden davranฤฑลŸฤฑn ilk รถdรผlรผnรผn deฤŸerine verilen รถnemi gรถstermiลŸ ve bu olguyu sonuรง รถnceliฤŸi olarak ifade etmiลŸlerdir. BaลŸka bir รงalฤฑลŸmada, katฤฑlฤฑmcฤฑlar iki cรผmleden birini aldฤฑ. ร–rneฤŸin, cรผmlelerin biri "Steve akฤฑllฤฑ, รงalฤฑลŸkan, eleลŸtirel, fevri ve kฤฑskanรงtฤฑr."; diฤŸeri ise "Steve kฤฑskanรง, fevri, eleลŸtirel, รงalฤฑลŸkan ve akฤฑllฤฑdฤฑr." olabilir. Bu iki cรผmle aynฤฑ bilgileri iรงerir. Birincisi baลŸlangฤฑรงta pozitif รถzellikleri gรถsterirken, ikincisi olumsuz รถzelliklere sahiptir. AraลŸtฤฑrmacฤฑlar, katฤฑlฤฑmcฤฑlarฤฑn Steve''i ilk cรผmle verildiฤŸinde ikincisine kฤฑyasla daha olumlu buldular. Sonluk etkisi ฤฐki geleneksel teori sฤฑnฤฑfฤฑ sonluk etkisini aรงฤฑklar. ร‡ift depo modelleri Bu modeller, en son listelenen รงalฤฑลŸma รถgelerinin oldukรงa eriลŸilebilir kฤฑsa sรผreli ara bellekten, yani insan hafฤฑzasฤฑndaki kฤฑsa sรผreli depodan (KSD) alฤฑndฤฑฤŸฤฑnฤฑ varsayar. Bu, daha sonra incelenen รถgelerin, daha รถnce incelenen รถgelere gรถre bir avantaja sahip olmasฤฑnฤฑ saฤŸlar, รงรผnkรผ daha รถnceki รงalฤฑลŸma รถgelerinin uzun sรผreli bellek deposundan (USD) geriye getirilmesi iรงin daha fazla รงaba harcanmasฤฑ gerekir. Bu tรผr modellerin รถnemli bir tahmini, alฤฑkoyma dรถneminde (liste sunumu ile test arasฤฑndaki sรผre) 10-30 saniye aritmetik problemleri รงรถzme gibi dikkat daฤŸฤฑtฤฑcฤฑ bir sunumun yenilik etkisini azaltmasฤฑdฤฑr. KSD sฤฑnฤฑrlฤฑ kapasiteye sahip olduฤŸundan, dikkat daฤŸฤฑnฤฑklฤฑฤŸฤฑ daha sonraki รงalฤฑลŸma listesi รถgelerini KSD''den deฤŸiลŸtirir, bรถylece testte bu รถgeler sadece USD''den alฤฑnabilir ve kฤฑsa sรผreli ara bellekten daha kolay alฤฑnabilme avantajlarฤฑnฤฑ yitirebilir. Bu nedenle, รงift depolu modeller, hem anlฤฑk hatฤฑrlama gรถrevlerindeki sonluk etkisini hem de gecikmeli serbest geri hatฤฑrlama gรถrevinde bรถyle bir etkinin zayฤฑflamasฤฑnฤฑ baลŸarฤฑlฤฑ bir ลŸekilde aรงฤฑklar. Bununla birlikte, bu modelle ilgili bรผyรผk bir sorun, uyarฤฑcฤฑlar arasฤฑ zaman aralฤฑฤŸฤฑ (aralฤฑksฤฑz รงeldirici gรถrev) sฤฑrasฤฑnda her รงalฤฑลŸma maddesi arasฤฑnda bir dikkat daฤŸฤฑlmasฤฑ olduฤŸunda, gecikmeli hatฤฑrlamada gรถzlemlenen uzun sรผreli etkisini tahmin edememesidir. Dikkatin daฤŸฤฑlmasฤฑ, son รงalฤฑลŸma maddesinden sonra hala mevcut olduฤŸundan, รงalฤฑลŸma maddesini KSD''den, sonluk etkisi azaltฤฑlacak ลŸekilde Bu uzun vadeli sonluk etkisinin varlฤฑฤŸฤฑ, anlฤฑk ve uzun sรผreli sonluk etkilerinin ortak bir mekanizmayฤฑ paylaลŸmasฤฑ olasฤฑlฤฑฤŸฤฑnฤฑ arttฤฑrmaktadฤฑr. Tek depo modelleri Tek depo teorilerine gรถre, dizisel konum etkilerinden tek bir mekanizma sorumludur. ฤฐlk model tรผrรผ, her bir liste รถgesinin incelenmesi ile test arasฤฑndaki sรผrenin, bir รถgenin alฤฑnฤฑrken bellek izinin gรถreceli rekabetรงiliฤŸini belirlediฤŸi gรถreceli zamansal farklฤฑlฤฑฤŸa dayanmaktadฤฑr. Bu modelde, liste sonu รถgelerinin daha belirgin ve dolayฤฑsฤฑyla daha kolay alฤฑnabileceฤŸi BaลŸka bir model tรผrรผ, รถgelerin bellekten geri alฤฑnmasฤฑnฤฑn yalnฤฑzca kiลŸinin รงalฤฑลŸma รถgesinin kendisini deฤŸil, aynฤฑ zamanda รงalฤฑลŸma baฤŸlamฤฑnฤฑ zihinsel temsiline baฤŸlฤฑ olduฤŸunu รถne sรผren baฤŸlamsal deฤŸiลŸkenliฤŸe dayanmaktadฤฑr. BaฤŸlam zamanla deฤŸiลŸtiฤŸinden ve gittikรงe deฤŸiลŸtiฤŸinden, bellek รถgelerini geri almak iรงin yarฤฑลŸtฤฑฤŸฤฑnda, anlฤฑk serbest hatฤฑrlama testinde, daha yakฤฑn zamanda incelenen รถgelerin test baฤŸlamฤฑyla daha benzer kodlama baฤŸlamlarฤฑ olacaktฤฑr ve geriye getirme olasฤฑlฤฑฤŸฤฑ daha yรผksektir. Anlฤฑk serbest hatฤฑrlama dฤฑลŸฤฑnda, bu modeller gecikmeli serbest hatฤฑrlama ve sรผrekli รงeldirici serbest hatฤฑrlama koลŸullarฤฑnda sonluk etkisinin varlฤฑฤŸฤฑnฤฑ veya yokluฤŸunu da tahmin edebilir. Gecikmeli hatฤฑrlama koลŸullarฤฑ altฤฑnda, test baฤŸlamฤฑ artan tutma aralฤฑฤŸฤฑyla uzaklaลŸarak zayฤฑflamฤฑลŸ bir sonluk etkisi yaratฤฑr. Sรผrekli รงeldirici hatฤฑrlama koลŸullarฤฑnda, artan yorumlama aralฤฑklarฤฑ รงalฤฑลŸma baฤŸlamฤฑ ve test baฤŸlamฤฑ arasฤฑndaki benzerlikleri azaltฤฑrken, maddeler arasฤฑndaki gรถreli benzerlikler deฤŸiลŸmeden kalmaktadฤฑr. Hatฤฑrlama iลŸlemi rekabetรงi olduฤŸu sรผrece, son รถgeler kazanacaktฤฑr, bu nedenle bir sonluk etkisi gรถzlenir. Oran kuralฤฑ Genel olarak, sonluk etkisi ile ilgili รถnemli bir ampirik gรถzlem, mutlak tutma aralฤฑklarฤฑ (รงalฤฑลŸma sonu ile test sรผresi arasฤฑndaki sรผre) veya sunumlar arasฤฑ aralฤฑklar (farklฤฑ รงalฤฑลŸma รถgeleri arasฤฑndaki sรผre) olmamasฤฑdฤฑr. Bunun yerine, sonluk miktarฤฑ ile belirlenen oran; mutlak tutma aralฤฑklarฤฑ ve sunumlar arasฤฑ aralฤฑklar oranฤฑ (oran kuralฤฑ). Sonuรง olarak, bu oran sabit kaldฤฑฤŸฤฑ sรผrece, aralฤฑklarฤฑn mutlak deฤŸerlerinden baฤŸฤฑmsฤฑz olarak yenilik gรถzlenecektir, bรถylece ''''''zaman รถlรงeฤŸi deฤŸiลŸmezliฤŸi'''''' olarak bilinen bir fenomen olan tรผm zaman รถlรงeklerinde yenilik gรถzlenebilir. Bu, yeniliฤŸin KSD''nin bรผyรผklรผฤŸรผne ve KSD''deki รถgelerin yer deฤŸiลŸtirmesini yรถneten kurala baฤŸlฤฑ olduฤŸunu varsayan รงift depo modelleri ile รงeliลŸmektedir. Olasฤฑ aรงฤฑklamalar daha sonra tek, aynฤฑ bir mekanizma yoluyla ortaya รงฤฑkan sonluk etkisini aรงฤฑklar ya da anlฤฑk ve uzun sรผreli sonluk etkileri iรงin iki farklฤฑ mekanizmayฤฑ รถngรถrebilen farklฤฑ bir modelle yeniden aรงฤฑklar. Bรถyle bir aรงฤฑklama Davelaar ve ark. (2005), tek bileลŸenli bir bellek modeli tarafฤฑndan aรงฤฑklanamayan anlฤฑk ve uzun sรผreli sonluk fenomenleri arasฤฑnda ayrฤฑลŸmalar olduฤŸunu, anlฤฑk ve sonluk aรงฤฑklayan bir KSD''nin varlฤฑฤŸฤฑnฤฑ savunan ve bir saniye uzun sรผreli sonluฤŸu aรงฤฑklayan baฤŸlamsal kaymaya dayanan mekanizmadฤฑr. ฤฐlgili etkiler 1977''de William Crano รถzellikle birbirinin zฤฑttฤฑ olduฤŸu sรถylenen ilklik ve sonluk etkileri baลŸta olmak รผzere sฤฑra etkilerinin doฤŸasฤฑnฤฑ belirten bir รงalฤฑลŸma hazฤฑrlamaya karar verdi. Crano tarafฤฑndan test edilen รถzellikler: Anlam deฤŸiลŸimi hipotezi Bir listenin baลŸฤฑndaki รถgeler, katฤฑlฤฑmcฤฑlarฤฑn listenin geri kalanฤฑnฤฑn da uymasฤฑnฤฑ beklediฤŸi bir tema oluลŸturur. Katฤฑlฤฑmcฤฑ, listedeki bazฤฑ kelimelerin anlamlarฤฑnฤฑ belirlediฤŸi beklentiye uyacak ลŸekilde deฤŸiลŸtirir. Watkins ve PeynircioฤŸlu (1984), katฤฑlฤฑmcฤฑlarฤฑn kelimelerin anlamlarฤฑnฤฑ deฤŸiลŸtirerek belirlenen temadan uzaklaลŸarak da olsa sunulan bilgideki sapmayฤฑ azalttฤฑฤŸฤฑnฤฑ aรงฤฑklamฤฑลŸtฤฑr. Tutarsฤฑzlฤฑk durumda saymama Katฤฑlฤฑmcฤฑlar, kendilerine sunulan รถnceki maddelerle tutarlฤฑ olmayan bilgileri dikkate almazlar. BaลŸka bir deyiลŸle, tutarsฤฑzlฤฑk durumda saymama, sunulan diฤŸer bilgilerle tutarsฤฑz olan bilgileri tutarlฤฑ olanlardan daha az รถnemli gรถrmeyi iรงerir (Devine ve Ostrom, 1985). Dikkat azaltma hipotezi ร–nce sunulan bilgilerin katฤฑlฤฑmcฤฑlar รผzerinde daha sonra sunulan bilgilerden daha fazla etkisi vardฤฑr ve bu bilgiler tutarlฤฑ olsa bile รถncelikli bir etkinin ortaya รงฤฑkmasฤฑna neden olur. Steiner ve Rain (1989) insanlarฤฑn baลŸlangฤฑรงta sunulan bilgilere daha fazla dikkat ettiklerini, ancak kendilerine sonradan sunulan bilgilere giderek daha az dikkat ettiklerini aรงฤฑklamaktadฤฑr. ฤฐlklik etkisi, katฤฑlฤฑmcฤฑlarฤฑn baลŸlangฤฑรง bilgilerine dikkat etmeleri ve daha sonra sunulan bilgileri gรถrmezden gelmeleri nedeniyle oluลŸur. ร–te yandan, katฤฑlฤฑmcฤฑlar sรผrekli olarak bilgiye dikkat etmek zorunda olduklarฤฑ bir durumdaysa, sonluk etkisi oluลŸabilir. ''''''Sรผreklilik etkisi'''''' veya gecikme etkisi, baลŸarฤฑlฤฑ bir geri รงaฤŸฤฑrma sonra, bir sonraki geri รงaฤŸrฤฑlan รถgenin, yakฤฑn bir seri konumdan ziyade, uzak bir seri konumdan gelme olasฤฑlฤฑฤŸฤฑnฤฑn dรผลŸรผk olduฤŸunu tahmin eder (Kahana, Howard, Zaromb ve Wingfiend, 2002). ฤฐki รถgenin seri konumu arasฤฑndaki fark seri konum gecikmesi olarak adlandฤฑrฤฑlฤฑr. KoลŸullu yanฤฑt olasฤฑlฤฑฤŸฤฑ olarak adlandฤฑrฤฑlan bir baลŸka faktรถr, belirli bir seri konum gecikmesini hatฤฑrlama olasฤฑlฤฑฤŸฤฑdฤฑr. Ayrฤฑca bakฤฑnฤฑz Anchoring Clive Wearing Serbest Hatฤฑrlama Henry Molaison ฤฐknada ฤฐlklik Yasasฤฑ ร–ฤŸrenme EฤŸrisi Hafฤฑza EฤŸilimleri Listesi BiliลŸsel EฤŸilimler Listesi Sonucun ฤฐlkliฤŸi ร–ฤŸrenme ฤฐlkeleri Tepe-Uรง Kuralฤฑ Anฤฑmsama Yumrusu Kaynakรงa ;Atฤฑflar ;Basฤฑlฤฑ eserler Konuyla ilgili yayฤฑnlar Liebermann, David A. L''''earning and memory: An integrative approach.'''' Belmont, CA: Thomson Wadsworth, 2004, Kategori:Bellek sรผreรงleri eฤŸilimler' sentences: - Sultan Bey'in hayatฤฑnฤฑn ikinci kฤฑsmฤฑnฤฑ oluลŸturan รถnemli olay nedir? - Aslanbaba hangi ilรงeye baฤŸlฤฑ bir mahalledir? - Seri konum eฤŸrisinin ลŸeklini hangi etmenlerin belirlediฤŸi anlatฤฑyor musunuz? - source_sentence: (doฤŸum adฤฑ '''David Gordon Kirkpatrick''' 13 Haziran 1927 19 Eylรผl 2003), Avustralyalฤฑ country mรผzik ลŸarkฤฑcฤฑsฤฑ ve sรถz yazarฤฑydฤฑ. Avustralya iรงin bir kรผltรผr ikonuydu ve รผlkenin en รงok รถdรผl alan yฤฑldฤฑzlarฤฑndan biriydi. Haziran 1927'de Nulla Nulla Creek'te bir รงiftรงinin oฤŸlu olarak doฤŸan Dusty, ilk ลŸarkฤฑsฤฑ "The Way the Cowboy Dies"ฤฑ 1937'de yazdฤฑ ve 1938'de 11 yaลŸฤฑndayken "Slim Dusty" sahne adฤฑnฤฑ aldฤฑ. YetmiลŸ yฤฑla yakฤฑn kariyerinde รงok sayฤฑda kayฤฑt yaptฤฑ. Yรผzden fazla albรผm รงฤฑkardฤฑ, yedi milyondan fazla kayฤฑt sattฤฑ ve 70'in รผzerinde altฤฑn ve platin albรผm sertifikasฤฑ kazandฤฑ". Sidney 2000 Olimpiyat Oyunlarฤฑnฤฑn kapanฤฑลŸ tรถreninde Avustralya'da รงok รผnlรผ bir ลŸarkฤฑ olan "Waltzing Matilda"yฤฑ seslendirdi. 1951'de Dusty, ลŸarkฤฑcฤฑ-sรถz yazarฤฑ Joy McKean ile evlendi ve onun desteฤŸiyle Avustralya'da bรผyรผk baลŸarฤฑlar elde etti. ร‡iftin, ลŸarkฤฑcฤฑ-sรถz yazarฤฑ olan Anne Kirkpatrick ve David Kirkpatrick adlฤฑ iki รงocuklarฤฑ oldu. AkciฤŸer ve bรถbrek kanseri ile uzun bir mรผcadelenin ardฤฑndan 19 Eylรผl 2003'te 76 yaลŸฤฑnda Yeni Gรผney Galler'deki evinde รถldรผ. Kaynakรงa Hristiyanlar erkek ลŸarkฤฑcฤฑ-ลŸarkฤฑ yazarlarฤฑ ลžeref NiลŸanฤฑ sahipleri erkek gitaristler kanserinden รถlenler Kategori:Bรถbrek kanserinden รถlenler Kategori:Yeni Gรผney Galler'de kanserden รถlenler asฤฑllฤฑ Avustralyalฤฑlar gitaristler country ลŸarkฤฑcฤฑlarฤฑ Kategori:ARIA Hall of Fame รผyeleri Kategori:ARIA ร–dรผlรผ sahipleri Kategori:APRA ร–dรผlรผ sahipleri gitaristler Kategori:21. yรผzyฤฑl gitaristleri Kategori:20. yรผzyฤฑl gitaristleri Kategori:2003 yฤฑlฤฑnda รถlenler Kategori:1927 doฤŸumlular sentences: - Bu Hollandalฤฑ aktrisin adฤฑ nedir? - Kimdi Slim Dusty? - Dusty Springfield'in mรผzik kariyeri ne kadar sรผrmรผลŸtรผr? - source_sentence: 14 Aralฤฑk 1929 tarihli Milliyet gazetesinde ฤฐstanbul'da Kฤฑr KoลŸusu Eski logosu '''Tรผrkiye Atletizm Federasyonu''' ('''TAF'''), atletizm sporunun Tรผrkiye'deki yรถnetim teลŸkilatฤฑ olan spor federasyonu. 1922'de Tรผrkiye ฤฐdman Cemiyetleri ฤฐttifakฤฑ (TฤฐCฤฐ) bรผnyesinde kurulan Tรผrkiye Atletizm Federasyonu, aynฤฑ yฤฑl Uluslararasฤฑ Atletizm Federasyonlarฤฑ BirliฤŸi (IAAF) รผyeliฤŸine kabul edildi. Gรถrev yapmฤฑลŸ baลŸkanlar Tรผrkiye Atletizm Federasyonu'nun kronolojik sฤฑrayla baลŸkanlarฤฑ; Ali Seyfi Beyti Ahmet Fetgeri Burhan Felek Vildan AลŸir SavaลŸฤฑr Saffet Gรผrol Adnan Hรผn ฤฐrfan ลžahinbaลŸ ฤฐsmail Hakkฤฑ Gรผngรถr Ali Naili Moran Refik Tagay Sadun ร–zdede Nejat Kรถk Behรงet Beylem Erol Zorlu Kurthan FiลŸek Jerfi Fฤฑratlฤฑ Nuri Turan Abdullah Kรถkpฤฑnar Cรผneyt Koryรผrek Yฤฑlmaz Sazak ฤฐlker ร‡etin Hรผseyin ManioฤŸlu Ali Ergenรง Muharrem Dalkฤฑlฤฑรง AลŸkฤฑn Tuna Fikret ร‡etinkaya Semra Aksu Hรผseyin Yฤฑldฤฑrฤฑm Mehmet Yurdadรถn Mehmet Terzi Hรผseyin Yฤฑldฤฑrฤฑm Fatih ร‡intimar Kaynakรงa DฤฑลŸ baฤŸlantฤฑlar Federasyonun resmi sitesi Atletizm Federasyon Kategori:Avrupa Atletizm BirliฤŸi รผyesi federasyonlar Kategori:Ankara merkezli kuruluลŸlar Osmanlฤฑ kurulan oluลŸumlar kurulan spor kuruluลŸlarฤฑ sentences: - Leandro Pereira kimdir? - Tรผrkiye Atletizm Federasyonu ne zaman kuruldu? - P.E.N. nedir? - source_sentence: '''''ฤฐlkbaharda DaฤŸ Yolunda Yรผrรผmek'''' ''''''Ma Yuan'''''' (; 1160''lar-1225), Gรผney Song Hanedanฤฑ dรถneminde yaลŸamฤฑลŸ ร‡inli bir ressamdฤฑ. ร‡alฤฑลŸmalarฤฑ, Xia Gui''ninkiyle birlikte, sรถzde Ma-Xia resim okulunun temelini oluลŸturdu ve dรถnemin en iyileri arasฤฑnda kabul edilmektedir. Eserleri hem Zhe okulunun ร‡inli sanatรงฤฑlarฤฑna hem de ilk Japon ressamlar Shลซbun ve Sesshลซ''ye ilham verdi. Kaynakรงa Dunlop, Ronald Ossory. 1954. ''''Landscape Painting: Ma Yรผan to Picasso''''. London: Seeley, Service Co. Little, Stephen. '''' Taoism and the Arts of China,'''' p. 160. Chicago: Art Institute of Chicago. DฤฑลŸ baฤŸlantฤฑlar Ma Yuan Painting Gallery at China Online Museum Sung and Yuan paintings an exhibition catalog from The Metropolitan Museum of Art Libraries (fully available online as PDF), which contains material on Ma Yuan (see list of paintings) doฤŸanlar doฤŸumlular Kategori:1225 yฤฑlฤฑnda รถlenler Kategori:ร‡inli ressamlar Kategori:Song Hanedanฤฑ kiลŸileri Kategori:12. yรผzyฤฑl ressamlarฤฑ Kategori:13. yรผzyฤฑl ressamlarฤฑ' sentences: - Denon hangi sanatsal hareketle iliลŸkilendirilir? - Hammรขd bin Sรผleyman'ฤฑn hocasฤฑ kimdir? - Ma Yuan hangi okulun ressamฤฑydฤฑ? - source_sentence: 'veya ''''''Afrika insansฤฑlarฤฑ'''''', ilk kez John Edward Gray tarafฤฑndan 1825 yฤฑlฤฑnda tanฤฑmlanmฤฑลŸ bir Hominidae alt familyasฤฑdฤฑr. Aรงฤฑklama (insansฤฑ) aile aฤŸacฤฑ sol Mevcut (5 tรผr) ve soyu tรผkenmiลŸ tรผrleriyle birlikte iki oymak iรงerir: ''''''Hominini'''''' oymaฤŸฤฑ ve ''''''Gorillini'''''' oymaฤŸฤฑ. Kimi yazarlar ise, ''''Pan'''' cinsinin bazen kendi รผรงรผncรผ oymaฤŸฤฑ Panini''ye ait olduฤŸunu dรผลŸรผnรผr. Homininae, orangutanlarฤฑn (Ponginae alt familyasฤฑ) hominid soyundan ayrฤฑlmasฤฑndan (yaklaลŸฤฑk 16 myรถ) sonra ortaya รงฤฑkan, insanlarla orangutanlara gรถre daha yakฤฑn akraba olan tรผm hominidleri iรงerir. Bu alt familyadaki canlฤฑlar, ''''hominine'''' veya ''''hominineler'''' olarak tanฤฑmlanฤฑr. Evrim Homininae alt familyasฤฑnฤฑn yaลŸฤฑ son ortak atasฤฑ) tahminlere gรถre 14 ila 12.5 milyon yฤฑldฤฑr Gorillini ve Hominini oymaklarฤฑna ayrฤฑlmasฤฑnฤฑn ("goril insan son ortak atasฤฑ", GHLCA) geรง Miyosen''de, nakayamai''''nin yaลŸadฤฑฤŸฤฑ dรถneme yakฤฑn bir zamanda, ila 10 milyon yฤฑl รถnce gerรงekleลŸtiฤŸi tahmin edilmiลŸtir (TGHLCA). ''''Pan-Homo'''' bรถlรผnmesine kadar (5-7 myรถ) gorillerin ve ''''Pan-Homo'''' atalarฤฑnฤฑn melezlendiฤŸine dair kanฤฑtlar vardฤฑr. Filogeni Parins-Fukuchi ''''ve 2019''daki รงalฤฑลŸmasฤฑna gรถre oluลŸturulmuลŸ, soyu tรผkenmiลŸ homininleri iรงeren bir Homininae kladogramฤฑ: Ayrฤฑca bakฤฑnฤฑz son ortak ata Ponginae Notlar Kaynakรงa DฤฑลŸ baฤŸlantฤฑlar Kategori:John Edward Gray tarafฤฑndan adlandฤฑrฤฑlmฤฑลŸ taksonlar tanฤฑmlanan taksonlar' sentences: - Homininae alt familyasฤฑ ilk kez ne zaman ve kim tarafฤฑndan tanฤฑmlandฤฑ? - Amr Hassan Zaki hangi takฤฑmlarda forma giymiลŸtir? - KKTC spor kulรผbรผ hangi ลŸehirde kurulmuลŸtur? pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: MiniLM-L12-TR results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 384 type: dim_384 metrics: - type: cosine_accuracy@1 value: 0.559679037111334 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6720160481444333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7141424272818455 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7542627883650953 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.559679037111334 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.22400534938147776 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1428284854563691 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07542627883650951 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.559679037111334 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6720160481444333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7141424272818455 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7542627883650953 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6573432687197566 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6262999315406539 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6317830440458849 name: Cosine Map@100 --- # MiniLM-L12-TR This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("SMARTICT/paraphrase-multilingual-MiniLM-L12-v2-ft-tr-rag-v1") # Run inference sentences = [ 'veya \'\'\'Afrika insansฤฑlarฤฑ\'\'\', ilk kez John Edward Gray tarafฤฑndan 1825 yฤฑlฤฑnda tanฤฑmlanmฤฑลŸ bir Hominidae alt familyasฤฑdฤฑr. Aรงฤฑklama (insansฤฑ) aile aฤŸacฤฑ sol Mevcut (5 tรผr) ve soyu tรผkenmiลŸ tรผrleriyle birlikte iki oymak iรงerir: \'\'\'Hominini\'\'\' oymaฤŸฤฑ ve \'\'\'Gorillini\'\'\' oymaฤŸฤฑ. Kimi yazarlar ise, \'\'Pan\'\' cinsinin bazen kendi รผรงรผncรผ oymaฤŸฤฑ Panini\'ye ait olduฤŸunu dรผลŸรผnรผr. Homininae, orangutanlarฤฑn (Ponginae alt familyasฤฑ) hominid soyundan ayrฤฑlmasฤฑndan (yaklaลŸฤฑk 16 myรถ) sonra ortaya รงฤฑkan, insanlarla orangutanlara gรถre daha yakฤฑn akraba olan tรผm hominidleri iรงerir. Bu alt familyadaki canlฤฑlar, \'\'hominine\'\' veya \'\'hominineler\'\' olarak tanฤฑmlanฤฑr. Evrim Homininae alt familyasฤฑnฤฑn yaลŸฤฑ son ortak atasฤฑ) tahminlere gรถre 14 ila 12.5 milyon yฤฑldฤฑr Gorillini ve Hominini oymaklarฤฑna ayrฤฑlmasฤฑnฤฑn ("goril insan son ortak atasฤฑ", GHLCA) geรง Miyosen\'de, nakayamai\'\'nin yaลŸadฤฑฤŸฤฑ dรถneme yakฤฑn bir zamanda, ila 10 milyon yฤฑl รถnce gerรงekleลŸtiฤŸi tahmin edilmiลŸtir (TGHLCA). \'\'Pan-Homo\'\' bรถlรผnmesine kadar (5-7 myรถ) gorillerin ve \'\'Pan-Homo\'\' atalarฤฑnฤฑn melezlendiฤŸine dair kanฤฑtlar vardฤฑr. Filogeni Parins-Fukuchi \'\'ve 2019\'daki รงalฤฑลŸmasฤฑna gรถre oluลŸturulmuลŸ, soyu tรผkenmiลŸ homininleri iรงeren bir Homininae kladogramฤฑ: Ayrฤฑca bakฤฑnฤฑz son ortak ata Ponginae Notlar Kaynakรงa DฤฑลŸ baฤŸlantฤฑlar Kategori:John Edward Gray tarafฤฑndan adlandฤฑrฤฑlmฤฑลŸ taksonlar tanฤฑmlanan taksonlar', 'Homininae alt familyasฤฑ ilk kez ne zaman ve kim tarafฤฑndan tanฤฑmlandฤฑ?', 'Amr Hassan Zaki hangi takฤฑmlarda forma giymiลŸtir?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_384` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5597 | | cosine_accuracy@3 | 0.672 | | cosine_accuracy@5 | 0.7141 | | cosine_accuracy@10 | 0.7543 | | cosine_precision@1 | 0.5597 | | cosine_precision@3 | 0.224 | | cosine_precision@5 | 0.1428 | | cosine_precision@10 | 0.0754 | | cosine_recall@1 | 0.5597 | | cosine_recall@3 | 0.672 | | cosine_recall@5 | 0.7141 | | cosine_recall@10 | 0.7543 | | **cosine_ndcg@10** | **0.6573** | | cosine_mrr@10 | 0.6263 | | cosine_map@100 | 0.6318 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 8,970 training samples * Columns: <code>positive</code> and <code>anchor</code> * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 68 tokens</li><li>mean: 124.21 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 14.35 tokens</li><li>max: 35 tokens</li></ul> | * Samples: | positive | anchor | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------| | <code>Diyarbakฤฑr ilinin Bismil ilรงesine baฤŸlฤฑ bir mahalledir. Tarihรงe Mahallenin adฤฑ, 1928 yฤฑlฤฑ kayฤฑtlarฤฑnda olarak geรงmektedir. CoฤŸrafya Diyarbakฤฑr il merkezine 57 km, Bismil ilรงe merkezine 22 km uzaklฤฑktadฤฑr. Nรผfus Yฤฑllara gรถre mahalle nรผfus verileri 2007 2000 185 1997 165 Kaynakรงa DฤฑลŸ baฤŸlantฤฑlar Yerelnet mahalleleri</code> | <code>Mahallenin adฤฑ ne zaman kaydedilmiลŸtir?</code> | | <code>'''karmaลŸฤฑk neden''', '''nedensel aลŸฤฑrฤฑ '''nedensel veya '''indirgeme safsatasฤฑ''', bir sonucun birkaรง nedenden kaynaklanmasฤฑ mรผmkรผnken; bir tek nedeni olduฤŸu varsayฤฑldฤฑฤŸฤฑnda ortaya รงฤฑkan kuลŸkulu neden safsatasฤฑdฤฑr. Mantฤฑksal olarak ลŸu ลŸekilde aรงฤฑklanabilir: "X, Y'ye neden oldu; bu nedenle, X, Y'nin tek nedeniydi" Nedensel aลŸฤฑrฤฑ basitleลŸtirme, birleลŸik olasฤฑlฤฑklarฤฑn gรถz ardฤฑ edildiฤŸi belirli bir tรผr yanlฤฑลŸ ikilemdir. DiฤŸer bir deyiลŸle, "A ve ve C" veya "A ve ama deฤŸil" ลŸeklindeki รถncรผller dikkate alฤฑnmadฤฑฤŸฤฑnda olasฤฑ nedenlerin "A veya veya C" olduฤŸu varsayฤฑlฤฑr. Kaynakรงa</code> | <code>KarmaลŸฤฑk neden safsatasฤฑ nedir ve nasฤฑl oluลŸur?</code> | | <code>Akyazฤฑ Sakarya ili ilรงesi Akyazฤฑ, Adฤฑyaman Adฤฑyaman ili merkez ilรงesine baฤŸlฤฑ kรถy Akyazฤฑ, Besni Adฤฑyaman ili Besni ilรงesine baฤŸlฤฑ kรถy Akyazฤฑ, Amasya Amasya ili merkez ilรงesine baฤŸlฤฑ kรถy Akyazฤฑ, Adilcevaz Bitlis ili Adilcevaz ilรงesine baฤŸlฤฑ kรถy Akyazฤฑ, Dรผzce Dรผzce ili merkez ilรงesine baฤŸlฤฑ kรถy Akyazฤฑ, ร‡orum ร‡orum ili merkez ilรงesine baฤŸlฤฑ kรถy Akyazฤฑ, Aziziye Erzurum ili Aziziye ilรงesine baฤŸlฤฑ mahalle Akyazฤฑ, Kฤฑzฤฑltepe Mardin ili Kฤฑzฤฑltepe ilรงesine baฤŸlฤฑ mahalle Akyazฤฑ, Asarcฤฑk Samsun ili Asarcฤฑk ilรงesine baฤŸlฤฑ mahalle Akyazฤฑ, Ortahisar Trabzon ili Ortahisar ilรงesine baฤŸlฤฑ mahalle</code> | <code>Akyazฤฑ adฤฑnda kaรง kรถy vardฤฑr?</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_384_cosine_ndcg@10 | |:----------:|:------:|:-------------:|:----------------------:| | 0.5694 | 10 | 0.8456 | - | | 0.9680 | 17 | - | 0.5968 | | 1.1388 | 20 | 0.4964 | - | | 1.7082 | 30 | 0.393 | - | | 1.9929 | 35 | - | 0.6429 | | 2.2776 | 40 | 0.3235 | - | | 2.8470 | 50 | 0.2816 | - | | 2.9609 | 52 | - | 0.6532 | | 3.4164 | 60 | 0.2653 | - | | **3.9858** | **70** | **0.2408** | **0.6576** | | 4.5552 | 80 | 0.2379 | - | | 4.8399 | 85 | - | 0.6573 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.12.7 - Sentence Transformers: 3.3.1 - Transformers: 4.41.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.1.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
MakiAi/Llama-3-2-3B-Instruct-bnb-4bit-OKU-v1-10epochs
MakiAi
2024-11-25T07:43:32Z
104
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Llama-3.2-3B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Llama-3.2-3B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T07:41:41Z
--- base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MakiAi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MakiAi/Llama-3-2-3B-Instruct-bnb-4bit-OKU-v1-10epochs-adapter
MakiAi
2024-11-25T07:39:20Z
107
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Llama-3.2-3B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Llama-3.2-3B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T07:37:13Z
--- base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MakiAi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k35_task2_organization_fold1
MayBashendy
2024-11-25T07:35:14Z
162
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T07:19:13Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k35_task2_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k35_task2_organization_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5329 - Qwk: 0.5 - Mse: 0.5329 - Rmse: 0.7300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0073 | 2 | 4.3121 | -0.0167 | 4.3121 | 2.0766 | | No log | 0.0147 | 4 | 2.4805 | -0.0610 | 2.4805 | 1.5749 | | No log | 0.0220 | 6 | 2.3076 | 0.1290 | 2.3076 | 1.5191 | | No log | 0.0293 | 8 | 2.6382 | 0.0656 | 2.6382 | 1.6242 | | No log | 0.0366 | 10 | 2.2411 | 0.1529 | 2.2411 | 1.4970 | | No log | 0.0440 | 12 | 1.5364 | 0.1322 | 1.5364 | 1.2395 | | No log | 0.0513 | 14 | 1.5650 | 0.0556 | 1.5650 | 1.2510 | | No log | 0.0586 | 16 | 1.4212 | 0.0556 | 1.4212 | 1.1921 | | No log | 0.0659 | 18 | 1.5321 | 0.0870 | 1.5321 | 1.2378 | | No log | 0.0733 | 20 | 1.1517 | 0.1266 | 1.1517 | 1.0732 | | No log | 0.0806 | 22 | 0.7274 | 0.1905 | 0.7274 | 0.8529 | | No log | 0.0879 | 24 | 0.6328 | 0.1639 | 0.6328 | 0.7955 | | No log | 0.0952 | 26 | 0.7007 | 0.1290 | 0.7007 | 0.8371 | | No log | 0.1026 | 28 | 0.8374 | 0.0 | 0.8374 | 0.9151 | | No log | 0.1099 | 30 | 1.4702 | 0.1395 | 1.4702 | 1.2125 | | No log | 0.1172 | 32 | 1.7090 | 0.1818 | 1.7090 | 1.3073 | | No log | 0.1245 | 34 | 1.4305 | 0.1111 | 1.4305 | 1.1960 | | No log | 0.1319 | 36 | 1.0387 | 0.0308 | 1.0387 | 1.0192 | | No log | 0.1392 | 38 | 0.8915 | 0.0308 | 0.8915 | 0.9442 | | No log | 0.1465 | 40 | 0.7929 | 0.1563 | 0.7929 | 0.8905 | | No log | 0.1538 | 42 | 1.0850 | 0.1266 | 1.0850 | 1.0416 | | No log | 0.1612 | 44 | 1.2941 | 0.1869 | 1.2941 | 1.1376 | | No log | 0.1685 | 46 | 2.0278 | 0.0559 | 2.0278 | 1.4240 | | No log | 0.1758 | 48 | 1.8639 | 0.0930 | 1.8639 | 1.3652 | | No log | 0.1832 | 50 | 1.0180 | 0.1127 | 1.0180 | 1.0090 | | No log | 0.1905 | 52 | 0.5459 | 0.4407 | 0.5459 | 0.7389 | | No log | 0.1978 | 54 | 0.5375 | 0.2105 | 0.5375 | 0.7331 | | No log | 0.2051 | 56 | 0.6592 | 0.2623 | 0.6592 | 0.8119 | | No log | 0.2125 | 58 | 0.9970 | 0.0 | 0.9970 | 0.9985 | | No log | 0.2198 | 60 | 1.2622 | 0.0 | 1.2622 | 1.1235 | | No log | 0.2271 | 62 | 1.2415 | 0.0 | 1.2415 | 1.1142 | | No log | 0.2344 | 64 | 0.9522 | 0.0 | 0.9522 | 0.9758 | | No log | 0.2418 | 66 | 0.6901 | 0.1905 | 0.6901 | 0.8307 | | No log | 0.2491 | 68 | 0.5747 | 0.0339 | 0.5747 | 0.7581 | | No log | 0.2564 | 70 | 0.5642 | 0.0339 | 0.5642 | 0.7512 | | No log | 0.2637 | 72 | 0.6176 | 0.2000 | 0.6176 | 0.7859 | | No log | 0.2711 | 74 | 0.6859 | 0.2258 | 0.6859 | 0.8282 | | No log | 0.2784 | 76 | 0.8934 | 0.1563 | 0.8934 | 0.9452 | | No log | 0.2857 | 78 | 0.9462 | 0.1563 | 0.9462 | 0.9727 | | No log | 0.2930 | 80 | 0.8605 | 0.1905 | 0.8605 | 0.9276 | | No log | 0.3004 | 82 | 0.7688 | 0.1905 | 0.7688 | 0.8768 | | No log | 0.3077 | 84 | 0.6366 | 0.0339 | 0.6366 | 0.7979 | | No log | 0.3150 | 86 | 0.6321 | 0.0339 | 0.6321 | 0.7951 | | No log | 0.3223 | 88 | 0.7504 | 0.2000 | 0.7504 | 0.8663 | | No log | 0.3297 | 90 | 0.8476 | 0.2258 | 0.8476 | 0.9206 | | No log | 0.3370 | 92 | 0.7770 | 0.2258 | 0.7770 | 0.8815 | | No log | 0.3443 | 94 | 0.6783 | 0.2000 | 0.6783 | 0.8236 | | No log | 0.3516 | 96 | 0.5899 | 0.2105 | 0.5899 | 0.7680 | | No log | 0.3590 | 98 | 0.5677 | 0.1429 | 0.5677 | 0.7535 | | No log | 0.3663 | 100 | 0.5985 | 0.2105 | 0.5985 | 0.7737 | | No log | 0.3736 | 102 | 0.6789 | 0.3390 | 0.6789 | 0.8239 | | No log | 0.3810 | 104 | 0.7268 | 0.2258 | 0.7268 | 0.8525 | | No log | 0.3883 | 106 | 0.8349 | 0.1563 | 0.8349 | 0.9137 | | No log | 0.3956 | 108 | 0.7980 | 0.1563 | 0.7980 | 0.8933 | | No log | 0.4029 | 110 | 0.6952 | 0.1563 | 0.6952 | 0.8338 | | No log | 0.4103 | 112 | 0.6014 | 0.2258 | 0.6014 | 0.7755 | | No log | 0.4176 | 114 | 0.4932 | 0.3793 | 0.4932 | 0.7023 | | No log | 0.4249 | 116 | 0.4988 | 0.3333 | 0.4988 | 0.7062 | | No log | 0.4322 | 118 | 0.5628 | 0.1818 | 0.5628 | 0.7502 | | No log | 0.4396 | 120 | 0.6661 | -0.0755 | 0.6661 | 0.8161 | | No log | 0.4469 | 122 | 0.7210 | -0.0408 | 0.7210 | 0.8491 | | No log | 0.4542 | 124 | 0.7354 | 0.0400 | 0.7354 | 0.8576 | | No log | 0.4615 | 126 | 0.6108 | 0.1818 | 0.6108 | 0.7816 | | No log | 0.4689 | 128 | 0.6323 | 0.2373 | 0.6323 | 0.7952 | | No log | 0.4762 | 130 | 0.7069 | 0.1724 | 0.7069 | 0.8408 | | No log | 0.4835 | 132 | 0.7427 | 0.2105 | 0.7427 | 0.8618 | | No log | 0.4908 | 134 | 0.7664 | -0.0755 | 0.7664 | 0.8754 | | No log | 0.4982 | 136 | 0.7678 | 0.0 | 0.7678 | 0.8762 | | No log | 0.5055 | 138 | 0.7011 | 0.1509 | 0.7011 | 0.8373 | | No log | 0.5128 | 140 | 0.6116 | 0.2105 | 0.6116 | 0.7820 | | No log | 0.5201 | 142 | 0.6154 | 0.2105 | 0.6154 | 0.7845 | | No log | 0.5275 | 144 | 0.8091 | 0.3200 | 0.8091 | 0.8995 | | No log | 0.5348 | 146 | 0.9449 | 0.2895 | 0.9449 | 0.9720 | | No log | 0.5421 | 148 | 0.9432 | 0.2895 | 0.9432 | 0.9712 | | No log | 0.5495 | 150 | 0.7335 | 0.2258 | 0.7335 | 0.8564 | | No log | 0.5568 | 152 | 0.5818 | 0.4407 | 0.5818 | 0.7627 | | No log | 0.5641 | 154 | 0.5265 | 0.3226 | 0.5265 | 0.7256 | | No log | 0.5714 | 156 | 0.5171 | 0.3284 | 0.5171 | 0.7191 | | No log | 0.5788 | 158 | 0.5730 | 0.3836 | 0.5730 | 0.7569 | | No log | 0.5861 | 160 | 0.6338 | 0.3836 | 0.6338 | 0.7961 | | No log | 0.5934 | 162 | 0.7125 | 0.3836 | 0.7125 | 0.8441 | | No log | 0.6007 | 164 | 0.9304 | 0.3762 | 0.9304 | 0.9646 | | No log | 0.6081 | 166 | 0.8147 | 0.2921 | 0.8147 | 0.9026 | | No log | 0.6154 | 168 | 0.7102 | 0.2258 | 0.7102 | 0.8428 | | No log | 0.6227 | 170 | 0.7472 | 0.3143 | 0.7472 | 0.8644 | | No log | 0.6300 | 172 | 0.8547 | 0.2857 | 0.8547 | 0.9245 | | No log | 0.6374 | 174 | 0.9096 | 0.2826 | 0.9096 | 0.9537 | | No log | 0.6447 | 176 | 0.9356 | 0.3077 | 0.9356 | 0.9673 | | No log | 0.6520 | 178 | 0.8476 | 0.1972 | 0.8476 | 0.9207 | | No log | 0.6593 | 180 | 0.8232 | 0.0727 | 0.8232 | 0.9073 | | No log | 0.6667 | 182 | 0.8438 | 0.0727 | 0.8438 | 0.9186 | | No log | 0.6740 | 184 | 0.9355 | 0.0282 | 0.9355 | 0.9672 | | No log | 0.6813 | 186 | 0.9849 | 0.2308 | 0.9849 | 0.9924 | | No log | 0.6886 | 188 | 0.9396 | 0.2308 | 0.9396 | 0.9693 | | No log | 0.6960 | 190 | 0.8917 | 0.1600 | 0.8917 | 0.9443 | | No log | 0.7033 | 192 | 0.9917 | -0.1000 | 0.9917 | 0.9958 | | No log | 0.7106 | 194 | 0.9400 | 0.0625 | 0.9400 | 0.9695 | | No log | 0.7179 | 196 | 0.8076 | 0.2192 | 0.8076 | 0.8986 | | No log | 0.7253 | 198 | 0.8555 | 0.3544 | 0.8555 | 0.9249 | | No log | 0.7326 | 200 | 0.8250 | 0.2059 | 0.8250 | 0.9083 | | No log | 0.7399 | 202 | 0.8208 | -0.1887 | 0.8208 | 0.9060 | | No log | 0.7473 | 204 | 0.8430 | -0.0800 | 0.8430 | 0.9181 | | No log | 0.7546 | 206 | 0.7761 | 0.0 | 0.7761 | 0.8809 | | No log | 0.7619 | 208 | 0.7385 | 0.0 | 0.7385 | 0.8594 | | No log | 0.7692 | 210 | 0.7824 | 0.2105 | 0.7824 | 0.8846 | | No log | 0.7766 | 212 | 0.7792 | 0.0 | 0.7792 | 0.8827 | | No log | 0.7839 | 214 | 0.7983 | 0.0 | 0.7983 | 0.8935 | | No log | 0.7912 | 216 | 0.8124 | 0.0 | 0.8124 | 0.9013 | | No log | 0.7985 | 218 | 0.8442 | 0.0690 | 0.8442 | 0.9188 | | No log | 0.8059 | 220 | 0.8922 | 0.0690 | 0.8922 | 0.9446 | | No log | 0.8132 | 222 | 0.8998 | 0.1231 | 0.8998 | 0.9486 | | No log | 0.8205 | 224 | 0.8578 | 0.0 | 0.8578 | 0.9262 | | No log | 0.8278 | 226 | 0.8195 | 0.1639 | 0.8195 | 0.9053 | | No log | 0.8352 | 228 | 0.8399 | 0.2623 | 0.8399 | 0.9165 | | No log | 0.8425 | 230 | 0.9020 | 0.2247 | 0.9020 | 0.9497 | | No log | 0.8498 | 232 | 0.9211 | 0.2069 | 0.9211 | 0.9598 | | No log | 0.8571 | 234 | 0.8606 | 0.4000 | 0.8606 | 0.9277 | | No log | 0.8645 | 236 | 0.8381 | 0.4396 | 0.8381 | 0.9155 | | No log | 0.8718 | 238 | 0.7499 | 0.2895 | 0.7499 | 0.8659 | | No log | 0.8791 | 240 | 0.7132 | 0.3284 | 0.7132 | 0.8445 | | No log | 0.8864 | 242 | 0.7819 | 0.3143 | 0.7819 | 0.8843 | | No log | 0.8938 | 244 | 0.7760 | 0.2154 | 0.7760 | 0.8809 | | No log | 0.9011 | 246 | 0.7711 | 0.2154 | 0.7711 | 0.8781 | | No log | 0.9084 | 248 | 0.8401 | 0.25 | 0.8401 | 0.9166 | | No log | 0.9158 | 250 | 0.9757 | 0.2041 | 0.9757 | 0.9878 | | No log | 0.9231 | 252 | 0.9501 | 0.1758 | 0.9501 | 0.9747 | | No log | 0.9304 | 254 | 0.8671 | 0.3415 | 0.8671 | 0.9312 | | No log | 0.9377 | 256 | 0.8438 | 0.3250 | 0.8438 | 0.9186 | | No log | 0.9451 | 258 | 0.8097 | 0.3377 | 0.8097 | 0.8998 | | No log | 0.9524 | 260 | 0.7259 | 0.4935 | 0.7259 | 0.8520 | | No log | 0.9597 | 262 | 0.6525 | 0.3014 | 0.6525 | 0.8078 | | No log | 0.9670 | 264 | 0.6580 | 0.4935 | 0.6580 | 0.8112 | | No log | 0.9744 | 266 | 0.8068 | 0.3544 | 0.8068 | 0.8982 | | No log | 0.9817 | 268 | 0.8286 | 0.24 | 0.8286 | 0.9103 | | No log | 0.9890 | 270 | 0.7183 | 0.3836 | 0.7183 | 0.8475 | | No log | 0.9963 | 272 | 0.5954 | 0.4706 | 0.5954 | 0.7716 | | No log | 1.0037 | 274 | 0.5651 | 0.2759 | 0.5651 | 0.7517 | | No log | 1.0110 | 276 | 0.5733 | 0.3390 | 0.5733 | 0.7572 | | No log | 1.0183 | 278 | 0.6954 | 0.3836 | 0.6954 | 0.8339 | | No log | 1.0256 | 280 | 0.8501 | 0.24 | 0.8501 | 0.9220 | | No log | 1.0330 | 282 | 0.7854 | 0.2703 | 0.7854 | 0.8862 | | No log | 1.0403 | 284 | 0.6793 | 0.3014 | 0.6793 | 0.8242 | | No log | 1.0476 | 286 | 0.6577 | 0.3077 | 0.6577 | 0.8110 | | No log | 1.0549 | 288 | 0.6799 | 0.1905 | 0.6799 | 0.8246 | | No log | 1.0623 | 290 | 0.7062 | 0.1356 | 0.7062 | 0.8403 | | No log | 1.0696 | 292 | 0.8099 | 0.0870 | 0.8099 | 0.8999 | | No log | 1.0769 | 294 | 0.8894 | 0.0571 | 0.8894 | 0.9431 | | No log | 1.0842 | 296 | 0.9339 | 0.2222 | 0.9339 | 0.9664 | | No log | 1.0916 | 298 | 0.8429 | 0.0 | 0.8429 | 0.9181 | | No log | 1.0989 | 300 | 0.7654 | 0.1290 | 0.7654 | 0.8749 | | No log | 1.1062 | 302 | 0.7428 | 0.1290 | 0.7428 | 0.8619 | | No log | 1.1136 | 304 | 0.7310 | 0.1290 | 0.7310 | 0.8550 | | No log | 1.1209 | 306 | 0.7282 | 0.2623 | 0.7282 | 0.8533 | | No log | 1.1282 | 308 | 0.7923 | 0.1818 | 0.7923 | 0.8901 | | No log | 1.1355 | 310 | 0.7819 | 0.1739 | 0.7819 | 0.8843 | | No log | 1.1429 | 312 | 0.7345 | 0.2059 | 0.7345 | 0.8570 | | No log | 1.1502 | 314 | 0.7329 | 0.2059 | 0.7329 | 0.8561 | | No log | 1.1575 | 316 | 0.7583 | 0.2059 | 0.7583 | 0.8708 | | No log | 1.1648 | 318 | 0.7983 | 0.0833 | 0.7983 | 0.8935 | | No log | 1.1722 | 320 | 0.7779 | 0.2192 | 0.7779 | 0.8820 | | No log | 1.1795 | 322 | 0.6693 | 0.2623 | 0.6693 | 0.8181 | | No log | 1.1868 | 324 | 0.6334 | 0.2000 | 0.6334 | 0.7958 | | No log | 1.1941 | 326 | 0.6238 | 0.2759 | 0.6238 | 0.7898 | | No log | 1.2015 | 328 | 0.6233 | 0.2353 | 0.6233 | 0.7895 | | No log | 1.2088 | 330 | 0.6391 | 0.4 | 0.6391 | 0.7994 | | No log | 1.2161 | 332 | 0.6363 | 0.4 | 0.6363 | 0.7977 | | No log | 1.2234 | 334 | 0.6430 | 0.3810 | 0.6430 | 0.8018 | | No log | 1.2308 | 336 | 0.6525 | 0.3077 | 0.6525 | 0.8078 | | No log | 1.2381 | 338 | 0.6687 | 0.3636 | 0.6687 | 0.8178 | | No log | 1.2454 | 340 | 0.6741 | 0.3636 | 0.6741 | 0.8210 | | No log | 1.2527 | 342 | 0.6576 | 0.2500 | 0.6576 | 0.8109 | | No log | 1.2601 | 344 | 0.6509 | 0.4 | 0.6509 | 0.8068 | | No log | 1.2674 | 346 | 0.6404 | 0.3571 | 0.6404 | 0.8002 | | No log | 1.2747 | 348 | 0.6342 | 0.2759 | 0.6342 | 0.7964 | | No log | 1.2821 | 350 | 0.6277 | 0.2222 | 0.6277 | 0.7922 | | No log | 1.2894 | 352 | 0.6099 | 0.3571 | 0.6099 | 0.7810 | | No log | 1.2967 | 354 | 0.6032 | 0.3390 | 0.6032 | 0.7767 | | No log | 1.3040 | 356 | 0.6133 | 0.3390 | 0.6133 | 0.7832 | | No log | 1.3114 | 358 | 0.6409 | 0.2941 | 0.6409 | 0.8005 | | No log | 1.3187 | 360 | 0.6656 | 0.1429 | 0.6656 | 0.8158 | | No log | 1.3260 | 362 | 0.6355 | 0.3636 | 0.6355 | 0.7972 | | No log | 1.3333 | 364 | 0.6714 | 0.3662 | 0.6714 | 0.8194 | | No log | 1.3407 | 366 | 0.7443 | 0.3478 | 0.7443 | 0.8627 | | No log | 1.3480 | 368 | 0.6946 | 0.3377 | 0.6946 | 0.8335 | | No log | 1.3553 | 370 | 0.6518 | 0.3284 | 0.6518 | 0.8074 | | No log | 1.3626 | 372 | 0.6539 | 0.3284 | 0.6539 | 0.8086 | | No log | 1.3700 | 374 | 0.6596 | 0.3284 | 0.6596 | 0.8122 | | No log | 1.3773 | 376 | 0.6561 | 0.2059 | 0.6561 | 0.8100 | | No log | 1.3846 | 378 | 0.6469 | 0.2059 | 0.6469 | 0.8043 | | No log | 1.3919 | 380 | 0.6530 | 0.3636 | 0.6530 | 0.8081 | | No log | 1.3993 | 382 | 0.6661 | 0.2609 | 0.6661 | 0.8162 | | No log | 1.4066 | 384 | 0.6523 | 0.3636 | 0.6523 | 0.8077 | | No log | 1.4139 | 386 | 0.6462 | 0.2941 | 0.6462 | 0.8039 | | No log | 1.4212 | 388 | 0.6491 | 0.3143 | 0.6491 | 0.8057 | | No log | 1.4286 | 390 | 0.6460 | 0.3143 | 0.6460 | 0.8037 | | No log | 1.4359 | 392 | 0.6472 | 0.3143 | 0.6472 | 0.8045 | | No log | 1.4432 | 394 | 0.6201 | 0.3284 | 0.6201 | 0.7875 | | No log | 1.4505 | 396 | 0.6237 | 0.5135 | 0.6237 | 0.7898 | | No log | 1.4579 | 398 | 0.6301 | 0.5135 | 0.6301 | 0.7938 | | No log | 1.4652 | 400 | 0.6250 | 0.3662 | 0.6250 | 0.7906 | | No log | 1.4725 | 402 | 0.6350 | 0.3824 | 0.6350 | 0.7968 | | No log | 1.4799 | 404 | 0.6210 | 0.2623 | 0.6210 | 0.7880 | | No log | 1.4872 | 406 | 0.6001 | 0.4407 | 0.6001 | 0.7746 | | No log | 1.4945 | 408 | 0.5934 | 0.4407 | 0.5934 | 0.7703 | | No log | 1.5018 | 410 | 0.5976 | 0.2623 | 0.5976 | 0.7730 | | No log | 1.5092 | 412 | 0.6302 | 0.2500 | 0.6302 | 0.7939 | | No log | 1.5165 | 414 | 0.6600 | 0.1231 | 0.6600 | 0.8124 | | No log | 1.5238 | 416 | 0.6476 | 0.2500 | 0.6476 | 0.8047 | | No log | 1.5311 | 418 | 0.5943 | 0.2258 | 0.5943 | 0.7709 | | No log | 1.5385 | 420 | 0.5791 | 0.3793 | 0.5791 | 0.7610 | | No log | 1.5458 | 422 | 0.5757 | 0.3793 | 0.5757 | 0.7587 | | No log | 1.5531 | 424 | 0.5579 | 0.2800 | 0.5579 | 0.7469 | | No log | 1.5604 | 426 | 0.5364 | 0.4231 | 0.5364 | 0.7324 | | No log | 1.5678 | 428 | 0.5809 | 0.2727 | 0.5809 | 0.7621 | | No log | 1.5751 | 430 | 0.7448 | 0.2941 | 0.7448 | 0.8630 | | No log | 1.5824 | 432 | 0.7859 | 0.24 | 0.7859 | 0.8865 | | No log | 1.5897 | 434 | 0.6662 | 0.2941 | 0.6662 | 0.8162 | | No log | 1.5971 | 436 | 0.5368 | 0.2500 | 0.5368 | 0.7327 | | No log | 1.6044 | 438 | 0.5174 | 0.4375 | 0.5174 | 0.7193 | | No log | 1.6117 | 440 | 0.5398 | 0.4194 | 0.5398 | 0.7347 | | No log | 1.6190 | 442 | 0.5335 | 0.4762 | 0.5335 | 0.7304 | | No log | 1.6264 | 444 | 0.5624 | 0.2941 | 0.5624 | 0.7499 | | No log | 1.6337 | 446 | 0.5967 | 0.4156 | 0.5967 | 0.7724 | | No log | 1.6410 | 448 | 0.5637 | 0.3284 | 0.5637 | 0.7508 | | No log | 1.6484 | 450 | 0.5546 | 0.4923 | 0.5546 | 0.7447 | | No log | 1.6557 | 452 | 0.5538 | 0.3810 | 0.5538 | 0.7442 | | No log | 1.6630 | 454 | 0.5660 | 0.3158 | 0.5660 | 0.7523 | | No log | 1.6703 | 456 | 0.5565 | 0.3390 | 0.5565 | 0.7460 | | No log | 1.6777 | 458 | 0.5662 | 0.2623 | 0.5662 | 0.7525 | | No log | 1.6850 | 460 | 0.5690 | 0.4 | 0.5690 | 0.7543 | | No log | 1.6923 | 462 | 0.5852 | 0.2623 | 0.5852 | 0.7650 | | No log | 1.6996 | 464 | 0.6280 | 0.2500 | 0.6280 | 0.7925 | | No log | 1.7070 | 466 | 0.5984 | 0.2258 | 0.5984 | 0.7736 | | No log | 1.7143 | 468 | 0.5443 | 0.2623 | 0.5443 | 0.7378 | | No log | 1.7216 | 470 | 0.5330 | 0.4375 | 0.5330 | 0.7301 | | No log | 1.7289 | 472 | 0.5178 | 0.4375 | 0.5178 | 0.7196 | | No log | 1.7363 | 474 | 0.5149 | 0.3077 | 0.5149 | 0.7176 | | No log | 1.7436 | 476 | 0.5277 | 0.3077 | 0.5277 | 0.7265 | | No log | 1.7509 | 478 | 0.5569 | 0.3662 | 0.5569 | 0.7462 | | No log | 1.7582 | 480 | 0.6063 | 0.3662 | 0.6063 | 0.7787 | | No log | 1.7656 | 482 | 0.5898 | 0.3662 | 0.5898 | 0.7680 | | No log | 1.7729 | 484 | 0.5742 | 0.3662 | 0.5742 | 0.7577 | | No log | 1.7802 | 486 | 0.5415 | 0.3662 | 0.5415 | 0.7358 | | No log | 1.7875 | 488 | 0.5302 | 0.3143 | 0.5302 | 0.7281 | | No log | 1.7949 | 490 | 0.5378 | 0.3143 | 0.5378 | 0.7333 | | No log | 1.8022 | 492 | 0.5824 | 0.3077 | 0.5824 | 0.7631 | | No log | 1.8095 | 494 | 0.6343 | 0.3684 | 0.6343 | 0.7965 | | No log | 1.8168 | 496 | 0.6774 | 0.3544 | 0.6774 | 0.8231 | | No log | 1.8242 | 498 | 0.6618 | 0.1972 | 0.6618 | 0.8135 | | 0.4394 | 1.8315 | 500 | 0.6764 | 0.3333 | 0.6764 | 0.8224 | | 0.4394 | 1.8388 | 502 | 0.5942 | 0.3077 | 0.5942 | 0.7708 | | 0.4394 | 1.8462 | 504 | 0.5660 | 0.4375 | 0.5660 | 0.7524 | | 0.4394 | 1.8535 | 506 | 0.5729 | 0.3810 | 0.5729 | 0.7569 | | 0.4394 | 1.8608 | 508 | 0.5689 | 0.4375 | 0.5689 | 0.7542 | | 0.4394 | 1.8681 | 510 | 0.6016 | 0.3077 | 0.6016 | 0.7756 | | 0.4394 | 1.8755 | 512 | 0.6428 | 0.1739 | 0.6428 | 0.8017 | | 0.4394 | 1.8828 | 514 | 0.6807 | 0.1429 | 0.6807 | 0.8251 | | 0.4394 | 1.8901 | 516 | 0.7161 | 0.1039 | 0.7161 | 0.8462 | | 0.4394 | 1.8974 | 518 | 0.7035 | 0.1039 | 0.7035 | 0.8387 | | 0.4394 | 1.9048 | 520 | 0.6607 | 0.2727 | 0.6607 | 0.8128 | | 0.4394 | 1.9121 | 522 | 0.6605 | 0.4348 | 0.6605 | 0.8127 | | 0.4394 | 1.9194 | 524 | 0.6348 | 0.4762 | 0.6348 | 0.7967 | | 0.4394 | 1.9267 | 526 | 0.6357 | 0.0870 | 0.6357 | 0.7973 | | 0.4394 | 1.9341 | 528 | 0.6515 | 0.1972 | 0.6515 | 0.8071 | | 0.4394 | 1.9414 | 530 | 0.6058 | 0.0909 | 0.6058 | 0.7783 | | 0.4394 | 1.9487 | 532 | 0.5824 | 0.0339 | 0.5824 | 0.7631 | | 0.4394 | 1.9560 | 534 | 0.5448 | 0.1000 | 0.5448 | 0.7381 | | 0.4394 | 1.9634 | 536 | 0.5489 | 0.0 | 0.5489 | 0.7409 | | 0.4394 | 1.9707 | 538 | 0.5613 | 0.2623 | 0.5613 | 0.7492 | | 0.4394 | 1.9780 | 540 | 0.5872 | 0.3478 | 0.5872 | 0.7663 | | 0.4394 | 1.9853 | 542 | 0.6412 | 0.0909 | 0.6412 | 0.8007 | | 0.4394 | 1.9927 | 544 | 0.6194 | 0.3478 | 0.6194 | 0.7870 | | 0.4394 | 2.0 | 546 | 0.5844 | 0.3478 | 0.5844 | 0.7644 | | 0.4394 | 2.0073 | 548 | 0.5885 | 0.3226 | 0.5885 | 0.7672 | | 0.4394 | 2.0147 | 550 | 0.6054 | 0.3662 | 0.6054 | 0.7780 | | 0.4394 | 2.0220 | 552 | 0.5808 | 0.3607 | 0.5808 | 0.7621 | | 0.4394 | 2.0293 | 554 | 0.5551 | 0.3284 | 0.5551 | 0.7450 | | 0.4394 | 2.0366 | 556 | 0.5516 | 0.2941 | 0.5516 | 0.7427 | | 0.4394 | 2.0440 | 558 | 0.5470 | 0.4407 | 0.5470 | 0.7396 | | 0.4394 | 2.0513 | 560 | 0.5433 | 0.4828 | 0.5433 | 0.7371 | | 0.4394 | 2.0586 | 562 | 0.5563 | 0.3284 | 0.5563 | 0.7458 | | 0.4394 | 2.0659 | 564 | 0.5637 | 0.3284 | 0.5637 | 0.7508 | | 0.4394 | 2.0733 | 566 | 0.5684 | 0.3284 | 0.5684 | 0.7539 | | 0.4394 | 2.0806 | 568 | 0.5737 | 0.4348 | 0.5737 | 0.7574 | | 0.4394 | 2.0879 | 570 | 0.5828 | 0.3836 | 0.5828 | 0.7634 | | 0.4394 | 2.0952 | 572 | 0.5724 | 0.4923 | 0.5724 | 0.7566 | | 0.4394 | 2.1026 | 574 | 0.6167 | 0.4 | 0.6167 | 0.7853 | | 0.4394 | 2.1099 | 576 | 0.6451 | 0.5 | 0.6451 | 0.8032 | | 0.4394 | 2.1172 | 578 | 0.6168 | 0.5 | 0.6168 | 0.7854 | | 0.4394 | 2.1245 | 580 | 0.5485 | 0.3284 | 0.5485 | 0.7406 | | 0.4394 | 2.1319 | 582 | 0.5082 | 0.4375 | 0.5082 | 0.7129 | | 0.4394 | 2.1392 | 584 | 0.5101 | 0.4375 | 0.5101 | 0.7142 | | 0.4394 | 2.1465 | 586 | 0.5350 | 0.3636 | 0.5350 | 0.7314 | | 0.4394 | 2.1538 | 588 | 0.6042 | 0.5352 | 0.6042 | 0.7773 | | 0.4394 | 2.1612 | 590 | 0.6711 | 0.4179 | 0.6711 | 0.8192 | | 0.4394 | 2.1685 | 592 | 0.6731 | 0.4179 | 0.6731 | 0.8204 | | 0.4394 | 2.1758 | 594 | 0.5895 | 0.5352 | 0.5895 | 0.7678 | | 0.4394 | 2.1832 | 596 | 0.5354 | 0.4348 | 0.5354 | 0.7317 | | 0.4394 | 2.1905 | 598 | 0.5138 | 0.3390 | 0.5138 | 0.7168 | | 0.4394 | 2.1978 | 600 | 0.5322 | 0.4 | 0.5322 | 0.7295 | | 0.4394 | 2.2051 | 602 | 0.5366 | 0.4 | 0.5366 | 0.7325 | | 0.4394 | 2.2125 | 604 | 0.5474 | 0.3636 | 0.5474 | 0.7398 | | 0.4394 | 2.2198 | 606 | 0.5727 | 0.3810 | 0.5727 | 0.7568 | | 0.4394 | 2.2271 | 608 | 0.5590 | 0.2623 | 0.5590 | 0.7476 | | 0.4394 | 2.2344 | 610 | 0.5206 | 0.3390 | 0.5206 | 0.7215 | | 0.4394 | 2.2418 | 612 | 0.5047 | 0.2041 | 0.5047 | 0.7104 | | 0.4394 | 2.2491 | 614 | 0.5069 | 0.2041 | 0.5069 | 0.7120 | | 0.4394 | 2.2564 | 616 | 0.5034 | 0.2041 | 0.5034 | 0.7095 | | 0.4394 | 2.2637 | 618 | 0.5097 | 0.3774 | 0.5097 | 0.7139 | | 0.4394 | 2.2711 | 620 | 0.5589 | 0.2857 | 0.5589 | 0.7476 | | 0.4394 | 2.2784 | 622 | 0.5975 | 0.3077 | 0.5975 | 0.7730 | | 0.4394 | 2.2857 | 624 | 0.6019 | 0.4179 | 0.6019 | 0.7759 | | 0.4394 | 2.2930 | 626 | 0.5930 | 0.4179 | 0.5930 | 0.7701 | | 0.4394 | 2.3004 | 628 | 0.5941 | 0.3824 | 0.5941 | 0.7708 | | 0.4394 | 2.3077 | 630 | 0.5769 | 0.3636 | 0.5769 | 0.7596 | | 0.4394 | 2.3150 | 632 | 0.5728 | 0.4857 | 0.5728 | 0.7568 | | 0.4394 | 2.3223 | 634 | 0.5773 | 0.4857 | 0.5773 | 0.7598 | | 0.4394 | 2.3297 | 636 | 0.5714 | 0.4375 | 0.5714 | 0.7559 | | 0.4394 | 2.3370 | 638 | 0.5587 | 0.3636 | 0.5587 | 0.7475 | | 0.4394 | 2.3443 | 640 | 0.5817 | 0.2857 | 0.5817 | 0.7627 | | 0.4394 | 2.3516 | 642 | 0.6151 | 0.3077 | 0.6151 | 0.7843 | | 0.4394 | 2.3590 | 644 | 0.6204 | 0.3077 | 0.6204 | 0.7876 | | 0.4394 | 2.3663 | 646 | 0.5875 | 0.4179 | 0.5875 | 0.7665 | | 0.4394 | 2.3736 | 648 | 0.5832 | 0.4179 | 0.5832 | 0.7637 | | 0.4394 | 2.3810 | 650 | 0.5847 | 0.4179 | 0.5847 | 0.7647 | | 0.4394 | 2.3883 | 652 | 0.5908 | 0.4179 | 0.5908 | 0.7686 | | 0.4394 | 2.3956 | 654 | 0.6069 | 0.4348 | 0.6069 | 0.7791 | | 0.4394 | 2.4029 | 656 | 0.6180 | 0.4 | 0.6180 | 0.7861 | | 0.4394 | 2.4103 | 658 | 0.6022 | 0.4 | 0.6022 | 0.7760 | | 0.4394 | 2.4176 | 660 | 0.5792 | 0.3824 | 0.5792 | 0.7610 | | 0.4394 | 2.4249 | 662 | 0.5708 | 0.4167 | 0.5708 | 0.7555 | | 0.4394 | 2.4322 | 664 | 0.5678 | 0.3662 | 0.5678 | 0.7535 | | 0.4394 | 2.4396 | 666 | 0.5786 | 0.2500 | 0.5786 | 0.7607 | | 0.4394 | 2.4469 | 668 | 0.5853 | 0.2500 | 0.5853 | 0.7650 | | 0.4394 | 2.4542 | 670 | 0.5670 | 0.2500 | 0.5670 | 0.7530 | | 0.4394 | 2.4615 | 672 | 0.5476 | 0.3226 | 0.5476 | 0.7400 | | 0.4394 | 2.4689 | 674 | 0.5228 | 0.3607 | 0.5228 | 0.7230 | | 0.4394 | 2.4762 | 676 | 0.5152 | 0.4762 | 0.5152 | 0.7178 | | 0.4394 | 2.4835 | 678 | 0.5273 | 0.4706 | 0.5273 | 0.7261 | | 0.4394 | 2.4908 | 680 | 0.5398 | 0.4167 | 0.5398 | 0.7347 | | 0.4394 | 2.4982 | 682 | 0.5394 | 0.3684 | 0.5394 | 0.7344 | | 0.4394 | 2.5055 | 684 | 0.5716 | 0.4304 | 0.5716 | 0.7560 | | 0.4394 | 2.5128 | 686 | 0.5776 | 0.3846 | 0.5776 | 0.7600 | | 0.4394 | 2.5201 | 688 | 0.5735 | 0.3704 | 0.5735 | 0.7573 | | 0.4394 | 2.5275 | 690 | 0.5887 | 0.4 | 0.5887 | 0.7673 | | 0.4394 | 2.5348 | 692 | 0.5916 | 0.4 | 0.5916 | 0.7691 | | 0.4394 | 2.5421 | 694 | 0.5472 | 0.4 | 0.5472 | 0.7397 | | 0.4394 | 2.5495 | 696 | 0.5257 | 0.2222 | 0.5257 | 0.7251 | | 0.4394 | 2.5568 | 698 | 0.5270 | 0.2222 | 0.5270 | 0.7259 | | 0.4394 | 2.5641 | 700 | 0.5273 | 0.2222 | 0.5273 | 0.7262 | | 0.4394 | 2.5714 | 702 | 0.5283 | 0.2222 | 0.5283 | 0.7268 | | 0.4394 | 2.5788 | 704 | 0.5297 | 0.3158 | 0.5297 | 0.7278 | | 0.4394 | 2.5861 | 706 | 0.5331 | 0.4194 | 0.5331 | 0.7301 | | 0.4394 | 2.5934 | 708 | 0.5773 | 0.5312 | 0.5773 | 0.7598 | | 0.4394 | 2.6007 | 710 | 0.6296 | 0.5 | 0.6296 | 0.7935 | | 0.4394 | 2.6081 | 712 | 0.5837 | 0.4 | 0.5837 | 0.7640 | | 0.4394 | 2.6154 | 714 | 0.5268 | 0.4590 | 0.5268 | 0.7258 | | 0.4394 | 2.6227 | 716 | 0.5174 | 0.3438 | 0.5174 | 0.7193 | | 0.4394 | 2.6300 | 718 | 0.5159 | 0.4590 | 0.5159 | 0.7183 | | 0.4394 | 2.6374 | 720 | 0.5134 | 0.4706 | 0.5134 | 0.7165 | | 0.4394 | 2.6447 | 722 | 0.5149 | 0.3636 | 0.5149 | 0.7175 | | 0.4394 | 2.6520 | 724 | 0.5306 | 0.4194 | 0.5306 | 0.7284 | | 0.4394 | 2.6593 | 726 | 0.5574 | 0.3836 | 0.5574 | 0.7466 | | 0.4394 | 2.6667 | 728 | 0.5736 | 0.3333 | 0.5736 | 0.7574 | | 0.4394 | 2.6740 | 730 | 0.5960 | 0.3333 | 0.5960 | 0.7720 | | 0.4394 | 2.6813 | 732 | 0.5995 | 0.3377 | 0.5995 | 0.7742 | | 0.4394 | 2.6886 | 734 | 0.6189 | 0.2941 | 0.6189 | 0.7867 | | 0.4394 | 2.6960 | 736 | 0.5905 | 0.3478 | 0.5905 | 0.7685 | | 0.4394 | 2.7033 | 738 | 0.5434 | 0.3077 | 0.5434 | 0.7372 | | 0.4394 | 2.7106 | 740 | 0.5324 | 0.4857 | 0.5324 | 0.7297 | | 0.4394 | 2.7179 | 742 | 0.5279 | 0.4857 | 0.5279 | 0.7265 | | 0.4394 | 2.7253 | 744 | 0.5274 | 0.4857 | 0.5274 | 0.7262 | | 0.4394 | 2.7326 | 746 | 0.5309 | 0.3824 | 0.5309 | 0.7286 | | 0.4394 | 2.7399 | 748 | 0.5575 | 0.3438 | 0.5575 | 0.7467 | | 0.4394 | 2.7473 | 750 | 0.5721 | 0.2941 | 0.5721 | 0.7564 | | 0.4394 | 2.7546 | 752 | 0.5613 | 0.2857 | 0.5613 | 0.7492 | | 0.4394 | 2.7619 | 754 | 0.5312 | 0.4 | 0.5312 | 0.7288 | | 0.4394 | 2.7692 | 756 | 0.5035 | 0.4590 | 0.5035 | 0.7096 | | 0.4394 | 2.7766 | 758 | 0.5060 | 0.3284 | 0.5060 | 0.7113 | | 0.4394 | 2.7839 | 760 | 0.5022 | 0.4348 | 0.5022 | 0.7087 | | 0.4394 | 2.7912 | 762 | 0.4806 | 0.3077 | 0.4806 | 0.6933 | | 0.4394 | 2.7985 | 764 | 0.4960 | 0.4545 | 0.4960 | 0.7043 | | 0.4394 | 2.8059 | 766 | 0.5268 | 0.4 | 0.5268 | 0.7258 | | 0.4394 | 2.8132 | 768 | 0.5510 | 0.3478 | 0.5510 | 0.7423 | | 0.4394 | 2.8205 | 770 | 0.5621 | 0.2941 | 0.5621 | 0.7497 | | 0.4394 | 2.8278 | 772 | 0.5218 | 0.4 | 0.5218 | 0.7223 | | 0.4394 | 2.8352 | 774 | 0.5103 | 0.3824 | 0.5103 | 0.7144 | | 0.4394 | 2.8425 | 776 | 0.5223 | 0.4179 | 0.5223 | 0.7227 | | 0.4394 | 2.8498 | 778 | 0.5300 | 0.4324 | 0.5300 | 0.7280 | | 0.4394 | 2.8571 | 780 | 0.5428 | 0.3636 | 0.5428 | 0.7368 | | 0.4394 | 2.8645 | 782 | 0.5500 | 0.3077 | 0.5500 | 0.7416 | | 0.4394 | 2.8718 | 784 | 0.5484 | 0.3077 | 0.5484 | 0.7406 | | 0.4394 | 2.8791 | 786 | 0.5431 | 0.3000 | 0.5431 | 0.7370 | | 0.4394 | 2.8864 | 788 | 0.5381 | 0.3000 | 0.5381 | 0.7336 | | 0.4394 | 2.8938 | 790 | 0.5317 | 0.3390 | 0.5317 | 0.7292 | | 0.4394 | 2.9011 | 792 | 0.5342 | 0.3390 | 0.5342 | 0.7309 | | 0.4394 | 2.9084 | 794 | 0.5367 | 0.3390 | 0.5367 | 0.7326 | | 0.4394 | 2.9158 | 796 | 0.5334 | 0.4 | 0.5334 | 0.7303 | | 0.4394 | 2.9231 | 798 | 0.5481 | 0.3077 | 0.5481 | 0.7403 | | 0.4394 | 2.9304 | 800 | 0.5912 | 0.3636 | 0.5912 | 0.7689 | | 0.4394 | 2.9377 | 802 | 0.6102 | 0.3514 | 0.6102 | 0.7812 | | 0.4394 | 2.9451 | 804 | 0.5929 | 0.3636 | 0.5929 | 0.7700 | | 0.4394 | 2.9524 | 806 | 0.5741 | 0.3143 | 0.5741 | 0.7577 | | 0.4394 | 2.9597 | 808 | 0.5686 | 0.3143 | 0.5686 | 0.7541 | | 0.4394 | 2.9670 | 810 | 0.5581 | 0.3077 | 0.5581 | 0.7471 | | 0.4394 | 2.9744 | 812 | 0.5456 | 0.3077 | 0.5456 | 0.7386 | | 0.4394 | 2.9817 | 814 | 0.5521 | 0.4348 | 0.5521 | 0.7430 | | 0.4394 | 2.9890 | 816 | 0.5743 | 0.4658 | 0.5743 | 0.7578 | | 0.4394 | 2.9963 | 818 | 0.5881 | 0.3200 | 0.5881 | 0.7669 | | 0.4394 | 3.0037 | 820 | 0.6378 | 0.3571 | 0.6378 | 0.7986 | | 0.4394 | 3.0110 | 822 | 0.6884 | 0.3571 | 0.6884 | 0.8297 | | 0.4394 | 3.0183 | 824 | 0.7122 | 0.3077 | 0.7122 | 0.8439 | | 0.4394 | 3.0256 | 826 | 0.7344 | 0.3077 | 0.7344 | 0.8570 | | 0.4394 | 3.0330 | 828 | 0.7099 | 0.3077 | 0.7099 | 0.8425 | | 0.4394 | 3.0403 | 830 | 0.6956 | 0.3077 | 0.6956 | 0.8340 | | 0.4394 | 3.0476 | 832 | 0.6589 | 0.2921 | 0.6589 | 0.8117 | | 0.4394 | 3.0549 | 834 | 0.6135 | 0.3377 | 0.6135 | 0.7833 | | 0.4394 | 3.0623 | 836 | 0.5683 | 0.3284 | 0.5683 | 0.7538 | | 0.4394 | 3.0696 | 838 | 0.5688 | 0.3077 | 0.5688 | 0.7542 | | 0.4394 | 3.0769 | 840 | 0.6306 | 0.4179 | 0.6306 | 0.7941 | | 0.4394 | 3.0842 | 842 | 0.6851 | 0.4179 | 0.6851 | 0.8277 | | 0.4394 | 3.0916 | 844 | 0.8455 | 0.2105 | 0.8455 | 0.9195 | | 0.4394 | 3.0989 | 846 | 0.9481 | 0.2105 | 0.9481 | 0.9737 | | 0.4394 | 3.1062 | 848 | 0.9267 | 0.2105 | 0.9267 | 0.9626 | | 0.4394 | 3.1136 | 850 | 0.7810 | 0.2105 | 0.7810 | 0.8837 | | 0.4394 | 3.1209 | 852 | 0.6059 | 0.3077 | 0.6059 | 0.7784 | | 0.4394 | 3.1282 | 854 | 0.5549 | 0.3077 | 0.5549 | 0.7449 | | 0.4394 | 3.1355 | 856 | 0.5495 | 0.2500 | 0.5495 | 0.7413 | | 0.4394 | 3.1429 | 858 | 0.5506 | 0.3636 | 0.5506 | 0.7420 | | 0.4394 | 3.1502 | 860 | 0.5643 | 0.3636 | 0.5643 | 0.7512 | | 0.4394 | 3.1575 | 862 | 0.5817 | 0.2623 | 0.5817 | 0.7627 | | 0.4394 | 3.1648 | 864 | 0.5854 | 0.2623 | 0.5854 | 0.7651 | | 0.4394 | 3.1722 | 866 | 0.5982 | 0.2623 | 0.5982 | 0.7734 | | 0.4394 | 3.1795 | 868 | 0.6201 | 0.3226 | 0.6201 | 0.7875 | | 0.4394 | 3.1868 | 870 | 0.6246 | 0.3226 | 0.6246 | 0.7903 | | 0.4394 | 3.1941 | 872 | 0.6608 | 0.1972 | 0.6608 | 0.8129 | | 0.4394 | 3.2015 | 874 | 0.6514 | 0.1972 | 0.6514 | 0.8071 | | 0.4394 | 3.2088 | 876 | 0.6241 | 0.3226 | 0.6241 | 0.7900 | | 0.4394 | 3.2161 | 878 | 0.5893 | 0.2623 | 0.5893 | 0.7677 | | 0.4394 | 3.2234 | 880 | 0.5654 | 0.4211 | 0.5654 | 0.7519 | | 0.4394 | 3.2308 | 882 | 0.5684 | 0.3571 | 0.5684 | 0.7540 | | 0.4394 | 3.2381 | 884 | 0.5743 | 0.3607 | 0.5743 | 0.7579 | | 0.4394 | 3.2454 | 886 | 0.5726 | 0.4211 | 0.5726 | 0.7567 | | 0.4394 | 3.2527 | 888 | 0.5852 | 0.3390 | 0.5852 | 0.7650 | | 0.4394 | 3.2601 | 890 | 0.6132 | 0.3607 | 0.6132 | 0.7831 | | 0.4394 | 3.2674 | 892 | 0.6081 | 0.3607 | 0.6081 | 0.7798 | | 0.4394 | 3.2747 | 894 | 0.5994 | 0.4179 | 0.5994 | 0.7742 | | 0.4394 | 3.2821 | 896 | 0.5885 | 0.4923 | 0.5885 | 0.7672 | | 0.4394 | 3.2894 | 898 | 0.5921 | 0.4 | 0.5921 | 0.7695 | | 0.4394 | 3.2967 | 900 | 0.5924 | 0.4 | 0.5924 | 0.7697 | | 0.4394 | 3.3040 | 902 | 0.5828 | 0.4 | 0.5828 | 0.7634 | | 0.4394 | 3.3114 | 904 | 0.5967 | 0.4 | 0.5967 | 0.7725 | | 0.4394 | 3.3187 | 906 | 0.6072 | 0.4 | 0.6072 | 0.7792 | | 0.4394 | 3.3260 | 908 | 0.6175 | 0.2759 | 0.6175 | 0.7858 | | 0.4394 | 3.3333 | 910 | 0.6268 | 0.3390 | 0.6268 | 0.7917 | | 0.4394 | 3.3407 | 912 | 0.6329 | 0.4 | 0.6329 | 0.7955 | | 0.4394 | 3.3480 | 914 | 0.6434 | 0.2623 | 0.6434 | 0.8021 | | 0.4394 | 3.3553 | 916 | 0.6510 | 0.2623 | 0.6510 | 0.8068 | | 0.4394 | 3.3626 | 918 | 0.6418 | 0.4 | 0.6418 | 0.8011 | | 0.4394 | 3.3700 | 920 | 0.6444 | 0.4 | 0.6444 | 0.8028 | | 0.4394 | 3.3773 | 922 | 0.6565 | 0.2258 | 0.6565 | 0.8103 | | 0.4394 | 3.3846 | 924 | 0.6755 | 0.1739 | 0.6755 | 0.8219 | | 0.4394 | 3.3919 | 926 | 0.7127 | 0.25 | 0.7127 | 0.8442 | | 0.4394 | 3.3993 | 928 | 0.8145 | 0.2192 | 0.8145 | 0.9025 | | 0.4394 | 3.4066 | 930 | 0.8950 | 0.2410 | 0.8950 | 0.9461 | | 0.4394 | 3.4139 | 932 | 0.8864 | 0.2410 | 0.8864 | 0.9415 | | 0.4394 | 3.4212 | 934 | 0.7805 | 0.3077 | 0.7805 | 0.8835 | | 0.4394 | 3.4286 | 936 | 0.7266 | 0.2597 | 0.7266 | 0.8524 | | 0.4394 | 3.4359 | 938 | 0.6929 | 0.3294 | 0.6929 | 0.8324 | | 0.4394 | 3.4432 | 940 | 0.6470 | 0.3704 | 0.6470 | 0.8044 | | 0.4394 | 3.4505 | 942 | 0.6227 | 0.475 | 0.6227 | 0.7891 | | 0.4394 | 3.4579 | 944 | 0.6089 | 0.475 | 0.6089 | 0.7803 | | 0.4394 | 3.4652 | 946 | 0.5860 | 0.4923 | 0.5860 | 0.7655 | | 0.4394 | 3.4725 | 948 | 0.6036 | 0.2857 | 0.6036 | 0.7769 | | 0.4394 | 3.4799 | 950 | 0.6775 | 0.2192 | 0.6775 | 0.8231 | | 0.4394 | 3.4872 | 952 | 0.7340 | 0.2192 | 0.7340 | 0.8567 | | 0.4394 | 3.4945 | 954 | 0.7522 | 0.2192 | 0.7522 | 0.8673 | | 0.4394 | 3.5018 | 956 | 0.7190 | 0.2192 | 0.7190 | 0.8480 | | 0.4394 | 3.5092 | 958 | 0.6386 | 0.2817 | 0.6386 | 0.7991 | | 0.4394 | 3.5165 | 960 | 0.6002 | 0.2857 | 0.6002 | 0.7747 | | 0.4394 | 3.5238 | 962 | 0.6018 | 0.2857 | 0.6018 | 0.7758 | | 0.4394 | 3.5311 | 964 | 0.6261 | 0.2857 | 0.6261 | 0.7913 | | 0.4394 | 3.5385 | 966 | 0.6825 | 0.2192 | 0.6825 | 0.8261 | | 0.4394 | 3.5458 | 968 | 0.7351 | 0.2192 | 0.7351 | 0.8574 | | 0.4394 | 3.5531 | 970 | 0.7172 | 0.2192 | 0.7172 | 0.8469 | | 0.4394 | 3.5604 | 972 | 0.6545 | 0.25 | 0.6545 | 0.8090 | | 0.4394 | 3.5678 | 974 | 0.6189 | 0.2857 | 0.6189 | 0.7867 | | 0.4394 | 3.5751 | 976 | 0.6039 | 0.3824 | 0.6039 | 0.7771 | | 0.4394 | 3.5824 | 978 | 0.6051 | 0.3836 | 0.6051 | 0.7779 | | 0.4394 | 3.5897 | 980 | 0.6115 | 0.3836 | 0.6115 | 0.7820 | | 0.4394 | 3.5971 | 982 | 0.6087 | 0.3824 | 0.6087 | 0.7802 | | 0.4394 | 3.6044 | 984 | 0.5944 | 0.4167 | 0.5944 | 0.7709 | | 0.4394 | 3.6117 | 986 | 0.5826 | 0.4857 | 0.5826 | 0.7633 | | 0.4394 | 3.6190 | 988 | 0.5780 | 0.475 | 0.5780 | 0.7602 | | 0.4394 | 3.6264 | 990 | 0.5735 | 0.4167 | 0.5735 | 0.7573 | | 0.4394 | 3.6337 | 992 | 0.5578 | 0.4167 | 0.5578 | 0.7469 | | 0.4394 | 3.6410 | 994 | 0.5438 | 0.4706 | 0.5438 | 0.7374 | | 0.4394 | 3.6484 | 996 | 0.5378 | 0.3438 | 0.5378 | 0.7333 | | 0.4394 | 3.6557 | 998 | 0.5408 | 0.4 | 0.5408 | 0.7354 | | 0.1143 | 3.6630 | 1000 | 0.5414 | 0.4000 | 0.5414 | 0.7358 | | 0.1143 | 3.6703 | 1002 | 0.5372 | 0.3438 | 0.5372 | 0.7330 | | 0.1143 | 3.6777 | 1004 | 0.5406 | 0.3478 | 0.5406 | 0.7353 | | 0.1143 | 3.6850 | 1006 | 0.5488 | 0.4179 | 0.5488 | 0.7408 | | 0.1143 | 3.6923 | 1008 | 0.5570 | 0.4545 | 0.5570 | 0.7463 | | 0.1143 | 3.6996 | 1010 | 0.5454 | 0.4545 | 0.5454 | 0.7385 | | 0.1143 | 3.7070 | 1012 | 0.5398 | 0.2857 | 0.5398 | 0.7347 | | 0.1143 | 3.7143 | 1014 | 0.5517 | 0.3662 | 0.5517 | 0.7427 | | 0.1143 | 3.7216 | 1016 | 0.5589 | 0.3662 | 0.5589 | 0.7476 | | 0.1143 | 3.7289 | 1018 | 0.5665 | 0.3836 | 0.5665 | 0.7526 | | 0.1143 | 3.7363 | 1020 | 0.5563 | 0.3333 | 0.5563 | 0.7458 | | 0.1143 | 3.7436 | 1022 | 0.5465 | 0.3478 | 0.5465 | 0.7393 | | 0.1143 | 3.7509 | 1024 | 0.5525 | 0.4 | 0.5525 | 0.7433 | | 0.1143 | 3.7582 | 1026 | 0.5444 | 0.4 | 0.5444 | 0.7378 | | 0.1143 | 3.7656 | 1028 | 0.5281 | 0.4194 | 0.5281 | 0.7267 | | 0.1143 | 3.7729 | 1030 | 0.5320 | 0.3662 | 0.5320 | 0.7294 | | 0.1143 | 3.7802 | 1032 | 0.5687 | 0.2857 | 0.5687 | 0.7541 | | 0.1143 | 3.7875 | 1034 | 0.5829 | 0.3438 | 0.5829 | 0.7635 | | 0.1143 | 3.7949 | 1036 | 0.5588 | 0.2857 | 0.5588 | 0.7475 | | 0.1143 | 3.8022 | 1038 | 0.5383 | 0.3662 | 0.5383 | 0.7337 | | 0.1143 | 3.8095 | 1040 | 0.5492 | 0.4324 | 0.5492 | 0.7411 | | 0.1143 | 3.8168 | 1042 | 0.5737 | 0.3143 | 0.5737 | 0.7575 | | 0.1143 | 3.8242 | 1044 | 0.5792 | 0.3846 | 0.5792 | 0.7611 | | 0.1143 | 3.8315 | 1046 | 0.5800 | 0.4304 | 0.5800 | 0.7616 | | 0.1143 | 3.8388 | 1048 | 0.5746 | 0.4304 | 0.5746 | 0.7580 | | 0.1143 | 3.8462 | 1050 | 0.5622 | 0.3684 | 0.5622 | 0.7498 | | 0.1143 | 3.8535 | 1052 | 0.5480 | 0.3684 | 0.5480 | 0.7402 | | 0.1143 | 3.8608 | 1054 | 0.5426 | 0.3333 | 0.5426 | 0.7366 | | 0.1143 | 3.8681 | 1056 | 0.5311 | 0.4762 | 0.5311 | 0.7288 | | 0.1143 | 3.8755 | 1058 | 0.5236 | 0.4407 | 0.5236 | 0.7236 | | 0.1143 | 3.8828 | 1060 | 0.5318 | 0.2500 | 0.5318 | 0.7292 | | 0.1143 | 3.8901 | 1062 | 0.5379 | 0.2500 | 0.5379 | 0.7334 | | 0.1143 | 3.8974 | 1064 | 0.5222 | 0.3607 | 0.5222 | 0.7226 | | 0.1143 | 3.9048 | 1066 | 0.5056 | 0.4407 | 0.5056 | 0.7110 | | 0.1143 | 3.9121 | 1068 | 0.5038 | 0.4658 | 0.5038 | 0.7098 | | 0.1143 | 3.9194 | 1070 | 0.5007 | 0.4658 | 0.5007 | 0.7076 | | 0.1143 | 3.9267 | 1072 | 0.4909 | 0.4857 | 0.4909 | 0.7006 | | 0.1143 | 3.9341 | 1074 | 0.5105 | 0.5714 | 0.5105 | 0.7145 | | 0.1143 | 3.9414 | 1076 | 0.5745 | 0.4167 | 0.5745 | 0.7579 | | 0.1143 | 3.9487 | 1078 | 0.5981 | 0.4167 | 0.5981 | 0.7734 | | 0.1143 | 3.9560 | 1080 | 0.5752 | 0.4167 | 0.5752 | 0.7584 | | 0.1143 | 3.9634 | 1082 | 0.5215 | 0.5312 | 0.5215 | 0.7221 | | 0.1143 | 3.9707 | 1084 | 0.4851 | 0.3607 | 0.4851 | 0.6965 | | 0.1143 | 3.9780 | 1086 | 0.4790 | 0.4706 | 0.4790 | 0.6921 | | 0.1143 | 3.9853 | 1088 | 0.5138 | 0.3662 | 0.5138 | 0.7168 | | 0.1143 | 3.9927 | 1090 | 0.5353 | 0.3662 | 0.5353 | 0.7316 | | 0.1143 | 4.0 | 1092 | 0.5272 | 0.3662 | 0.5272 | 0.7261 | | 0.1143 | 4.0073 | 1094 | 0.5186 | 0.4762 | 0.5186 | 0.7201 | | 0.1143 | 4.0147 | 1096 | 0.5170 | 0.3774 | 0.5170 | 0.7190 | | 0.1143 | 4.0220 | 1098 | 0.5283 | 0.3774 | 0.5283 | 0.7269 | | 0.1143 | 4.0293 | 1100 | 0.5382 | 0.3774 | 0.5382 | 0.7336 | | 0.1143 | 4.0366 | 1102 | 0.5581 | 0.4706 | 0.5581 | 0.7471 | | 0.1143 | 4.0440 | 1104 | 0.5907 | 0.3636 | 0.5907 | 0.7686 | | 0.1143 | 4.0513 | 1106 | 0.6598 | 0.2941 | 0.6598 | 0.8123 | | 0.1143 | 4.0586 | 1108 | 0.7703 | 0.2941 | 0.7703 | 0.8777 | | 0.1143 | 4.0659 | 1110 | 0.8313 | 0.3014 | 0.8313 | 0.9118 | | 0.1143 | 4.0733 | 1112 | 0.8157 | 0.3014 | 0.8157 | 0.9032 | | 0.1143 | 4.0806 | 1114 | 0.7357 | 0.2941 | 0.7357 | 0.8577 | | 0.1143 | 4.0879 | 1116 | 0.6680 | 0.3143 | 0.6680 | 0.8173 | | 0.1143 | 4.0952 | 1118 | 0.6461 | 0.3143 | 0.6461 | 0.8038 | | 0.1143 | 4.1026 | 1120 | 0.6621 | 0.3143 | 0.6621 | 0.8137 | | 0.1143 | 4.1099 | 1122 | 0.6931 | 0.2941 | 0.6931 | 0.8325 | | 0.1143 | 4.1172 | 1124 | 0.7210 | 0.2941 | 0.7210 | 0.8491 | | 0.1143 | 4.1245 | 1126 | 0.7188 | 0.2941 | 0.7188 | 0.8478 | | 0.1143 | 4.1319 | 1128 | 0.7036 | 0.1905 | 0.7036 | 0.8388 | | 0.1143 | 4.1392 | 1130 | 0.6642 | 0.1724 | 0.6642 | 0.8150 | | 0.1143 | 4.1465 | 1132 | 0.6442 | 0.2000 | 0.6442 | 0.8026 | | 0.1143 | 4.1538 | 1134 | 0.6241 | 0.2623 | 0.6241 | 0.7900 | | 0.1143 | 4.1612 | 1136 | 0.6157 | 0.2857 | 0.6157 | 0.7846 | | 0.1143 | 4.1685 | 1138 | 0.5988 | 0.3478 | 0.5988 | 0.7738 | | 0.1143 | 4.1758 | 1140 | 0.5894 | 0.2623 | 0.5894 | 0.7677 | | 0.1143 | 4.1832 | 1142 | 0.5887 | 0.3636 | 0.5887 | 0.7672 | | 0.1143 | 4.1905 | 1144 | 0.5813 | 0.3636 | 0.5813 | 0.7624 | | 0.1143 | 4.1978 | 1146 | 0.5722 | 0.4167 | 0.5722 | 0.7565 | | 0.1143 | 4.2051 | 1148 | 0.5623 | 0.3478 | 0.5623 | 0.7499 | | 0.1143 | 4.2125 | 1150 | 0.5490 | 0.3478 | 0.5490 | 0.7409 | | 0.1143 | 4.2198 | 1152 | 0.5421 | 0.3478 | 0.5421 | 0.7363 | | 0.1143 | 4.2271 | 1154 | 0.5436 | 0.4179 | 0.5436 | 0.7373 | | 0.1143 | 4.2344 | 1156 | 0.5422 | 0.4179 | 0.5422 | 0.7364 | | 0.1143 | 4.2418 | 1158 | 0.5436 | 0.4179 | 0.5436 | 0.7373 | | 0.1143 | 4.2491 | 1160 | 0.5430 | 0.4179 | 0.5430 | 0.7369 | | 0.1143 | 4.2564 | 1162 | 0.5419 | 0.4179 | 0.5419 | 0.7361 | | 0.1143 | 4.2637 | 1164 | 0.5488 | 0.4706 | 0.5488 | 0.7408 | | 0.1143 | 4.2711 | 1166 | 0.5601 | 0.4179 | 0.5601 | 0.7484 | | 0.1143 | 4.2784 | 1168 | 0.5667 | 0.4179 | 0.5667 | 0.7528 | | 0.1143 | 4.2857 | 1170 | 0.5588 | 0.4706 | 0.5588 | 0.7475 | | 0.1143 | 4.2930 | 1172 | 0.5596 | 0.3077 | 0.5596 | 0.7480 | | 0.1143 | 4.3004 | 1174 | 0.5684 | 0.3077 | 0.5684 | 0.7539 | | 0.1143 | 4.3077 | 1176 | 0.5721 | 0.3077 | 0.5721 | 0.7563 | | 0.1143 | 4.3150 | 1178 | 0.5731 | 0.4348 | 0.5731 | 0.7570 | | 0.1143 | 4.3223 | 1180 | 0.5817 | 0.4658 | 0.5817 | 0.7627 | | 0.1143 | 4.3297 | 1182 | 0.5898 | 0.4658 | 0.5898 | 0.7680 | | 0.1143 | 4.3370 | 1184 | 0.5876 | 0.4658 | 0.5876 | 0.7666 | | 0.1143 | 4.3443 | 1186 | 0.5899 | 0.4658 | 0.5899 | 0.7680 | | 0.1143 | 4.3516 | 1188 | 0.5864 | 0.4706 | 0.5864 | 0.7658 | | 0.1143 | 4.3590 | 1190 | 0.5837 | 0.4706 | 0.5837 | 0.7640 | | 0.1143 | 4.3663 | 1192 | 0.5813 | 0.4179 | 0.5813 | 0.7624 | | 0.1143 | 4.3736 | 1194 | 0.5738 | 0.4194 | 0.5738 | 0.7575 | | 0.1143 | 4.3810 | 1196 | 0.5648 | 0.4194 | 0.5648 | 0.7515 | | 0.1143 | 4.3883 | 1198 | 0.5529 | 0.4762 | 0.5529 | 0.7436 | | 0.1143 | 4.3956 | 1200 | 0.5436 | 0.4375 | 0.5436 | 0.7373 | | 0.1143 | 4.4029 | 1202 | 0.5540 | 0.4923 | 0.5540 | 0.7443 | | 0.1143 | 4.4103 | 1204 | 0.5701 | 0.3824 | 0.5701 | 0.7551 | | 0.1143 | 4.4176 | 1206 | 0.5621 | 0.3824 | 0.5621 | 0.7497 | | 0.1143 | 4.4249 | 1208 | 0.5417 | 0.4375 | 0.5417 | 0.7360 | | 0.1143 | 4.4322 | 1210 | 0.5344 | 0.4762 | 0.5344 | 0.7310 | | 0.1143 | 4.4396 | 1212 | 0.5432 | 0.4179 | 0.5432 | 0.7370 | | 0.1143 | 4.4469 | 1214 | 0.5499 | 0.4179 | 0.5499 | 0.7415 | | 0.1143 | 4.4542 | 1216 | 0.5482 | 0.4179 | 0.5482 | 0.7404 | | 0.1143 | 4.4615 | 1218 | 0.5493 | 0.4179 | 0.5493 | 0.7412 | | 0.1143 | 4.4689 | 1220 | 0.5286 | 0.4179 | 0.5286 | 0.7271 | | 0.1143 | 4.4762 | 1222 | 0.5128 | 0.4407 | 0.5128 | 0.7161 | | 0.1143 | 4.4835 | 1224 | 0.5087 | 0.4407 | 0.5087 | 0.7133 | | 0.1143 | 4.4908 | 1226 | 0.5101 | 0.4407 | 0.5101 | 0.7142 | | 0.1143 | 4.4982 | 1228 | 0.5108 | 0.4407 | 0.5108 | 0.7147 | | 0.1143 | 4.5055 | 1230 | 0.5117 | 0.3793 | 0.5117 | 0.7153 | | 0.1143 | 4.5128 | 1232 | 0.5148 | 0.4211 | 0.5148 | 0.7175 | | 0.1143 | 4.5201 | 1234 | 0.5074 | 0.3793 | 0.5074 | 0.7124 | | 0.1143 | 4.5275 | 1236 | 0.5035 | 0.4407 | 0.5035 | 0.7095 | | 0.1143 | 4.5348 | 1238 | 0.5034 | 0.4407 | 0.5034 | 0.7095 | | 0.1143 | 4.5421 | 1240 | 0.5095 | 0.1818 | 0.5095 | 0.7138 | | 0.1143 | 4.5495 | 1242 | 0.5172 | 0.2500 | 0.5172 | 0.7191 | | 0.1143 | 4.5568 | 1244 | 0.5273 | 0.4828 | 0.5273 | 0.7261 | | 0.1143 | 4.5641 | 1246 | 0.5454 | 0.4828 | 0.5454 | 0.7385 | | 0.1143 | 4.5714 | 1248 | 0.5448 | 0.4828 | 0.5448 | 0.7381 | | 0.1143 | 4.5788 | 1250 | 0.5454 | 0.4000 | 0.5454 | 0.7385 | | 0.1143 | 4.5861 | 1252 | 0.5368 | 0.2500 | 0.5368 | 0.7327 | | 0.1143 | 4.5934 | 1254 | 0.5316 | 0.1818 | 0.5316 | 0.7291 | | 0.1143 | 4.6007 | 1256 | 0.5241 | 0.3333 | 0.5241 | 0.7239 | | 0.1143 | 4.6081 | 1258 | 0.5251 | 0.3333 | 0.5251 | 0.7247 | | 0.1143 | 4.6154 | 1260 | 0.5255 | 0.3333 | 0.5255 | 0.7249 | | 0.1143 | 4.6227 | 1262 | 0.5295 | 0.4407 | 0.5295 | 0.7276 | | 0.1143 | 4.6300 | 1264 | 0.5422 | 0.4590 | 0.5422 | 0.7363 | | 0.1143 | 4.6374 | 1266 | 0.5419 | 0.4658 | 0.5419 | 0.7362 | | 0.1143 | 4.6447 | 1268 | 0.5345 | 0.4545 | 0.5345 | 0.7311 | | 0.1143 | 4.6520 | 1270 | 0.5347 | 0.3077 | 0.5347 | 0.7312 | | 0.1143 | 4.6593 | 1272 | 0.5360 | 0.4348 | 0.5360 | 0.7321 | | 0.1143 | 4.6667 | 1274 | 0.5461 | 0.3377 | 0.5461 | 0.7390 | | 0.1143 | 4.6740 | 1276 | 0.5432 | 0.4444 | 0.5432 | 0.7370 | | 0.1143 | 4.6813 | 1278 | 0.5521 | 0.4578 | 0.5521 | 0.7430 | | 0.1143 | 4.6886 | 1280 | 0.5509 | 0.4578 | 0.5509 | 0.7422 | | 0.1143 | 4.6960 | 1282 | 0.5790 | 0.4615 | 0.5790 | 0.7609 | | 0.1143 | 4.7033 | 1284 | 0.5741 | 0.4615 | 0.5741 | 0.7577 | | 0.1143 | 4.7106 | 1286 | 0.5505 | 0.4615 | 0.5505 | 0.7420 | | 0.1143 | 4.7179 | 1288 | 0.5444 | 0.4407 | 0.5444 | 0.7378 | | 0.1143 | 4.7253 | 1290 | 0.5377 | 0.4407 | 0.5377 | 0.7333 | | 0.1143 | 4.7326 | 1292 | 0.5183 | 0.3810 | 0.5183 | 0.7199 | | 0.1143 | 4.7399 | 1294 | 0.5145 | 0.3810 | 0.5145 | 0.7173 | | 0.1143 | 4.7473 | 1296 | 0.5093 | 0.3810 | 0.5093 | 0.7136 | | 0.1143 | 4.7546 | 1298 | 0.5178 | 0.5312 | 0.5178 | 0.7196 | | 0.1143 | 4.7619 | 1300 | 0.5614 | 0.4507 | 0.5614 | 0.7493 | | 0.1143 | 4.7692 | 1302 | 0.6205 | 0.4304 | 0.6205 | 0.7877 | | 0.1143 | 4.7766 | 1304 | 0.6633 | 0.4304 | 0.6633 | 0.8144 | | 0.1143 | 4.7839 | 1306 | 0.6658 | 0.4304 | 0.6658 | 0.8160 | | 0.1143 | 4.7912 | 1308 | 0.6320 | 0.4615 | 0.6320 | 0.7950 | | 0.1143 | 4.7985 | 1310 | 0.5866 | 0.4615 | 0.5866 | 0.7659 | | 0.1143 | 4.8059 | 1312 | 0.5547 | 0.4935 | 0.5547 | 0.7448 | | 0.1143 | 4.8132 | 1314 | 0.5454 | 0.3014 | 0.5454 | 0.7385 | | 0.1143 | 4.8205 | 1316 | 0.5463 | 0.3077 | 0.5463 | 0.7391 | | 0.1143 | 4.8278 | 1318 | 0.5439 | 0.3000 | 0.5439 | 0.7375 | | 0.1143 | 4.8352 | 1320 | 0.5485 | 0.3000 | 0.5485 | 0.7406 | | 0.1143 | 4.8425 | 1322 | 0.5573 | 0.4474 | 0.5573 | 0.7465 | | 0.1143 | 4.8498 | 1324 | 0.5751 | 0.4474 | 0.5751 | 0.7583 | | 0.1143 | 4.8571 | 1326 | 0.5801 | 0.4474 | 0.5801 | 0.7616 | | 0.1143 | 4.8645 | 1328 | 0.5763 | 0.2703 | 0.5763 | 0.7591 | | 0.1143 | 4.8718 | 1330 | 0.5680 | 0.2703 | 0.5680 | 0.7537 | | 0.1143 | 4.8791 | 1332 | 0.5531 | 0.2373 | 0.5531 | 0.7437 | | 0.1143 | 4.8864 | 1334 | 0.5443 | 0.2373 | 0.5443 | 0.7378 | | 0.1143 | 4.8938 | 1336 | 0.5449 | 0.2373 | 0.5449 | 0.7382 | | 0.1143 | 4.9011 | 1338 | 0.5440 | 0.3000 | 0.5440 | 0.7376 | | 0.1143 | 4.9084 | 1340 | 0.5456 | 0.3000 | 0.5456 | 0.7386 | | 0.1143 | 4.9158 | 1342 | 0.5576 | 0.1818 | 0.5576 | 0.7467 | | 0.1143 | 4.9231 | 1344 | 0.5666 | 0.2500 | 0.5666 | 0.7528 | | 0.1143 | 4.9304 | 1346 | 0.5575 | 0.1818 | 0.5575 | 0.7467 | | 0.1143 | 4.9377 | 1348 | 0.5477 | 0.2373 | 0.5477 | 0.7401 | | 0.1143 | 4.9451 | 1350 | 0.5585 | 0.2909 | 0.5585 | 0.7473 | | 0.1143 | 4.9524 | 1352 | 0.5740 | 0.2373 | 0.5740 | 0.7576 | | 0.1143 | 4.9597 | 1354 | 0.5771 | 0.3000 | 0.5771 | 0.7597 | | 0.1143 | 4.9670 | 1356 | 0.5632 | 0.3607 | 0.5632 | 0.7505 | | 0.1143 | 4.9744 | 1358 | 0.5554 | 0.2759 | 0.5554 | 0.7453 | | 0.1143 | 4.9817 | 1360 | 0.5923 | 0.3684 | 0.5923 | 0.7696 | | 0.1143 | 4.9890 | 1362 | 0.6620 | 0.3836 | 0.6620 | 0.8136 | | 0.1143 | 4.9963 | 1364 | 0.6963 | 0.3836 | 0.6963 | 0.8344 | | 0.1143 | 5.0037 | 1366 | 0.6720 | 0.3836 | 0.6720 | 0.8197 | | 0.1143 | 5.0110 | 1368 | 0.6244 | 0.3836 | 0.6244 | 0.7902 | | 0.1143 | 5.0183 | 1370 | 0.5813 | 0.3077 | 0.5813 | 0.7624 | | 0.1143 | 5.0256 | 1372 | 0.5446 | 0.2500 | 0.5446 | 0.7380 | | 0.1143 | 5.0330 | 1374 | 0.5357 | 0.4211 | 0.5357 | 0.7319 | | 0.1143 | 5.0403 | 1376 | 0.5512 | 0.3571 | 0.5512 | 0.7424 | | 0.1143 | 5.0476 | 1378 | 0.5718 | 0.3571 | 0.5718 | 0.7562 | | 0.1143 | 5.0549 | 1380 | 0.5826 | 0.3636 | 0.5826 | 0.7633 | | 0.1143 | 5.0623 | 1382 | 0.5946 | 0.3636 | 0.5946 | 0.7711 | | 0.1143 | 5.0696 | 1384 | 0.6004 | 0.3836 | 0.6004 | 0.7749 | | 0.1143 | 5.0769 | 1386 | 0.6060 | 0.3836 | 0.6060 | 0.7784 | | 0.1143 | 5.0842 | 1388 | 0.6213 | 0.4 | 0.6213 | 0.7882 | | 0.1143 | 5.0916 | 1390 | 0.6363 | 0.4507 | 0.6363 | 0.7977 | | 0.1143 | 5.0989 | 1392 | 0.6506 | 0.3333 | 0.6506 | 0.8066 | | 0.1143 | 5.1062 | 1394 | 0.6585 | 0.2817 | 0.6585 | 0.8115 | | 0.1143 | 5.1136 | 1396 | 0.6567 | 0.4 | 0.6567 | 0.8103 | | 0.1143 | 5.1209 | 1398 | 0.6670 | 0.3077 | 0.6670 | 0.8167 | | 0.1143 | 5.1282 | 1400 | 0.6849 | 0.3077 | 0.6849 | 0.8276 | | 0.1143 | 5.1355 | 1402 | 0.6744 | 0.3077 | 0.6744 | 0.8212 | | 0.1143 | 5.1429 | 1404 | 0.6510 | 0.3077 | 0.6510 | 0.8068 | | 0.1143 | 5.1502 | 1406 | 0.6246 | 0.4179 | 0.6246 | 0.7903 | | 0.1143 | 5.1575 | 1408 | 0.5984 | 0.3000 | 0.5984 | 0.7736 | | 0.1143 | 5.1648 | 1410 | 0.5763 | 0.3000 | 0.5763 | 0.7591 | | 0.1143 | 5.1722 | 1412 | 0.5652 | 0.3607 | 0.5652 | 0.7518 | | 0.1143 | 5.1795 | 1414 | 0.5632 | 0.4348 | 0.5632 | 0.7504 | | 0.1143 | 5.1868 | 1416 | 0.5569 | 0.4348 | 0.5569 | 0.7463 | | 0.1143 | 5.1941 | 1418 | 0.5537 | 0.5714 | 0.5537 | 0.7441 | | 0.1143 | 5.2015 | 1420 | 0.5302 | 0.5714 | 0.5302 | 0.7281 | | 0.1143 | 5.2088 | 1422 | 0.5109 | 0.5714 | 0.5109 | 0.7148 | | 0.1143 | 5.2161 | 1424 | 0.4934 | 0.5714 | 0.4934 | 0.7024 | | 0.1143 | 5.2234 | 1426 | 0.4786 | 0.5714 | 0.4786 | 0.6918 | | 0.1143 | 5.2308 | 1428 | 0.4825 | 0.5714 | 0.4825 | 0.6946 | | 0.1143 | 5.2381 | 1430 | 0.4879 | 0.5714 | 0.4879 | 0.6985 | | 0.1143 | 5.2454 | 1432 | 0.5100 | 0.5312 | 0.5100 | 0.7141 | | 0.1143 | 5.2527 | 1434 | 0.5228 | 0.5312 | 0.5228 | 0.7231 | | 0.1143 | 5.2601 | 1436 | 0.5326 | 0.4507 | 0.5326 | 0.7298 | | 0.1143 | 5.2674 | 1438 | 0.5174 | 0.5312 | 0.5174 | 0.7193 | | 0.1143 | 5.2747 | 1440 | 0.5059 | 0.5588 | 0.5059 | 0.7113 | | 0.1143 | 5.2821 | 1442 | 0.4966 | 0.4179 | 0.4966 | 0.7047 | | 0.1143 | 5.2894 | 1444 | 0.4972 | 0.3636 | 0.4972 | 0.7051 | | 0.1143 | 5.2967 | 1446 | 0.5015 | 0.4179 | 0.5015 | 0.7081 | | 0.1143 | 5.3040 | 1448 | 0.5136 | 0.4179 | 0.5136 | 0.7166 | | 0.1143 | 5.3114 | 1450 | 0.5291 | 0.5714 | 0.5291 | 0.7274 | | 0.1143 | 5.3187 | 1452 | 0.5439 | 0.5714 | 0.5439 | 0.7375 | | 0.1143 | 5.3260 | 1454 | 0.5473 | 0.5714 | 0.5473 | 0.7398 | | 0.1143 | 5.3333 | 1456 | 0.5538 | 0.4857 | 0.5538 | 0.7442 | | 0.1143 | 5.3407 | 1458 | 0.5484 | 0.4179 | 0.5484 | 0.7405 | | 0.1143 | 5.3480 | 1460 | 0.5461 | 0.3662 | 0.5461 | 0.7390 | | 0.1143 | 5.3553 | 1462 | 0.5479 | 0.3143 | 0.5479 | 0.7402 | | 0.1143 | 5.3626 | 1464 | 0.5568 | 0.3143 | 0.5568 | 0.7462 | | 0.1143 | 5.3700 | 1466 | 0.5584 | 0.3143 | 0.5584 | 0.7472 | | 0.1143 | 5.3773 | 1468 | 0.5606 | 0.3143 | 0.5606 | 0.7487 | | 0.1143 | 5.3846 | 1470 | 0.5728 | 0.3662 | 0.5728 | 0.7568 | | 0.1143 | 5.3919 | 1472 | 0.5775 | 0.4167 | 0.5775 | 0.7600 | | 0.1143 | 5.3993 | 1474 | 0.5806 | 0.4167 | 0.5806 | 0.7620 | | 0.1143 | 5.4066 | 1476 | 0.5719 | 0.4179 | 0.5719 | 0.7562 | | 0.1143 | 5.4139 | 1478 | 0.5519 | 0.3000 | 0.5519 | 0.7429 | | 0.1143 | 5.4212 | 1480 | 0.5372 | 0.4407 | 0.5372 | 0.7329 | | 0.1143 | 5.4286 | 1482 | 0.5357 | 0.4194 | 0.5357 | 0.7319 | | 0.1143 | 5.4359 | 1484 | 0.5434 | 0.4179 | 0.5434 | 0.7372 | | 0.1143 | 5.4432 | 1486 | 0.5581 | 0.4 | 0.5581 | 0.7471 | | 0.1143 | 5.4505 | 1488 | 0.5640 | 0.4 | 0.5640 | 0.7510 | | 0.1143 | 5.4579 | 1490 | 0.5585 | 0.3636 | 0.5585 | 0.7474 | | 0.1143 | 5.4652 | 1492 | 0.5518 | 0.4179 | 0.5518 | 0.7429 | | 0.1143 | 5.4725 | 1494 | 0.5509 | 0.4706 | 0.5509 | 0.7423 | | 0.1143 | 5.4799 | 1496 | 0.5699 | 0.3077 | 0.5699 | 0.7549 | | 0.1143 | 5.4872 | 1498 | 0.6039 | 0.4324 | 0.6039 | 0.7771 | | 0.0785 | 5.4945 | 1500 | 0.6255 | 0.4 | 0.6255 | 0.7909 | | 0.0785 | 5.5018 | 1502 | 0.6286 | 0.4 | 0.6286 | 0.7928 | | 0.0785 | 5.5092 | 1504 | 0.6112 | 0.4 | 0.6112 | 0.7818 | | 0.0785 | 5.5165 | 1506 | 0.5890 | 0.3836 | 0.5890 | 0.7675 | | 0.0785 | 5.5238 | 1508 | 0.5915 | 0.3636 | 0.5915 | 0.7691 | | 0.0785 | 5.5311 | 1510 | 0.6011 | 0.4 | 0.6011 | 0.7753 | | 0.0785 | 5.5385 | 1512 | 0.6219 | 0.3377 | 0.6219 | 0.7886 | | 0.0785 | 5.5458 | 1514 | 0.6203 | 0.3377 | 0.6203 | 0.7876 | | 0.0785 | 5.5531 | 1516 | 0.5927 | 0.3377 | 0.5927 | 0.7699 | | 0.0785 | 5.5604 | 1518 | 0.5717 | 0.3226 | 0.5717 | 0.7561 | | 0.0785 | 5.5678 | 1520 | 0.5418 | 0.3636 | 0.5418 | 0.7361 | | 0.0785 | 5.5751 | 1522 | 0.5330 | 0.4762 | 0.5330 | 0.7301 | | 0.0785 | 5.5824 | 1524 | 0.5321 | 0.4762 | 0.5321 | 0.7295 | | 0.0785 | 5.5897 | 1526 | 0.5302 | 0.4762 | 0.5302 | 0.7281 | | 0.0785 | 5.5971 | 1528 | 0.5304 | 0.4828 | 0.5304 | 0.7283 | | 0.0785 | 5.6044 | 1530 | 0.5411 | 0.3607 | 0.5411 | 0.7356 | | 0.0785 | 5.6117 | 1532 | 0.5745 | 0.3478 | 0.5745 | 0.7580 | | 0.0785 | 5.6190 | 1534 | 0.6291 | 0.3836 | 0.6291 | 0.7931 | | 0.0785 | 5.6264 | 1536 | 0.6675 | 0.3836 | 0.6675 | 0.8170 | | 0.0785 | 5.6337 | 1538 | 0.6625 | 0.3836 | 0.6625 | 0.8139 | | 0.0785 | 5.6410 | 1540 | 0.6231 | 0.4615 | 0.6231 | 0.7894 | | 0.0785 | 5.6484 | 1542 | 0.5886 | 0.4 | 0.5886 | 0.7672 | | 0.0785 | 5.6557 | 1544 | 0.5588 | 0.3607 | 0.5588 | 0.7475 | | 0.0785 | 5.6630 | 1546 | 0.5505 | 0.3636 | 0.5505 | 0.7419 | | 0.0785 | 5.6703 | 1548 | 0.5476 | 0.3662 | 0.5476 | 0.7400 | | 0.0785 | 5.6777 | 1550 | 0.5485 | 0.4 | 0.5485 | 0.7406 | | 0.0785 | 5.6850 | 1552 | 0.5457 | 0.3662 | 0.5457 | 0.7387 | | 0.0785 | 5.6923 | 1554 | 0.5478 | 0.3607 | 0.5478 | 0.7401 | | 0.0785 | 5.6996 | 1556 | 0.5622 | 0.3607 | 0.5622 | 0.7498 | | 0.0785 | 5.7070 | 1558 | 0.5911 | 0.25 | 0.5911 | 0.7688 | | 0.0785 | 5.7143 | 1560 | 0.6215 | 0.3836 | 0.6215 | 0.7883 | | 0.0785 | 5.7216 | 1562 | 0.6482 | 0.3836 | 0.6482 | 0.8051 | | 0.0785 | 5.7289 | 1564 | 0.6569 | 0.3836 | 0.6569 | 0.8105 | | 0.0785 | 5.7363 | 1566 | 0.6452 | 0.3836 | 0.6452 | 0.8032 | | 0.0785 | 5.7436 | 1568 | 0.6124 | 0.3836 | 0.6124 | 0.7825 | | 0.0785 | 5.7509 | 1570 | 0.5850 | 0.25 | 0.5850 | 0.7649 | | 0.0785 | 5.7582 | 1572 | 0.5645 | 0.2154 | 0.5645 | 0.7514 | | 0.0785 | 5.7656 | 1574 | 0.5427 | 0.2500 | 0.5427 | 0.7367 | | 0.0785 | 5.7729 | 1576 | 0.5345 | 0.2500 | 0.5345 | 0.7311 | | 0.0785 | 5.7802 | 1578 | 0.5340 | 0.2500 | 0.5340 | 0.7308 | | 0.0785 | 5.7875 | 1580 | 0.5423 | 0.2759 | 0.5423 | 0.7364 | | 0.0785 | 5.7949 | 1582 | 0.5488 | 0.2759 | 0.5488 | 0.7408 | | 0.0785 | 5.8022 | 1584 | 0.5647 | 0.2154 | 0.5647 | 0.7515 | | 0.0785 | 5.8095 | 1586 | 0.5873 | 0.2154 | 0.5873 | 0.7663 | | 0.0785 | 5.8168 | 1588 | 0.5979 | 0.2154 | 0.5979 | 0.7732 | | 0.0785 | 5.8242 | 1590 | 0.5858 | 0.2154 | 0.5858 | 0.7653 | | 0.0785 | 5.8315 | 1592 | 0.5605 | 0.2154 | 0.5605 | 0.7487 | | 0.0785 | 5.8388 | 1594 | 0.5355 | 0.2500 | 0.5355 | 0.7318 | | 0.0785 | 5.8462 | 1596 | 0.5271 | 0.3607 | 0.5271 | 0.7260 | | 0.0785 | 5.8535 | 1598 | 0.5243 | 0.3607 | 0.5243 | 0.7241 | | 0.0785 | 5.8608 | 1600 | 0.5297 | 0.3607 | 0.5297 | 0.7278 | | 0.0785 | 5.8681 | 1602 | 0.5378 | 0.3226 | 0.5378 | 0.7333 | | 0.0785 | 5.8755 | 1604 | 0.5375 | 0.3226 | 0.5375 | 0.7332 | | 0.0785 | 5.8828 | 1606 | 0.5447 | 0.3810 | 0.5447 | 0.7380 | | 0.0785 | 5.8901 | 1608 | 0.5549 | 0.3810 | 0.5549 | 0.7449 | | 0.0785 | 5.8974 | 1610 | 0.5440 | 0.3810 | 0.5440 | 0.7375 | | 0.0785 | 5.9048 | 1612 | 0.5320 | 0.3607 | 0.5320 | 0.7294 | | 0.0785 | 5.9121 | 1614 | 0.5329 | 0.3607 | 0.5329 | 0.7300 | | 0.0785 | 5.9194 | 1616 | 0.5427 | 0.3607 | 0.5427 | 0.7367 | | 0.0785 | 5.9267 | 1618 | 0.5505 | 0.3000 | 0.5505 | 0.7420 | | 0.0785 | 5.9341 | 1620 | 0.5538 | 0.4407 | 0.5538 | 0.7441 | | 0.0785 | 5.9414 | 1622 | 0.5582 | 0.4706 | 0.5582 | 0.7471 | | 0.0785 | 5.9487 | 1624 | 0.5661 | 0.4179 | 0.5661 | 0.7524 | | 0.0785 | 5.9560 | 1626 | 0.5699 | 0.3636 | 0.5699 | 0.7549 | | 0.0785 | 5.9634 | 1628 | 0.5730 | 0.3636 | 0.5730 | 0.7570 | | 0.0785 | 5.9707 | 1630 | 0.5679 | 0.3636 | 0.5679 | 0.7536 | | 0.0785 | 5.9780 | 1632 | 0.5599 | 0.4211 | 0.5599 | 0.7482 | | 0.0785 | 5.9853 | 1634 | 0.5522 | 0.4211 | 0.5522 | 0.7431 | | 0.0785 | 5.9927 | 1636 | 0.5549 | 0.3333 | 0.5549 | 0.7449 | | 0.0785 | 6.0 | 1638 | 0.5564 | 0.3333 | 0.5564 | 0.7459 | | 0.0785 | 6.0073 | 1640 | 0.5510 | 0.3333 | 0.5510 | 0.7423 | | 0.0785 | 6.0147 | 1642 | 0.5467 | 0.3333 | 0.5467 | 0.7394 | | 0.0785 | 6.0220 | 1644 | 0.5392 | 0.4407 | 0.5392 | 0.7343 | | 0.0785 | 6.0293 | 1646 | 0.5342 | 0.4828 | 0.5342 | 0.7309 | | 0.0785 | 6.0366 | 1648 | 0.5362 | 0.4211 | 0.5362 | 0.7323 | | 0.0785 | 6.0440 | 1650 | 0.5381 | 0.4211 | 0.5381 | 0.7336 | | 0.0785 | 6.0513 | 1652 | 0.5411 | 0.4828 | 0.5411 | 0.7356 | | 0.0785 | 6.0586 | 1654 | 0.5436 | 0.4828 | 0.5436 | 0.7373 | | 0.0785 | 6.0659 | 1656 | 0.5494 | 0.4407 | 0.5494 | 0.7412 | | 0.0785 | 6.0733 | 1658 | 0.5486 | 0.4407 | 0.5486 | 0.7407 | | 0.0785 | 6.0806 | 1660 | 0.5475 | 0.4375 | 0.5475 | 0.7399 | | 0.0785 | 6.0879 | 1662 | 0.5544 | 0.4407 | 0.5544 | 0.7446 | | 0.0785 | 6.0952 | 1664 | 0.5639 | 0.4407 | 0.5639 | 0.7509 | | 0.0785 | 6.1026 | 1666 | 0.5616 | 0.4375 | 0.5616 | 0.7494 | | 0.0785 | 6.1099 | 1668 | 0.5488 | 0.4375 | 0.5488 | 0.7408 | | 0.0785 | 6.1172 | 1670 | 0.5373 | 0.4375 | 0.5373 | 0.7330 | | 0.0785 | 6.1245 | 1672 | 0.5328 | 0.4375 | 0.5328 | 0.7300 | | 0.0785 | 6.1319 | 1674 | 0.5309 | 0.4762 | 0.5309 | 0.7286 | | 0.0785 | 6.1392 | 1676 | 0.5343 | 0.4194 | 0.5343 | 0.7310 | | 0.0785 | 6.1465 | 1678 | 0.5386 | 0.4194 | 0.5386 | 0.7339 | | 0.0785 | 6.1538 | 1680 | 0.5375 | 0.4194 | 0.5375 | 0.7332 | | 0.0785 | 6.1612 | 1682 | 0.5348 | 0.4828 | 0.5348 | 0.7313 | | 0.0785 | 6.1685 | 1684 | 0.5329 | 0.4407 | 0.5329 | 0.7300 | | 0.0785 | 6.1758 | 1686 | 0.5310 | 0.4828 | 0.5310 | 0.7287 | | 0.0785 | 6.1832 | 1688 | 0.5338 | 0.4828 | 0.5338 | 0.7306 | | 0.0785 | 6.1905 | 1690 | 0.5376 | 0.4828 | 0.5376 | 0.7332 | | 0.0785 | 6.1978 | 1692 | 0.5447 | 0.4762 | 0.5447 | 0.7380 | | 0.0785 | 6.2051 | 1694 | 0.5505 | 0.4762 | 0.5505 | 0.7420 | | 0.0785 | 6.2125 | 1696 | 0.5531 | 0.4762 | 0.5531 | 0.7437 | | 0.0785 | 6.2198 | 1698 | 0.5579 | 0.4375 | 0.5579 | 0.7470 | | 0.0785 | 6.2271 | 1700 | 0.5778 | 0.3000 | 0.5778 | 0.7601 | | 0.0785 | 6.2344 | 1702 | 0.6168 | 0.3810 | 0.6168 | 0.7854 | | 0.0785 | 6.2418 | 1704 | 0.6542 | 0.4 | 0.6542 | 0.8088 | | 0.0785 | 6.2491 | 1706 | 0.6772 | 0.4 | 0.6772 | 0.8229 | | 0.0785 | 6.2564 | 1708 | 0.6775 | 0.3810 | 0.6775 | 0.8231 | | 0.0785 | 6.2637 | 1710 | 0.6582 | 0.3810 | 0.6582 | 0.8113 | | 0.0785 | 6.2711 | 1712 | 0.6226 | 0.3824 | 0.6226 | 0.7890 | | 0.0785 | 6.2784 | 1714 | 0.6071 | 0.4324 | 0.6071 | 0.7792 | | 0.0785 | 6.2857 | 1716 | 0.6268 | 0.4304 | 0.6268 | 0.7917 | | 0.0785 | 6.2930 | 1718 | 0.6376 | 0.4304 | 0.6376 | 0.7985 | | 0.0785 | 6.3004 | 1720 | 0.6409 | 0.4304 | 0.6409 | 0.8006 | | 0.0785 | 6.3077 | 1722 | 0.6393 | 0.4304 | 0.6393 | 0.7996 | | 0.0785 | 6.3150 | 1724 | 0.6354 | 0.4304 | 0.6354 | 0.7971 | | 0.0785 | 6.3223 | 1726 | 0.6314 | 0.3333 | 0.6314 | 0.7946 | | 0.0785 | 6.3297 | 1728 | 0.6413 | 0.3544 | 0.6413 | 0.8008 | | 0.0785 | 6.3370 | 1730 | 0.6527 | 0.4 | 0.6527 | 0.8079 | | 0.0785 | 6.3443 | 1732 | 0.6517 | 0.4 | 0.6517 | 0.8073 | | 0.0785 | 6.3516 | 1734 | 0.6385 | 0.4 | 0.6385 | 0.7991 | | 0.0785 | 6.3590 | 1736 | 0.6126 | 0.2759 | 0.6126 | 0.7827 | | 0.0785 | 6.3663 | 1738 | 0.5898 | 0.3571 | 0.5898 | 0.7680 | | 0.0785 | 6.3736 | 1740 | 0.5878 | 0.3571 | 0.5878 | 0.7667 | | 0.0785 | 6.3810 | 1742 | 0.5816 | 0.3571 | 0.5816 | 0.7626 | | 0.0785 | 6.3883 | 1744 | 0.5882 | 0.3571 | 0.5882 | 0.7670 | | 0.0785 | 6.3956 | 1746 | 0.6022 | 0.4375 | 0.6022 | 0.7760 | | 0.0785 | 6.4029 | 1748 | 0.6130 | 0.4375 | 0.6130 | 0.7829 | | 0.0785 | 6.4103 | 1750 | 0.6340 | 0.3077 | 0.6340 | 0.7963 | | 0.0785 | 6.4176 | 1752 | 0.6440 | 0.3077 | 0.6440 | 0.8025 | | 0.0785 | 6.4249 | 1754 | 0.6436 | 0.3077 | 0.6436 | 0.8022 | | 0.0785 | 6.4322 | 1756 | 0.6396 | 0.3077 | 0.6396 | 0.7997 | | 0.0785 | 6.4396 | 1758 | 0.6209 | 0.4 | 0.6209 | 0.7879 | | 0.0785 | 6.4469 | 1760 | 0.6296 | 0.4 | 0.6296 | 0.7935 | | 0.0785 | 6.4542 | 1762 | 0.6375 | 0.4 | 0.6375 | 0.7984 | | 0.0785 | 6.4615 | 1764 | 0.6117 | 0.3514 | 0.6117 | 0.7821 | | 0.0785 | 6.4689 | 1766 | 0.5947 | 0.4658 | 0.5947 | 0.7712 | | 0.0785 | 6.4762 | 1768 | 0.5827 | 0.4545 | 0.5827 | 0.7633 | | 0.0785 | 6.4835 | 1770 | 0.5708 | 0.4545 | 0.5708 | 0.7555 | | 0.0785 | 6.4908 | 1772 | 0.5596 | 0.4545 | 0.5596 | 0.7481 | | 0.0785 | 6.4982 | 1774 | 0.5544 | 0.4590 | 0.5544 | 0.7446 | | 0.0785 | 6.5055 | 1776 | 0.5494 | 0.4590 | 0.5494 | 0.7412 | | 0.0785 | 6.5128 | 1778 | 0.5529 | 0.4590 | 0.5529 | 0.7436 | | 0.0785 | 6.5201 | 1780 | 0.5577 | 0.4590 | 0.5577 | 0.7468 | | 0.0785 | 6.5275 | 1782 | 0.5497 | 0.3571 | 0.5497 | 0.7415 | | 0.0785 | 6.5348 | 1784 | 0.5359 | 0.4407 | 0.5359 | 0.7321 | | 0.0785 | 6.5421 | 1786 | 0.5334 | 0.4211 | 0.5334 | 0.7303 | | 0.0785 | 6.5495 | 1788 | 0.5440 | 0.3333 | 0.5440 | 0.7376 | | 0.0785 | 6.5568 | 1790 | 0.5522 | 0.3333 | 0.5522 | 0.7431 | | 0.0785 | 6.5641 | 1792 | 0.5509 | 0.3333 | 0.5509 | 0.7422 | | 0.0785 | 6.5714 | 1794 | 0.5431 | 0.3571 | 0.5431 | 0.7369 | | 0.0785 | 6.5788 | 1796 | 0.5425 | 0.4407 | 0.5425 | 0.7366 | | 0.0785 | 6.5861 | 1798 | 0.5610 | 0.4 | 0.5610 | 0.7490 | | 0.0785 | 6.5934 | 1800 | 0.5857 | 0.2105 | 0.5857 | 0.7653 | | 0.0785 | 6.6007 | 1802 | 0.6020 | 0.2500 | 0.6020 | 0.7759 | | 0.0785 | 6.6081 | 1804 | 0.5989 | 0.3478 | 0.5989 | 0.7739 | | 0.0785 | 6.6154 | 1806 | 0.5875 | 0.4706 | 0.5875 | 0.7665 | | 0.0785 | 6.6227 | 1808 | 0.5905 | 0.4706 | 0.5905 | 0.7684 | | 0.0785 | 6.6300 | 1810 | 0.5894 | 0.4706 | 0.5894 | 0.7677 | | 0.0785 | 6.6374 | 1812 | 0.5904 | 0.4706 | 0.5904 | 0.7684 | | 0.0785 | 6.6447 | 1814 | 0.5963 | 0.4706 | 0.5963 | 0.7722 | | 0.0785 | 6.6520 | 1816 | 0.5869 | 0.4545 | 0.5869 | 0.7661 | | 0.0785 | 6.6593 | 1818 | 0.5739 | 0.4545 | 0.5739 | 0.7576 | | 0.0785 | 6.6667 | 1820 | 0.5618 | 0.4407 | 0.5618 | 0.7496 | | 0.0785 | 6.6740 | 1822 | 0.5597 | 0.4828 | 0.5597 | 0.7481 | | 0.0785 | 6.6813 | 1824 | 0.5619 | 0.4828 | 0.5619 | 0.7496 | | 0.0785 | 6.6886 | 1826 | 0.5629 | 0.4407 | 0.5629 | 0.7503 | | 0.0785 | 6.6960 | 1828 | 0.5663 | 0.4407 | 0.5663 | 0.7525 | | 0.0785 | 6.7033 | 1830 | 0.5694 | 0.4407 | 0.5694 | 0.7546 | | 0.0785 | 6.7106 | 1832 | 0.5728 | 0.3607 | 0.5728 | 0.7568 | | 0.0785 | 6.7179 | 1834 | 0.5708 | 0.3607 | 0.5708 | 0.7555 | | 0.0785 | 6.7253 | 1836 | 0.5598 | 0.3607 | 0.5598 | 0.7482 | | 0.0785 | 6.7326 | 1838 | 0.5501 | 0.4407 | 0.5501 | 0.7417 | | 0.0785 | 6.7399 | 1840 | 0.5444 | 0.4407 | 0.5444 | 0.7378 | | 0.0785 | 6.7473 | 1842 | 0.5413 | 0.4407 | 0.5413 | 0.7357 | | 0.0785 | 6.7546 | 1844 | 0.5408 | 0.4828 | 0.5408 | 0.7354 | | 0.0785 | 6.7619 | 1846 | 0.5459 | 0.4211 | 0.5459 | 0.7388 | | 0.0785 | 6.7692 | 1848 | 0.5445 | 0.4211 | 0.5445 | 0.7379 | | 0.0785 | 6.7766 | 1850 | 0.5371 | 0.4211 | 0.5371 | 0.7329 | | 0.0785 | 6.7839 | 1852 | 0.5333 | 0.4211 | 0.5333 | 0.7303 | | 0.0785 | 6.7912 | 1854 | 0.5341 | 0.4407 | 0.5341 | 0.7308 | | 0.0785 | 6.7985 | 1856 | 0.5402 | 0.4407 | 0.5402 | 0.7350 | | 0.0785 | 6.8059 | 1858 | 0.5510 | 0.4 | 0.5510 | 0.7423 | | 0.0785 | 6.8132 | 1860 | 0.5658 | 0.3571 | 0.5658 | 0.7522 | | 0.0785 | 6.8205 | 1862 | 0.5707 | 0.4706 | 0.5707 | 0.7555 | | 0.0785 | 6.8278 | 1864 | 0.5679 | 0.4179 | 0.5679 | 0.7536 | | 0.0785 | 6.8352 | 1866 | 0.5624 | 0.4545 | 0.5624 | 0.7499 | | 0.0785 | 6.8425 | 1868 | 0.5571 | 0.4828 | 0.5571 | 0.7464 | | 0.0785 | 6.8498 | 1870 | 0.5582 | 0.4211 | 0.5582 | 0.7472 | | 0.0785 | 6.8571 | 1872 | 0.5629 | 0.4211 | 0.5629 | 0.7503 | | 0.0785 | 6.8645 | 1874 | 0.5692 | 0.3571 | 0.5692 | 0.7545 | | 0.0785 | 6.8718 | 1876 | 0.5711 | 0.3571 | 0.5711 | 0.7557 | | 0.0785 | 6.8791 | 1878 | 0.5676 | 0.4211 | 0.5676 | 0.7534 | | 0.0785 | 6.8864 | 1880 | 0.5624 | 0.4211 | 0.5624 | 0.7500 | | 0.0785 | 6.8938 | 1882 | 0.5502 | 0.4828 | 0.5502 | 0.7418 | | 0.0785 | 6.9011 | 1884 | 0.5424 | 0.4828 | 0.5424 | 0.7365 | | 0.0785 | 6.9084 | 1886 | 0.5386 | 0.4407 | 0.5386 | 0.7339 | | 0.0785 | 6.9158 | 1888 | 0.5338 | 0.4407 | 0.5338 | 0.7306 | | 0.0785 | 6.9231 | 1890 | 0.5356 | 0.4 | 0.5356 | 0.7319 | | 0.0785 | 6.9304 | 1892 | 0.5434 | 0.4590 | 0.5434 | 0.7371 | | 0.0785 | 6.9377 | 1894 | 0.5461 | 0.4590 | 0.5461 | 0.7390 | | 0.0785 | 6.9451 | 1896 | 0.5444 | 0.4590 | 0.5444 | 0.7379 | | 0.0785 | 6.9524 | 1898 | 0.5455 | 0.4 | 0.5455 | 0.7386 | | 0.0785 | 6.9597 | 1900 | 0.5497 | 0.4179 | 0.5497 | 0.7414 | | 0.0785 | 6.9670 | 1902 | 0.5565 | 0.4179 | 0.5565 | 0.7460 | | 0.0785 | 6.9744 | 1904 | 0.5577 | 0.3478 | 0.5577 | 0.7468 | | 0.0785 | 6.9817 | 1906 | 0.5550 | 0.3478 | 0.5550 | 0.7450 | | 0.0785 | 6.9890 | 1908 | 0.5493 | 0.3226 | 0.5493 | 0.7412 | | 0.0785 | 6.9963 | 1910 | 0.5453 | 0.4590 | 0.5453 | 0.7384 | | 0.0785 | 7.0037 | 1912 | 0.5432 | 0.4590 | 0.5432 | 0.7370 | | 0.0785 | 7.0110 | 1914 | 0.5445 | 0.3226 | 0.5445 | 0.7379 | | 0.0785 | 7.0183 | 1916 | 0.5450 | 0.3226 | 0.5450 | 0.7383 | | 0.0785 | 7.0256 | 1918 | 0.5438 | 0.3226 | 0.5438 | 0.7374 | | 0.0785 | 7.0330 | 1920 | 0.5457 | 0.3226 | 0.5457 | 0.7387 | | 0.0785 | 7.0403 | 1922 | 0.5393 | 0.3226 | 0.5393 | 0.7344 | | 0.0785 | 7.0476 | 1924 | 0.5270 | 0.4590 | 0.5270 | 0.7259 | | 0.0785 | 7.0549 | 1926 | 0.5209 | 0.4407 | 0.5209 | 0.7218 | | 0.0785 | 7.0623 | 1928 | 0.5182 | 0.4407 | 0.5182 | 0.7199 | | 0.0785 | 7.0696 | 1930 | 0.5177 | 0.4407 | 0.5177 | 0.7195 | | 0.0785 | 7.0769 | 1932 | 0.5186 | 0.4407 | 0.5186 | 0.7201 | | 0.0785 | 7.0842 | 1934 | 0.5213 | 0.4590 | 0.5213 | 0.7220 | | 0.0785 | 7.0916 | 1936 | 0.5270 | 0.3226 | 0.5270 | 0.7260 | | 0.0785 | 7.0989 | 1938 | 0.5305 | 0.3226 | 0.5305 | 0.7284 | | 0.0785 | 7.1062 | 1940 | 0.5364 | 0.3226 | 0.5364 | 0.7324 | | 0.0785 | 7.1136 | 1942 | 0.5438 | 0.3226 | 0.5438 | 0.7374 | | 0.0785 | 7.1209 | 1944 | 0.5539 | 0.3478 | 0.5539 | 0.7442 | | 0.0785 | 7.1282 | 1946 | 0.5597 | 0.3478 | 0.5597 | 0.7482 | | 0.0785 | 7.1355 | 1948 | 0.5635 | 0.3478 | 0.5635 | 0.7507 | | 0.0785 | 7.1429 | 1950 | 0.5595 | 0.3824 | 0.5595 | 0.7480 | | 0.0785 | 7.1502 | 1952 | 0.5540 | 0.4407 | 0.5540 | 0.7443 | | 0.0785 | 7.1575 | 1954 | 0.5507 | 0.4375 | 0.5507 | 0.7421 | | 0.0785 | 7.1648 | 1956 | 0.5478 | 0.4348 | 0.5478 | 0.7401 | | 0.0785 | 7.1722 | 1958 | 0.5478 | 0.3824 | 0.5478 | 0.7401 | | 0.0785 | 7.1795 | 1960 | 0.5443 | 0.3824 | 0.5443 | 0.7378 | | 0.0785 | 7.1868 | 1962 | 0.5416 | 0.3793 | 0.5416 | 0.7359 | | 0.0785 | 7.1941 | 1964 | 0.5451 | 0.4407 | 0.5451 | 0.7383 | | 0.0785 | 7.2015 | 1966 | 0.5532 | 0.5 | 0.5532 | 0.7438 | | 0.0785 | 7.2088 | 1968 | 0.5682 | 0.3478 | 0.5682 | 0.7538 | | 0.0785 | 7.2161 | 1970 | 0.5856 | 0.3478 | 0.5856 | 0.7652 | | 0.0785 | 7.2234 | 1972 | 0.5935 | 0.3478 | 0.5935 | 0.7704 | | 0.0785 | 7.2308 | 1974 | 0.5892 | 0.3478 | 0.5892 | 0.7676 | | 0.0785 | 7.2381 | 1976 | 0.5806 | 0.3478 | 0.5806 | 0.7620 | | 0.0785 | 7.2454 | 1978 | 0.5707 | 0.3478 | 0.5707 | 0.7555 | | 0.0785 | 7.2527 | 1980 | 0.5673 | 0.3478 | 0.5673 | 0.7532 | | 0.0785 | 7.2601 | 1982 | 0.5657 | 0.3478 | 0.5657 | 0.7521 | | 0.0785 | 7.2674 | 1984 | 0.5613 | 0.3478 | 0.5613 | 0.7492 | | 0.0785 | 7.2747 | 1986 | 0.5587 | 0.3478 | 0.5587 | 0.7475 | | 0.0785 | 7.2821 | 1988 | 0.5552 | 0.3478 | 0.5552 | 0.7451 | | 0.0785 | 7.2894 | 1990 | 0.5536 | 0.3478 | 0.5536 | 0.7440 | | 0.0785 | 7.2967 | 1992 | 0.5563 | 0.3478 | 0.5563 | 0.7458 | | 0.0785 | 7.3040 | 1994 | 0.5599 | 0.3478 | 0.5599 | 0.7483 | | 0.0785 | 7.3114 | 1996 | 0.5662 | 0.3478 | 0.5662 | 0.7524 | | 0.0785 | 7.3187 | 1998 | 0.5687 | 0.3478 | 0.5687 | 0.7541 | | 0.0555 | 7.3260 | 2000 | 0.5800 | 0.3478 | 0.5800 | 0.7616 | | 0.0555 | 7.3333 | 2002 | 0.5922 | 0.3478 | 0.5922 | 0.7696 | | 0.0555 | 7.3407 | 2004 | 0.6046 | 0.3478 | 0.6046 | 0.7776 | | 0.0555 | 7.3480 | 2006 | 0.6190 | 0.4 | 0.6190 | 0.7868 | | 0.0555 | 7.3553 | 2008 | 0.6313 | 0.3077 | 0.6313 | 0.7945 | | 0.0555 | 7.3626 | 2010 | 0.6427 | 0.25 | 0.6427 | 0.8017 | | 0.0555 | 7.3700 | 2012 | 0.6403 | 0.25 | 0.6403 | 0.8002 | | 0.0555 | 7.3773 | 2014 | 0.6257 | 0.3077 | 0.6257 | 0.7910 | | 0.0555 | 7.3846 | 2016 | 0.6071 | 0.4 | 0.6071 | 0.7792 | | 0.0555 | 7.3919 | 2018 | 0.5883 | 0.3478 | 0.5883 | 0.7670 | | 0.0555 | 7.3993 | 2020 | 0.5755 | 0.3478 | 0.5755 | 0.7586 | | 0.0555 | 7.4066 | 2022 | 0.5697 | 0.3824 | 0.5697 | 0.7548 | | 0.0555 | 7.4139 | 2024 | 0.5716 | 0.3824 | 0.5716 | 0.7560 | | 0.0555 | 7.4212 | 2026 | 0.5698 | 0.3824 | 0.5698 | 0.7549 | | 0.0555 | 7.4286 | 2028 | 0.5649 | 0.4545 | 0.5649 | 0.7516 | | 0.0555 | 7.4359 | 2030 | 0.5636 | 0.4545 | 0.5636 | 0.7508 | | 0.0555 | 7.4432 | 2032 | 0.5669 | 0.4545 | 0.5669 | 0.7529 | | 0.0555 | 7.4505 | 2034 | 0.5736 | 0.4545 | 0.5736 | 0.7574 | | 0.0555 | 7.4579 | 2036 | 0.5813 | 0.4545 | 0.5813 | 0.7624 | | 0.0555 | 7.4652 | 2038 | 0.5913 | 0.3824 | 0.5913 | 0.7690 | | 0.0555 | 7.4725 | 2040 | 0.5968 | 0.3824 | 0.5968 | 0.7725 | | 0.0555 | 7.4799 | 2042 | 0.6034 | 0.3824 | 0.6034 | 0.7768 | | 0.0555 | 7.4872 | 2044 | 0.6114 | 0.3478 | 0.6114 | 0.7819 | | 0.0555 | 7.4945 | 2046 | 0.6161 | 0.3478 | 0.6161 | 0.7849 | | 0.0555 | 7.5018 | 2048 | 0.6128 | 0.3478 | 0.6128 | 0.7828 | | 0.0555 | 7.5092 | 2050 | 0.6013 | 0.3478 | 0.6013 | 0.7755 | | 0.0555 | 7.5165 | 2052 | 0.5807 | 0.3478 | 0.5807 | 0.7620 | | 0.0555 | 7.5238 | 2054 | 0.5669 | 0.3824 | 0.5669 | 0.7529 | | 0.0555 | 7.5311 | 2056 | 0.5605 | 0.3824 | 0.5605 | 0.7486 | | 0.0555 | 7.5385 | 2058 | 0.5567 | 0.3478 | 0.5567 | 0.7461 | | 0.0555 | 7.5458 | 2060 | 0.5571 | 0.3478 | 0.5571 | 0.7464 | | 0.0555 | 7.5531 | 2062 | 0.5519 | 0.3478 | 0.5519 | 0.7429 | | 0.0555 | 7.5604 | 2064 | 0.5492 | 0.2500 | 0.5492 | 0.7411 | | 0.0555 | 7.5678 | 2066 | 0.5532 | 0.2500 | 0.5532 | 0.7438 | | 0.0555 | 7.5751 | 2068 | 0.5684 | 0.3077 | 0.5684 | 0.7539 | | 0.0555 | 7.5824 | 2070 | 0.5736 | 0.3077 | 0.5736 | 0.7574 | | 0.0555 | 7.5897 | 2072 | 0.5827 | 0.3077 | 0.5827 | 0.7633 | | 0.0555 | 7.5971 | 2074 | 0.5899 | 0.3077 | 0.5899 | 0.7680 | | 0.0555 | 7.6044 | 2076 | 0.5898 | 0.3077 | 0.5898 | 0.7680 | | 0.0555 | 7.6117 | 2078 | 0.5746 | 0.3077 | 0.5746 | 0.7580 | | 0.0555 | 7.6190 | 2080 | 0.5513 | 0.3478 | 0.5513 | 0.7425 | | 0.0555 | 7.6264 | 2082 | 0.5376 | 0.4706 | 0.5376 | 0.7332 | | 0.0555 | 7.6337 | 2084 | 0.5317 | 0.4545 | 0.5317 | 0.7292 | | 0.0555 | 7.6410 | 2086 | 0.5350 | 0.4923 | 0.5350 | 0.7314 | | 0.0555 | 7.6484 | 2088 | 0.5422 | 0.48 | 0.5422 | 0.7363 | | 0.0555 | 7.6557 | 2090 | 0.5505 | 0.48 | 0.5505 | 0.7420 | | 0.0555 | 7.6630 | 2092 | 0.5577 | 0.4507 | 0.5577 | 0.7468 | | 0.0555 | 7.6703 | 2094 | 0.5662 | 0.5075 | 0.5662 | 0.7524 | | 0.0555 | 7.6777 | 2096 | 0.5695 | 0.5075 | 0.5695 | 0.7547 | | 0.0555 | 7.6850 | 2098 | 0.5703 | 0.5075 | 0.5703 | 0.7552 | | 0.0555 | 7.6923 | 2100 | 0.5664 | 0.5075 | 0.5664 | 0.7526 | | 0.0555 | 7.6996 | 2102 | 0.5653 | 0.5075 | 0.5653 | 0.7518 | | 0.0555 | 7.7070 | 2104 | 0.5644 | 0.4545 | 0.5644 | 0.7513 | | 0.0555 | 7.7143 | 2106 | 0.5670 | 0.4545 | 0.5670 | 0.7530 | | 0.0555 | 7.7216 | 2108 | 0.5719 | 0.5075 | 0.5719 | 0.7562 | | 0.0555 | 7.7289 | 2110 | 0.5746 | 0.5075 | 0.5746 | 0.7580 | | 0.0555 | 7.7363 | 2112 | 0.5802 | 0.3478 | 0.5802 | 0.7617 | | 0.0555 | 7.7436 | 2114 | 0.5827 | 0.3478 | 0.5827 | 0.7633 | | 0.0555 | 7.7509 | 2116 | 0.5757 | 0.3478 | 0.5757 | 0.7588 | | 0.0555 | 7.7582 | 2118 | 0.5691 | 0.3478 | 0.5691 | 0.7544 | | 0.0555 | 7.7656 | 2120 | 0.5626 | 0.3478 | 0.5626 | 0.7501 | | 0.0555 | 7.7729 | 2122 | 0.5588 | 0.3824 | 0.5588 | 0.7475 | | 0.0555 | 7.7802 | 2124 | 0.5517 | 0.5075 | 0.5517 | 0.7428 | | 0.0555 | 7.7875 | 2126 | 0.5434 | 0.5075 | 0.5434 | 0.7372 | | 0.0555 | 7.7949 | 2128 | 0.5372 | 0.4375 | 0.5372 | 0.7330 | | 0.0555 | 7.8022 | 2130 | 0.5356 | 0.4375 | 0.5356 | 0.7319 | | 0.0555 | 7.8095 | 2132 | 0.5345 | 0.4375 | 0.5345 | 0.7311 | | 0.0555 | 7.8168 | 2134 | 0.5349 | 0.4407 | 0.5349 | 0.7313 | | 0.0555 | 7.8242 | 2136 | 0.5366 | 0.4407 | 0.5366 | 0.7325 | | 0.0555 | 7.8315 | 2138 | 0.5416 | 0.4545 | 0.5416 | 0.7359 | | 0.0555 | 7.8388 | 2140 | 0.5494 | 0.5075 | 0.5494 | 0.7412 | | 0.0555 | 7.8462 | 2142 | 0.5597 | 0.3478 | 0.5597 | 0.7481 | | 0.0555 | 7.8535 | 2144 | 0.5673 | 0.3478 | 0.5673 | 0.7532 | | 0.0555 | 7.8608 | 2146 | 0.5786 | 0.3478 | 0.5786 | 0.7606 | | 0.0555 | 7.8681 | 2148 | 0.5814 | 0.3478 | 0.5814 | 0.7625 | | 0.0555 | 7.8755 | 2150 | 0.5745 | 0.3478 | 0.5745 | 0.7579 | | 0.0555 | 7.8828 | 2152 | 0.5703 | 0.3478 | 0.5703 | 0.7552 | | 0.0555 | 7.8901 | 2154 | 0.5699 | 0.3478 | 0.5699 | 0.7549 | | 0.0555 | 7.8974 | 2156 | 0.5678 | 0.3478 | 0.5678 | 0.7536 | | 0.0555 | 7.9048 | 2158 | 0.5636 | 0.5075 | 0.5636 | 0.7507 | | 0.0555 | 7.9121 | 2160 | 0.5581 | 0.5075 | 0.5581 | 0.7470 | | 0.0555 | 7.9194 | 2162 | 0.5490 | 0.4545 | 0.5490 | 0.7409 | | 0.0555 | 7.9267 | 2164 | 0.5494 | 0.4545 | 0.5494 | 0.7412 | | 0.0555 | 7.9341 | 2166 | 0.5558 | 0.5075 | 0.5558 | 0.7455 | | 0.0555 | 7.9414 | 2168 | 0.5637 | 0.5075 | 0.5637 | 0.7508 | | 0.0555 | 7.9487 | 2170 | 0.5699 | 0.3478 | 0.5699 | 0.7549 | | 0.0555 | 7.9560 | 2172 | 0.5751 | 0.3478 | 0.5751 | 0.7584 | | 0.0555 | 7.9634 | 2174 | 0.5744 | 0.3478 | 0.5744 | 0.7579 | | 0.0555 | 7.9707 | 2176 | 0.5774 | 0.3478 | 0.5774 | 0.7599 | | 0.0555 | 7.9780 | 2178 | 0.5806 | 0.3478 | 0.5806 | 0.7620 | | 0.0555 | 7.9853 | 2180 | 0.5831 | 0.3478 | 0.5831 | 0.7636 | | 0.0555 | 7.9927 | 2182 | 0.5831 | 0.3478 | 0.5831 | 0.7636 | | 0.0555 | 8.0 | 2184 | 0.5836 | 0.3478 | 0.5836 | 0.7640 | | 0.0555 | 8.0073 | 2186 | 0.5885 | 0.3478 | 0.5885 | 0.7671 | | 0.0555 | 8.0147 | 2188 | 0.5972 | 0.3478 | 0.5972 | 0.7728 | | 0.0555 | 8.0220 | 2190 | 0.6014 | 0.3478 | 0.6014 | 0.7755 | | 0.0555 | 8.0293 | 2192 | 0.6106 | 0.3478 | 0.6106 | 0.7814 | | 0.0555 | 8.0366 | 2194 | 0.6189 | 0.3478 | 0.6189 | 0.7867 | | 0.0555 | 8.0440 | 2196 | 0.6244 | 0.3478 | 0.6244 | 0.7902 | | 0.0555 | 8.0513 | 2198 | 0.6226 | 0.3478 | 0.6226 | 0.7891 | | 0.0555 | 8.0586 | 2200 | 0.6172 | 0.3478 | 0.6172 | 0.7856 | | 0.0555 | 8.0659 | 2202 | 0.6123 | 0.3514 | 0.6123 | 0.7825 | | 0.0555 | 8.0733 | 2204 | 0.6068 | 0.4507 | 0.6068 | 0.7790 | | 0.0555 | 8.0806 | 2206 | 0.6067 | 0.4474 | 0.6067 | 0.7789 | | 0.0555 | 8.0879 | 2208 | 0.6093 | 0.4474 | 0.6093 | 0.7806 | | 0.0555 | 8.0952 | 2210 | 0.6127 | 0.4474 | 0.6127 | 0.7828 | | 0.0555 | 8.1026 | 2212 | 0.6125 | 0.4474 | 0.6125 | 0.7826 | | 0.0555 | 8.1099 | 2214 | 0.6125 | 0.4474 | 0.6125 | 0.7826 | | 0.0555 | 8.1172 | 2216 | 0.6110 | 0.4474 | 0.6110 | 0.7817 | | 0.0555 | 8.1245 | 2218 | 0.6084 | 0.4474 | 0.6084 | 0.7800 | | 0.0555 | 8.1319 | 2220 | 0.6068 | 0.4474 | 0.6068 | 0.7790 | | 0.0555 | 8.1392 | 2222 | 0.6060 | 0.4507 | 0.6060 | 0.7785 | | 0.0555 | 8.1465 | 2224 | 0.6050 | 0.4507 | 0.6050 | 0.7778 | | 0.0555 | 8.1538 | 2226 | 0.6020 | 0.5 | 0.6020 | 0.7759 | | 0.0555 | 8.1612 | 2228 | 0.5998 | 0.5 | 0.5998 | 0.7745 | | 0.0555 | 8.1685 | 2230 | 0.5957 | 0.5 | 0.5957 | 0.7718 | | 0.0555 | 8.1758 | 2232 | 0.5928 | 0.5 | 0.5928 | 0.7699 | | 0.0555 | 8.1832 | 2234 | 0.5901 | 0.5075 | 0.5901 | 0.7682 | | 0.0555 | 8.1905 | 2236 | 0.5867 | 0.3824 | 0.5867 | 0.7660 | | 0.0555 | 8.1978 | 2238 | 0.5851 | 0.3478 | 0.5851 | 0.7649 | | 0.0555 | 8.2051 | 2240 | 0.5822 | 0.3478 | 0.5822 | 0.7630 | | 0.0555 | 8.2125 | 2242 | 0.5833 | 0.3478 | 0.5833 | 0.7637 | | 0.0555 | 8.2198 | 2244 | 0.5853 | 0.3478 | 0.5853 | 0.7651 | | 0.0555 | 8.2271 | 2246 | 0.5863 | 0.3478 | 0.5863 | 0.7657 | | 0.0555 | 8.2344 | 2248 | 0.5829 | 0.3824 | 0.5829 | 0.7635 | | 0.0555 | 8.2418 | 2250 | 0.5773 | 0.5075 | 0.5773 | 0.7598 | | 0.0555 | 8.2491 | 2252 | 0.5775 | 0.5 | 0.5775 | 0.7599 | | 0.0555 | 8.2564 | 2254 | 0.5807 | 0.5 | 0.5807 | 0.7620 | | 0.0555 | 8.2637 | 2256 | 0.5820 | 0.5 | 0.5820 | 0.7629 | | 0.0555 | 8.2711 | 2258 | 0.5824 | 0.3836 | 0.5824 | 0.7631 | | 0.0555 | 8.2784 | 2260 | 0.5776 | 0.5 | 0.5776 | 0.7600 | | 0.0555 | 8.2857 | 2262 | 0.5725 | 0.5 | 0.5725 | 0.7567 | | 0.0555 | 8.2930 | 2264 | 0.5685 | 0.5 | 0.5685 | 0.7540 | | 0.0555 | 8.3004 | 2266 | 0.5670 | 0.5 | 0.5670 | 0.7530 | | 0.0555 | 8.3077 | 2268 | 0.5669 | 0.3824 | 0.5669 | 0.7529 | | 0.0555 | 8.3150 | 2270 | 0.5702 | 0.3824 | 0.5702 | 0.7551 | | 0.0555 | 8.3223 | 2272 | 0.5737 | 0.3824 | 0.5737 | 0.7574 | | 0.0555 | 8.3297 | 2274 | 0.5774 | 0.3478 | 0.5774 | 0.7599 | | 0.0555 | 8.3370 | 2276 | 0.5804 | 0.3478 | 0.5804 | 0.7618 | | 0.0555 | 8.3443 | 2278 | 0.5754 | 0.3478 | 0.5754 | 0.7585 | | 0.0555 | 8.3516 | 2280 | 0.5720 | 0.3478 | 0.5720 | 0.7563 | | 0.0555 | 8.3590 | 2282 | 0.5672 | 0.3478 | 0.5672 | 0.7531 | | 0.0555 | 8.3663 | 2284 | 0.5628 | 0.3478 | 0.5628 | 0.7502 | | 0.0555 | 8.3736 | 2286 | 0.5574 | 0.3478 | 0.5574 | 0.7466 | | 0.0555 | 8.3810 | 2288 | 0.5503 | 0.3824 | 0.5503 | 0.7418 | | 0.0555 | 8.3883 | 2290 | 0.5463 | 0.3607 | 0.5463 | 0.7391 | | 0.0555 | 8.3956 | 2292 | 0.5475 | 0.3607 | 0.5475 | 0.7399 | | 0.0555 | 8.4029 | 2294 | 0.5492 | 0.3478 | 0.5492 | 0.7411 | | 0.0555 | 8.4103 | 2296 | 0.5484 | 0.3478 | 0.5484 | 0.7406 | | 0.0555 | 8.4176 | 2298 | 0.5486 | 0.3478 | 0.5486 | 0.7407 | | 0.0555 | 8.4249 | 2300 | 0.5507 | 0.3478 | 0.5507 | 0.7421 | | 0.0555 | 8.4322 | 2302 | 0.5524 | 0.3478 | 0.5524 | 0.7432 | | 0.0555 | 8.4396 | 2304 | 0.5508 | 0.3478 | 0.5508 | 0.7421 | | 0.0555 | 8.4469 | 2306 | 0.5476 | 0.3824 | 0.5476 | 0.7400 | | 0.0555 | 8.4542 | 2308 | 0.5475 | 0.3824 | 0.5475 | 0.7400 | | 0.0555 | 8.4615 | 2310 | 0.5535 | 0.3824 | 0.5535 | 0.7440 | | 0.0555 | 8.4689 | 2312 | 0.5645 | 0.3478 | 0.5645 | 0.7513 | | 0.0555 | 8.4762 | 2314 | 0.5741 | 0.3478 | 0.5741 | 0.7577 | | 0.0555 | 8.4835 | 2316 | 0.5803 | 0.3478 | 0.5803 | 0.7617 | | 0.0555 | 8.4908 | 2318 | 0.5842 | 0.3478 | 0.5842 | 0.7644 | | 0.0555 | 8.4982 | 2320 | 0.5849 | 0.3478 | 0.5849 | 0.7648 | | 0.0555 | 8.5055 | 2322 | 0.5799 | 0.3478 | 0.5799 | 0.7615 | | 0.0555 | 8.5128 | 2324 | 0.5778 | 0.3478 | 0.5778 | 0.7601 | | 0.0555 | 8.5201 | 2326 | 0.5814 | 0.3478 | 0.5814 | 0.7625 | | 0.0555 | 8.5275 | 2328 | 0.5837 | 0.3478 | 0.5837 | 0.7640 | | 0.0555 | 8.5348 | 2330 | 0.5807 | 0.3478 | 0.5807 | 0.7620 | | 0.0555 | 8.5421 | 2332 | 0.5739 | 0.3478 | 0.5739 | 0.7576 | | 0.0555 | 8.5495 | 2334 | 0.5650 | 0.3824 | 0.5650 | 0.7517 | | 0.0555 | 8.5568 | 2336 | 0.5598 | 0.3824 | 0.5598 | 0.7482 | | 0.0555 | 8.5641 | 2338 | 0.5569 | 0.3836 | 0.5569 | 0.7462 | | 0.0555 | 8.5714 | 2340 | 0.5582 | 0.3836 | 0.5582 | 0.7471 | | 0.0555 | 8.5788 | 2342 | 0.5617 | 0.3824 | 0.5617 | 0.7494 | | 0.0555 | 8.5861 | 2344 | 0.5664 | 0.3824 | 0.5664 | 0.7526 | | 0.0555 | 8.5934 | 2346 | 0.5708 | 0.3478 | 0.5708 | 0.7555 | | 0.0555 | 8.6007 | 2348 | 0.5735 | 0.3478 | 0.5735 | 0.7573 | | 0.0555 | 8.6081 | 2350 | 0.5779 | 0.3478 | 0.5779 | 0.7602 | | 0.0555 | 8.6154 | 2352 | 0.5804 | 0.3478 | 0.5804 | 0.7619 | | 0.0555 | 8.6227 | 2354 | 0.5842 | 0.3478 | 0.5842 | 0.7644 | | 0.0555 | 8.6300 | 2356 | 0.5875 | 0.3478 | 0.5875 | 0.7665 | | 0.0555 | 8.6374 | 2358 | 0.5864 | 0.3478 | 0.5864 | 0.7658 | | 0.0555 | 8.6447 | 2360 | 0.5830 | 0.3478 | 0.5830 | 0.7636 | | 0.0555 | 8.6520 | 2362 | 0.5796 | 0.3478 | 0.5796 | 0.7613 | | 0.0555 | 8.6593 | 2364 | 0.5794 | 0.3478 | 0.5794 | 0.7612 | | 0.0555 | 8.6667 | 2366 | 0.5771 | 0.3478 | 0.5771 | 0.7597 | | 0.0555 | 8.6740 | 2368 | 0.5672 | 0.3478 | 0.5672 | 0.7532 | | 0.0555 | 8.6813 | 2370 | 0.5574 | 0.3478 | 0.5574 | 0.7466 | | 0.0555 | 8.6886 | 2372 | 0.5500 | 0.3824 | 0.5500 | 0.7416 | | 0.0555 | 8.6960 | 2374 | 0.5448 | 0.3824 | 0.5448 | 0.7381 | | 0.0555 | 8.7033 | 2376 | 0.5383 | 0.5075 | 0.5383 | 0.7337 | | 0.0555 | 8.7106 | 2378 | 0.5318 | 0.5 | 0.5318 | 0.7292 | | 0.0555 | 8.7179 | 2380 | 0.5312 | 0.5 | 0.5312 | 0.7288 | | 0.0555 | 8.7253 | 2382 | 0.5346 | 0.5 | 0.5346 | 0.7312 | | 0.0555 | 8.7326 | 2384 | 0.5389 | 0.5075 | 0.5389 | 0.7341 | | 0.0555 | 8.7399 | 2386 | 0.5445 | 0.5075 | 0.5445 | 0.7379 | | 0.0555 | 8.7473 | 2388 | 0.5493 | 0.3824 | 0.5493 | 0.7411 | | 0.0555 | 8.7546 | 2390 | 0.5550 | 0.3824 | 0.5550 | 0.7450 | | 0.0555 | 8.7619 | 2392 | 0.5604 | 0.3824 | 0.5604 | 0.7486 | | 0.0555 | 8.7692 | 2394 | 0.5638 | 0.3824 | 0.5638 | 0.7509 | | 0.0555 | 8.7766 | 2396 | 0.5686 | 0.3824 | 0.5686 | 0.7541 | | 0.0555 | 8.7839 | 2398 | 0.5788 | 0.3478 | 0.5788 | 0.7608 | | 0.0555 | 8.7912 | 2400 | 0.5859 | 0.3478 | 0.5859 | 0.7654 | | 0.0555 | 8.7985 | 2402 | 0.5961 | 0.3478 | 0.5961 | 0.7721 | | 0.0555 | 8.8059 | 2404 | 0.6048 | 0.3478 | 0.6048 | 0.7777 | | 0.0555 | 8.8132 | 2406 | 0.6118 | 0.4 | 0.6118 | 0.7821 | | 0.0555 | 8.8205 | 2408 | 0.6112 | 0.4 | 0.6112 | 0.7818 | | 0.0555 | 8.8278 | 2410 | 0.6079 | 0.3478 | 0.6079 | 0.7797 | | 0.0555 | 8.8352 | 2412 | 0.6000 | 0.3478 | 0.6000 | 0.7746 | | 0.0555 | 8.8425 | 2414 | 0.5932 | 0.3478 | 0.5932 | 0.7702 | | 0.0555 | 8.8498 | 2416 | 0.5907 | 0.3478 | 0.5907 | 0.7686 | | 0.0555 | 8.8571 | 2418 | 0.5910 | 0.3478 | 0.5910 | 0.7688 | | 0.0555 | 8.8645 | 2420 | 0.5863 | 0.3478 | 0.5863 | 0.7657 | | 0.0555 | 8.8718 | 2422 | 0.5829 | 0.3824 | 0.5829 | 0.7634 | | 0.0555 | 8.8791 | 2424 | 0.5810 | 0.3824 | 0.5810 | 0.7622 | | 0.0555 | 8.8864 | 2426 | 0.5768 | 0.5075 | 0.5768 | 0.7595 | | 0.0555 | 8.8938 | 2428 | 0.5718 | 0.5075 | 0.5718 | 0.7562 | | 0.0555 | 8.9011 | 2430 | 0.5658 | 0.4507 | 0.5658 | 0.7522 | | 0.0555 | 8.9084 | 2432 | 0.5589 | 0.4507 | 0.5589 | 0.7476 | | 0.0555 | 8.9158 | 2434 | 0.5549 | 0.4507 | 0.5549 | 0.7449 | | 0.0555 | 8.9231 | 2436 | 0.5510 | 0.4507 | 0.5510 | 0.7423 | | 0.0555 | 8.9304 | 2438 | 0.5464 | 0.4507 | 0.5464 | 0.7392 | | 0.0555 | 8.9377 | 2440 | 0.5425 | 0.4375 | 0.5425 | 0.7365 | | 0.0555 | 8.9451 | 2442 | 0.5389 | 0.4407 | 0.5389 | 0.7341 | | 0.0555 | 8.9524 | 2444 | 0.5371 | 0.4407 | 0.5371 | 0.7328 | | 0.0555 | 8.9597 | 2446 | 0.5380 | 0.4407 | 0.5380 | 0.7335 | | 0.0555 | 8.9670 | 2448 | 0.5404 | 0.4407 | 0.5404 | 0.7351 | | 0.0555 | 8.9744 | 2450 | 0.5450 | 0.5075 | 0.5450 | 0.7383 | | 0.0555 | 8.9817 | 2452 | 0.5494 | 0.5075 | 0.5494 | 0.7412 | | 0.0555 | 8.9890 | 2454 | 0.5516 | 0.3824 | 0.5516 | 0.7427 | | 0.0555 | 8.9963 | 2456 | 0.5544 | 0.3824 | 0.5544 | 0.7446 | | 0.0555 | 9.0037 | 2458 | 0.5561 | 0.3824 | 0.5561 | 0.7457 | | 0.0555 | 9.0110 | 2460 | 0.5573 | 0.3824 | 0.5573 | 0.7466 | | 0.0555 | 9.0183 | 2462 | 0.5567 | 0.3824 | 0.5567 | 0.7461 | | 0.0555 | 9.0256 | 2464 | 0.5550 | 0.3824 | 0.5550 | 0.7450 | | 0.0555 | 9.0330 | 2466 | 0.5523 | 0.3824 | 0.5523 | 0.7432 | | 0.0555 | 9.0403 | 2468 | 0.5508 | 0.3824 | 0.5508 | 0.7422 | | 0.0555 | 9.0476 | 2470 | 0.5516 | 0.3824 | 0.5516 | 0.7427 | | 0.0555 | 9.0549 | 2472 | 0.5523 | 0.3824 | 0.5523 | 0.7432 | | 0.0555 | 9.0623 | 2474 | 0.5501 | 0.3824 | 0.5501 | 0.7417 | | 0.0555 | 9.0696 | 2476 | 0.5470 | 0.3824 | 0.5470 | 0.7396 | | 0.0555 | 9.0769 | 2478 | 0.5457 | 0.5075 | 0.5457 | 0.7387 | | 0.0555 | 9.0842 | 2480 | 0.5438 | 0.5 | 0.5438 | 0.7374 | | 0.0555 | 9.0916 | 2482 | 0.5429 | 0.5 | 0.5429 | 0.7368 | | 0.0555 | 9.0989 | 2484 | 0.5433 | 0.5 | 0.5433 | 0.7371 | | 0.0555 | 9.1062 | 2486 | 0.5455 | 0.5 | 0.5455 | 0.7386 | | 0.0555 | 9.1136 | 2488 | 0.5484 | 0.3824 | 0.5484 | 0.7405 | | 0.0555 | 9.1209 | 2490 | 0.5499 | 0.3824 | 0.5499 | 0.7416 | | 0.0555 | 9.1282 | 2492 | 0.5478 | 0.3824 | 0.5478 | 0.7402 | | 0.0555 | 9.1355 | 2494 | 0.5446 | 0.5 | 0.5446 | 0.7379 | | 0.0555 | 9.1429 | 2496 | 0.5405 | 0.5 | 0.5405 | 0.7352 | | 0.0555 | 9.1502 | 2498 | 0.5382 | 0.3607 | 0.5382 | 0.7336 | | 0.0473 | 9.1575 | 2500 | 0.5385 | 0.3607 | 0.5385 | 0.7338 | | 0.0473 | 9.1648 | 2502 | 0.5384 | 0.3607 | 0.5384 | 0.7338 | | 0.0473 | 9.1722 | 2504 | 0.5363 | 0.3607 | 0.5363 | 0.7323 | | 0.0473 | 9.1795 | 2506 | 0.5358 | 0.3607 | 0.5358 | 0.7320 | | 0.0473 | 9.1868 | 2508 | 0.5379 | 0.3607 | 0.5379 | 0.7334 | | 0.0473 | 9.1941 | 2510 | 0.5395 | 0.3607 | 0.5395 | 0.7345 | | 0.0473 | 9.2015 | 2512 | 0.5413 | 0.3607 | 0.5413 | 0.7357 | | 0.0473 | 9.2088 | 2514 | 0.5407 | 0.3607 | 0.5407 | 0.7353 | | 0.0473 | 9.2161 | 2516 | 0.5389 | 0.3607 | 0.5389 | 0.7341 | | 0.0473 | 9.2234 | 2518 | 0.5366 | 0.3607 | 0.5366 | 0.7325 | | 0.0473 | 9.2308 | 2520 | 0.5352 | 0.3607 | 0.5352 | 0.7316 | | 0.0473 | 9.2381 | 2522 | 0.5352 | 0.3607 | 0.5352 | 0.7316 | | 0.0473 | 9.2454 | 2524 | 0.5366 | 0.3607 | 0.5366 | 0.7325 | | 0.0473 | 9.2527 | 2526 | 0.5385 | 0.3607 | 0.5385 | 0.7338 | | 0.0473 | 9.2601 | 2528 | 0.5397 | 0.3607 | 0.5397 | 0.7347 | | 0.0473 | 9.2674 | 2530 | 0.5410 | 0.3607 | 0.5410 | 0.7355 | | 0.0473 | 9.2747 | 2532 | 0.5408 | 0.3607 | 0.5408 | 0.7354 | | 0.0473 | 9.2821 | 2534 | 0.5413 | 0.3607 | 0.5413 | 0.7357 | | 0.0473 | 9.2894 | 2536 | 0.5418 | 0.3607 | 0.5418 | 0.7361 | | 0.0473 | 9.2967 | 2538 | 0.5420 | 0.3607 | 0.5420 | 0.7362 | | 0.0473 | 9.3040 | 2540 | 0.5434 | 0.3636 | 0.5434 | 0.7372 | | 0.0473 | 9.3114 | 2542 | 0.5449 | 0.3607 | 0.5449 | 0.7382 | | 0.0473 | 9.3187 | 2544 | 0.5487 | 0.3607 | 0.5487 | 0.7407 | | 0.0473 | 9.3260 | 2546 | 0.5532 | 0.3824 | 0.5532 | 0.7437 | | 0.0473 | 9.3333 | 2548 | 0.5542 | 0.3824 | 0.5542 | 0.7444 | | 0.0473 | 9.3407 | 2550 | 0.5540 | 0.3607 | 0.5540 | 0.7443 | | 0.0473 | 9.3480 | 2552 | 0.5528 | 0.3607 | 0.5528 | 0.7435 | | 0.0473 | 9.3553 | 2554 | 0.5523 | 0.3607 | 0.5523 | 0.7431 | | 0.0473 | 9.3626 | 2556 | 0.5526 | 0.3607 | 0.5526 | 0.7434 | | 0.0473 | 9.3700 | 2558 | 0.5538 | 0.3607 | 0.5538 | 0.7442 | | 0.0473 | 9.3773 | 2560 | 0.5546 | 0.3607 | 0.5546 | 0.7447 | | 0.0473 | 9.3846 | 2562 | 0.5537 | 0.3607 | 0.5537 | 0.7441 | | 0.0473 | 9.3919 | 2564 | 0.5520 | 0.3607 | 0.5520 | 0.7430 | | 0.0473 | 9.3993 | 2566 | 0.5510 | 0.3607 | 0.5510 | 0.7423 | | 0.0473 | 9.4066 | 2568 | 0.5495 | 0.3607 | 0.5495 | 0.7413 | | 0.0473 | 9.4139 | 2570 | 0.5473 | 0.3607 | 0.5473 | 0.7398 | | 0.0473 | 9.4212 | 2572 | 0.5458 | 0.3607 | 0.5458 | 0.7388 | | 0.0473 | 9.4286 | 2574 | 0.5447 | 0.3607 | 0.5447 | 0.7380 | | 0.0473 | 9.4359 | 2576 | 0.5444 | 0.3607 | 0.5444 | 0.7379 | | 0.0473 | 9.4432 | 2578 | 0.5450 | 0.3607 | 0.5450 | 0.7383 | | 0.0473 | 9.4505 | 2580 | 0.5457 | 0.3607 | 0.5457 | 0.7387 | | 0.0473 | 9.4579 | 2582 | 0.5457 | 0.3607 | 0.5457 | 0.7387 | | 0.0473 | 9.4652 | 2584 | 0.5455 | 0.3607 | 0.5455 | 0.7386 | | 0.0473 | 9.4725 | 2586 | 0.5447 | 0.3607 | 0.5447 | 0.7380 | | 0.0473 | 9.4799 | 2588 | 0.5451 | 0.3607 | 0.5451 | 0.7383 | | 0.0473 | 9.4872 | 2590 | 0.5463 | 0.3607 | 0.5463 | 0.7391 | | 0.0473 | 9.4945 | 2592 | 0.5489 | 0.3226 | 0.5489 | 0.7409 | | 0.0473 | 9.5018 | 2594 | 0.5505 | 0.3226 | 0.5505 | 0.7420 | | 0.0473 | 9.5092 | 2596 | 0.5524 | 0.3226 | 0.5524 | 0.7432 | | 0.0473 | 9.5165 | 2598 | 0.5526 | 0.3226 | 0.5526 | 0.7434 | | 0.0473 | 9.5238 | 2600 | 0.5506 | 0.3226 | 0.5506 | 0.7420 | | 0.0473 | 9.5311 | 2602 | 0.5478 | 0.3226 | 0.5478 | 0.7402 | | 0.0473 | 9.5385 | 2604 | 0.5454 | 0.3226 | 0.5454 | 0.7385 | | 0.0473 | 9.5458 | 2606 | 0.5432 | 0.3226 | 0.5432 | 0.7370 | | 0.0473 | 9.5531 | 2608 | 0.5422 | 0.3226 | 0.5422 | 0.7364 | | 0.0473 | 9.5604 | 2610 | 0.5400 | 0.3607 | 0.5400 | 0.7348 | | 0.0473 | 9.5678 | 2612 | 0.5376 | 0.3607 | 0.5376 | 0.7332 | | 0.0473 | 9.5751 | 2614 | 0.5358 | 0.3607 | 0.5358 | 0.7320 | | 0.0473 | 9.5824 | 2616 | 0.5338 | 0.3607 | 0.5338 | 0.7306 | | 0.0473 | 9.5897 | 2618 | 0.5327 | 0.3607 | 0.5327 | 0.7298 | | 0.0473 | 9.5971 | 2620 | 0.5313 | 0.3607 | 0.5313 | 0.7289 | | 0.0473 | 9.6044 | 2622 | 0.5309 | 0.3607 | 0.5309 | 0.7286 | | 0.0473 | 9.6117 | 2624 | 0.5304 | 0.3607 | 0.5304 | 0.7283 | | 0.0473 | 9.6190 | 2626 | 0.5296 | 0.3607 | 0.5296 | 0.7278 | | 0.0473 | 9.6264 | 2628 | 0.5293 | 0.3607 | 0.5293 | 0.7275 | | 0.0473 | 9.6337 | 2630 | 0.5291 | 0.3607 | 0.5291 | 0.7274 | | 0.0473 | 9.6410 | 2632 | 0.5293 | 0.3607 | 0.5293 | 0.7275 | | 0.0473 | 9.6484 | 2634 | 0.5293 | 0.3607 | 0.5293 | 0.7276 | | 0.0473 | 9.6557 | 2636 | 0.5295 | 0.3607 | 0.5295 | 0.7276 | | 0.0473 | 9.6630 | 2638 | 0.5301 | 0.3607 | 0.5301 | 0.7281 | | 0.0473 | 9.6703 | 2640 | 0.5303 | 0.3607 | 0.5303 | 0.7282 | | 0.0473 | 9.6777 | 2642 | 0.5308 | 0.3607 | 0.5308 | 0.7286 | | 0.0473 | 9.6850 | 2644 | 0.5316 | 0.3607 | 0.5316 | 0.7291 | | 0.0473 | 9.6923 | 2646 | 0.5322 | 0.3607 | 0.5322 | 0.7295 | | 0.0473 | 9.6996 | 2648 | 0.5325 | 0.3607 | 0.5325 | 0.7297 | | 0.0473 | 9.7070 | 2650 | 0.5333 | 0.3607 | 0.5333 | 0.7303 | | 0.0473 | 9.7143 | 2652 | 0.5337 | 0.3607 | 0.5337 | 0.7306 | | 0.0473 | 9.7216 | 2654 | 0.5338 | 0.3607 | 0.5338 | 0.7306 | | 0.0473 | 9.7289 | 2656 | 0.5336 | 0.3607 | 0.5336 | 0.7305 | | 0.0473 | 9.7363 | 2658 | 0.5331 | 0.3607 | 0.5331 | 0.7301 | | 0.0473 | 9.7436 | 2660 | 0.5324 | 0.3607 | 0.5324 | 0.7296 | | 0.0473 | 9.7509 | 2662 | 0.5320 | 0.3607 | 0.5320 | 0.7294 | | 0.0473 | 9.7582 | 2664 | 0.5319 | 0.3607 | 0.5319 | 0.7293 | | 0.0473 | 9.7656 | 2666 | 0.5318 | 0.5 | 0.5318 | 0.7293 | | 0.0473 | 9.7729 | 2668 | 0.5320 | 0.5 | 0.5320 | 0.7294 | | 0.0473 | 9.7802 | 2670 | 0.5320 | 0.5 | 0.5320 | 0.7294 | | 0.0473 | 9.7875 | 2672 | 0.5321 | 0.5 | 0.5321 | 0.7295 | | 0.0473 | 9.7949 | 2674 | 0.5321 | 0.5 | 0.5321 | 0.7295 | | 0.0473 | 9.8022 | 2676 | 0.5324 | 0.5 | 0.5324 | 0.7297 | | 0.0473 | 9.8095 | 2678 | 0.5327 | 0.5 | 0.5327 | 0.7298 | | 0.0473 | 9.8168 | 2680 | 0.5327 | 0.5 | 0.5327 | 0.7299 | | 0.0473 | 9.8242 | 2682 | 0.5324 | 0.5 | 0.5324 | 0.7296 | | 0.0473 | 9.8315 | 2684 | 0.5321 | 0.5 | 0.5321 | 0.7295 | | 0.0473 | 9.8388 | 2686 | 0.5321 | 0.5 | 0.5321 | 0.7295 | | 0.0473 | 9.8462 | 2688 | 0.5320 | 0.5 | 0.5320 | 0.7294 | | 0.0473 | 9.8535 | 2690 | 0.5320 | 0.5 | 0.5320 | 0.7294 | | 0.0473 | 9.8608 | 2692 | 0.5321 | 0.5 | 0.5321 | 0.7295 | | 0.0473 | 9.8681 | 2694 | 0.5322 | 0.5 | 0.5322 | 0.7295 | | 0.0473 | 9.8755 | 2696 | 0.5321 | 0.5 | 0.5321 | 0.7295 | | 0.0473 | 9.8828 | 2698 | 0.5321 | 0.5 | 0.5321 | 0.7295 | | 0.0473 | 9.8901 | 2700 | 0.5322 | 0.5 | 0.5322 | 0.7295 | | 0.0473 | 9.8974 | 2702 | 0.5322 | 0.5 | 0.5322 | 0.7295 | | 0.0473 | 9.9048 | 2704 | 0.5322 | 0.5 | 0.5322 | 0.7295 | | 0.0473 | 9.9121 | 2706 | 0.5322 | 0.5 | 0.5322 | 0.7295 | | 0.0473 | 9.9194 | 2708 | 0.5323 | 0.5 | 0.5323 | 0.7296 | | 0.0473 | 9.9267 | 2710 | 0.5325 | 0.5 | 0.5325 | 0.7297 | | 0.0473 | 9.9341 | 2712 | 0.5326 | 0.5 | 0.5326 | 0.7298 | | 0.0473 | 9.9414 | 2714 | 0.5328 | 0.5 | 0.5328 | 0.7299 | | 0.0473 | 9.9487 | 2716 | 0.5329 | 0.5 | 0.5329 | 0.7300 | | 0.0473 | 9.9560 | 2718 | 0.5330 | 0.5 | 0.5330 | 0.7301 | | 0.0473 | 9.9634 | 2720 | 0.5330 | 0.5 | 0.5330 | 0.7301 | | 0.0473 | 9.9707 | 2722 | 0.5330 | 0.5 | 0.5330 | 0.7301 | | 0.0473 | 9.9780 | 2724 | 0.5330 | 0.5 | 0.5330 | 0.7301 | | 0.0473 | 9.9853 | 2726 | 0.5330 | 0.5 | 0.5330 | 0.7300 | | 0.0473 | 9.9927 | 2728 | 0.5329 | 0.5 | 0.5329 | 0.7300 | | 0.0473 | 10.0 | 2730 | 0.5329 | 0.5 | 0.5329 | 0.7300 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
eric10y/finetuning-sentiment-model-3000-samples
eric10y
2024-11-25T07:30:21Z
105
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T07:21:09Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
vitumafeni/tiny-crypto-sentiment-analysis
vitumafeni
2024-11-25T07:28:20Z
130
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T07:26:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
second-state/FLUX.1-Canny-dev-GGUF
second-state
2024-11-25T07:25:31Z
445
6
null
[ "gguf", "text-to-image", "image-generation", "flux", "en", "base_model:black-forest-labs/FLUX.1-Canny-dev", "base_model:quantized:black-forest-labs/FLUX.1-Canny-dev", "license:other", "region:us" ]
text-to-image
2024-11-25T02:50:33Z
--- base_model: black-forest-labs/FLUX.1-Canny-dev license: other license_name: flux-1-dev-non-commercial-license license_link: LICENSE.md model_creator: black-forest-labs model_name: FLUX.1-Canny-dev quantized_by: Second State Inc. language: - en tags: - text-to-image - image-generation - flux --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> > [!CAUTION] > T5 and Clip are still not provided in the original model # FLUX.1-Canny-dev-GGUF ## Original Model [black-forest-labs/FLUX.1-Canny-dev](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev) ## Run with LlamaEdge-StableDiffusion - Version: coming soon <!-- - Version: [0.1.4](https://github.com/LlamaEdge/sd-api-server/releases/tag/0.1.4) - Run as LlamaEdge service ```bash wasmedge --dir .:. sd-api-server.wasm \ --model-name flux1-canny-dev \ --diffusion-model flux1-canny-dev-Q4_0.gguf \ --vae ae.safetensors \ --clip-l clip_l.safetensors \ --t5xxl t5xxl-Q8_0.gguf ``` - Run with LoRA Assume that the LoRA model is located in the `lora-models` directory ```bash wasmedge --dir .:. \ --dir lora-models:lora-models \ sd-api-server.wasm \ --model-name flux1-canny-dev \ --diffusion-model flux1-canny-dev-Q4_0.gguf \ --vae ae.safetensors \ --clip-l clip_l.safetensors \ --t5xxl t5xxl-Q8_0.gguf \ --lora-model-dir lora-models ``` *For details, see https://github.com/LlamaEdge/sd-api-server/blob/main/examples/flux_with_lora.md* --> ## Quantized GGUF Models | Name | Quant method | Bits | Size | Use case | | ---- | ---- | ---- | ---- | ----- | | [ae.safetensors](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/ae.safetensors) | f32 | 32 | 335 MB | | | [flux1-canny-dev-Q2_K.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/flux1-canny-dev-Q2_K.gguf) | Q2_K | 2 | 4.15 GB | | | [flux1-canny-dev-Q3_K.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/flux1-canny-dev-Q3_K.gguf) | Q3_K | 3 | 5.35 GB | | | [flux1-canny-dev-Q4_0.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/flux1-canny-dev-Q4_0.gguf) | Q4_0 | 4 | 6.93 GB | | | [flux1-canny-dev-Q4_1.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/flux1-canny-dev-Q4_1.gguf) | Q4_1 | 4 | 7.67 GB | | | [flux1-canny-dev-Q4_K.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/flux1-canny-dev-Q4_K.gguf) | Q4_K | 4 | 6.93 GB | | | [flux1-canny-dev-Q5_0.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/flux1-canny-dev-Q5_0.gguf) | Q5_0 | 5 | 8.40 GB | | | [flux1-canny-dev-Q5_1.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/flux1-canny-dev-Q5_1.gguf) | Q5_1 | 5 | 9.14 GB | | | [flux1-canny-dev-Q8_0.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/flux1-canny-dev-Q8_0.gguf) | Q8_0 | 8 | 12.6 GB | | | [flux1-canny-dev.safetensors](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/flux1-canny-dev.safetensors) | f16 | 16 | 23.8 GB | | <!-- | [clip_l-Q8_0.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/clip_l-Q8_0.gguf) | Q8_0 | 8 | 131 MB | | | [clip_l.safetensors](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/clip_l.safetensors) | f16 | 16 | 246 MB | | | [t5xxl-Q2_K.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/t5xxl-Q2_K.gguf) | Q2_K | 2 | 1.61 GB | | | [t5xxl-Q3_K.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/t5xxl-Q3_K.gguf) | Q3_K | 3 | 2.10 GB | | | [t5xxl-Q4_0.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/t5xxl-Q4_0.gguf) | Q4_0 | 4 | 2.75 GB | | | [t5xxl-Q4_1.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/t5xxl-Q4_1.gguf) | Q4_0 | 4 | 3.06 GB | | | [t5xxl-Q4_K.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/t5xxl-Q4_K.gguf) | Q4_K | 4 | 2.75 GB | | | [t5xxl-Q5_0.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/t5xxl-Q5_0.gguf) | Q5_0 | 5 | 3.36 GB | | | [t5xxl-Q5_1.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/t5xxl-Q5_1.gguf) | Q5_1 | 5 | 3.67 GB | | | [t5xxl-Q8_0.gguf](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/t5xxl-Q8_0.gguf) | Q8_0 | 8 | 5.20 GB | | | [t5xxl_fp16.safetensors](https://huggingface.co/second-state/FLUX.1-Canny-dev-GGUF/blob/main/t5xxl_fp16.safetensors) | f16 | 16 | 9.79 GB | | --> **Quantized with stable-diffusion.cpp `master-c3eeb669`.**
ankit5319/chronos-t5-small-fine-tuned
ankit5319
2024-11-25T07:22:04Z
174
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-25T07:21:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shinyaaa/Travel-20-v1-on-RPC-10-v1
Shinyaaa
2024-11-25T07:20:42Z
102
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-11-25T07:20:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mlx-community/Llama-3.1-Tulu-3-8B-4bit
mlx-community
2024-11-25T07:19:51Z
81
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mlx", "conversational", "en", "dataset:allenai/RLVR-GSM-MATH-IF-Mixed-Constraints", "base_model:allenai/Llama-3.1-Tulu-3-8B", "base_model:quantized:allenai/Llama-3.1-Tulu-3-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2024-11-25T07:08:02Z
--- license: llama3.1 language: - en pipeline_tag: text-generation datasets: - allenai/RLVR-GSM-MATH-IF-Mixed-Constraints base_model: allenai/Llama-3.1-Tulu-3-8B library_name: transformers tags: - mlx --- # mlx-community/Llama-3.1-Tulu-3-8B-4bit The Model [mlx-community/Llama-3.1-Tulu-3-8B-4bit](https://huggingface.co/mlx-community/Llama-3.1-Tulu-3-8B-4bit) was converted to MLX format from [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) using mlx-lm version **0.20.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Llama-3.1-Tulu-3-8B-4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k35_task2_organization_fold0
MayBashendy
2024-11-25T07:19:11Z
161
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T07:06:32Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k35_task2_organization_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k35_task2_organization_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6437 - Qwk: 0.3771 - Mse: 0.6437 - Rmse: 0.8023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0082 | 2 | 3.8449 | 0.0 | 3.8449 | 1.9608 | | No log | 0.0165 | 4 | 2.5465 | 0.0172 | 2.5465 | 1.5958 | | No log | 0.0247 | 6 | 1.3961 | 0.0491 | 1.3961 | 1.1816 | | No log | 0.0329 | 8 | 1.3041 | 0.0 | 1.3041 | 1.1420 | | No log | 0.0412 | 10 | 1.1781 | 0.0 | 1.1781 | 1.0854 | | No log | 0.0494 | 12 | 1.2873 | 0.0 | 1.2873 | 1.1346 | | No log | 0.0576 | 14 | 1.6711 | -0.0302 | 1.6711 | 1.2927 | | No log | 0.0658 | 16 | 1.5391 | 0.0 | 1.5391 | 1.2406 | | No log | 0.0741 | 18 | 1.4694 | 0.0491 | 1.4694 | 1.2122 | | No log | 0.0823 | 20 | 1.5935 | 0.0491 | 1.5935 | 1.2623 | | No log | 0.0905 | 22 | 1.7652 | -0.0096 | 1.7652 | 1.3286 | | No log | 0.0988 | 24 | 1.9005 | 0.0525 | 1.9004 | 1.3786 | | No log | 0.1070 | 26 | 1.7812 | -0.0328 | 1.7812 | 1.3346 | | No log | 0.1152 | 28 | 1.6600 | 0.0173 | 1.6600 | 1.2884 | | No log | 0.1235 | 30 | 1.5788 | 0.0491 | 1.5788 | 1.2565 | | No log | 0.1317 | 32 | 1.4703 | 0.0 | 1.4703 | 1.2126 | | No log | 0.1399 | 34 | 1.2667 | 0.0 | 1.2667 | 1.1255 | | No log | 0.1481 | 36 | 1.0444 | 0.0 | 1.0444 | 1.0220 | | No log | 0.1564 | 38 | 0.8703 | 0.0 | 0.8703 | 0.9329 | | No log | 0.1646 | 40 | 0.7873 | 0.0335 | 0.7873 | 0.8873 | | No log | 0.1728 | 42 | 0.8284 | 0.0335 | 0.8284 | 0.9102 | | No log | 0.1811 | 44 | 0.9977 | 0.0 | 0.9977 | 0.9988 | | No log | 0.1893 | 46 | 1.3060 | 0.0 | 1.3060 | 1.1428 | | No log | 0.1975 | 48 | 1.4340 | 0.0 | 1.4340 | 1.1975 | | No log | 0.2058 | 50 | 1.3664 | 0.0 | 1.3664 | 1.1689 | | No log | 0.2140 | 52 | 1.2462 | 0.0 | 1.2462 | 1.1163 | | No log | 0.2222 | 54 | 1.1136 | 0.0 | 1.1136 | 1.0553 | | No log | 0.2305 | 56 | 1.2068 | 0.0 | 1.2068 | 1.0986 | | No log | 0.2387 | 58 | 1.1604 | 0.0 | 1.1604 | 1.0772 | | No log | 0.2469 | 60 | 0.9721 | 0.0 | 0.9721 | 0.9860 | | No log | 0.2551 | 62 | 0.8585 | 0.0 | 0.8585 | 0.9265 | | No log | 0.2634 | 64 | 0.8457 | 0.0 | 0.8457 | 0.9196 | | No log | 0.2716 | 66 | 0.8333 | 0.0 | 0.8333 | 0.9129 | | No log | 0.2798 | 68 | 0.9003 | 0.0 | 0.9003 | 0.9489 | | No log | 0.2881 | 70 | 1.0546 | 0.0 | 1.0546 | 1.0269 | | No log | 0.2963 | 72 | 1.1747 | 0.0 | 1.1747 | 1.0838 | | No log | 0.3045 | 74 | 1.2196 | 0.0 | 1.2196 | 1.1044 | | No log | 0.3128 | 76 | 1.1503 | 0.0 | 1.1503 | 1.0725 | | No log | 0.3210 | 78 | 1.0305 | 0.0 | 1.0305 | 1.0151 | | No log | 0.3292 | 80 | 0.9394 | 0.0 | 0.9394 | 0.9692 | | No log | 0.3374 | 82 | 0.9147 | 0.0 | 0.9147 | 0.9564 | | No log | 0.3457 | 84 | 0.9039 | 0.0 | 0.9039 | 0.9507 | | No log | 0.3539 | 86 | 0.9438 | 0.0 | 0.9438 | 0.9715 | | No log | 0.3621 | 88 | 1.1728 | 0.0 | 1.1728 | 1.0830 | | No log | 0.3704 | 90 | 1.5843 | 0.125 | 1.5843 | 1.2587 | | No log | 0.3786 | 92 | 1.5654 | 0.125 | 1.5654 | 1.2512 | | No log | 0.3868 | 94 | 1.2734 | 0.0 | 1.2734 | 1.1284 | | No log | 0.3951 | 96 | 0.9856 | 0.0 | 0.9856 | 0.9928 | | No log | 0.4033 | 98 | 0.7949 | 0.1564 | 0.7949 | 0.8916 | | No log | 0.4115 | 100 | 0.7168 | 0.1192 | 0.7168 | 0.8466 | | No log | 0.4198 | 102 | 0.7223 | 0.2150 | 0.7223 | 0.8499 | | No log | 0.4280 | 104 | 0.8128 | 0.1747 | 0.8128 | 0.9015 | | No log | 0.4362 | 106 | 0.7921 | 0.1747 | 0.7921 | 0.8900 | | No log | 0.4444 | 108 | 0.7928 | 0.3046 | 0.7928 | 0.8904 | | No log | 0.4527 | 110 | 0.7358 | 0.3046 | 0.7358 | 0.8578 | | No log | 0.4609 | 112 | 0.6887 | 0.3695 | 0.6887 | 0.8299 | | No log | 0.4691 | 114 | 0.7364 | 0.1747 | 0.7364 | 0.8581 | | No log | 0.4774 | 116 | 0.7567 | 0.3197 | 0.7567 | 0.8699 | | No log | 0.4856 | 118 | 0.8435 | 0.1564 | 0.8435 | 0.9184 | | No log | 0.4938 | 120 | 0.9194 | 0.0 | 0.9194 | 0.9589 | | No log | 0.5021 | 122 | 0.9321 | 0.0 | 0.9321 | 0.9654 | | No log | 0.5103 | 124 | 0.8488 | 0.2821 | 0.8488 | 0.9213 | | No log | 0.5185 | 126 | 0.7542 | 0.2150 | 0.7542 | 0.8684 | | No log | 0.5267 | 128 | 0.7265 | 0.0339 | 0.7265 | 0.8524 | | No log | 0.5350 | 130 | 0.7171 | 0.1141 | 0.7171 | 0.8468 | | No log | 0.5432 | 132 | 0.7488 | 0.0503 | 0.7488 | 0.8654 | | No log | 0.5514 | 134 | 0.7621 | 0.1141 | 0.7621 | 0.8730 | | No log | 0.5597 | 136 | 0.8116 | -0.0426 | 0.8116 | 0.9009 | | No log | 0.5679 | 138 | 0.8358 | -0.2466 | 0.8358 | 0.9142 | | No log | 0.5761 | 140 | 0.8469 | -0.1099 | 0.8469 | 0.9203 | | No log | 0.5844 | 142 | 0.8581 | -0.0769 | 0.8581 | 0.9263 | | No log | 0.5926 | 144 | 0.8125 | -0.1004 | 0.8125 | 0.9014 | | No log | 0.6008 | 146 | 0.7305 | -0.0048 | 0.7305 | 0.8547 | | No log | 0.6091 | 148 | 0.6800 | 0.1340 | 0.6800 | 0.8246 | | No log | 0.6173 | 150 | 0.6528 | 0.1558 | 0.6528 | 0.8079 | | No log | 0.6255 | 152 | 0.6511 | 0.0339 | 0.6511 | 0.8069 | | No log | 0.6337 | 154 | 0.6960 | -0.0048 | 0.6960 | 0.8342 | | No log | 0.6420 | 156 | 0.6974 | 0.0735 | 0.6974 | 0.8351 | | No log | 0.6502 | 158 | 0.7287 | 0.0916 | 0.7287 | 0.8536 | | No log | 0.6584 | 160 | 0.7260 | 0.0916 | 0.7260 | 0.8521 | | No log | 0.6667 | 162 | 0.7071 | 0.0916 | 0.7071 | 0.8409 | | No log | 0.6749 | 164 | 0.6744 | 0.0916 | 0.6744 | 0.8212 | | No log | 0.6831 | 166 | 0.6773 | -0.0678 | 0.6773 | 0.8230 | | No log | 0.6914 | 168 | 0.7038 | 0.0567 | 0.7038 | 0.8389 | | No log | 0.6996 | 170 | 0.7098 | -0.1053 | 0.7098 | 0.8425 | | No log | 0.7078 | 172 | 0.7049 | 0.0099 | 0.7049 | 0.8396 | | No log | 0.7160 | 174 | 0.7244 | 0.0916 | 0.7244 | 0.8511 | | No log | 0.7243 | 176 | 0.6981 | 0.2759 | 0.6981 | 0.8355 | | No log | 0.7325 | 178 | 0.6879 | 0.1962 | 0.6879 | 0.8294 | | No log | 0.7407 | 180 | 0.6943 | 0.1560 | 0.6943 | 0.8333 | | No log | 0.7490 | 182 | 0.6909 | 0.2373 | 0.6909 | 0.8312 | | No log | 0.7572 | 184 | 0.6780 | 0.0916 | 0.6780 | 0.8234 | | No log | 0.7654 | 186 | 0.6530 | 0.0503 | 0.6530 | 0.8081 | | No log | 0.7737 | 188 | 0.6458 | 0.1560 | 0.6458 | 0.8036 | | No log | 0.7819 | 190 | 0.7552 | 0.3046 | 0.7552 | 0.8690 | | No log | 0.7901 | 192 | 0.8491 | 0.1026 | 0.8491 | 0.9215 | | No log | 0.7984 | 194 | 0.7692 | 0.2150 | 0.7692 | 0.8770 | | No log | 0.8066 | 196 | 0.7988 | 0.0503 | 0.7988 | 0.8937 | | No log | 0.8148 | 198 | 0.9089 | 0.2186 | 0.9089 | 0.9534 | | No log | 0.8230 | 200 | 0.9674 | 0.0909 | 0.9674 | 0.9836 | | No log | 0.8313 | 202 | 0.8486 | 0.1600 | 0.8486 | 0.9212 | | No log | 0.8395 | 204 | 0.7004 | 0.0735 | 0.7004 | 0.8369 | | No log | 0.8477 | 206 | 0.7193 | 0.1755 | 0.7193 | 0.8481 | | No log | 0.8560 | 208 | 0.7631 | 0.2889 | 0.7631 | 0.8735 | | No log | 0.8642 | 210 | 0.7775 | 0.1563 | 0.7775 | 0.8818 | | No log | 0.8724 | 212 | 0.6998 | 0.2553 | 0.6998 | 0.8366 | | No log | 0.8807 | 214 | 0.6873 | 0.2373 | 0.6873 | 0.8290 | | No log | 0.8889 | 216 | 0.7307 | 0.0916 | 0.7307 | 0.8548 | | No log | 0.8971 | 218 | 0.7571 | 0.0503 | 0.7571 | 0.8701 | | No log | 0.9053 | 220 | 0.7653 | 0.1356 | 0.7653 | 0.8748 | | No log | 0.9136 | 222 | 0.8030 | 0.1356 | 0.8030 | 0.8961 | | No log | 0.9218 | 224 | 0.8217 | 0.1765 | 0.8217 | 0.9065 | | No log | 0.9300 | 226 | 0.8519 | 0.0099 | 0.8519 | 0.9230 | | No log | 0.9383 | 228 | 0.8988 | 0.1793 | 0.8988 | 0.9480 | | No log | 0.9465 | 230 | 0.8815 | 0.1793 | 0.8815 | 0.9389 | | No log | 0.9547 | 232 | 0.9057 | 0.1793 | 0.9057 | 0.9517 | | No log | 0.9630 | 234 | 0.9843 | 0.0557 | 0.9843 | 0.9921 | | No log | 0.9712 | 236 | 1.0257 | 0.0833 | 1.0257 | 1.0128 | | No log | 0.9794 | 238 | 0.9546 | 0.2186 | 0.9546 | 0.9770 | | No log | 0.9877 | 240 | 0.8870 | 0.0503 | 0.8870 | 0.9418 | | No log | 0.9959 | 242 | 0.8678 | 0.0916 | 0.8678 | 0.9315 | | No log | 1.0041 | 244 | 0.8923 | 0.0916 | 0.8923 | 0.9446 | | No log | 1.0123 | 246 | 0.8906 | 0.0916 | 0.8906 | 0.9437 | | No log | 1.0206 | 248 | 0.8417 | 0.0916 | 0.8417 | 0.9175 | | No log | 1.0288 | 250 | 0.8226 | 0.0099 | 0.8226 | 0.9070 | | No log | 1.0370 | 252 | 0.8301 | 0.0099 | 0.8301 | 0.9111 | | No log | 1.0453 | 254 | 0.8631 | 0.0916 | 0.8631 | 0.9290 | | No log | 1.0535 | 256 | 0.9591 | 0.0258 | 0.9591 | 0.9793 | | No log | 1.0617 | 258 | 1.0055 | 0.0 | 1.0055 | 1.0028 | | No log | 1.0700 | 260 | 0.9585 | 0.0258 | 0.9585 | 0.9790 | | No log | 1.0782 | 262 | 0.9307 | 0.0916 | 0.9307 | 0.9647 | | No log | 1.0864 | 264 | 0.9216 | 0.2186 | 0.9216 | 0.9600 | | No log | 1.0947 | 266 | 0.8643 | 0.1340 | 0.8643 | 0.9297 | | No log | 1.1029 | 268 | 0.7913 | 0.0916 | 0.7913 | 0.8895 | | No log | 1.1111 | 270 | 0.7503 | 0.0916 | 0.7503 | 0.8662 | | No log | 1.1193 | 272 | 0.7356 | 0.0916 | 0.7356 | 0.8577 | | No log | 1.1276 | 274 | 0.7775 | -0.0294 | 0.7775 | 0.8818 | | No log | 1.1358 | 276 | 0.8031 | 0.0099 | 0.8031 | 0.8961 | | No log | 1.1440 | 278 | 0.8682 | 0.1793 | 0.8682 | 0.9318 | | No log | 1.1523 | 280 | 0.9049 | 0.1793 | 0.9049 | 0.9513 | | No log | 1.1605 | 282 | 0.9445 | 0.25 | 0.9445 | 0.9718 | | No log | 1.1687 | 284 | 1.0603 | 0.1463 | 1.0603 | 1.0297 | | No log | 1.1770 | 286 | 1.0686 | 0.1738 | 1.0686 | 1.0337 | | No log | 1.1852 | 288 | 0.9538 | 0.1072 | 0.9538 | 0.9766 | | No log | 1.1934 | 290 | 0.8921 | 0.1793 | 0.8921 | 0.9445 | | No log | 1.2016 | 292 | 0.8276 | 0.1793 | 0.8276 | 0.9097 | | No log | 1.2099 | 294 | 0.7594 | 0.2533 | 0.7594 | 0.8715 | | No log | 1.2181 | 296 | 0.7813 | 0.0785 | 0.7813 | 0.8839 | | No log | 1.2263 | 298 | 0.8477 | 0.1370 | 0.8477 | 0.9207 | | No log | 1.2346 | 300 | 0.8624 | 0.1773 | 0.8624 | 0.9286 | | No log | 1.2428 | 302 | 0.8222 | 0.1168 | 0.8222 | 0.9067 | | No log | 1.2510 | 304 | 0.7986 | 0.3318 | 0.7986 | 0.8937 | | No log | 1.2593 | 306 | 0.9415 | 0.0557 | 0.9415 | 0.9703 | | No log | 1.2675 | 308 | 1.1720 | 0.1649 | 1.1720 | 1.0826 | | No log | 1.2757 | 310 | 1.2318 | 0.1649 | 1.2318 | 1.1099 | | No log | 1.2840 | 312 | 1.2591 | 0.1276 | 1.2591 | 1.1221 | | No log | 1.2922 | 314 | 1.1760 | 0.0440 | 1.1760 | 1.0844 | | No log | 1.3004 | 316 | 1.0025 | 0.0 | 1.0025 | 1.0013 | | No log | 1.3086 | 318 | 0.8959 | 0.1793 | 0.8959 | 0.9465 | | No log | 1.3169 | 320 | 0.9102 | 0.0099 | 0.9102 | 0.9540 | | No log | 1.3251 | 322 | 0.8541 | 0.0503 | 0.8541 | 0.9242 | | No log | 1.3333 | 324 | 0.7833 | 0.0503 | 0.7833 | 0.8850 | | No log | 1.3416 | 326 | 0.7566 | 0.0916 | 0.7566 | 0.8698 | | No log | 1.3498 | 328 | 0.7682 | 0.0258 | 0.7682 | 0.8765 | | No log | 1.3580 | 330 | 0.7707 | 0.0099 | 0.7707 | 0.8779 | | No log | 1.3663 | 332 | 0.7559 | -0.0678 | 0.7559 | 0.8694 | | No log | 1.3745 | 334 | 0.7305 | -0.0048 | 0.7305 | 0.8547 | | No log | 1.3827 | 336 | 0.6950 | -0.0294 | 0.6950 | 0.8336 | | No log | 1.3909 | 338 | 0.7029 | 0.0503 | 0.7029 | 0.8384 | | No log | 1.3992 | 340 | 0.7535 | 0.2186 | 0.7535 | 0.8680 | | No log | 1.4074 | 342 | 0.7803 | 0.2186 | 0.7803 | 0.8834 | | No log | 1.4156 | 344 | 0.7621 | 0.1793 | 0.7621 | 0.8730 | | No log | 1.4239 | 346 | 0.7755 | 0.1034 | 0.7755 | 0.8806 | | No log | 1.4321 | 348 | 0.7882 | 0.2696 | 0.7882 | 0.8878 | | No log | 1.4403 | 350 | 0.7956 | 0.2533 | 0.7956 | 0.8919 | | No log | 1.4486 | 352 | 0.7774 | 0.2154 | 0.7774 | 0.8817 | | No log | 1.4568 | 354 | 0.7527 | 0.2533 | 0.7527 | 0.8676 | | No log | 1.4650 | 356 | 0.7524 | 0.1409 | 0.7524 | 0.8674 | | No log | 1.4733 | 358 | 0.7902 | 0.2186 | 0.7902 | 0.8889 | | No log | 1.4815 | 360 | 0.8423 | 0.1398 | 0.8423 | 0.9177 | | No log | 1.4897 | 362 | 0.8313 | 0.1398 | 0.8313 | 0.9118 | | No log | 1.4979 | 364 | 0.8102 | 0.2186 | 0.8102 | 0.9001 | | No log | 1.5062 | 366 | 0.8309 | 0.1000 | 0.8309 | 0.9116 | | No log | 1.5144 | 368 | 0.8751 | 0.1398 | 0.8751 | 0.9355 | | No log | 1.5226 | 370 | 0.8400 | 0.2186 | 0.8400 | 0.9165 | | No log | 1.5309 | 372 | 0.7666 | 0.1034 | 0.7666 | 0.8755 | | No log | 1.5391 | 374 | 0.7353 | 0.2533 | 0.7353 | 0.8575 | | No log | 1.5473 | 376 | 0.7245 | 0.2533 | 0.7245 | 0.8512 | | No log | 1.5556 | 378 | 0.7324 | 0.1034 | 0.7324 | 0.8558 | | No log | 1.5638 | 380 | 0.7641 | 0.1409 | 0.7641 | 0.8741 | | No log | 1.5720 | 382 | 0.8041 | 0.1000 | 0.8041 | 0.8967 | | No log | 1.5802 | 384 | 0.8160 | 0.1398 | 0.8160 | 0.9033 | | No log | 1.5885 | 386 | 0.8120 | 0.1398 | 0.8120 | 0.9011 | | No log | 1.5967 | 388 | 0.8348 | 0.1398 | 0.8348 | 0.9137 | | No log | 1.6049 | 390 | 0.8076 | 0.1398 | 0.8076 | 0.8987 | | No log | 1.6132 | 392 | 0.7741 | 0.1398 | 0.7741 | 0.8798 | | No log | 1.6214 | 394 | 0.7262 | -0.0418 | 0.7262 | 0.8522 | | No log | 1.6296 | 396 | 0.6940 | -0.0153 | 0.6940 | 0.8330 | | No log | 1.6379 | 398 | 0.6703 | 0.0099 | 0.6703 | 0.8187 | | No log | 1.6461 | 400 | 0.6676 | 0.0099 | 0.6676 | 0.8170 | | No log | 1.6543 | 402 | 0.6581 | 0.0099 | 0.6581 | 0.8112 | | No log | 1.6626 | 404 | 0.6687 | -0.0294 | 0.6687 | 0.8177 | | No log | 1.6708 | 406 | 0.7005 | -0.0294 | 0.7005 | 0.8369 | | No log | 1.6790 | 408 | 0.7436 | 0.0828 | 0.7436 | 0.8623 | | No log | 1.6872 | 410 | 0.7897 | 0.1000 | 0.7897 | 0.8886 | | No log | 1.6955 | 412 | 0.8040 | 0.0612 | 0.8040 | 0.8967 | | No log | 1.7037 | 414 | 0.8163 | 0.0612 | 0.8163 | 0.9035 | | No log | 1.7119 | 416 | 0.8136 | 0.0233 | 0.8136 | 0.9020 | | No log | 1.7202 | 418 | 0.8150 | 0.0233 | 0.8150 | 0.9028 | | No log | 1.7284 | 420 | 0.8136 | 0.0233 | 0.8136 | 0.9020 | | No log | 1.7366 | 422 | 0.7821 | 0.0233 | 0.7821 | 0.8844 | | No log | 1.7449 | 424 | 0.7412 | -0.0553 | 0.7412 | 0.8609 | | No log | 1.7531 | 426 | 0.7101 | -0.0294 | 0.7101 | 0.8427 | | No log | 1.7613 | 428 | 0.6934 | -0.0294 | 0.6934 | 0.8327 | | No log | 1.7695 | 430 | 0.7020 | -0.0294 | 0.7020 | 0.8378 | | No log | 1.7778 | 432 | 0.7327 | 0.0828 | 0.7327 | 0.8560 | | No log | 1.7860 | 434 | 0.7482 | 0.0828 | 0.7482 | 0.8650 | | No log | 1.7942 | 436 | 0.7700 | 0.1209 | 0.7700 | 0.8775 | | No log | 1.8025 | 438 | 0.7710 | 0.0828 | 0.7710 | 0.8780 | | No log | 1.8107 | 440 | 0.7464 | -0.0553 | 0.7464 | 0.8639 | | No log | 1.8189 | 442 | 0.7121 | -0.0943 | 0.7121 | 0.8438 | | No log | 1.8272 | 444 | 0.6957 | -0.0294 | 0.6957 | 0.8341 | | No log | 1.8354 | 446 | 0.6885 | 0.0339 | 0.6885 | 0.8298 | | No log | 1.8436 | 448 | 0.7024 | -0.0153 | 0.7024 | 0.8381 | | No log | 1.8519 | 450 | 0.7452 | 0.1600 | 0.7452 | 0.8632 | | No log | 1.8601 | 452 | 0.7658 | 0.1398 | 0.7658 | 0.8751 | | No log | 1.8683 | 454 | 0.7684 | 0.1398 | 0.7684 | 0.8766 | | No log | 1.8765 | 456 | 0.7694 | 0.1398 | 0.7694 | 0.8772 | | No log | 1.8848 | 458 | 0.7904 | 0.1398 | 0.7904 | 0.8891 | | No log | 1.8930 | 460 | 0.7767 | 0.1600 | 0.7767 | 0.8813 | | No log | 1.9012 | 462 | 0.7151 | 0.2921 | 0.7151 | 0.8457 | | No log | 1.9095 | 464 | 0.7042 | 0.1783 | 0.7042 | 0.8391 | | No log | 1.9177 | 466 | 0.7133 | 0.1783 | 0.7133 | 0.8446 | | No log | 1.9259 | 468 | 0.7119 | 0.1783 | 0.7119 | 0.8437 | | No log | 1.9342 | 470 | 0.6935 | 0.2154 | 0.6935 | 0.8328 | | No log | 1.9424 | 472 | 0.7027 | 0.2921 | 0.7027 | 0.8383 | | No log | 1.9506 | 474 | 0.7269 | 0.3724 | 0.7269 | 0.8526 | | No log | 1.9588 | 476 | 0.7440 | 0.2186 | 0.7440 | 0.8626 | | No log | 1.9671 | 478 | 0.7271 | 0.2588 | 0.7271 | 0.8527 | | No log | 1.9753 | 480 | 0.6672 | 0.2186 | 0.6672 | 0.8169 | | No log | 1.9835 | 482 | 0.5915 | 0.3467 | 0.5915 | 0.7691 | | No log | 1.9918 | 484 | 0.5644 | 0.1560 | 0.5644 | 0.7512 | | No log | 2.0 | 486 | 0.5817 | 0.2329 | 0.5817 | 0.7627 | | No log | 2.0082 | 488 | 0.6373 | 0.2500 | 0.6373 | 0.7983 | | No log | 2.0165 | 490 | 0.6611 | 0.2500 | 0.6611 | 0.8131 | | No log | 2.0247 | 492 | 0.6433 | 0.2500 | 0.6433 | 0.8021 | | No log | 2.0329 | 494 | 0.6117 | 0.2889 | 0.6117 | 0.7821 | | No log | 2.0412 | 496 | 0.5556 | 0.2725 | 0.5556 | 0.7454 | | No log | 2.0494 | 498 | 0.5430 | 0.2794 | 0.5430 | 0.7369 | | 0.4608 | 2.0576 | 500 | 0.5797 | 0.1985 | 0.5797 | 0.7614 | | 0.4608 | 2.0658 | 502 | 0.5947 | 0.1340 | 0.5947 | 0.7712 | | 0.4608 | 2.0741 | 504 | 0.5880 | 0.1558 | 0.5880 | 0.7668 | | 0.4608 | 2.0823 | 506 | 0.5929 | 0.2794 | 0.5929 | 0.7700 | | 0.4608 | 2.0905 | 508 | 0.5988 | 0.2794 | 0.5988 | 0.7738 | | 0.4608 | 2.0988 | 510 | 0.6130 | 0.1962 | 0.6130 | 0.7829 | | 0.4608 | 2.1070 | 512 | 0.6189 | 0.2373 | 0.6189 | 0.7867 | | 0.4608 | 2.1152 | 514 | 0.6166 | 0.2794 | 0.6166 | 0.7852 | | 0.4608 | 2.1235 | 516 | 0.6265 | 0.3318 | 0.6265 | 0.7915 | | 0.4608 | 2.1317 | 518 | 0.6417 | 0.3333 | 0.6417 | 0.8011 | | 0.4608 | 2.1399 | 520 | 0.6221 | 0.3811 | 0.6221 | 0.7887 | | 0.4608 | 2.1481 | 522 | 0.6069 | 0.4740 | 0.6069 | 0.7791 | | 0.4608 | 2.1564 | 524 | 0.5840 | 0.4740 | 0.5840 | 0.7642 | | 0.4608 | 2.1646 | 526 | 0.5537 | 0.4394 | 0.5537 | 0.7441 | | 0.4608 | 2.1728 | 528 | 0.5402 | 0.4394 | 0.5402 | 0.7350 | | 0.4608 | 2.1811 | 530 | 0.5344 | 0.4394 | 0.5344 | 0.7311 | | 0.4608 | 2.1893 | 532 | 0.5366 | 0.4394 | 0.5366 | 0.7325 | | 0.4608 | 2.1975 | 534 | 0.5417 | 0.3467 | 0.5417 | 0.7360 | | 0.4608 | 2.2058 | 536 | 0.5570 | 0.3077 | 0.5570 | 0.7463 | | 0.4608 | 2.2140 | 538 | 0.5678 | 0.3077 | 0.5678 | 0.7535 | | 0.4608 | 2.2222 | 540 | 0.5726 | 0.4394 | 0.5726 | 0.7567 | | 0.4608 | 2.2305 | 542 | 0.5863 | 0.4394 | 0.5863 | 0.7657 | | 0.4608 | 2.2387 | 544 | 0.5828 | 0.4394 | 0.5828 | 0.7634 | | 0.4608 | 2.2469 | 546 | 0.5640 | 0.4394 | 0.5640 | 0.7510 | | 0.4608 | 2.2551 | 548 | 0.5501 | 0.3077 | 0.5501 | 0.7417 | | 0.4608 | 2.2634 | 550 | 0.5549 | 0.3077 | 0.5549 | 0.7449 | | 0.4608 | 2.2716 | 552 | 0.5648 | 0.3077 | 0.5648 | 0.7515 | | 0.4608 | 2.2798 | 554 | 0.5753 | 0.3077 | 0.5753 | 0.7585 | | 0.4608 | 2.2881 | 556 | 0.5908 | 0.3318 | 0.5908 | 0.7686 | | 0.4608 | 2.2963 | 558 | 0.6116 | 0.3724 | 0.6116 | 0.7821 | | 0.4608 | 2.3045 | 560 | 0.6260 | 0.3724 | 0.6260 | 0.7912 | | 0.4608 | 2.3128 | 562 | 0.6291 | 0.3724 | 0.6291 | 0.7931 | | 0.4608 | 2.3210 | 564 | 0.6709 | 0.3724 | 0.6709 | 0.8191 | | 0.4608 | 2.3292 | 566 | 0.6848 | 0.3724 | 0.6848 | 0.8275 | | 0.4608 | 2.3374 | 568 | 0.6502 | 0.3724 | 0.6502 | 0.8063 | | 0.4608 | 2.3457 | 570 | 0.6072 | 0.3724 | 0.6072 | 0.7792 | | 0.4608 | 2.3539 | 572 | 0.5894 | 0.1765 | 0.5894 | 0.7678 | | 0.4608 | 2.3621 | 574 | 0.5911 | 0.1560 | 0.5911 | 0.7688 | | 0.4608 | 2.3704 | 576 | 0.5899 | 0.1962 | 0.5899 | 0.7680 | | 0.4608 | 2.3786 | 578 | 0.5935 | 0.1765 | 0.5935 | 0.7704 | | 0.4608 | 2.3868 | 580 | 0.6156 | 0.2613 | 0.6156 | 0.7846 | | 0.4608 | 2.3951 | 582 | 0.6616 | 0.3724 | 0.6616 | 0.8134 | | 0.4608 | 2.4033 | 584 | 0.6960 | 0.2186 | 0.6960 | 0.8343 | | 0.4608 | 2.4115 | 586 | 0.6885 | 0.2186 | 0.6885 | 0.8297 | | 0.4608 | 2.4198 | 588 | 0.6483 | 0.3724 | 0.6483 | 0.8052 | | 0.4608 | 2.4280 | 590 | 0.6295 | 0.2613 | 0.6295 | 0.7934 | | 0.4608 | 2.4362 | 592 | 0.6179 | 0.2794 | 0.6179 | 0.7861 | | 0.4608 | 2.4444 | 594 | 0.6188 | 0.1962 | 0.6188 | 0.7866 | | 0.4608 | 2.4527 | 596 | 0.6167 | 0.1962 | 0.6167 | 0.7853 | | 0.4608 | 2.4609 | 598 | 0.6165 | 0.2373 | 0.6165 | 0.7851 | | 0.4608 | 2.4691 | 600 | 0.6327 | 0.1558 | 0.6327 | 0.7954 | | 0.4608 | 2.4774 | 602 | 0.6478 | 0.2186 | 0.6478 | 0.8049 | | 0.4608 | 2.4856 | 604 | 0.6660 | 0.2186 | 0.6660 | 0.8161 | | 0.4608 | 2.4938 | 606 | 0.6790 | 0.2186 | 0.6790 | 0.8240 | | 0.4608 | 2.5021 | 608 | 0.6569 | 0.2759 | 0.6569 | 0.8105 | | 0.4608 | 2.5103 | 610 | 0.6135 | 0.3467 | 0.6135 | 0.7833 | | 0.4608 | 2.5185 | 612 | 0.6081 | 0.3467 | 0.6081 | 0.7798 | | 0.4608 | 2.5267 | 614 | 0.6175 | 0.3467 | 0.6175 | 0.7858 | | 0.4608 | 2.5350 | 616 | 0.6364 | 0.3467 | 0.6364 | 0.7977 | | 0.4608 | 2.5432 | 618 | 0.6775 | 0.2364 | 0.6775 | 0.8231 | | 0.4608 | 2.5514 | 620 | 0.7083 | 0.3396 | 0.7083 | 0.8416 | | 0.4608 | 2.5597 | 622 | 0.7059 | 0.2759 | 0.7059 | 0.8402 | | 0.4608 | 2.5679 | 624 | 0.7097 | 0.2186 | 0.7097 | 0.8425 | | 0.4608 | 2.5761 | 626 | 0.7355 | 0.2000 | 0.7355 | 0.8576 | | 0.4608 | 2.5844 | 628 | 0.7654 | 0.2000 | 0.7654 | 0.8749 | | 0.4608 | 2.5926 | 630 | 0.7487 | 0.2000 | 0.7487 | 0.8653 | | 0.4608 | 2.6008 | 632 | 0.7130 | 0.2000 | 0.7130 | 0.8444 | | 0.4608 | 2.6091 | 634 | 0.6732 | 0.1600 | 0.6732 | 0.8205 | | 0.4608 | 2.6173 | 636 | 0.6652 | 0.1600 | 0.6652 | 0.8156 | | 0.4608 | 2.6255 | 638 | 0.6602 | 0.1600 | 0.6602 | 0.8125 | | 0.4608 | 2.6337 | 640 | 0.6635 | 0.2000 | 0.6635 | 0.8146 | | 0.4608 | 2.6420 | 642 | 0.6839 | 0.2000 | 0.6839 | 0.8270 | | 0.4608 | 2.6502 | 644 | 0.6558 | 0.2000 | 0.6558 | 0.8098 | | 0.4608 | 2.6584 | 646 | 0.6363 | 0.1600 | 0.6363 | 0.7977 | | 0.4608 | 2.6667 | 648 | 0.6270 | 0.1600 | 0.6270 | 0.7918 | | 0.4608 | 2.6749 | 650 | 0.6337 | 0.1600 | 0.6337 | 0.7960 | | 0.4608 | 2.6831 | 652 | 0.6327 | 0.1600 | 0.6327 | 0.7954 | | 0.4608 | 2.6914 | 654 | 0.6530 | 0.1600 | 0.6530 | 0.8081 | | 0.4608 | 2.6996 | 656 | 0.6802 | 0.2000 | 0.6802 | 0.8248 | | 0.4608 | 2.7078 | 658 | 0.7190 | 0.2000 | 0.7190 | 0.8479 | | 0.4608 | 2.7160 | 660 | 0.7140 | 0.2000 | 0.7140 | 0.8450 | | 0.4608 | 2.7243 | 662 | 0.6844 | 0.1600 | 0.6844 | 0.8273 | | 0.4608 | 2.7325 | 664 | 0.6335 | 0.3724 | 0.6335 | 0.7959 | | 0.4608 | 2.7407 | 666 | 0.6120 | 0.1962 | 0.6120 | 0.7823 | | 0.4608 | 2.7490 | 668 | 0.6157 | 0.1560 | 0.6157 | 0.7846 | | 0.4608 | 2.7572 | 670 | 0.6152 | 0.1560 | 0.6152 | 0.7844 | | 0.4608 | 2.7654 | 672 | 0.6157 | 0.1560 | 0.6157 | 0.7847 | | 0.4608 | 2.7737 | 674 | 0.6330 | 0.3318 | 0.6330 | 0.7956 | | 0.4608 | 2.7819 | 676 | 0.6575 | 0.3318 | 0.6575 | 0.8108 | | 0.4608 | 2.7901 | 678 | 0.6984 | 0.1600 | 0.6984 | 0.8357 | | 0.4608 | 2.7984 | 680 | 0.7294 | 0.2000 | 0.7294 | 0.8541 | | 0.4608 | 2.8066 | 682 | 0.7152 | 0.2000 | 0.7152 | 0.8457 | | 0.4608 | 2.8148 | 684 | 0.7148 | 0.2000 | 0.7148 | 0.8455 | | 0.4608 | 2.8230 | 686 | 0.6888 | 0.2000 | 0.6888 | 0.8299 | | 0.4608 | 2.8313 | 688 | 0.6352 | 0.2186 | 0.6352 | 0.7970 | | 0.4608 | 2.8395 | 690 | 0.6025 | 0.3077 | 0.6025 | 0.7762 | | 0.4608 | 2.8477 | 692 | 0.6244 | 0.2150 | 0.6244 | 0.7902 | | 0.4608 | 2.8560 | 694 | 0.6440 | 0.1755 | 0.6440 | 0.8025 | | 0.4608 | 2.8642 | 696 | 0.6430 | 0.1755 | 0.6430 | 0.8019 | | 0.4608 | 2.8724 | 698 | 0.6276 | 0.1560 | 0.6276 | 0.7922 | | 0.4608 | 2.8807 | 700 | 0.6191 | 0.2921 | 0.6191 | 0.7869 | | 0.4608 | 2.8889 | 702 | 0.6311 | 0.3724 | 0.6311 | 0.7944 | | 0.4608 | 2.8971 | 704 | 0.6476 | 0.2000 | 0.6476 | 0.8047 | | 0.4608 | 2.9053 | 706 | 0.6636 | 0.2000 | 0.6636 | 0.8146 | | 0.4608 | 2.9136 | 708 | 0.6691 | 0.2000 | 0.6691 | 0.8180 | | 0.4608 | 2.9218 | 710 | 0.6595 | 0.2000 | 0.6595 | 0.8121 | | 0.4608 | 2.9300 | 712 | 0.6259 | 0.1600 | 0.6259 | 0.7911 | | 0.4608 | 2.9383 | 714 | 0.6047 | 0.3163 | 0.6047 | 0.7776 | | 0.4608 | 2.9465 | 716 | 0.5931 | 0.3724 | 0.5931 | 0.7701 | | 0.4608 | 2.9547 | 718 | 0.5937 | 0.3724 | 0.5937 | 0.7705 | | 0.4608 | 2.9630 | 720 | 0.5991 | 0.3724 | 0.5991 | 0.7740 | | 0.4608 | 2.9712 | 722 | 0.5993 | 0.3724 | 0.5993 | 0.7742 | | 0.4608 | 2.9794 | 724 | 0.6208 | 0.3724 | 0.6208 | 0.7879 | | 0.4608 | 2.9877 | 726 | 0.6729 | 0.2000 | 0.6729 | 0.8203 | | 0.4608 | 2.9959 | 728 | 0.7148 | 0.2000 | 0.7148 | 0.8455 | | 0.4608 | 3.0041 | 730 | 0.7300 | 0.2000 | 0.7300 | 0.8544 | | 0.4608 | 3.0123 | 732 | 0.7470 | 0.2000 | 0.7470 | 0.8643 | | 0.4608 | 3.0206 | 734 | 0.7594 | 0.2000 | 0.7594 | 0.8714 | | 0.4608 | 3.0288 | 736 | 0.7383 | 0.2000 | 0.7383 | 0.8593 | | 0.4608 | 3.0370 | 738 | 0.7335 | 0.2000 | 0.7335 | 0.8565 | | 0.4608 | 3.0453 | 740 | 0.7054 | 0.2186 | 0.7054 | 0.8399 | | 0.4608 | 3.0535 | 742 | 0.6693 | 0.2186 | 0.6693 | 0.8181 | | 0.4608 | 3.0617 | 744 | 0.6355 | 0.2921 | 0.6355 | 0.7972 | | 0.4608 | 3.0700 | 746 | 0.6327 | 0.3318 | 0.6327 | 0.7954 | | 0.4608 | 3.0782 | 748 | 0.6501 | 0.1600 | 0.6501 | 0.8063 | | 0.4608 | 3.0864 | 750 | 0.6755 | 0.2000 | 0.6755 | 0.8219 | | 0.4608 | 3.0947 | 752 | 0.6930 | 0.2000 | 0.6930 | 0.8325 | | 0.4608 | 3.1029 | 754 | 0.7248 | 0.2000 | 0.7248 | 0.8514 | | 0.4608 | 3.1111 | 756 | 0.7025 | 0.2000 | 0.7025 | 0.8382 | | 0.4608 | 3.1193 | 758 | 0.6839 | 0.1600 | 0.6839 | 0.8270 | | 0.4608 | 3.1276 | 760 | 0.6746 | 0.1600 | 0.6746 | 0.8213 | | 0.4608 | 3.1358 | 762 | 0.6942 | 0.2000 | 0.6942 | 0.8332 | | 0.4608 | 3.1440 | 764 | 0.7235 | 0.1398 | 0.7235 | 0.8506 | | 0.4608 | 3.1523 | 766 | 0.7442 | 0.1398 | 0.7442 | 0.8627 | | 0.4608 | 3.1605 | 768 | 0.7152 | 0.1398 | 0.7152 | 0.8457 | | 0.4608 | 3.1687 | 770 | 0.6785 | 0.1600 | 0.6785 | 0.8237 | | 0.4608 | 3.1770 | 772 | 0.6604 | 0.1600 | 0.6604 | 0.8126 | | 0.4608 | 3.1852 | 774 | 0.6512 | 0.2533 | 0.6512 | 0.8070 | | 0.4608 | 3.1934 | 776 | 0.6512 | 0.2533 | 0.6512 | 0.8070 | | 0.4608 | 3.2016 | 778 | 0.6528 | 0.0455 | 0.6528 | 0.8080 | | 0.4608 | 3.2099 | 780 | 0.6800 | 0.1600 | 0.6800 | 0.8246 | | 0.4608 | 3.2181 | 782 | 0.7145 | 0.1000 | 0.7145 | 0.8453 | | 0.4608 | 3.2263 | 784 | 0.7507 | 0.1398 | 0.7507 | 0.8664 | | 0.4608 | 3.2346 | 786 | 0.7818 | 0.1398 | 0.7818 | 0.8842 | | 0.4608 | 3.2428 | 788 | 0.7708 | 0.1000 | 0.7708 | 0.8780 | | 0.4608 | 3.2510 | 790 | 0.7246 | 0.1600 | 0.7246 | 0.8512 | | 0.4608 | 3.2593 | 792 | 0.6926 | 0.1600 | 0.6926 | 0.8322 | | 0.4608 | 3.2675 | 794 | 0.6878 | 0.2154 | 0.6878 | 0.8293 | | 0.4608 | 3.2757 | 796 | 0.6934 | 0.2154 | 0.6934 | 0.8327 | | 0.4608 | 3.2840 | 798 | 0.6951 | 0.0957 | 0.6951 | 0.8337 | | 0.4608 | 3.2922 | 800 | 0.6838 | 0.2154 | 0.6838 | 0.8269 | | 0.4608 | 3.3004 | 802 | 0.6843 | 0.2533 | 0.6843 | 0.8272 | | 0.4608 | 3.3086 | 804 | 0.7108 | 0.1600 | 0.7108 | 0.8431 | | 0.4608 | 3.3169 | 806 | 0.7749 | 0.1398 | 0.7749 | 0.8803 | | 0.4608 | 3.3251 | 808 | 0.8174 | 0.1398 | 0.8174 | 0.9041 | | 0.4608 | 3.3333 | 810 | 0.8305 | 0.1398 | 0.8305 | 0.9113 | | 0.4608 | 3.3416 | 812 | 0.8008 | 0.1398 | 0.8008 | 0.8949 | | 0.4608 | 3.3498 | 814 | 0.7626 | 0.1398 | 0.7626 | 0.8733 | | 0.4608 | 3.3580 | 816 | 0.7119 | 0.2000 | 0.7119 | 0.8438 | | 0.4608 | 3.3663 | 818 | 0.6969 | 0.1600 | 0.6969 | 0.8348 | | 0.4608 | 3.3745 | 820 | 0.7092 | 0.1600 | 0.7092 | 0.8421 | | 0.4608 | 3.3827 | 822 | 0.7331 | 0.2000 | 0.7331 | 0.8562 | | 0.4608 | 3.3909 | 824 | 0.7654 | 0.1398 | 0.7654 | 0.8749 | | 0.4608 | 3.3992 | 826 | 0.7778 | 0.1398 | 0.7778 | 0.8819 | | 0.4608 | 3.4074 | 828 | 0.7790 | 0.1398 | 0.7790 | 0.8826 | | 0.4608 | 3.4156 | 830 | 0.7525 | 0.1398 | 0.7525 | 0.8675 | | 0.4608 | 3.4239 | 832 | 0.7099 | 0.2000 | 0.7099 | 0.8425 | | 0.4608 | 3.4321 | 834 | 0.6679 | 0.2186 | 0.6679 | 0.8172 | | 0.4608 | 3.4403 | 836 | 0.6515 | 0.3318 | 0.6515 | 0.8071 | | 0.4608 | 3.4486 | 838 | 0.6545 | 0.3318 | 0.6545 | 0.8090 | | 0.4608 | 3.4568 | 840 | 0.6770 | 0.2000 | 0.6770 | 0.8228 | | 0.4608 | 3.4650 | 842 | 0.7027 | 0.2000 | 0.7027 | 0.8383 | | 0.4608 | 3.4733 | 844 | 0.7563 | 0.2000 | 0.7563 | 0.8697 | | 0.4608 | 3.4815 | 846 | 0.7959 | 0.1398 | 0.7959 | 0.8921 | | 0.4608 | 3.4897 | 848 | 0.7839 | 0.1398 | 0.7839 | 0.8854 | | 0.4608 | 3.4979 | 850 | 0.7421 | 0.2000 | 0.7421 | 0.8615 | | 0.4608 | 3.5062 | 852 | 0.7016 | 0.2000 | 0.7016 | 0.8376 | | 0.4608 | 3.5144 | 854 | 0.6734 | 0.2000 | 0.6734 | 0.8206 | | 0.4608 | 3.5226 | 856 | 0.6503 | 0.2000 | 0.6503 | 0.8064 | | 0.4608 | 3.5309 | 858 | 0.6411 | 0.2000 | 0.6411 | 0.8007 | | 0.4608 | 3.5391 | 860 | 0.6339 | 0.2000 | 0.6339 | 0.7962 | | 0.4608 | 3.5473 | 862 | 0.6339 | 0.2000 | 0.6339 | 0.7962 | | 0.4608 | 3.5556 | 864 | 0.6477 | 0.2000 | 0.6477 | 0.8048 | | 0.4608 | 3.5638 | 866 | 0.6577 | 0.2000 | 0.6577 | 0.8110 | | 0.4608 | 3.5720 | 868 | 0.6815 | 0.2188 | 0.6815 | 0.8255 | | 0.4608 | 3.5802 | 870 | 0.7363 | 0.3198 | 0.7363 | 0.8581 | | 0.4608 | 3.5885 | 872 | 0.7513 | 0.3198 | 0.7513 | 0.8668 | | 0.4608 | 3.5967 | 874 | 0.7470 | 0.3198 | 0.7470 | 0.8643 | | 0.4608 | 3.6049 | 876 | 0.7090 | 0.2188 | 0.7090 | 0.8420 | | 0.4608 | 3.6132 | 878 | 0.6699 | 0.2000 | 0.6699 | 0.8185 | | 0.4608 | 3.6214 | 880 | 0.6369 | 0.2000 | 0.6369 | 0.7981 | | 0.4608 | 3.6296 | 882 | 0.6287 | 0.2000 | 0.6287 | 0.7929 | | 0.4608 | 3.6379 | 884 | 0.6310 | 0.2000 | 0.6310 | 0.7944 | | 0.4608 | 3.6461 | 886 | 0.6229 | 0.1600 | 0.6229 | 0.7893 | | 0.4608 | 3.6543 | 888 | 0.6169 | 0.1600 | 0.6169 | 0.7855 | | 0.4608 | 3.6626 | 890 | 0.6151 | 0.3724 | 0.6151 | 0.7843 | | 0.4608 | 3.6708 | 892 | 0.6142 | 0.3318 | 0.6142 | 0.7837 | | 0.4608 | 3.6790 | 894 | 0.6169 | 0.2921 | 0.6169 | 0.7854 | | 0.4608 | 3.6872 | 896 | 0.6177 | 0.2921 | 0.6177 | 0.7859 | | 0.4608 | 3.6955 | 898 | 0.6257 | 0.3318 | 0.6257 | 0.7910 | | 0.4608 | 3.7037 | 900 | 0.6257 | 0.3318 | 0.6257 | 0.7910 | | 0.4608 | 3.7119 | 902 | 0.6227 | 0.3318 | 0.6227 | 0.7891 | | 0.4608 | 3.7202 | 904 | 0.6164 | 0.3318 | 0.6164 | 0.7851 | | 0.4608 | 3.7284 | 906 | 0.6184 | 0.3318 | 0.6184 | 0.7864 | | 0.4608 | 3.7366 | 908 | 0.6787 | 0.3107 | 0.6787 | 0.8238 | | 0.4608 | 3.7449 | 910 | 0.7562 | 0.3277 | 0.7562 | 0.8696 | | 0.4608 | 3.7531 | 912 | 0.8121 | 0.3277 | 0.8121 | 0.9011 | | 0.4608 | 3.7613 | 914 | 0.8140 | 0.3107 | 0.8140 | 0.9022 | | 0.4608 | 3.7695 | 916 | 0.8356 | 0.2566 | 0.8356 | 0.9141 | | 0.4608 | 3.7778 | 918 | 0.7919 | 0.3107 | 0.7919 | 0.8899 | | 0.4608 | 3.7860 | 920 | 0.7292 | 0.2000 | 0.7292 | 0.8540 | | 0.4608 | 3.7942 | 922 | 0.6849 | 0.2000 | 0.6849 | 0.8276 | | 0.4608 | 3.8025 | 924 | 0.6415 | 0.2588 | 0.6415 | 0.8010 | | 0.4608 | 3.8107 | 926 | 0.6140 | 0.3724 | 0.6140 | 0.7836 | | 0.4608 | 3.8189 | 928 | 0.6121 | 0.3318 | 0.6121 | 0.7823 | | 0.4608 | 3.8272 | 930 | 0.6138 | 0.3318 | 0.6138 | 0.7834 | | 0.4608 | 3.8354 | 932 | 0.6229 | 0.2186 | 0.6229 | 0.7892 | | 0.4608 | 3.8436 | 934 | 0.6353 | 0.2588 | 0.6353 | 0.7971 | | 0.4608 | 3.8519 | 936 | 0.6542 | 0.2000 | 0.6542 | 0.8088 | | 0.4608 | 3.8601 | 938 | 0.6833 | 0.2000 | 0.6833 | 0.8266 | | 0.4608 | 3.8683 | 940 | 0.7102 | 0.2000 | 0.7102 | 0.8427 | | 0.4608 | 3.8765 | 942 | 0.6991 | 0.2000 | 0.6991 | 0.8361 | | 0.4608 | 3.8848 | 944 | 0.6823 | 0.1600 | 0.6823 | 0.8260 | | 0.4608 | 3.8930 | 946 | 0.6662 | 0.2186 | 0.6662 | 0.8162 | | 0.4608 | 3.9012 | 948 | 0.6658 | 0.2186 | 0.6658 | 0.8160 | | 0.4608 | 3.9095 | 950 | 0.6742 | 0.2186 | 0.6742 | 0.8211 | | 0.4608 | 3.9177 | 952 | 0.6798 | 0.2186 | 0.6798 | 0.8245 | | 0.4608 | 3.9259 | 954 | 0.7083 | 0.1600 | 0.7083 | 0.8416 | | 0.4608 | 3.9342 | 956 | 0.7263 | 0.2000 | 0.7263 | 0.8523 | | 0.4608 | 3.9424 | 958 | 0.7201 | 0.2000 | 0.7201 | 0.8486 | | 0.4608 | 3.9506 | 960 | 0.7136 | 0.2000 | 0.7136 | 0.8448 | | 0.4608 | 3.9588 | 962 | 0.6800 | 0.2186 | 0.6800 | 0.8246 | | 0.4608 | 3.9671 | 964 | 0.6480 | 0.1793 | 0.6480 | 0.8050 | | 0.4608 | 3.9753 | 966 | 0.6376 | 0.1793 | 0.6376 | 0.7985 | | 0.4608 | 3.9835 | 968 | 0.6514 | 0.2186 | 0.6514 | 0.8071 | | 0.4608 | 3.9918 | 970 | 0.6779 | 0.2000 | 0.6779 | 0.8233 | | 0.4608 | 4.0 | 972 | 0.7279 | 0.3198 | 0.7279 | 0.8532 | | 0.4608 | 4.0082 | 974 | 0.7666 | 0.3198 | 0.7666 | 0.8755 | | 0.4608 | 4.0165 | 976 | 0.7730 | 0.3198 | 0.7730 | 0.8792 | | 0.4608 | 4.0247 | 978 | 0.7249 | 0.3198 | 0.7249 | 0.8514 | | 0.4608 | 4.0329 | 980 | 0.6436 | 0.3107 | 0.6436 | 0.8022 | | 0.4608 | 4.0412 | 982 | 0.5838 | 0.2364 | 0.5838 | 0.7641 | | 0.4608 | 4.0494 | 984 | 0.5645 | 0.3865 | 0.5645 | 0.7514 | | 0.4608 | 4.0576 | 986 | 0.5648 | 0.2696 | 0.5648 | 0.7515 | | 0.4608 | 4.0658 | 988 | 0.5706 | 0.2696 | 0.5706 | 0.7554 | | 0.4608 | 4.0741 | 990 | 0.5778 | 0.2696 | 0.5778 | 0.7601 | | 0.4608 | 4.0823 | 992 | 0.5984 | 0.3724 | 0.5984 | 0.7736 | | 0.4608 | 4.0905 | 994 | 0.6383 | 0.1600 | 0.6383 | 0.7989 | | 0.4608 | 4.0988 | 996 | 0.6917 | 0.2000 | 0.6917 | 0.8317 | | 0.4608 | 4.1070 | 998 | 0.7845 | 0.3107 | 0.7845 | 0.8857 | | 0.1067 | 4.1152 | 1000 | 0.8507 | 0.3277 | 0.8507 | 0.9223 | | 0.1067 | 4.1235 | 1002 | 0.8551 | 0.3277 | 0.8551 | 0.9247 | | 0.1067 | 4.1317 | 1004 | 0.8002 | 0.3277 | 0.8002 | 0.8946 | | 0.1067 | 4.1399 | 1006 | 0.7005 | 0.3107 | 0.7005 | 0.8370 | | 0.1067 | 4.1481 | 1008 | 0.6174 | 0.3163 | 0.6174 | 0.7858 | | 0.1067 | 4.1564 | 1010 | 0.5818 | 0.3724 | 0.5818 | 0.7627 | | 0.1067 | 4.1646 | 1012 | 0.5679 | 0.3724 | 0.5679 | 0.7536 | | 0.1067 | 4.1728 | 1014 | 0.5659 | 0.3318 | 0.5659 | 0.7523 | | 0.1067 | 4.1811 | 1016 | 0.5647 | 0.3724 | 0.5647 | 0.7515 | | 0.1067 | 4.1893 | 1018 | 0.5690 | 0.3724 | 0.5690 | 0.7543 | | 0.1067 | 4.1975 | 1020 | 0.5874 | 0.3163 | 0.5874 | 0.7664 | | 0.1067 | 4.2058 | 1022 | 0.6182 | 0.2000 | 0.6182 | 0.7863 | | 0.1067 | 4.2140 | 1024 | 0.6451 | 0.2000 | 0.6451 | 0.8032 | | 0.1067 | 4.2222 | 1026 | 0.6470 | 0.2000 | 0.6470 | 0.8043 | | 0.1067 | 4.2305 | 1028 | 0.6411 | 0.3107 | 0.6411 | 0.8007 | | 0.1067 | 4.2387 | 1030 | 0.6326 | 0.3107 | 0.6326 | 0.7954 | | 0.1067 | 4.2469 | 1032 | 0.6159 | 0.3107 | 0.6159 | 0.7848 | | 0.1067 | 4.2551 | 1034 | 0.5866 | 0.4154 | 0.5866 | 0.7659 | | 0.1067 | 4.2634 | 1036 | 0.5535 | 0.3163 | 0.5535 | 0.7440 | | 0.1067 | 4.2716 | 1038 | 0.5404 | 0.3724 | 0.5404 | 0.7351 | | 0.1067 | 4.2798 | 1040 | 0.5345 | 0.3318 | 0.5345 | 0.7311 | | 0.1067 | 4.2881 | 1042 | 0.5368 | 0.3724 | 0.5368 | 0.7326 | | 0.1067 | 4.2963 | 1044 | 0.5432 | 0.3724 | 0.5432 | 0.7370 | | 0.1067 | 4.3045 | 1046 | 0.5531 | 0.3163 | 0.5531 | 0.7437 | | 0.1067 | 4.3128 | 1048 | 0.5643 | 0.3163 | 0.5643 | 0.7512 | | 0.1067 | 4.3210 | 1050 | 0.5742 | 0.3163 | 0.5742 | 0.7578 | | 0.1067 | 4.3292 | 1052 | 0.5848 | 0.3163 | 0.5848 | 0.7647 | | 0.1067 | 4.3374 | 1054 | 0.5892 | 0.3163 | 0.5892 | 0.7676 | | 0.1067 | 4.3457 | 1056 | 0.5874 | 0.3724 | 0.5874 | 0.7664 | | 0.1067 | 4.3539 | 1058 | 0.6102 | 0.4154 | 0.6102 | 0.7811 | | 0.1067 | 4.3621 | 1060 | 0.6437 | 0.2727 | 0.6437 | 0.8023 | | 0.1067 | 4.3704 | 1062 | 0.6690 | 0.2727 | 0.6690 | 0.8179 | | 0.1067 | 4.3786 | 1064 | 0.7169 | 0.2727 | 0.7169 | 0.8467 | | 0.1067 | 4.3868 | 1066 | 0.7977 | 0.3277 | 0.7977 | 0.8932 | | 0.1067 | 4.3951 | 1068 | 0.9043 | 0.1421 | 0.9043 | 0.9509 | | 0.1067 | 4.4033 | 1070 | 0.9346 | 0.1421 | 0.9346 | 0.9668 | | 0.1067 | 4.4115 | 1072 | 0.8760 | 0.1421 | 0.8760 | 0.9360 | | 0.1067 | 4.4198 | 1074 | 0.7776 | 0.3107 | 0.7776 | 0.8818 | | 0.1067 | 4.4280 | 1076 | 0.6973 | 0.2727 | 0.6973 | 0.8350 | | 0.1067 | 4.4362 | 1078 | 0.6421 | 0.2186 | 0.6421 | 0.8013 | | 0.1067 | 4.4444 | 1080 | 0.6260 | 0.3724 | 0.6260 | 0.7912 | | 0.1067 | 4.4527 | 1082 | 0.6141 | 0.3724 | 0.6141 | 0.7837 | | 0.1067 | 4.4609 | 1084 | 0.5965 | 0.3724 | 0.5965 | 0.7724 | | 0.1067 | 4.4691 | 1086 | 0.5922 | 0.3724 | 0.5922 | 0.7696 | | 0.1067 | 4.4774 | 1088 | 0.5860 | 0.3724 | 0.5860 | 0.7655 | | 0.1067 | 4.4856 | 1090 | 0.5774 | 0.3724 | 0.5774 | 0.7599 | | 0.1067 | 4.4938 | 1092 | 0.5751 | 0.3724 | 0.5751 | 0.7584 | | 0.1067 | 4.5021 | 1094 | 0.5759 | 0.3724 | 0.5759 | 0.7589 | | 0.1067 | 4.5103 | 1096 | 0.5726 | 0.3724 | 0.5726 | 0.7567 | | 0.1067 | 4.5185 | 1098 | 0.5822 | 0.3724 | 0.5822 | 0.7630 | | 0.1067 | 4.5267 | 1100 | 0.5873 | 0.3724 | 0.5873 | 0.7664 | | 0.1067 | 4.5350 | 1102 | 0.5880 | 0.3724 | 0.5880 | 0.7668 | | 0.1067 | 4.5432 | 1104 | 0.5947 | 0.3724 | 0.5947 | 0.7712 | | 0.1067 | 4.5514 | 1106 | 0.6063 | 0.3724 | 0.6063 | 0.7787 | | 0.1067 | 4.5597 | 1108 | 0.6089 | 0.3724 | 0.6089 | 0.7804 | | 0.1067 | 4.5679 | 1110 | 0.6153 | 0.3724 | 0.6153 | 0.7844 | | 0.1067 | 4.5761 | 1112 | 0.6160 | 0.3724 | 0.6160 | 0.7849 | | 0.1067 | 4.5844 | 1114 | 0.6238 | 0.3163 | 0.6238 | 0.7898 | | 0.1067 | 4.5926 | 1116 | 0.6326 | 0.3163 | 0.6326 | 0.7954 | | 0.1067 | 4.6008 | 1118 | 0.6173 | 0.3163 | 0.6173 | 0.7857 | | 0.1067 | 4.6091 | 1120 | 0.6053 | 0.3163 | 0.6053 | 0.7780 | | 0.1067 | 4.6173 | 1122 | 0.6107 | 0.3163 | 0.6107 | 0.7815 | | 0.1067 | 4.6255 | 1124 | 0.6035 | 0.3163 | 0.6035 | 0.7769 | | 0.1067 | 4.6337 | 1126 | 0.6111 | 0.3163 | 0.6111 | 0.7817 | | 0.1067 | 4.6420 | 1128 | 0.6276 | 0.3163 | 0.6276 | 0.7922 | | 0.1067 | 4.6502 | 1130 | 0.6515 | 0.3107 | 0.6515 | 0.8072 | | 0.1067 | 4.6584 | 1132 | 0.6731 | 0.3107 | 0.6731 | 0.8204 | | 0.1067 | 4.6667 | 1134 | 0.6614 | 0.3107 | 0.6614 | 0.8133 | | 0.1067 | 4.6749 | 1136 | 0.6400 | 0.3107 | 0.6400 | 0.8000 | | 0.1067 | 4.6831 | 1138 | 0.6019 | 0.3163 | 0.6019 | 0.7758 | | 0.1067 | 4.6914 | 1140 | 0.5688 | 0.3724 | 0.5688 | 0.7542 | | 0.1067 | 4.6996 | 1142 | 0.5518 | 0.3724 | 0.5518 | 0.7428 | | 0.1067 | 4.7078 | 1144 | 0.5512 | 0.3609 | 0.5512 | 0.7424 | | 0.1067 | 4.7160 | 1146 | 0.5574 | 0.3226 | 0.5574 | 0.7466 | | 0.1067 | 4.7243 | 1148 | 0.5579 | 0.3609 | 0.5579 | 0.7469 | | 0.1067 | 4.7325 | 1150 | 0.5574 | 0.3865 | 0.5574 | 0.7466 | | 0.1067 | 4.7407 | 1152 | 0.5764 | 0.3724 | 0.5764 | 0.7592 | | 0.1067 | 4.7490 | 1154 | 0.6318 | 0.4154 | 0.6318 | 0.7948 | | 0.1067 | 4.7572 | 1156 | 0.6887 | 0.3198 | 0.6887 | 0.8299 | | 0.1067 | 4.7654 | 1158 | 0.7032 | 0.3198 | 0.7032 | 0.8386 | | 0.1067 | 4.7737 | 1160 | 0.6678 | 0.4529 | 0.6678 | 0.8172 | | 0.1067 | 4.7819 | 1162 | 0.6315 | 0.4154 | 0.6315 | 0.7947 | | 0.1067 | 4.7901 | 1164 | 0.6128 | 0.4167 | 0.6128 | 0.7828 | | 0.1067 | 4.7984 | 1166 | 0.5894 | 0.4154 | 0.5894 | 0.7677 | | 0.1067 | 4.8066 | 1168 | 0.5796 | 0.3163 | 0.5796 | 0.7613 | | 0.1067 | 4.8148 | 1170 | 0.5729 | 0.3163 | 0.5729 | 0.7569 | | 0.1067 | 4.8230 | 1172 | 0.5792 | 0.3163 | 0.5792 | 0.7611 | | 0.1067 | 4.8313 | 1174 | 0.5800 | 0.3163 | 0.5800 | 0.7616 | | 0.1067 | 4.8395 | 1176 | 0.5854 | 0.3163 | 0.5854 | 0.7651 | | 0.1067 | 4.8477 | 1178 | 0.5778 | 0.3163 | 0.5778 | 0.7601 | | 0.1067 | 4.8560 | 1180 | 0.5690 | 0.3163 | 0.5690 | 0.7543 | | 0.1067 | 4.8642 | 1182 | 0.5619 | 0.3163 | 0.5619 | 0.7496 | | 0.1067 | 4.8724 | 1184 | 0.5602 | 0.3163 | 0.5602 | 0.7484 | | 0.1067 | 4.8807 | 1186 | 0.5590 | 0.3163 | 0.5591 | 0.7477 | | 0.1067 | 4.8889 | 1188 | 0.5542 | 0.3163 | 0.5542 | 0.7444 | | 0.1067 | 4.8971 | 1190 | 0.5554 | 0.3163 | 0.5554 | 0.7452 | | 0.1067 | 4.9053 | 1192 | 0.5586 | 0.3163 | 0.5586 | 0.7474 | | 0.1067 | 4.9136 | 1194 | 0.5645 | 0.3163 | 0.5645 | 0.7513 | | 0.1067 | 4.9218 | 1196 | 0.5658 | 0.3163 | 0.5658 | 0.7522 | | 0.1067 | 4.9300 | 1198 | 0.5701 | 0.3163 | 0.5701 | 0.7551 | | 0.1067 | 4.9383 | 1200 | 0.5671 | 0.3163 | 0.5671 | 0.7531 | | 0.1067 | 4.9465 | 1202 | 0.5657 | 0.3163 | 0.5657 | 0.7521 | | 0.1067 | 4.9547 | 1204 | 0.5573 | 0.3163 | 0.5573 | 0.7465 | | 0.1067 | 4.9630 | 1206 | 0.5621 | 0.3163 | 0.5621 | 0.7497 | | 0.1067 | 4.9712 | 1208 | 0.5581 | 0.3163 | 0.5581 | 0.7471 | | 0.1067 | 4.9794 | 1210 | 0.5770 | 0.3255 | 0.5770 | 0.7596 | | 0.1067 | 4.9877 | 1212 | 0.6160 | 0.4529 | 0.6160 | 0.7848 | | 0.1067 | 4.9959 | 1214 | 0.6855 | 0.3198 | 0.6855 | 0.8280 | | 0.1067 | 5.0041 | 1216 | 0.7575 | 0.3198 | 0.7575 | 0.8703 | | 0.1067 | 5.0123 | 1218 | 0.7589 | 0.3198 | 0.7589 | 0.8712 | | 0.1067 | 5.0206 | 1220 | 0.7158 | 0.3198 | 0.7158 | 0.8460 | | 0.1067 | 5.0288 | 1222 | 0.6280 | 0.4529 | 0.6280 | 0.7925 | | 0.1067 | 5.0370 | 1224 | 0.5834 | 0.4167 | 0.5834 | 0.7638 | | 0.1067 | 5.0453 | 1226 | 0.5561 | 0.4637 | 0.5561 | 0.7457 | | 0.1067 | 5.0535 | 1228 | 0.5489 | 0.3771 | 0.5489 | 0.7409 | | 0.1067 | 5.0617 | 1230 | 0.5482 | 0.3771 | 0.5482 | 0.7404 | | 0.1067 | 5.0700 | 1232 | 0.5362 | 0.3724 | 0.5362 | 0.7323 | | 0.1067 | 5.0782 | 1234 | 0.5372 | 0.3724 | 0.5372 | 0.7329 | | 0.1067 | 5.0864 | 1236 | 0.5379 | 0.3724 | 0.5379 | 0.7334 | | 0.1067 | 5.0947 | 1238 | 0.5419 | 0.3318 | 0.5419 | 0.7361 | | 0.1067 | 5.1029 | 1240 | 0.5436 | 0.3318 | 0.5436 | 0.7373 | | 0.1067 | 5.1111 | 1242 | 0.5462 | 0.3724 | 0.5462 | 0.7391 | | 0.1067 | 5.1193 | 1244 | 0.5527 | 0.3724 | 0.5527 | 0.7434 | | 0.1067 | 5.1276 | 1246 | 0.5586 | 0.3724 | 0.5586 | 0.7474 | | 0.1067 | 5.1358 | 1248 | 0.5621 | 0.3724 | 0.5621 | 0.7497 | | 0.1067 | 5.1440 | 1250 | 0.5642 | 0.2921 | 0.5642 | 0.7511 | | 0.1067 | 5.1523 | 1252 | 0.5681 | 0.2921 | 0.5681 | 0.7537 | | 0.1067 | 5.1605 | 1254 | 0.5697 | 0.2921 | 0.5697 | 0.7548 | | 0.1067 | 5.1687 | 1256 | 0.5701 | 0.2921 | 0.5701 | 0.7550 | | 0.1067 | 5.1770 | 1258 | 0.5750 | 0.3724 | 0.5750 | 0.7583 | | 0.1067 | 5.1852 | 1260 | 0.5924 | 0.3724 | 0.5924 | 0.7697 | | 0.1067 | 5.1934 | 1262 | 0.6060 | 0.4140 | 0.6060 | 0.7785 | | 0.1067 | 5.2016 | 1264 | 0.6008 | 0.3724 | 0.6008 | 0.7751 | | 0.1067 | 5.2099 | 1266 | 0.5907 | 0.3724 | 0.5907 | 0.7686 | | 0.1067 | 5.2181 | 1268 | 0.5801 | 0.3724 | 0.5801 | 0.7616 | | 0.1067 | 5.2263 | 1270 | 0.5799 | 0.2921 | 0.5799 | 0.7615 | | 0.1067 | 5.2346 | 1272 | 0.5806 | 0.3467 | 0.5806 | 0.7620 | | 0.1067 | 5.2428 | 1274 | 0.5769 | 0.3467 | 0.5769 | 0.7596 | | 0.1067 | 5.2510 | 1276 | 0.5722 | 0.3865 | 0.5722 | 0.7564 | | 0.1067 | 5.2593 | 1278 | 0.5707 | 0.3724 | 0.5707 | 0.7554 | | 0.1067 | 5.2675 | 1280 | 0.5736 | 0.3724 | 0.5736 | 0.7574 | | 0.1067 | 5.2757 | 1282 | 0.5781 | 0.3724 | 0.5781 | 0.7603 | | 0.1067 | 5.2840 | 1284 | 0.5893 | 0.3724 | 0.5893 | 0.7677 | | 0.1067 | 5.2922 | 1286 | 0.6013 | 0.3724 | 0.6013 | 0.7754 | | 0.1067 | 5.3004 | 1288 | 0.6058 | 0.3724 | 0.6058 | 0.7783 | | 0.1067 | 5.3086 | 1290 | 0.6026 | 0.3724 | 0.6026 | 0.7763 | | 0.1067 | 5.3169 | 1292 | 0.6021 | 0.3724 | 0.6021 | 0.7760 | | 0.1067 | 5.3251 | 1294 | 0.6085 | 0.3724 | 0.6085 | 0.7801 | | 0.1067 | 5.3333 | 1296 | 0.6104 | 0.3724 | 0.6104 | 0.7813 | | 0.1067 | 5.3416 | 1298 | 0.6099 | 0.3724 | 0.6099 | 0.7810 | | 0.1067 | 5.3498 | 1300 | 0.6138 | 0.4273 | 0.6138 | 0.7834 | | 0.1067 | 5.3580 | 1302 | 0.6232 | 0.3467 | 0.6232 | 0.7894 | | 0.1067 | 5.3663 | 1304 | 0.6391 | 0.2696 | 0.6391 | 0.7995 | | 0.1067 | 5.3745 | 1306 | 0.6443 | 0.3077 | 0.6443 | 0.8027 | | 0.1067 | 5.3827 | 1308 | 0.6407 | 0.2921 | 0.6407 | 0.8004 | | 0.1067 | 5.3909 | 1310 | 0.6412 | 0.3724 | 0.6412 | 0.8008 | | 0.1067 | 5.3992 | 1312 | 0.6475 | 0.3724 | 0.6475 | 0.8046 | | 0.1067 | 5.4074 | 1314 | 0.6641 | 0.3724 | 0.6641 | 0.8149 | | 0.1067 | 5.4156 | 1316 | 0.6809 | 0.1600 | 0.6809 | 0.8252 | | 0.1067 | 5.4239 | 1318 | 0.6994 | 0.1818 | 0.6994 | 0.8363 | | 0.1067 | 5.4321 | 1320 | 0.6984 | 0.2846 | 0.6984 | 0.8357 | | 0.1067 | 5.4403 | 1322 | 0.6712 | 0.1818 | 0.6712 | 0.8193 | | 0.1067 | 5.4486 | 1324 | 0.6343 | 0.2186 | 0.6343 | 0.7964 | | 0.1067 | 5.4568 | 1326 | 0.6057 | 0.3724 | 0.6057 | 0.7782 | | 0.1067 | 5.4650 | 1328 | 0.5926 | 0.3724 | 0.5926 | 0.7698 | | 0.1067 | 5.4733 | 1330 | 0.5906 | 0.4273 | 0.5906 | 0.7685 | | 0.1067 | 5.4815 | 1332 | 0.5892 | 0.3865 | 0.5892 | 0.7676 | | 0.1067 | 5.4897 | 1334 | 0.5892 | 0.3077 | 0.5892 | 0.7676 | | 0.1067 | 5.4979 | 1336 | 0.5866 | 0.3467 | 0.5866 | 0.7659 | | 0.1067 | 5.5062 | 1338 | 0.5847 | 0.4273 | 0.5847 | 0.7647 | | 0.1067 | 5.5144 | 1340 | 0.5820 | 0.4273 | 0.5820 | 0.7629 | | 0.1067 | 5.5226 | 1342 | 0.5855 | 0.4273 | 0.5855 | 0.7652 | | 0.1067 | 5.5309 | 1344 | 0.5909 | 0.4277 | 0.5909 | 0.7687 | | 0.1067 | 5.5391 | 1346 | 0.5976 | 0.3811 | 0.5976 | 0.7730 | | 0.1067 | 5.5473 | 1348 | 0.6043 | 0.3811 | 0.6043 | 0.7774 | | 0.1067 | 5.5556 | 1350 | 0.5986 | 0.3811 | 0.5986 | 0.7737 | | 0.1067 | 5.5638 | 1352 | 0.5869 | 0.2759 | 0.5869 | 0.7661 | | 0.1067 | 5.5720 | 1354 | 0.5819 | 0.3865 | 0.5819 | 0.7628 | | 0.1067 | 5.5802 | 1356 | 0.5902 | 0.2759 | 0.5902 | 0.7682 | | 0.1067 | 5.5885 | 1358 | 0.5856 | 0.3865 | 0.5856 | 0.7652 | | 0.1067 | 5.5967 | 1360 | 0.5777 | 0.3865 | 0.5777 | 0.7601 | | 0.1067 | 5.6049 | 1362 | 0.5730 | 0.3865 | 0.5730 | 0.7570 | | 0.1067 | 5.6132 | 1364 | 0.5739 | 0.3865 | 0.5739 | 0.7576 | | 0.1067 | 5.6214 | 1366 | 0.5833 | 0.3865 | 0.5833 | 0.7638 | | 0.1067 | 5.6296 | 1368 | 0.5973 | 0.4772 | 0.5973 | 0.7729 | | 0.1067 | 5.6379 | 1370 | 0.6009 | 0.4772 | 0.6009 | 0.7752 | | 0.1067 | 5.6461 | 1372 | 0.6135 | 0.3463 | 0.6135 | 0.7833 | | 0.1067 | 5.6543 | 1374 | 0.6249 | 0.3463 | 0.6249 | 0.7905 | | 0.1067 | 5.6626 | 1376 | 0.6465 | 0.3811 | 0.6465 | 0.8041 | | 0.1067 | 5.6708 | 1378 | 0.6563 | 0.3333 | 0.6563 | 0.8101 | | 0.1067 | 5.6790 | 1380 | 0.6677 | 0.2846 | 0.6677 | 0.8171 | | 0.1067 | 5.6872 | 1382 | 0.6573 | 0.2846 | 0.6573 | 0.8107 | | 0.1067 | 5.6955 | 1384 | 0.6353 | 0.3255 | 0.6353 | 0.7971 | | 0.1067 | 5.7037 | 1386 | 0.6239 | 0.3255 | 0.6239 | 0.7899 | | 0.1067 | 5.7119 | 1388 | 0.6212 | 0.2186 | 0.6212 | 0.7882 | | 0.1067 | 5.7202 | 1390 | 0.6240 | 0.2186 | 0.6240 | 0.7899 | | 0.1067 | 5.7284 | 1392 | 0.6335 | 0.2186 | 0.6335 | 0.7959 | | 0.1067 | 5.7366 | 1394 | 0.6243 | 0.3724 | 0.6243 | 0.7902 | | 0.1067 | 5.7449 | 1396 | 0.6067 | 0.3724 | 0.6067 | 0.7789 | | 0.1067 | 5.7531 | 1398 | 0.6060 | 0.3724 | 0.6060 | 0.7785 | | 0.1067 | 5.7613 | 1400 | 0.6136 | 0.3724 | 0.6136 | 0.7833 | | 0.1067 | 5.7695 | 1402 | 0.6249 | 0.3724 | 0.6249 | 0.7905 | | 0.1067 | 5.7778 | 1404 | 0.6320 | 0.3724 | 0.6320 | 0.7950 | | 0.1067 | 5.7860 | 1406 | 0.6302 | 0.3724 | 0.6302 | 0.7938 | | 0.1067 | 5.7942 | 1408 | 0.6485 | 0.3724 | 0.6485 | 0.8053 | | 0.1067 | 5.8025 | 1410 | 0.6884 | 0.4615 | 0.6884 | 0.8297 | | 0.1067 | 5.8107 | 1412 | 0.7049 | 0.4615 | 0.7049 | 0.8396 | | 0.1067 | 5.8189 | 1414 | 0.7113 | 0.2948 | 0.7113 | 0.8434 | | 0.1067 | 5.8272 | 1416 | 0.6979 | 0.2948 | 0.6979 | 0.8354 | | 0.1067 | 5.8354 | 1418 | 0.6645 | 0.3333 | 0.6645 | 0.8152 | | 0.1067 | 5.8436 | 1420 | 0.6171 | 0.2186 | 0.6171 | 0.7855 | | 0.1067 | 5.8519 | 1422 | 0.5984 | 0.2186 | 0.5984 | 0.7736 | | 0.1067 | 5.8601 | 1424 | 0.5909 | 0.3724 | 0.5909 | 0.7687 | | 0.1067 | 5.8683 | 1426 | 0.5855 | 0.3724 | 0.5855 | 0.7652 | | 0.1067 | 5.8765 | 1428 | 0.5823 | 0.3724 | 0.5823 | 0.7631 | | 0.1067 | 5.8848 | 1430 | 0.5827 | 0.3724 | 0.5827 | 0.7633 | | 0.1067 | 5.8930 | 1432 | 0.5836 | 0.3724 | 0.5836 | 0.7640 | | 0.1067 | 5.9012 | 1434 | 0.5890 | 0.2186 | 0.5890 | 0.7675 | | 0.1067 | 5.9095 | 1436 | 0.5924 | 0.2186 | 0.5924 | 0.7697 | | 0.1067 | 5.9177 | 1438 | 0.5934 | 0.2186 | 0.5934 | 0.7703 | | 0.1067 | 5.9259 | 1440 | 0.5975 | 0.2186 | 0.5975 | 0.7730 | | 0.1067 | 5.9342 | 1442 | 0.5973 | 0.2186 | 0.5973 | 0.7729 | | 0.1067 | 5.9424 | 1444 | 0.6052 | 0.2186 | 0.6052 | 0.7779 | | 0.1067 | 5.9506 | 1446 | 0.6085 | 0.2355 | 0.6085 | 0.7800 | | 0.1067 | 5.9588 | 1448 | 0.6136 | 0.2355 | 0.6136 | 0.7833 | | 0.1067 | 5.9671 | 1450 | 0.6272 | 0.3333 | 0.6272 | 0.7920 | | 0.1067 | 5.9753 | 1452 | 0.6377 | 0.3333 | 0.6377 | 0.7986 | | 0.1067 | 5.9835 | 1454 | 0.6601 | 0.3333 | 0.6601 | 0.8124 | | 0.1067 | 5.9918 | 1456 | 0.6702 | 0.3333 | 0.6702 | 0.8186 | | 0.1067 | 6.0 | 1458 | 0.6696 | 0.3333 | 0.6696 | 0.8183 | | 0.1067 | 6.0082 | 1460 | 0.7106 | 0.3401 | 0.7106 | 0.8430 | | 0.1067 | 6.0165 | 1462 | 0.7502 | 0.3277 | 0.7502 | 0.8662 | | 0.1067 | 6.0247 | 1464 | 0.7732 | 0.3277 | 0.7732 | 0.8793 | | 0.1067 | 6.0329 | 1466 | 0.7905 | 0.3277 | 0.7905 | 0.8891 | | 0.1067 | 6.0412 | 1468 | 0.7390 | 0.3277 | 0.7390 | 0.8596 | | 0.1067 | 6.0494 | 1470 | 0.6955 | 0.3401 | 0.6955 | 0.8339 | | 0.1067 | 6.0576 | 1472 | 0.6746 | 0.3401 | 0.6746 | 0.8214 | | 0.1067 | 6.0658 | 1474 | 0.6916 | 0.3401 | 0.6916 | 0.8316 | | 0.1067 | 6.0741 | 1476 | 0.7171 | 0.3401 | 0.7171 | 0.8468 | | 0.1067 | 6.0823 | 1478 | 0.7460 | 0.3401 | 0.7460 | 0.8637 | | 0.1067 | 6.0905 | 1480 | 0.7604 | 0.4187 | 0.7604 | 0.8720 | | 0.1067 | 6.0988 | 1482 | 0.7358 | 0.3401 | 0.7358 | 0.8578 | | 0.1067 | 6.1070 | 1484 | 0.6898 | 0.3401 | 0.6898 | 0.8305 | | 0.1067 | 6.1152 | 1486 | 0.6483 | 0.4740 | 0.6483 | 0.8052 | | 0.1067 | 6.1235 | 1488 | 0.6281 | 0.4389 | 0.6281 | 0.7925 | | 0.1067 | 6.1317 | 1490 | 0.6149 | 0.4389 | 0.6149 | 0.7842 | | 0.1067 | 6.1399 | 1492 | 0.6114 | 0.4389 | 0.6114 | 0.7819 | | 0.1067 | 6.1481 | 1494 | 0.6122 | 0.4389 | 0.6122 | 0.7825 | | 0.1067 | 6.1564 | 1496 | 0.6148 | 0.4389 | 0.6148 | 0.7841 | | 0.1067 | 6.1646 | 1498 | 0.6254 | 0.3463 | 0.6254 | 0.7909 | | 0.0692 | 6.1728 | 1500 | 0.6406 | 0.3333 | 0.6406 | 0.8004 | | 0.0692 | 6.1811 | 1502 | 0.6690 | 0.3333 | 0.6690 | 0.8179 | | 0.0692 | 6.1893 | 1504 | 0.6879 | 0.3333 | 0.6879 | 0.8294 | | 0.0692 | 6.1975 | 1506 | 0.6737 | 0.3333 | 0.6737 | 0.8208 | | 0.0692 | 6.2058 | 1508 | 0.6619 | 0.3333 | 0.6619 | 0.8136 | | 0.0692 | 6.2140 | 1510 | 0.6404 | 0.3333 | 0.6404 | 0.8002 | | 0.0692 | 6.2222 | 1512 | 0.6208 | 0.2186 | 0.6208 | 0.7879 | | 0.0692 | 6.2305 | 1514 | 0.6093 | 0.2364 | 0.6093 | 0.7806 | | 0.0692 | 6.2387 | 1516 | 0.6077 | 0.3865 | 0.6077 | 0.7795 | | 0.0692 | 6.2469 | 1518 | 0.6043 | 0.3865 | 0.6043 | 0.7774 | | 0.0692 | 6.2551 | 1520 | 0.6001 | 0.3865 | 0.6001 | 0.7747 | | 0.0692 | 6.2634 | 1522 | 0.5978 | 0.3865 | 0.5978 | 0.7732 | | 0.0692 | 6.2716 | 1524 | 0.5987 | 0.2759 | 0.5987 | 0.7738 | | 0.0692 | 6.2798 | 1526 | 0.6101 | 0.2355 | 0.6101 | 0.7811 | | 0.0692 | 6.2881 | 1528 | 0.6292 | 0.3333 | 0.6292 | 0.7932 | | 0.0692 | 6.2963 | 1530 | 0.6504 | 0.3333 | 0.6504 | 0.8065 | | 0.0692 | 6.3045 | 1532 | 0.6731 | 0.2846 | 0.6731 | 0.8204 | | 0.0692 | 6.3128 | 1534 | 0.6776 | 0.2846 | 0.6776 | 0.8231 | | 0.0692 | 6.3210 | 1536 | 0.6742 | 0.2846 | 0.6742 | 0.8211 | | 0.0692 | 6.3292 | 1538 | 0.6550 | 0.3811 | 0.6550 | 0.8093 | | 0.0692 | 6.3374 | 1540 | 0.6390 | 0.3811 | 0.6390 | 0.7993 | | 0.0692 | 6.3457 | 1542 | 0.6197 | 0.3811 | 0.6197 | 0.7872 | | 0.0692 | 6.3539 | 1544 | 0.6014 | 0.4740 | 0.6014 | 0.7755 | | 0.0692 | 6.3621 | 1546 | 0.5895 | 0.4740 | 0.5895 | 0.7678 | | 0.0692 | 6.3704 | 1548 | 0.5917 | 0.4740 | 0.5917 | 0.7692 | | 0.0692 | 6.3786 | 1550 | 0.5937 | 0.3463 | 0.5937 | 0.7705 | | 0.0692 | 6.3868 | 1552 | 0.5984 | 0.3811 | 0.5984 | 0.7736 | | 0.0692 | 6.3951 | 1554 | 0.6104 | 0.3333 | 0.6104 | 0.7813 | | 0.0692 | 6.4033 | 1556 | 0.6300 | 0.3333 | 0.6300 | 0.7937 | | 0.0692 | 6.4115 | 1558 | 0.6186 | 0.3333 | 0.6186 | 0.7865 | | 0.0692 | 6.4198 | 1560 | 0.6094 | 0.3811 | 0.6094 | 0.7806 | | 0.0692 | 6.4280 | 1562 | 0.6105 | 0.3811 | 0.6105 | 0.7814 | | 0.0692 | 6.4362 | 1564 | 0.6063 | 0.2881 | 0.6063 | 0.7787 | | 0.0692 | 6.4444 | 1566 | 0.6054 | 0.2881 | 0.6054 | 0.7781 | | 0.0692 | 6.4527 | 1568 | 0.6045 | 0.2881 | 0.6045 | 0.7775 | | 0.0692 | 6.4609 | 1570 | 0.6082 | 0.2759 | 0.6082 | 0.7798 | | 0.0692 | 6.4691 | 1572 | 0.6141 | 0.2186 | 0.6141 | 0.7836 | | 0.0692 | 6.4774 | 1574 | 0.6320 | 0.2355 | 0.6320 | 0.7950 | | 0.0692 | 6.4856 | 1576 | 0.6476 | 0.2355 | 0.6476 | 0.8047 | | 0.0692 | 6.4938 | 1578 | 0.6600 | 0.1818 | 0.6600 | 0.8124 | | 0.0692 | 6.5021 | 1580 | 0.6625 | 0.2188 | 0.6625 | 0.8139 | | 0.0692 | 6.5103 | 1582 | 0.6635 | 0.2188 | 0.6635 | 0.8145 | | 0.0692 | 6.5185 | 1584 | 0.6506 | 0.2188 | 0.6506 | 0.8066 | | 0.0692 | 6.5267 | 1586 | 0.6407 | 0.1818 | 0.6407 | 0.8004 | | 0.0692 | 6.5350 | 1588 | 0.6252 | 0.2355 | 0.6252 | 0.7907 | | 0.0692 | 6.5432 | 1590 | 0.6079 | 0.2186 | 0.6079 | 0.7797 | | 0.0692 | 6.5514 | 1592 | 0.5948 | 0.2186 | 0.5948 | 0.7712 | | 0.0692 | 6.5597 | 1594 | 0.5883 | 0.4273 | 0.5883 | 0.7670 | | 0.0692 | 6.5679 | 1596 | 0.5897 | 0.3077 | 0.5897 | 0.7679 | | 0.0692 | 6.5761 | 1598 | 0.5946 | 0.3226 | 0.5946 | 0.7711 | | 0.0692 | 6.5844 | 1600 | 0.5944 | 0.3226 | 0.5944 | 0.7710 | | 0.0692 | 6.5926 | 1602 | 0.5929 | 0.3467 | 0.5929 | 0.7700 | | 0.0692 | 6.6008 | 1604 | 0.5930 | 0.3724 | 0.5930 | 0.7701 | | 0.0692 | 6.6091 | 1606 | 0.5982 | 0.3724 | 0.5982 | 0.7734 | | 0.0692 | 6.6173 | 1608 | 0.6042 | 0.3724 | 0.6042 | 0.7773 | | 0.0692 | 6.6255 | 1610 | 0.6068 | 0.3724 | 0.6068 | 0.7790 | | 0.0692 | 6.6337 | 1612 | 0.6094 | 0.3724 | 0.6094 | 0.7806 | | 0.0692 | 6.6420 | 1614 | 0.6169 | 0.2186 | 0.6169 | 0.7854 | | 0.0692 | 6.6502 | 1616 | 0.6346 | 0.2186 | 0.6346 | 0.7966 | | 0.0692 | 6.6584 | 1618 | 0.6467 | 0.2186 | 0.6467 | 0.8042 | | 0.0692 | 6.6667 | 1620 | 0.6422 | 0.2186 | 0.6422 | 0.8014 | | 0.0692 | 6.6749 | 1622 | 0.6255 | 0.2186 | 0.6255 | 0.7909 | | 0.0692 | 6.6831 | 1624 | 0.6098 | 0.3724 | 0.6098 | 0.7809 | | 0.0692 | 6.6914 | 1626 | 0.5949 | 0.3724 | 0.5949 | 0.7713 | | 0.0692 | 6.6996 | 1628 | 0.5834 | 0.3724 | 0.5834 | 0.7638 | | 0.0692 | 6.7078 | 1630 | 0.5793 | 0.3724 | 0.5793 | 0.7611 | | 0.0692 | 6.7160 | 1632 | 0.5767 | 0.3318 | 0.5767 | 0.7594 | | 0.0692 | 6.7243 | 1634 | 0.5749 | 0.2921 | 0.5749 | 0.7582 | | 0.0692 | 6.7325 | 1636 | 0.5739 | 0.2921 | 0.5739 | 0.7576 | | 0.0692 | 6.7407 | 1638 | 0.5732 | 0.2921 | 0.5732 | 0.7571 | | 0.0692 | 6.7490 | 1640 | 0.5720 | 0.3318 | 0.5720 | 0.7563 | | 0.0692 | 6.7572 | 1642 | 0.5721 | 0.3724 | 0.5721 | 0.7564 | | 0.0692 | 6.7654 | 1644 | 0.5810 | 0.3724 | 0.5810 | 0.7623 | | 0.0692 | 6.7737 | 1646 | 0.5880 | 0.2186 | 0.5880 | 0.7668 | | 0.0692 | 6.7819 | 1648 | 0.5938 | 0.2186 | 0.5938 | 0.7706 | | 0.0692 | 6.7901 | 1650 | 0.5990 | 0.2186 | 0.5990 | 0.7740 | | 0.0692 | 6.7984 | 1652 | 0.5994 | 0.3724 | 0.5994 | 0.7742 | | 0.0692 | 6.8066 | 1654 | 0.6008 | 0.3724 | 0.6008 | 0.7751 | | 0.0692 | 6.8148 | 1656 | 0.6042 | 0.3724 | 0.6042 | 0.7773 | | 0.0692 | 6.8230 | 1658 | 0.6091 | 0.2186 | 0.6091 | 0.7805 | | 0.0692 | 6.8313 | 1660 | 0.6180 | 0.2186 | 0.6180 | 0.7861 | | 0.0692 | 6.8395 | 1662 | 0.6167 | 0.2186 | 0.6167 | 0.7853 | | 0.0692 | 6.8477 | 1664 | 0.6168 | 0.2186 | 0.6168 | 0.7854 | | 0.0692 | 6.8560 | 1666 | 0.6187 | 0.2186 | 0.6187 | 0.7866 | | 0.0692 | 6.8642 | 1668 | 0.6188 | 0.2186 | 0.6188 | 0.7867 | | 0.0692 | 6.8724 | 1670 | 0.6151 | 0.2186 | 0.6151 | 0.7843 | | 0.0692 | 6.8807 | 1672 | 0.6070 | 0.2186 | 0.6070 | 0.7791 | | 0.0692 | 6.8889 | 1674 | 0.6057 | 0.2186 | 0.6057 | 0.7783 | | 0.0692 | 6.8971 | 1676 | 0.6044 | 0.1793 | 0.6044 | 0.7774 | | 0.0692 | 6.9053 | 1678 | 0.6025 | 0.1793 | 0.6025 | 0.7762 | | 0.0692 | 6.9136 | 1680 | 0.5999 | 0.1793 | 0.5999 | 0.7745 | | 0.0692 | 6.9218 | 1682 | 0.5964 | 0.3318 | 0.5964 | 0.7723 | | 0.0692 | 6.9300 | 1684 | 0.5980 | 0.3318 | 0.5980 | 0.7733 | | 0.0692 | 6.9383 | 1686 | 0.6003 | 0.1793 | 0.6003 | 0.7748 | | 0.0692 | 6.9465 | 1688 | 0.6075 | 0.1992 | 0.6075 | 0.7794 | | 0.0692 | 6.9547 | 1690 | 0.6167 | 0.1992 | 0.6167 | 0.7853 | | 0.0692 | 6.9630 | 1692 | 0.6238 | 0.1992 | 0.6238 | 0.7898 | | 0.0692 | 6.9712 | 1694 | 0.6318 | 0.1992 | 0.6318 | 0.7949 | | 0.0692 | 6.9794 | 1696 | 0.6347 | 0.1793 | 0.6347 | 0.7967 | | 0.0692 | 6.9877 | 1698 | 0.6336 | 0.1793 | 0.6336 | 0.7960 | | 0.0692 | 6.9959 | 1700 | 0.6399 | 0.2186 | 0.6399 | 0.7999 | | 0.0692 | 7.0041 | 1702 | 0.6433 | 0.1600 | 0.6433 | 0.8020 | | 0.0692 | 7.0123 | 1704 | 0.6346 | 0.2186 | 0.6346 | 0.7966 | | 0.0692 | 7.0206 | 1706 | 0.6267 | 0.2186 | 0.6267 | 0.7916 | | 0.0692 | 7.0288 | 1708 | 0.6184 | 0.2186 | 0.6184 | 0.7864 | | 0.0692 | 7.0370 | 1710 | 0.6157 | 0.2186 | 0.6157 | 0.7846 | | 0.0692 | 7.0453 | 1712 | 0.6129 | 0.1793 | 0.6129 | 0.7829 | | 0.0692 | 7.0535 | 1714 | 0.6149 | 0.2186 | 0.6149 | 0.7842 | | 0.0692 | 7.0617 | 1716 | 0.6210 | 0.1600 | 0.6210 | 0.7880 | | 0.0692 | 7.0700 | 1718 | 0.6209 | 0.2186 | 0.6209 | 0.7880 | | 0.0692 | 7.0782 | 1720 | 0.6126 | 0.1793 | 0.6126 | 0.7827 | | 0.0692 | 7.0864 | 1722 | 0.6086 | 0.1793 | 0.6086 | 0.7801 | | 0.0692 | 7.0947 | 1724 | 0.6144 | 0.1793 | 0.6144 | 0.7839 | | 0.0692 | 7.1029 | 1726 | 0.6169 | 0.1992 | 0.6169 | 0.7854 | | 0.0692 | 7.1111 | 1728 | 0.6278 | 0.1992 | 0.6278 | 0.7923 | | 0.0692 | 7.1193 | 1730 | 0.6458 | 0.2355 | 0.6458 | 0.8036 | | 0.0692 | 7.1276 | 1732 | 0.6782 | 0.2355 | 0.6782 | 0.8235 | | 0.0692 | 7.1358 | 1734 | 0.6941 | 0.1818 | 0.6941 | 0.8331 | | 0.0692 | 7.1440 | 1736 | 0.6847 | 0.2355 | 0.6847 | 0.8275 | | 0.0692 | 7.1523 | 1738 | 0.6607 | 0.2355 | 0.6607 | 0.8129 | | 0.0692 | 7.1605 | 1740 | 0.6388 | 0.2355 | 0.6388 | 0.7993 | | 0.0692 | 7.1687 | 1742 | 0.6237 | 0.1992 | 0.6237 | 0.7898 | | 0.0692 | 7.1770 | 1744 | 0.6138 | 0.3396 | 0.6138 | 0.7835 | | 0.0692 | 7.1852 | 1746 | 0.6140 | 0.3396 | 0.6140 | 0.7836 | | 0.0692 | 7.1934 | 1748 | 0.6138 | 0.3771 | 0.6138 | 0.7835 | | 0.0692 | 7.2016 | 1750 | 0.6196 | 0.2355 | 0.6196 | 0.7871 | | 0.0692 | 7.2099 | 1752 | 0.6268 | 0.2355 | 0.6268 | 0.7917 | | 0.0692 | 7.2181 | 1754 | 0.6321 | 0.2355 | 0.6321 | 0.7950 | | 0.0692 | 7.2263 | 1756 | 0.6372 | 0.2355 | 0.6372 | 0.7982 | | 0.0692 | 7.2346 | 1758 | 0.6410 | 0.2355 | 0.6410 | 0.8007 | | 0.0692 | 7.2428 | 1760 | 0.6502 | 0.2355 | 0.6502 | 0.8064 | | 0.0692 | 7.2510 | 1762 | 0.6506 | 0.2355 | 0.6506 | 0.8066 | | 0.0692 | 7.2593 | 1764 | 0.6459 | 0.2355 | 0.6459 | 0.8037 | | 0.0692 | 7.2675 | 1766 | 0.6486 | 0.2355 | 0.6486 | 0.8053 | | 0.0692 | 7.2757 | 1768 | 0.6505 | 0.2355 | 0.6505 | 0.8065 | | 0.0692 | 7.2840 | 1770 | 0.6471 | 0.3396 | 0.6471 | 0.8044 | | 0.0692 | 7.2922 | 1772 | 0.6450 | 0.3396 | 0.6450 | 0.8031 | | 0.0692 | 7.3004 | 1774 | 0.6465 | 0.3396 | 0.6465 | 0.8041 | | 0.0692 | 7.3086 | 1776 | 0.6521 | 0.3396 | 0.6521 | 0.8076 | | 0.0692 | 7.3169 | 1778 | 0.6630 | 0.1992 | 0.6630 | 0.8143 | | 0.0692 | 7.3251 | 1780 | 0.6659 | 0.1992 | 0.6659 | 0.8160 | | 0.0692 | 7.3333 | 1782 | 0.6630 | 0.3396 | 0.6630 | 0.8143 | | 0.0692 | 7.3416 | 1784 | 0.6656 | 0.1992 | 0.6656 | 0.8158 | | 0.0692 | 7.3498 | 1786 | 0.6680 | 0.2355 | 0.6680 | 0.8173 | | 0.0692 | 7.3580 | 1788 | 0.6584 | 0.3396 | 0.6584 | 0.8114 | | 0.0692 | 7.3663 | 1790 | 0.6572 | 0.3396 | 0.6572 | 0.8107 | | 0.0692 | 7.3745 | 1792 | 0.6563 | 0.3771 | 0.6563 | 0.8101 | | 0.0692 | 7.3827 | 1794 | 0.6627 | 0.3771 | 0.6627 | 0.8141 | | 0.0692 | 7.3909 | 1796 | 0.6650 | 0.2355 | 0.6650 | 0.8155 | | 0.0692 | 7.3992 | 1798 | 0.6579 | 0.2355 | 0.6579 | 0.8111 | | 0.0692 | 7.4074 | 1800 | 0.6494 | 0.3771 | 0.6494 | 0.8059 | | 0.0692 | 7.4156 | 1802 | 0.6377 | 0.3724 | 0.6377 | 0.7985 | | 0.0692 | 7.4239 | 1804 | 0.6364 | 0.3724 | 0.6364 | 0.7978 | | 0.0692 | 7.4321 | 1806 | 0.6459 | 0.3724 | 0.6459 | 0.8037 | | 0.0692 | 7.4403 | 1808 | 0.6677 | 0.2355 | 0.6677 | 0.8171 | | 0.0692 | 7.4486 | 1810 | 0.6834 | 0.2355 | 0.6834 | 0.8267 | | 0.0692 | 7.4568 | 1812 | 0.7022 | 0.2355 | 0.7022 | 0.8380 | | 0.0692 | 7.4650 | 1814 | 0.7093 | 0.2355 | 0.7093 | 0.8422 | | 0.0692 | 7.4733 | 1816 | 0.7180 | 0.2355 | 0.7180 | 0.8474 | | 0.0692 | 7.4815 | 1818 | 0.7246 | 0.3333 | 0.7246 | 0.8513 | | 0.0692 | 7.4897 | 1820 | 0.7286 | 0.3333 | 0.7286 | 0.8536 | | 0.0692 | 7.4979 | 1822 | 0.7242 | 0.3333 | 0.7242 | 0.8510 | | 0.0692 | 7.5062 | 1824 | 0.7173 | 0.3333 | 0.7173 | 0.8470 | | 0.0692 | 7.5144 | 1826 | 0.7155 | 0.3333 | 0.7155 | 0.8459 | | 0.0692 | 7.5226 | 1828 | 0.6998 | 0.2355 | 0.6998 | 0.8365 | | 0.0692 | 7.5309 | 1830 | 0.6859 | 0.2355 | 0.6859 | 0.8282 | | 0.0692 | 7.5391 | 1832 | 0.6722 | 0.2355 | 0.6722 | 0.8199 | | 0.0692 | 7.5473 | 1834 | 0.6616 | 0.3771 | 0.6616 | 0.8134 | | 0.0692 | 7.5556 | 1836 | 0.6468 | 0.3771 | 0.6468 | 0.8043 | | 0.0692 | 7.5638 | 1838 | 0.6428 | 0.3771 | 0.6428 | 0.8018 | | 0.0692 | 7.5720 | 1840 | 0.6488 | 0.3771 | 0.6488 | 0.8055 | | 0.0692 | 7.5802 | 1842 | 0.6507 | 0.3771 | 0.6507 | 0.8067 | | 0.0692 | 7.5885 | 1844 | 0.6520 | 0.3771 | 0.6520 | 0.8075 | | 0.0692 | 7.5967 | 1846 | 0.6585 | 0.3771 | 0.6585 | 0.8115 | | 0.0692 | 7.6049 | 1848 | 0.6589 | 0.3771 | 0.6589 | 0.8117 | | 0.0692 | 7.6132 | 1850 | 0.6589 | 0.3771 | 0.6589 | 0.8117 | | 0.0692 | 7.6214 | 1852 | 0.6684 | 0.2355 | 0.6684 | 0.8175 | | 0.0692 | 7.6296 | 1854 | 0.6832 | 0.2355 | 0.6832 | 0.8265 | | 0.0692 | 7.6379 | 1856 | 0.7081 | 0.3333 | 0.7081 | 0.8415 | | 0.0692 | 7.6461 | 1858 | 0.7205 | 0.2846 | 0.7205 | 0.8488 | | 0.0692 | 7.6543 | 1860 | 0.7250 | 0.2846 | 0.7250 | 0.8515 | | 0.0692 | 7.6626 | 1862 | 0.7194 | 0.2846 | 0.7194 | 0.8482 | | 0.0692 | 7.6708 | 1864 | 0.7073 | 0.3333 | 0.7073 | 0.8410 | | 0.0692 | 7.6790 | 1866 | 0.6927 | 0.2355 | 0.6927 | 0.8323 | | 0.0692 | 7.6872 | 1868 | 0.6672 | 0.2355 | 0.6672 | 0.8168 | | 0.0692 | 7.6955 | 1870 | 0.6434 | 0.3724 | 0.6434 | 0.8022 | | 0.0692 | 7.7037 | 1872 | 0.6320 | 0.3724 | 0.6320 | 0.7950 | | 0.0692 | 7.7119 | 1874 | 0.6248 | 0.3318 | 0.6248 | 0.7905 | | 0.0692 | 7.7202 | 1876 | 0.6213 | 0.3318 | 0.6213 | 0.7882 | | 0.0692 | 7.7284 | 1878 | 0.6196 | 0.3318 | 0.6196 | 0.7871 | | 0.0692 | 7.7366 | 1880 | 0.6225 | 0.3318 | 0.6225 | 0.7890 | | 0.0692 | 7.7449 | 1882 | 0.6360 | 0.3724 | 0.6360 | 0.7975 | | 0.0692 | 7.7531 | 1884 | 0.6573 | 0.3724 | 0.6573 | 0.8108 | | 0.0692 | 7.7613 | 1886 | 0.6798 | 0.3724 | 0.6798 | 0.8245 | | 0.0692 | 7.7695 | 1888 | 0.6981 | 0.3771 | 0.6981 | 0.8355 | | 0.0692 | 7.7778 | 1890 | 0.7134 | 0.2355 | 0.7134 | 0.8446 | | 0.0692 | 7.7860 | 1892 | 0.7096 | 0.2355 | 0.7096 | 0.8424 | | 0.0692 | 7.7942 | 1894 | 0.6947 | 0.2355 | 0.6947 | 0.8335 | | 0.0692 | 7.8025 | 1896 | 0.6689 | 0.2186 | 0.6689 | 0.8179 | | 0.0692 | 7.8107 | 1898 | 0.6435 | 0.3724 | 0.6435 | 0.8022 | | 0.0692 | 7.8189 | 1900 | 0.6295 | 0.3724 | 0.6295 | 0.7934 | | 0.0692 | 7.8272 | 1902 | 0.6151 | 0.3724 | 0.6151 | 0.7843 | | 0.0692 | 7.8354 | 1904 | 0.6045 | 0.3724 | 0.6045 | 0.7775 | | 0.0692 | 7.8436 | 1906 | 0.5975 | 0.3724 | 0.5975 | 0.7730 | | 0.0692 | 7.8519 | 1908 | 0.5937 | 0.3724 | 0.5937 | 0.7705 | | 0.0692 | 7.8601 | 1910 | 0.5954 | 0.3724 | 0.5954 | 0.7716 | | 0.0692 | 7.8683 | 1912 | 0.5982 | 0.3724 | 0.5982 | 0.7735 | | 0.0692 | 7.8765 | 1914 | 0.6021 | 0.3724 | 0.6021 | 0.7759 | | 0.0692 | 7.8848 | 1916 | 0.6086 | 0.3724 | 0.6086 | 0.7802 | | 0.0692 | 7.8930 | 1918 | 0.6219 | 0.3724 | 0.6219 | 0.7886 | | 0.0692 | 7.9012 | 1920 | 0.6473 | 0.3771 | 0.6473 | 0.8046 | | 0.0692 | 7.9095 | 1922 | 0.6686 | 0.3771 | 0.6686 | 0.8177 | | 0.0692 | 7.9177 | 1924 | 0.6928 | 0.3811 | 0.6928 | 0.8324 | | 0.0692 | 7.9259 | 1926 | 0.7079 | 0.4615 | 0.7079 | 0.8413 | | 0.0692 | 7.9342 | 1928 | 0.7041 | 0.3811 | 0.7041 | 0.8391 | | 0.0692 | 7.9424 | 1930 | 0.6896 | 0.3811 | 0.6896 | 0.8304 | | 0.0692 | 7.9506 | 1932 | 0.6779 | 0.3771 | 0.6779 | 0.8234 | | 0.0692 | 7.9588 | 1934 | 0.6610 | 0.3771 | 0.6610 | 0.8130 | | 0.0692 | 7.9671 | 1936 | 0.6406 | 0.3724 | 0.6406 | 0.8004 | | 0.0692 | 7.9753 | 1938 | 0.6288 | 0.3318 | 0.6288 | 0.7930 | | 0.0692 | 7.9835 | 1940 | 0.6253 | 0.3318 | 0.6253 | 0.7907 | | 0.0692 | 7.9918 | 1942 | 0.6240 | 0.3318 | 0.6240 | 0.7899 | | 0.0692 | 8.0 | 1944 | 0.6227 | 0.3318 | 0.6227 | 0.7891 | | 0.0692 | 8.0082 | 1946 | 0.6165 | 0.3318 | 0.6165 | 0.7852 | | 0.0692 | 8.0165 | 1948 | 0.6127 | 0.3724 | 0.6127 | 0.7827 | | 0.0692 | 8.0247 | 1950 | 0.6124 | 0.3724 | 0.6124 | 0.7826 | | 0.0692 | 8.0329 | 1952 | 0.6120 | 0.3724 | 0.6120 | 0.7823 | | 0.0692 | 8.0412 | 1954 | 0.6186 | 0.3724 | 0.6186 | 0.7865 | | 0.0692 | 8.0494 | 1956 | 0.6321 | 0.3724 | 0.6321 | 0.7950 | | 0.0692 | 8.0576 | 1958 | 0.6434 | 0.3724 | 0.6434 | 0.8021 | | 0.0692 | 8.0658 | 1960 | 0.6600 | 0.3771 | 0.6600 | 0.8124 | | 0.0692 | 8.0741 | 1962 | 0.6698 | 0.2355 | 0.6698 | 0.8184 | | 0.0692 | 8.0823 | 1964 | 0.6623 | 0.3771 | 0.6623 | 0.8138 | | 0.0692 | 8.0905 | 1966 | 0.6544 | 0.3724 | 0.6544 | 0.8089 | | 0.0692 | 8.0988 | 1968 | 0.6476 | 0.3724 | 0.6476 | 0.8047 | | 0.0692 | 8.1070 | 1970 | 0.6421 | 0.3724 | 0.6421 | 0.8013 | | 0.0692 | 8.1152 | 1972 | 0.6377 | 0.3724 | 0.6377 | 0.7985 | | 0.0692 | 8.1235 | 1974 | 0.6314 | 0.3318 | 0.6314 | 0.7946 | | 0.0692 | 8.1317 | 1976 | 0.6277 | 0.3318 | 0.6277 | 0.7923 | | 0.0692 | 8.1399 | 1978 | 0.6263 | 0.3318 | 0.6263 | 0.7914 | | 0.0692 | 8.1481 | 1980 | 0.6240 | 0.3318 | 0.6240 | 0.7900 | | 0.0692 | 8.1564 | 1982 | 0.6229 | 0.3318 | 0.6229 | 0.7892 | | 0.0692 | 8.1646 | 1984 | 0.6233 | 0.3318 | 0.6233 | 0.7895 | | 0.0692 | 8.1728 | 1986 | 0.6248 | 0.3318 | 0.6248 | 0.7905 | | 0.0692 | 8.1811 | 1988 | 0.6294 | 0.3724 | 0.6294 | 0.7934 | | 0.0692 | 8.1893 | 1990 | 0.6369 | 0.3724 | 0.6369 | 0.7981 | | 0.0692 | 8.1975 | 1992 | 0.6457 | 0.3724 | 0.6457 | 0.8035 | | 0.0692 | 8.2058 | 1994 | 0.6554 | 0.2355 | 0.6554 | 0.8096 | | 0.0692 | 8.2140 | 1996 | 0.6601 | 0.2355 | 0.6601 | 0.8125 | | 0.0692 | 8.2222 | 1998 | 0.6605 | 0.2355 | 0.6605 | 0.8127 | | 0.049 | 8.2305 | 2000 | 0.6565 | 0.2355 | 0.6565 | 0.8102 | | 0.049 | 8.2387 | 2002 | 0.6439 | 0.2355 | 0.6439 | 0.8024 | | 0.049 | 8.2469 | 2004 | 0.6288 | 0.3724 | 0.6288 | 0.7930 | | 0.049 | 8.2551 | 2006 | 0.6161 | 0.3724 | 0.6161 | 0.7849 | | 0.049 | 8.2634 | 2008 | 0.6110 | 0.3724 | 0.6110 | 0.7816 | | 0.049 | 8.2716 | 2010 | 0.6071 | 0.3318 | 0.6071 | 0.7792 | | 0.049 | 8.2798 | 2012 | 0.6065 | 0.3318 | 0.6065 | 0.7788 | | 0.049 | 8.2881 | 2014 | 0.6065 | 0.3318 | 0.6065 | 0.7788 | | 0.049 | 8.2963 | 2016 | 0.6070 | 0.3318 | 0.6070 | 0.7791 | | 0.049 | 8.3045 | 2018 | 0.6090 | 0.3318 | 0.6090 | 0.7804 | | 0.049 | 8.3128 | 2020 | 0.6126 | 0.3724 | 0.6126 | 0.7827 | | 0.049 | 8.3210 | 2022 | 0.6177 | 0.3724 | 0.6177 | 0.7859 | | 0.049 | 8.3292 | 2024 | 0.6258 | 0.3724 | 0.6258 | 0.7911 | | 0.049 | 8.3374 | 2026 | 0.6331 | 0.3724 | 0.6331 | 0.7957 | | 0.049 | 8.3457 | 2028 | 0.6384 | 0.3724 | 0.6384 | 0.7990 | | 0.049 | 8.3539 | 2030 | 0.6449 | 0.3724 | 0.6449 | 0.8031 | | 0.049 | 8.3621 | 2032 | 0.6463 | 0.3724 | 0.6463 | 0.8039 | | 0.049 | 8.3704 | 2034 | 0.6405 | 0.3724 | 0.6405 | 0.8003 | | 0.049 | 8.3786 | 2036 | 0.6380 | 0.3724 | 0.6380 | 0.7987 | | 0.049 | 8.3868 | 2038 | 0.6386 | 0.3724 | 0.6386 | 0.7992 | | 0.049 | 8.3951 | 2040 | 0.6387 | 0.3724 | 0.6387 | 0.7992 | | 0.049 | 8.4033 | 2042 | 0.6349 | 0.3724 | 0.6349 | 0.7968 | | 0.049 | 8.4115 | 2044 | 0.6330 | 0.3724 | 0.6330 | 0.7956 | | 0.049 | 8.4198 | 2046 | 0.6300 | 0.3724 | 0.6300 | 0.7937 | | 0.049 | 8.4280 | 2048 | 0.6275 | 0.3724 | 0.6275 | 0.7922 | | 0.049 | 8.4362 | 2050 | 0.6270 | 0.3724 | 0.6270 | 0.7918 | | 0.049 | 8.4444 | 2052 | 0.6259 | 0.3724 | 0.6259 | 0.7911 | | 0.049 | 8.4527 | 2054 | 0.6310 | 0.3724 | 0.6310 | 0.7944 | | 0.049 | 8.4609 | 2056 | 0.6363 | 0.3771 | 0.6363 | 0.7977 | | 0.049 | 8.4691 | 2058 | 0.6430 | 0.3771 | 0.6430 | 0.8019 | | 0.049 | 8.4774 | 2060 | 0.6499 | 0.3771 | 0.6499 | 0.8062 | | 0.049 | 8.4856 | 2062 | 0.6491 | 0.3771 | 0.6491 | 0.8056 | | 0.049 | 8.4938 | 2064 | 0.6505 | 0.3771 | 0.6505 | 0.8065 | | 0.049 | 8.5021 | 2066 | 0.6514 | 0.3771 | 0.6514 | 0.8071 | | 0.049 | 8.5103 | 2068 | 0.6522 | 0.3771 | 0.6522 | 0.8076 | | 0.049 | 8.5185 | 2070 | 0.6528 | 0.3771 | 0.6528 | 0.8079 | | 0.049 | 8.5267 | 2072 | 0.6535 | 0.3771 | 0.6535 | 0.8084 | | 0.049 | 8.5350 | 2074 | 0.6525 | 0.3771 | 0.6525 | 0.8078 | | 0.049 | 8.5432 | 2076 | 0.6489 | 0.3771 | 0.6489 | 0.8056 | | 0.049 | 8.5514 | 2078 | 0.6478 | 0.3771 | 0.6478 | 0.8048 | | 0.049 | 8.5597 | 2080 | 0.6491 | 0.3771 | 0.6491 | 0.8057 | | 0.049 | 8.5679 | 2082 | 0.6485 | 0.3771 | 0.6485 | 0.8053 | | 0.049 | 8.5761 | 2084 | 0.6435 | 0.3771 | 0.6435 | 0.8022 | | 0.049 | 8.5844 | 2086 | 0.6410 | 0.3771 | 0.6410 | 0.8006 | | 0.049 | 8.5926 | 2088 | 0.6415 | 0.3771 | 0.6415 | 0.8009 | | 0.049 | 8.6008 | 2090 | 0.6361 | 0.3771 | 0.6361 | 0.7976 | | 0.049 | 8.6091 | 2092 | 0.6311 | 0.3724 | 0.6311 | 0.7944 | | 0.049 | 8.6173 | 2094 | 0.6297 | 0.3724 | 0.6297 | 0.7935 | | 0.049 | 8.6255 | 2096 | 0.6302 | 0.3724 | 0.6302 | 0.7938 | | 0.049 | 8.6337 | 2098 | 0.6291 | 0.3724 | 0.6291 | 0.7931 | | 0.049 | 8.6420 | 2100 | 0.6286 | 0.3771 | 0.6286 | 0.7928 | | 0.049 | 8.6502 | 2102 | 0.6291 | 0.3771 | 0.6291 | 0.7932 | | 0.049 | 8.6584 | 2104 | 0.6278 | 0.3771 | 0.6278 | 0.7923 | | 0.049 | 8.6667 | 2106 | 0.6239 | 0.3771 | 0.6239 | 0.7899 | | 0.049 | 8.6749 | 2108 | 0.6212 | 0.3724 | 0.6212 | 0.7882 | | 0.049 | 8.6831 | 2110 | 0.6200 | 0.3724 | 0.6200 | 0.7874 | | 0.049 | 8.6914 | 2112 | 0.6194 | 0.3724 | 0.6194 | 0.7870 | | 0.049 | 8.6996 | 2114 | 0.6191 | 0.3724 | 0.6191 | 0.7868 | | 0.049 | 8.7078 | 2116 | 0.6220 | 0.3724 | 0.6220 | 0.7886 | | 0.049 | 8.7160 | 2118 | 0.6242 | 0.3724 | 0.6242 | 0.7901 | | 0.049 | 8.7243 | 2120 | 0.6277 | 0.3771 | 0.6277 | 0.7923 | | 0.049 | 8.7325 | 2122 | 0.6324 | 0.3771 | 0.6324 | 0.7952 | | 0.049 | 8.7407 | 2124 | 0.6402 | 0.3771 | 0.6402 | 0.8001 | | 0.049 | 8.7490 | 2126 | 0.6490 | 0.3771 | 0.6490 | 0.8056 | | 0.049 | 8.7572 | 2128 | 0.6551 | 0.3771 | 0.6551 | 0.8094 | | 0.049 | 8.7654 | 2130 | 0.6629 | 0.3811 | 0.6629 | 0.8142 | | 0.049 | 8.7737 | 2132 | 0.6697 | 0.25 | 0.6697 | 0.8184 | | 0.049 | 8.7819 | 2134 | 0.6754 | 0.25 | 0.6754 | 0.8218 | | 0.049 | 8.7901 | 2136 | 0.6786 | 0.25 | 0.6786 | 0.8237 | | 0.049 | 8.7984 | 2138 | 0.6735 | 0.25 | 0.6735 | 0.8207 | | 0.049 | 8.8066 | 2140 | 0.6687 | 0.3811 | 0.6687 | 0.8178 | | 0.049 | 8.8148 | 2142 | 0.6623 | 0.3811 | 0.6623 | 0.8138 | | 0.049 | 8.8230 | 2144 | 0.6538 | 0.3771 | 0.6538 | 0.8086 | | 0.049 | 8.8313 | 2146 | 0.6508 | 0.3771 | 0.6508 | 0.8067 | | 0.049 | 8.8395 | 2148 | 0.6494 | 0.3771 | 0.6494 | 0.8059 | | 0.049 | 8.8477 | 2150 | 0.6483 | 0.3771 | 0.6483 | 0.8052 | | 0.049 | 8.8560 | 2152 | 0.6490 | 0.3771 | 0.6490 | 0.8056 | | 0.049 | 8.8642 | 2154 | 0.6531 | 0.3771 | 0.6531 | 0.8082 | | 0.049 | 8.8724 | 2156 | 0.6534 | 0.3771 | 0.6534 | 0.8084 | | 0.049 | 8.8807 | 2158 | 0.6536 | 0.3771 | 0.6536 | 0.8085 | | 0.049 | 8.8889 | 2160 | 0.6551 | 0.3771 | 0.6551 | 0.8094 | | 0.049 | 8.8971 | 2162 | 0.6585 | 0.3771 | 0.6585 | 0.8115 | | 0.049 | 8.9053 | 2164 | 0.6636 | 0.3771 | 0.6636 | 0.8146 | | 0.049 | 8.9136 | 2166 | 0.6703 | 0.3811 | 0.6703 | 0.8187 | | 0.049 | 8.9218 | 2168 | 0.6764 | 0.25 | 0.6764 | 0.8224 | | 0.049 | 8.9300 | 2170 | 0.6813 | 0.25 | 0.6813 | 0.8254 | | 0.049 | 8.9383 | 2172 | 0.6770 | 0.25 | 0.6770 | 0.8228 | | 0.049 | 8.9465 | 2174 | 0.6734 | 0.25 | 0.6734 | 0.8206 | | 0.049 | 8.9547 | 2176 | 0.6623 | 0.3771 | 0.6623 | 0.8138 | | 0.049 | 8.9630 | 2178 | 0.6515 | 0.3771 | 0.6515 | 0.8071 | | 0.049 | 8.9712 | 2180 | 0.6446 | 0.3771 | 0.6446 | 0.8029 | | 0.049 | 8.9794 | 2182 | 0.6384 | 0.3771 | 0.6384 | 0.7990 | | 0.049 | 8.9877 | 2184 | 0.6327 | 0.3771 | 0.6327 | 0.7954 | | 0.049 | 8.9959 | 2186 | 0.6299 | 0.3771 | 0.6299 | 0.7937 | | 0.049 | 9.0041 | 2188 | 0.6287 | 0.3771 | 0.6287 | 0.7929 | | 0.049 | 9.0123 | 2190 | 0.6276 | 0.3771 | 0.6276 | 0.7922 | | 0.049 | 9.0206 | 2192 | 0.6292 | 0.3771 | 0.6292 | 0.7932 | | 0.049 | 9.0288 | 2194 | 0.6322 | 0.3771 | 0.6322 | 0.7951 | | 0.049 | 9.0370 | 2196 | 0.6348 | 0.3771 | 0.6348 | 0.7967 | | 0.049 | 9.0453 | 2198 | 0.6341 | 0.3771 | 0.6341 | 0.7963 | | 0.049 | 9.0535 | 2200 | 0.6337 | 0.3771 | 0.6337 | 0.7960 | | 0.049 | 9.0617 | 2202 | 0.6330 | 0.3771 | 0.6330 | 0.7956 | | 0.049 | 9.0700 | 2204 | 0.6337 | 0.3771 | 0.6337 | 0.7960 | | 0.049 | 9.0782 | 2206 | 0.6353 | 0.3771 | 0.6353 | 0.7970 | | 0.049 | 9.0864 | 2208 | 0.6354 | 0.3771 | 0.6354 | 0.7971 | | 0.049 | 9.0947 | 2210 | 0.6340 | 0.3771 | 0.6340 | 0.7962 | | 0.049 | 9.1029 | 2212 | 0.6323 | 0.3771 | 0.6323 | 0.7952 | | 0.049 | 9.1111 | 2214 | 0.6307 | 0.3771 | 0.6307 | 0.7942 | | 0.049 | 9.1193 | 2216 | 0.6310 | 0.3771 | 0.6310 | 0.7944 | | 0.049 | 9.1276 | 2218 | 0.6330 | 0.3771 | 0.6330 | 0.7956 | | 0.049 | 9.1358 | 2220 | 0.6362 | 0.3771 | 0.6362 | 0.7976 | | 0.049 | 9.1440 | 2222 | 0.6371 | 0.3771 | 0.6371 | 0.7982 | | 0.049 | 9.1523 | 2224 | 0.6375 | 0.2355 | 0.6375 | 0.7984 | | 0.049 | 9.1605 | 2226 | 0.6362 | 0.2355 | 0.6362 | 0.7976 | | 0.049 | 9.1687 | 2228 | 0.6317 | 0.3771 | 0.6317 | 0.7948 | | 0.049 | 9.1770 | 2230 | 0.6271 | 0.3771 | 0.6271 | 0.7919 | | 0.049 | 9.1852 | 2232 | 0.6244 | 0.3771 | 0.6244 | 0.7902 | | 0.049 | 9.1934 | 2234 | 0.6226 | 0.3771 | 0.6226 | 0.7891 | | 0.049 | 9.2016 | 2236 | 0.6229 | 0.3771 | 0.6229 | 0.7893 | | 0.049 | 9.2099 | 2238 | 0.6242 | 0.3771 | 0.6242 | 0.7901 | | 0.049 | 9.2181 | 2240 | 0.6268 | 0.3771 | 0.6268 | 0.7917 | | 0.049 | 9.2263 | 2242 | 0.6308 | 0.2355 | 0.6308 | 0.7942 | | 0.049 | 9.2346 | 2244 | 0.6343 | 0.2355 | 0.6343 | 0.7964 | | 0.049 | 9.2428 | 2246 | 0.6362 | 0.2355 | 0.6362 | 0.7977 | | 0.049 | 9.2510 | 2248 | 0.6356 | 0.3771 | 0.6356 | 0.7973 | | 0.049 | 9.2593 | 2250 | 0.6348 | 0.3771 | 0.6348 | 0.7967 | | 0.049 | 9.2675 | 2252 | 0.6353 | 0.3771 | 0.6353 | 0.7971 | | 0.049 | 9.2757 | 2254 | 0.6365 | 0.3771 | 0.6365 | 0.7978 | | 0.049 | 9.2840 | 2256 | 0.6386 | 0.3771 | 0.6386 | 0.7991 | | 0.049 | 9.2922 | 2258 | 0.6411 | 0.3771 | 0.6411 | 0.8007 | | 0.049 | 9.3004 | 2260 | 0.6432 | 0.3771 | 0.6432 | 0.8020 | | 0.049 | 9.3086 | 2262 | 0.6466 | 0.3771 | 0.6466 | 0.8041 | | 0.049 | 9.3169 | 2264 | 0.6496 | 0.2355 | 0.6496 | 0.8060 | | 0.049 | 9.3251 | 2266 | 0.6533 | 0.2355 | 0.6533 | 0.8083 | | 0.049 | 9.3333 | 2268 | 0.6567 | 0.2355 | 0.6567 | 0.8104 | | 0.049 | 9.3416 | 2270 | 0.6590 | 0.2355 | 0.6590 | 0.8118 | | 0.049 | 9.3498 | 2272 | 0.6598 | 0.2355 | 0.6598 | 0.8123 | | 0.049 | 9.3580 | 2274 | 0.6620 | 0.2355 | 0.6620 | 0.8136 | | 0.049 | 9.3663 | 2276 | 0.6626 | 0.2355 | 0.6626 | 0.8140 | | 0.049 | 9.3745 | 2278 | 0.6644 | 0.2355 | 0.6644 | 0.8151 | | 0.049 | 9.3827 | 2280 | 0.6670 | 0.2355 | 0.6670 | 0.8167 | | 0.049 | 9.3909 | 2282 | 0.6688 | 0.2355 | 0.6688 | 0.8178 | | 0.049 | 9.3992 | 2284 | 0.6715 | 0.2355 | 0.6715 | 0.8195 | | 0.049 | 9.4074 | 2286 | 0.6731 | 0.2355 | 0.6731 | 0.8204 | | 0.049 | 9.4156 | 2288 | 0.6725 | 0.2355 | 0.6725 | 0.8200 | | 0.049 | 9.4239 | 2290 | 0.6693 | 0.2355 | 0.6693 | 0.8181 | | 0.049 | 9.4321 | 2292 | 0.6665 | 0.2355 | 0.6665 | 0.8164 | | 0.049 | 9.4403 | 2294 | 0.6625 | 0.2355 | 0.6625 | 0.8140 | | 0.049 | 9.4486 | 2296 | 0.6584 | 0.2355 | 0.6584 | 0.8114 | | 0.049 | 9.4568 | 2298 | 0.6572 | 0.2355 | 0.6572 | 0.8107 | | 0.049 | 9.4650 | 2300 | 0.6573 | 0.2355 | 0.6573 | 0.8108 | | 0.049 | 9.4733 | 2302 | 0.6573 | 0.2355 | 0.6573 | 0.8107 | | 0.049 | 9.4815 | 2304 | 0.6582 | 0.2355 | 0.6582 | 0.8113 | | 0.049 | 9.4897 | 2306 | 0.6596 | 0.2355 | 0.6596 | 0.8122 | | 0.049 | 9.4979 | 2308 | 0.6603 | 0.2355 | 0.6603 | 0.8126 | | 0.049 | 9.5062 | 2310 | 0.6614 | 0.2355 | 0.6614 | 0.8133 | | 0.049 | 9.5144 | 2312 | 0.6614 | 0.2355 | 0.6614 | 0.8133 | | 0.049 | 9.5226 | 2314 | 0.6610 | 0.2355 | 0.6610 | 0.8130 | | 0.049 | 9.5309 | 2316 | 0.6613 | 0.2355 | 0.6613 | 0.8132 | | 0.049 | 9.5391 | 2318 | 0.6608 | 0.2355 | 0.6608 | 0.8129 | | 0.049 | 9.5473 | 2320 | 0.6601 | 0.2355 | 0.6601 | 0.8124 | | 0.049 | 9.5556 | 2322 | 0.6588 | 0.2355 | 0.6588 | 0.8117 | | 0.049 | 9.5638 | 2324 | 0.6564 | 0.2355 | 0.6564 | 0.8102 | | 0.049 | 9.5720 | 2326 | 0.6540 | 0.2355 | 0.6540 | 0.8087 | | 0.049 | 9.5802 | 2328 | 0.6524 | 0.2355 | 0.6524 | 0.8077 | | 0.049 | 9.5885 | 2330 | 0.6524 | 0.2355 | 0.6524 | 0.8077 | | 0.049 | 9.5967 | 2332 | 0.6513 | 0.3771 | 0.6513 | 0.8070 | | 0.049 | 9.6049 | 2334 | 0.6504 | 0.3771 | 0.6504 | 0.8065 | | 0.049 | 9.6132 | 2336 | 0.6489 | 0.3771 | 0.6489 | 0.8055 | | 0.049 | 9.6214 | 2338 | 0.6471 | 0.3771 | 0.6471 | 0.8044 | | 0.049 | 9.6296 | 2340 | 0.6455 | 0.3771 | 0.6455 | 0.8034 | | 0.049 | 9.6379 | 2342 | 0.6439 | 0.3771 | 0.6439 | 0.8024 | | 0.049 | 9.6461 | 2344 | 0.6426 | 0.3771 | 0.6426 | 0.8016 | | 0.049 | 9.6543 | 2346 | 0.6421 | 0.3771 | 0.6421 | 0.8013 | | 0.049 | 9.6626 | 2348 | 0.6419 | 0.3396 | 0.6419 | 0.8012 | | 0.049 | 9.6708 | 2350 | 0.6421 | 0.3771 | 0.6421 | 0.8013 | | 0.049 | 9.6790 | 2352 | 0.6414 | 0.3771 | 0.6414 | 0.8009 | | 0.049 | 9.6872 | 2354 | 0.6410 | 0.3771 | 0.6410 | 0.8006 | | 0.049 | 9.6955 | 2356 | 0.6405 | 0.3771 | 0.6405 | 0.8003 | | 0.049 | 9.7037 | 2358 | 0.6402 | 0.3771 | 0.6402 | 0.8001 | | 0.049 | 9.7119 | 2360 | 0.6400 | 0.3771 | 0.6400 | 0.8000 | | 0.049 | 9.7202 | 2362 | 0.6402 | 0.3771 | 0.6402 | 0.8001 | | 0.049 | 9.7284 | 2364 | 0.6404 | 0.3771 | 0.6404 | 0.8003 | | 0.049 | 9.7366 | 2366 | 0.6406 | 0.3771 | 0.6406 | 0.8004 | | 0.049 | 9.7449 | 2368 | 0.6408 | 0.3771 | 0.6408 | 0.8005 | | 0.049 | 9.7531 | 2370 | 0.6414 | 0.3771 | 0.6414 | 0.8008 | | 0.049 | 9.7613 | 2372 | 0.6420 | 0.3771 | 0.6420 | 0.8013 | | 0.049 | 9.7695 | 2374 | 0.6425 | 0.3771 | 0.6425 | 0.8016 | | 0.049 | 9.7778 | 2376 | 0.6432 | 0.3771 | 0.6432 | 0.8020 | | 0.049 | 9.7860 | 2378 | 0.6438 | 0.3771 | 0.6438 | 0.8024 | | 0.049 | 9.7942 | 2380 | 0.6444 | 0.3771 | 0.6444 | 0.8027 | | 0.049 | 9.8025 | 2382 | 0.6450 | 0.3771 | 0.6450 | 0.8031 | | 0.049 | 9.8107 | 2384 | 0.6448 | 0.3771 | 0.6448 | 0.8030 | | 0.049 | 9.8189 | 2386 | 0.6444 | 0.3771 | 0.6444 | 0.8027 | | 0.049 | 9.8272 | 2388 | 0.6439 | 0.3771 | 0.6439 | 0.8025 | | 0.049 | 9.8354 | 2390 | 0.6433 | 0.3771 | 0.6433 | 0.8021 | | 0.049 | 9.8436 | 2392 | 0.6433 | 0.3771 | 0.6433 | 0.8020 | | 0.049 | 9.8519 | 2394 | 0.6430 | 0.3771 | 0.6430 | 0.8019 | | 0.049 | 9.8601 | 2396 | 0.6428 | 0.3771 | 0.6428 | 0.8018 | | 0.049 | 9.8683 | 2398 | 0.6428 | 0.3771 | 0.6428 | 0.8018 | | 0.049 | 9.8765 | 2400 | 0.6432 | 0.3771 | 0.6432 | 0.8020 | | 0.049 | 9.8848 | 2402 | 0.6432 | 0.3771 | 0.6432 | 0.8020 | | 0.049 | 9.8930 | 2404 | 0.6433 | 0.3771 | 0.6433 | 0.8020 | | 0.049 | 9.9012 | 2406 | 0.6436 | 0.3771 | 0.6436 | 0.8023 | | 0.049 | 9.9095 | 2408 | 0.6437 | 0.3771 | 0.6437 | 0.8023 | | 0.049 | 9.9177 | 2410 | 0.6438 | 0.3771 | 0.6438 | 0.8023 | | 0.049 | 9.9259 | 2412 | 0.6436 | 0.3771 | 0.6436 | 0.8023 | | 0.049 | 9.9342 | 2414 | 0.6437 | 0.3771 | 0.6437 | 0.8023 | | 0.049 | 9.9424 | 2416 | 0.6437 | 0.3771 | 0.6437 | 0.8023 | | 0.049 | 9.9506 | 2418 | 0.6439 | 0.3771 | 0.6439 | 0.8024 | | 0.049 | 9.9588 | 2420 | 0.6439 | 0.3771 | 0.6439 | 0.8024 | | 0.049 | 9.9671 | 2422 | 0.6439 | 0.3771 | 0.6439 | 0.8024 | | 0.049 | 9.9753 | 2424 | 0.6438 | 0.3771 | 0.6438 | 0.8024 | | 0.049 | 9.9835 | 2426 | 0.6438 | 0.3771 | 0.6438 | 0.8023 | | 0.049 | 9.9918 | 2428 | 0.6437 | 0.3771 | 0.6437 | 0.8023 | | 0.049 | 10.0 | 2430 | 0.6437 | 0.3771 | 0.6437 | 0.8023 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
DoeyLLM/OneLLM-Doey-ChatQA-V1-Llama-3.2-1B
DoeyLLM
2024-11-25T07:17:32Z
89
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "dataset:nvidia/ChatQA-Training-Data", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T05:02:44Z
--- license: apache-2.0 datasets: - nvidia/ChatQA-Training-Data language: - en base_model: - meta-llama/Llama-3.2-1B-Instruct pipeline_tag: text-generation library_name: transformers --- ## **Model Summary** This model is a fine-tuned version of **LLaMA 3.2-1B**, optimized using **LoRA (Low-Rank Adaptation)** on the [NVIDIA ChatQA-Training-Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data). It is tailored for conversational AI, question answering, and other instruction-following tasks, with support for sequences up to 1024 tokens. --- ## **Key Features** - **Base Model**: LLaMA 3.2-1B - **Fine-Tuning Framework**: LoRA - **Dataset**: NVIDIA ChatQA-Training-Data - **Max Sequence Length**: 1024 tokens - **Use Case**: Instruction-based tasks, question answering, conversational AI. ## **Model Usage** This fine-tuned model is suitable for: - **Conversational AI**: Chatbots and dialogue agents with improved contextual understanding. - **Question Answering**: Generating concise and accurate answers to user queries. - **Instruction Following**: Responding to structured prompts. - **Long-Context Tasks**: Processing sequences up to 1024 tokens for long-text reasoning. # **How to Use DoeyLLM / OneLLM-Doey-V1-Llama-3.2-1B-Instruct** This guide explains how to use the **DoeyLLM** model on both app (iOS) and PC platforms. --- ## **App: Use with OneLLM** OneLLM brings versatile large language models (LLMs) to your deviceโ€”Llama, Gemma, Qwen, Mistral, and more. Enjoy private, offline GPT and AI tools tailored to your needs. With OneLLM, experience the capabilities of leading-edge language models directly on your device, all without an internet connection. Get fast, reliable, and intelligent responses, while keeping your data secure with local processing. ### **Quick Start for mobile** ![OneLLM](./OneLLM.png) Follow these steps to integrate the **DoeyLLM** model using the OneLLM app: 1. **Download OneLLM** Get the app from the [App Store](https://apps.apple.com/us/app/onellm-private-ai-gpt-llm/id6737907910) and install it on your iOS device. Or get the app from the [Play Store](https://play.google.com/store/apps/details?id=com.esotech.onellm) and install it on your Android device. 3. **Load the DoeyLLM Model** Use the OneLLM interface to load the DoeyLLM model directly into the app: - Navigate to the **Model Library**. - Search for `DoeyLLM`. - Select the model and tap **Download** to store it locally on your device. 4. **Start Conversing** Once the model is loaded, you can begin interacting with it through the app's chat interface. For example: - Tap the **Chat** tab. - Type your question or prompt, such as: > "Explain the significance of AI in education." - Receive real-time, intelligent responses generated locally. ### **Key Features of OneLLM** - **Versatile Models**: Supports various LLMs, including Llama, Gemma, and Qwen. - **Private & Secure**: All processing occurs locally on your device, ensuring data privacy. - **Offline Capability**: Use the app without requiring an internet connection. - **Fast Performance**: Optimized for mobile devices, delivering low-latency responses. For more details or support, visit the [OneLLM App Store page](https://apps.apple.com/us/app/onellm-private-ai-gpt-llm/id6737907910) and [Play Store](https://play.google.com/store/apps/details?id=com.esotech.onellm). ## **PC: Use with Transformers** The DoeyLLM model can also be used on PC platforms through the `transformers` library, enabling robust and scalable inference for various NLP tasks. ### **Quick Start for PC** Follow these steps to use the model with Transformers: 1. **Install Transformers** Ensure you have `transformers >= 4.43.0` installed. Update or install it via pip: ```bash pip install --upgrade transformers 2. **Load the Model** Use the transformers library to load the model and tokenizer: Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import torch from transformers import pipeline model_id = "OneLLM-Doey-V1-Llama-3.2-1B" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` ## Responsibility & Safety As part of our responsible release strategy, we adopted a three-pronged approach to managing trust and safety risks: Enable developers to deploy helpful, safe, and flexible experiences for their target audience and the use cases supported by the model. Protect developers from adversarial users attempting to exploit the modelโ€™s capabilities to potentially cause harm. Provide safeguards for the community to help prevent the misuse of the model.
tl81092/my-drug-model
tl81092
2024-11-25T07:17:11Z
105
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T07:16:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JosephNguyen/Qwen2.5-7B-Instruct-finetuned
JosephNguyen
2024-11-25T07:12:02Z
83
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T06:36:15Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** JosephNguyen - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
xuYiLi/vit-base-patch16-224-finetuned-flower
xuYiLi
2024-11-25T07:09:06Z
5
0
null
[ "tensorboard", "safetensors", "vit", "image-classification", "pytorch", "huggingpics", "model-index", "region:us" ]
image-classification
2024-11-25T07:08:50Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-flower results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.907216489315033 --- # vit-base-patch16-224-finetuned-flower Autogenerated by HuggingPics๐Ÿค—๐Ÿ–ผ๏ธ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### crape myrtle ![crape myrtle](images/crape_myrtle.jpg) #### iris ![iris](images/iris.jpg) #### narcissus ![narcissus](images/narcissus.jpg) #### osmanthus ![osmanthus](images/osmanthus.jpg) #### peony ![peony](images/peony.jpg)
Keltezaa/zooey-deschanel
Keltezaa
2024-11-25T07:08:38Z
10
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "migrated", "celebrity", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-25T07:08:30Z
--- license: other license_name: bespoke-lora-trained-license license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=False tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - migrated - celebrity base_model: black-forest-labs/FLUX.1-dev instance_prompt: Zooey Deschanel widget: - text: ' ' output: url: >- 28183142.jpeg - text: ' ' output: url: >- 28183139.jpeg - text: ' ' output: url: >- 28183138.jpeg - text: ' ' output: url: >- 28183140.jpeg - text: ' ' output: url: >- 28183141.jpeg - text: ' ' output: url: >- 28183143.jpeg - text: ' ' output: url: >- 28183144.jpeg - text: ' ' output: url: >- 28183145.jpeg - text: ' ' output: url: >- 28183146.jpeg - text: ' ' output: url: >- 28183147.jpeg - text: ' ' output: url: >- 28183148.jpeg - text: ' ' output: url: >- 28183150.jpeg - text: 'portrait of Zooey Deschanel shot on a Hasselblad H3D-39. she is wearing a light summer dress at the beach in Italy' output: url: >- 28184076.jpeg --- # Zooey Deschanel <Gallery /> ## Model description <p>Trained on 15 Images for 2500 Steps</p> ## Trigger words You should use `Zooey Deschanel` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/zooey-deschanel/tree/main) them in the Files & versions tab. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipeline.load_lora_weights('Keltezaa/zooey-deschanel', weight_name='Zooey_Deschanel_v1.safetensors') image = pipeline('portrait of Zooey Deschanel shot on a Hasselblad H3D-39. she is wearing a light summer dress at the beach in Italy').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
ahmedheakl/asm2asm-qwen2.5coder-0.5b-500k-2ep-tokenizer
ahmedheakl
2024-11-25T07:07:36Z
264
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:Qwen/Qwen2.5-Coder-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-23T15:01:30Z
--- base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct library_name: transformers model_name: asm2asm-qwen2.5coder-0.5b-500k-2ep-tokenizer tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for asm2asm-qwen2.5coder-0.5b-500k-2ep-tokenizer This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ahmedheakl/asm2asm-qwen2.5coder-0.5b-500k-2ep-tokenizer", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ahmed-heakl/huggingface/runs/eppp58b2) This model was trained with SFT. ### Framework versions - TRL: 0.12.1 - Transformers: 4.46.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chy2207/robot_care_8b_ver4
chy2207
2024-11-25T07:06:28Z
9
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "base_model:quantized:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T06:50:34Z
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** chy2207 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)