modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 00:42:13
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
499 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 00:40:00
card
stringlengths
11
1.01M
mradermacher/ChatML-Nemo-Pro-V2-GGUF
mradermacher
2024-11-25T16:48:12Z
14
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:win10/ChatML-Nemo-Pro-V2", "base_model:quantized:win10/ChatML-Nemo-Pro-V2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T12:24:28Z
--- base_model: win10/ChatML-Nemo-Pro-V2 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/win10/ChatML-Nemo-Pro-V2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ChatML-Nemo-Pro-V2-GGUF/resolve/main/ChatML-Nemo-Pro-V2.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF
Triangle104
2024-11-25T16:45:58Z
6
0
transformers
[ "transformers", "gguf", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "base_model:huihui-ai/Llama-3.2-3B-Instruct-abliterated", "base_model:quantized:huihui-ai/Llama-3.2-3B-Instruct-abliterated", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-17T10:06:54Z
--- library_name: transformers license: llama3.2 base_model: huihui-ai/Llama-3.2-3B-Instruct-abliterated tags: - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/Llama-3.2-3B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) for more details on the model. --- Model details: - This is an uncensored version of Llama 3.2 3B Instruct created with abliteration (see this article to know more about it). Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -c 2048 ```
furrutiav/roberta_mixtral_nllfg_rubric_qnli_sentence_embd_perplexity
furrutiav
2024-11-25T16:45:15Z
105
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-11-25T16:44:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
briannlongzhao/smile_textual_inversion
briannlongzhao
2024-11-25T16:45:11Z
8
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-10T13:23:29Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - briannlongzhao/smile_textual_inversion These are textual inversion adaption weights for stabilityai/stable-diffusion-2-1. You can find some example images in the following.
Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_S-GGUF
Triangle104
2024-11-25T16:45:10Z
9
0
transformers
[ "transformers", "gguf", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "base_model:huihui-ai/Llama-3.2-3B-Instruct-abliterated", "base_model:quantized:huihui-ai/Llama-3.2-3B-Instruct-abliterated", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-17T10:00:05Z
--- library_name: transformers license: llama3.2 base_model: huihui-ai/Llama-3.2-3B-Instruct-abliterated tags: - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/Llama-3.2-3B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) for more details on the model. --- Model details: - This is an uncensored version of Llama 3.2 3B Instruct created with abliteration (see this article to know more about it). Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_S-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_S-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_S-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_S-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_s.gguf -c 2048 ```
omarelsayeed/LayoutReader85Large
omarelsayeed
2024-11-25T16:42:42Z
137
0
transformers
[ "transformers", "safetensors", "layoutlmv3", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-25T16:42:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Triangle104/Llama-3.2-3B-Instruct-abliterated-Q4_K_S-GGUF
Triangle104
2024-11-25T16:40:44Z
14
0
transformers
[ "transformers", "gguf", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "base_model:huihui-ai/Llama-3.2-3B-Instruct-abliterated", "base_model:quantized:huihui-ai/Llama-3.2-3B-Instruct-abliterated", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-17T09:57:07Z
--- library_name: transformers license: llama3.2 base_model: huihui-ai/Llama-3.2-3B-Instruct-abliterated tags: - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Instruct-abliterated-Q4_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/Llama-3.2-3B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) for more details on the model. --- Model details: - This is an uncensored version of Llama 3.2 3B Instruct created with abliteration (see this article to know more about it). Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q4_K_S-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q4_K_S-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q4_K_S-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q4_K_S-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q4_k_s.gguf -c 2048 ```
maxg73872/biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-21-48
maxg73872
2024-11-25T16:37:26Z
162
0
transformers
[ "transformers", "safetensors", "bert", "multiple-choice", "generated_from_trainer", "base_model:dmis-lab/biobert-v1.1", "base_model:finetune:dmis-lab/biobert-v1.1", "endpoints_compatible", "region:us" ]
multiple-choice
2024-11-25T16:37:07Z
--- library_name: transformers base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-21-48 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-21-48 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0952 - Accuracy: 0.6190 - F1: 0.6142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000159 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 1.0926 | 0.9978 | 57 | 1.0952 | 0.6190 | 0.6142 | | 0.8087 | 1.9956 | 114 | 0.8597 | 0.5952 | 0.6151 | | 0.5811 | 2.9934 | 171 | 0.8742 | 0.6190 | 0.6371 | | 0.368 | 3.9912 | 228 | 1.3578 | 0.5714 | 0.5839 | | 0.1739 | 4.9891 | 285 | 1.6110 | 0.5952 | 0.6032 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Yntec/OpenLexica
Yntec
2024-11-25T16:33:44Z
368
2
diffusers
[ "diffusers", "safetensors", "anime", "art", "general", "MichaelFan", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T18:44:51Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - anime - art - general - MichaelFan - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers --- # Open Lexica Sample images and prompt: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/GZXv5Z04TLqOg3mdEoX4g.png) ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/MaM4wUtoc1dGc81sWldv-.png) Pretty Cute Girl, sitting, Detailed Chibi Eyes, holding baseball, beautiful detailed legs, baseball uniform, gorgeous detailed hair, Magazine ad, iconic, 1943, from the movie, sharp focus. visible brushstrokes ​by Kyoani and artgerm and leyendecker and Dave Rapoza Original page: https://civitai.com/models/58609/openlexica
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k25_task5_organization_fold1
MayBashendy
2024-11-25T16:31:05Z
165
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T16:19:16Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k25_task5_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k25_task5_organization_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6034 - Qwk: 0.6767 - Mse: 0.6034 - Rmse: 0.7768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0171 | 2 | 3.0073 | 0.1165 | 3.0073 | 1.7342 | | No log | 0.0342 | 4 | 1.8180 | -0.0644 | 1.8180 | 1.3483 | | No log | 0.0513 | 6 | 1.3918 | 0.2012 | 1.3918 | 1.1798 | | No log | 0.0684 | 8 | 1.1411 | 0.2049 | 1.1411 | 1.0682 | | No log | 0.0855 | 10 | 1.0850 | 0.1977 | 1.0850 | 1.0416 | | No log | 0.1026 | 12 | 0.9733 | 0.2933 | 0.9733 | 0.9866 | | No log | 0.1197 | 14 | 1.0467 | 0.1571 | 1.0467 | 1.0231 | | No log | 0.1368 | 16 | 1.1359 | 0.0614 | 1.1359 | 1.0658 | | No log | 0.1538 | 18 | 1.2224 | -0.0039 | 1.2224 | 1.1056 | | No log | 0.1709 | 20 | 1.2582 | 0.0 | 1.2582 | 1.1217 | | No log | 0.1880 | 22 | 1.2949 | 0.0 | 1.2949 | 1.1379 | | No log | 0.2051 | 24 | 1.1785 | 0.1571 | 1.1785 | 1.0856 | | No log | 0.2222 | 26 | 1.1101 | 0.1571 | 1.1102 | 1.0536 | | No log | 0.2393 | 28 | 1.1902 | 0.2279 | 1.1902 | 1.0910 | | No log | 0.2564 | 30 | 1.2669 | 0.2604 | 1.2669 | 1.1256 | | No log | 0.2735 | 32 | 1.4043 | 0.2408 | 1.4043 | 1.1850 | | No log | 0.2906 | 34 | 1.3398 | 0.2408 | 1.3398 | 1.1575 | | No log | 0.3077 | 36 | 1.0573 | 0.3195 | 1.0573 | 1.0282 | | No log | 0.3248 | 38 | 0.9570 | 0.3354 | 0.9570 | 0.9782 | | No log | 0.3419 | 40 | 0.8428 | 0.2933 | 0.8428 | 0.9180 | | No log | 0.3590 | 42 | 1.0809 | 0.1571 | 1.0809 | 1.0396 | | No log | 0.3761 | 44 | 1.3041 | 0.0809 | 1.3041 | 1.1420 | | No log | 0.3932 | 46 | 1.0454 | 0.2279 | 1.0454 | 1.0225 | | No log | 0.4103 | 48 | 0.8442 | 0.2857 | 0.8442 | 0.9188 | | No log | 0.4274 | 50 | 0.8376 | 0.4345 | 0.8376 | 0.9152 | | No log | 0.4444 | 52 | 0.8841 | 0.4345 | 0.8841 | 0.9402 | | No log | 0.4615 | 54 | 0.8991 | 0.4236 | 0.8991 | 0.9482 | | No log | 0.4786 | 56 | 0.8236 | 0.3443 | 0.8236 | 0.9075 | | No log | 0.4957 | 58 | 0.7684 | 0.2933 | 0.7684 | 0.8766 | | No log | 0.5128 | 60 | 0.7643 | 0.4020 | 0.7643 | 0.8742 | | No log | 0.5299 | 62 | 0.8211 | 0.5349 | 0.8211 | 0.9061 | | No log | 0.5470 | 64 | 0.8862 | 0.3594 | 0.8862 | 0.9414 | | No log | 0.5641 | 66 | 0.8854 | 0.3448 | 0.8854 | 0.9410 | | No log | 0.5812 | 68 | 0.8494 | 0.2933 | 0.8494 | 0.9216 | | No log | 0.5983 | 70 | 0.8517 | 0.2933 | 0.8517 | 0.9229 | | No log | 0.6154 | 72 | 0.8255 | 0.2933 | 0.8255 | 0.9086 | | No log | 0.6325 | 74 | 0.8177 | 0.2933 | 0.8177 | 0.9043 | | No log | 0.6496 | 76 | 0.8439 | 0.2933 | 0.8439 | 0.9187 | | No log | 0.6667 | 78 | 0.8524 | 0.2933 | 0.8524 | 0.9232 | | No log | 0.6838 | 80 | 0.8946 | 0.2933 | 0.8946 | 0.9458 | | No log | 0.7009 | 82 | 0.9082 | 0.2933 | 0.9082 | 0.9530 | | No log | 0.7179 | 84 | 0.8540 | 0.2933 | 0.8540 | 0.9241 | | No log | 0.7350 | 86 | 0.7954 | 0.3443 | 0.7954 | 0.8919 | | No log | 0.7521 | 88 | 0.7785 | 0.2933 | 0.7785 | 0.8823 | | No log | 0.7692 | 90 | 0.8274 | 0.4020 | 0.8274 | 0.9096 | | No log | 0.7863 | 92 | 0.9377 | 0.3691 | 0.9377 | 0.9683 | | No log | 0.8034 | 94 | 1.0009 | 0.2058 | 1.0009 | 1.0004 | | No log | 0.8205 | 96 | 1.0162 | 0.1506 | 1.0162 | 1.0081 | | No log | 0.8376 | 98 | 1.0419 | 0.0 | 1.0419 | 1.0207 | | No log | 0.8547 | 100 | 1.0303 | 0.0 | 1.0303 | 1.0151 | | No log | 0.8718 | 102 | 1.0275 | 0.2279 | 1.0275 | 1.0137 | | No log | 0.8889 | 104 | 1.0277 | 0.2279 | 1.0277 | 1.0138 | | No log | 0.9060 | 106 | 0.9340 | 0.2279 | 0.9340 | 0.9664 | | No log | 0.9231 | 108 | 0.8287 | 0.2933 | 0.8287 | 0.9103 | | No log | 0.9402 | 110 | 0.7958 | 0.2933 | 0.7958 | 0.8921 | | No log | 0.9573 | 112 | 0.7918 | 0.2933 | 0.7918 | 0.8898 | | No log | 0.9744 | 114 | 0.7829 | 0.2933 | 0.7829 | 0.8848 | | No log | 0.9915 | 116 | 0.7885 | 0.2933 | 0.7885 | 0.8880 | | No log | 1.0085 | 118 | 0.8078 | 0.2933 | 0.8078 | 0.8988 | | No log | 1.0256 | 120 | 0.8271 | 0.2933 | 0.8271 | 0.9095 | | No log | 1.0427 | 122 | 0.8285 | 0.4178 | 0.8285 | 0.9102 | | No log | 1.0598 | 124 | 0.8196 | 0.4178 | 0.8196 | 0.9053 | | No log | 1.0769 | 126 | 0.8209 | 0.4178 | 0.8209 | 0.9060 | | No log | 1.0940 | 128 | 0.8216 | 0.4178 | 0.8216 | 0.9064 | | No log | 1.1111 | 130 | 0.8706 | 0.2933 | 0.8706 | 0.9331 | | No log | 1.1282 | 132 | 0.8947 | 0.2933 | 0.8947 | 0.9459 | | No log | 1.1453 | 134 | 0.8705 | 0.2933 | 0.8705 | 0.9330 | | No log | 1.1624 | 136 | 0.8045 | 0.4178 | 0.8045 | 0.8970 | | No log | 1.1795 | 138 | 0.7641 | 0.5143 | 0.7641 | 0.8741 | | No log | 1.1966 | 140 | 0.7644 | 0.4169 | 0.7644 | 0.8743 | | No log | 1.2137 | 142 | 0.7755 | 0.5170 | 0.7755 | 0.8806 | | No log | 1.2308 | 144 | 0.7658 | 0.5665 | 0.7658 | 0.8751 | | No log | 1.2479 | 146 | 0.7662 | 0.5665 | 0.7662 | 0.8753 | | No log | 1.2650 | 148 | 0.8024 | 0.5550 | 0.8024 | 0.8958 | | No log | 1.2821 | 150 | 0.8514 | 0.5148 | 0.8514 | 0.9227 | | No log | 1.2991 | 152 | 0.8118 | 0.5224 | 0.8118 | 0.9010 | | No log | 1.3162 | 154 | 0.7983 | 0.4649 | 0.7983 | 0.8935 | | No log | 1.3333 | 156 | 0.8211 | 0.3355 | 0.8211 | 0.9062 | | No log | 1.3504 | 158 | 0.7757 | 0.4649 | 0.7757 | 0.8808 | | No log | 1.3675 | 160 | 0.7376 | 0.5584 | 0.7376 | 0.8589 | | No log | 1.3846 | 162 | 0.7861 | 0.6034 | 0.7861 | 0.8866 | | No log | 1.4017 | 164 | 0.8454 | 0.5856 | 0.8454 | 0.9195 | | No log | 1.4188 | 166 | 0.8317 | 0.5856 | 0.8317 | 0.9120 | | No log | 1.4359 | 168 | 0.7359 | 0.6034 | 0.7359 | 0.8578 | | No log | 1.4530 | 170 | 0.7278 | 0.6034 | 0.7278 | 0.8531 | | No log | 1.4701 | 172 | 0.7116 | 0.6034 | 0.7116 | 0.8436 | | No log | 1.4872 | 174 | 0.6963 | 0.6034 | 0.6963 | 0.8345 | | No log | 1.5043 | 176 | 0.6498 | 0.6632 | 0.6498 | 0.8061 | | No log | 1.5214 | 178 | 0.6254 | 0.6632 | 0.6254 | 0.7908 | | No log | 1.5385 | 180 | 0.6317 | 0.6632 | 0.6317 | 0.7948 | | No log | 1.5556 | 182 | 0.6371 | 0.6632 | 0.6371 | 0.7982 | | No log | 1.5726 | 184 | 0.6437 | 0.6456 | 0.6437 | 0.8023 | | No log | 1.5897 | 186 | 0.6700 | 0.6287 | 0.6700 | 0.8185 | | No log | 1.6068 | 188 | 0.7038 | 0.5642 | 0.7038 | 0.8389 | | No log | 1.6239 | 190 | 0.6837 | 0.5663 | 0.6837 | 0.8269 | | No log | 1.6410 | 192 | 0.7037 | 0.5466 | 0.7037 | 0.8389 | | No log | 1.6581 | 194 | 0.7028 | 0.5320 | 0.7028 | 0.8383 | | No log | 1.6752 | 196 | 0.6888 | 0.5663 | 0.6888 | 0.8299 | | No log | 1.6923 | 198 | 0.7543 | 0.6026 | 0.7543 | 0.8685 | | No log | 1.7094 | 200 | 0.8499 | 0.6154 | 0.8499 | 0.9219 | | No log | 1.7265 | 202 | 0.8218 | 0.6154 | 0.8218 | 0.9065 | | No log | 1.7436 | 204 | 0.7219 | 0.6782 | 0.7219 | 0.8497 | | No log | 1.7607 | 206 | 0.6755 | 0.6782 | 0.6755 | 0.8219 | | No log | 1.7778 | 208 | 0.6659 | 0.6009 | 0.6659 | 0.8160 | | No log | 1.7949 | 210 | 0.7198 | 0.6009 | 0.7198 | 0.8484 | | No log | 1.8120 | 212 | 0.7247 | 0.6145 | 0.7247 | 0.8513 | | No log | 1.8291 | 214 | 0.6671 | 0.6009 | 0.6671 | 0.8167 | | No log | 1.8462 | 216 | 0.6466 | 0.6028 | 0.6466 | 0.8041 | | No log | 1.8632 | 218 | 0.6447 | 0.6163 | 0.6447 | 0.8029 | | No log | 1.8803 | 220 | 0.7605 | 0.6767 | 0.7605 | 0.8721 | | No log | 1.8974 | 222 | 0.8090 | 0.6154 | 0.8090 | 0.8995 | | No log | 1.9145 | 224 | 0.7851 | 0.6145 | 0.7851 | 0.8860 | | No log | 1.9316 | 226 | 0.8537 | 0.4885 | 0.8537 | 0.9240 | | No log | 1.9487 | 228 | 0.9116 | 0.575 | 0.9116 | 0.9548 | | No log | 1.9658 | 230 | 0.8276 | 0.4638 | 0.8276 | 0.9097 | | No log | 1.9829 | 232 | 0.7880 | 0.4987 | 0.7880 | 0.8877 | | No log | 2.0 | 234 | 0.7685 | 0.5466 | 0.7685 | 0.8766 | | No log | 2.0171 | 236 | 0.7624 | 0.5642 | 0.7624 | 0.8732 | | No log | 2.0342 | 238 | 0.7900 | 0.5642 | 0.7900 | 0.8888 | | No log | 2.0513 | 240 | 0.7752 | 0.5642 | 0.7752 | 0.8804 | | No log | 2.0684 | 242 | 0.8065 | 0.4987 | 0.8065 | 0.8980 | | No log | 2.0855 | 244 | 0.8088 | 0.4430 | 0.8088 | 0.8993 | | No log | 2.1026 | 246 | 0.8880 | 0.5642 | 0.8880 | 0.9424 | | No log | 2.1197 | 248 | 0.8580 | 0.5642 | 0.8580 | 0.9263 | | No log | 2.1368 | 250 | 0.7447 | 0.5642 | 0.7447 | 0.8630 | | No log | 2.1538 | 252 | 0.6994 | 0.5813 | 0.6994 | 0.8363 | | No log | 2.1709 | 254 | 0.7008 | 0.5641 | 0.7008 | 0.8372 | | No log | 2.1880 | 256 | 0.6880 | 0.5813 | 0.6880 | 0.8295 | | No log | 2.2051 | 258 | 0.7502 | 0.5642 | 0.7502 | 0.8661 | | No log | 2.2222 | 260 | 0.8216 | 0.6154 | 0.8216 | 0.9064 | | No log | 2.2393 | 262 | 0.7791 | 0.6154 | 0.7791 | 0.8827 | | No log | 2.2564 | 264 | 0.7051 | 0.6154 | 0.7051 | 0.8397 | | No log | 2.2735 | 266 | 0.6409 | 0.6145 | 0.6409 | 0.8006 | | No log | 2.2906 | 268 | 0.6486 | 0.5949 | 0.6486 | 0.8053 | | No log | 2.3077 | 270 | 0.6782 | 0.6247 | 0.6782 | 0.8235 | | No log | 2.3248 | 272 | 0.7435 | 0.575 | 0.7435 | 0.8623 | | No log | 2.3419 | 274 | 0.7682 | 0.575 | 0.7682 | 0.8765 | | No log | 2.3590 | 276 | 0.7858 | 0.575 | 0.7858 | 0.8865 | | No log | 2.3761 | 278 | 0.7699 | 0.5148 | 0.7699 | 0.8774 | | No log | 2.3932 | 280 | 0.6988 | 0.5856 | 0.6988 | 0.8359 | | No log | 2.4103 | 282 | 0.6613 | 0.6122 | 0.6613 | 0.8132 | | No log | 2.4274 | 284 | 0.6928 | 0.5685 | 0.6928 | 0.8324 | | No log | 2.4444 | 286 | 0.6653 | 0.6173 | 0.6653 | 0.8157 | | No log | 2.4615 | 288 | 0.6684 | 0.6034 | 0.6684 | 0.8176 | | No log | 2.4786 | 290 | 0.8378 | 0.575 | 0.8378 | 0.9153 | | No log | 2.4957 | 292 | 0.9367 | 0.5804 | 0.9367 | 0.9678 | | No log | 2.5128 | 294 | 0.8965 | 0.5804 | 0.8965 | 0.9468 | | No log | 2.5299 | 296 | 0.7529 | 0.6178 | 0.7529 | 0.8677 | | No log | 2.5470 | 298 | 0.6419 | 0.6305 | 0.6419 | 0.8012 | | No log | 2.5641 | 300 | 0.6152 | 0.6811 | 0.6152 | 0.7844 | | No log | 2.5812 | 302 | 0.6281 | 0.6652 | 0.6281 | 0.7925 | | No log | 2.5983 | 304 | 0.7007 | 0.6287 | 0.7007 | 0.8371 | | No log | 2.6154 | 306 | 0.9145 | 0.6178 | 0.9145 | 0.9563 | | No log | 2.6325 | 308 | 1.0440 | 0.5946 | 1.0440 | 1.0217 | | No log | 2.6496 | 310 | 0.9763 | 0.5501 | 0.9763 | 0.9881 | | No log | 2.6667 | 312 | 0.7762 | 0.5642 | 0.7762 | 0.8810 | | No log | 2.6838 | 314 | 0.6499 | 0.6456 | 0.6499 | 0.8062 | | No log | 2.7009 | 316 | 0.6238 | 0.6324 | 0.6238 | 0.7898 | | No log | 2.7179 | 318 | 0.6225 | 0.6305 | 0.6225 | 0.7890 | | No log | 2.7350 | 320 | 0.6774 | 0.5792 | 0.6774 | 0.8231 | | No log | 2.7521 | 322 | 0.7064 | 0.5792 | 0.7064 | 0.8405 | | No log | 2.7692 | 324 | 0.6769 | 0.5792 | 0.6769 | 0.8228 | | No log | 2.7863 | 326 | 0.6304 | 0.6456 | 0.6304 | 0.7940 | | No log | 2.8034 | 328 | 0.6338 | 0.6456 | 0.6338 | 0.7961 | | No log | 2.8205 | 330 | 0.6604 | 0.6456 | 0.6604 | 0.8127 | | No log | 2.8376 | 332 | 0.7276 | 0.5642 | 0.7276 | 0.8530 | | No log | 2.8547 | 334 | 0.7325 | 0.5642 | 0.7325 | 0.8558 | | No log | 2.8718 | 336 | 0.7351 | 0.5642 | 0.7351 | 0.8574 | | No log | 2.8889 | 338 | 0.7463 | 0.5642 | 0.7463 | 0.8639 | | No log | 2.9060 | 340 | 0.7062 | 0.5642 | 0.7062 | 0.8403 | | No log | 2.9231 | 342 | 0.6687 | 0.5949 | 0.6687 | 0.8177 | | No log | 2.9402 | 344 | 0.6660 | 0.6834 | 0.6660 | 0.8161 | | No log | 2.9573 | 346 | 0.6593 | 0.7011 | 0.6593 | 0.8120 | | No log | 2.9744 | 348 | 0.6775 | 0.5642 | 0.6775 | 0.8231 | | No log | 2.9915 | 350 | 0.7223 | 0.5642 | 0.7223 | 0.8499 | | No log | 3.0085 | 352 | 0.7364 | 0.5642 | 0.7364 | 0.8581 | | No log | 3.0256 | 354 | 0.6907 | 0.5642 | 0.6907 | 0.8311 | | No log | 3.0427 | 356 | 0.6183 | 0.6287 | 0.6183 | 0.7863 | | No log | 3.0598 | 358 | 0.5988 | 0.6992 | 0.5988 | 0.7738 | | No log | 3.0769 | 360 | 0.6048 | 0.7304 | 0.6048 | 0.7777 | | No log | 3.0940 | 362 | 0.6595 | 0.5274 | 0.6595 | 0.8121 | | No log | 3.1111 | 364 | 0.7767 | 0.5148 | 0.7767 | 0.8813 | | No log | 3.1282 | 366 | 0.8392 | 0.5148 | 0.8392 | 0.9161 | | No log | 3.1453 | 368 | 0.8545 | 0.5148 | 0.8545 | 0.9244 | | No log | 3.1624 | 370 | 0.8216 | 0.5148 | 0.8216 | 0.9064 | | No log | 3.1795 | 372 | 0.7755 | 0.5148 | 0.7755 | 0.8806 | | No log | 3.1966 | 374 | 0.7515 | 0.5148 | 0.7515 | 0.8669 | | No log | 3.2137 | 376 | 0.6881 | 0.5856 | 0.6881 | 0.8295 | | No log | 3.2308 | 378 | 0.6791 | 0.6034 | 0.6791 | 0.8241 | | No log | 3.2479 | 380 | 0.7122 | 0.5856 | 0.7122 | 0.8439 | | No log | 3.2650 | 382 | 0.7911 | 0.5856 | 0.7911 | 0.8894 | | No log | 3.2821 | 384 | 0.8658 | 0.5 | 0.8658 | 0.9305 | | No log | 3.2991 | 386 | 0.9303 | 0.5599 | 0.9303 | 0.9645 | | No log | 3.3162 | 388 | 0.9129 | 0.5599 | 0.9129 | 0.9554 | | No log | 3.3333 | 390 | 0.8281 | 0.5687 | 0.8281 | 0.9100 | | No log | 3.3504 | 392 | 0.7376 | 0.5856 | 0.7376 | 0.8589 | | No log | 3.3675 | 394 | 0.6989 | 0.5856 | 0.6989 | 0.8360 | | No log | 3.3846 | 396 | 0.6979 | 0.5856 | 0.6979 | 0.8354 | | No log | 3.4017 | 398 | 0.7279 | 0.5856 | 0.7279 | 0.8532 | | No log | 3.4188 | 400 | 0.7081 | 0.5856 | 0.7081 | 0.8415 | | No log | 3.4359 | 402 | 0.6352 | 0.5929 | 0.6352 | 0.7970 | | No log | 3.4530 | 404 | 0.6051 | 0.6456 | 0.6051 | 0.7779 | | No log | 3.4701 | 406 | 0.5936 | 0.6305 | 0.5936 | 0.7705 | | No log | 3.4872 | 408 | 0.6108 | 0.6456 | 0.6108 | 0.7815 | | No log | 3.5043 | 410 | 0.6526 | 0.6287 | 0.6526 | 0.8078 | | No log | 3.5214 | 412 | 0.6662 | 0.6287 | 0.6662 | 0.8162 | | No log | 3.5385 | 414 | 0.6576 | 0.6287 | 0.6576 | 0.8109 | | No log | 3.5556 | 416 | 0.6725 | 0.5929 | 0.6725 | 0.8201 | | No log | 3.5726 | 418 | 0.6820 | 0.6445 | 0.6820 | 0.8258 | | No log | 3.5897 | 420 | 0.6555 | 0.6287 | 0.6555 | 0.8096 | | No log | 3.6068 | 422 | 0.6093 | 0.6287 | 0.6093 | 0.7806 | | No log | 3.6239 | 424 | 0.5918 | 0.6474 | 0.5918 | 0.7693 | | No log | 3.6410 | 426 | 0.5854 | 0.6474 | 0.5854 | 0.7651 | | No log | 3.6581 | 428 | 0.6099 | 0.6287 | 0.6099 | 0.7810 | | No log | 3.6752 | 430 | 0.6611 | 0.6287 | 0.6611 | 0.8131 | | No log | 3.6923 | 432 | 0.7208 | 0.5929 | 0.7208 | 0.8490 | | No log | 3.7094 | 434 | 0.7299 | 0.5929 | 0.7299 | 0.8544 | | No log | 3.7265 | 436 | 0.6907 | 0.6287 | 0.6907 | 0.8311 | | No log | 3.7436 | 438 | 0.6484 | 0.6456 | 0.6484 | 0.8052 | | No log | 3.7607 | 440 | 0.6298 | 0.5990 | 0.6298 | 0.7936 | | No log | 3.7778 | 442 | 0.6154 | 0.6324 | 0.6154 | 0.7845 | | No log | 3.7949 | 444 | 0.6040 | 0.6495 | 0.6040 | 0.7772 | | No log | 3.8120 | 446 | 0.6002 | 0.6950 | 0.6002 | 0.7748 | | No log | 3.8291 | 448 | 0.5969 | 0.6950 | 0.5969 | 0.7726 | | No log | 3.8462 | 450 | 0.6124 | 0.6652 | 0.6124 | 0.7826 | | No log | 3.8632 | 452 | 0.6811 | 0.5642 | 0.6811 | 0.8253 | | No log | 3.8803 | 454 | 0.7453 | 0.5642 | 0.7453 | 0.8633 | | No log | 3.8974 | 456 | 0.7170 | 0.5642 | 0.7170 | 0.8467 | | No log | 3.9145 | 458 | 0.6804 | 0.5856 | 0.6804 | 0.8249 | | No log | 3.9316 | 460 | 0.6838 | 0.5856 | 0.6838 | 0.8269 | | No log | 3.9487 | 462 | 0.7267 | 0.5856 | 0.7267 | 0.8525 | | No log | 3.9658 | 464 | 0.8292 | 0.5148 | 0.8292 | 0.9106 | | No log | 3.9829 | 466 | 0.9146 | 0.5148 | 0.9146 | 0.9563 | | No log | 4.0 | 468 | 0.9248 | 0.5148 | 0.9248 | 0.9616 | | No log | 4.0171 | 470 | 0.8197 | 0.5856 | 0.8197 | 0.9054 | | No log | 4.0342 | 472 | 0.7383 | 0.5856 | 0.7383 | 0.8593 | | No log | 4.0513 | 474 | 0.6746 | 0.52 | 0.6746 | 0.8213 | | No log | 4.0684 | 476 | 0.6656 | 0.5924 | 0.6656 | 0.8159 | | No log | 4.0855 | 478 | 0.6631 | 0.5756 | 0.6631 | 0.8143 | | No log | 4.1026 | 480 | 0.6873 | 0.5929 | 0.6873 | 0.8290 | | No log | 4.1197 | 482 | 0.7620 | 0.5929 | 0.7620 | 0.8729 | | No log | 4.1368 | 484 | 0.8074 | 0.6445 | 0.8074 | 0.8986 | | No log | 4.1538 | 486 | 0.7734 | 0.6445 | 0.7734 | 0.8794 | | No log | 4.1709 | 488 | 0.6811 | 0.6287 | 0.6811 | 0.8253 | | No log | 4.1880 | 490 | 0.6097 | 0.6287 | 0.6097 | 0.7808 | | No log | 4.2051 | 492 | 0.5998 | 0.6287 | 0.5998 | 0.7745 | | No log | 4.2222 | 494 | 0.6013 | 0.6287 | 0.6013 | 0.7754 | | No log | 4.2393 | 496 | 0.6282 | 0.5929 | 0.6282 | 0.7926 | | No log | 4.2564 | 498 | 0.6454 | 0.5929 | 0.6454 | 0.8034 | | 0.4453 | 4.2735 | 500 | 0.6797 | 0.6445 | 0.6797 | 0.8244 | | 0.4453 | 4.2906 | 502 | 0.7200 | 0.6445 | 0.7200 | 0.8485 | | 0.4453 | 4.3077 | 504 | 0.7426 | 0.6419 | 0.7426 | 0.8618 | | 0.4453 | 4.3248 | 506 | 0.7072 | 0.6419 | 0.7072 | 0.8409 | | 0.4453 | 4.3419 | 508 | 0.7015 | 0.6419 | 0.7015 | 0.8376 | | 0.4453 | 4.3590 | 510 | 0.6983 | 0.5856 | 0.6983 | 0.8356 | | 0.4453 | 4.3761 | 512 | 0.7058 | 0.6419 | 0.7058 | 0.8401 | | 0.4453 | 4.3932 | 514 | 0.7565 | 0.6419 | 0.7565 | 0.8698 | | 0.4453 | 4.4103 | 516 | 0.8528 | 0.5952 | 0.8528 | 0.9235 | | 0.4453 | 4.4274 | 518 | 0.8816 | 0.5205 | 0.8816 | 0.9390 | | 0.4453 | 4.4444 | 520 | 0.8128 | 0.6419 | 0.8128 | 0.9016 | | 0.4453 | 4.4615 | 522 | 0.7398 | 0.6419 | 0.7398 | 0.8601 | | 0.4453 | 4.4786 | 524 | 0.6713 | 0.5856 | 0.6713 | 0.8193 | | 0.4453 | 4.4957 | 526 | 0.6148 | 0.5813 | 0.6148 | 0.7841 | | 0.4453 | 4.5128 | 528 | 0.6046 | 0.5813 | 0.6046 | 0.7776 | | 0.4453 | 4.5299 | 530 | 0.6157 | 0.5813 | 0.6157 | 0.7847 | | 0.4453 | 4.5470 | 532 | 0.6393 | 0.6462 | 0.6393 | 0.7995 | | 0.4453 | 4.5641 | 534 | 0.6554 | 0.6462 | 0.6554 | 0.8095 | | 0.4453 | 4.5812 | 536 | 0.6310 | 0.5949 | 0.6310 | 0.7943 | | 0.4453 | 4.5983 | 538 | 0.6130 | 0.5949 | 0.6130 | 0.7829 | | 0.4453 | 4.6154 | 540 | 0.6115 | 0.5949 | 0.6115 | 0.7820 | | 0.4453 | 4.6325 | 542 | 0.6123 | 0.5949 | 0.6123 | 0.7825 | | 0.4453 | 4.6496 | 544 | 0.6178 | 0.5949 | 0.6178 | 0.7860 | | 0.4453 | 4.6667 | 546 | 0.6616 | 0.6305 | 0.6616 | 0.8134 | | 0.4453 | 4.6838 | 548 | 0.7384 | 0.6445 | 0.7384 | 0.8593 | | 0.4453 | 4.7009 | 550 | 0.7639 | 0.6896 | 0.7639 | 0.8740 | | 0.4453 | 4.7179 | 552 | 0.7387 | 0.6753 | 0.7387 | 0.8595 | | 0.4453 | 4.7350 | 554 | 0.6814 | 0.6305 | 0.6814 | 0.8254 | | 0.4453 | 4.7521 | 556 | 0.6078 | 0.6305 | 0.6078 | 0.7796 | | 0.4453 | 4.7692 | 558 | 0.5836 | 0.6495 | 0.5836 | 0.7639 | | 0.4453 | 4.7863 | 560 | 0.5829 | 0.6163 | 0.5829 | 0.7635 | | 0.4453 | 4.8034 | 562 | 0.6042 | 0.6145 | 0.6042 | 0.7773 | | 0.4453 | 4.8205 | 564 | 0.6158 | 0.6622 | 0.6158 | 0.7847 | | 0.4453 | 4.8376 | 566 | 0.6338 | 0.6305 | 0.6338 | 0.7961 | | 0.4453 | 4.8547 | 568 | 0.6267 | 0.6462 | 0.6267 | 0.7916 | | 0.4453 | 4.8718 | 570 | 0.6524 | 0.6305 | 0.6524 | 0.8077 | | 0.4453 | 4.8889 | 572 | 0.6527 | 0.6305 | 0.6527 | 0.8079 | | 0.4453 | 4.9060 | 574 | 0.6326 | 0.6305 | 0.6326 | 0.7953 | | 0.4453 | 4.9231 | 576 | 0.6092 | 0.6163 | 0.6092 | 0.7805 | | 0.4453 | 4.9402 | 578 | 0.6046 | 0.6305 | 0.6046 | 0.7775 | | 0.4453 | 4.9573 | 580 | 0.6099 | 0.6305 | 0.6099 | 0.7809 | | 0.4453 | 4.9744 | 582 | 0.6199 | 0.6305 | 0.6199 | 0.7874 | | 0.4453 | 4.9915 | 584 | 0.6183 | 0.6163 | 0.6183 | 0.7863 | | 0.4453 | 5.0085 | 586 | 0.6029 | 0.6659 | 0.6029 | 0.7765 | | 0.4453 | 5.0256 | 588 | 0.6012 | 0.6659 | 0.6012 | 0.7754 | | 0.4453 | 5.0427 | 590 | 0.6012 | 0.6339 | 0.6012 | 0.7754 | | 0.4453 | 5.0598 | 592 | 0.6145 | 0.6145 | 0.6145 | 0.7839 | | 0.4453 | 5.0769 | 594 | 0.6032 | 0.6643 | 0.6032 | 0.7766 | | 0.4453 | 5.0940 | 596 | 0.6068 | 0.6814 | 0.6068 | 0.7790 | | 0.4453 | 5.1111 | 598 | 0.6413 | 0.5792 | 0.6413 | 0.8008 | | 0.4453 | 5.1282 | 600 | 0.6818 | 0.5710 | 0.6818 | 0.8257 | | 0.4453 | 5.1453 | 602 | 0.6757 | 0.5710 | 0.6757 | 0.8220 | | 0.4453 | 5.1624 | 604 | 0.6428 | 0.5879 | 0.6428 | 0.8017 | | 0.4453 | 5.1795 | 606 | 0.6162 | 0.6448 | 0.6162 | 0.7850 | | 0.4453 | 5.1966 | 608 | 0.6133 | 0.6448 | 0.6133 | 0.7831 | | 0.4453 | 5.2137 | 610 | 0.6061 | 0.6448 | 0.6061 | 0.7786 | | 0.4453 | 5.2308 | 612 | 0.6078 | 0.6056 | 0.6078 | 0.7796 | | 0.4453 | 5.2479 | 614 | 0.6246 | 0.6056 | 0.6246 | 0.7903 | | 0.4453 | 5.2650 | 616 | 0.6574 | 0.6034 | 0.6574 | 0.8108 | | 0.4453 | 5.2821 | 618 | 0.7324 | 0.6419 | 0.7324 | 0.8558 | | 0.4453 | 5.2991 | 620 | 0.8078 | 0.6119 | 0.8078 | 0.8988 | | 0.4453 | 5.3162 | 622 | 0.8134 | 0.6119 | 0.8134 | 0.9019 | | 0.4453 | 5.3333 | 624 | 0.7495 | 0.6419 | 0.7495 | 0.8657 | | 0.4453 | 5.3504 | 626 | 0.6501 | 0.5856 | 0.6501 | 0.8063 | | 0.4453 | 5.3675 | 628 | 0.6080 | 0.5949 | 0.6080 | 0.7797 | | 0.4453 | 5.3846 | 630 | 0.5940 | 0.6305 | 0.5940 | 0.7707 | | 0.4453 | 5.4017 | 632 | 0.5999 | 0.6145 | 0.5999 | 0.7745 | | 0.4453 | 5.4188 | 634 | 0.6328 | 0.6287 | 0.6328 | 0.7955 | | 0.4453 | 5.4359 | 636 | 0.6509 | 0.6287 | 0.6509 | 0.8068 | | 0.4453 | 5.4530 | 638 | 0.6432 | 0.6287 | 0.6432 | 0.8020 | | 0.4453 | 5.4701 | 640 | 0.6153 | 0.6287 | 0.6153 | 0.7844 | | 0.4453 | 5.4872 | 642 | 0.5906 | 0.6287 | 0.5906 | 0.7685 | | 0.4453 | 5.5043 | 644 | 0.5862 | 0.6287 | 0.5862 | 0.7656 | | 0.4453 | 5.5214 | 646 | 0.6148 | 0.6287 | 0.6148 | 0.7841 | | 0.4453 | 5.5385 | 648 | 0.6255 | 0.6287 | 0.6255 | 0.7909 | | 0.4453 | 5.5556 | 650 | 0.6264 | 0.6287 | 0.6264 | 0.7915 | | 0.4453 | 5.5726 | 652 | 0.5927 | 0.6287 | 0.5927 | 0.7699 | | 0.4453 | 5.5897 | 654 | 0.5770 | 0.6287 | 0.5770 | 0.7596 | | 0.4453 | 5.6068 | 656 | 0.5607 | 0.6287 | 0.5607 | 0.7488 | | 0.4453 | 5.6239 | 658 | 0.5492 | 0.6643 | 0.5492 | 0.7411 | | 0.4453 | 5.6410 | 660 | 0.5428 | 0.6643 | 0.5428 | 0.7368 | | 0.4453 | 5.6581 | 662 | 0.5553 | 0.6479 | 0.5553 | 0.7452 | | 0.4453 | 5.6752 | 664 | 0.5803 | 0.6287 | 0.5803 | 0.7618 | | 0.4453 | 5.6923 | 666 | 0.5818 | 0.6287 | 0.5818 | 0.7628 | | 0.4453 | 5.7094 | 668 | 0.5855 | 0.6767 | 0.5855 | 0.7652 | | 0.4453 | 5.7265 | 670 | 0.6152 | 0.6767 | 0.6152 | 0.7843 | | 0.4453 | 5.7436 | 672 | 0.6375 | 0.7186 | 0.6375 | 0.7984 | | 0.4453 | 5.7607 | 674 | 0.6456 | 0.7186 | 0.6456 | 0.8035 | | 0.4453 | 5.7778 | 676 | 0.6378 | 0.7186 | 0.6378 | 0.7986 | | 0.4453 | 5.7949 | 678 | 0.5939 | 0.7186 | 0.5939 | 0.7706 | | 0.4453 | 5.8120 | 680 | 0.5717 | 0.6622 | 0.5717 | 0.7561 | | 0.4453 | 5.8291 | 682 | 0.5672 | 0.6622 | 0.5672 | 0.7531 | | 0.4453 | 5.8462 | 684 | 0.5876 | 0.6767 | 0.5876 | 0.7666 | | 0.4453 | 5.8632 | 686 | 0.6183 | 0.6767 | 0.6183 | 0.7863 | | 0.4453 | 5.8803 | 688 | 0.6337 | 0.6767 | 0.6337 | 0.7960 | | 0.4453 | 5.8974 | 690 | 0.6323 | 0.6767 | 0.6323 | 0.7952 | | 0.4453 | 5.9145 | 692 | 0.6029 | 0.6287 | 0.6029 | 0.7765 | | 0.4453 | 5.9316 | 694 | 0.5567 | 0.6287 | 0.5567 | 0.7461 | | 0.4453 | 5.9487 | 696 | 0.5294 | 0.6456 | 0.5294 | 0.7276 | | 0.4453 | 5.9658 | 698 | 0.5282 | 0.6632 | 0.5282 | 0.7267 | | 0.4453 | 5.9829 | 700 | 0.5401 | 0.6456 | 0.5401 | 0.7349 | | 0.4453 | 6.0 | 702 | 0.5535 | 0.6456 | 0.5535 | 0.7440 | | 0.4453 | 6.0171 | 704 | 0.5738 | 0.6456 | 0.5738 | 0.7575 | | 0.4453 | 6.0342 | 706 | 0.5954 | 0.6287 | 0.5954 | 0.7716 | | 0.4453 | 6.0513 | 708 | 0.6450 | 0.6287 | 0.6450 | 0.8031 | | 0.4453 | 6.0684 | 710 | 0.7339 | 0.6288 | 0.7339 | 0.8567 | | 0.4453 | 6.0855 | 712 | 0.7898 | 0.6737 | 0.7898 | 0.8887 | | 0.4453 | 6.1026 | 714 | 0.7855 | 0.6737 | 0.7855 | 0.8863 | | 0.4453 | 6.1197 | 716 | 0.7338 | 0.6739 | 0.7338 | 0.8566 | | 0.4453 | 6.1368 | 718 | 0.6803 | 0.6896 | 0.6803 | 0.8248 | | 0.4453 | 6.1538 | 720 | 0.6509 | 0.6767 | 0.6509 | 0.8068 | | 0.4453 | 6.1709 | 722 | 0.6179 | 0.6456 | 0.6179 | 0.7861 | | 0.4453 | 6.1880 | 724 | 0.6190 | 0.6456 | 0.6190 | 0.7868 | | 0.4453 | 6.2051 | 726 | 0.6488 | 0.6767 | 0.6488 | 0.8055 | | 0.4453 | 6.2222 | 728 | 0.7031 | 0.6445 | 0.7031 | 0.8385 | | 0.4453 | 6.2393 | 730 | 0.7514 | 0.5682 | 0.7514 | 0.8668 | | 0.4453 | 6.2564 | 732 | 0.7722 | 0.5682 | 0.7722 | 0.8787 | | 0.4453 | 6.2735 | 734 | 0.7386 | 0.6606 | 0.7386 | 0.8594 | | 0.4453 | 6.2906 | 736 | 0.6685 | 0.6767 | 0.6685 | 0.8176 | | 0.4453 | 6.3077 | 738 | 0.5912 | 0.6287 | 0.5912 | 0.7689 | | 0.4453 | 6.3248 | 740 | 0.5513 | 0.6474 | 0.5513 | 0.7425 | | 0.4453 | 6.3419 | 742 | 0.5453 | 0.6474 | 0.5453 | 0.7384 | | 0.4453 | 6.3590 | 744 | 0.5566 | 0.6456 | 0.5566 | 0.7460 | | 0.4453 | 6.3761 | 746 | 0.5691 | 0.6287 | 0.5691 | 0.7544 | | 0.4453 | 6.3932 | 748 | 0.5719 | 0.6287 | 0.5719 | 0.7562 | | 0.4453 | 6.4103 | 750 | 0.5678 | 0.6456 | 0.5678 | 0.7535 | | 0.4453 | 6.4274 | 752 | 0.5716 | 0.6456 | 0.5716 | 0.7560 | | 0.4453 | 6.4444 | 754 | 0.5577 | 0.6456 | 0.5577 | 0.7468 | | 0.4453 | 6.4615 | 756 | 0.5519 | 0.6632 | 0.5519 | 0.7429 | | 0.4453 | 6.4786 | 758 | 0.5416 | 0.6632 | 0.5416 | 0.7360 | | 0.4453 | 6.4957 | 760 | 0.5287 | 0.6632 | 0.5287 | 0.7271 | | 0.4453 | 6.5128 | 762 | 0.5144 | 0.6632 | 0.5144 | 0.7173 | | 0.4453 | 6.5299 | 764 | 0.5098 | 0.6632 | 0.5098 | 0.7140 | | 0.4453 | 6.5470 | 766 | 0.5152 | 0.6456 | 0.5152 | 0.7178 | | 0.4453 | 6.5641 | 768 | 0.5212 | 0.6287 | 0.5212 | 0.7219 | | 0.4453 | 6.5812 | 770 | 0.5127 | 0.6145 | 0.5127 | 0.7160 | | 0.4453 | 6.5983 | 772 | 0.5102 | 0.6145 | 0.5102 | 0.7143 | | 0.4453 | 6.6154 | 774 | 0.5162 | 0.6287 | 0.5162 | 0.7184 | | 0.4453 | 6.6325 | 776 | 0.5262 | 0.6287 | 0.5262 | 0.7254 | | 0.4453 | 6.6496 | 778 | 0.5244 | 0.6287 | 0.5244 | 0.7242 | | 0.4453 | 6.6667 | 780 | 0.5195 | 0.6287 | 0.5195 | 0.7208 | | 0.4453 | 6.6838 | 782 | 0.5138 | 0.6287 | 0.5138 | 0.7168 | | 0.4453 | 6.7009 | 784 | 0.5019 | 0.6474 | 0.5019 | 0.7085 | | 0.4453 | 6.7179 | 786 | 0.4975 | 0.7165 | 0.4975 | 0.7054 | | 0.4453 | 6.7350 | 788 | 0.4997 | 0.7165 | 0.4997 | 0.7069 | | 0.4453 | 6.7521 | 790 | 0.5023 | 0.7165 | 0.5023 | 0.7087 | | 0.4453 | 6.7692 | 792 | 0.5121 | 0.6305 | 0.5121 | 0.7156 | | 0.4453 | 6.7863 | 794 | 0.5254 | 0.6145 | 0.5254 | 0.7248 | | 0.4453 | 6.8034 | 796 | 0.5486 | 0.6287 | 0.5486 | 0.7407 | | 0.4453 | 6.8205 | 798 | 0.5607 | 0.6767 | 0.5607 | 0.7488 | | 0.4453 | 6.8376 | 800 | 0.5474 | 0.6622 | 0.5474 | 0.7399 | | 0.4453 | 6.8547 | 802 | 0.5419 | 0.6622 | 0.5419 | 0.7361 | | 0.4453 | 6.8718 | 804 | 0.5254 | 0.6782 | 0.5254 | 0.7249 | | 0.4453 | 6.8889 | 806 | 0.5186 | 0.6637 | 0.5186 | 0.7202 | | 0.4453 | 6.9060 | 808 | 0.5064 | 0.6637 | 0.5064 | 0.7116 | | 0.4453 | 6.9231 | 810 | 0.5001 | 0.6637 | 0.5001 | 0.7072 | | 0.4453 | 6.9402 | 812 | 0.5012 | 0.6637 | 0.5012 | 0.7080 | | 0.4453 | 6.9573 | 814 | 0.5135 | 0.6484 | 0.5135 | 0.7166 | | 0.4453 | 6.9744 | 816 | 0.5255 | 0.6622 | 0.5255 | 0.7249 | | 0.4453 | 6.9915 | 818 | 0.5394 | 0.6622 | 0.5394 | 0.7344 | | 0.4453 | 7.0085 | 820 | 0.5334 | 0.6622 | 0.5334 | 0.7303 | | 0.4453 | 7.0256 | 822 | 0.5171 | 0.6622 | 0.5171 | 0.7191 | | 0.4453 | 7.0427 | 824 | 0.5098 | 0.6163 | 0.5098 | 0.7140 | | 0.4453 | 7.0598 | 826 | 0.5055 | 0.6163 | 0.5055 | 0.7110 | | 0.4453 | 7.0769 | 828 | 0.5080 | 0.6163 | 0.5080 | 0.7128 | | 0.4453 | 7.0940 | 830 | 0.5008 | 0.6992 | 0.5008 | 0.7077 | | 0.4453 | 7.1111 | 832 | 0.5013 | 0.6992 | 0.5013 | 0.7080 | | 0.4453 | 7.1282 | 834 | 0.5158 | 0.6992 | 0.5158 | 0.7182 | | 0.4453 | 7.1453 | 836 | 0.5365 | 0.6145 | 0.5365 | 0.7325 | | 0.4453 | 7.1624 | 838 | 0.5465 | 0.6287 | 0.5465 | 0.7393 | | 0.4453 | 7.1795 | 840 | 0.5420 | 0.6145 | 0.5420 | 0.7362 | | 0.4453 | 7.1966 | 842 | 0.5377 | 0.6287 | 0.5377 | 0.7333 | | 0.4453 | 7.2137 | 844 | 0.5471 | 0.6287 | 0.5471 | 0.7397 | | 0.4453 | 7.2308 | 846 | 0.5480 | 0.6287 | 0.5480 | 0.7403 | | 0.4453 | 7.2479 | 848 | 0.5369 | 0.6287 | 0.5369 | 0.7327 | | 0.4453 | 7.2650 | 850 | 0.5199 | 0.6145 | 0.5199 | 0.7210 | | 0.4453 | 7.2821 | 852 | 0.5141 | 0.6992 | 0.5141 | 0.7170 | | 0.4453 | 7.2991 | 854 | 0.5186 | 0.6324 | 0.5186 | 0.7201 | | 0.4453 | 7.3162 | 856 | 0.5283 | 0.6324 | 0.5283 | 0.7268 | | 0.4453 | 7.3333 | 858 | 0.5431 | 0.6163 | 0.5431 | 0.7369 | | 0.4453 | 7.3504 | 860 | 0.5709 | 0.6622 | 0.5709 | 0.7556 | | 0.4453 | 7.3675 | 862 | 0.5987 | 0.6767 | 0.5987 | 0.7738 | | 0.4453 | 7.3846 | 864 | 0.6142 | 0.6767 | 0.6142 | 0.7837 | | 0.4453 | 7.4017 | 866 | 0.6112 | 0.6767 | 0.6112 | 0.7818 | | 0.4453 | 7.4188 | 868 | 0.5842 | 0.6767 | 0.5842 | 0.7644 | | 0.4453 | 7.4359 | 870 | 0.5700 | 0.6622 | 0.5700 | 0.7550 | | 0.4453 | 7.4530 | 872 | 0.5618 | 0.6622 | 0.5618 | 0.7495 | | 0.4453 | 7.4701 | 874 | 0.5750 | 0.6622 | 0.5750 | 0.7583 | | 0.4453 | 7.4872 | 876 | 0.5799 | 0.6767 | 0.5799 | 0.7615 | | 0.4453 | 7.5043 | 878 | 0.5889 | 0.6767 | 0.5889 | 0.7674 | | 0.4453 | 7.5214 | 880 | 0.5938 | 0.6767 | 0.5938 | 0.7706 | | 0.4453 | 7.5385 | 882 | 0.5786 | 0.6767 | 0.5786 | 0.7606 | | 0.4453 | 7.5556 | 884 | 0.5717 | 0.6622 | 0.5717 | 0.7561 | | 0.4453 | 7.5726 | 886 | 0.5725 | 0.6622 | 0.5725 | 0.7566 | | 0.4453 | 7.5897 | 888 | 0.5814 | 0.6767 | 0.5814 | 0.7625 | | 0.4453 | 7.6068 | 890 | 0.5984 | 0.6767 | 0.5984 | 0.7736 | | 0.4453 | 7.6239 | 892 | 0.5987 | 0.6767 | 0.5987 | 0.7737 | | 0.4453 | 7.6410 | 894 | 0.5973 | 0.6767 | 0.5973 | 0.7728 | | 0.4453 | 7.6581 | 896 | 0.6064 | 0.6767 | 0.6064 | 0.7787 | | 0.4453 | 7.6752 | 898 | 0.6085 | 0.6767 | 0.6085 | 0.7801 | | 0.4453 | 7.6923 | 900 | 0.6086 | 0.6934 | 0.6086 | 0.7801 | | 0.4453 | 7.7094 | 902 | 0.6095 | 0.6934 | 0.6095 | 0.7807 | | 0.4453 | 7.7265 | 904 | 0.6081 | 0.6934 | 0.6081 | 0.7798 | | 0.4453 | 7.7436 | 906 | 0.6083 | 0.6934 | 0.6083 | 0.7800 | | 0.4453 | 7.7607 | 908 | 0.6085 | 0.6934 | 0.6085 | 0.7801 | | 0.4453 | 7.7778 | 910 | 0.6087 | 0.6767 | 0.6087 | 0.7802 | | 0.4453 | 7.7949 | 912 | 0.6020 | 0.6767 | 0.6020 | 0.7759 | | 0.4453 | 7.8120 | 914 | 0.5943 | 0.6767 | 0.5943 | 0.7709 | | 0.4453 | 7.8291 | 916 | 0.5747 | 0.6767 | 0.5747 | 0.7581 | | 0.4453 | 7.8462 | 918 | 0.5568 | 0.6622 | 0.5568 | 0.7462 | | 0.4453 | 7.8632 | 920 | 0.5509 | 0.6622 | 0.5509 | 0.7422 | | 0.4453 | 7.8803 | 922 | 0.5414 | 0.6145 | 0.5414 | 0.7358 | | 0.4453 | 7.8974 | 924 | 0.5315 | 0.6305 | 0.5315 | 0.7290 | | 0.4453 | 7.9145 | 926 | 0.5255 | 0.6305 | 0.5255 | 0.7249 | | 0.4453 | 7.9316 | 928 | 0.5311 | 0.6305 | 0.5311 | 0.7288 | | 0.4453 | 7.9487 | 930 | 0.5329 | 0.6305 | 0.5329 | 0.7300 | | 0.4453 | 7.9658 | 932 | 0.5401 | 0.6782 | 0.5401 | 0.7349 | | 0.4453 | 7.9829 | 934 | 0.5568 | 0.6767 | 0.5568 | 0.7462 | | 0.4453 | 8.0 | 936 | 0.5858 | 0.6767 | 0.5858 | 0.7654 | | 0.4453 | 8.0171 | 938 | 0.5986 | 0.6767 | 0.5986 | 0.7737 | | 0.4453 | 8.0342 | 940 | 0.6130 | 0.6767 | 0.6130 | 0.7830 | | 0.4453 | 8.0513 | 942 | 0.6113 | 0.6934 | 0.6113 | 0.7818 | | 0.4453 | 8.0684 | 944 | 0.6167 | 0.6934 | 0.6167 | 0.7853 | | 0.4453 | 8.0855 | 946 | 0.6241 | 0.6934 | 0.6241 | 0.7900 | | 0.4453 | 8.1026 | 948 | 0.6287 | 0.6934 | 0.6287 | 0.7929 | | 0.4453 | 8.1197 | 950 | 0.6395 | 0.6610 | 0.6395 | 0.7997 | | 0.4453 | 8.1368 | 952 | 0.6537 | 0.6610 | 0.6537 | 0.8085 | | 0.4453 | 8.1538 | 954 | 0.6651 | 0.6610 | 0.6651 | 0.8155 | | 0.4453 | 8.1709 | 956 | 0.6654 | 0.6610 | 0.6654 | 0.8157 | | 0.4453 | 8.1880 | 958 | 0.6692 | 0.6610 | 0.6692 | 0.8180 | | 0.4453 | 8.2051 | 960 | 0.6686 | 0.6610 | 0.6686 | 0.8177 | | 0.4453 | 8.2222 | 962 | 0.6588 | 0.6610 | 0.6588 | 0.8116 | | 0.4453 | 8.2393 | 964 | 0.6348 | 0.6934 | 0.6348 | 0.7967 | | 0.4453 | 8.2564 | 966 | 0.6101 | 0.6934 | 0.6101 | 0.7811 | | 0.4453 | 8.2735 | 968 | 0.5951 | 0.6934 | 0.5951 | 0.7714 | | 0.4453 | 8.2906 | 970 | 0.5861 | 0.6934 | 0.5861 | 0.7656 | | 0.4453 | 8.3077 | 972 | 0.5742 | 0.6934 | 0.5742 | 0.7578 | | 0.4453 | 8.3248 | 974 | 0.5582 | 0.6305 | 0.5582 | 0.7471 | | 0.4453 | 8.3419 | 976 | 0.5451 | 0.6305 | 0.5451 | 0.7383 | | 0.4453 | 8.3590 | 978 | 0.5406 | 0.6305 | 0.5406 | 0.7352 | | 0.4453 | 8.3761 | 980 | 0.5460 | 0.6305 | 0.5460 | 0.7389 | | 0.4453 | 8.3932 | 982 | 0.5550 | 0.6767 | 0.5550 | 0.7450 | | 0.4453 | 8.4103 | 984 | 0.5730 | 0.6767 | 0.5730 | 0.7570 | | 0.4453 | 8.4274 | 986 | 0.5960 | 0.6767 | 0.5960 | 0.7720 | | 0.4453 | 8.4444 | 988 | 0.6000 | 0.6767 | 0.6000 | 0.7746 | | 0.4453 | 8.4615 | 990 | 0.5935 | 0.6767 | 0.5935 | 0.7704 | | 0.4453 | 8.4786 | 992 | 0.5767 | 0.6622 | 0.5767 | 0.7594 | | 0.4453 | 8.4957 | 994 | 0.5698 | 0.6622 | 0.5698 | 0.7549 | | 0.4453 | 8.5128 | 996 | 0.5716 | 0.6622 | 0.5716 | 0.7561 | | 0.4453 | 8.5299 | 998 | 0.5736 | 0.6622 | 0.5736 | 0.7573 | | 0.0772 | 8.5470 | 1000 | 0.5776 | 0.6622 | 0.5776 | 0.7600 | | 0.0772 | 8.5641 | 1002 | 0.5802 | 0.6622 | 0.5802 | 0.7617 | | 0.0772 | 8.5812 | 1004 | 0.5872 | 0.6622 | 0.5872 | 0.7663 | | 0.0772 | 8.5983 | 1006 | 0.5814 | 0.6622 | 0.5814 | 0.7625 | | 0.0772 | 8.6154 | 1008 | 0.5744 | 0.6622 | 0.5744 | 0.7579 | | 0.0772 | 8.6325 | 1010 | 0.5710 | 0.6622 | 0.5710 | 0.7557 | | 0.0772 | 8.6496 | 1012 | 0.5645 | 0.6622 | 0.5645 | 0.7513 | | 0.0772 | 8.6667 | 1014 | 0.5543 | 0.6782 | 0.5543 | 0.7445 | | 0.0772 | 8.6838 | 1016 | 0.5480 | 0.6782 | 0.5480 | 0.7402 | | 0.0772 | 8.7009 | 1018 | 0.5438 | 0.6782 | 0.5438 | 0.7374 | | 0.0772 | 8.7179 | 1020 | 0.5450 | 0.6782 | 0.5450 | 0.7382 | | 0.0772 | 8.7350 | 1022 | 0.5528 | 0.6782 | 0.5528 | 0.7435 | | 0.0772 | 8.7521 | 1024 | 0.5656 | 0.6782 | 0.5656 | 0.7521 | | 0.0772 | 8.7692 | 1026 | 0.5845 | 0.6934 | 0.5845 | 0.7645 | | 0.0772 | 8.7863 | 1028 | 0.6012 | 0.6767 | 0.6012 | 0.7753 | | 0.0772 | 8.8034 | 1030 | 0.6185 | 0.6767 | 0.6185 | 0.7865 | | 0.0772 | 8.8205 | 1032 | 0.6223 | 0.7186 | 0.6223 | 0.7888 | | 0.0772 | 8.8376 | 1034 | 0.6295 | 0.7186 | 0.6295 | 0.7934 | | 0.0772 | 8.8547 | 1036 | 0.6419 | 0.7186 | 0.6419 | 0.8012 | | 0.0772 | 8.8718 | 1038 | 0.6389 | 0.7186 | 0.6389 | 0.7993 | | 0.0772 | 8.8889 | 1040 | 0.6326 | 0.7186 | 0.6326 | 0.7954 | | 0.0772 | 8.9060 | 1042 | 0.6224 | 0.7186 | 0.6224 | 0.7889 | | 0.0772 | 8.9231 | 1044 | 0.6100 | 0.7351 | 0.6100 | 0.7810 | | 0.0772 | 8.9402 | 1046 | 0.5999 | 0.6782 | 0.5999 | 0.7746 | | 0.0772 | 8.9573 | 1048 | 0.5899 | 0.6782 | 0.5899 | 0.7680 | | 0.0772 | 8.9744 | 1050 | 0.5862 | 0.6782 | 0.5862 | 0.7657 | | 0.0772 | 8.9915 | 1052 | 0.5844 | 0.6782 | 0.5844 | 0.7645 | | 0.0772 | 9.0085 | 1054 | 0.5870 | 0.6782 | 0.5870 | 0.7662 | | 0.0772 | 9.0256 | 1056 | 0.5892 | 0.6782 | 0.5892 | 0.7676 | | 0.0772 | 9.0427 | 1058 | 0.5897 | 0.6782 | 0.5897 | 0.7679 | | 0.0772 | 9.0598 | 1060 | 0.5897 | 0.6622 | 0.5897 | 0.7679 | | 0.0772 | 9.0769 | 1062 | 0.5870 | 0.6622 | 0.5870 | 0.7661 | | 0.0772 | 9.0940 | 1064 | 0.5829 | 0.6622 | 0.5829 | 0.7635 | | 0.0772 | 9.1111 | 1066 | 0.5790 | 0.6622 | 0.5790 | 0.7609 | | 0.0772 | 9.1282 | 1068 | 0.5796 | 0.6622 | 0.5796 | 0.7613 | | 0.0772 | 9.1453 | 1070 | 0.5858 | 0.6622 | 0.5858 | 0.7654 | | 0.0772 | 9.1624 | 1072 | 0.5928 | 0.6622 | 0.5928 | 0.7699 | | 0.0772 | 9.1795 | 1074 | 0.6022 | 0.6767 | 0.6022 | 0.7760 | | 0.0772 | 9.1966 | 1076 | 0.6059 | 0.6767 | 0.6059 | 0.7784 | | 0.0772 | 9.2137 | 1078 | 0.6116 | 0.6767 | 0.6116 | 0.7820 | | 0.0772 | 9.2308 | 1080 | 0.6176 | 0.6767 | 0.6176 | 0.7859 | | 0.0772 | 9.2479 | 1082 | 0.6220 | 0.6767 | 0.6220 | 0.7887 | | 0.0772 | 9.2650 | 1084 | 0.6218 | 0.6767 | 0.6218 | 0.7886 | | 0.0772 | 9.2821 | 1086 | 0.6234 | 0.6767 | 0.6234 | 0.7895 | | 0.0772 | 9.2991 | 1088 | 0.6203 | 0.6767 | 0.6203 | 0.7876 | | 0.0772 | 9.3162 | 1090 | 0.6172 | 0.6767 | 0.6172 | 0.7856 | | 0.0772 | 9.3333 | 1092 | 0.6129 | 0.6767 | 0.6129 | 0.7829 | | 0.0772 | 9.3504 | 1094 | 0.6060 | 0.6767 | 0.6060 | 0.7785 | | 0.0772 | 9.3675 | 1096 | 0.5976 | 0.6767 | 0.5976 | 0.7730 | | 0.0772 | 9.3846 | 1098 | 0.5885 | 0.6767 | 0.5885 | 0.7672 | | 0.0772 | 9.4017 | 1100 | 0.5829 | 0.6767 | 0.5829 | 0.7635 | | 0.0772 | 9.4188 | 1102 | 0.5814 | 0.6622 | 0.5814 | 0.7625 | | 0.0772 | 9.4359 | 1104 | 0.5839 | 0.6767 | 0.5839 | 0.7641 | | 0.0772 | 9.4530 | 1106 | 0.5872 | 0.6767 | 0.5872 | 0.7663 | | 0.0772 | 9.4701 | 1108 | 0.5906 | 0.6767 | 0.5906 | 0.7685 | | 0.0772 | 9.4872 | 1110 | 0.5946 | 0.6767 | 0.5946 | 0.7711 | | 0.0772 | 9.5043 | 1112 | 0.5963 | 0.6767 | 0.5963 | 0.7722 | | 0.0772 | 9.5214 | 1114 | 0.5995 | 0.6767 | 0.5995 | 0.7743 | | 0.0772 | 9.5385 | 1116 | 0.6012 | 0.6767 | 0.6012 | 0.7754 | | 0.0772 | 9.5556 | 1118 | 0.6054 | 0.6767 | 0.6054 | 0.7780 | | 0.0772 | 9.5726 | 1120 | 0.6082 | 0.6767 | 0.6082 | 0.7799 | | 0.0772 | 9.5897 | 1122 | 0.6087 | 0.6767 | 0.6087 | 0.7802 | | 0.0772 | 9.6068 | 1124 | 0.6074 | 0.6767 | 0.6074 | 0.7793 | | 0.0772 | 9.6239 | 1126 | 0.6058 | 0.6767 | 0.6058 | 0.7783 | | 0.0772 | 9.6410 | 1128 | 0.6037 | 0.6767 | 0.6037 | 0.7770 | | 0.0772 | 9.6581 | 1130 | 0.5996 | 0.6767 | 0.5996 | 0.7743 | | 0.0772 | 9.6752 | 1132 | 0.5953 | 0.6767 | 0.5953 | 0.7716 | | 0.0772 | 9.6923 | 1134 | 0.5931 | 0.6767 | 0.5931 | 0.7701 | | 0.0772 | 9.7094 | 1136 | 0.5924 | 0.6767 | 0.5924 | 0.7697 | | 0.0772 | 9.7265 | 1138 | 0.5917 | 0.6767 | 0.5917 | 0.7692 | | 0.0772 | 9.7436 | 1140 | 0.5919 | 0.6767 | 0.5919 | 0.7693 | | 0.0772 | 9.7607 | 1142 | 0.5927 | 0.6767 | 0.5927 | 0.7699 | | 0.0772 | 9.7778 | 1144 | 0.5948 | 0.6767 | 0.5948 | 0.7712 | | 0.0772 | 9.7949 | 1146 | 0.5968 | 0.6767 | 0.5968 | 0.7726 | | 0.0772 | 9.8120 | 1148 | 0.5988 | 0.6767 | 0.5988 | 0.7738 | | 0.0772 | 9.8291 | 1150 | 0.6001 | 0.6767 | 0.6001 | 0.7747 | | 0.0772 | 9.8462 | 1152 | 0.6008 | 0.6767 | 0.6008 | 0.7751 | | 0.0772 | 9.8632 | 1154 | 0.6009 | 0.6767 | 0.6009 | 0.7752 | | 0.0772 | 9.8803 | 1156 | 0.6014 | 0.6767 | 0.6014 | 0.7755 | | 0.0772 | 9.8974 | 1158 | 0.6021 | 0.6767 | 0.6021 | 0.7759 | | 0.0772 | 9.9145 | 1160 | 0.6023 | 0.6767 | 0.6023 | 0.7761 | | 0.0772 | 9.9316 | 1162 | 0.6029 | 0.6767 | 0.6029 | 0.7765 | | 0.0772 | 9.9487 | 1164 | 0.6032 | 0.6767 | 0.6032 | 0.7766 | | 0.0772 | 9.9658 | 1166 | 0.6032 | 0.6767 | 0.6032 | 0.7767 | | 0.0772 | 9.9829 | 1168 | 0.6033 | 0.6767 | 0.6033 | 0.7767 | | 0.0772 | 10.0 | 1170 | 0.6034 | 0.6767 | 0.6034 | 0.7768 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF
Triangle104
2024-11-25T16:30:26Z
8
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2", "base_model:quantized:huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-18T14:24:54Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2`](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) for more details on the model. --- Model details: - This is an uncensored version of Qwen2.5-14B-Instruct created with abliteration (see this article to know more about it). Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models. Important Note This version is an improvement over the previous one Qwen2.5-14B-Instruct-abliterated. Usage You can use this model in your applications by loading it with Hugging Face's transformers library: from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input and prepare it for the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate a response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) # Extract model output, removing special tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Qwen: {response}") --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q6_k.gguf -c 2048 ```
MTSAIR/Cotype-Nano-4bit
MTSAIR
2024-11-25T16:26:44Z
138
11
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "ru", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2024-11-22T15:47:38Z
--- library_name: transformers language: - ru - en pipeline_tag: text-generation license: other license_name: apache-2.0 license_link: https://huggingface.co/MTSAIR/Cotype-Nano-4bit/blob/main/Apache%20License%20MTS%20AI.docx --- # Cotype-Nano-4bitπŸ€– Cotype-Nano-4bit – это LLM, которая вСсит мСньшС ΠΈ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ быстрСС Ρ‡Π΅ΠΌ Cotype-Nano, ΠΏΡ€ΠΈ этом сохраняя свои языковыС способности Cotype-Nano-4bit is an LLM that is lighter and runs faster than Cotype-Nano, while maintaining its language capabilities. ### Inference with vLLM ``` python3 -m vllm.entrypoints.openai.api_server --model MTSAIR/Cotype-Nano-4bit --port 8000 ``` ### Recommended generation parameters and system prompt ```python import openai import pandas as pd from tqdm import tqdm openai.api_key = 'xxx' endpoint = 'http://localhost:8000/v1' model = 'MTSAIR/Cotype-Nano-4bit' openai.api_base = endpoint response = openai.ChatCompletion.create( model=model, temperature=0.0, # Ρ‚Π°ΠΊΠΆΠ΅ допускаСтся 0.2 frequency_penalty=0.0, max_tokens=2048, top_p=0.1, # Ρ‚Π°ΠΊΠΆΠ΅ допускаСтся 0.9 messages=[ {"role": "system", "content": "Π’Ρ‹ β€” ИИ-ΠΏΠΎΠΌΠΎΡ‰Π½ΠΈΠΊ. Π’Π΅Π±Π΅ Π΄Π°Π½ΠΎ Π·Π°Π΄Π°Π½ΠΈΠ΅: Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ³Π΅Π½Π΅Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΉ ΠΈ Ρ€Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚."}, {"role": "user", "content": "РасскаТи ΠΌΠ½Π΅ ΠΏΡ€ΠΎ ИИ, ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎ"} ] ) answer = response["choices"][0]["message"]["content"] print(answer) ``` ### Inference with Huggingface ```python from transformers import pipeline pipe = pipeline("text-generation", model="MTSAIR/Cotype-Nano-4bit", device="cuda") messages = [ {"role": "system", "content": "Π’Ρ‹ β€” ИИ-ΠΏΠΎΠΌΠΎΡ‰Π½ΠΈΠΊ. Π’Π΅Π±Π΅ Π΄Π°Π½ΠΎ Π·Π°Π΄Π°Π½ΠΈΠ΅: Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ³Π΅Π½Π΅Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΉ ΠΈ Ρ€Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚."}, {"role": "user", "content": "РасскаТи ΠΌΠ½Π΅ ΠΏΡ€ΠΎ ИИ"}, ] res = pipe(messages, max_length=1024) print(res[0]['generated_text'][1]) ``` ## Example request **Request:** #### Cotype-Nano-4bit response: > **Π Π΅ΠΊΠ»Π°ΠΌΠ½Ρ‹ΠΉ тСкст для ΠΌΠ°Π³Π°Π·ΠΈΠ½Π° экологичной ΠΎΠ΄Π΅ΠΆΠ΄Ρ‹:** > > --- > > **Π—Π°Π±ΠΎΡ‚ΡŒΡ‚Π΅ΡΡŒ ΠΎ Π—Π΅ΠΌΠ»Π΅, ΠΎΠ΄Π΅Π²Π°ΠΉΡ‚Π΅ΡΡŒ с ΡƒΠΌΠΎΠΌ!** > > ΠŸΡ€ΠΈΠ³Π»Π°ΡˆΠ°Π΅ΠΌ вас Π² ΠΌΠΈΡ€ экологичной ΠΌΠΎΠ΄Ρ‹! ΠœΡ‹ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌ Π²Π°ΠΌ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΡΡ‚ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΈ качСствСнныС Π²Π΅Ρ‰ΠΈ, Π½ΠΎ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ свой Π²Ρ‹Π±ΠΎΡ€ Π² ΠΏΠΎΠ»ΡŒΠ·Ρƒ устойчивого развития ΠΈ сохранСния ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹. > > **Экологичная ΠΎΠ΄Π΅ΠΆΠ΄Π° – ваш Π²Ρ‹Π±ΠΎΡ€!** > > 1. **Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΈ с ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΎΠΉ.** ΠœΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ экологичСски чистыС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ наносят Π²Ρ€Π΅Π΄Π° ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСдС. > 2. **Минимализм Π² стилС.** Наша ΠΎΠ΄Π΅ΠΆΠ΄Π° – это Π½Π΅ просто ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Ρ‹ Π³Π°Ρ€Π΄Π΅Ρ€ΠΎΠ±Π°, это ΡΡ‚ΠΈΠ»ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ Π²Π°ΡˆΡƒ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. > 3. **ΠŸΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ срок слуТбы.** ΠœΡ‹ создаСм Π²Π΅Ρ‰ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ прослуТат Π²Π°ΠΌ Π΄ΠΎΠ»Π³ΠΎ, Ρ‡Ρ‚ΠΎ позволяСт ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ Π½Π΅Π½ΡƒΠΆΠ½ΠΎΠ³ΠΎ потрСблСния ΠΈ ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ². > 4. **ΠŸΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ° мСстных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ.** ΠœΡ‹ Π²Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ мСстных мастСров ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ, Ρ‡Ρ‚ΠΎ способствуСт созданию Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… мСст ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ ΠΌΠ΅ΡΡ‚Π½ΡƒΡŽ экономику. > 5. **Π’ΠΎΠ·Π²Ρ€Π°Ρ‰Π°Π΅ΠΌ Π²Π΅Ρ‰ΠΈ Π² ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΡ€ΠΎΡ‚.** ΠœΡ‹ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ ΠΏΠΎ Π²ΠΎΠ·Π²Ρ€Π°Ρ‚Ρƒ ΠΈ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΎΠ΄Π΅ΠΆΠ΄Ρ‹, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹ ΠΌΠΎΠ³Π»ΠΈ внСсти свой Π²ΠΊΠ»Π°Π΄ Π² сохранСниС экологии. > > **Π’Π°Ρˆ Π²Ρ‹Π±ΠΎΡ€ – ваша ΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²Π΅Π½Π½ΠΎΡΡ‚ΡŒ.** > > Π’Ρ‹Π±ΠΈΡ€Π°ΠΉΡ‚Π΅ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΡƒΡŽ ΠΎΠ΄Π΅ΠΆΠ΄Ρƒ, ΠΈ ΠΏΠΎΠΌΠ½ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ваш Π²Ρ‹Π±ΠΎΡ€ влияСт Π½Π° Π±ΡƒΠ΄ΡƒΡ‰Π΅Π΅ нашСй ΠΏΠ»Π°Π½Π΅Ρ‚Ρ‹. Π”Π°Π²Π°ΠΉΡ‚Π΅ вмСстС создадим Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠΎΠΌ, Π΅Π³ΠΎ потрСбностями ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΎΠΉ. > > **ΠŸΡ€ΠΈΡ…ΠΎΠ΄ΠΈΡ‚Π΅ Π² наш ΠΌΠ°Π³Π°Π·ΠΈΠ½, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΡ‚Π°Ρ‚ΡŒ Ρ‡Π°ΡΡ‚ΡŒΡŽ экологичСской ΠΌΠΎΠ΄Ρ‹!** > > --- > >ΠœΡ‹ ΡƒΠ²Π΅Ρ€Π΅Π½Ρ‹, Ρ‡Ρ‚ΠΎ Π²Ρ‹ Π½Π°ΠΉΠ΄Π΅Ρ‚Π΅ Π² нашСм ассортимСнтС Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΡΡ‚ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π²Π΅Ρ‰ΠΈ, Π½ΠΎ ΠΈ ΡƒΠ²Π΅Ρ€Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ваш Π²Ρ‹Π±ΠΎΡ€ Π² ΠΏΠΎΠ»ΡŒΠ·Ρƒ устойчивости ΠΈ экологии Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ лишним. ΠŸΡ€ΠΈΡ…ΠΎΠ΄ΠΈΡ‚Π΅ ΠΈ посмотритС, ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΡ‡Π΅Ρ‚Π°Ρ‚ΡŒ ΠΌΠΎΠ΄Ρƒ с ΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ! ### Results on ru-llm-arena: 22.5 (local measurement) | Model | Score | 95% CI | Avg. #Tokens | |---------------------------------------------|-------|-------------------------|---------------| | **Cotype-Nano-4bit** | **22.5** | **+2.1 / -1.4** | **582** | | storm-7b | 20.62 | +1.4 / -1.6 | 419.32 | | neural-chat-7b-v3-3 | 19.04 | +1.8 / -1.5 | 927.21 | | Vikhrmodels-Vikhr-Llama-3.2-1B-instruct | 19.04 | +1.2 / -1.5 | 958.63 | | gigachat_lite | 17.2 | +1.5 / -1.5 | 276.81 | | Vikhrmodels-Vikhr-Qwen-2.5-0.5b-Instruct | 16.5 | +1.5 / -1.7 | 583.5 | | Qwen-Qwen2.5-1.5B-Instruct | 16.46 | +1.3 / -1.3 | 483.67 | | Vikhrmodels-vikhr-qwen-1.5b-it | 13.19 | +1.3 / -1.1 | 2495.38 | | meta-llama-Llama-3.2-1B-Instruct | 4.04 | +0.6 / -0.8 | 1240.53 | | Qwen-Qwen2.5-0.5B-Instruct | 4.02 | +0.7 / -0.8 | 829.87 |
mradermacher/Llama-3.2-3B-COT-i1-GGUF
mradermacher
2024-11-25T16:26:38Z
366
0
transformers
[ "transformers", "gguf", "llama-3.2", "thought-chain", "instruction-finetuning", "en", "base_model:ericflo/Llama-3.2-3B-COT", "base_model:quantized:ericflo/Llama-3.2-3B-COT", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-25T15:47:21Z
--- base_model: ericflo/Llama-3.2-3B-COT language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - llama-3.2 - thought-chain - instruction-finetuning - transformers --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/ericflo/Llama-3.2-3B-COT <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ1_S.gguf) | i1-IQ1_S | 1.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ2_S.gguf) | i1-IQ2_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ2_M.gguf) | i1-IQ2_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q2_K.gguf) | i1-Q2_K | 1.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ3_S.gguf) | i1-IQ3_S | 1.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ3_M.gguf) | i1-IQ3_M | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 2.0 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 2.0 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 2.0 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q4_0.gguf) | i1-Q4_0 | 2.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF/resolve/main/Llama-3.2-3B-COT.i1-Q6_K.gguf) | i1-Q6_K | 2.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
jw-hf-test/jw-3B-002
jw-hf-test
2024-11-25T16:26:07Z
198
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T16:24:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
briannlongzhao/chinese_painting_textual_inversion
briannlongzhao
2024-11-25T16:26:05Z
3
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-07T00:50:56Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - briannlongzhao/chinese_painting_textual_inversion These are textual inversion adaption weights for stabilityai/stable-diffusion-2-1. You can find some example images in the following.
mradermacher/Llama-3.2-3B-COT-GGUF
mradermacher
2024-11-25T16:23:50Z
44
0
transformers
[ "transformers", "gguf", "llama-3.2", "thought-chain", "instruction-finetuning", "en", "base_model:ericflo/Llama-3.2-3B-COT", "base_model:quantized:ericflo/Llama-3.2-3B-COT", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T15:33:55Z
--- base_model: ericflo/Llama-3.2-3B-COT language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - llama-3.2 - thought-chain - instruction-finetuning - transformers --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/ericflo/Llama-3.2-3B-COT <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.2-3B-COT-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q4_0_4_4.gguf) | Q4_0_4_4 | 2.0 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-COT-GGUF/resolve/main/Llama-3.2-3B-COT.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
furrutiav/roberta_mixtral_nllfg_rubric_sst2_sentence_embd_perplexity
furrutiav
2024-11-25T16:21:08Z
105
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-11-25T16:20:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k25_task5_organization_fold0
MayBashendy
2024-11-25T16:19:14Z
164
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T16:09:20Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k25_task5_organization_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k25_task5_organization_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5431 - Qwk: 0.7267 - Mse: 0.5431 - Rmse: 0.7369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:| | No log | 0.0185 | 2 | 1.9923 | 0.0758 | 1.9923 | 1.4115 | | No log | 0.0370 | 4 | 0.9063 | 0.2933 | 0.9063 | 0.9520 | | No log | 0.0556 | 6 | 0.8910 | 0.2578 | 0.8910 | 0.9439 | | No log | 0.0741 | 8 | 0.9601 | 0.3448 | 0.9601 | 0.9799 | | No log | 0.0926 | 10 | 0.9153 | 0.1985 | 0.9153 | 0.9567 | | No log | 0.1111 | 12 | 1.1084 | 0.1003 | 1.1084 | 1.0528 | | No log | 0.1296 | 14 | 0.9851 | 0.3358 | 0.9851 | 0.9925 | | No log | 0.1481 | 16 | 0.9259 | 0.2278 | 0.9259 | 0.9622 | | No log | 0.1667 | 18 | 1.0820 | 0.1304 | 1.0820 | 1.0402 | | No log | 0.1852 | 20 | 1.1433 | 0.1304 | 1.1433 | 1.0692 | | No log | 0.2037 | 22 | 1.1494 | 0.1304 | 1.1494 | 1.0721 | | No log | 0.2222 | 24 | 1.2463 | 0.4970 | 1.2463 | 1.1164 | | No log | 0.2407 | 26 | 1.2877 | 0.4355 | 1.2877 | 1.1348 | | No log | 0.2593 | 28 | 1.1758 | 0.2222 | 1.1758 | 1.0844 | | No log | 0.2778 | 30 | 1.1531 | 0.1304 | 1.1531 | 1.0738 | | No log | 0.2963 | 32 | 1.1866 | 0.1304 | 1.1866 | 1.0893 | | No log | 0.3148 | 34 | 1.1585 | 0.1304 | 1.1585 | 1.0763 | | No log | 0.3333 | 36 | 1.1030 | 0.1304 | 1.1030 | 1.0503 | | No log | 0.3519 | 38 | 1.0650 | 0.1304 | 1.0650 | 1.0320 | | No log | 0.3704 | 40 | 1.0345 | 0.1304 | 1.0345 | 1.0171 | | No log | 0.3889 | 42 | 1.0224 | 0.1304 | 1.0224 | 1.0111 | | No log | 0.4074 | 44 | 1.0254 | 0.1304 | 1.0254 | 1.0126 | | No log | 0.4259 | 46 | 1.0111 | 0.1304 | 1.0111 | 1.0055 | | No log | 0.4444 | 48 | 0.9729 | 0.1304 | 0.9729 | 0.9864 | | No log | 0.4630 | 50 | 0.9464 | 0.1304 | 0.9464 | 0.9728 | | No log | 0.4815 | 52 | 0.9424 | 0.1304 | 0.9424 | 0.9708 | | No log | 0.5 | 54 | 0.9260 | 0.1304 | 0.9260 | 0.9623 | | No log | 0.5185 | 56 | 0.9080 | 0.1304 | 0.9080 | 0.9529 | | No log | 0.5370 | 58 | 0.8864 | 0.1304 | 0.8864 | 0.9415 | | No log | 0.5556 | 60 | 0.8358 | 0.3050 | 0.8358 | 0.9142 | | No log | 0.5741 | 62 | 0.8136 | 0.3050 | 0.8136 | 0.9020 | | No log | 0.5926 | 64 | 0.7762 | 0.3050 | 0.7762 | 0.8810 | | No log | 0.6111 | 66 | 0.7666 | 0.2391 | 0.7666 | 0.8756 | | No log | 0.6296 | 68 | 0.7170 | 0.2832 | 0.7170 | 0.8468 | | No log | 0.6481 | 70 | 0.6751 | 0.2832 | 0.6751 | 0.8216 | | No log | 0.6667 | 72 | 0.6154 | 0.3208 | 0.6154 | 0.7845 | | No log | 0.6852 | 74 | 0.5818 | 0.4096 | 0.5818 | 0.7627 | | No log | 0.7037 | 76 | 0.5655 | 0.4946 | 0.5655 | 0.7520 | | No log | 0.7222 | 78 | 0.5537 | 0.4096 | 0.5537 | 0.7441 | | No log | 0.7407 | 80 | 0.5606 | 0.3657 | 0.5606 | 0.7487 | | No log | 0.7593 | 82 | 0.6472 | 0.3972 | 0.6472 | 0.8045 | | No log | 0.7778 | 84 | 0.7671 | 0.3841 | 0.7671 | 0.8758 | | No log | 0.7963 | 86 | 0.7833 | 0.3841 | 0.7833 | 0.8850 | | No log | 0.8148 | 88 | 0.7584 | 0.3841 | 0.7584 | 0.8709 | | No log | 0.8333 | 90 | 0.7027 | 0.3548 | 0.7027 | 0.8383 | | No log | 0.8519 | 92 | 0.7281 | 0.3548 | 0.7281 | 0.8533 | | No log | 0.8704 | 94 | 0.7842 | 0.2905 | 0.7842 | 0.8856 | | No log | 0.8889 | 96 | 0.7542 | 0.4231 | 0.7542 | 0.8685 | | No log | 0.9074 | 98 | 0.8230 | 0.5729 | 0.8230 | 0.9072 | | No log | 0.9259 | 100 | 0.9533 | 0.5139 | 0.9533 | 0.9764 | | No log | 0.9444 | 102 | 1.0232 | 0.4582 | 1.0232 | 1.0115 | | No log | 0.9630 | 104 | 1.0743 | 0.4130 | 1.0743 | 1.0365 | | No log | 0.9815 | 106 | 1.0227 | 0.4655 | 1.0227 | 1.0113 | | No log | 1.0 | 108 | 0.9380 | 0.4676 | 0.9380 | 0.9685 | | No log | 1.0185 | 110 | 0.7411 | 0.5946 | 0.7411 | 0.8609 | | No log | 1.0370 | 112 | 0.6964 | 0.4901 | 0.6964 | 0.8345 | | No log | 1.0556 | 114 | 0.6990 | 0.4940 | 0.6990 | 0.8361 | | No log | 1.0741 | 116 | 0.6899 | 0.3354 | 0.6899 | 0.8306 | | No log | 1.0926 | 118 | 0.7119 | 0.4813 | 0.7119 | 0.8437 | | No log | 1.1111 | 120 | 0.8203 | 0.5330 | 0.8203 | 0.9057 | | No log | 1.1296 | 122 | 0.8125 | 0.5276 | 0.8125 | 0.9014 | | No log | 1.1481 | 124 | 0.7418 | 0.5330 | 0.7418 | 0.8613 | | No log | 1.1667 | 126 | 0.7611 | 0.5729 | 0.7611 | 0.8724 | | No log | 1.1852 | 128 | 0.9341 | 0.4676 | 0.9341 | 0.9665 | | No log | 1.2037 | 130 | 1.1338 | 0.4676 | 1.1338 | 1.0648 | | No log | 1.2222 | 132 | 1.2227 | 0.3946 | 1.2227 | 1.1058 | | No log | 1.2407 | 134 | 1.2400 | 0.3946 | 1.2400 | 1.1136 | | No log | 1.2593 | 136 | 1.1491 | 0.4676 | 1.1491 | 1.0719 | | No log | 1.2778 | 138 | 1.0369 | 0.4483 | 1.0369 | 1.0183 | | No log | 1.2963 | 140 | 0.9086 | 0.4483 | 0.9086 | 0.9532 | | No log | 1.3148 | 142 | 0.9423 | 0.4676 | 0.9423 | 0.9707 | | No log | 1.3333 | 144 | 0.9357 | 0.4676 | 0.9357 | 0.9673 | | No log | 1.3519 | 146 | 0.8002 | 0.5165 | 0.8002 | 0.8946 | | No log | 1.3704 | 148 | 0.6537 | 0.6200 | 0.6537 | 0.8085 | | No log | 1.3889 | 150 | 0.6345 | 0.6200 | 0.6345 | 0.7966 | | No log | 1.4074 | 152 | 0.6985 | 0.6200 | 0.6985 | 0.8357 | | No log | 1.4259 | 154 | 0.8518 | 0.5181 | 0.8518 | 0.9229 | | No log | 1.4444 | 156 | 0.8783 | 0.5662 | 0.8783 | 0.9372 | | No log | 1.4630 | 158 | 0.8082 | 0.5973 | 0.8082 | 0.8990 | | No log | 1.4815 | 160 | 0.7793 | 0.6468 | 0.7793 | 0.8828 | | No log | 1.5 | 162 | 0.8251 | 0.6222 | 0.8251 | 0.9084 | | No log | 1.5185 | 164 | 0.9471 | 0.4469 | 0.9471 | 0.9732 | | No log | 1.5370 | 166 | 1.0205 | 0.5117 | 1.0205 | 1.0102 | | No log | 1.5556 | 168 | 0.8448 | 0.5662 | 0.8448 | 0.9191 | | No log | 1.5741 | 170 | 0.6096 | 0.6306 | 0.6096 | 0.7808 | | No log | 1.5926 | 172 | 0.5804 | 0.6597 | 0.5804 | 0.7619 | | No log | 1.6111 | 174 | 0.6309 | 0.6306 | 0.6309 | 0.7943 | | No log | 1.6296 | 176 | 0.8015 | 0.6721 | 0.8015 | 0.8953 | | No log | 1.6481 | 178 | 0.8965 | 0.5662 | 0.8965 | 0.9468 | | No log | 1.6667 | 180 | 0.7707 | 0.6977 | 0.7707 | 0.8779 | | No log | 1.6852 | 182 | 0.6547 | 0.6491 | 0.6547 | 0.8091 | | No log | 1.7037 | 184 | 0.6357 | 0.6491 | 0.6357 | 0.7973 | | No log | 1.7222 | 186 | 0.6268 | 0.6491 | 0.6268 | 0.7917 | | No log | 1.7407 | 188 | 0.6535 | 0.6491 | 0.6535 | 0.8084 | | No log | 1.7593 | 190 | 0.6949 | 0.6610 | 0.6949 | 0.8336 | | No log | 1.7778 | 192 | 0.6904 | 0.6875 | 0.6904 | 0.8309 | | No log | 1.7963 | 194 | 0.6727 | 0.6875 | 0.6727 | 0.8202 | | No log | 1.8148 | 196 | 0.7053 | 0.6875 | 0.7053 | 0.8398 | | No log | 1.8333 | 198 | 0.7764 | 0.6610 | 0.7764 | 0.8811 | | No log | 1.8519 | 200 | 0.7458 | 0.6610 | 0.7458 | 0.8636 | | No log | 1.8704 | 202 | 0.6949 | 0.6610 | 0.6949 | 0.8336 | | No log | 1.8889 | 204 | 0.6180 | 0.6875 | 0.6180 | 0.7861 | | No log | 1.9074 | 206 | 0.6012 | 0.7267 | 0.6012 | 0.7754 | | No log | 1.9259 | 208 | 0.5997 | 0.7267 | 0.5997 | 0.7744 | | No log | 1.9444 | 210 | 0.6111 | 0.7267 | 0.6111 | 0.7817 | | No log | 1.9630 | 212 | 0.6189 | 0.7267 | 0.6189 | 0.7867 | | No log | 1.9815 | 214 | 0.6399 | 0.6875 | 0.6399 | 0.8000 | | No log | 2.0 | 216 | 0.6977 | 0.6610 | 0.6977 | 0.8353 | | No log | 2.0185 | 218 | 0.8200 | 0.6341 | 0.8200 | 0.9055 | | No log | 2.0370 | 220 | 0.9273 | 0.5465 | 0.9273 | 0.9630 | | No log | 2.0556 | 222 | 0.9850 | 0.5205 | 0.9850 | 0.9925 | | No log | 2.0741 | 224 | 1.0705 | 0.4912 | 1.0705 | 1.0346 | | No log | 2.0926 | 226 | 1.0222 | 0.5402 | 1.0222 | 1.0110 | | No log | 2.1111 | 228 | 0.9135 | 0.5205 | 0.9135 | 0.9558 | | No log | 2.1296 | 230 | 0.8471 | 0.5991 | 0.8471 | 0.9204 | | No log | 2.1481 | 232 | 0.7860 | 0.6069 | 0.7860 | 0.8866 | | No log | 2.1667 | 234 | 0.7967 | 0.6069 | 0.7967 | 0.8926 | | No log | 2.1852 | 236 | 0.8680 | 0.6341 | 0.8680 | 0.9317 | | No log | 2.2037 | 238 | 0.9025 | 0.6341 | 0.9025 | 0.9500 | | No log | 2.2222 | 240 | 0.8540 | 0.6341 | 0.8540 | 0.9241 | | No log | 2.2407 | 242 | 0.7437 | 0.6341 | 0.7437 | 0.8624 | | No log | 2.2593 | 244 | 0.6469 | 0.6491 | 0.6469 | 0.8043 | | No log | 2.2778 | 246 | 0.6494 | 0.5041 | 0.6494 | 0.8058 | | No log | 2.2963 | 248 | 0.6706 | 0.4809 | 0.6706 | 0.8189 | | No log | 2.3148 | 250 | 0.6641 | 0.4809 | 0.6641 | 0.8149 | | No log | 2.3333 | 252 | 0.6428 | 0.4809 | 0.6428 | 0.8018 | | No log | 2.3519 | 254 | 0.6061 | 0.7267 | 0.6061 | 0.7785 | | No log | 2.3704 | 256 | 0.6260 | 0.7018 | 0.6260 | 0.7912 | | No log | 2.3889 | 258 | 0.6140 | 0.7018 | 0.6140 | 0.7836 | | No log | 2.4074 | 260 | 0.5840 | 0.7267 | 0.5840 | 0.7642 | | No log | 2.4259 | 262 | 0.5905 | 0.7018 | 0.5905 | 0.7684 | | No log | 2.4444 | 264 | 0.6593 | 0.7351 | 0.6593 | 0.8120 | | No log | 2.4630 | 266 | 0.7959 | 0.6171 | 0.7959 | 0.8921 | | No log | 2.4815 | 268 | 0.8814 | 0.5852 | 0.8814 | 0.9388 | | No log | 2.5 | 270 | 0.9443 | 0.5852 | 0.9443 | 0.9717 | | No log | 2.5185 | 272 | 1.0251 | 0.5852 | 1.0251 | 1.0124 | | No log | 2.5370 | 274 | 1.0016 | 0.6258 | 1.0016 | 1.0008 | | No log | 2.5556 | 276 | 0.9451 | 0.6258 | 0.9451 | 0.9722 | | No log | 2.5741 | 278 | 0.8355 | 0.6809 | 0.8355 | 0.9141 | | No log | 2.5926 | 280 | 0.8232 | 0.6809 | 0.8232 | 0.9073 | | No log | 2.6111 | 282 | 0.8343 | 0.6488 | 0.8343 | 0.9134 | | No log | 2.6296 | 284 | 0.7983 | 0.6715 | 0.7983 | 0.8935 | | No log | 2.6481 | 286 | 0.7124 | 0.7588 | 0.7124 | 0.8441 | | No log | 2.6667 | 288 | 0.6131 | 0.7588 | 0.6131 | 0.7830 | | No log | 2.6852 | 290 | 0.5427 | 0.7511 | 0.5427 | 0.7367 | | No log | 2.7037 | 292 | 0.5408 | 0.7419 | 0.5408 | 0.7354 | | No log | 2.7222 | 294 | 0.5923 | 0.7419 | 0.5923 | 0.7696 | | No log | 2.7407 | 296 | 0.6411 | 0.7186 | 0.6411 | 0.8007 | | No log | 2.7593 | 298 | 0.7416 | 0.7379 | 0.7416 | 0.8612 | | No log | 2.7778 | 300 | 0.7585 | 0.7379 | 0.7585 | 0.8709 | | No log | 2.7963 | 302 | 0.6385 | 0.7077 | 0.6385 | 0.7990 | | No log | 2.8148 | 304 | 0.5313 | 0.7186 | 0.5313 | 0.7289 | | No log | 2.8333 | 306 | 0.4911 | 0.6854 | 0.4911 | 0.7008 | | No log | 2.8519 | 308 | 0.5176 | 0.7186 | 0.5176 | 0.7195 | | No log | 2.8704 | 310 | 0.5922 | 0.7186 | 0.5922 | 0.7696 | | No log | 2.8889 | 312 | 0.6482 | 0.7186 | 0.6482 | 0.8051 | | No log | 2.9074 | 314 | 0.7012 | 0.7186 | 0.7012 | 0.8374 | | No log | 2.9259 | 316 | 0.6843 | 0.7267 | 0.6843 | 0.8272 | | No log | 2.9444 | 318 | 0.5690 | 0.7267 | 0.5690 | 0.7543 | | No log | 2.9630 | 320 | 0.4705 | 0.6854 | 0.4705 | 0.6859 | | No log | 2.9815 | 322 | 0.4456 | 0.6963 | 0.4456 | 0.6675 | | No log | 3.0 | 324 | 0.4433 | 0.7826 | 0.4433 | 0.6658 | | No log | 3.0185 | 326 | 0.4563 | 0.8109 | 0.4563 | 0.6755 | | No log | 3.0370 | 328 | 0.4688 | 0.7465 | 0.4688 | 0.6847 | | No log | 3.0556 | 330 | 0.5550 | 0.7419 | 0.5550 | 0.7450 | | No log | 3.0741 | 332 | 0.6241 | 0.7267 | 0.6241 | 0.7900 | | No log | 3.0926 | 334 | 0.5939 | 0.7419 | 0.5939 | 0.7706 | | No log | 3.1111 | 336 | 0.5722 | 0.7511 | 0.5722 | 0.7564 | | No log | 3.1296 | 338 | 0.5861 | 0.7267 | 0.5861 | 0.7656 | | No log | 3.1481 | 340 | 0.6048 | 0.7267 | 0.6048 | 0.7777 | | No log | 3.1667 | 342 | 0.6298 | 0.7267 | 0.6298 | 0.7936 | | No log | 3.1852 | 344 | 0.7273 | 0.7267 | 0.7273 | 0.8528 | | No log | 3.2037 | 346 | 0.7824 | 0.7271 | 0.7824 | 0.8845 | | No log | 3.2222 | 348 | 0.7969 | 0.7271 | 0.7969 | 0.8927 | | No log | 3.2407 | 350 | 0.7635 | 0.7271 | 0.7635 | 0.8738 | | No log | 3.2593 | 352 | 0.7172 | 0.7269 | 0.7172 | 0.8469 | | No log | 3.2778 | 354 | 0.7213 | 0.7018 | 0.7213 | 0.8493 | | No log | 3.2963 | 356 | 0.7053 | 0.7018 | 0.7053 | 0.8398 | | No log | 3.3148 | 358 | 0.6747 | 0.7018 | 0.6747 | 0.8214 | | No log | 3.3333 | 360 | 0.6658 | 0.7018 | 0.6658 | 0.8160 | | No log | 3.3519 | 362 | 0.6681 | 0.7018 | 0.6681 | 0.8174 | | No log | 3.3704 | 364 | 0.6068 | 0.7018 | 0.6068 | 0.7790 | | No log | 3.3889 | 366 | 0.5700 | 0.7304 | 0.5700 | 0.7550 | | No log | 3.4074 | 368 | 0.5779 | 0.7343 | 0.5779 | 0.7602 | | No log | 3.4259 | 370 | 0.5928 | 0.7080 | 0.5928 | 0.7699 | | No log | 3.4444 | 372 | 0.5966 | 0.7080 | 0.5966 | 0.7724 | | No log | 3.4630 | 374 | 0.6141 | 0.7647 | 0.6141 | 0.7836 | | No log | 3.4815 | 376 | 0.6613 | 0.7018 | 0.6613 | 0.8132 | | No log | 3.5 | 378 | 0.6767 | 0.7018 | 0.6767 | 0.8226 | | No log | 3.5185 | 380 | 0.6510 | 0.7018 | 0.6510 | 0.8068 | | No log | 3.5370 | 382 | 0.5857 | 0.7018 | 0.5857 | 0.7653 | | No log | 3.5556 | 384 | 0.5180 | 0.7018 | 0.5180 | 0.7197 | | No log | 3.5741 | 386 | 0.4853 | 0.7531 | 0.4853 | 0.6966 | | No log | 3.5926 | 388 | 0.4938 | 0.7136 | 0.4938 | 0.7027 | | No log | 3.6111 | 390 | 0.5799 | 0.7018 | 0.5799 | 0.7615 | | No log | 3.6296 | 392 | 0.6651 | 0.7018 | 0.6651 | 0.8155 | | No log | 3.6481 | 394 | 0.7330 | 0.7018 | 0.7330 | 0.8562 | | No log | 3.6667 | 396 | 0.7058 | 0.7018 | 0.7058 | 0.8401 | | No log | 3.6852 | 398 | 0.6642 | 0.7018 | 0.6642 | 0.8150 | | No log | 3.7037 | 400 | 0.6355 | 0.7267 | 0.6355 | 0.7972 | | No log | 3.7222 | 402 | 0.6365 | 0.7267 | 0.6365 | 0.7978 | | No log | 3.7407 | 404 | 0.6021 | 0.7267 | 0.6021 | 0.7760 | | No log | 3.7593 | 406 | 0.5315 | 0.7419 | 0.5315 | 0.7291 | | No log | 3.7778 | 408 | 0.4960 | 0.7216 | 0.4960 | 0.7043 | | No log | 3.7963 | 410 | 0.4933 | 0.7465 | 0.4933 | 0.7024 | | No log | 3.8148 | 412 | 0.5080 | 0.7545 | 0.5080 | 0.7127 | | No log | 3.8333 | 414 | 0.5403 | 0.7419 | 0.5403 | 0.7351 | | No log | 3.8519 | 416 | 0.6044 | 0.7267 | 0.6044 | 0.7774 | | No log | 3.8704 | 418 | 0.6456 | 0.7267 | 0.6456 | 0.8035 | | No log | 3.8889 | 420 | 0.6241 | 0.7267 | 0.6241 | 0.7900 | | No log | 3.9074 | 422 | 0.5728 | 0.7267 | 0.5728 | 0.7568 | | No log | 3.9259 | 424 | 0.5290 | 0.7267 | 0.5290 | 0.7273 | | No log | 3.9444 | 426 | 0.5204 | 0.7267 | 0.5204 | 0.7214 | | No log | 3.9630 | 428 | 0.5263 | 0.7018 | 0.5263 | 0.7254 | | No log | 3.9815 | 430 | 0.5676 | 0.7018 | 0.5676 | 0.7534 | | No log | 4.0 | 432 | 0.6368 | 0.6909 | 0.6368 | 0.7980 | | No log | 4.0185 | 434 | 0.6328 | 0.6909 | 0.6328 | 0.7955 | | No log | 4.0370 | 436 | 0.5862 | 0.6909 | 0.5862 | 0.7656 | | No log | 4.0556 | 438 | 0.5039 | 0.7018 | 0.5039 | 0.7098 | | No log | 4.0741 | 440 | 0.4337 | 0.7647 | 0.4337 | 0.6586 | | No log | 4.0926 | 442 | 0.4224 | 0.7602 | 0.4224 | 0.6499 | | No log | 4.1111 | 444 | 0.4559 | 0.7636 | 0.4559 | 0.6752 | | No log | 4.1296 | 446 | 0.4593 | 0.7636 | 0.4593 | 0.6777 | | No log | 4.1481 | 448 | 0.4501 | 0.75 | 0.4501 | 0.6709 | | No log | 4.1667 | 450 | 0.4624 | 0.7897 | 0.4624 | 0.6800 | | No log | 4.1852 | 452 | 0.5136 | 0.7511 | 0.5136 | 0.7166 | | No log | 4.2037 | 454 | 0.5615 | 0.7267 | 0.5615 | 0.7493 | | No log | 4.2222 | 456 | 0.5883 | 0.7267 | 0.5883 | 0.7670 | | No log | 4.2407 | 458 | 0.5664 | 0.7511 | 0.5664 | 0.7526 | | No log | 4.2593 | 460 | 0.5935 | 0.7511 | 0.5935 | 0.7704 | | No log | 4.2778 | 462 | 0.6155 | 0.7267 | 0.6155 | 0.7845 | | No log | 4.2963 | 464 | 0.6231 | 0.7267 | 0.6231 | 0.7894 | | No log | 4.3148 | 466 | 0.6484 | 0.6909 | 0.6484 | 0.8052 | | No log | 4.3333 | 468 | 0.6807 | 0.6909 | 0.6807 | 0.8250 | | No log | 4.3519 | 470 | 0.6994 | 0.6909 | 0.6994 | 0.8363 | | No log | 4.3704 | 472 | 0.6629 | 0.6909 | 0.6629 | 0.8142 | | No log | 4.3889 | 474 | 0.6277 | 0.6909 | 0.6277 | 0.7923 | | No log | 4.4074 | 476 | 0.5914 | 0.7267 | 0.5914 | 0.7690 | | No log | 4.4259 | 478 | 0.5947 | 0.7149 | 0.5947 | 0.7711 | | No log | 4.4444 | 480 | 0.5757 | 0.7267 | 0.5757 | 0.7588 | | No log | 4.4630 | 482 | 0.5471 | 0.7267 | 0.5471 | 0.7396 | | No log | 4.4815 | 484 | 0.5387 | 0.7267 | 0.5387 | 0.7340 | | No log | 4.5 | 486 | 0.5287 | 0.7267 | 0.5287 | 0.7271 | | No log | 4.5185 | 488 | 0.4734 | 0.7037 | 0.4734 | 0.6881 | | No log | 4.5370 | 490 | 0.4334 | 0.7442 | 0.4334 | 0.6584 | | No log | 4.5556 | 492 | 0.4309 | 0.7442 | 0.4309 | 0.6564 | | No log | 4.5741 | 494 | 0.4650 | 0.7304 | 0.4650 | 0.6819 | | No log | 4.5926 | 496 | 0.5100 | 0.7267 | 0.5100 | 0.7141 | | No log | 4.6111 | 498 | 0.5774 | 0.7267 | 0.5774 | 0.7598 | | 0.3612 | 4.6296 | 500 | 0.6143 | 0.7267 | 0.6143 | 0.7838 | | 0.3612 | 4.6481 | 502 | 0.5963 | 0.7267 | 0.5963 | 0.7722 | | 0.3612 | 4.6667 | 504 | 0.5837 | 0.7267 | 0.5837 | 0.7640 | | 0.3612 | 4.6852 | 506 | 0.5419 | 0.7267 | 0.5419 | 0.7362 | | 0.3612 | 4.7037 | 508 | 0.5203 | 0.7511 | 0.5203 | 0.7213 | | 0.3612 | 4.7222 | 510 | 0.5376 | 0.7267 | 0.5376 | 0.7332 | | 0.3612 | 4.7407 | 512 | 0.5589 | 0.7267 | 0.5589 | 0.7476 | | 0.3612 | 4.7593 | 514 | 0.5857 | 0.7267 | 0.5857 | 0.7653 | | 0.3612 | 4.7778 | 516 | 0.5742 | 0.7267 | 0.5742 | 0.7578 | | 0.3612 | 4.7963 | 518 | 0.5565 | 0.7267 | 0.5565 | 0.7460 | | 0.3612 | 4.8148 | 520 | 0.5191 | 0.7176 | 0.5191 | 0.7205 | | 0.3612 | 4.8333 | 522 | 0.4910 | 0.7465 | 0.4910 | 0.7007 | | 0.3612 | 4.8519 | 524 | 0.4922 | 0.7465 | 0.4922 | 0.7016 | | 0.3612 | 4.8704 | 526 | 0.4951 | 0.7465 | 0.4951 | 0.7036 | | 0.3612 | 4.8889 | 528 | 0.5057 | 0.7176 | 0.5057 | 0.7111 | | 0.3612 | 4.9074 | 530 | 0.5410 | 0.7267 | 0.5410 | 0.7355 | | 0.3612 | 4.9259 | 532 | 0.5603 | 0.7267 | 0.5603 | 0.7485 | | 0.3612 | 4.9444 | 534 | 0.5625 | 0.7267 | 0.5625 | 0.7500 | | 0.3612 | 4.9630 | 536 | 0.6082 | 0.7267 | 0.6082 | 0.7799 | | 0.3612 | 4.9815 | 538 | 0.6694 | 0.6909 | 0.6694 | 0.8181 | | 0.3612 | 5.0 | 540 | 0.7058 | 0.6909 | 0.7058 | 0.8401 | | 0.3612 | 5.0185 | 542 | 0.7442 | 0.6909 | 0.7442 | 0.8627 | | 0.3612 | 5.0370 | 544 | 0.7898 | 0.6488 | 0.7898 | 0.8887 | | 0.3612 | 5.0556 | 546 | 0.8132 | 0.6488 | 0.8132 | 0.9018 | | 0.3612 | 5.0741 | 548 | 0.7959 | 0.6488 | 0.7959 | 0.8921 | | 0.3612 | 5.0926 | 550 | 0.7613 | 0.6488 | 0.7613 | 0.8725 | | 0.3612 | 5.1111 | 552 | 0.6824 | 0.6909 | 0.6824 | 0.8261 | | 0.3612 | 5.1296 | 554 | 0.6230 | 0.6909 | 0.6230 | 0.7893 | | 0.3612 | 5.1481 | 556 | 0.5759 | 0.7267 | 0.5759 | 0.7589 | | 0.3612 | 5.1667 | 558 | 0.5419 | 0.7267 | 0.5419 | 0.7361 | | 0.3612 | 5.1852 | 560 | 0.5131 | 0.7267 | 0.5131 | 0.7163 | | 0.3612 | 5.2037 | 562 | 0.5183 | 0.7267 | 0.5183 | 0.7199 | | 0.3612 | 5.2222 | 564 | 0.5069 | 0.7304 | 0.5069 | 0.7120 | | 0.3612 | 5.2407 | 566 | 0.4994 | 0.7712 | 0.4994 | 0.7067 | | 0.3612 | 5.2593 | 568 | 0.5000 | 0.7712 | 0.5000 | 0.7071 | | 0.3612 | 5.2778 | 570 | 0.5011 | 0.7712 | 0.5011 | 0.7079 | | 0.3612 | 5.2963 | 572 | 0.5060 | 0.7712 | 0.5060 | 0.7113 | | 0.3612 | 5.3148 | 574 | 0.5106 | 0.7712 | 0.5106 | 0.7146 | | 0.3612 | 5.3333 | 576 | 0.5132 | 0.7712 | 0.5132 | 0.7164 | | 0.3612 | 5.3519 | 578 | 0.5152 | 0.7712 | 0.5152 | 0.7178 | | 0.3612 | 5.3704 | 580 | 0.5158 | 0.7712 | 0.5158 | 0.7182 | | 0.3612 | 5.3889 | 582 | 0.5228 | 0.7712 | 0.5228 | 0.7230 | | 0.3612 | 5.4074 | 584 | 0.5297 | 0.7216 | 0.5297 | 0.7278 | | 0.3612 | 5.4259 | 586 | 0.5368 | 0.6963 | 0.5368 | 0.7327 | | 0.3612 | 5.4444 | 588 | 0.5283 | 0.6963 | 0.5283 | 0.7268 | | 0.3612 | 5.4630 | 590 | 0.5090 | 0.7712 | 0.5090 | 0.7135 | | 0.3612 | 5.4815 | 592 | 0.4998 | 0.7163 | 0.4998 | 0.7070 | | 0.3612 | 5.5 | 594 | 0.4902 | 0.7163 | 0.4902 | 0.7001 | | 0.3612 | 5.5185 | 596 | 0.4758 | 0.7857 | 0.4758 | 0.6898 | | 0.3612 | 5.5370 | 598 | 0.4672 | 0.7857 | 0.4672 | 0.6835 | | 0.3612 | 5.5556 | 600 | 0.4522 | 0.7985 | 0.4522 | 0.6725 | | 0.3612 | 5.5741 | 602 | 0.4414 | 0.7985 | 0.4414 | 0.6644 | | 0.3612 | 5.5926 | 604 | 0.4773 | 0.7393 | 0.4773 | 0.6909 | | 0.3612 | 5.6111 | 606 | 0.5057 | 0.7267 | 0.5057 | 0.7111 | | 0.3612 | 5.6296 | 608 | 0.5414 | 0.7267 | 0.5414 | 0.7358 | | 0.3612 | 5.6481 | 610 | 0.6106 | 0.7267 | 0.6106 | 0.7814 | | 0.3612 | 5.6667 | 612 | 0.6572 | 0.6667 | 0.6572 | 0.8107 | | 0.3612 | 5.6852 | 614 | 0.6516 | 0.6667 | 0.6516 | 0.8072 | | 0.3612 | 5.7037 | 616 | 0.6110 | 0.6667 | 0.6110 | 0.7816 | | 0.3612 | 5.7222 | 618 | 0.5559 | 0.6767 | 0.5559 | 0.7456 | | 0.3612 | 5.7407 | 620 | 0.5238 | 0.6491 | 0.5238 | 0.7238 | | 0.3612 | 5.7593 | 622 | 0.5219 | 0.7037 | 0.5219 | 0.7224 | | 0.3612 | 5.7778 | 624 | 0.5290 | 0.7037 | 0.5290 | 0.7273 | | 0.3612 | 5.7963 | 626 | 0.5263 | 0.7037 | 0.5263 | 0.7254 | | 0.3612 | 5.8148 | 628 | 0.5101 | 0.7037 | 0.5101 | 0.7142 | | 0.3612 | 5.8333 | 630 | 0.5139 | 0.7393 | 0.5139 | 0.7169 | | 0.3612 | 5.8519 | 632 | 0.5491 | 0.7267 | 0.5491 | 0.7410 | | 0.3612 | 5.8704 | 634 | 0.5871 | 0.7267 | 0.5871 | 0.7662 | | 0.3612 | 5.8889 | 636 | 0.5843 | 0.7267 | 0.5843 | 0.7644 | | 0.3612 | 5.9074 | 638 | 0.5706 | 0.7267 | 0.5706 | 0.7554 | | 0.3612 | 5.9259 | 640 | 0.5543 | 0.7267 | 0.5543 | 0.7445 | | 0.3612 | 5.9444 | 642 | 0.5103 | 0.7393 | 0.5103 | 0.7143 | | 0.3612 | 5.9630 | 644 | 0.4849 | 0.7393 | 0.4849 | 0.6964 | | 0.3612 | 5.9815 | 646 | 0.4947 | 0.7393 | 0.4947 | 0.7034 | | 0.3612 | 6.0 | 648 | 0.4964 | 0.7647 | 0.4964 | 0.7046 | | 0.3612 | 6.0185 | 650 | 0.4983 | 0.7647 | 0.4983 | 0.7059 | | 0.3612 | 6.0370 | 652 | 0.5081 | 0.7647 | 0.5081 | 0.7128 | | 0.3612 | 6.0556 | 654 | 0.5159 | 0.7647 | 0.5159 | 0.7183 | | 0.3612 | 6.0741 | 656 | 0.5225 | 0.7647 | 0.5225 | 0.7228 | | 0.3612 | 6.0926 | 658 | 0.5731 | 0.7267 | 0.5731 | 0.7570 | | 0.3612 | 6.1111 | 660 | 0.6058 | 0.7267 | 0.6058 | 0.7783 | | 0.3612 | 6.1296 | 662 | 0.6256 | 0.7267 | 0.6256 | 0.7910 | | 0.3612 | 6.1481 | 664 | 0.6473 | 0.7267 | 0.6473 | 0.8046 | | 0.3612 | 6.1667 | 666 | 0.6722 | 0.7267 | 0.6722 | 0.8199 | | 0.3612 | 6.1852 | 668 | 0.7150 | 0.6909 | 0.7150 | 0.8456 | | 0.3612 | 6.2037 | 670 | 0.7604 | 0.6909 | 0.7604 | 0.8720 | | 0.3612 | 6.2222 | 672 | 0.7850 | 0.6715 | 0.7850 | 0.8860 | | 0.3612 | 6.2407 | 674 | 0.7855 | 0.6939 | 0.7855 | 0.8863 | | 0.3612 | 6.2593 | 676 | 0.7527 | 0.7149 | 0.7527 | 0.8676 | | 0.3612 | 6.2778 | 678 | 0.6970 | 0.7149 | 0.6970 | 0.8349 | | 0.3612 | 6.2963 | 680 | 0.6623 | 0.7267 | 0.6623 | 0.8138 | | 0.3612 | 6.3148 | 682 | 0.6268 | 0.7267 | 0.6268 | 0.7917 | | 0.3612 | 6.3333 | 684 | 0.5982 | 0.7267 | 0.5982 | 0.7734 | | 0.3612 | 6.3519 | 686 | 0.5846 | 0.7267 | 0.5846 | 0.7646 | | 0.3612 | 6.3704 | 688 | 0.5748 | 0.7267 | 0.5748 | 0.7582 | | 0.3612 | 6.3889 | 690 | 0.5801 | 0.7267 | 0.5801 | 0.7616 | | 0.3612 | 6.4074 | 692 | 0.5871 | 0.7267 | 0.5871 | 0.7663 | | 0.3612 | 6.4259 | 694 | 0.5967 | 0.7267 | 0.5967 | 0.7725 | | 0.3612 | 6.4444 | 696 | 0.6016 | 0.7267 | 0.6016 | 0.7756 | | 0.3612 | 6.4630 | 698 | 0.6127 | 0.7267 | 0.6127 | 0.7828 | | 0.3612 | 6.4815 | 700 | 0.6228 | 0.7267 | 0.6228 | 0.7892 | | 0.3612 | 6.5 | 702 | 0.6258 | 0.7267 | 0.6258 | 0.7911 | | 0.3612 | 6.5185 | 704 | 0.6340 | 0.7267 | 0.6340 | 0.7963 | | 0.3612 | 6.5370 | 706 | 0.6607 | 0.7267 | 0.6607 | 0.8128 | | 0.3612 | 6.5556 | 708 | 0.6839 | 0.7149 | 0.6839 | 0.8270 | | 0.3612 | 6.5741 | 710 | 0.7257 | 0.6909 | 0.7257 | 0.8519 | | 0.3612 | 6.5926 | 712 | 0.7846 | 0.6939 | 0.7846 | 0.8858 | | 0.3612 | 6.6111 | 714 | 0.8158 | 0.6964 | 0.8158 | 0.9032 | | 0.3612 | 6.6296 | 716 | 0.8150 | 0.6964 | 0.8150 | 0.9028 | | 0.3612 | 6.6481 | 718 | 0.7901 | 0.6964 | 0.7901 | 0.8889 | | 0.3612 | 6.6667 | 720 | 0.7571 | 0.6939 | 0.7571 | 0.8701 | | 0.3612 | 6.6852 | 722 | 0.7032 | 0.7267 | 0.7032 | 0.8386 | | 0.3612 | 6.7037 | 724 | 0.6414 | 0.6606 | 0.6414 | 0.8009 | | 0.3612 | 6.7222 | 726 | 0.6026 | 0.6606 | 0.6026 | 0.7762 | | 0.3612 | 6.7407 | 728 | 0.6019 | 0.6606 | 0.6019 | 0.7758 | | 0.3612 | 6.7593 | 730 | 0.6243 | 0.7267 | 0.6243 | 0.7901 | | 0.3612 | 6.7778 | 732 | 0.6687 | 0.7267 | 0.6687 | 0.8178 | | 0.3612 | 6.7963 | 734 | 0.7230 | 0.7160 | 0.7230 | 0.8503 | | 0.3612 | 6.8148 | 736 | 0.7518 | 0.7160 | 0.7518 | 0.8671 | | 0.3612 | 6.8333 | 738 | 0.7497 | 0.7160 | 0.7497 | 0.8659 | | 0.3612 | 6.8519 | 740 | 0.7193 | 0.7149 | 0.7193 | 0.8481 | | 0.3612 | 6.8704 | 742 | 0.6748 | 0.7149 | 0.6748 | 0.8215 | | 0.3612 | 6.8889 | 744 | 0.6270 | 0.7149 | 0.6270 | 0.7918 | | 0.3612 | 6.9074 | 746 | 0.6004 | 0.7267 | 0.6004 | 0.7749 | | 0.3612 | 6.9259 | 748 | 0.5866 | 0.7267 | 0.5866 | 0.7659 | | 0.3612 | 6.9444 | 750 | 0.5831 | 0.7267 | 0.5831 | 0.7636 | | 0.3612 | 6.9630 | 752 | 0.5796 | 0.7267 | 0.5796 | 0.7613 | | 0.3612 | 6.9815 | 754 | 0.5875 | 0.7267 | 0.5875 | 0.7665 | | 0.3612 | 7.0 | 756 | 0.5976 | 0.7267 | 0.5976 | 0.7731 | | 0.3612 | 7.0185 | 758 | 0.6083 | 0.7267 | 0.6083 | 0.7800 | | 0.3612 | 7.0370 | 760 | 0.6040 | 0.7267 | 0.6040 | 0.7772 | | 0.3612 | 7.0556 | 762 | 0.5885 | 0.6854 | 0.5885 | 0.7672 | | 0.3612 | 7.0741 | 764 | 0.5838 | 0.6495 | 0.5838 | 0.7641 | | 0.3612 | 7.0926 | 766 | 0.5761 | 0.6594 | 0.5761 | 0.7590 | | 0.3612 | 7.1111 | 768 | 0.5771 | 0.6594 | 0.5771 | 0.7597 | | 0.3612 | 7.1296 | 770 | 0.5801 | 0.6495 | 0.5801 | 0.7616 | | 0.3612 | 7.1481 | 772 | 0.5879 | 0.6495 | 0.5879 | 0.7667 | | 0.3612 | 7.1667 | 774 | 0.5891 | 0.6495 | 0.5891 | 0.7676 | | 0.3612 | 7.1852 | 776 | 0.5821 | 0.6495 | 0.5821 | 0.7630 | | 0.3612 | 7.2037 | 778 | 0.5738 | 0.6860 | 0.5738 | 0.7575 | | 0.3612 | 7.2222 | 780 | 0.5671 | 0.6860 | 0.5671 | 0.7530 | | 0.3612 | 7.2407 | 782 | 0.5640 | 0.6860 | 0.5640 | 0.7510 | | 0.3612 | 7.2593 | 784 | 0.5565 | 0.6860 | 0.5565 | 0.7460 | | 0.3612 | 7.2778 | 786 | 0.5615 | 0.6860 | 0.5615 | 0.7493 | | 0.3612 | 7.2963 | 788 | 0.5829 | 0.6235 | 0.5829 | 0.7635 | | 0.3612 | 7.3148 | 790 | 0.6189 | 0.6606 | 0.6189 | 0.7867 | | 0.3612 | 7.3333 | 792 | 0.6579 | 0.7267 | 0.6579 | 0.8111 | | 0.3612 | 7.3519 | 794 | 0.6875 | 0.7149 | 0.6875 | 0.8291 | | 0.3612 | 7.3704 | 796 | 0.7140 | 0.7149 | 0.7140 | 0.8450 | | 0.3612 | 7.3889 | 798 | 0.7215 | 0.7149 | 0.7215 | 0.8494 | | 0.3612 | 7.4074 | 800 | 0.7079 | 0.7149 | 0.7079 | 0.8414 | | 0.3612 | 7.4259 | 802 | 0.6889 | 0.7149 | 0.6889 | 0.8300 | | 0.3612 | 7.4444 | 804 | 0.6644 | 0.7267 | 0.6644 | 0.8151 | | 0.3612 | 7.4630 | 806 | 0.6418 | 0.7267 | 0.6418 | 0.8011 | | 0.3612 | 7.4815 | 808 | 0.6421 | 0.7267 | 0.6421 | 0.8013 | | 0.3612 | 7.5 | 810 | 0.6396 | 0.7267 | 0.6396 | 0.7997 | | 0.3612 | 7.5185 | 812 | 0.6456 | 0.7267 | 0.6456 | 0.8035 | | 0.3612 | 7.5370 | 814 | 0.6588 | 0.7267 | 0.6588 | 0.8117 | | 0.3612 | 7.5556 | 816 | 0.6756 | 0.7267 | 0.6756 | 0.8220 | | 0.3612 | 7.5741 | 818 | 0.6997 | 0.7267 | 0.6997 | 0.8365 | | 0.3612 | 7.5926 | 820 | 0.7158 | 0.7160 | 0.7158 | 0.8461 | | 0.3612 | 7.6111 | 822 | 0.7264 | 0.7160 | 0.7264 | 0.8523 | | 0.3612 | 7.6296 | 824 | 0.7158 | 0.7149 | 0.7158 | 0.8460 | | 0.3612 | 7.6481 | 826 | 0.6939 | 0.7267 | 0.6939 | 0.8330 | | 0.3612 | 7.6667 | 828 | 0.6555 | 0.7267 | 0.6555 | 0.8096 | | 0.3612 | 7.6852 | 830 | 0.6405 | 0.7267 | 0.6405 | 0.8003 | | 0.3612 | 7.7037 | 832 | 0.6288 | 0.7267 | 0.6288 | 0.7930 | | 0.3612 | 7.7222 | 834 | 0.6225 | 0.7267 | 0.6225 | 0.7890 | | 0.3612 | 7.7407 | 836 | 0.6230 | 0.7267 | 0.6230 | 0.7893 | | 0.3612 | 7.7593 | 838 | 0.6183 | 0.7267 | 0.6183 | 0.7863 | | 0.3612 | 7.7778 | 840 | 0.6096 | 0.7267 | 0.6096 | 0.7807 | | 0.3612 | 7.7963 | 842 | 0.5950 | 0.7267 | 0.5950 | 0.7714 | | 0.3612 | 7.8148 | 844 | 0.5767 | 0.7267 | 0.5767 | 0.7594 | | 0.3612 | 7.8333 | 846 | 0.5588 | 0.7267 | 0.5588 | 0.7475 | | 0.3612 | 7.8519 | 848 | 0.5255 | 0.7267 | 0.5255 | 0.7249 | | 0.3612 | 7.8704 | 850 | 0.5075 | 0.7267 | 0.5075 | 0.7124 | | 0.3612 | 7.8889 | 852 | 0.5028 | 0.7267 | 0.5028 | 0.7091 | | 0.3612 | 7.9074 | 854 | 0.4876 | 0.7267 | 0.4876 | 0.6983 | | 0.3612 | 7.9259 | 856 | 0.4835 | 0.7267 | 0.4835 | 0.6954 | | 0.3612 | 7.9444 | 858 | 0.4882 | 0.7267 | 0.4882 | 0.6987 | | 0.3612 | 7.9630 | 860 | 0.4989 | 0.7267 | 0.4989 | 0.7063 | | 0.3612 | 7.9815 | 862 | 0.5147 | 0.7267 | 0.5147 | 0.7174 | | 0.3612 | 8.0 | 864 | 0.5260 | 0.7267 | 0.5260 | 0.7253 | | 0.3612 | 8.0185 | 866 | 0.5380 | 0.7267 | 0.5380 | 0.7335 | | 0.3612 | 8.0370 | 868 | 0.5316 | 0.7267 | 0.5316 | 0.7291 | | 0.3612 | 8.0556 | 870 | 0.5101 | 0.7267 | 0.5101 | 0.7142 | | 0.3612 | 8.0741 | 872 | 0.5039 | 0.7267 | 0.5039 | 0.7099 | | 0.3612 | 8.0926 | 874 | 0.5033 | 0.7267 | 0.5033 | 0.7095 | | 0.3612 | 8.1111 | 876 | 0.4982 | 0.7794 | 0.4982 | 0.7058 | | 0.3612 | 8.1296 | 878 | 0.5067 | 0.7794 | 0.5067 | 0.7118 | | 0.3612 | 8.1481 | 880 | 0.5242 | 0.7267 | 0.5242 | 0.7240 | | 0.3612 | 8.1667 | 882 | 0.5403 | 0.7267 | 0.5403 | 0.7350 | | 0.3612 | 8.1852 | 884 | 0.5511 | 0.7267 | 0.5511 | 0.7424 | | 0.3612 | 8.2037 | 886 | 0.5481 | 0.7267 | 0.5481 | 0.7404 | | 0.3612 | 8.2222 | 888 | 0.5493 | 0.7267 | 0.5493 | 0.7411 | | 0.3612 | 8.2407 | 890 | 0.5524 | 0.7267 | 0.5524 | 0.7432 | | 0.3612 | 8.2593 | 892 | 0.5499 | 0.7267 | 0.5499 | 0.7416 | | 0.3612 | 8.2778 | 894 | 0.5601 | 0.7267 | 0.5601 | 0.7484 | | 0.3612 | 8.2963 | 896 | 0.5766 | 0.7267 | 0.5766 | 0.7593 | | 0.3612 | 8.3148 | 898 | 0.5784 | 0.7267 | 0.5784 | 0.7605 | | 0.3612 | 8.3333 | 900 | 0.5671 | 0.7267 | 0.5671 | 0.7531 | | 0.3612 | 8.3519 | 902 | 0.5491 | 0.7267 | 0.5491 | 0.7410 | | 0.3612 | 8.3704 | 904 | 0.5475 | 0.7267 | 0.5475 | 0.7399 | | 0.3612 | 8.3889 | 906 | 0.5429 | 0.7267 | 0.5429 | 0.7368 | | 0.3612 | 8.4074 | 908 | 0.5422 | 0.7267 | 0.5422 | 0.7364 | | 0.3612 | 8.4259 | 910 | 0.5461 | 0.7267 | 0.5461 | 0.7390 | | 0.3612 | 8.4444 | 912 | 0.5593 | 0.7267 | 0.5593 | 0.7479 | | 0.3612 | 8.4630 | 914 | 0.5732 | 0.7267 | 0.5732 | 0.7571 | | 0.3612 | 8.4815 | 916 | 0.5812 | 0.7267 | 0.5812 | 0.7624 | | 0.3612 | 8.5 | 918 | 0.5892 | 0.7267 | 0.5892 | 0.7676 | | 0.3612 | 8.5185 | 920 | 0.5941 | 0.7267 | 0.5941 | 0.7708 | | 0.3612 | 8.5370 | 922 | 0.6049 | 0.7267 | 0.6049 | 0.7778 | | 0.3612 | 8.5556 | 924 | 0.6141 | 0.7267 | 0.6141 | 0.7836 | | 0.3612 | 8.5741 | 926 | 0.6163 | 0.7267 | 0.6163 | 0.7850 | | 0.3612 | 8.5926 | 928 | 0.6224 | 0.7267 | 0.6224 | 0.7889 | | 0.3612 | 8.6111 | 930 | 0.6298 | 0.7018 | 0.6298 | 0.7936 | | 0.3612 | 8.6296 | 932 | 0.6295 | 0.7018 | 0.6295 | 0.7934 | | 0.3612 | 8.6481 | 934 | 0.6365 | 0.7018 | 0.6365 | 0.7978 | | 0.3612 | 8.6667 | 936 | 0.6409 | 0.7018 | 0.6409 | 0.8005 | | 0.3612 | 8.6852 | 938 | 0.6327 | 0.7018 | 0.6327 | 0.7955 | | 0.3612 | 8.7037 | 940 | 0.6179 | 0.7018 | 0.6179 | 0.7861 | | 0.3612 | 8.7222 | 942 | 0.5986 | 0.7267 | 0.5986 | 0.7737 | | 0.3612 | 8.7407 | 944 | 0.5739 | 0.7267 | 0.5739 | 0.7575 | | 0.3612 | 8.7593 | 946 | 0.5460 | 0.7267 | 0.5460 | 0.7389 | | 0.3612 | 8.7778 | 948 | 0.5123 | 0.7267 | 0.5123 | 0.7158 | | 0.3612 | 8.7963 | 950 | 0.4858 | 0.7393 | 0.4858 | 0.6970 | | 0.3612 | 8.8148 | 952 | 0.4779 | 0.7267 | 0.4779 | 0.6913 | | 0.3612 | 8.8333 | 954 | 0.4824 | 0.7267 | 0.4824 | 0.6945 | | 0.3612 | 8.8519 | 956 | 0.4980 | 0.7267 | 0.4980 | 0.7057 | | 0.3612 | 8.8704 | 958 | 0.5258 | 0.7267 | 0.5258 | 0.7251 | | 0.3612 | 8.8889 | 960 | 0.5625 | 0.7267 | 0.5625 | 0.7500 | | 0.3612 | 8.9074 | 962 | 0.5913 | 0.7018 | 0.5913 | 0.7690 | | 0.3612 | 8.9259 | 964 | 0.6153 | 0.7018 | 0.6153 | 0.7844 | | 0.3612 | 8.9444 | 966 | 0.6281 | 0.7040 | 0.6281 | 0.7926 | | 0.3612 | 8.9630 | 968 | 0.6304 | 0.7040 | 0.6304 | 0.7940 | | 0.3612 | 8.9815 | 970 | 0.6295 | 0.7040 | 0.6295 | 0.7934 | | 0.3612 | 9.0 | 972 | 0.6284 | 0.7040 | 0.6284 | 0.7927 | | 0.3612 | 9.0185 | 974 | 0.6157 | 0.7018 | 0.6157 | 0.7846 | | 0.3612 | 9.0370 | 976 | 0.5976 | 0.7018 | 0.5976 | 0.7731 | | 0.3612 | 9.0556 | 978 | 0.5780 | 0.7018 | 0.5780 | 0.7603 | | 0.3612 | 9.0741 | 980 | 0.5660 | 0.7267 | 0.5660 | 0.7524 | | 0.3612 | 9.0926 | 982 | 0.5576 | 0.7267 | 0.5576 | 0.7467 | | 0.3612 | 9.1111 | 984 | 0.5509 | 0.7267 | 0.5509 | 0.7422 | | 0.3612 | 9.1296 | 986 | 0.5470 | 0.7267 | 0.5470 | 0.7396 | | 0.3612 | 9.1481 | 988 | 0.5443 | 0.7267 | 0.5443 | 0.7377 | | 0.3612 | 9.1667 | 990 | 0.5455 | 0.7267 | 0.5455 | 0.7386 | | 0.3612 | 9.1852 | 992 | 0.5498 | 0.7267 | 0.5498 | 0.7415 | | 0.3612 | 9.2037 | 994 | 0.5622 | 0.7018 | 0.5622 | 0.7498 | | 0.3612 | 9.2222 | 996 | 0.5778 | 0.7018 | 0.5778 | 0.7601 | | 0.3612 | 9.2407 | 998 | 0.5882 | 0.7018 | 0.5882 | 0.7669 | | 0.064 | 9.2593 | 1000 | 0.6001 | 0.7018 | 0.6001 | 0.7746 | | 0.064 | 9.2778 | 1002 | 0.6051 | 0.7018 | 0.6051 | 0.7779 | | 0.064 | 9.2963 | 1004 | 0.6147 | 0.7040 | 0.6147 | 0.7840 | | 0.064 | 9.3148 | 1006 | 0.6215 | 0.7040 | 0.6215 | 0.7883 | | 0.064 | 9.3333 | 1008 | 0.6282 | 0.7040 | 0.6282 | 0.7926 | | 0.064 | 9.3519 | 1010 | 0.6388 | 0.7451 | 0.6388 | 0.7992 | | 0.064 | 9.3704 | 1012 | 0.6445 | 0.7451 | 0.6445 | 0.8028 | | 0.064 | 9.3889 | 1014 | 0.6441 | 0.7451 | 0.6441 | 0.8025 | | 0.064 | 9.4074 | 1016 | 0.6384 | 0.7451 | 0.6384 | 0.7990 | | 0.064 | 9.4259 | 1018 | 0.6289 | 0.7451 | 0.6289 | 0.7930 | | 0.064 | 9.4444 | 1020 | 0.6178 | 0.7040 | 0.6178 | 0.7860 | | 0.064 | 9.4630 | 1022 | 0.6028 | 0.7040 | 0.6028 | 0.7764 | | 0.064 | 9.4815 | 1024 | 0.5922 | 0.7018 | 0.5922 | 0.7695 | | 0.064 | 9.5 | 1026 | 0.5824 | 0.7018 | 0.5824 | 0.7632 | | 0.064 | 9.5185 | 1028 | 0.5738 | 0.7267 | 0.5738 | 0.7575 | | 0.064 | 9.5370 | 1030 | 0.5689 | 0.7267 | 0.5689 | 0.7542 | | 0.064 | 9.5556 | 1032 | 0.5624 | 0.7267 | 0.5624 | 0.7500 | | 0.064 | 9.5741 | 1034 | 0.5573 | 0.7267 | 0.5573 | 0.7465 | | 0.064 | 9.5926 | 1036 | 0.5527 | 0.7267 | 0.5527 | 0.7435 | | 0.064 | 9.6111 | 1038 | 0.5482 | 0.7267 | 0.5482 | 0.7404 | | 0.064 | 9.6296 | 1040 | 0.5450 | 0.7267 | 0.5450 | 0.7382 | | 0.064 | 9.6481 | 1042 | 0.5425 | 0.7267 | 0.5425 | 0.7366 | | 0.064 | 9.6667 | 1044 | 0.5402 | 0.7267 | 0.5402 | 0.7350 | | 0.064 | 9.6852 | 1046 | 0.5383 | 0.7267 | 0.5383 | 0.7337 | | 0.064 | 9.7037 | 1048 | 0.5391 | 0.7267 | 0.5391 | 0.7342 | | 0.064 | 9.7222 | 1050 | 0.5401 | 0.7267 | 0.5401 | 0.7349 | | 0.064 | 9.7407 | 1052 | 0.5410 | 0.7267 | 0.5410 | 0.7355 | | 0.064 | 9.7593 | 1054 | 0.5421 | 0.7267 | 0.5421 | 0.7363 | | 0.064 | 9.7778 | 1056 | 0.5421 | 0.7267 | 0.5421 | 0.7363 | | 0.064 | 9.7963 | 1058 | 0.5421 | 0.7267 | 0.5421 | 0.7362 | | 0.064 | 9.8148 | 1060 | 0.5418 | 0.7267 | 0.5418 | 0.7361 | | 0.064 | 9.8333 | 1062 | 0.5416 | 0.7267 | 0.5416 | 0.7359 | | 0.064 | 9.8519 | 1064 | 0.5421 | 0.7267 | 0.5421 | 0.7363 | | 0.064 | 9.8704 | 1066 | 0.5425 | 0.7267 | 0.5425 | 0.7365 | | 0.064 | 9.8889 | 1068 | 0.5430 | 0.7267 | 0.5430 | 0.7369 | | 0.064 | 9.9074 | 1070 | 0.5428 | 0.7267 | 0.5428 | 0.7368 | | 0.064 | 9.9259 | 1072 | 0.5423 | 0.7267 | 0.5423 | 0.7364 | | 0.064 | 9.9444 | 1074 | 0.5424 | 0.7267 | 0.5424 | 0.7365 | | 0.064 | 9.9630 | 1076 | 0.5427 | 0.7267 | 0.5427 | 0.7367 | | 0.064 | 9.9815 | 1078 | 0.5429 | 0.7267 | 0.5429 | 0.7368 | | 0.064 | 10.0 | 1080 | 0.5431 | 0.7267 | 0.5431 | 0.7369 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
furrutiav/roberta_mixtral_nllfg_rubric_sst2_tf_idf_perplexity
furrutiav
2024-11-25T16:17:13Z
105
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-11-25T16:16:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
exala/db_fe2_2.2
exala
2024-11-25T16:14:11Z
107
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T16:13:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
camidenecken/RoBERTa-RM1-v2-4-rm-v29
camidenecken
2024-11-25T16:12:06Z
186
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T16:11:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PrunaAI/yosefw-llama-3.2-180m-amharic-instruct-apo-bnb-8bit-smashed
PrunaAI
2024-11-25T16:11:11Z
5
0
null
[ "safetensors", "llama", "pruna-ai", "base_model:yosefw/llama-3.2-180m-amharic-instruct-apo", "base_model:quantized:yosefw/llama-3.2-180m-amharic-instruct-apo", "8-bit", "bitsandbytes", "region:us" ]
null
2024-11-25T15:07:35Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: yosefw/llama-3.2-180m-amharic-instruct-apo metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo yosefw/llama-3.2-180m-amharic-instruct-apo installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/yosefw-llama-3.2-180m-amharic-instruct-apo-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("yosefw/llama-3.2-180m-amharic-instruct-apo") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model yosefw/llama-3.2-180m-amharic-instruct-apo before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
ctranslate2-4you/Qwen2.5-0.5B-Instruct-ct2-int8
ctranslate2-4you
2024-11-25T16:10:29Z
7
0
null
[ "ctranslate2", "Qwen2.5", "chat", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:quantized:Qwen/Qwen2.5-0.5B-Instruct", "region:us" ]
null
2024-11-25T14:14:31Z
--- base_model: - Qwen/Qwen2.5-0.5B-Instruct base_model_relation: quantized tags: - ctranslate2 - Qwen2.5 - chat --- Conversion of https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct into the ```ctranslate2``` format using ```int8``` quantization. NOTE #1: This requires a version of ```ctranslate2``` GREATER THAN 4.5.0. NOTE #2: The sample scripts below require ```pip``` installing the necessary ```CUDA``` and ```CUDNN``` libraries. If you rely on a systemwide installation instead, adjust your code accordingly. Requirements: - torch 2.4.0+cu124 - nvidia-cublas-cu12 12.4.2.65 - nvidia-cuda-nvrtc-cu12 12.4.99 - nvidia-cuda-runtime-cu12 12.4.99 - nvidia-cudnn-cu12 9.1.0.70 - numpy==1.26.4 (YOU MUST DOWNGRADE FROM THE NUMPY VERSION THAT CTRANSLATE2 INSTALLS BY DEFAULT) - All other traditional dependencies like ```transformers```, ```accelerate```, etc. <details><summary>Sample Script #1 (non-streaming):</summary> ```Python import sys import os os.environ['KMP_DUPLICATE_LIB_OK']='TRUE' from pathlib import Path def set_cuda_paths(): venv_base = Path(sys.executable).parent.parent nvidia_base_path = venv_base / 'Lib' / 'site-packages' / 'nvidia' cuda_path = nvidia_base_path / 'cuda_runtime' / 'bin' cublas_path = nvidia_base_path / 'cublas' / 'bin' cudnn_path = nvidia_base_path / 'cudnn' / 'bin' nvrtc_path = nvidia_base_path / 'cuda_nvrtc' / 'bin' paths_to_add = [ str(cuda_path), str(cublas_path), str(cudnn_path), str(nvrtc_path), ] env_vars = ['CUDA_PATH', 'CUDA_PATH_V12_4', 'PATH'] for env_var in env_vars: current_value = os.environ.get(env_var, '') new_value = os.pathsep.join(paths_to_add + [current_value] if current_value else paths_to_add) os.environ[env_var] = new_value set_cuda_paths() import ctranslate2 import gc import torch from transformers import AutoTokenizer import pynvml from constants import user_message, system_message pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex(0) model_dir = r"[INSERT PATH TO FOLDER CONTAINING THE MODEL FILES HERE]" def build_prompt(): prompt = f"""<|im_start|>system {system_message}<|im_end|> <|im_start|>user {user_message}<|im_end|> <|im_start|>assistant """ return prompt def main(): model_name = os.path.basename(model_dir) beam_size_value = 1 intra_threads = max(os.cpu_count() - 4, 4) generator = ctranslate2.Generator( model_dir, device="cuda", compute_type="int8", intra_threads=intra_threads ) tokenizer = AutoTokenizer.from_pretrained(model_dir, add_prefix_space=None) prompt = build_prompt() tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)) results_batch = generator.generate_batch( [tokens], include_prompt_in_result=False, max_batch_size=4096, batch_type="tokens", beam_size=beam_size_value, num_hypotheses=1, max_length=512, sampling_temperature=0.0, ) output = tokenizer.decode(results_batch[0].sequences_ids[0]) print("\nGenerated response:\n") print(output) del generator del tokenizer torch.cuda.empty_cache() gc.collect() if __name__ == "__main__": main() ``` </details> <details><summary>Sample Script #2 (streaming)</summary> ```Python import sys import os os.environ['KMP_DUPLICATE_LIB_OK']='TRUE' from pathlib import Path def set_cuda_paths(): venv_base = Path(sys.executable).parent.parent nvidia_base_path = venv_base / 'Lib' / 'site-packages' / 'nvidia' cuda_path = nvidia_base_path / 'cuda_runtime' / 'bin' cublas_path = nvidia_base_path / 'cublas' / 'bin' cudnn_path = nvidia_base_path / 'cudnn' / 'bin' nvrtc_path = nvidia_base_path / 'cuda_nvrtc' / 'bin' paths_to_add = [ str(cuda_path), str(cublas_path), str(cudnn_path), str(nvrtc_path), ] env_vars = ['CUDA_PATH', 'CUDA_PATH_V12_4', 'PATH'] for env_var in env_vars: current_value = os.environ.get(env_var, '') new_value = os.pathsep.join(paths_to_add + [current_value] if current_value else paths_to_add) os.environ[env_var] = new_value set_cuda_paths() import ctranslate2 import gc import torch from transformers import AutoTokenizer import pynvml from constants import user_message, system_message pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex(0) model_dir = r"[PATH TO FOLDER CONTAINING THE MODEL FILES]" def build_prompt(): prompt = f"""<|im_start|>system {system_message}<|im_end|> <|im_start|>user {user_message}<|im_end|> <|im_start|>assistant """ return prompt def main(): generator = ctranslate2.Generator( model_dir, device="cuda", compute_type="int8", ) tokenizer = AutoTokenizer.from_pretrained(model_dir) prompt = build_prompt() tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)) # Initialize token iterator token_iterator = generator.generate_tokens( [tokens], max_length=512, sampling_temperature=0.0 ) decoded_output = "" tokens_buffer = [] try: for token_result in token_iterator: token_id = token_result.token_id token = tokenizer.convert_ids_to_tokens(token_id) if token_id == tokenizer.eos_token_id: break is_new_word = token.startswith("Δ ") if is_new_word and tokens_buffer: word = tokenizer.decode(tokens_buffer) print(word, end='', flush=True) decoded_output += word tokens_buffer = [] tokens_buffer.append(token_id) if tokens_buffer: word = tokenizer.decode(tokens_buffer) print(word, end='', flush=True) decoded_output += word except KeyboardInterrupt: print("\nGeneration interrupted") del generator del tokenizer torch.cuda.empty_cache() gc.collect() if __name__ == "__main__": main() ``` </details>
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k20_task5_organization_fold1
MayBashendy
2024-11-25T16:08:29Z
165
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:59:07Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k20_task5_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k20_task5_organization_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7190 - Qwk: 0.7418 - Mse: 0.7190 - Rmse: 0.8479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0208 | 2 | 3.7011 | -0.0414 | 3.7011 | 1.9238 | | No log | 0.0417 | 4 | 2.4385 | -0.0438 | 2.4385 | 1.5616 | | No log | 0.0625 | 6 | 1.7510 | -0.1905 | 1.7510 | 1.3232 | | No log | 0.0833 | 8 | 1.3098 | 0.0074 | 1.3098 | 1.1445 | | No log | 0.1042 | 10 | 1.3472 | 0.1337 | 1.3472 | 1.1607 | | No log | 0.125 | 12 | 1.3634 | 0.1784 | 1.3634 | 1.1677 | | No log | 0.1458 | 14 | 1.2057 | 0.4609 | 1.2057 | 1.0980 | | No log | 0.1667 | 16 | 0.9815 | 0.2279 | 0.9815 | 0.9907 | | No log | 0.1875 | 18 | 0.9497 | 0.1571 | 0.9497 | 0.9746 | | No log | 0.2083 | 20 | 0.9661 | 0.1571 | 0.9661 | 0.9829 | | No log | 0.2292 | 22 | 0.9711 | 0.1571 | 0.9711 | 0.9854 | | No log | 0.25 | 24 | 0.9842 | 0.1571 | 0.9842 | 0.9921 | | No log | 0.2708 | 26 | 1.0060 | 0.1571 | 1.0060 | 1.0030 | | No log | 0.2917 | 28 | 1.0494 | 0.1571 | 1.0494 | 1.0244 | | No log | 0.3125 | 30 | 1.0682 | 0.2279 | 1.0682 | 1.0335 | | No log | 0.3333 | 32 | 1.0762 | 0.2279 | 1.0762 | 1.0374 | | No log | 0.3542 | 34 | 1.1360 | 0.3354 | 1.1360 | 1.0659 | | No log | 0.375 | 36 | 1.0428 | 0.2857 | 1.0428 | 1.0212 | | No log | 0.3958 | 38 | 0.9391 | 0.2279 | 0.9391 | 0.9690 | | No log | 0.4167 | 40 | 0.9369 | 0.2279 | 0.9369 | 0.9679 | | No log | 0.4375 | 42 | 0.9362 | 0.1571 | 0.9362 | 0.9676 | | No log | 0.4583 | 44 | 0.9314 | 0.0 | 0.9314 | 0.9651 | | No log | 0.4792 | 46 | 0.8929 | 0.0734 | 0.8929 | 0.9449 | | No log | 0.5 | 48 | 0.7952 | 0.3448 | 0.7952 | 0.8918 | | No log | 0.5208 | 50 | 0.8192 | 0.4097 | 0.8192 | 0.9051 | | No log | 0.5417 | 52 | 0.8258 | 0.5318 | 0.8258 | 0.9087 | | No log | 0.5625 | 54 | 0.7687 | 0.5779 | 0.7687 | 0.8767 | | No log | 0.5833 | 56 | 0.7009 | 0.6439 | 0.7009 | 0.8372 | | No log | 0.6042 | 58 | 0.6385 | 0.6439 | 0.6385 | 0.7991 | | No log | 0.625 | 60 | 0.6227 | 0.7399 | 0.6227 | 0.7891 | | No log | 0.6458 | 62 | 0.7400 | 0.6073 | 0.7400 | 0.8602 | | No log | 0.6667 | 64 | 1.0882 | 0.2932 | 1.0882 | 1.0432 | | No log | 0.6875 | 66 | 1.3061 | 0.1501 | 1.3061 | 1.1429 | | No log | 0.7083 | 68 | 1.2952 | 0.2171 | 1.2952 | 1.1381 | | No log | 0.7292 | 70 | 1.1006 | 0.2279 | 1.1006 | 1.0491 | | No log | 0.75 | 72 | 0.7765 | 0.4516 | 0.7765 | 0.8812 | | No log | 0.7708 | 74 | 0.6270 | 0.4984 | 0.6270 | 0.7918 | | No log | 0.7917 | 76 | 0.7927 | 0.4586 | 0.7927 | 0.8903 | | No log | 0.8125 | 78 | 0.9862 | 0.4379 | 0.9862 | 0.9931 | | No log | 0.8333 | 80 | 1.0245 | 0.3884 | 1.0245 | 1.0122 | | No log | 0.8542 | 82 | 0.9010 | 0.2857 | 0.9010 | 0.9492 | | No log | 0.875 | 84 | 0.7488 | 0.3493 | 0.7488 | 0.8653 | | No log | 0.8958 | 86 | 0.7518 | 0.6037 | 0.7518 | 0.8671 | | No log | 0.9167 | 88 | 0.7576 | 0.5821 | 0.7576 | 0.8704 | | No log | 0.9375 | 90 | 0.7081 | 0.5584 | 0.7081 | 0.8415 | | No log | 0.9583 | 92 | 0.7491 | 0.5161 | 0.7491 | 0.8655 | | No log | 0.9792 | 94 | 0.7663 | 0.4684 | 0.7663 | 0.8754 | | No log | 1.0 | 96 | 0.7239 | 0.5584 | 0.7239 | 0.8508 | | No log | 1.0208 | 98 | 0.7146 | 0.5584 | 0.7146 | 0.8454 | | No log | 1.0417 | 100 | 0.7224 | 0.6012 | 0.7224 | 0.8500 | | No log | 1.0625 | 102 | 0.7056 | 0.6012 | 0.7056 | 0.8400 | | No log | 1.0833 | 104 | 0.7155 | 0.6012 | 0.7155 | 0.8459 | | No log | 1.1042 | 106 | 0.6799 | 0.5584 | 0.6799 | 0.8246 | | No log | 1.125 | 108 | 0.6474 | 0.5584 | 0.6474 | 0.8046 | | No log | 1.1458 | 110 | 0.6747 | 0.6460 | 0.6747 | 0.8214 | | No log | 1.1667 | 112 | 0.6933 | 0.6460 | 0.6933 | 0.8326 | | No log | 1.1875 | 114 | 0.6585 | 0.6460 | 0.6585 | 0.8115 | | No log | 1.2083 | 116 | 0.6325 | 0.6037 | 0.6325 | 0.7953 | | No log | 1.2292 | 118 | 0.6223 | 0.5870 | 0.6223 | 0.7889 | | No log | 1.25 | 120 | 0.6351 | 0.6264 | 0.6351 | 0.7969 | | No log | 1.2708 | 122 | 0.7259 | 0.6094 | 0.7259 | 0.8520 | | No log | 1.2917 | 124 | 0.7670 | 0.6247 | 0.7670 | 0.8758 | | No log | 1.3125 | 126 | 0.7328 | 0.6094 | 0.7328 | 0.8561 | | No log | 1.3333 | 128 | 0.6082 | 0.6817 | 0.6082 | 0.7799 | | No log | 1.3542 | 130 | 0.5767 | 0.5924 | 0.5767 | 0.7594 | | No log | 1.375 | 132 | 0.6116 | 0.6817 | 0.6116 | 0.7821 | | No log | 1.3958 | 134 | 0.6693 | 0.6094 | 0.6693 | 0.8181 | | No log | 1.4167 | 136 | 0.6543 | 0.5355 | 0.6543 | 0.8089 | | No log | 1.4375 | 138 | 0.6523 | 0.5518 | 0.6523 | 0.8076 | | No log | 1.4583 | 140 | 0.6589 | 0.5518 | 0.6589 | 0.8118 | | No log | 1.4792 | 142 | 0.6673 | 0.4100 | 0.6673 | 0.8169 | | No log | 1.5 | 144 | 0.6712 | 0.4540 | 0.6712 | 0.8193 | | No log | 1.5208 | 146 | 0.6968 | 0.4100 | 0.6968 | 0.8347 | | No log | 1.5417 | 148 | 0.6734 | 0.4540 | 0.6734 | 0.8206 | | No log | 1.5625 | 150 | 0.6436 | 0.5355 | 0.6436 | 0.8023 | | No log | 1.5833 | 152 | 0.6589 | 0.6094 | 0.6589 | 0.8117 | | No log | 1.6042 | 154 | 0.7504 | 0.6247 | 0.7504 | 0.8662 | | No log | 1.625 | 156 | 1.0720 | 0.4859 | 1.0720 | 1.0354 | | No log | 1.6458 | 158 | 1.4410 | 0.3258 | 1.4410 | 1.2004 | | No log | 1.6667 | 160 | 1.2955 | 0.3349 | 1.2955 | 1.1382 | | No log | 1.6875 | 162 | 1.1476 | 0.4221 | 1.1476 | 1.0713 | | No log | 1.7083 | 164 | 0.9996 | 0.5526 | 0.9996 | 0.9998 | | No log | 1.7292 | 166 | 1.1110 | 0.5526 | 1.1110 | 1.0540 | | No log | 1.75 | 168 | 1.4659 | 0.3797 | 1.4659 | 1.2107 | | No log | 1.7708 | 170 | 1.7049 | 0.3861 | 1.7049 | 1.3057 | | No log | 1.7917 | 172 | 1.6896 | 0.3390 | 1.6896 | 1.2998 | | No log | 1.8125 | 174 | 1.2575 | 0.4839 | 1.2575 | 1.1214 | | No log | 1.8333 | 176 | 0.8148 | 0.6088 | 0.8148 | 0.9026 | | No log | 1.8542 | 178 | 0.7265 | 0.6429 | 0.7265 | 0.8524 | | No log | 1.875 | 180 | 0.7599 | 0.4901 | 0.7599 | 0.8717 | | No log | 1.8958 | 182 | 0.8335 | 0.5687 | 0.8335 | 0.9130 | | No log | 1.9167 | 184 | 0.8147 | 0.5687 | 0.8147 | 0.9026 | | No log | 1.9375 | 186 | 0.7760 | 0.625 | 0.7760 | 0.8809 | | No log | 1.9583 | 188 | 0.7276 | 0.6610 | 0.7276 | 0.8530 | | No log | 1.9792 | 190 | 0.6921 | 0.6782 | 0.6921 | 0.8319 | | No log | 2.0 | 192 | 0.6482 | 0.6782 | 0.6482 | 0.8051 | | No log | 2.0208 | 194 | 0.6232 | 0.6948 | 0.6232 | 0.7894 | | No log | 2.0417 | 196 | 0.6357 | 0.6610 | 0.6357 | 0.7973 | | No log | 2.0625 | 198 | 0.6399 | 0.6462 | 0.6399 | 0.8000 | | No log | 2.0833 | 200 | 0.7567 | 0.6606 | 0.7567 | 0.8699 | | No log | 2.1042 | 202 | 0.8084 | 0.6606 | 0.8084 | 0.8991 | | No log | 2.125 | 204 | 0.9602 | 0.5800 | 0.9602 | 0.9799 | | No log | 2.1458 | 206 | 0.9414 | 0.6603 | 0.9414 | 0.9703 | | No log | 2.1667 | 208 | 0.9120 | 0.6606 | 0.9120 | 0.9550 | | No log | 2.1875 | 210 | 0.8045 | 0.6606 | 0.8045 | 0.8969 | | No log | 2.2083 | 212 | 0.7227 | 0.6610 | 0.7227 | 0.8501 | | No log | 2.2292 | 214 | 0.6818 | 0.6610 | 0.6818 | 0.8257 | | No log | 2.25 | 216 | 0.7249 | 0.6610 | 0.7249 | 0.8514 | | No log | 2.2708 | 218 | 0.8788 | 0.6603 | 0.8788 | 0.9374 | | No log | 2.2917 | 220 | 0.8864 | 0.5857 | 0.8864 | 0.9415 | | No log | 2.3125 | 222 | 0.7320 | 0.6614 | 0.7320 | 0.8556 | | No log | 2.3333 | 224 | 0.6556 | 0.7036 | 0.6556 | 0.8097 | | No log | 2.3542 | 226 | 0.5894 | 0.7210 | 0.5894 | 0.7677 | | No log | 2.375 | 228 | 0.5979 | 0.7210 | 0.5979 | 0.7732 | | No log | 2.3958 | 230 | 0.6902 | 0.6888 | 0.6902 | 0.8308 | | No log | 2.4167 | 232 | 0.7470 | 0.6603 | 0.7470 | 0.8643 | | No log | 2.4375 | 234 | 0.6721 | 0.6606 | 0.6721 | 0.8198 | | No log | 2.4583 | 236 | 0.5689 | 0.6782 | 0.5689 | 0.7543 | | No log | 2.4792 | 238 | 0.5290 | 0.7136 | 0.5290 | 0.7273 | | No log | 2.5 | 240 | 0.5427 | 0.6505 | 0.5427 | 0.7367 | | No log | 2.5208 | 242 | 0.5439 | 0.6114 | 0.5439 | 0.7375 | | No log | 2.5417 | 244 | 0.6309 | 0.6094 | 0.6309 | 0.7943 | | No log | 2.5625 | 246 | 0.8018 | 0.5972 | 0.8018 | 0.8954 | | No log | 2.5833 | 248 | 0.7668 | 0.5420 | 0.7668 | 0.8757 | | No log | 2.6042 | 250 | 0.6114 | 0.6094 | 0.6114 | 0.7819 | | No log | 2.625 | 252 | 0.5703 | 0.5990 | 0.5703 | 0.7552 | | No log | 2.6458 | 254 | 0.5820 | 0.5801 | 0.5820 | 0.7629 | | No log | 2.6667 | 256 | 0.5924 | 0.5990 | 0.5924 | 0.7697 | | No log | 2.6875 | 258 | 0.6686 | 0.6094 | 0.6686 | 0.8177 | | No log | 2.7083 | 260 | 0.7324 | 0.5420 | 0.7324 | 0.8558 | | No log | 2.7292 | 262 | 0.7380 | 0.6094 | 0.7380 | 0.8590 | | No log | 2.75 | 264 | 0.7309 | 0.6094 | 0.7309 | 0.8549 | | No log | 2.7708 | 266 | 0.6611 | 0.6094 | 0.6611 | 0.8131 | | No log | 2.7917 | 268 | 0.6155 | 0.6456 | 0.6155 | 0.7845 | | No log | 2.8125 | 270 | 0.5598 | 0.6474 | 0.5598 | 0.7482 | | No log | 2.8333 | 272 | 0.6019 | 0.6267 | 0.6019 | 0.7758 | | No log | 2.8542 | 274 | 0.7179 | 0.6094 | 0.7179 | 0.8473 | | No log | 2.875 | 276 | 0.7198 | 0.6094 | 0.7198 | 0.8484 | | No log | 2.8958 | 278 | 0.6403 | 0.6267 | 0.6403 | 0.8002 | | No log | 2.9167 | 280 | 0.5768 | 0.6267 | 0.5768 | 0.7595 | | No log | 2.9375 | 282 | 0.5532 | 0.6267 | 0.5532 | 0.7438 | | No log | 2.9583 | 284 | 0.5678 | 0.6267 | 0.5678 | 0.7535 | | No log | 2.9792 | 286 | 0.6677 | 0.6782 | 0.6677 | 0.8172 | | No log | 3.0 | 288 | 0.8790 | 0.5682 | 0.8790 | 0.9376 | | No log | 3.0208 | 290 | 0.9633 | 0.5783 | 0.9633 | 0.9815 | | No log | 3.0417 | 292 | 1.0460 | 0.5783 | 1.0460 | 1.0227 | | No log | 3.0625 | 294 | 1.1069 | 0.4784 | 1.1069 | 1.0521 | | No log | 3.0833 | 296 | 0.9274 | 0.5678 | 0.9274 | 0.9630 | | No log | 3.1042 | 298 | 0.6767 | 0.7053 | 0.6767 | 0.8226 | | No log | 3.125 | 300 | 0.6318 | 0.7085 | 0.6318 | 0.7948 | | No log | 3.1458 | 302 | 0.7266 | 0.6606 | 0.7266 | 0.8524 | | No log | 3.1667 | 304 | 0.8306 | 0.6603 | 0.8306 | 0.9114 | | No log | 3.1875 | 306 | 0.8492 | 0.6606 | 0.8492 | 0.9215 | | No log | 3.2083 | 308 | 0.7816 | 0.6606 | 0.7816 | 0.8841 | | No log | 3.2292 | 310 | 0.6829 | 0.6934 | 0.6829 | 0.8264 | | No log | 3.25 | 312 | 0.6681 | 0.6934 | 0.6681 | 0.8174 | | No log | 3.2708 | 314 | 0.6857 | 0.7241 | 0.6857 | 0.8281 | | No log | 3.2917 | 316 | 0.6776 | 0.7418 | 0.6776 | 0.8231 | | No log | 3.3125 | 318 | 0.6709 | 0.7254 | 0.6709 | 0.8191 | | No log | 3.3333 | 320 | 0.7204 | 0.7053 | 0.7204 | 0.8488 | | No log | 3.3542 | 322 | 0.7734 | 0.7024 | 0.7734 | 0.8794 | | No log | 3.375 | 324 | 0.7302 | 0.7172 | 0.7302 | 0.8545 | | No log | 3.3958 | 326 | 0.6286 | 0.7210 | 0.6286 | 0.7928 | | No log | 3.4167 | 328 | 0.6132 | 0.7418 | 0.6132 | 0.7831 | | No log | 3.4375 | 330 | 0.6468 | 0.6782 | 0.6468 | 0.8042 | | No log | 3.4583 | 332 | 0.5939 | 0.6782 | 0.5939 | 0.7706 | | No log | 3.4792 | 334 | 0.5561 | 0.6134 | 0.5561 | 0.7457 | | No log | 3.5 | 336 | 0.5552 | 0.6134 | 0.5552 | 0.7451 | | No log | 3.5208 | 338 | 0.5654 | 0.6632 | 0.5654 | 0.7519 | | No log | 3.5417 | 340 | 0.6991 | 0.6767 | 0.6991 | 0.8361 | | No log | 3.5625 | 342 | 0.8140 | 0.6603 | 0.8140 | 0.9022 | | No log | 3.5833 | 344 | 0.7830 | 0.6606 | 0.7830 | 0.8849 | | No log | 3.6042 | 346 | 0.7277 | 0.6909 | 0.7277 | 0.8530 | | No log | 3.625 | 348 | 0.7159 | 0.7160 | 0.7159 | 0.8461 | | No log | 3.6458 | 350 | 0.7340 | 0.7024 | 0.7340 | 0.8568 | | No log | 3.6667 | 352 | 0.8029 | 0.6888 | 0.8029 | 0.8960 | | No log | 3.6875 | 354 | 0.7444 | 0.7510 | 0.7444 | 0.8628 | | No log | 3.7083 | 356 | 0.6048 | 0.7053 | 0.6048 | 0.7777 | | No log | 3.7292 | 358 | 0.5510 | 0.7085 | 0.5510 | 0.7423 | | No log | 3.75 | 360 | 0.5601 | 0.7085 | 0.5601 | 0.7484 | | No log | 3.7708 | 362 | 0.6069 | 0.7085 | 0.6069 | 0.7791 | | No log | 3.7917 | 364 | 0.5448 | 0.6643 | 0.5448 | 0.7381 | | No log | 3.8125 | 366 | 0.5062 | 0.6643 | 0.5062 | 0.7115 | | No log | 3.8333 | 368 | 0.4992 | 0.6495 | 0.4992 | 0.7065 | | No log | 3.8542 | 370 | 0.5054 | 0.6643 | 0.5054 | 0.7109 | | No log | 3.875 | 372 | 0.5181 | 0.6643 | 0.5181 | 0.7198 | | No log | 3.8958 | 374 | 0.5842 | 0.6456 | 0.5842 | 0.7643 | | No log | 3.9167 | 376 | 0.6201 | 0.6456 | 0.6201 | 0.7875 | | No log | 3.9375 | 378 | 0.6011 | 0.6934 | 0.6011 | 0.7753 | | No log | 3.9583 | 380 | 0.5808 | 0.6934 | 0.5808 | 0.7621 | | No log | 3.9792 | 382 | 0.5520 | 0.7085 | 0.5520 | 0.7430 | | No log | 4.0 | 384 | 0.5867 | 0.7085 | 0.5867 | 0.7660 | | No log | 4.0208 | 386 | 0.7020 | 0.6603 | 0.7020 | 0.8379 | | No log | 4.0417 | 388 | 0.7933 | 0.6603 | 0.7933 | 0.8907 | | No log | 4.0625 | 390 | 0.8136 | 0.6458 | 0.8136 | 0.9020 | | No log | 4.0833 | 392 | 0.8246 | 0.5910 | 0.8246 | 0.9081 | | No log | 4.1042 | 394 | 0.7342 | 0.5824 | 0.7342 | 0.8568 | | No log | 4.125 | 396 | 0.5961 | 0.6782 | 0.5961 | 0.7721 | | No log | 4.1458 | 398 | 0.5394 | 0.6467 | 0.5394 | 0.7344 | | No log | 4.1667 | 400 | 0.5397 | 0.7317 | 0.5397 | 0.7346 | | No log | 4.1875 | 402 | 0.5678 | 0.7418 | 0.5678 | 0.7536 | | No log | 4.2083 | 404 | 0.6792 | 0.6909 | 0.6792 | 0.8241 | | No log | 4.2292 | 406 | 0.6988 | 0.6909 | 0.6988 | 0.8359 | | No log | 4.25 | 408 | 0.6683 | 0.7198 | 0.6683 | 0.8175 | | No log | 4.2708 | 410 | 0.6525 | 0.7036 | 0.6525 | 0.8078 | | No log | 4.2917 | 412 | 0.6641 | 0.7148 | 0.6641 | 0.8149 | | No log | 4.3125 | 414 | 0.6626 | 0.7148 | 0.6626 | 0.8140 | | No log | 4.3333 | 416 | 0.6131 | 0.7222 | 0.6131 | 0.7830 | | No log | 4.3542 | 418 | 0.6106 | 0.7222 | 0.6106 | 0.7814 | | No log | 4.375 | 420 | 0.6849 | 0.7137 | 0.6849 | 0.8276 | | No log | 4.3958 | 422 | 0.7866 | 0.6623 | 0.7866 | 0.8869 | | No log | 4.4167 | 424 | 0.7545 | 0.5962 | 0.7545 | 0.8686 | | No log | 4.4375 | 426 | 0.6560 | 0.6622 | 0.6560 | 0.8099 | | No log | 4.4583 | 428 | 0.5517 | 0.7374 | 0.5517 | 0.7427 | | No log | 4.4792 | 430 | 0.5236 | 0.6675 | 0.5236 | 0.7236 | | No log | 4.5 | 432 | 0.5290 | 0.6675 | 0.5290 | 0.7273 | | No log | 4.5208 | 434 | 0.5370 | 0.6514 | 0.5370 | 0.7328 | | No log | 4.5417 | 436 | 0.6001 | 0.7374 | 0.6001 | 0.7747 | | No log | 4.5625 | 438 | 0.7926 | 0.6452 | 0.7926 | 0.8903 | | No log | 4.5833 | 440 | 0.9031 | 0.5910 | 0.9031 | 0.9503 | | No log | 4.6042 | 442 | 0.8582 | 0.6458 | 0.8582 | 0.9264 | | No log | 4.625 | 444 | 0.7727 | 0.6452 | 0.7727 | 0.8790 | | No log | 4.6458 | 446 | 0.7203 | 0.6606 | 0.7203 | 0.8487 | | No log | 4.6667 | 448 | 0.6920 | 0.6610 | 0.6920 | 0.8319 | | No log | 4.6875 | 450 | 0.7367 | 0.6610 | 0.7367 | 0.8583 | | No log | 4.7083 | 452 | 0.8269 | 0.6606 | 0.8269 | 0.9093 | | No log | 4.7292 | 454 | 0.9118 | 0.6071 | 0.9118 | 0.9549 | | No log | 4.75 | 456 | 0.9079 | 0.62 | 0.9079 | 0.9528 | | No log | 4.7708 | 458 | 0.8365 | 0.62 | 0.8365 | 0.9146 | | No log | 4.7917 | 460 | 0.7491 | 0.6473 | 0.7491 | 0.8655 | | No log | 4.8125 | 462 | 0.7113 | 0.6767 | 0.7113 | 0.8434 | | No log | 4.8333 | 464 | 0.7313 | 0.6767 | 0.7313 | 0.8552 | | No log | 4.8542 | 466 | 0.7941 | 0.6477 | 0.7941 | 0.8911 | | No log | 4.875 | 468 | 0.8415 | 0.6852 | 0.8415 | 0.9174 | | No log | 4.8958 | 470 | 0.8336 | 0.6477 | 0.8336 | 0.9130 | | No log | 4.9167 | 472 | 0.7393 | 0.6909 | 0.7393 | 0.8598 | | No log | 4.9375 | 474 | 0.6122 | 0.7241 | 0.6122 | 0.7824 | | No log | 4.9583 | 476 | 0.5679 | 0.7254 | 0.5679 | 0.7536 | | No log | 4.9792 | 478 | 0.5886 | 0.7241 | 0.5886 | 0.7672 | | No log | 5.0 | 480 | 0.6417 | 0.7241 | 0.6417 | 0.8011 | | No log | 5.0208 | 482 | 0.6557 | 0.7241 | 0.6557 | 0.8098 | | No log | 5.0417 | 484 | 0.6092 | 0.7085 | 0.6092 | 0.7805 | | No log | 5.0625 | 486 | 0.5695 | 0.7254 | 0.5695 | 0.7547 | | No log | 5.0833 | 488 | 0.5659 | 0.7545 | 0.5659 | 0.7523 | | No log | 5.1042 | 490 | 0.5605 | 0.7386 | 0.5605 | 0.7487 | | No log | 5.125 | 492 | 0.5565 | 0.7545 | 0.5565 | 0.7460 | | No log | 5.1458 | 494 | 0.5932 | 0.7085 | 0.5932 | 0.7702 | | No log | 5.1667 | 496 | 0.6855 | 0.7241 | 0.6855 | 0.8280 | | No log | 5.1875 | 498 | 0.7112 | 0.6934 | 0.7112 | 0.8433 | | 0.4258 | 5.2083 | 500 | 0.6656 | 0.6934 | 0.6656 | 0.8158 | | 0.4258 | 5.2292 | 502 | 0.6273 | 0.6782 | 0.6273 | 0.7920 | | 0.4258 | 5.25 | 504 | 0.6333 | 0.6934 | 0.6333 | 0.7958 | | 0.4258 | 5.2708 | 506 | 0.6969 | 0.6610 | 0.6969 | 0.8348 | | 0.4258 | 5.2917 | 508 | 0.7932 | 0.6610 | 0.7932 | 0.8906 | | 0.4258 | 5.3125 | 510 | 0.8431 | 0.5625 | 0.8431 | 0.9182 | | 0.4258 | 5.3333 | 512 | 0.8018 | 0.6606 | 0.8018 | 0.8955 | | 0.4258 | 5.3542 | 514 | 0.7549 | 0.6606 | 0.7549 | 0.8689 | | 0.4258 | 5.375 | 516 | 0.7456 | 0.6610 | 0.7456 | 0.8635 | | 0.4258 | 5.3958 | 518 | 0.7993 | 0.62 | 0.7993 | 0.8940 | | 0.4258 | 5.4167 | 520 | 0.8120 | 0.62 | 0.8120 | 0.9011 | | 0.4258 | 5.4375 | 522 | 0.7604 | 0.6603 | 0.7604 | 0.8720 | | 0.4258 | 5.4583 | 524 | 0.7137 | 0.6606 | 0.7137 | 0.8448 | | 0.4258 | 5.4792 | 526 | 0.7237 | 0.6606 | 0.7237 | 0.8507 | | 0.4258 | 5.5 | 528 | 0.7494 | 0.6603 | 0.7494 | 0.8657 | | 0.4258 | 5.5208 | 530 | 0.7836 | 0.6603 | 0.7836 | 0.8852 | | 0.4258 | 5.5417 | 532 | 0.7249 | 0.6610 | 0.7249 | 0.8514 | | 0.4258 | 5.5625 | 534 | 0.6956 | 0.6610 | 0.6956 | 0.8340 | | 0.4258 | 5.5833 | 536 | 0.6818 | 0.6610 | 0.6818 | 0.8257 | | 0.4258 | 5.6042 | 538 | 0.7456 | 0.6606 | 0.7456 | 0.8635 | | 0.4258 | 5.625 | 540 | 0.8460 | 0.6458 | 0.8460 | 0.9198 | | 0.4258 | 5.6458 | 542 | 0.9422 | 0.5910 | 0.9422 | 0.9707 | | 0.4258 | 5.6667 | 544 | 0.9159 | 0.6458 | 0.9159 | 0.9570 | | 0.4258 | 5.6875 | 546 | 0.7840 | 0.6606 | 0.7840 | 0.8854 | | 0.4258 | 5.7083 | 548 | 0.6827 | 0.6610 | 0.6827 | 0.8262 | | 0.4258 | 5.7292 | 550 | 0.6640 | 0.6610 | 0.6640 | 0.8148 | | 0.4258 | 5.75 | 552 | 0.6686 | 0.6610 | 0.6686 | 0.8177 | | 0.4258 | 5.7708 | 554 | 0.7221 | 0.6610 | 0.7221 | 0.8498 | | 0.4258 | 5.7917 | 556 | 0.7783 | 0.6445 | 0.7783 | 0.8822 | | 0.4258 | 5.8125 | 558 | 0.8273 | 0.5824 | 0.8273 | 0.9096 | | 0.4258 | 5.8333 | 560 | 0.8872 | 0.5910 | 0.8872 | 0.9419 | | 0.4258 | 5.8542 | 562 | 0.8905 | 0.5910 | 0.8905 | 0.9437 | | 0.4258 | 5.875 | 564 | 0.8493 | 0.6603 | 0.8493 | 0.9216 | | 0.4258 | 5.8958 | 566 | 0.7374 | 0.6603 | 0.7374 | 0.8587 | | 0.4258 | 5.9167 | 568 | 0.6854 | 0.6934 | 0.6854 | 0.8279 | | 0.4258 | 5.9375 | 570 | 0.6526 | 0.6934 | 0.6526 | 0.8079 | | 0.4258 | 5.9583 | 572 | 0.6718 | 0.6934 | 0.6718 | 0.8196 | | 0.4258 | 5.9792 | 574 | 0.6972 | 0.6888 | 0.6972 | 0.8350 | | 0.4258 | 6.0 | 576 | 0.6507 | 0.6934 | 0.6507 | 0.8067 | | 0.4258 | 6.0208 | 578 | 0.6284 | 0.7085 | 0.6284 | 0.7927 | | 0.4258 | 6.0417 | 580 | 0.6628 | 0.6934 | 0.6628 | 0.8141 | | 0.4258 | 6.0625 | 582 | 0.7450 | 0.6603 | 0.7450 | 0.8631 | | 0.4258 | 6.0833 | 584 | 0.7810 | 0.6603 | 0.7810 | 0.8837 | | 0.4258 | 6.1042 | 586 | 0.7447 | 0.6603 | 0.7447 | 0.8629 | | 0.4258 | 6.125 | 588 | 0.6805 | 0.6610 | 0.6805 | 0.8249 | | 0.4258 | 6.1458 | 590 | 0.6155 | 0.7241 | 0.6155 | 0.7845 | | 0.4258 | 6.1667 | 592 | 0.5836 | 0.7085 | 0.5836 | 0.7639 | | 0.4258 | 6.1875 | 594 | 0.5805 | 0.7065 | 0.5805 | 0.7619 | | 0.4258 | 6.2083 | 596 | 0.5951 | 0.7065 | 0.5951 | 0.7714 | | 0.4258 | 6.2292 | 598 | 0.6400 | 0.7065 | 0.6400 | 0.8000 | | 0.4258 | 6.25 | 600 | 0.7166 | 0.7137 | 0.7166 | 0.8465 | | 0.4258 | 6.2708 | 602 | 0.7661 | 0.7137 | 0.7661 | 0.8753 | | 0.4258 | 6.2917 | 604 | 0.7850 | 0.7137 | 0.7850 | 0.8860 | | 0.4258 | 6.3125 | 606 | 0.8066 | 0.6881 | 0.8066 | 0.8981 | | 0.4258 | 6.3333 | 608 | 0.8022 | 0.6603 | 0.8022 | 0.8957 | | 0.4258 | 6.3542 | 610 | 0.7678 | 0.6603 | 0.7678 | 0.8762 | | 0.4258 | 6.375 | 612 | 0.6610 | 0.7241 | 0.6610 | 0.8130 | | 0.4258 | 6.3958 | 614 | 0.5812 | 0.7241 | 0.5812 | 0.7623 | | 0.4258 | 6.4167 | 616 | 0.5526 | 0.7418 | 0.5526 | 0.7434 | | 0.4258 | 6.4375 | 618 | 0.5606 | 0.7418 | 0.5606 | 0.7488 | | 0.4258 | 6.4583 | 620 | 0.6176 | 0.6934 | 0.6176 | 0.7859 | | 0.4258 | 6.4792 | 622 | 0.6863 | 0.6606 | 0.6863 | 0.8284 | | 0.4258 | 6.5 | 624 | 0.7718 | 0.6603 | 0.7718 | 0.8785 | | 0.4258 | 6.5208 | 626 | 0.8033 | 0.6603 | 0.8033 | 0.8963 | | 0.4258 | 6.5417 | 628 | 0.8052 | 0.6603 | 0.8052 | 0.8973 | | 0.4258 | 6.5625 | 630 | 0.7732 | 0.7160 | 0.7732 | 0.8793 | | 0.4258 | 6.5833 | 632 | 0.7195 | 0.7160 | 0.7195 | 0.8483 | | 0.4258 | 6.6042 | 634 | 0.6536 | 0.7198 | 0.6536 | 0.8084 | | 0.4258 | 6.625 | 636 | 0.6260 | 0.7418 | 0.6260 | 0.7912 | | 0.4258 | 6.6458 | 638 | 0.6552 | 0.7210 | 0.6552 | 0.8094 | | 0.4258 | 6.6667 | 640 | 0.7220 | 0.6617 | 0.7220 | 0.8497 | | 0.4258 | 6.6875 | 642 | 0.7673 | 0.6614 | 0.7673 | 0.8760 | | 0.4258 | 6.7083 | 644 | 0.7638 | 0.6617 | 0.7638 | 0.8740 | | 0.4258 | 6.7292 | 646 | 0.7532 | 0.6617 | 0.7532 | 0.8679 | | 0.4258 | 6.75 | 648 | 0.7425 | 0.6610 | 0.7425 | 0.8617 | | 0.4258 | 6.7708 | 650 | 0.7150 | 0.6610 | 0.7150 | 0.8456 | | 0.4258 | 6.7917 | 652 | 0.6790 | 0.6610 | 0.6790 | 0.8240 | | 0.4258 | 6.8125 | 654 | 0.6426 | 0.6934 | 0.6426 | 0.8016 | | 0.4258 | 6.8333 | 656 | 0.6548 | 0.6934 | 0.6548 | 0.8092 | | 0.4258 | 6.8542 | 658 | 0.7038 | 0.6610 | 0.7038 | 0.8389 | | 0.4258 | 6.875 | 660 | 0.7891 | 0.6603 | 0.7891 | 0.8883 | | 0.4258 | 6.8958 | 662 | 0.8684 | 0.6603 | 0.8684 | 0.9319 | | 0.4258 | 6.9167 | 664 | 0.8899 | 0.5910 | 0.8899 | 0.9433 | | 0.4258 | 6.9375 | 666 | 0.8651 | 0.5910 | 0.8651 | 0.9301 | | 0.4258 | 6.9583 | 668 | 0.8118 | 0.6606 | 0.8118 | 0.9010 | | 0.4258 | 6.9792 | 670 | 0.7616 | 0.6610 | 0.7616 | 0.8727 | | 0.4258 | 7.0 | 672 | 0.7359 | 0.6782 | 0.7359 | 0.8578 | | 0.4258 | 7.0208 | 674 | 0.7429 | 0.6782 | 0.7429 | 0.8619 | | 0.4258 | 7.0417 | 676 | 0.7910 | 0.6606 | 0.7910 | 0.8894 | | 0.4258 | 7.0625 | 678 | 0.8425 | 0.6458 | 0.8425 | 0.9179 | | 0.4258 | 7.0833 | 680 | 0.8902 | 0.6458 | 0.8902 | 0.9435 | | 0.4258 | 7.1042 | 682 | 0.8848 | 0.6458 | 0.8848 | 0.9406 | | 0.4258 | 7.125 | 684 | 0.8453 | 0.6603 | 0.8453 | 0.9194 | | 0.4258 | 7.1458 | 686 | 0.7884 | 0.6606 | 0.7884 | 0.8879 | | 0.4258 | 7.1667 | 688 | 0.7366 | 0.6767 | 0.7366 | 0.8582 | | 0.4258 | 7.1875 | 690 | 0.7233 | 0.6767 | 0.7233 | 0.8505 | | 0.4258 | 7.2083 | 692 | 0.7232 | 0.7072 | 0.7232 | 0.8504 | | 0.4258 | 7.2292 | 694 | 0.7318 | 0.6767 | 0.7318 | 0.8554 | | 0.4258 | 7.25 | 696 | 0.7541 | 0.6767 | 0.7541 | 0.8684 | | 0.4258 | 7.2708 | 698 | 0.7625 | 0.6606 | 0.7625 | 0.8732 | | 0.4258 | 7.2917 | 700 | 0.8060 | 0.6606 | 0.8060 | 0.8977 | | 0.4258 | 7.3125 | 702 | 0.8239 | 0.6606 | 0.8239 | 0.9077 | | 0.4258 | 7.3333 | 704 | 0.7961 | 0.6606 | 0.7961 | 0.8923 | | 0.4258 | 7.3542 | 706 | 0.7436 | 0.6606 | 0.7436 | 0.8623 | | 0.4258 | 7.375 | 708 | 0.6975 | 0.7072 | 0.6975 | 0.8351 | | 0.4258 | 7.3958 | 710 | 0.6810 | 0.7363 | 0.6810 | 0.8252 | | 0.4258 | 7.4167 | 712 | 0.6808 | 0.7363 | 0.6808 | 0.8251 | | 0.4258 | 7.4375 | 714 | 0.6950 | 0.7363 | 0.6950 | 0.8336 | | 0.4258 | 7.4583 | 716 | 0.7304 | 0.7363 | 0.7304 | 0.8546 | | 0.4258 | 7.4792 | 718 | 0.7531 | 0.7198 | 0.7531 | 0.8678 | | 0.4258 | 7.5 | 720 | 0.7652 | 0.7198 | 0.7652 | 0.8747 | | 0.4258 | 7.5208 | 722 | 0.7828 | 0.6909 | 0.7828 | 0.8847 | | 0.4258 | 7.5417 | 724 | 0.7833 | 0.6909 | 0.7833 | 0.8851 | | 0.4258 | 7.5625 | 726 | 0.8063 | 0.6603 | 0.8063 | 0.8979 | | 0.4258 | 7.5833 | 728 | 0.8239 | 0.6603 | 0.8239 | 0.9077 | | 0.4258 | 7.6042 | 730 | 0.8208 | 0.6603 | 0.8208 | 0.9060 | | 0.4258 | 7.625 | 732 | 0.7921 | 0.6606 | 0.7921 | 0.8900 | | 0.4258 | 7.6458 | 734 | 0.7691 | 0.6606 | 0.7691 | 0.8770 | | 0.4258 | 7.6667 | 736 | 0.7463 | 0.6610 | 0.7463 | 0.8639 | | 0.4258 | 7.6875 | 738 | 0.6998 | 0.6610 | 0.6998 | 0.8365 | | 0.4258 | 7.7083 | 740 | 0.6650 | 0.6782 | 0.6650 | 0.8155 | | 0.4258 | 7.7292 | 742 | 0.6542 | 0.6782 | 0.6542 | 0.8088 | | 0.4258 | 7.75 | 744 | 0.6743 | 0.6782 | 0.6743 | 0.8212 | | 0.4258 | 7.7708 | 746 | 0.7268 | 0.6610 | 0.7268 | 0.8525 | | 0.4258 | 7.7917 | 748 | 0.7923 | 0.6452 | 0.7923 | 0.8901 | | 0.4258 | 7.8125 | 750 | 0.8139 | 0.6458 | 0.8139 | 0.9022 | | 0.4258 | 7.8333 | 752 | 0.7976 | 0.6603 | 0.7976 | 0.8931 | | 0.4258 | 7.8542 | 754 | 0.7463 | 0.6606 | 0.7463 | 0.8639 | | 0.4258 | 7.875 | 756 | 0.6859 | 0.6782 | 0.6859 | 0.8282 | | 0.4258 | 7.8958 | 758 | 0.6570 | 0.7418 | 0.6570 | 0.8105 | | 0.4258 | 7.9167 | 760 | 0.6559 | 0.7418 | 0.6559 | 0.8099 | | 0.4258 | 7.9375 | 762 | 0.6716 | 0.7108 | 0.6716 | 0.8195 | | 0.4258 | 7.9583 | 764 | 0.7082 | 0.6782 | 0.7082 | 0.8415 | | 0.4258 | 7.9792 | 766 | 0.7689 | 0.6603 | 0.7689 | 0.8769 | | 0.4258 | 8.0 | 768 | 0.8448 | 0.6458 | 0.8448 | 0.9191 | | 0.4258 | 8.0208 | 770 | 0.9078 | 0.6458 | 0.9078 | 0.9528 | | 0.4258 | 8.0417 | 772 | 0.9100 | 0.6458 | 0.9100 | 0.9539 | | 0.4258 | 8.0625 | 774 | 0.8669 | 0.6458 | 0.8669 | 0.9311 | | 0.4258 | 8.0833 | 776 | 0.8157 | 0.6458 | 0.8157 | 0.9032 | | 0.4258 | 8.1042 | 778 | 0.7716 | 0.6603 | 0.7716 | 0.8784 | | 0.4258 | 8.125 | 780 | 0.7585 | 0.6753 | 0.7585 | 0.8709 | | 0.4258 | 8.1458 | 782 | 0.7385 | 0.6753 | 0.7385 | 0.8594 | | 0.4258 | 8.1667 | 784 | 0.7352 | 0.6753 | 0.7352 | 0.8574 | | 0.4258 | 8.1875 | 786 | 0.7384 | 0.6753 | 0.7384 | 0.8593 | | 0.4258 | 8.2083 | 788 | 0.7703 | 0.6753 | 0.7703 | 0.8777 | | 0.4258 | 8.2292 | 790 | 0.8074 | 0.6458 | 0.8074 | 0.8985 | | 0.4258 | 8.25 | 792 | 0.8309 | 0.6458 | 0.8309 | 0.9116 | | 0.4258 | 8.2708 | 794 | 0.8246 | 0.6458 | 0.8246 | 0.9081 | | 0.4258 | 8.2917 | 796 | 0.8430 | 0.6458 | 0.8430 | 0.9182 | | 0.4258 | 8.3125 | 798 | 0.8447 | 0.6458 | 0.8447 | 0.9191 | | 0.4258 | 8.3333 | 800 | 0.8614 | 0.6458 | 0.8614 | 0.9281 | | 0.4258 | 8.3542 | 802 | 0.8635 | 0.6458 | 0.8635 | 0.9292 | | 0.4258 | 8.375 | 804 | 0.8471 | 0.6458 | 0.8471 | 0.9204 | | 0.4258 | 8.3958 | 806 | 0.8217 | 0.6458 | 0.8217 | 0.9065 | | 0.4258 | 8.4167 | 808 | 0.7883 | 0.6753 | 0.7883 | 0.8879 | | 0.4258 | 8.4375 | 810 | 0.7547 | 0.6753 | 0.7547 | 0.8688 | | 0.4258 | 8.4583 | 812 | 0.7345 | 0.6767 | 0.7345 | 0.8570 | | 0.4258 | 8.4792 | 814 | 0.7206 | 0.6767 | 0.7206 | 0.8489 | | 0.4258 | 8.5 | 816 | 0.7277 | 0.6753 | 0.7277 | 0.8531 | | 0.4258 | 8.5208 | 818 | 0.7548 | 0.6753 | 0.7548 | 0.8688 | | 0.4258 | 8.5417 | 820 | 0.7897 | 0.6753 | 0.7897 | 0.8887 | | 0.4258 | 8.5625 | 822 | 0.8130 | 0.6753 | 0.8130 | 0.9017 | | 0.4258 | 8.5833 | 824 | 0.8270 | 0.6603 | 0.8270 | 0.9094 | | 0.4258 | 8.6042 | 826 | 0.8216 | 0.6603 | 0.8216 | 0.9064 | | 0.4258 | 8.625 | 828 | 0.8166 | 0.6603 | 0.8166 | 0.9037 | | 0.4258 | 8.6458 | 830 | 0.8201 | 0.6603 | 0.8201 | 0.9056 | | 0.4258 | 8.6667 | 832 | 0.8188 | 0.6603 | 0.8188 | 0.9049 | | 0.4258 | 8.6875 | 834 | 0.8375 | 0.6458 | 0.8375 | 0.9152 | | 0.4258 | 8.7083 | 836 | 0.8483 | 0.6458 | 0.8483 | 0.9210 | | 0.4258 | 8.7292 | 838 | 0.8309 | 0.6458 | 0.8309 | 0.9115 | | 0.4258 | 8.75 | 840 | 0.8061 | 0.6458 | 0.8061 | 0.8978 | | 0.4258 | 8.7708 | 842 | 0.7858 | 0.6458 | 0.7858 | 0.8864 | | 0.4258 | 8.7917 | 844 | 0.7847 | 0.6458 | 0.7847 | 0.8858 | | 0.4258 | 8.8125 | 846 | 0.7822 | 0.6458 | 0.7822 | 0.8844 | | 0.4258 | 8.8333 | 848 | 0.7619 | 0.6452 | 0.7619 | 0.8729 | | 0.4258 | 8.8542 | 850 | 0.7400 | 0.6782 | 0.7400 | 0.8602 | | 0.4258 | 8.875 | 852 | 0.7075 | 0.6782 | 0.7075 | 0.8411 | | 0.4258 | 8.8958 | 854 | 0.6863 | 0.6782 | 0.6863 | 0.8285 | | 0.4258 | 8.9167 | 856 | 0.6823 | 0.6782 | 0.6823 | 0.8260 | | 0.4258 | 8.9375 | 858 | 0.6910 | 0.6782 | 0.6910 | 0.8313 | | 0.4258 | 8.9583 | 860 | 0.7012 | 0.6782 | 0.7012 | 0.8374 | | 0.4258 | 8.9792 | 862 | 0.7076 | 0.6782 | 0.7076 | 0.8412 | | 0.4258 | 9.0 | 864 | 0.7193 | 0.6782 | 0.7193 | 0.8481 | | 0.4258 | 9.0208 | 866 | 0.7220 | 0.6782 | 0.7220 | 0.8497 | | 0.4258 | 9.0417 | 868 | 0.7342 | 0.6606 | 0.7342 | 0.8568 | | 0.4258 | 9.0625 | 870 | 0.7377 | 0.6606 | 0.7377 | 0.8589 | | 0.4258 | 9.0833 | 872 | 0.7369 | 0.6606 | 0.7369 | 0.8584 | | 0.4258 | 9.1042 | 874 | 0.7266 | 0.6782 | 0.7266 | 0.8524 | | 0.4258 | 9.125 | 876 | 0.7111 | 0.6782 | 0.7111 | 0.8433 | | 0.4258 | 9.1458 | 878 | 0.7010 | 0.6782 | 0.7010 | 0.8373 | | 0.4258 | 9.1667 | 880 | 0.7031 | 0.6782 | 0.7031 | 0.8385 | | 0.4258 | 9.1875 | 882 | 0.7120 | 0.6782 | 0.7120 | 0.8438 | | 0.4258 | 9.2083 | 884 | 0.7205 | 0.6782 | 0.7205 | 0.8488 | | 0.4258 | 9.2292 | 886 | 0.7277 | 0.6767 | 0.7277 | 0.8530 | | 0.4258 | 9.25 | 888 | 0.7423 | 0.6753 | 0.7423 | 0.8615 | | 0.4258 | 9.2708 | 890 | 0.7623 | 0.6603 | 0.7623 | 0.8731 | | 0.4258 | 9.2917 | 892 | 0.7783 | 0.6603 | 0.7783 | 0.8822 | | 0.4258 | 9.3125 | 894 | 0.7896 | 0.6603 | 0.7896 | 0.8886 | | 0.4258 | 9.3333 | 896 | 0.7969 | 0.6603 | 0.7969 | 0.8927 | | 0.4258 | 9.3542 | 898 | 0.7903 | 0.6603 | 0.7903 | 0.8890 | | 0.4258 | 9.375 | 900 | 0.7789 | 0.6603 | 0.7789 | 0.8825 | | 0.4258 | 9.3958 | 902 | 0.7627 | 0.6888 | 0.7627 | 0.8733 | | 0.4258 | 9.4167 | 904 | 0.7530 | 0.7040 | 0.7530 | 0.8678 | | 0.4258 | 9.4375 | 906 | 0.7387 | 0.7314 | 0.7387 | 0.8595 | | 0.4258 | 9.4583 | 908 | 0.7255 | 0.7363 | 0.7255 | 0.8518 | | 0.4258 | 9.4792 | 910 | 0.7145 | 0.7363 | 0.7145 | 0.8453 | | 0.4258 | 9.5 | 912 | 0.7017 | 0.7418 | 0.7017 | 0.8377 | | 0.4258 | 9.5208 | 914 | 0.6978 | 0.7418 | 0.6978 | 0.8353 | | 0.4258 | 9.5417 | 916 | 0.6934 | 0.7418 | 0.6934 | 0.8327 | | 0.4258 | 9.5625 | 918 | 0.6919 | 0.7418 | 0.6919 | 0.8318 | | 0.4258 | 9.5833 | 920 | 0.6870 | 0.7418 | 0.6870 | 0.8288 | | 0.4258 | 9.6042 | 922 | 0.6829 | 0.7418 | 0.6829 | 0.8264 | | 0.4258 | 9.625 | 924 | 0.6822 | 0.7418 | 0.6822 | 0.8259 | | 0.4258 | 9.6458 | 926 | 0.6808 | 0.7418 | 0.6808 | 0.8251 | | 0.4258 | 9.6667 | 928 | 0.6808 | 0.7418 | 0.6808 | 0.8251 | | 0.4258 | 9.6875 | 930 | 0.6806 | 0.7418 | 0.6806 | 0.8250 | | 0.4258 | 9.7083 | 932 | 0.6830 | 0.7418 | 0.6830 | 0.8264 | | 0.4258 | 9.7292 | 934 | 0.6852 | 0.7418 | 0.6852 | 0.8278 | | 0.4258 | 9.75 | 936 | 0.6894 | 0.7418 | 0.6894 | 0.8303 | | 0.4258 | 9.7708 | 938 | 0.6944 | 0.7418 | 0.6944 | 0.8333 | | 0.4258 | 9.7917 | 940 | 0.7006 | 0.7418 | 0.7006 | 0.8370 | | 0.4258 | 9.8125 | 942 | 0.7064 | 0.7418 | 0.7064 | 0.8405 | | 0.4258 | 9.8333 | 944 | 0.7108 | 0.7418 | 0.7108 | 0.8431 | | 0.4258 | 9.8542 | 946 | 0.7134 | 0.7418 | 0.7134 | 0.8446 | | 0.4258 | 9.875 | 948 | 0.7162 | 0.7418 | 0.7162 | 0.8463 | | 0.4258 | 9.8958 | 950 | 0.7169 | 0.7418 | 0.7169 | 0.8467 | | 0.4258 | 9.9167 | 952 | 0.7180 | 0.7418 | 0.7180 | 0.8473 | | 0.4258 | 9.9375 | 954 | 0.7188 | 0.7418 | 0.7188 | 0.8478 | | 0.4258 | 9.9583 | 956 | 0.7192 | 0.7418 | 0.7192 | 0.8481 | | 0.4258 | 9.9792 | 958 | 0.7191 | 0.7418 | 0.7191 | 0.8480 | | 0.4258 | 10.0 | 960 | 0.7190 | 0.7418 | 0.7190 | 0.8479 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
camidenecken/RoBERTa-RM1-v2-4-rm-v27
camidenecken
2024-11-25T16:07:46Z
189
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T16:07:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
leguigou/lisanna-kruus-pro
leguigou
2024-11-25T16:04:31Z
118
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-25T16:04:23Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/lisanna-kruus-pro_003000_00_20241125163536.png text: photo portrait of a woman in light, dark background, makeup, smiling - output: url: sample/lisanna-kruus-pro_003000_01_20241125163635.png text: photo of woman in red dress, cleavage - output: url: sample/lisanna-kruus-pro_003000_02_20241125163734.png text: photo of woman standing outdoor in forest - output: url: sample/lisanna-kruus-pro_003000_03_20241125163833.png text: photo of woman standing and smiling in bikini on beach base_model: black-forest-labs/FLUX.1-dev license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # Lisanna Kruus Pro A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words No trigger words defined. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
Sugyeong/mistral_moe_original_8
Sugyeong
2024-11-25T16:01:57Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:55:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jimmy1229/opt-125m-gptq-4bit
Jimmy1229
2024-11-25T16:00:29Z
78
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-11-25T16:00:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mohit1Kulkarni/Florence-2-FT-CarDamage
Mohit1Kulkarni
2024-11-25T16:00:17Z
105
0
transformers
[ "transformers", "safetensors", "florence2", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2024-11-25T15:42:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
camidenecken/RoBERTa-RM1-v2-4-rm-v23
camidenecken
2024-11-25T15:58:40Z
186
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:58:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
K-Monitor/kmdb_classification_category_v3
K-Monitor
2024-11-25T15:58:39Z
185
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:58:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
maxg73872/bert-large-uncased-finetuned-medmcqa-2024-11-25-T15-46-18
maxg73872
2024-11-25T15:58:11Z
158
0
transformers
[ "transformers", "safetensors", "bert", "multiple-choice", "generated_from_trainer", "base_model:google-bert/bert-large-uncased", "base_model:finetune:google-bert/bert-large-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2024-11-25T15:57:17Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-large-uncased-finetuned-medmcqa-2024-11-25-T15-46-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-medmcqa-2024-11-25-T15-46-18 This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3951 - Accuracy: 0.4524 - F1: 0.4646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 1.3793 | 0.9978 | 57 | 1.3951 | 0.4524 | 0.4646 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
ElMad/melodic-bee-938
ElMad
2024-11-25T15:56:18Z
148
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:55:33Z
--- library_name: transformers license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer model-index: - name: melodic-bee-938 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # melodic-bee-938 This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3387 - Hamming Loss: 0.1123 - Zero One Loss: 1.0 - Jaccard Score: 1.0 - Hamming Loss Optimised: 0.1123 - Hamming Loss Threshold: 0.9000 - Zero One Loss Optimised: 1.0 - Zero One Loss Threshold: 0.9000 - Jaccard Score Optimised: 1.0 - Jaccard Score Threshold: 0.9000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0011128424281972827 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | 0.3511 | 1.0 | 100 | 0.3435 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | 0.3408 | 2.0 | 200 | 0.3418 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | 0.3393 | 3.0 | 300 | 0.3440 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | 0.3377 | 4.0 | 400 | 0.3395 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | 0.3363 | 5.0 | 500 | 0.3408 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | 0.3362 | 6.0 | 600 | 0.3397 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | 0.3349 | 7.0 | 700 | 0.3420 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | 0.334 | 8.0 | 800 | 0.3397 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | 0.3337 | 9.0 | 900 | 0.3387 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
camidenecken/RoBERTa-RM1-v2-4-rm-v21
camidenecken
2024-11-25T15:54:16Z
139
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:53:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
QuantFactory/Qwen2.5-7B-HomerCreative-Mix-GGUF
QuantFactory
2024-11-25T15:50:11Z
106
3
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "creative", "roleplay", "instruct", "qwen", "model_stock", "bfloat16", "en", "arxiv:2403.19522", "base_model:allknowingroger/HomerSlerp1-7B", "base_model:merge:allknowingroger/HomerSlerp1-7B", "base_model:bunnycore/Qandora-2.5-7B-Creative", "base_model:merge:bunnycore/Qandora-2.5-7B-Creative", "base_model:bunnycore/Qwen2.5-7B-Instruct-Fusion", "base_model:merge:bunnycore/Qwen2.5-7B-Instruct-Fusion", "base_model:newsbang/Homer-v0.5-Qwen2.5-7B", "base_model:merge:newsbang/Homer-v0.5-Qwen2.5-7B", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T13:35:47Z
--- language: - en license: apache-2.0 library_name: transformers tags: - merge - mergekit - lazymergekit - creative - roleplay - instruct - qwen - model_stock - bfloat16 base_model: - newsbang/Homer-v0.5-Qwen2.5-7B - allknowingroger/HomerSlerp1-7B - bunnycore/Qwen2.5-7B-Instruct-Fusion - bunnycore/Qandora-2.5-7B-Creative model-index: - name: Qwen2.5-7B-HomerCreative-Mix results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 78.35 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerCreative-Mix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 36.77 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerCreative-Mix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 32.33 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerCreative-Mix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.6 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerCreative-Mix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 13.77 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerCreative-Mix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 38.3 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerCreative-Mix name: Open LLM Leaderboard --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/Qwen2.5-7B-HomerCreative-Mix-GGUF This is quantized version of [ZeroXClem/Qwen2.5-7B-HomerCreative-Mix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerCreative-Mix) created using llama.cpp # Original Model Card # ZeroXClem/Qwen2.5-7B-HomerCreative-Mix **ZeroXClem/Qwen2.5-7B-HomerCreative-Mix** is an advanced language model meticulously crafted by merging four pre-trained models using the powerful [mergekit](https://github.com/cg123/mergekit) framework. This fusion leverages the **Model Stock** merge method to combine the creative prowess of **Qandora**, the instructive capabilities of **Qwen-Instruct-Fusion**, the sophisticated blending of **HomerSlerp1**, and the foundational conversational strengths of **Homer-v0.5-Qwen2.5-7B**. The resulting model excels in creative text generation, contextual understanding, and dynamic conversational interactions. ## πŸš€ Merged Models This model merge incorporates the following: - [**bunnycore/Qandora-2.5-7B-Creative**](https://huggingface.co/bunnycore/Qandora-2.5-7B-Creative): Specializes in creative text generation, enhancing the model's ability to produce imaginative and diverse content. - [**bunnycore/Qwen2.5-7B-Instruct-Fusion**](https://huggingface.co/bunnycore/Qwen2.5-7B-Instruct-Fusion): Focuses on instruction-following capabilities, improving the model's performance in understanding and executing user commands. - [**allknowingroger/HomerSlerp1-7B**](https://huggingface.co/allknowingroger/HomerSlerp1-7B): Utilizes spherical linear interpolation (SLERP) to blend model weights smoothly, ensuring a harmonious integration of different model attributes. - [**newsbang/Homer-v0.5-Qwen2.5-7B**](https://huggingface.co/newsbang/Homer-v0.5-Qwen2.5-7B): Acts as the foundational conversational model, providing robust language comprehension and generation capabilities. ## 🧩 Merge Configuration The configuration below outlines how the models are merged using the **Model Stock** method. This approach ensures a balanced and effective integration of the unique strengths from each source model. ```yaml # Merge configuration for ZeroXClem/Qwen2.5-7B-HomerCreative-Mix using Model Stock models: - model: bunnycore/Qandora-2.5-7B-Creative - model: bunnycore/Qwen2.5-7B-Instruct-Fusion - model: allknowingroger/HomerSlerp1-7B merge_method: model_stock base_model: newsbang/Homer-v0.5-Qwen2.5-7B normalize: false int8_mask: true dtype: bfloat16 ``` ### Key Parameters - **Merge Method (`merge_method`):** Utilizes the **Model Stock** method, as described in [Model Stock](https://arxiv.org/abs/2403.19522), to effectively combine multiple models by leveraging their strengths. - **Models (`models`):** Specifies the list of models to be merged: - **bunnycore/Qandora-2.5-7B-Creative:** Enhances creative text generation. - **bunnycore/Qwen2.5-7B-Instruct-Fusion:** Improves instruction-following capabilities. - **allknowingroger/HomerSlerp1-7B:** Facilitates smooth blending of model weights using SLERP. - **Base Model (`base_model`):** Defines the foundational model for the merge, which is **newsbang/Homer-v0.5-Qwen2.5-7B** in this case. - **Normalization (`normalize`):** Set to `false` to retain the original scaling of the model weights during the merge. - **INT8 Mask (`int8_mask`):** Enabled (`true`) to apply INT8 quantization masking, optimizing the model for efficient inference without significant loss in precision. - **Data Type (`dtype`):** Uses `bfloat16` to maintain computational efficiency while ensuring high precision. ## πŸ† Performance Highlights - **Creative Text Generation:** Enhanced ability to produce imaginative and diverse content suitable for creative writing, storytelling, and content creation. - **Instruction Following:** Improved performance in understanding and executing user instructions, making the model more responsive and accurate in task execution. - **Optimized Inference:** INT8 masking and `bfloat16` data type contribute to efficient computation, enabling faster response times without compromising quality. ## 🎯 Use Case & Applications **ZeroXClem/Qwen2.5-7B-HomerCreative-Mix** is designed to excel in environments that demand both creative generation and precise instruction following. Ideal applications include: - **Creative Writing Assistance:** Aiding authors and content creators in generating imaginative narratives, dialogues, and descriptive text. - **Interactive Storytelling and Role-Playing:** Enhancing dynamic and engaging interactions in role-playing games and interactive storytelling platforms. - **Educational Tools and Tutoring Systems:** Providing detailed explanations, answering questions, and assisting in educational content creation with contextual understanding. - **Technical Support and Customer Service:** Offering accurate and contextually relevant responses in technical support scenarios, improving user satisfaction. - **Content Generation for Marketing:** Creating compelling and diverse marketing copy, social media posts, and promotional material with creative flair. ## πŸ“ Usage To utilize **ZeroXClem/Qwen2.5-7B-HomerCreative-Mix**, follow the steps below: ### Installation First, install the necessary libraries: ```bash pip install -qU transformers accelerate ``` ### Example Code Below is an example of how to load and use the model for text generation: ```python from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch # Define the model name model_name = "ZeroXClem/Qwen2.5-7B-HomerCreative-Mix" # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) # Load the model model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) # Initialize the pipeline text_generator = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto" ) # Define the input prompt prompt = "Once upon a time in a land far, far away," # Generate the output outputs = text_generator( prompt, max_new_tokens=150, do_sample=True, temperature=0.7, top_k=50, top_p=0.95 ) # Print the generated text print(outputs[0]["generated_text"]) ``` ### Notes - **Fine-Tuning:** This merged model may require fine-tuning to optimize performance for specific applications or domains. - **Resource Requirements:** Ensure that your environment has sufficient computational resources, especially GPU-enabled hardware, to handle the model efficiently during inference. - **Customization:** Users can adjust parameters such as `temperature`, `top_k`, and `top_p` to control the creativity and diversity of the generated text. ## πŸ“œ License This model is open-sourced under the **Apache-2.0 License**. ## πŸ’‘ Tags - `merge` - `mergekit` - `model_stock` - `Qwen` - `Homer` - `Creative` - `ZeroXClem/Qwen2.5-7B-HomerCreative-Mix` - `bunnycore/Qandora-2.5-7B-Creative` - `bunnycore/Qwen2.5-7B-Instruct-Fusion` - `allknowingroger/HomerSlerp1-7B` - `newsbang/Homer-v0.5-Qwen2.5-7B` --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ZeroXClem__Qwen2.5-7B-HomerCreative-Mix) | Metric |Value| |-------------------|----:| |Avg. |34.35| |IFEval (0-Shot) |78.35| |BBH (3-Shot) |36.77| |MATH Lvl 5 (4-Shot)|32.33| |GPQA (0-shot) | 6.60| |MuSR (0-shot) |13.77| |MMLU-PRO (5-shot) |38.30|
ElMad/bemused-trout-607
ElMad
2024-11-25T15:50:10Z
127
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:49:04Z
--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: bemused-trout-607 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bemused-trout-607 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1783 - Hamming Loss: 0.0643 - Zero One Loss: 0.4113 - Jaccard Score: 0.3643 - Hamming Loss Optimised: 0.0615 - Hamming Loss Threshold: 0.7239 - Zero One Loss Optimised: 0.4038 - Zero One Loss Threshold: 0.4731 - Jaccard Score Optimised: 0.3281 - Jaccard Score Threshold: 0.2446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.0943791435964314e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | 0.2941 | 1.0 | 400 | 0.2355 | 0.0934 | 0.7987 | 0.7963 | 0.0929 | 0.6046 | 0.6738 | 0.2934 | 0.5524 | 0.2658 | | 0.2247 | 2.0 | 800 | 0.2132 | 0.0914 | 0.6188 | 0.5905 | 0.0906 | 0.6229 | 0.6262 | 0.3893 | 0.4890 | 0.2889 | | 0.187 | 3.0 | 1200 | 0.1854 | 0.066 | 0.4712 | 0.4224 | 0.0653 | 0.7034 | 0.4325 | 0.4451 | 0.3701 | 0.4026 | | 0.1495 | 4.0 | 1600 | 0.1783 | 0.0643 | 0.4113 | 0.3643 | 0.0615 | 0.7239 | 0.4038 | 0.4731 | 0.3281 | 0.2446 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
camidenecken/RoBERTa-RM1-v2-4-rm-v19
camidenecken
2024-11-25T15:49:38Z
145
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:49:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k15_task5_organization_fold1
MayBashendy
2024-11-25T15:49:22Z
118
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:41:54Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k15_task5_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k15_task5_organization_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9927 - Qwk: 0.5878 - Mse: 0.9927 - Rmse: 0.9963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0270 | 2 | 3.3470 | -0.1953 | 3.3470 | 1.8295 | | No log | 0.0541 | 4 | 2.7794 | -0.3953 | 2.7794 | 1.6672 | | No log | 0.0811 | 6 | 2.7418 | -0.2687 | 2.7418 | 1.6558 | | No log | 0.1081 | 8 | 2.5369 | -0.2788 | 2.5369 | 1.5928 | | No log | 0.1351 | 10 | 2.2401 | -0.2034 | 2.2401 | 1.4967 | | No log | 0.1622 | 12 | 1.9704 | -0.3456 | 1.9704 | 1.4037 | | No log | 0.1892 | 14 | 1.5833 | -0.2721 | 1.5833 | 1.2583 | | No log | 0.2162 | 16 | 1.3369 | 0.0 | 1.3369 | 1.1562 | | No log | 0.2432 | 18 | 1.2930 | 0.0 | 1.2930 | 1.1371 | | No log | 0.2703 | 20 | 1.3110 | -0.0728 | 1.3110 | 1.1450 | | No log | 0.2973 | 22 | 1.2759 | -0.0728 | 1.2759 | 1.1295 | | No log | 0.3243 | 24 | 1.2541 | 0.0809 | 1.2541 | 1.1199 | | No log | 0.3514 | 26 | 1.2153 | 0.0809 | 1.2153 | 1.1024 | | No log | 0.3784 | 28 | 1.1684 | 0.2177 | 1.1684 | 1.0809 | | No log | 0.4054 | 30 | 0.9885 | 0.2279 | 0.9885 | 0.9942 | | No log | 0.4324 | 32 | 0.9191 | 0.1571 | 0.9191 | 0.9587 | | No log | 0.4595 | 34 | 1.0098 | 0.2780 | 1.0098 | 1.0049 | | No log | 0.4865 | 36 | 1.1475 | 0.1336 | 1.1475 | 1.0712 | | No log | 0.5135 | 38 | 1.1826 | 0.1336 | 1.1826 | 1.0875 | | No log | 0.5405 | 40 | 1.1218 | 0.375 | 1.1218 | 1.0591 | | No log | 0.5676 | 42 | 1.0676 | 0.3610 | 1.0676 | 1.0332 | | No log | 0.5946 | 44 | 0.9588 | 0.3235 | 0.9588 | 0.9792 | | No log | 0.6216 | 46 | 0.9671 | 0.2368 | 0.9671 | 0.9834 | | No log | 0.6486 | 48 | 1.0735 | 0.3803 | 1.0735 | 1.0361 | | No log | 0.6757 | 50 | 1.1509 | 0.2330 | 1.1509 | 1.0728 | | No log | 0.7027 | 52 | 1.1989 | 0.2978 | 1.1989 | 1.0950 | | No log | 0.7297 | 54 | 1.0229 | 0.4203 | 1.0229 | 1.0114 | | No log | 0.7568 | 56 | 0.9225 | 0.3949 | 0.9225 | 0.9604 | | No log | 0.7838 | 58 | 0.8508 | 0.4684 | 0.8508 | 0.9224 | | No log | 0.8108 | 60 | 0.8312 | 0.5161 | 0.8312 | 0.9117 | | No log | 0.8378 | 62 | 0.9489 | 0.4780 | 0.9489 | 0.9741 | | No log | 0.8649 | 64 | 1.0816 | 0.3598 | 1.0816 | 1.0400 | | No log | 0.8919 | 66 | 1.1509 | 0.2898 | 1.1509 | 1.0728 | | No log | 0.9189 | 68 | 1.0430 | 0.3003 | 1.0430 | 1.0213 | | No log | 0.9459 | 70 | 0.8708 | 0.2933 | 0.8708 | 0.9332 | | No log | 0.9730 | 72 | 0.8250 | 0.2933 | 0.8250 | 0.9083 | | No log | 1.0 | 74 | 0.8420 | 0.2279 | 0.8420 | 0.9176 | | No log | 1.0270 | 76 | 0.8842 | 0.2279 | 0.8842 | 0.9403 | | No log | 1.0541 | 78 | 0.9016 | 0.2279 | 0.9016 | 0.9495 | | No log | 1.0811 | 80 | 0.9029 | 0.2279 | 0.9029 | 0.9502 | | No log | 1.1081 | 82 | 0.8987 | 0.2279 | 0.8987 | 0.9480 | | No log | 1.1351 | 84 | 0.8682 | 0.2279 | 0.8682 | 0.9318 | | No log | 1.1622 | 86 | 0.8270 | 0.2279 | 0.8270 | 0.9094 | | No log | 1.1892 | 88 | 0.8041 | 0.2279 | 0.8041 | 0.8967 | | No log | 1.2162 | 90 | 0.8034 | 0.3594 | 0.8034 | 0.8963 | | No log | 1.2432 | 92 | 0.7690 | 0.3594 | 0.7690 | 0.8769 | | No log | 1.2703 | 94 | 0.7330 | 0.4138 | 0.7330 | 0.8561 | | No log | 1.2973 | 96 | 0.7400 | 0.6215 | 0.7400 | 0.8602 | | No log | 1.3243 | 98 | 0.7590 | 0.5821 | 0.7590 | 0.8712 | | No log | 1.3514 | 100 | 0.8597 | 0.5 | 0.8597 | 0.9272 | | No log | 1.3784 | 102 | 0.9010 | 0.5 | 0.9010 | 0.9492 | | No log | 1.4054 | 104 | 0.8493 | 0.5058 | 0.8493 | 0.9216 | | No log | 1.4324 | 106 | 0.7849 | 0.4753 | 0.7849 | 0.8859 | | No log | 1.4595 | 108 | 0.7557 | 0.5821 | 0.7557 | 0.8693 | | No log | 1.4865 | 110 | 0.7907 | 0.6034 | 0.7907 | 0.8892 | | No log | 1.5135 | 112 | 0.9324 | 0.5 | 0.9324 | 0.9656 | | No log | 1.5405 | 114 | 0.9794 | 0.4070 | 0.9794 | 0.9896 | | No log | 1.5676 | 116 | 0.8694 | 0.4901 | 0.8694 | 0.9324 | | No log | 1.5946 | 118 | 0.6936 | 0.6012 | 0.6936 | 0.8328 | | No log | 1.6216 | 120 | 0.6387 | 0.6012 | 0.6387 | 0.7992 | | No log | 1.6486 | 122 | 0.6342 | 0.6012 | 0.6342 | 0.7964 | | No log | 1.6757 | 124 | 0.6751 | 0.6012 | 0.6751 | 0.8216 | | No log | 1.7027 | 126 | 0.8003 | 0.5058 | 0.8003 | 0.8946 | | No log | 1.7297 | 128 | 0.9931 | 0.4334 | 0.9931 | 0.9965 | | No log | 1.7568 | 130 | 1.0242 | 0.4334 | 1.0242 | 1.0120 | | No log | 1.7838 | 132 | 1.0280 | 0.4199 | 1.0280 | 1.0139 | | No log | 1.8108 | 134 | 0.9160 | 0.6163 | 0.9160 | 0.9571 | | No log | 1.8378 | 136 | 0.8837 | 0.5704 | 0.8837 | 0.9401 | | No log | 1.8649 | 138 | 0.8559 | 0.6509 | 0.8559 | 0.9252 | | No log | 1.8919 | 140 | 0.9217 | 0.5325 | 0.9217 | 0.9601 | | No log | 1.9189 | 142 | 0.9157 | 0.5300 | 0.9157 | 0.9569 | | No log | 1.9459 | 144 | 0.7345 | 0.6163 | 0.7345 | 0.8570 | | No log | 1.9730 | 146 | 0.6788 | 0.6034 | 0.6788 | 0.8239 | | No log | 2.0 | 148 | 0.7720 | 0.6437 | 0.7720 | 0.8786 | | No log | 2.0270 | 150 | 0.8465 | 0.5662 | 0.8465 | 0.9200 | | No log | 2.0541 | 152 | 0.9842 | 0.5289 | 0.9842 | 0.9921 | | No log | 2.0811 | 154 | 1.0334 | 0.5766 | 1.0334 | 1.0165 | | No log | 2.1081 | 156 | 0.8911 | 0.5599 | 0.8911 | 0.9440 | | No log | 2.1351 | 158 | 0.7304 | 0.6601 | 0.7304 | 0.8546 | | No log | 2.1622 | 160 | 0.6709 | 0.5640 | 0.6709 | 0.8191 | | No log | 2.1892 | 162 | 0.6482 | 0.5640 | 0.6482 | 0.8051 | | No log | 2.2162 | 164 | 0.6600 | 0.5640 | 0.6600 | 0.8124 | | No log | 2.2432 | 166 | 0.7428 | 0.6073 | 0.7428 | 0.8619 | | No log | 2.2703 | 168 | 0.8597 | 0.5930 | 0.8597 | 0.9272 | | No log | 2.2973 | 170 | 1.0576 | 0.5810 | 1.0576 | 1.0284 | | No log | 2.3243 | 172 | 1.2791 | 0.5752 | 1.2791 | 1.1310 | | No log | 2.3514 | 174 | 1.4347 | 0.4746 | 1.4347 | 1.1978 | | No log | 2.3784 | 176 | 1.3490 | 0.5212 | 1.3490 | 1.1615 | | No log | 2.4054 | 178 | 1.1040 | 0.5810 | 1.1040 | 1.0507 | | No log | 2.4324 | 180 | 0.9291 | 0.5930 | 0.9291 | 0.9639 | | No log | 2.4595 | 182 | 0.7842 | 0.6107 | 0.7842 | 0.8856 | | No log | 2.4865 | 184 | 0.7277 | 0.6107 | 0.7277 | 0.8531 | | No log | 2.5135 | 186 | 0.7255 | 0.5476 | 0.7255 | 0.8518 | | No log | 2.5405 | 188 | 0.8013 | 0.5415 | 0.8013 | 0.8952 | | No log | 2.5676 | 190 | 0.9826 | 0.5810 | 0.9826 | 0.9913 | | No log | 2.5946 | 192 | 1.1326 | 0.5644 | 1.1326 | 1.0642 | | No log | 2.6216 | 194 | 1.0953 | 0.5168 | 1.0953 | 1.0466 | | No log | 2.6486 | 196 | 0.9240 | 0.5526 | 0.9240 | 0.9612 | | No log | 2.6757 | 198 | 0.8639 | 0.5526 | 0.8639 | 0.9295 | | No log | 2.7027 | 200 | 0.8575 | 0.5526 | 0.8575 | 0.9260 | | No log | 2.7297 | 202 | 0.8920 | 0.5373 | 0.8920 | 0.9444 | | No log | 2.7568 | 204 | 0.8756 | 0.4976 | 0.8756 | 0.9357 | | No log | 2.7838 | 206 | 0.7547 | 0.5856 | 0.7547 | 0.8687 | | No log | 2.8108 | 208 | 0.6556 | 0.6221 | 0.6556 | 0.8097 | | No log | 2.8378 | 210 | 0.6032 | 0.6221 | 0.6032 | 0.7766 | | No log | 2.8649 | 212 | 0.5555 | 0.6221 | 0.5555 | 0.7453 | | No log | 2.8919 | 214 | 0.5262 | 0.6639 | 0.5262 | 0.7254 | | No log | 2.9189 | 216 | 0.5161 | 0.6639 | 0.5161 | 0.7184 | | No log | 2.9459 | 218 | 0.5585 | 0.6247 | 0.5585 | 0.7473 | | No log | 2.9730 | 220 | 0.7422 | 0.6988 | 0.7422 | 0.8615 | | No log | 3.0 | 222 | 1.0061 | 0.6694 | 1.0061 | 1.0031 | | No log | 3.0270 | 224 | 1.1632 | 0.6226 | 1.1632 | 1.0785 | | No log | 3.0541 | 226 | 1.0546 | 0.6318 | 1.0546 | 1.0269 | | No log | 3.0811 | 228 | 0.8119 | 0.6162 | 0.8119 | 0.9011 | | No log | 3.1081 | 230 | 0.6537 | 0.6783 | 0.6537 | 0.8085 | | No log | 3.1351 | 232 | 0.6191 | 0.6615 | 0.6191 | 0.7869 | | No log | 3.1622 | 234 | 0.5818 | 0.7150 | 0.5818 | 0.7628 | | No log | 3.1892 | 236 | 0.5558 | 0.7122 | 0.5558 | 0.7455 | | No log | 3.2162 | 238 | 0.5533 | 0.7291 | 0.5533 | 0.7438 | | No log | 3.2432 | 240 | 0.6209 | 0.6753 | 0.6209 | 0.7880 | | No log | 3.2703 | 242 | 0.8375 | 0.5446 | 0.8375 | 0.9151 | | No log | 3.2973 | 244 | 1.0373 | 0.6239 | 1.0373 | 1.0185 | | No log | 3.3243 | 246 | 1.0602 | 0.6254 | 1.0602 | 1.0297 | | No log | 3.3514 | 248 | 0.9671 | 0.5446 | 0.9671 | 0.9834 | | No log | 3.3784 | 250 | 0.8664 | 0.5446 | 0.8664 | 0.9308 | | No log | 3.4054 | 252 | 0.8145 | 0.5446 | 0.8145 | 0.9025 | | No log | 3.4324 | 254 | 0.8288 | 0.5446 | 0.8288 | 0.9104 | | No log | 3.4595 | 256 | 0.9045 | 0.5363 | 0.9045 | 0.9510 | | No log | 3.4865 | 258 | 0.8845 | 0.5363 | 0.8845 | 0.9405 | | No log | 3.5135 | 260 | 0.8898 | 0.5363 | 0.8898 | 0.9433 | | No log | 3.5405 | 262 | 0.8961 | 0.5363 | 0.8961 | 0.9466 | | No log | 3.5676 | 264 | 0.9008 | 0.5363 | 0.9008 | 0.9491 | | No log | 3.5946 | 266 | 0.9427 | 0.5363 | 0.9427 | 0.9709 | | No log | 3.6216 | 268 | 0.9280 | 0.5363 | 0.9280 | 0.9633 | | No log | 3.6486 | 270 | 0.9286 | 0.5810 | 0.9286 | 0.9636 | | No log | 3.6757 | 272 | 0.8061 | 0.5930 | 0.8061 | 0.8978 | | No log | 3.7027 | 274 | 0.7611 | 0.5463 | 0.7611 | 0.8724 | | No log | 3.7297 | 276 | 0.7122 | 0.5872 | 0.7122 | 0.8439 | | No log | 3.7568 | 278 | 0.7562 | 0.5756 | 0.7562 | 0.8696 | | No log | 3.7838 | 280 | 0.8710 | 0.5463 | 0.8710 | 0.9333 | | No log | 3.8108 | 282 | 1.1037 | 0.5863 | 1.1037 | 1.0506 | | No log | 3.8378 | 284 | 1.3326 | 0.5897 | 1.3326 | 1.1544 | | No log | 3.8649 | 286 | 1.2957 | 0.5363 | 1.2957 | 1.1383 | | No log | 3.8919 | 288 | 1.0685 | 0.5363 | 1.0685 | 1.0337 | | No log | 3.9189 | 290 | 0.9274 | 0.5662 | 0.9274 | 0.9630 | | No log | 3.9459 | 292 | 0.9212 | 0.5662 | 0.9212 | 0.9598 | | No log | 3.9730 | 294 | 0.9711 | 0.5736 | 0.9711 | 0.9854 | | No log | 4.0 | 296 | 0.9768 | 0.5446 | 0.9768 | 0.9883 | | No log | 4.0270 | 298 | 1.0068 | 0.5446 | 1.0068 | 1.0034 | | No log | 4.0541 | 300 | 0.9004 | 0.5264 | 0.9004 | 0.9489 | | No log | 4.0811 | 302 | 0.7511 | 0.6125 | 0.7511 | 0.8666 | | No log | 4.1081 | 304 | 0.7107 | 0.6248 | 0.7107 | 0.8430 | | No log | 4.1351 | 306 | 0.7506 | 0.6370 | 0.7506 | 0.8664 | | No log | 4.1622 | 308 | 0.7991 | 0.6370 | 0.7991 | 0.8939 | | No log | 4.1892 | 310 | 0.8414 | 0.6237 | 0.8414 | 0.9173 | | No log | 4.2162 | 312 | 0.9419 | 0.6330 | 0.9419 | 0.9705 | | No log | 4.2432 | 314 | 0.9711 | 0.6330 | 0.9711 | 0.9854 | | No log | 4.2703 | 316 | 0.8804 | 0.6330 | 0.8804 | 0.9383 | | No log | 4.2973 | 318 | 0.7657 | 0.6584 | 0.7657 | 0.8750 | | No log | 4.3243 | 320 | 0.6735 | 0.6464 | 0.6735 | 0.8207 | | No log | 4.3514 | 322 | 0.5964 | 0.6026 | 0.5964 | 0.7723 | | No log | 4.3784 | 324 | 0.6142 | 0.6178 | 0.6142 | 0.7837 | | No log | 4.4054 | 326 | 0.7272 | 0.6450 | 0.7272 | 0.8527 | | No log | 4.4324 | 328 | 0.8405 | 0.6450 | 0.8405 | 0.9168 | | No log | 4.4595 | 330 | 0.9530 | 0.6330 | 0.9530 | 0.9762 | | No log | 4.4865 | 332 | 1.0030 | 0.6330 | 1.0030 | 1.0015 | | No log | 4.5135 | 334 | 1.0420 | 0.6330 | 1.0420 | 1.0208 | | No log | 4.5405 | 336 | 0.9613 | 0.6330 | 0.9613 | 0.9805 | | No log | 4.5676 | 338 | 0.8981 | 0.6330 | 0.8981 | 0.9477 | | No log | 4.5946 | 340 | 0.9123 | 0.6330 | 0.9123 | 0.9551 | | No log | 4.6216 | 342 | 0.8979 | 0.6330 | 0.8979 | 0.9476 | | No log | 4.6486 | 344 | 0.8198 | 0.6330 | 0.8198 | 0.9054 | | No log | 4.6757 | 346 | 0.7930 | 0.6332 | 0.7930 | 0.8905 | | No log | 4.7027 | 348 | 0.8255 | 0.6450 | 0.8255 | 0.9086 | | No log | 4.7297 | 350 | 0.8268 | 0.6025 | 0.8268 | 0.9093 | | No log | 4.7568 | 352 | 0.8005 | 0.6025 | 0.8005 | 0.8947 | | No log | 4.7838 | 354 | 0.7290 | 0.6491 | 0.7290 | 0.8538 | | No log | 4.8108 | 356 | 0.6279 | 0.6627 | 0.6279 | 0.7924 | | No log | 4.8378 | 358 | 0.6226 | 0.6627 | 0.6226 | 0.7891 | | No log | 4.8649 | 360 | 0.6636 | 0.6491 | 0.6636 | 0.8146 | | No log | 4.8919 | 362 | 0.7200 | 0.6741 | 0.7200 | 0.8485 | | No log | 4.9189 | 364 | 0.8600 | 0.6237 | 0.8600 | 0.9273 | | No log | 4.9459 | 366 | 0.9321 | 0.6330 | 0.9321 | 0.9655 | | No log | 4.9730 | 368 | 0.8970 | 0.6330 | 0.8970 | 0.9471 | | No log | 5.0 | 370 | 0.8161 | 0.6450 | 0.8161 | 0.9034 | | No log | 5.0270 | 372 | 0.6918 | 0.5800 | 0.6918 | 0.8318 | | No log | 5.0541 | 374 | 0.6216 | 0.6767 | 0.6216 | 0.7884 | | No log | 5.0811 | 376 | 0.6166 | 0.6617 | 0.6166 | 0.7852 | | No log | 5.1081 | 378 | 0.6789 | 0.5800 | 0.6789 | 0.8240 | | No log | 5.1351 | 380 | 0.8014 | 0.5800 | 0.8014 | 0.8952 | | No log | 5.1622 | 382 | 0.9834 | 0.6583 | 0.9834 | 0.9917 | | No log | 5.1892 | 384 | 1.1732 | 0.5588 | 1.1732 | 1.0832 | | No log | 5.2162 | 386 | 1.2125 | 0.5588 | 1.2125 | 1.1011 | | No log | 5.2432 | 388 | 1.1149 | 0.5810 | 1.1149 | 1.0559 | | No log | 5.2703 | 390 | 1.0537 | 0.5810 | 1.0537 | 1.0265 | | No log | 5.2973 | 392 | 1.0277 | 0.5717 | 1.0277 | 1.0137 | | No log | 5.3243 | 394 | 0.9395 | 0.6288 | 0.9395 | 0.9693 | | No log | 5.3514 | 396 | 0.9370 | 0.6288 | 0.9370 | 0.9680 | | No log | 5.3784 | 398 | 1.0271 | 0.5717 | 1.0271 | 1.0135 | | No log | 5.4054 | 400 | 1.1185 | 0.6169 | 1.1185 | 1.0576 | | No log | 5.4324 | 402 | 1.1081 | 0.6169 | 1.1081 | 1.0527 | | No log | 5.4595 | 404 | 0.9956 | 0.5717 | 0.9956 | 0.9978 | | No log | 5.4865 | 406 | 0.8561 | 0.6288 | 0.8561 | 0.9253 | | No log | 5.5135 | 408 | 0.7732 | 0.6288 | 0.7732 | 0.8793 | | No log | 5.5405 | 410 | 0.7792 | 0.6162 | 0.7792 | 0.8827 | | No log | 5.5676 | 412 | 0.8419 | 0.6288 | 0.8419 | 0.9176 | | No log | 5.5946 | 414 | 0.9547 | 0.6169 | 0.9547 | 0.9771 | | No log | 5.6216 | 416 | 1.0298 | 0.5810 | 1.0298 | 1.0148 | | No log | 5.6486 | 418 | 1.0337 | 0.5810 | 1.0337 | 1.0167 | | No log | 5.6757 | 420 | 1.0101 | 0.5810 | 1.0101 | 1.0050 | | No log | 5.7027 | 422 | 0.9510 | 0.5810 | 0.9510 | 0.9752 | | No log | 5.7297 | 424 | 0.8273 | 0.6205 | 0.8273 | 0.9096 | | No log | 5.7568 | 426 | 0.7830 | 0.6162 | 0.7830 | 0.8849 | | No log | 5.7838 | 428 | 0.7831 | 0.6162 | 0.7831 | 0.8850 | | No log | 5.8108 | 430 | 0.7919 | 0.6162 | 0.7919 | 0.8899 | | No log | 5.8378 | 432 | 0.8465 | 0.6586 | 0.8465 | 0.9200 | | No log | 5.8649 | 434 | 0.8781 | 0.6586 | 0.8781 | 0.9371 | | No log | 5.8919 | 436 | 0.9466 | 0.6586 | 0.9466 | 0.9729 | | No log | 5.9189 | 438 | 0.9319 | 0.6586 | 0.9319 | 0.9653 | | No log | 5.9459 | 440 | 0.8672 | 0.6162 | 0.8672 | 0.9312 | | No log | 5.9730 | 442 | 0.8395 | 0.6162 | 0.8395 | 0.9162 | | No log | 6.0 | 444 | 0.8291 | 0.6162 | 0.8291 | 0.9106 | | No log | 6.0270 | 446 | 0.7757 | 0.6458 | 0.7757 | 0.8808 | | No log | 6.0541 | 448 | 0.7536 | 0.6473 | 0.7536 | 0.8681 | | No log | 6.0811 | 450 | 0.7428 | 0.6617 | 0.7428 | 0.8618 | | No log | 6.1081 | 452 | 0.7761 | 0.6334 | 0.7761 | 0.8810 | | No log | 6.1351 | 454 | 0.8072 | 0.6334 | 0.8072 | 0.8985 | | No log | 6.1622 | 456 | 0.7792 | 0.6334 | 0.7792 | 0.8827 | | No log | 6.1892 | 458 | 0.8000 | 0.6731 | 0.8000 | 0.8944 | | No log | 6.2162 | 460 | 0.8477 | 0.6731 | 0.8477 | 0.9207 | | No log | 6.2432 | 462 | 0.8624 | 0.6731 | 0.8624 | 0.9286 | | No log | 6.2703 | 464 | 0.8912 | 0.6332 | 0.8912 | 0.9440 | | No log | 6.2973 | 466 | 0.9355 | 0.5752 | 0.9355 | 0.9672 | | No log | 6.3243 | 468 | 0.9129 | 0.6332 | 0.9129 | 0.9554 | | No log | 6.3514 | 470 | 0.8952 | 0.6332 | 0.8952 | 0.9461 | | No log | 6.3784 | 472 | 0.8866 | 0.6219 | 0.8866 | 0.9416 | | No log | 6.4054 | 474 | 0.8528 | 0.6731 | 0.8528 | 0.9235 | | No log | 6.4324 | 476 | 0.8190 | 0.6731 | 0.8190 | 0.9050 | | No log | 6.4595 | 478 | 0.8209 | 0.6731 | 0.8209 | 0.9060 | | No log | 6.4865 | 480 | 0.8911 | 0.6731 | 0.8911 | 0.9440 | | No log | 6.5135 | 482 | 1.0100 | 0.5752 | 1.0100 | 1.0050 | | No log | 6.5405 | 484 | 1.0937 | 0.5118 | 1.0937 | 1.0458 | | No log | 6.5676 | 486 | 1.0894 | 0.6082 | 1.0894 | 1.0438 | | No log | 6.5946 | 488 | 1.0247 | 0.6055 | 1.0247 | 1.0123 | | No log | 6.6216 | 490 | 0.9509 | 0.5607 | 0.9509 | 0.9751 | | No log | 6.6486 | 492 | 0.8651 | 0.5607 | 0.8651 | 0.9301 | | No log | 6.6757 | 494 | 0.7804 | 0.6162 | 0.7804 | 0.8834 | | No log | 6.7027 | 496 | 0.7404 | 0.6458 | 0.7404 | 0.8605 | | No log | 6.7297 | 498 | 0.7270 | 0.6473 | 0.7270 | 0.8526 | | 0.4266 | 6.7568 | 500 | 0.7548 | 0.6334 | 0.7548 | 0.8688 | | 0.4266 | 6.7838 | 502 | 0.8234 | 0.6162 | 0.8234 | 0.9074 | | 0.4266 | 6.8108 | 504 | 0.9579 | 0.5709 | 0.9579 | 0.9787 | | 0.4266 | 6.8378 | 506 | 1.1293 | 0.5752 | 1.1293 | 1.0627 | | 0.4266 | 6.8649 | 508 | 1.1793 | 0.5928 | 1.1793 | 1.0859 | | 0.4266 | 6.8919 | 510 | 1.1351 | 0.5928 | 1.1351 | 1.0654 | | 0.4266 | 6.9189 | 512 | 1.0025 | 0.5752 | 1.0025 | 1.0013 | | 0.4266 | 6.9459 | 514 | 0.8682 | 0.6097 | 0.8682 | 0.9318 | | 0.4266 | 6.9730 | 516 | 0.7882 | 0.6097 | 0.7882 | 0.8878 | | 0.4266 | 7.0 | 518 | 0.7807 | 0.6097 | 0.7807 | 0.8836 | | 0.4266 | 7.0270 | 520 | 0.7672 | 0.5678 | 0.7672 | 0.8759 | | 0.4266 | 7.0541 | 522 | 0.8020 | 0.6097 | 0.8020 | 0.8955 | | 0.4266 | 7.0811 | 524 | 0.8109 | 0.6097 | 0.8109 | 0.9005 | | 0.4266 | 7.1081 | 526 | 0.8038 | 0.6097 | 0.8038 | 0.8965 | | 0.4266 | 7.1351 | 528 | 0.8227 | 0.6097 | 0.8227 | 0.9070 | | 0.4266 | 7.1622 | 530 | 0.8131 | 0.6097 | 0.8131 | 0.9017 | | 0.4266 | 7.1892 | 532 | 0.7975 | 0.5678 | 0.7975 | 0.8930 | | 0.4266 | 7.2162 | 534 | 0.8131 | 0.6097 | 0.8131 | 0.9017 | | 0.4266 | 7.2432 | 536 | 0.8478 | 0.5612 | 0.8478 | 0.9207 | | 0.4266 | 7.2703 | 538 | 0.8585 | 0.5612 | 0.8585 | 0.9265 | | 0.4266 | 7.2973 | 540 | 0.8879 | 0.5709 | 0.8879 | 0.9423 | | 0.4266 | 7.3243 | 542 | 0.8869 | 0.5612 | 0.8869 | 0.9418 | | 0.4266 | 7.3514 | 544 | 0.8290 | 0.6357 | 0.8290 | 0.9105 | | 0.4266 | 7.3784 | 546 | 0.7615 | 0.5962 | 0.7615 | 0.8726 | | 0.4266 | 7.4054 | 548 | 0.7374 | 0.5962 | 0.7374 | 0.8587 | | 0.4266 | 7.4324 | 550 | 0.7672 | 0.5962 | 0.7672 | 0.8759 | | 0.4266 | 7.4595 | 552 | 0.7826 | 0.5962 | 0.7826 | 0.8847 | | 0.4266 | 7.4865 | 554 | 0.7702 | 0.5962 | 0.7702 | 0.8776 | | 0.4266 | 7.5135 | 556 | 0.7774 | 0.6071 | 0.7774 | 0.8817 | | 0.4266 | 7.5405 | 558 | 0.7798 | 0.6071 | 0.7798 | 0.8831 | | 0.4266 | 7.5676 | 560 | 0.7741 | 0.6458 | 0.7741 | 0.8798 | | 0.4266 | 7.5946 | 562 | 0.7661 | 0.6458 | 0.7661 | 0.8753 | | 0.4266 | 7.6216 | 564 | 0.7771 | 0.6458 | 0.7771 | 0.8815 | | 0.4266 | 7.6486 | 566 | 0.8302 | 0.6071 | 0.8302 | 0.9112 | | 0.4266 | 7.6757 | 568 | 0.8715 | 0.5783 | 0.8715 | 0.9336 | | 0.4266 | 7.7027 | 570 | 0.8846 | 0.5266 | 0.8846 | 0.9405 | | 0.4266 | 7.7297 | 572 | 0.8832 | 0.6071 | 0.8832 | 0.9398 | | 0.4266 | 7.7568 | 574 | 0.8814 | 0.6071 | 0.8814 | 0.9388 | | 0.4266 | 7.7838 | 576 | 0.8844 | 0.6071 | 0.8844 | 0.9404 | | 0.4266 | 7.8108 | 578 | 0.8666 | 0.6071 | 0.8666 | 0.9309 | | 0.4266 | 7.8378 | 580 | 0.8463 | 0.6071 | 0.8463 | 0.9199 | | 0.4266 | 7.8649 | 582 | 0.8353 | 0.6071 | 0.8353 | 0.9140 | | 0.4266 | 7.8919 | 584 | 0.8433 | 0.6071 | 0.8433 | 0.9183 | | 0.4266 | 7.9189 | 586 | 0.8625 | 0.6071 | 0.8625 | 0.9287 | | 0.4266 | 7.9459 | 588 | 0.8832 | 0.6468 | 0.8832 | 0.9398 | | 0.4266 | 7.9730 | 590 | 0.9184 | 0.6468 | 0.9184 | 0.9583 | | 0.4266 | 8.0 | 592 | 0.9172 | 0.6468 | 0.9172 | 0.9577 | | 0.4266 | 8.0270 | 594 | 0.9094 | 0.6468 | 0.9094 | 0.9536 | | 0.4266 | 8.0541 | 596 | 0.9169 | 0.6468 | 0.9169 | 0.9576 | | 0.4266 | 8.0811 | 598 | 0.9145 | 0.5978 | 0.9145 | 0.9563 | | 0.4266 | 8.1081 | 600 | 0.9173 | 0.5978 | 0.9173 | 0.9577 | | 0.4266 | 8.1351 | 602 | 0.9256 | 0.5709 | 0.9256 | 0.9621 | | 0.4266 | 8.1622 | 604 | 0.9153 | 0.5709 | 0.9153 | 0.9567 | | 0.4266 | 8.1892 | 606 | 0.9113 | 0.5709 | 0.9113 | 0.9546 | | 0.4266 | 8.2162 | 608 | 0.9307 | 0.5709 | 0.9307 | 0.9647 | | 0.4266 | 8.2432 | 610 | 0.9471 | 0.5709 | 0.9471 | 0.9732 | | 0.4266 | 8.2703 | 612 | 0.9163 | 0.6205 | 0.9163 | 0.9573 | | 0.4266 | 8.2973 | 614 | 0.8723 | 0.6205 | 0.8723 | 0.9340 | | 0.4266 | 8.3243 | 616 | 0.8632 | 0.6205 | 0.8632 | 0.9291 | | 0.4266 | 8.3514 | 618 | 0.8633 | 0.6205 | 0.8633 | 0.9291 | | 0.4266 | 8.3784 | 620 | 0.8649 | 0.6205 | 0.8649 | 0.9300 | | 0.4266 | 8.4054 | 622 | 0.8930 | 0.6205 | 0.8930 | 0.9450 | | 0.4266 | 8.4324 | 624 | 0.9453 | 0.6205 | 0.9453 | 0.9723 | | 0.4266 | 8.4595 | 626 | 0.9992 | 0.6205 | 0.9992 | 0.9996 | | 0.4266 | 8.4865 | 628 | 1.0558 | 0.5752 | 1.0558 | 1.0275 | | 0.4266 | 8.5135 | 630 | 1.1213 | 0.5752 | 1.1213 | 1.0589 | | 0.4266 | 8.5405 | 632 | 1.1629 | 0.5752 | 1.1629 | 1.0784 | | 0.4266 | 8.5676 | 634 | 1.1592 | 0.5752 | 1.1592 | 1.0767 | | 0.4266 | 8.5946 | 636 | 1.1555 | 0.5752 | 1.1555 | 1.0749 | | 0.4266 | 8.6216 | 638 | 1.1152 | 0.5752 | 1.1152 | 1.0560 | | 0.4266 | 8.6486 | 640 | 1.0720 | 0.5752 | 1.0720 | 1.0354 | | 0.4266 | 8.6757 | 642 | 1.0413 | 0.5709 | 1.0413 | 1.0204 | | 0.4266 | 8.7027 | 644 | 1.0188 | 0.5709 | 1.0188 | 1.0093 | | 0.4266 | 8.7297 | 646 | 0.9983 | 0.5709 | 0.9983 | 0.9992 | | 0.4266 | 8.7568 | 648 | 0.9572 | 0.5978 | 0.9572 | 0.9783 | | 0.4266 | 8.7838 | 650 | 0.9193 | 0.5878 | 0.9193 | 0.9588 | | 0.4266 | 8.8108 | 652 | 0.8702 | 0.5878 | 0.8702 | 0.9328 | | 0.4266 | 8.8378 | 654 | 0.8227 | 0.6357 | 0.8227 | 0.9070 | | 0.4266 | 8.8649 | 656 | 0.7797 | 0.6334 | 0.7797 | 0.8830 | | 0.4266 | 8.8919 | 658 | 0.7511 | 0.6334 | 0.7511 | 0.8667 | | 0.4266 | 8.9189 | 660 | 0.7385 | 0.6334 | 0.7385 | 0.8594 | | 0.4266 | 8.9459 | 662 | 0.7455 | 0.6334 | 0.7455 | 0.8634 | | 0.4266 | 8.9730 | 664 | 0.7659 | 0.5962 | 0.7659 | 0.8752 | | 0.4266 | 9.0 | 666 | 0.7896 | 0.5962 | 0.7896 | 0.8886 | | 0.4266 | 9.0270 | 668 | 0.8223 | 0.5878 | 0.8223 | 0.9068 | | 0.4266 | 9.0541 | 670 | 0.8704 | 0.5878 | 0.8704 | 0.9329 | | 0.4266 | 9.0811 | 672 | 0.9047 | 0.5878 | 0.9047 | 0.9511 | | 0.4266 | 9.1081 | 674 | 0.9303 | 0.5878 | 0.9303 | 0.9645 | | 0.4266 | 9.1351 | 676 | 0.9349 | 0.5878 | 0.9349 | 0.9669 | | 0.4266 | 9.1622 | 678 | 0.9179 | 0.5878 | 0.9179 | 0.9581 | | 0.4266 | 9.1892 | 680 | 0.8895 | 0.5878 | 0.8895 | 0.9431 | | 0.4266 | 9.2162 | 682 | 0.8746 | 0.5878 | 0.8746 | 0.9352 | | 0.4266 | 9.2432 | 684 | 0.8507 | 0.5878 | 0.8507 | 0.9224 | | 0.4266 | 9.2703 | 686 | 0.8234 | 0.5878 | 0.8234 | 0.9074 | | 0.4266 | 9.2973 | 688 | 0.8049 | 0.6357 | 0.8049 | 0.8972 | | 0.4266 | 9.3243 | 690 | 0.7846 | 0.5962 | 0.7846 | 0.8858 | | 0.4266 | 9.3514 | 692 | 0.7732 | 0.5962 | 0.7732 | 0.8793 | | 0.4266 | 9.3784 | 694 | 0.7750 | 0.5962 | 0.7750 | 0.8803 | | 0.4266 | 9.4054 | 696 | 0.7900 | 0.6357 | 0.7900 | 0.8888 | | 0.4266 | 9.4324 | 698 | 0.8111 | 0.6357 | 0.8111 | 0.9006 | | 0.4266 | 9.4595 | 700 | 0.8383 | 0.6357 | 0.8383 | 0.9156 | | 0.4266 | 9.4865 | 702 | 0.8694 | 0.5878 | 0.8694 | 0.9324 | | 0.4266 | 9.5135 | 704 | 0.9062 | 0.5878 | 0.9062 | 0.9520 | | 0.4266 | 9.5405 | 706 | 0.9435 | 0.5878 | 0.9435 | 0.9713 | | 0.4266 | 9.5676 | 708 | 0.9757 | 0.5878 | 0.9757 | 0.9878 | | 0.4266 | 9.5946 | 710 | 1.0077 | 0.5878 | 1.0077 | 1.0038 | | 0.4266 | 9.6216 | 712 | 1.0241 | 0.5709 | 1.0241 | 1.0120 | | 0.4266 | 9.6486 | 714 | 1.0343 | 0.5709 | 1.0343 | 1.0170 | | 0.4266 | 9.6757 | 716 | 1.0368 | 0.5709 | 1.0368 | 1.0182 | | 0.4266 | 9.7027 | 718 | 1.0395 | 0.5709 | 1.0395 | 1.0195 | | 0.4266 | 9.7297 | 720 | 1.0370 | 0.5709 | 1.0370 | 1.0183 | | 0.4266 | 9.7568 | 722 | 1.0303 | 0.5709 | 1.0303 | 1.0150 | | 0.4266 | 9.7838 | 724 | 1.0237 | 0.5709 | 1.0237 | 1.0118 | | 0.4266 | 9.8108 | 726 | 1.0173 | 0.5978 | 1.0173 | 1.0086 | | 0.4266 | 9.8378 | 728 | 1.0140 | 0.5878 | 1.0140 | 1.0070 | | 0.4266 | 9.8649 | 730 | 1.0087 | 0.5878 | 1.0087 | 1.0043 | | 0.4266 | 9.8919 | 732 | 1.0041 | 0.5878 | 1.0041 | 1.0021 | | 0.4266 | 9.9189 | 734 | 1.0005 | 0.5878 | 1.0005 | 1.0003 | | 0.4266 | 9.9459 | 736 | 0.9968 | 0.5878 | 0.9968 | 0.9984 | | 0.4266 | 9.9730 | 738 | 0.9940 | 0.5878 | 0.9940 | 0.9970 | | 0.4266 | 10.0 | 740 | 0.9927 | 0.5878 | 0.9927 | 0.9963 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
jebish7/bge-small-en-v1.5_MNSR_12
jebish7
2024-11-25T15:48:13Z
10
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:29545", "loss:MultipleNegativesSymmetricRankingLoss", "arxiv:1908.10084", "base_model:BAAI/bge-small-en-v1.5", "base_model:finetune:BAAI/bge-small-en-v1.5", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-25T15:48:06Z
--- base_model: BAAI/bge-small-en-v1.5 library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:29545 - loss:MultipleNegativesSymmetricRankingLoss widget: - source_sentence: In terms of audited accounts submission for an Applicant, could you clarify the scenarios in which the Regulator might agree that a reviewed pro forma statement of financial position is not needed, and what factors would be considered in making that determination? sentences: - "DocumentID: 1 | PassageID: 4.2.1.(3) | Passage: Where the regulator in another\ \ jurisdiction does not permit the implementation of policies, procedures, systems\ \ and controls consistent with these Rules, the Relevant Person must:\n(a)\tinform\ \ the Regulator in writing immediately; and\n(b)\tapply appropriate additional\ \ measures to manage the money laundering risks posed by the relevant branch or\ \ subsidiary." - "DocumentID: 11 | PassageID: 2.3.15.(4) | Passage: The Applicant must submit to\ \ the Regulator the following records, as applicable:\n(a)\tAudited accounts,\ \ for the purposes of this Rule and Rule 2.3.2(1), for the last three full financial\ \ years, noting that:\n(i)\tif the Applicant applies for admission less than ninety\ \ days after the end of its last financial year, unless the Applicant has audited\ \ accounts for its latest full financial year, the accounts may be for the three\ \ years to the end of the previous financial year, but must also include audited\ \ or reviewed accounts for its most recent semi-annual financial reporting period;\ \ and\n(ii)\tif the Applicant applies for admission more than six months and seventy-five\ \ days after the end of its last financial year, audited or reviewed accounts\ \ for its most recent semi-annual financial reporting period (or longer period\ \ if available).\n(b)\tUnless the Regulator agrees it is not needed, a reviewed\ \ pro forma statement of financial position. The review must be conducted by an\ \ accredited professional auditor of the company or an independent accountant." - 'DocumentID: 36 | PassageID: D.1.3. | Passage: Principle 1 – Oversight and responsibility of climate-related financial risk exposures.Certain functions related to the management of climate-related financial risks may be delegated, but, as with other risks, the board is ultimately responsible and accountable for monitoring, managing and overseeing climate-related risks for the financial firm. ' - source_sentence: A financial institution is interested in multiple designations, including the ADGM Green Fund and ADGM Green Bond. For each application, what fee will the institution incur? sentences: - 'DocumentID: 31 | PassageID: 63) | Passage: INITIAL DISCLOSURE OF MATERIAL ESTIMATES. Disclosure of material estimates of Contingent Resources Section 2.3 of the PRMS Guidelines states that Contingent Resources may be assigned for Petroleum Projects that are dependent on β€˜technology under development’, and further recommended that a number of guidelines are followed in order to distinguish these estimates from those that should be classified as Unrecoverable Petroleum. By way of Rule 12.10.1(3), the FSRA fully supports and requires compliance with what is set out in the PRMS Guidelines. ' - 'DocumentID: 19 | PassageID: 40) | Passage: REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS Anti-Money Laundering and Countering Financing of Terrorism On 21 June 2019, FATF released a revised Guidance for a Risk-Based Approach (RBA) for VAs and VASPs, as well as an Interpretative Note for Recommendation 15. This built upon previous FATF statements by clarifying a RBA for Anti-Money Laundering and Countering the Financing of Terrorism (β€œAML/CFT”) purposes. The basic principle underlying the FATF Guidelines is that VASPs are expected to β€œidentify, assess, and take effective action to mitigate their ML/TF risks” with respect to VAs. ' - "DocumentID: 4 | PassageID: 10.1.1 | Passage: A Person applying to the Regulator\ \ for any of the following designations:\n(a)\tADGM Green Fund;\n(b)\tADGM Climate\ \ Transition Fund;\n(c)\tADGM Green Portfolio;\n(d)\tADGM Climate Transition Portfolio;\n\ (e)\tADGM Green Bond; or\n(f)\tADGM Sustainability Linked Bond\nmust pay to the\ \ Regulator an application fee of $2,000." - source_sentence: How does the ADGM expect Authorised Persons to incorporate the eligibility of collateral types into their overall risk management framework, particularly concerning Islamic finance principles? sentences: - 'DocumentID: 17 | PassageID: Schedule 1.Part 2.Chapter 5.42.(2) | Passage: In determining for the purposes of sub-paragraph β€Ž(1)β€Ž(b) whether Deposits are accepted only on particular occasions, regard is to be had to the frequency of those occasions and to any characteristics distinguishing them from each other.' - "DocumentID: 9 | PassageID: 6.8.5 | Passage: \n(a)\tA Fund Manager of an Islamic\ \ REIT may obtain financing either directly or through its Special Purpose Vehicle\ \ up to 65% of the total gross asset value of the Fund provided that such financing\ \ is provided in a Shari'a-compliant manner.\n(b)\tUpon becoming aware that the\ \ borrowing limit set out in 6.8.5(a) has been exceeded, the Fund Manager shall:\n\ (c)\timmediately inform Unitholders and the Regulator of the details of the breach\ \ and the proposed remedial action;\n(d)\tuse its best endeavours to reduce the\ \ excess borrowings;\n(e)\tnot permit the Fund to engage in additional borrowing;\ \ and\n(f)\tinform Unitholders and the Regulator on a regular basis as to the\ \ progress of the remedial action." - 'DocumentID: 9 | PassageID: 5.1.1.Guidance.(ii) | Passage: The prudential Category for Islamic Financial Institutions and other Authorised Persons (acting through an Islamic Window) undertaking the Regulated Activity of Managing PSIAs (which may be either a Restricted PSIA or an Unrestricted PSIA) is determined in accordance with PRU Rule 1.3. An Authorised Person which Manages PSIAs (whether as an Islamic Financial Institution or through an Islamic Window) must comply with the requirements in PRU in relation to specific prudential requirements relating to Trading Book and Non-Trading Book activities, including Credit Risk, Market Risk, Liquidity Risk and Group Risk.' - source_sentence: Can you please detail the specific Anti-Money Laundering (AML) and Countering Financing of Terrorism (CFT) measures and controls that our firm must have in place when dealing with Spot Commodities as per the FSRA's requirements? sentences: - 'DocumentID: 34 | PassageID: 65) | Passage: REGULATORY REQUIREMENTS - SPOT COMMODITY ACTIVITIES Sanctions Pursuant to AML Rule 11.2.1(1), an Authorised Person must have arrangements in place to ensure that only Spot Commodities that are not subject to sanctions or associated with an entity in the supply chain that is itself subject to a sanction, are used as part of its Regulated Activities, or utilised as part of a delivery and/or storage facility operated by itself (or by any third parties it uses). In demonstrating compliance with the Rule, an Authorised Person must have powers to resolve any breach in a timely fashion, such as taking emergency action itself or by compelling the delivery and/or storage facility to take appropriate action. The FSRA expects this to include the Authorised Person having the ability to sanction a Member, market participant or the delivery and/or storage facility for acts or omissions that compromise compliance with applicable sanctions. ' - "DocumentID: 18 | PassageID: 3.2 | Passage: Financial Services Permissions. VC\ \ Managers operating in ADGM require a Financial Services Permission (β€œFSP”) to\ \ undertake any Regulated Activity pertaining to VC Funds and/or co-investments\ \ by third parties in VC Funds. The Regulated Activities covered by the FSP will\ \ be dependent on the VC Managers’ investment strategy and business model.\n(a)\t\ Managing a Collective Investment Fund: this includes carrying out fund management\ \ activities in respect of a VC Fund.\n(b)\tAdvising on Investments or Credit\ \ : for VC Managers these activities will be restricted to activities related\ \ to co-investment alongside a VC Fund which the VC Manager manages, such as recommending\ \ that a client invest in an investee company alongside the VC Fund and on the\ \ strategy and structure required to make the investment.\n(c)\tArranging Deals\ \ in Investments: VC Managers may also wish to make arrangements to facilitate\ \ co-investments in the investee company.\nAuthorisation fees and supervision\ \ fees for a VC Manager are capped at USD 10,000 regardless of whether one or\ \ both of the additional Regulated Activities in b) and c) above in relation to\ \ co-investments are included in its FSP. The FSP will include restrictions appropriate\ \ to the business model of a VC Manager." - 'DocumentID: 24 | PassageID: 3.9 | Passage: Principle 2 – High Standards for Authorisation. This discerning approach is shown by the FSRA’s power to only permit VAs that it deems β€˜acceptable’, as determined by risk factors such as security and traceability, in order to prevent the build-up of risk from illiquid or immature assets. Additionally, we do not permit stablecoins based on the algorithmic model of valuation to the underlying fiat currency.' - source_sentence: What are the common scenarios or instances where assets and liabilities are not covered by the bases of accounting in Rule 5.3.2, and how should an Insurer address these in their reporting? sentences: - 'DocumentID: 1 | PassageID: 14.4.1.Guidance.1. | Passage: Relevant Persons are reminded that in accordance with Federal AML Legislation, Relevant Persons or any of their Employees must not tip off any Person, that is, inform any Person that he is being scrutinised, or investigated by any other competent authority, for possible involvement in suspicious Transactions or activity related to money laundering or terrorist financing.' - "DocumentID: 12 | PassageID: 5.3.1.Guidance | Passage: \nThe exceptions provided\ \ in this Chapter relate to the following:\na.\tspecific Rules in respect of certain\ \ assets and liabilities, intended to achieve a regulatory objective not achieved\ \ by application of either or both of the bases of accounting set out in Rule\ \ β€Ž5.3.2;\nb.\tassets and liabilities that are not dealt with in either or both\ \ of the bases of accounting set out in Rule β€Ž5.3.2; and\nc.\tthe overriding power\ \ of the Regulator, set out in Rule β€Ž5.1.6, to require an Insurer to adopt a particular\ \ measurement for a specific asset or liability." - 'DocumentID: 1 | PassageID: 6.2.1.Guidance.2. | Passage: The risk assessment under Rule β€Ž6.2.1(c) should identify actions to mitigate risks associated with undertaking NFTF business generally, and the use of eKYC specifically. This is because distinct risks are often likely to arise where business is conducted entirely in an NFTF manner, compared to when the business relationship includes a mix of face-to-face and NFTF interactions. The assessment should make reference to risk mitigation measures recommended by the Regulator, a competent authority of the U.A.E., FATF, and other relevant bodies. ' --- # SentenceTransformer based on BAAI/bge-small-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the πŸ€— Hub model = SentenceTransformer("jebish7/bge-small-en-v1.5_MNSR_20") # Run inference sentences = [ 'What are the common scenarios or instances where assets and liabilities are not covered by the bases of accounting in Rule 5.3.2, and how should an Insurer address these in their reporting?', 'DocumentID: 12 | PassageID: 5.3.1.Guidance | Passage: \nThe exceptions provided in this Chapter relate to the following:\na.\tspecific Rules in respect of certain assets and liabilities, intended to achieve a regulatory objective not achieved by application of either or both of the bases of accounting set out in Rule \u200e5.3.2;\nb.\tassets and liabilities that are not dealt with in either or both of the bases of accounting set out in Rule \u200e5.3.2; and\nc.\tthe overriding power of the Regulator, set out in Rule \u200e5.1.6, to require an Insurer to adopt a particular measurement for a specific asset or liability.', 'DocumentID: 1 | PassageID: 14.4.1.Guidance.1. | Passage: Relevant Persons are reminded that in accordance with Federal AML Legislation, Relevant Persons or any of their Employees must not tip off any Person, that is, inform any Person that he is being scrutinised, or investigated by any other competent authority, for possible involvement in suspicious Transactions or activity related to money laundering or terrorist financing.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 29,545 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 16 tokens</li><li>mean: 34.95 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 35 tokens</li><li>mean: 132.0 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>If a financial institution offers Money Remittance as one of its services, under what circumstances is it deemed to be holding Relevant Money and therefore subject to regulatory compliance (a)?</code> | <code>DocumentID: 13 | PassageID: 3.7.1.Guidance.1. | Passage: An Authorised Person is considered to be holding Relevant Money and subject to (a) where it offers Payment Services alongside currency exchange or Money Remittance.<br></code> | | <code>What are the consequences for a Recognised Body or Authorised Person if they fail to comply with ADGM's requirements regarding severance payments?</code> | <code>DocumentID: 7 | PassageID: APP1.A1.2.Guidance.9. | Passage: Severance payments. Where an Authorised Person or Recognised Body provides discretionary payouts on termination of employment ("severance payments", also called "golden parachutes"), such payment should generally be subject to appropriate limits or shareholder approval. In any case, such payouts should be aligned with the Authorised Person or Recognised Body's overall financial condition and performance over an appropriate time horizon and should not be payable in the case of failure or threatened failure of the Authorised Person or Recognised Body, particularly to an individual whose actions may have contributed to the failure or potential failure of the Authorised Person or Recognised Body.<br></code> | | <code>If a Public Fund is structured as an Investment Trust, to whom should the Fund Manager report the review findings regarding delegated Regulated Activities or outsourced functions?</code> | <code>DocumentID: 6 | PassageID: PART 5.12.12.8.(1) | Passage: A Fund Manager or the Trustee of a Public Fund, which has delegated any Regulated Activities or outsourced any functions, must conduct a review of the carrying out of the relevant activities or functions by the Service Provider and present the findings of the review to either:<br>(a) the Fund's Governing Body every 6 months at the Fund's board meeting; or<br>(b) in the case of a Fund structured as an Investment Trust, to the Trustee.</code> | * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `learning_rate`: 2e-05 - `warmup_ratio`: 0.1 - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.2165 | 100 | 1.4357 | | 0.4329 | 200 | 0.9589 | | 0.6494 | 300 | 0.9193 | | 0.8658 | 400 | 0.8542 | | 1.0823 | 500 | 0.8643 | | 1.2987 | 600 | 0.8135 | | 1.5152 | 700 | 0.7658 | | 1.7316 | 800 | 0.7454 | | 1.9481 | 900 | 0.7477 | | 2.1645 | 1000 | 0.7586 | | 2.3810 | 1100 | 0.6978 | | 2.5974 | 1200 | 0.7152 | | 2.8139 | 1300 | 0.6866 | | 0.2165 | 100 | 0.7049 | | 0.4329 | 200 | 0.6651 | | 0.6494 | 300 | 0.6942 | | 0.8658 | 400 | 0.6695 | | 1.0823 | 500 | 0.7048 | | 1.2987 | 600 | 0.636 | | 1.5152 | 700 | 0.5984 | | 1.7316 | 800 | 0.6001 | | 1.9481 | 900 | 0.6096 | | 2.1645 | 1000 | 0.6313 | | 2.3810 | 1100 | 0.5437 | | 2.5974 | 1200 | 0.5716 | | 2.8139 | 1300 | 0.5634 | | 0.2165 | 100 | 0.5708 | | 0.4329 | 200 | 0.5263 | | 0.6494 | 300 | 0.5716 | | 0.8658 | 400 | 0.5547 | | 1.0823 | 500 | 0.5922 | | 1.2987 | 600 | 0.5306 | | 1.5152 | 700 | 0.4802 | | 1.7316 | 800 | 0.4948 | | 1.9481 | 900 | 0.512 | | 2.1645 | 1000 | 0.532 | | 2.3810 | 1100 | 0.4349 | | 2.5974 | 1200 | 0.465 | | 2.8139 | 1300 | 0.4657 | | 0.2165 | 100 | 0.4757 | | 0.4329 | 200 | 0.4193 | | 0.6494 | 300 | 0.4815 | | 0.8658 | 400 | 0.4715 | | 1.0823 | 500 | 0.5156 | | 1.2987 | 600 | 0.4341 | | 1.5152 | 700 | 0.3942 | | 1.7316 | 800 | 0.4242 | | 1.9481 | 900 | 0.4342 | | 2.1645 | 1000 | 0.4512 | | 2.3810 | 1100 | 0.3505 | | 2.5974 | 1200 | 0.3879 | | 2.8139 | 1300 | 0.3959 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.4.0 - Accelerate: 0.34.2 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q4_K_M-GGUF
Triangle104
2024-11-25T15:48:06Z
72
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2", "base_model:quantized:huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-18T14:10:33Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q4_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2`](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) for more details on the model. --- Model details: - This is an uncensored version of Qwen2.5-14B-Instruct created with abliteration (see this article to know more about it). Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models. Important Note This version is an improvement over the previous one Qwen2.5-14B-Instruct-abliterated. Usage You can use this model in your applications by loading it with Hugging Face's transformers library: from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input and prepare it for the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate a response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) # Extract model output, removing special tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Qwen: {response}") --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q4_K_M-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q4_K_M-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q4_K_M-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q4_K_M-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q4_k_m.gguf -c 2048 ```
dgambettaphd/M_gen0_run1_llama2-7b_wiki_doc1000_real32_synt96
dgambettaphd
2024-11-25T15:47:43Z
123
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-11-25T15:45:44Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
camidenecken/RoBERTa-RM1-v2-4-rm-v18
camidenecken
2024-11-25T15:47:27Z
146
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:46:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ehristoforu/RQwen-v0.2
ehristoforu
2024-11-25T15:45:22Z
9
1
transformers
[ "transformers", "pytorch", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:ehristoforu/RQwen-v0.1", "base_model:finetune:ehristoforu/RQwen-v0.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-24T21:36:16Z
--- base_model: ehristoforu/RQwen-v0.1 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ehristoforu - **License:** apache-2.0 - **Finetuned from model :** ehristoforu/RQwen-v0.1 This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Qwen1.5-32B-llamafied-i1-GGUF
mradermacher
2024-11-25T15:45:00Z
6
1
transformers
[ "transformers", "gguf", "en", "base_model:mightbe/Qwen1.5-32B-llamafied", "base_model:quantized:mightbe/Qwen1.5-32B-llamafied", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-25T07:25:51Z
--- base_model: mightbe/Qwen1.5-32B-llamafied language: - en library_name: transformers license: other license_link: LICENSE license_name: qwen quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/mightbe/Qwen1.5-32B-llamafied <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ1_S.gguf) | i1-IQ1_S | 7.3 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ2_S.gguf) | i1-IQ2_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ2_M.gguf) | i1-IQ2_M | 11.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-Q2_K.gguf) | i1-Q2_K | 12.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ3_S.gguf) | i1-IQ3_S | 14.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ3_M.gguf) | i1-IQ3_M | 14.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-Q3_K_M.gguf) | i1-Q3_K_M | 15.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-Q4_0.gguf) | i1-Q4_0 | 18.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-Q4_K_M.gguf) | i1-Q4_K_M | 19.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen1.5-32B-llamafied-i1-GGUF/resolve/main/Qwen1.5-32B-llamafied.i1-Q6_K.gguf) | i1-Q6_K | 26.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF
mradermacher
2024-11-25T15:44:03Z
9
0
transformers
[ "transformers", "gguf", "ko", "base_model:juengsi/DT-SL-SOLAR-10.7B-v0.1", "base_model:quantized:juengsi/DT-SL-SOLAR-10.7B-v0.1", "license:cc-by-4.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-24T02:41:37Z
--- base_model: juengsi/DT-SL-SOLAR-10.7B-v0.1 language: - ko library_name: transformers license: cc-by-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/juengsi/DT-SL-SOLAR-10.7B-v0.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ1_M.gguf) | i1-IQ1_M | 2.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ2_S.gguf) | i1-IQ2_S | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ2_M.gguf) | i1-IQ2_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q2_K.gguf) | i1-Q2_K | 4.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ3_S.gguf) | i1-IQ3_S | 4.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ3_M.gguf) | i1-IQ3_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 5.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 6.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 6.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q4_0.gguf) | i1-Q4_0 | 6.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 6.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/DT-SL-SOLAR-10.7B-v0.1-i1-GGUF/resolve/main/DT-SL-SOLAR-10.7B-v0.1.i1-Q6_K.gguf) | i1-Q6_K | 8.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
camidenecken/RoBERTa-RM1-v2-4-rm-v16
camidenecken
2024-11-25T15:42:37Z
130
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:42:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k15_task5_organization_fold0
MayBashendy
2024-11-25T15:41:52Z
131
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T15:34:46Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k15_task5_organization_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k15_task5_organization_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8264 - Qwk: 0.6531 - Mse: 0.8264 - Rmse: 0.9091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0290 | 2 | 1.8024 | 0.1557 | 1.8024 | 1.3425 | | No log | 0.0580 | 4 | 0.9368 | 0.2123 | 0.9368 | 0.9679 | | No log | 0.0870 | 6 | 1.2599 | -0.0332 | 1.2599 | 1.1224 | | No log | 0.1159 | 8 | 1.5849 | -0.0839 | 1.5849 | 1.2589 | | No log | 0.1449 | 10 | 1.3336 | -0.0830 | 1.3336 | 1.1548 | | No log | 0.1739 | 12 | 1.1867 | -0.0830 | 1.1867 | 1.0894 | | No log | 0.2029 | 14 | 1.0137 | 0.2748 | 1.0137 | 1.0068 | | No log | 0.2319 | 16 | 0.9296 | 0.2578 | 0.9296 | 0.9641 | | No log | 0.2609 | 18 | 0.9274 | 0.2578 | 0.9274 | 0.9630 | | No log | 0.2899 | 20 | 0.9673 | 0.2578 | 0.9673 | 0.9835 | | No log | 0.3188 | 22 | 0.9856 | 0.2578 | 0.9856 | 0.9928 | | No log | 0.3478 | 24 | 0.9837 | 0.2578 | 0.9837 | 0.9918 | | No log | 0.3768 | 26 | 0.9796 | 0.3050 | 0.9796 | 0.9898 | | No log | 0.4058 | 28 | 0.9681 | 0.3962 | 0.9681 | 0.9839 | | No log | 0.4348 | 30 | 0.9262 | 0.2578 | 0.9262 | 0.9624 | | No log | 0.4638 | 32 | 0.8998 | 0.2578 | 0.8998 | 0.9486 | | No log | 0.4928 | 34 | 0.8821 | 0.2578 | 0.8821 | 0.9392 | | No log | 0.5217 | 36 | 0.8242 | 0.3050 | 0.8242 | 0.9079 | | No log | 0.5507 | 38 | 0.7302 | 0.3511 | 0.7302 | 0.8545 | | No log | 0.5797 | 40 | 0.6948 | 0.4386 | 0.6948 | 0.8335 | | No log | 0.6087 | 42 | 0.6765 | 0.4792 | 0.6765 | 0.8225 | | No log | 0.6377 | 44 | 0.6974 | 0.5578 | 0.6974 | 0.8351 | | No log | 0.6667 | 46 | 0.6709 | 0.5578 | 0.6709 | 0.8191 | | No log | 0.6957 | 48 | 0.6486 | 0.5189 | 0.6486 | 0.8054 | | No log | 0.7246 | 50 | 0.6392 | 0.4792 | 0.6392 | 0.7995 | | No log | 0.7536 | 52 | 0.6937 | 0.4386 | 0.6937 | 0.8329 | | No log | 0.7826 | 54 | 0.8085 | 0.4984 | 0.8085 | 0.8992 | | No log | 0.8116 | 56 | 0.8995 | 0.4865 | 0.8995 | 0.9484 | | No log | 0.8406 | 58 | 0.8962 | 0.5349 | 0.8962 | 0.9467 | | No log | 0.8696 | 60 | 0.8745 | 0.4984 | 0.8745 | 0.9351 | | No log | 0.8986 | 62 | 0.8373 | 0.5033 | 0.8373 | 0.9151 | | No log | 0.9275 | 64 | 0.8048 | 0.4481 | 0.8048 | 0.8971 | | No log | 0.9565 | 66 | 0.7857 | 0.4481 | 0.7857 | 0.8864 | | No log | 0.9855 | 68 | 0.8050 | 0.4481 | 0.8050 | 0.8972 | | No log | 1.0145 | 70 | 0.8626 | 0.3972 | 0.8626 | 0.9288 | | No log | 1.0435 | 72 | 0.8698 | 0.3972 | 0.8698 | 0.9326 | | No log | 1.0725 | 74 | 0.8404 | 0.3972 | 0.8404 | 0.9168 | | No log | 1.1014 | 76 | 0.8118 | 0.4098 | 0.8118 | 0.9010 | | No log | 1.1304 | 78 | 0.8122 | 0.4481 | 0.8122 | 0.9012 | | No log | 1.1594 | 80 | 0.7622 | 0.4481 | 0.7622 | 0.8730 | | No log | 1.1884 | 82 | 0.6923 | 0.4855 | 0.6923 | 0.8320 | | No log | 1.2174 | 84 | 0.6520 | 0.4855 | 0.6520 | 0.8075 | | No log | 1.2464 | 86 | 0.6218 | 0.4855 | 0.6218 | 0.7885 | | No log | 1.2754 | 88 | 0.6067 | 0.4855 | 0.6067 | 0.7789 | | No log | 1.3043 | 90 | 0.5981 | 0.4855 | 0.5981 | 0.7734 | | No log | 1.3333 | 92 | 0.5835 | 0.4855 | 0.5835 | 0.7639 | | No log | 1.3623 | 94 | 0.5872 | 0.5068 | 0.5872 | 0.7663 | | No log | 1.3913 | 96 | 0.5976 | 0.5550 | 0.5976 | 0.7731 | | No log | 1.4203 | 98 | 0.6285 | 0.5972 | 0.6285 | 0.7928 | | No log | 1.4493 | 100 | 0.6557 | 0.5972 | 0.6557 | 0.8098 | | No log | 1.4783 | 102 | 0.7140 | 0.5900 | 0.7140 | 0.8450 | | No log | 1.5072 | 104 | 0.7587 | 0.6101 | 0.7587 | 0.8710 | | No log | 1.5362 | 106 | 0.7755 | 0.7234 | 0.7755 | 0.8806 | | No log | 1.5652 | 108 | 0.7651 | 0.5852 | 0.7651 | 0.8747 | | No log | 1.5942 | 110 | 0.8988 | 0.5604 | 0.8988 | 0.9481 | | No log | 1.6232 | 112 | 1.0143 | 0.5127 | 1.0143 | 1.0071 | | No log | 1.6522 | 114 | 1.0909 | 0.4856 | 1.0909 | 1.0445 | | No log | 1.6812 | 116 | 1.1933 | 0.4856 | 1.1933 | 1.0924 | | No log | 1.7101 | 118 | 1.1622 | 0.4856 | 1.1622 | 1.0781 | | No log | 1.7391 | 120 | 1.0052 | 0.5127 | 1.0052 | 1.0026 | | No log | 1.7681 | 122 | 0.8246 | 0.5662 | 0.8246 | 0.9081 | | No log | 1.7971 | 124 | 0.6453 | 0.5856 | 0.6453 | 0.8033 | | No log | 1.8261 | 126 | 0.6422 | 0.5252 | 0.6422 | 0.8014 | | No log | 1.8551 | 128 | 0.7198 | 0.6821 | 0.7198 | 0.8484 | | No log | 1.8841 | 130 | 0.6836 | 0.5518 | 0.6836 | 0.8268 | | No log | 1.9130 | 132 | 0.7778 | 0.5325 | 0.7778 | 0.8819 | | No log | 1.9420 | 134 | 0.9025 | 0.6253 | 0.9025 | 0.9500 | | No log | 1.9710 | 136 | 0.9417 | 0.5604 | 0.9417 | 0.9704 | | No log | 2.0 | 138 | 0.8092 | 0.5415 | 0.8092 | 0.8996 | | No log | 2.0290 | 140 | 0.7175 | 0.5662 | 0.7175 | 0.8471 | | No log | 2.0580 | 142 | 0.7718 | 0.5662 | 0.7718 | 0.8785 | | No log | 2.0870 | 144 | 0.8637 | 0.5842 | 0.8637 | 0.9294 | | No log | 2.1159 | 146 | 0.9954 | 0.6025 | 0.9954 | 0.9977 | | No log | 2.1449 | 148 | 0.9901 | 0.5842 | 0.9901 | 0.9950 | | No log | 2.1739 | 150 | 0.9563 | 0.6275 | 0.9563 | 0.9779 | | No log | 2.2029 | 152 | 0.8274 | 0.6275 | 0.8274 | 0.9096 | | No log | 2.2319 | 154 | 0.6751 | 0.6753 | 0.6751 | 0.8217 | | No log | 2.2609 | 156 | 0.6281 | 0.7545 | 0.6281 | 0.7925 | | No log | 2.2899 | 158 | 0.6008 | 0.7465 | 0.6008 | 0.7751 | | No log | 2.3188 | 160 | 0.6131 | 0.7303 | 0.6131 | 0.7830 | | No log | 2.3478 | 162 | 0.7549 | 0.6755 | 0.7549 | 0.8689 | | No log | 2.3768 | 164 | 0.9873 | 0.6336 | 0.9873 | 0.9937 | | No log | 2.4058 | 166 | 1.0973 | 0.4892 | 1.0973 | 1.0475 | | No log | 2.4348 | 168 | 1.0485 | 0.6288 | 1.0485 | 1.0240 | | No log | 2.4638 | 170 | 0.9448 | 0.6421 | 0.9448 | 0.9720 | | No log | 2.4928 | 172 | 0.8788 | 0.6421 | 0.8788 | 0.9374 | | No log | 2.5217 | 174 | 0.9522 | 0.6421 | 0.9522 | 0.9758 | | No log | 2.5507 | 176 | 1.0199 | 0.6421 | 1.0199 | 1.0099 | | No log | 2.5797 | 178 | 1.1291 | 0.5607 | 1.1291 | 1.0626 | | No log | 2.6087 | 180 | 1.0863 | 0.5607 | 1.0863 | 1.0423 | | No log | 2.6377 | 182 | 0.8938 | 0.6421 | 0.8938 | 0.9454 | | No log | 2.6667 | 184 | 0.7280 | 0.6512 | 0.7280 | 0.8532 | | No log | 2.6957 | 186 | 0.6785 | 0.6126 | 0.6785 | 0.8237 | | No log | 2.7246 | 188 | 0.7311 | 0.6421 | 0.7311 | 0.8551 | | No log | 2.7536 | 190 | 0.8141 | 0.5661 | 0.8141 | 0.9023 | | No log | 2.7826 | 192 | 0.8225 | 0.5661 | 0.8225 | 0.9069 | | No log | 2.8116 | 194 | 0.9049 | 0.6421 | 0.9049 | 0.9513 | | No log | 2.8406 | 196 | 1.0170 | 0.6258 | 1.0170 | 1.0085 | | No log | 2.8696 | 198 | 1.1327 | 0.5960 | 1.1327 | 1.0643 | | No log | 2.8986 | 200 | 1.2052 | 0.4919 | 1.2052 | 1.0978 | | No log | 2.9275 | 202 | 1.0716 | 0.5368 | 1.0716 | 1.0352 | | No log | 2.9565 | 204 | 0.8246 | 0.6421 | 0.8246 | 0.9081 | | No log | 2.9855 | 206 | 0.7093 | 0.6421 | 0.7093 | 0.8422 | | No log | 3.0145 | 208 | 0.6376 | 0.6809 | 0.6376 | 0.7985 | | No log | 3.0435 | 210 | 0.6626 | 0.6809 | 0.6626 | 0.8140 | | No log | 3.0725 | 212 | 0.7270 | 0.6809 | 0.7270 | 0.8526 | | No log | 3.1014 | 214 | 0.7713 | 0.6809 | 0.7713 | 0.8783 | | No log | 3.1304 | 216 | 0.6997 | 0.6468 | 0.6997 | 0.8365 | | No log | 3.1594 | 218 | 0.6141 | 0.7393 | 0.6141 | 0.7837 | | No log | 3.1884 | 220 | 0.5988 | 0.8054 | 0.5988 | 0.7738 | | No log | 3.2174 | 222 | 0.6037 | 0.8054 | 0.6037 | 0.7770 | | No log | 3.2464 | 224 | 0.6216 | 0.7794 | 0.6216 | 0.7884 | | No log | 3.2754 | 226 | 0.6893 | 0.6038 | 0.6893 | 0.8302 | | No log | 3.3043 | 228 | 0.8140 | 0.6140 | 0.8140 | 0.9022 | | No log | 3.3333 | 230 | 0.8383 | 0.6140 | 0.8383 | 0.9156 | | No log | 3.3623 | 232 | 0.8325 | 0.6140 | 0.8325 | 0.9124 | | No log | 3.3913 | 234 | 0.7691 | 0.7059 | 0.7691 | 0.8770 | | No log | 3.4203 | 236 | 0.7757 | 0.7059 | 0.7757 | 0.8807 | | No log | 3.4493 | 238 | 0.8229 | 0.7059 | 0.8229 | 0.9071 | | No log | 3.4783 | 240 | 0.8765 | 0.6844 | 0.8765 | 0.9362 | | No log | 3.5072 | 242 | 0.9402 | 0.6809 | 0.9402 | 0.9696 | | No log | 3.5362 | 244 | 0.9022 | 0.6429 | 0.9022 | 0.9499 | | No log | 3.5652 | 246 | 0.8204 | 0.6660 | 0.8204 | 0.9058 | | No log | 3.5942 | 248 | 0.7650 | 0.7113 | 0.7650 | 0.8747 | | No log | 3.6232 | 250 | 0.7439 | 0.7113 | 0.7439 | 0.8625 | | No log | 3.6522 | 252 | 0.7561 | 0.6711 | 0.7561 | 0.8695 | | No log | 3.6812 | 254 | 0.7925 | 0.6468 | 0.7925 | 0.8902 | | No log | 3.7101 | 256 | 0.8968 | 0.6809 | 0.8968 | 0.9470 | | No log | 3.7391 | 258 | 0.9697 | 0.6008 | 0.9697 | 0.9847 | | No log | 3.7681 | 260 | 0.9694 | 0.6008 | 0.9694 | 0.9846 | | No log | 3.7971 | 262 | 0.8727 | 0.6574 | 0.8727 | 0.9342 | | No log | 3.8261 | 264 | 0.7684 | 0.6809 | 0.7684 | 0.8766 | | No log | 3.8551 | 266 | 0.7277 | 0.6468 | 0.7277 | 0.8530 | | No log | 3.8841 | 268 | 0.7225 | 0.6468 | 0.7225 | 0.8500 | | No log | 3.9130 | 270 | 0.7308 | 0.6468 | 0.7308 | 0.8549 | | No log | 3.9420 | 272 | 0.7305 | 0.6468 | 0.7305 | 0.8547 | | No log | 3.9710 | 274 | 0.7952 | 0.6531 | 0.7952 | 0.8918 | | No log | 4.0 | 276 | 0.8573 | 0.6531 | 0.8573 | 0.9259 | | No log | 4.0290 | 278 | 0.8052 | 0.6468 | 0.8052 | 0.8973 | | No log | 4.0580 | 280 | 0.7424 | 0.6468 | 0.7424 | 0.8616 | | No log | 4.0870 | 282 | 0.7500 | 0.6468 | 0.7500 | 0.8660 | | No log | 4.1159 | 284 | 0.7640 | 0.6468 | 0.7640 | 0.8741 | | No log | 4.1449 | 286 | 0.7450 | 0.6468 | 0.7450 | 0.8632 | | No log | 4.1739 | 288 | 0.7643 | 0.6468 | 0.7643 | 0.8742 | | No log | 4.2029 | 290 | 0.7368 | 0.6468 | 0.7368 | 0.8584 | | No log | 4.2319 | 292 | 0.6785 | 0.6560 | 0.6785 | 0.8237 | | No log | 4.2609 | 294 | 0.6539 | 0.7059 | 0.6539 | 0.8086 | | No log | 4.2899 | 296 | 0.6681 | 0.7059 | 0.6681 | 0.8174 | | No log | 4.3188 | 298 | 0.6875 | 0.6811 | 0.6875 | 0.8292 | | No log | 4.3478 | 300 | 0.7607 | 0.6468 | 0.7607 | 0.8722 | | No log | 4.3768 | 302 | 0.8315 | 0.6468 | 0.8315 | 0.9119 | | No log | 4.4058 | 304 | 0.8376 | 0.6468 | 0.8376 | 0.9152 | | No log | 4.4348 | 306 | 0.8015 | 0.6468 | 0.8015 | 0.8953 | | No log | 4.4638 | 308 | 0.7706 | 0.6468 | 0.7706 | 0.8778 | | No log | 4.4928 | 310 | 0.7329 | 0.6468 | 0.7329 | 0.8561 | | No log | 4.5217 | 312 | 0.6953 | 0.6468 | 0.6953 | 0.8339 | | No log | 4.5507 | 314 | 0.6587 | 0.7393 | 0.6587 | 0.8116 | | No log | 4.5797 | 316 | 0.6542 | 0.7647 | 0.6542 | 0.8088 | | No log | 4.6087 | 318 | 0.6397 | 0.7794 | 0.6397 | 0.7998 | | No log | 4.6377 | 320 | 0.6456 | 0.7647 | 0.6456 | 0.8035 | | No log | 4.6667 | 322 | 0.6578 | 0.7393 | 0.6578 | 0.8110 | | No log | 4.6957 | 324 | 0.6591 | 0.7393 | 0.6591 | 0.8118 | | No log | 4.7246 | 326 | 0.6746 | 0.7136 | 0.6746 | 0.8213 | | No log | 4.7536 | 328 | 0.6488 | 0.7393 | 0.6488 | 0.8055 | | No log | 4.7826 | 330 | 0.6226 | 0.7531 | 0.6226 | 0.7891 | | No log | 4.8116 | 332 | 0.6281 | 0.7531 | 0.6281 | 0.7925 | | No log | 4.8406 | 334 | 0.6657 | 0.7393 | 0.6657 | 0.8159 | | No log | 4.8696 | 336 | 0.7196 | 0.6560 | 0.7196 | 0.8483 | | No log | 4.8986 | 338 | 0.7465 | 0.6909 | 0.7465 | 0.8640 | | No log | 4.9275 | 340 | 0.7714 | 0.6909 | 0.7714 | 0.8783 | | No log | 4.9565 | 342 | 0.8487 | 0.6383 | 0.8487 | 0.9212 | | No log | 4.9855 | 344 | 0.9536 | 0.6304 | 0.9536 | 0.9765 | | No log | 5.0145 | 346 | 1.0217 | 0.5842 | 1.0217 | 1.0108 | | No log | 5.0435 | 348 | 1.0407 | 0.5783 | 1.0407 | 1.0201 | | No log | 5.0725 | 350 | 0.9806 | 0.5842 | 0.9806 | 0.9903 | | No log | 5.1014 | 352 | 0.9200 | 0.6074 | 0.9200 | 0.9592 | | No log | 5.1304 | 354 | 0.8996 | 0.6304 | 0.8996 | 0.9485 | | No log | 5.1594 | 356 | 0.8744 | 0.6304 | 0.8744 | 0.9351 | | No log | 5.1884 | 358 | 0.8370 | 0.6809 | 0.8370 | 0.9149 | | No log | 5.2174 | 360 | 0.8647 | 0.6809 | 0.8647 | 0.9299 | | No log | 5.2464 | 362 | 0.8676 | 0.6809 | 0.8676 | 0.9315 | | No log | 5.2754 | 364 | 0.8185 | 0.6909 | 0.8185 | 0.9047 | | No log | 5.3043 | 366 | 0.8312 | 0.6809 | 0.8312 | 0.9117 | | No log | 5.3333 | 368 | 0.8260 | 0.6809 | 0.8260 | 0.9088 | | No log | 5.3623 | 370 | 0.8350 | 0.6809 | 0.8350 | 0.9138 | | No log | 5.3913 | 372 | 0.8550 | 0.6809 | 0.8550 | 0.9247 | | No log | 5.4203 | 374 | 0.8042 | 0.6468 | 0.8042 | 0.8968 | | No log | 5.4493 | 376 | 0.7855 | 0.6560 | 0.7855 | 0.8863 | | No log | 5.4783 | 378 | 0.8032 | 0.6468 | 0.8032 | 0.8962 | | No log | 5.5072 | 380 | 0.7981 | 0.6468 | 0.7981 | 0.8934 | | No log | 5.5362 | 382 | 0.7652 | 0.6560 | 0.7652 | 0.8747 | | No log | 5.5652 | 384 | 0.7828 | 0.6468 | 0.7828 | 0.8848 | | No log | 5.5942 | 386 | 0.8279 | 0.6531 | 0.8279 | 0.9099 | | No log | 5.6232 | 388 | 0.8908 | 0.6844 | 0.8908 | 0.9438 | | No log | 5.6522 | 390 | 0.9109 | 0.7243 | 0.9109 | 0.9544 | | No log | 5.6812 | 392 | 0.8770 | 0.6964 | 0.8770 | 0.9365 | | No log | 5.7101 | 394 | 0.8829 | 0.6602 | 0.8829 | 0.9396 | | No log | 5.7391 | 396 | 0.8993 | 0.6602 | 0.8993 | 0.9483 | | No log | 5.7681 | 398 | 0.9828 | 0.6602 | 0.9828 | 0.9913 | | No log | 5.7971 | 400 | 1.0805 | 0.6535 | 1.0805 | 1.0395 | | No log | 5.8261 | 402 | 1.1116 | 0.6535 | 1.1116 | 1.0543 | | No log | 5.8551 | 404 | 1.0604 | 0.6602 | 1.0604 | 1.0298 | | No log | 5.8841 | 406 | 1.0080 | 0.6602 | 1.0080 | 1.0040 | | No log | 5.9130 | 408 | 0.9739 | 0.6140 | 0.9739 | 0.9869 | | No log | 5.9420 | 410 | 0.9053 | 0.6809 | 0.9053 | 0.9515 | | No log | 5.9710 | 412 | 0.9057 | 0.6809 | 0.9057 | 0.9517 | | No log | 6.0 | 414 | 0.9518 | 0.6809 | 0.9518 | 0.9756 | | No log | 6.0290 | 416 | 0.9558 | 0.6809 | 0.9558 | 0.9777 | | No log | 6.0580 | 418 | 0.9331 | 0.6809 | 0.9331 | 0.9660 | | No log | 6.0870 | 420 | 0.8973 | 0.6809 | 0.8973 | 0.9473 | | No log | 6.1159 | 422 | 0.8853 | 0.6809 | 0.8853 | 0.9409 | | No log | 6.1449 | 424 | 0.9231 | 0.6809 | 0.9231 | 0.9608 | | No log | 6.1739 | 426 | 0.9574 | 0.6809 | 0.9574 | 0.9785 | | No log | 6.2029 | 428 | 0.9549 | 0.6809 | 0.9549 | 0.9772 | | No log | 6.2319 | 430 | 0.9522 | 0.6809 | 0.9522 | 0.9758 | | No log | 6.2609 | 432 | 0.8977 | 0.6809 | 0.8977 | 0.9475 | | No log | 6.2899 | 434 | 0.8644 | 0.6809 | 0.8644 | 0.9298 | | No log | 6.3188 | 436 | 0.8896 | 0.6809 | 0.8896 | 0.9432 | | No log | 6.3478 | 438 | 0.9329 | 0.6055 | 0.9329 | 0.9659 | | No log | 6.3768 | 440 | 0.9783 | 0.6055 | 0.9783 | 0.9891 | | No log | 6.4058 | 442 | 0.9492 | 0.6055 | 0.9492 | 0.9743 | | No log | 6.4348 | 444 | 0.9167 | 0.6055 | 0.9167 | 0.9574 | | No log | 6.4638 | 446 | 0.8850 | 0.6055 | 0.8850 | 0.9408 | | No log | 6.4928 | 448 | 0.8678 | 0.6055 | 0.8678 | 0.9315 | | No log | 6.5217 | 450 | 0.8215 | 0.5714 | 0.8215 | 0.9064 | | No log | 6.5507 | 452 | 0.7790 | 0.6468 | 0.7790 | 0.8826 | | No log | 6.5797 | 454 | 0.7182 | 0.6560 | 0.7182 | 0.8475 | | No log | 6.6087 | 456 | 0.6941 | 0.6560 | 0.6941 | 0.8331 | | No log | 6.6377 | 458 | 0.7090 | 0.6560 | 0.7090 | 0.8420 | | No log | 6.6667 | 460 | 0.7267 | 0.6560 | 0.7267 | 0.8525 | | No log | 6.6957 | 462 | 0.7193 | 0.6560 | 0.7193 | 0.8481 | | No log | 6.7246 | 464 | 0.7290 | 0.6560 | 0.7290 | 0.8538 | | No log | 6.7536 | 466 | 0.7237 | 0.6560 | 0.7237 | 0.8507 | | No log | 6.7826 | 468 | 0.7165 | 0.6617 | 0.7165 | 0.8465 | | No log | 6.8116 | 470 | 0.7063 | 0.6617 | 0.7063 | 0.8404 | | No log | 6.8406 | 472 | 0.7013 | 0.6617 | 0.7013 | 0.8375 | | No log | 6.8696 | 474 | 0.6923 | 0.6617 | 0.6923 | 0.8321 | | No log | 6.8986 | 476 | 0.7350 | 0.6617 | 0.7350 | 0.8573 | | No log | 6.9275 | 478 | 0.7730 | 0.6617 | 0.7730 | 0.8792 | | No log | 6.9565 | 480 | 0.7880 | 0.6617 | 0.7880 | 0.8877 | | No log | 6.9855 | 482 | 0.8042 | 0.6617 | 0.8042 | 0.8968 | | No log | 7.0145 | 484 | 0.8179 | 0.6617 | 0.8179 | 0.9044 | | No log | 7.0435 | 486 | 0.8521 | 0.5825 | 0.8521 | 0.9231 | | No log | 7.0725 | 488 | 0.8804 | 0.5825 | 0.8804 | 0.9383 | | No log | 7.1014 | 490 | 0.8931 | 0.6140 | 0.8931 | 0.9451 | | No log | 7.1304 | 492 | 0.8885 | 0.6140 | 0.8885 | 0.9426 | | No log | 7.1594 | 494 | 0.8616 | 0.5882 | 0.8616 | 0.9282 | | No log | 7.1884 | 496 | 0.8547 | 0.5882 | 0.8547 | 0.9245 | | No log | 7.2174 | 498 | 0.8503 | 0.5882 | 0.8503 | 0.9221 | | 0.3883 | 7.2464 | 500 | 0.8344 | 0.5882 | 0.8344 | 0.9135 | | 0.3883 | 7.2754 | 502 | 0.8270 | 0.5882 | 0.8270 | 0.9094 | | 0.3883 | 7.3043 | 504 | 0.7905 | 0.5882 | 0.7905 | 0.8891 | | 0.3883 | 7.3333 | 506 | 0.7402 | 0.5882 | 0.7402 | 0.8603 | | 0.3883 | 7.3623 | 508 | 0.6900 | 0.6617 | 0.6900 | 0.8307 | | 0.3883 | 7.3913 | 510 | 0.6545 | 0.7136 | 0.6545 | 0.8090 | | 0.3883 | 7.4203 | 512 | 0.6539 | 0.7136 | 0.6539 | 0.8086 | | 0.3883 | 7.4493 | 514 | 0.6486 | 0.7136 | 0.6486 | 0.8054 | | 0.3883 | 7.4783 | 516 | 0.6462 | 0.7136 | 0.6462 | 0.8039 | | 0.3883 | 7.5072 | 518 | 0.6666 | 0.6560 | 0.6666 | 0.8164 | | 0.3883 | 7.5362 | 520 | 0.6822 | 0.6560 | 0.6822 | 0.8260 | | 0.3883 | 7.5652 | 522 | 0.7153 | 0.6560 | 0.7153 | 0.8458 | | 0.3883 | 7.5942 | 524 | 0.7305 | 0.6560 | 0.7305 | 0.8547 | | 0.3883 | 7.6232 | 526 | 0.7243 | 0.6560 | 0.7243 | 0.8510 | | 0.3883 | 7.6522 | 528 | 0.7059 | 0.6560 | 0.7059 | 0.8401 | | 0.3883 | 7.6812 | 530 | 0.7049 | 0.6560 | 0.7049 | 0.8396 | | 0.3883 | 7.7101 | 532 | 0.7322 | 0.6560 | 0.7322 | 0.8557 | | 0.3883 | 7.7391 | 534 | 0.7582 | 0.6560 | 0.7582 | 0.8707 | | 0.3883 | 7.7681 | 536 | 0.7702 | 0.6909 | 0.7702 | 0.8776 | | 0.3883 | 7.7971 | 538 | 0.7910 | 0.6909 | 0.7910 | 0.8894 | | 0.3883 | 7.8261 | 540 | 0.8067 | 0.6909 | 0.8067 | 0.8982 | | 0.3883 | 7.8551 | 542 | 0.8323 | 0.6909 | 0.8323 | 0.9123 | | 0.3883 | 7.8841 | 544 | 0.8737 | 0.6809 | 0.8737 | 0.9347 | | 0.3883 | 7.9130 | 546 | 0.9126 | 0.6055 | 0.9126 | 0.9553 | | 0.3883 | 7.9420 | 548 | 0.9518 | 0.6055 | 0.9518 | 0.9756 | | 0.3883 | 7.9710 | 550 | 0.9558 | 0.6055 | 0.9558 | 0.9777 | | 0.3883 | 8.0 | 552 | 0.9409 | 0.6055 | 0.9409 | 0.9700 | | 0.3883 | 8.0290 | 554 | 0.9199 | 0.6055 | 0.9199 | 0.9591 | | 0.3883 | 8.0580 | 556 | 0.9071 | 0.6140 | 0.9071 | 0.9524 | | 0.3883 | 8.0870 | 558 | 0.8813 | 0.6055 | 0.8813 | 0.9388 | | 0.3883 | 8.1159 | 560 | 0.8421 | 0.6122 | 0.8421 | 0.9177 | | 0.3883 | 8.1449 | 562 | 0.8001 | 0.6909 | 0.8001 | 0.8945 | | 0.3883 | 8.1739 | 564 | 0.7835 | 0.6909 | 0.7835 | 0.8852 | | 0.3883 | 8.2029 | 566 | 0.7754 | 0.6909 | 0.7754 | 0.8806 | | 0.3883 | 8.2319 | 568 | 0.7653 | 0.6909 | 0.7653 | 0.8748 | | 0.3883 | 8.2609 | 570 | 0.7539 | 0.6560 | 0.7539 | 0.8683 | | 0.3883 | 8.2899 | 572 | 0.7428 | 0.6617 | 0.7428 | 0.8619 | | 0.3883 | 8.3188 | 574 | 0.7533 | 0.6617 | 0.7533 | 0.8679 | | 0.3883 | 8.3478 | 576 | 0.7583 | 0.6617 | 0.7583 | 0.8708 | | 0.3883 | 8.3768 | 578 | 0.7633 | 0.6617 | 0.7633 | 0.8737 | | 0.3883 | 8.4058 | 580 | 0.7538 | 0.6617 | 0.7538 | 0.8682 | | 0.3883 | 8.4348 | 582 | 0.7486 | 0.6617 | 0.7486 | 0.8652 | | 0.3883 | 8.4638 | 584 | 0.7381 | 0.6617 | 0.7381 | 0.8591 | | 0.3883 | 8.4928 | 586 | 0.7415 | 0.6617 | 0.7415 | 0.8611 | | 0.3883 | 8.5217 | 588 | 0.7382 | 0.6617 | 0.7382 | 0.8592 | | 0.3883 | 8.5507 | 590 | 0.7291 | 0.6617 | 0.7291 | 0.8539 | | 0.3883 | 8.5797 | 592 | 0.7379 | 0.6617 | 0.7379 | 0.8590 | | 0.3883 | 8.6087 | 594 | 0.7490 | 0.6617 | 0.7490 | 0.8654 | | 0.3883 | 8.6377 | 596 | 0.7677 | 0.6617 | 0.7677 | 0.8762 | | 0.3883 | 8.6667 | 598 | 0.7887 | 0.6617 | 0.7887 | 0.8881 | | 0.3883 | 8.6957 | 600 | 0.7905 | 0.6617 | 0.7905 | 0.8891 | | 0.3883 | 8.7246 | 602 | 0.7871 | 0.6617 | 0.7871 | 0.8872 | | 0.3883 | 8.7536 | 604 | 0.7876 | 0.6617 | 0.7876 | 0.8875 | | 0.3883 | 8.7826 | 606 | 0.7754 | 0.6617 | 0.7754 | 0.8806 | | 0.3883 | 8.8116 | 608 | 0.7721 | 0.6617 | 0.7721 | 0.8787 | | 0.3883 | 8.8406 | 610 | 0.7695 | 0.6617 | 0.7695 | 0.8772 | | 0.3883 | 8.8696 | 612 | 0.7764 | 0.6617 | 0.7764 | 0.8811 | | 0.3883 | 8.8986 | 614 | 0.7737 | 0.6617 | 0.7737 | 0.8796 | | 0.3883 | 8.9275 | 616 | 0.7751 | 0.6617 | 0.7751 | 0.8804 | | 0.3883 | 8.9565 | 618 | 0.7758 | 0.6617 | 0.7758 | 0.8808 | | 0.3883 | 8.9855 | 620 | 0.7834 | 0.6617 | 0.7834 | 0.8851 | | 0.3883 | 9.0145 | 622 | 0.7955 | 0.6617 | 0.7955 | 0.8919 | | 0.3883 | 9.0435 | 624 | 0.8031 | 0.6617 | 0.8031 | 0.8961 | | 0.3883 | 9.0725 | 626 | 0.8099 | 0.6531 | 0.8099 | 0.8999 | | 0.3883 | 9.1014 | 628 | 0.8143 | 0.6531 | 0.8143 | 0.9024 | | 0.3883 | 9.1304 | 630 | 0.8123 | 0.6531 | 0.8123 | 0.9013 | | 0.3883 | 9.1594 | 632 | 0.8131 | 0.6531 | 0.8131 | 0.9017 | | 0.3883 | 9.1884 | 634 | 0.8223 | 0.6531 | 0.8223 | 0.9068 | | 0.3883 | 9.2174 | 636 | 0.8245 | 0.6531 | 0.8245 | 0.9080 | | 0.3883 | 9.2464 | 638 | 0.8172 | 0.6531 | 0.8172 | 0.9040 | | 0.3883 | 9.2754 | 640 | 0.8115 | 0.6617 | 0.8115 | 0.9009 | | 0.3883 | 9.3043 | 642 | 0.8017 | 0.6617 | 0.8017 | 0.8954 | | 0.3883 | 9.3333 | 644 | 0.7910 | 0.6617 | 0.7910 | 0.8894 | | 0.3883 | 9.3623 | 646 | 0.7920 | 0.6617 | 0.7920 | 0.8899 | | 0.3883 | 9.3913 | 648 | 0.7997 | 0.6617 | 0.7997 | 0.8942 | | 0.3883 | 9.4203 | 650 | 0.8152 | 0.6531 | 0.8152 | 0.9029 | | 0.3883 | 9.4493 | 652 | 0.8333 | 0.6531 | 0.8333 | 0.9129 | | 0.3883 | 9.4783 | 654 | 0.8426 | 0.6531 | 0.8426 | 0.9180 | | 0.3883 | 9.5072 | 656 | 0.8516 | 0.6531 | 0.8516 | 0.9228 | | 0.3883 | 9.5362 | 658 | 0.8557 | 0.6531 | 0.8557 | 0.9250 | | 0.3883 | 9.5652 | 660 | 0.8584 | 0.6531 | 0.8584 | 0.9265 | | 0.3883 | 9.5942 | 662 | 0.8606 | 0.6531 | 0.8606 | 0.9277 | | 0.3883 | 9.6232 | 664 | 0.8583 | 0.6531 | 0.8583 | 0.9264 | | 0.3883 | 9.6522 | 666 | 0.8581 | 0.6531 | 0.8581 | 0.9263 | | 0.3883 | 9.6812 | 668 | 0.8557 | 0.6531 | 0.8557 | 0.9250 | | 0.3883 | 9.7101 | 670 | 0.8509 | 0.6531 | 0.8509 | 0.9225 | | 0.3883 | 9.7391 | 672 | 0.8452 | 0.6531 | 0.8452 | 0.9193 | | 0.3883 | 9.7681 | 674 | 0.8379 | 0.6531 | 0.8379 | 0.9154 | | 0.3883 | 9.7971 | 676 | 0.8328 | 0.6531 | 0.8328 | 0.9126 | | 0.3883 | 9.8261 | 678 | 0.8311 | 0.6531 | 0.8311 | 0.9116 | | 0.3883 | 9.8551 | 680 | 0.8284 | 0.6531 | 0.8284 | 0.9101 | | 0.3883 | 9.8841 | 682 | 0.8274 | 0.6531 | 0.8274 | 0.9096 | | 0.3883 | 9.9130 | 684 | 0.8262 | 0.6531 | 0.8262 | 0.9089 | | 0.3883 | 9.9420 | 686 | 0.8260 | 0.6531 | 0.8260 | 0.9089 | | 0.3883 | 9.9710 | 688 | 0.8262 | 0.6531 | 0.8262 | 0.9090 | | 0.3883 | 10.0 | 690 | 0.8264 | 0.6531 | 0.8264 | 0.9091 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
sjleee/model
sjleee
2024-11-25T15:41:39Z
9
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-25T15:39:25Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sjleee - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
swsqy/hongkongcomic
swsqy
2024-11-25T15:35:32Z
10
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2024-11-25T15:01:54Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: efef output: url: images/generated-image (1).png base_model: black-forest-labs/FLUX.1-dev instance_prompt: vev --- # asvew <Gallery /> ## Trigger words You should use `vev` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/swsqy/hongkongcomic/tree/main) them in the Files & versions tab.
jadechoghari/mar
jadechoghari
2024-11-25T15:32:38Z
547
11
diffusers
[ "diffusers", "safetensors", "unconditional-image-generation", "arxiv:2406.11838", "license:mit", "diffusers:MARModel", "region:us" ]
unconditional-image-generation
2024-09-07T22:13:50Z
--- library_name: diffusers license: mit pipeline_tag: unconditional-image-generation --- # Autoregressive Image Generation without Vector Quantization ## About This model (MAR) introduces a novel approach to autoregressive image generation by eliminating the need for vector quantization. Instead of relying on discrete tokens, the model operates in a continuous-valued space using a diffusion process to model the per-token probability distribution. By employing a Diffusion Loss function, the model achieves efficient and high-quality image generation while benefiting from the speed advantages of autoregressive sequence modeling. This approach simplifies the generation process, making it applicable to broader continuous-valued domains beyond just image synthesis. It is based on [this paper](https://arxiv.org/abs/2406.11838) ## Usage: You can easily load it through the Hugging Face `DiffusionPipeline` and optionally customize various parameters such as the model type, number of steps, and class labels. ```python from diffusers import DiffusionPipeline # load the pretrained model pipeline = DiffusionPipeline.from_pretrained("jadechoghari/mar", trust_remote_code=True, custom_pipeline="jadechoghari/mar") # generate an image with the model generated_image = pipeline( model_type="mar_huge", # choose from 'mar_base', 'mar_large', or 'mar_huge' seed=42, # set a seed for reproducibility num_ar_steps=64, # number of autoregressive steps class_labels=[207, 360, 388], # provide valid ImageNet class labels cfg_scale=4, # classifier-free guidance scale output_dir="./images", # directory to save generated images cfg_schedule = "constant", # choose between 'constant' (suggested) and 'linear' ) # display the generated image generated_image.show() ``` <p align="center"> <img src="https://github.com/LTH14/mar/raw/main/demo/visual.png" width="500"> </p> This code loads the model, configures it for image generation, and saves the output to a specified directory. We offer three pre-trained MAR models in `safetensors` format: - `mar-base.safetensors` - `mar-large.safetensors` - `mar-huge.safetensors` <!-- <p align="center"> <img src="https://github.com/LTH14/mar/raw/main/demo/visual.png" width="720"> </p> --> This is a Hugging Face Diffusers/GPU implementation of the paper [Autoregressive Image Generation without Vector Quantization](https://arxiv.org/abs/2406.11838) The Official PyTorch Implementation is released in [this repository](https://github.com/LTH14/mar) ``` @article{li2024autoregressive, title={Autoregressive Image Generation without Vector Quantization}, author={Li, Tianhong and Tian, Yonglong and Li, He and Deng, Mingyang and He, Kaiming}, journal={arXiv preprint arXiv:2406.11838}, year={2024} } ``` ## Acknowledgements We thank Congyue Deng and Xinlei Chen for helpful discussion. We thank Google TPU Research Cloud (TRC) for granting us access to TPUs, and Google Cloud Platform for supporting GPU resources. A large portion of codes in this repo is based on [MAE](https://github.com/facebookresearch/mae), [MAGE](https://github.com/LTH14/mage) and [DiT](https://github.com/facebookresearch/DiT). ## Contact If you have any questions, feel free to contact me through email ([email protected]). Enjoy!
maxg73872/biobert-v1.1-finetuned-medmcqa-2024-11-25-T15-27-54
maxg73872
2024-11-25T15:31:35Z
130
0
transformers
[ "transformers", "safetensors", "bert", "multiple-choice", "generated_from_trainer", "base_model:dmis-lab/biobert-v1.1", "base_model:finetune:dmis-lab/biobert-v1.1", "endpoints_compatible", "region:us" ]
multiple-choice
2024-11-25T15:31:13Z
--- library_name: transformers base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-v1.1-finetuned-medmcqa-2024-11-25-T15-27-54 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-v1.1-finetuned-medmcqa-2024-11-25-T15-27-54 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3558 - Accuracy: 0.6667 - F1: 0.6494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 1.3754 | 0.9978 | 57 | 1.3558 | 0.6667 | 0.6494 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k10_task5_organization_fold0
MayBashendy
2024-11-25T15:28:15Z
134
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T13:59:23Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k10_task5_organization_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k10_task5_organization_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7596 - Qwk: 0.8124 - Mse: 0.7596 - Rmse: 0.8715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:| | No log | 0.0408 | 2 | 1.5967 | 0.0796 | 1.5967 | 1.2636 | | No log | 0.0816 | 4 | 1.0881 | 0.1519 | 1.0881 | 1.0431 | | No log | 0.1224 | 6 | 1.1846 | 0.0942 | 1.1846 | 1.0884 | | No log | 0.1633 | 8 | 1.1257 | 0.3195 | 1.1257 | 1.0610 | | No log | 0.2041 | 10 | 0.9881 | 0.3915 | 0.9881 | 0.9940 | | No log | 0.2449 | 12 | 0.9075 | 0.3906 | 0.9075 | 0.9526 | | No log | 0.2857 | 14 | 0.8722 | 0.3906 | 0.8722 | 0.9339 | | No log | 0.3265 | 16 | 0.7573 | 0.3103 | 0.7573 | 0.8702 | | No log | 0.3673 | 18 | 0.7269 | 0.2910 | 0.7269 | 0.8526 | | No log | 0.4082 | 20 | 0.7590 | 0.3358 | 0.7590 | 0.8712 | | No log | 0.4490 | 22 | 0.7332 | 0.2910 | 0.7332 | 0.8563 | | No log | 0.4898 | 24 | 0.7014 | 0.2910 | 0.7014 | 0.8375 | | No log | 0.5306 | 26 | 0.7144 | 0.2453 | 0.7144 | 0.8452 | | No log | 0.5714 | 28 | 0.7190 | 0.4620 | 0.7190 | 0.8479 | | No log | 0.6122 | 30 | 0.7341 | 0.4780 | 0.7341 | 0.8568 | | No log | 0.6531 | 32 | 0.7221 | 0.5349 | 0.7221 | 0.8498 | | No log | 0.6939 | 34 | 0.6550 | 0.5405 | 0.6550 | 0.8093 | | No log | 0.7347 | 36 | 0.6098 | 0.4754 | 0.6098 | 0.7809 | | No log | 0.7755 | 38 | 0.6895 | 0.5357 | 0.6895 | 0.8304 | | No log | 0.8163 | 40 | 0.8857 | 0.3493 | 0.8857 | 0.9411 | | No log | 0.8571 | 42 | 0.9389 | 0.3220 | 0.9389 | 0.9689 | | No log | 0.8980 | 44 | 0.8184 | 0.5455 | 0.8184 | 0.9047 | | No log | 0.9388 | 46 | 0.6389 | 0.5357 | 0.6389 | 0.7993 | | No log | 0.9796 | 48 | 0.5778 | 0.4946 | 0.5778 | 0.7601 | | No log | 1.0204 | 50 | 0.5964 | 0.6100 | 0.5964 | 0.7723 | | No log | 1.0612 | 52 | 0.7225 | 0.5573 | 0.7225 | 0.8500 | | No log | 1.1020 | 54 | 0.7785 | 0.5511 | 0.7785 | 0.8823 | | No log | 1.1429 | 56 | 0.7712 | 0.4460 | 0.7712 | 0.8782 | | No log | 1.1837 | 58 | 0.7464 | 0.4539 | 0.7464 | 0.8640 | | No log | 1.2245 | 60 | 0.7121 | 0.4495 | 0.7121 | 0.8439 | | No log | 1.2653 | 62 | 0.6853 | 0.6094 | 0.6853 | 0.8278 | | No log | 1.3061 | 64 | 0.6382 | 0.6094 | 0.6382 | 0.7989 | | No log | 1.3469 | 66 | 0.5605 | 0.6011 | 0.5605 | 0.7487 | | No log | 1.3878 | 68 | 0.5251 | 0.6215 | 0.5251 | 0.7246 | | No log | 1.4286 | 70 | 0.5318 | 0.6501 | 0.5318 | 0.7293 | | No log | 1.4694 | 72 | 0.5331 | 0.6995 | 0.5331 | 0.7302 | | No log | 1.5102 | 74 | 0.5073 | 0.75 | 0.5073 | 0.7123 | | No log | 1.5510 | 76 | 0.5052 | 0.6765 | 0.5052 | 0.7108 | | No log | 1.5918 | 78 | 0.5809 | 0.6394 | 0.5809 | 0.7622 | | No log | 1.6327 | 80 | 0.6185 | 0.6222 | 0.6185 | 0.7865 | | No log | 1.6735 | 82 | 0.6036 | 0.7136 | 0.6036 | 0.7769 | | No log | 1.7143 | 84 | 0.5466 | 0.7037 | 0.5466 | 0.7393 | | No log | 1.7551 | 86 | 0.5108 | 0.7305 | 0.5108 | 0.7147 | | No log | 1.7959 | 88 | 0.4948 | 0.7458 | 0.4948 | 0.7034 | | No log | 1.8367 | 90 | 0.4822 | 0.6765 | 0.4822 | 0.6944 | | No log | 1.8776 | 92 | 0.5204 | 0.6875 | 0.5204 | 0.7214 | | No log | 1.9184 | 94 | 0.5654 | 0.6154 | 0.5654 | 0.7520 | | No log | 1.9592 | 96 | 0.6387 | 0.6287 | 0.6387 | 0.7992 | | No log | 2.0 | 98 | 0.7510 | 0.6509 | 0.7510 | 0.8666 | | No log | 2.0408 | 100 | 0.9415 | 0.5501 | 0.9415 | 0.9703 | | No log | 2.0816 | 102 | 0.9839 | 0.5059 | 0.9839 | 0.9919 | | No log | 2.1224 | 104 | 0.8308 | 0.5789 | 0.8308 | 0.9115 | | No log | 2.1633 | 106 | 0.6502 | 0.6560 | 0.6502 | 0.8064 | | No log | 2.2041 | 108 | 0.5964 | 0.6560 | 0.5964 | 0.7723 | | No log | 2.2449 | 110 | 0.5545 | 0.6438 | 0.5545 | 0.7447 | | No log | 2.2857 | 112 | 0.5525 | 0.6829 | 0.5525 | 0.7433 | | No log | 2.3265 | 114 | 0.5276 | 0.6011 | 0.5276 | 0.7263 | | No log | 2.3673 | 116 | 0.5133 | 0.6491 | 0.5133 | 0.7165 | | No log | 2.4082 | 118 | 0.5038 | 0.6766 | 0.5038 | 0.7098 | | No log | 2.4490 | 120 | 0.4895 | 0.6766 | 0.4895 | 0.6996 | | No log | 2.4898 | 122 | 0.4866 | 0.6766 | 0.4866 | 0.6975 | | No log | 2.5306 | 124 | 0.4879 | 0.7176 | 0.4879 | 0.6985 | | No log | 2.5714 | 126 | 0.4988 | 0.7176 | 0.4988 | 0.7063 | | No log | 2.6122 | 128 | 0.5131 | 0.7176 | 0.5131 | 0.7163 | | No log | 2.6531 | 130 | 0.5364 | 0.7511 | 0.5364 | 0.7324 | | No log | 2.6939 | 132 | 0.5744 | 0.7511 | 0.5744 | 0.7579 | | No log | 2.7347 | 134 | 0.6561 | 0.7018 | 0.6561 | 0.8100 | | No log | 2.7755 | 136 | 0.7019 | 0.7018 | 0.7019 | 0.8378 | | No log | 2.8163 | 138 | 0.6957 | 0.7018 | 0.6957 | 0.8341 | | No log | 2.8571 | 140 | 0.6523 | 0.7018 | 0.6523 | 0.8076 | | No log | 2.8980 | 142 | 0.6622 | 0.7186 | 0.6622 | 0.8138 | | No log | 2.9388 | 144 | 0.6787 | 0.7419 | 0.6787 | 0.8238 | | No log | 2.9796 | 146 | 0.7177 | 0.7688 | 0.7177 | 0.8472 | | No log | 3.0204 | 148 | 0.8504 | 0.7481 | 0.8504 | 0.9222 | | No log | 3.0612 | 150 | 0.9751 | 0.6545 | 0.9751 | 0.9875 | | No log | 3.1020 | 152 | 1.0566 | 0.5674 | 1.0566 | 1.0279 | | No log | 3.1429 | 154 | 0.9847 | 0.6316 | 0.9847 | 0.9923 | | No log | 3.1837 | 156 | 0.8195 | 0.7481 | 0.8195 | 0.9053 | | No log | 3.2245 | 158 | 0.6955 | 0.7718 | 0.6955 | 0.8339 | | No log | 3.2653 | 160 | 0.6636 | 0.7419 | 0.6636 | 0.8146 | | No log | 3.3061 | 162 | 0.6710 | 0.7410 | 0.6710 | 0.8191 | | No log | 3.3469 | 164 | 0.7158 | 0.7495 | 0.7158 | 0.8460 | | No log | 3.3878 | 166 | 0.7904 | 0.7463 | 0.7904 | 0.8891 | | No log | 3.4286 | 168 | 0.9328 | 0.6140 | 0.9328 | 0.9658 | | No log | 3.4694 | 170 | 1.0793 | 0.5819 | 1.0793 | 1.0389 | | No log | 3.5102 | 172 | 1.0576 | 0.6220 | 1.0576 | 1.0284 | | No log | 3.5510 | 174 | 0.9793 | 0.6488 | 0.9793 | 0.9896 | | No log | 3.5918 | 176 | 0.8872 | 0.7148 | 0.8872 | 0.9419 | | No log | 3.6327 | 178 | 0.8512 | 0.7148 | 0.8512 | 0.9226 | | No log | 3.6735 | 180 | 0.8218 | 0.7547 | 0.8218 | 0.9065 | | No log | 3.7143 | 182 | 0.7739 | 0.7373 | 0.7739 | 0.8797 | | No log | 3.7551 | 184 | 0.6642 | 0.7495 | 0.6642 | 0.8150 | | No log | 3.7959 | 186 | 0.6044 | 0.7465 | 0.6044 | 0.7774 | | No log | 3.8367 | 188 | 0.6097 | 0.6526 | 0.6097 | 0.7808 | | No log | 3.8776 | 190 | 0.5932 | 0.6526 | 0.5932 | 0.7702 | | No log | 3.9184 | 192 | 0.5571 | 0.7481 | 0.5571 | 0.7464 | | No log | 3.9592 | 194 | 0.5813 | 0.7511 | 0.5813 | 0.7624 | | No log | 4.0 | 196 | 0.7261 | 0.7093 | 0.7261 | 0.8521 | | No log | 4.0408 | 198 | 0.8491 | 0.6667 | 0.8491 | 0.9215 | | No log | 4.0816 | 200 | 0.8792 | 0.6854 | 0.8792 | 0.9377 | | No log | 4.1224 | 202 | 0.8034 | 0.7178 | 0.8034 | 0.8963 | | No log | 4.1633 | 204 | 0.7524 | 0.7566 | 0.7524 | 0.8674 | | No log | 4.2041 | 206 | 0.7773 | 0.6792 | 0.7773 | 0.8817 | | No log | 4.2449 | 208 | 0.8202 | 0.6473 | 0.8202 | 0.9056 | | No log | 4.2857 | 210 | 0.8196 | 0.6660 | 0.8196 | 0.9053 | | No log | 4.3265 | 212 | 0.7618 | 0.7419 | 0.7618 | 0.8728 | | No log | 4.3673 | 214 | 0.6819 | 0.7098 | 0.6819 | 0.8258 | | No log | 4.4082 | 216 | 0.6287 | 0.6752 | 0.6287 | 0.7929 | | No log | 4.4490 | 218 | 0.5989 | 0.6752 | 0.5989 | 0.7739 | | No log | 4.4898 | 220 | 0.5911 | 0.6814 | 0.5911 | 0.7688 | | No log | 4.5306 | 222 | 0.6155 | 0.6919 | 0.6155 | 0.7845 | | No log | 4.5714 | 224 | 0.6582 | 0.7588 | 0.6582 | 0.8113 | | No log | 4.6122 | 226 | 0.7041 | 0.7588 | 0.7041 | 0.8391 | | No log | 4.6531 | 228 | 0.7423 | 0.7588 | 0.7423 | 0.8616 | | No log | 4.6939 | 230 | 0.8242 | 0.7125 | 0.8242 | 0.9079 | | No log | 4.7347 | 232 | 0.8456 | 0.6374 | 0.8456 | 0.9196 | | No log | 4.7755 | 234 | 0.8012 | 0.6374 | 0.8012 | 0.8951 | | No log | 4.8163 | 236 | 0.7554 | 0.7566 | 0.7554 | 0.8692 | | No log | 4.8571 | 238 | 0.7002 | 0.7269 | 0.7002 | 0.8368 | | No log | 4.8980 | 240 | 0.6807 | 0.7267 | 0.6807 | 0.8251 | | No log | 4.9388 | 242 | 0.6844 | 0.7267 | 0.6844 | 0.8273 | | No log | 4.9796 | 244 | 0.6791 | 0.7419 | 0.6791 | 0.8241 | | No log | 5.0204 | 246 | 0.6492 | 0.7419 | 0.6492 | 0.8058 | | No log | 5.0612 | 248 | 0.6348 | 0.7419 | 0.6348 | 0.7968 | | No log | 5.1020 | 250 | 0.6483 | 0.7511 | 0.6483 | 0.8052 | | No log | 5.1429 | 252 | 0.6399 | 0.7511 | 0.6399 | 0.7999 | | No log | 5.1837 | 254 | 0.6970 | 0.7566 | 0.6970 | 0.8349 | | No log | 5.2245 | 256 | 0.8220 | 0.6584 | 0.8220 | 0.9066 | | No log | 5.2653 | 258 | 0.9199 | 0.6367 | 0.9199 | 0.9591 | | No log | 5.3061 | 260 | 0.9199 | 0.6367 | 0.9199 | 0.9591 | | No log | 5.3469 | 262 | 0.9472 | 0.6098 | 0.9472 | 0.9732 | | No log | 5.3878 | 264 | 0.9206 | 0.6367 | 0.9206 | 0.9595 | | No log | 5.4286 | 266 | 0.8617 | 0.7043 | 0.8617 | 0.9283 | | No log | 5.4694 | 268 | 0.7500 | 0.7347 | 0.7500 | 0.8660 | | No log | 5.5102 | 270 | 0.6626 | 0.7588 | 0.6626 | 0.8140 | | No log | 5.5510 | 272 | 0.6321 | 0.7267 | 0.6321 | 0.7950 | | No log | 5.5918 | 274 | 0.6507 | 0.7588 | 0.6507 | 0.8067 | | No log | 5.6327 | 276 | 0.7268 | 0.7351 | 0.7268 | 0.8525 | | No log | 5.6735 | 278 | 0.7981 | 0.7125 | 0.7981 | 0.8934 | | No log | 5.7143 | 280 | 0.8578 | 0.6791 | 0.8578 | 0.9262 | | No log | 5.7551 | 282 | 0.8679 | 0.6791 | 0.8679 | 0.9316 | | No log | 5.7959 | 284 | 0.8645 | 0.6374 | 0.8645 | 0.9298 | | No log | 5.8367 | 286 | 0.8766 | 0.6374 | 0.8766 | 0.9363 | | No log | 5.8776 | 288 | 0.9069 | 0.6374 | 0.9069 | 0.9523 | | No log | 5.9184 | 290 | 0.9018 | 0.6791 | 0.9018 | 0.9496 | | No log | 5.9592 | 292 | 0.8338 | 0.6792 | 0.8338 | 0.9131 | | No log | 6.0 | 294 | 0.7810 | 0.6491 | 0.7810 | 0.8838 | | No log | 6.0408 | 296 | 0.7502 | 0.7410 | 0.7502 | 0.8662 | | No log | 6.0816 | 298 | 0.7310 | 0.7410 | 0.7310 | 0.8550 | | No log | 6.1224 | 300 | 0.7104 | 0.7410 | 0.7104 | 0.8429 | | No log | 6.1633 | 302 | 0.6709 | 0.7113 | 0.6709 | 0.8191 | | No log | 6.2041 | 304 | 0.6581 | 0.7186 | 0.6581 | 0.8112 | | No log | 6.2449 | 306 | 0.6595 | 0.7495 | 0.6595 | 0.8121 | | No log | 6.2857 | 308 | 0.6746 | 0.7495 | 0.6746 | 0.8213 | | No log | 6.3265 | 310 | 0.6760 | 0.7495 | 0.6760 | 0.8222 | | No log | 6.3673 | 312 | 0.6620 | 0.7495 | 0.6620 | 0.8136 | | No log | 6.4082 | 314 | 0.6325 | 0.7495 | 0.6325 | 0.7953 | | No log | 6.4490 | 316 | 0.6217 | 0.7511 | 0.6217 | 0.7885 | | No log | 6.4898 | 318 | 0.6453 | 0.7495 | 0.6453 | 0.8033 | | No log | 6.5306 | 320 | 0.6853 | 0.7782 | 0.6853 | 0.8278 | | No log | 6.5714 | 322 | 0.6900 | 0.7782 | 0.6900 | 0.8307 | | No log | 6.6122 | 324 | 0.6648 | 0.7782 | 0.6648 | 0.8154 | | No log | 6.6531 | 326 | 0.6314 | 0.7782 | 0.6314 | 0.7946 | | No log | 6.6939 | 328 | 0.6474 | 0.7566 | 0.6474 | 0.8046 | | No log | 6.7347 | 330 | 0.6863 | 0.7566 | 0.6863 | 0.8284 | | No log | 6.7755 | 332 | 0.7375 | 0.7925 | 0.7375 | 0.8588 | | No log | 6.8163 | 334 | 0.7687 | 0.7723 | 0.7687 | 0.8768 | | No log | 6.8571 | 336 | 0.7429 | 0.7925 | 0.7429 | 0.8619 | | No log | 6.8980 | 338 | 0.6947 | 0.7925 | 0.6947 | 0.8335 | | No log | 6.9388 | 340 | 0.6627 | 0.7782 | 0.6627 | 0.8141 | | No log | 6.9796 | 342 | 0.6583 | 0.7495 | 0.6583 | 0.8113 | | No log | 7.0204 | 344 | 0.6726 | 0.7495 | 0.6726 | 0.8201 | | No log | 7.0612 | 346 | 0.6993 | 0.7868 | 0.6993 | 0.8362 | | No log | 7.1020 | 348 | 0.7069 | 0.7868 | 0.7069 | 0.8408 | | No log | 7.1429 | 350 | 0.7218 | 0.7868 | 0.7218 | 0.8496 | | No log | 7.1837 | 352 | 0.7421 | 0.8124 | 0.7421 | 0.8614 | | No log | 7.2245 | 354 | 0.7384 | 0.7925 | 0.7384 | 0.8593 | | No log | 7.2653 | 356 | 0.7213 | 0.7925 | 0.7213 | 0.8493 | | No log | 7.3061 | 358 | 0.7155 | 0.7925 | 0.7155 | 0.8459 | | No log | 7.3469 | 360 | 0.7213 | 0.7925 | 0.7213 | 0.8493 | | No log | 7.3878 | 362 | 0.7565 | 0.7925 | 0.7565 | 0.8698 | | No log | 7.4286 | 364 | 0.8072 | 0.6986 | 0.8072 | 0.8985 | | No log | 7.4694 | 366 | 0.8530 | 0.6791 | 0.8530 | 0.9236 | | No log | 7.5102 | 368 | 0.8593 | 0.6791 | 0.8593 | 0.9270 | | No log | 7.5510 | 370 | 0.8429 | 0.6374 | 0.8429 | 0.9181 | | No log | 7.5918 | 372 | 0.7928 | 0.6374 | 0.7928 | 0.8904 | | No log | 7.6327 | 374 | 0.7633 | 0.7566 | 0.7633 | 0.8737 | | No log | 7.6735 | 376 | 0.7530 | 0.7566 | 0.7530 | 0.8678 | | No log | 7.7143 | 378 | 0.7206 | 0.7925 | 0.7206 | 0.8489 | | No log | 7.7551 | 380 | 0.6593 | 0.7782 | 0.6593 | 0.8120 | | No log | 7.7959 | 382 | 0.6078 | 0.7511 | 0.6078 | 0.7796 | | No log | 7.8367 | 384 | 0.5953 | 0.7176 | 0.5953 | 0.7716 | | No log | 7.8776 | 386 | 0.6071 | 0.7176 | 0.6071 | 0.7792 | | No log | 7.9184 | 388 | 0.6186 | 0.7868 | 0.6186 | 0.7865 | | No log | 7.9592 | 390 | 0.6234 | 0.7868 | 0.6234 | 0.7896 | | No log | 8.0 | 392 | 0.6283 | 0.7868 | 0.6283 | 0.7927 | | No log | 8.0408 | 394 | 0.6537 | 0.7868 | 0.6537 | 0.8085 | | No log | 8.0816 | 396 | 0.6898 | 0.7868 | 0.6898 | 0.8305 | | No log | 8.1224 | 398 | 0.7137 | 0.7868 | 0.7137 | 0.8448 | | No log | 8.1633 | 400 | 0.7229 | 0.8124 | 0.7229 | 0.8502 | | No log | 8.2041 | 402 | 0.7350 | 0.8124 | 0.7350 | 0.8573 | | No log | 8.2449 | 404 | 0.7491 | 0.8124 | 0.7491 | 0.8655 | | No log | 8.2857 | 406 | 0.7664 | 0.7925 | 0.7664 | 0.8754 | | No log | 8.3265 | 408 | 0.7658 | 0.7925 | 0.7658 | 0.8751 | | No log | 8.3673 | 410 | 0.7567 | 0.7925 | 0.7567 | 0.8699 | | No log | 8.4082 | 412 | 0.7621 | 0.7925 | 0.7621 | 0.8730 | | No log | 8.4490 | 414 | 0.7804 | 0.7723 | 0.7804 | 0.8834 | | No log | 8.4898 | 416 | 0.8193 | 0.7148 | 0.8193 | 0.9051 | | No log | 8.5306 | 418 | 0.8421 | 0.6713 | 0.8421 | 0.9177 | | No log | 8.5714 | 420 | 0.8690 | 0.6098 | 0.8690 | 0.9322 | | No log | 8.6122 | 422 | 0.8823 | 0.6098 | 0.8823 | 0.9393 | | No log | 8.6531 | 424 | 0.8919 | 0.6098 | 0.8919 | 0.9444 | | No log | 8.6939 | 426 | 0.8671 | 0.6278 | 0.8671 | 0.9312 | | No log | 8.7347 | 428 | 0.8299 | 0.7340 | 0.8299 | 0.9110 | | No log | 8.7755 | 430 | 0.7907 | 0.7925 | 0.7907 | 0.8892 | | No log | 8.8163 | 432 | 0.7599 | 0.8124 | 0.7599 | 0.8717 | | No log | 8.8571 | 434 | 0.7313 | 0.7868 | 0.7313 | 0.8552 | | No log | 8.8980 | 436 | 0.7099 | 0.7868 | 0.7099 | 0.8426 | | No log | 8.9388 | 438 | 0.6925 | 0.7868 | 0.6925 | 0.8321 | | No log | 8.9796 | 440 | 0.6879 | 0.7868 | 0.6879 | 0.8294 | | No log | 9.0204 | 442 | 0.6957 | 0.7868 | 0.6957 | 0.8341 | | No log | 9.0612 | 444 | 0.7101 | 0.7868 | 0.7101 | 0.8427 | | No log | 9.1020 | 446 | 0.7140 | 0.7868 | 0.7140 | 0.8450 | | No log | 9.1429 | 448 | 0.7167 | 0.7868 | 0.7167 | 0.8466 | | No log | 9.1837 | 450 | 0.7192 | 0.7868 | 0.7192 | 0.8480 | | No log | 9.2245 | 452 | 0.7172 | 0.7868 | 0.7172 | 0.8469 | | No log | 9.2653 | 454 | 0.7125 | 0.7868 | 0.7125 | 0.8441 | | No log | 9.3061 | 456 | 0.7090 | 0.7868 | 0.7090 | 0.8420 | | No log | 9.3469 | 458 | 0.7171 | 0.7868 | 0.7171 | 0.8468 | | No log | 9.3878 | 460 | 0.7234 | 0.7868 | 0.7234 | 0.8505 | | No log | 9.4286 | 462 | 0.7296 | 0.7868 | 0.7296 | 0.8542 | | No log | 9.4694 | 464 | 0.7414 | 0.7868 | 0.7414 | 0.8610 | | No log | 9.5102 | 466 | 0.7475 | 0.7868 | 0.7475 | 0.8646 | | No log | 9.5510 | 468 | 0.7517 | 0.7868 | 0.7517 | 0.8670 | | No log | 9.5918 | 470 | 0.7562 | 0.7868 | 0.7562 | 0.8696 | | No log | 9.6327 | 472 | 0.7595 | 0.8124 | 0.7595 | 0.8715 | | No log | 9.6735 | 474 | 0.7608 | 0.8124 | 0.7608 | 0.8722 | | No log | 9.7143 | 476 | 0.7561 | 0.8124 | 0.7561 | 0.8695 | | No log | 9.7551 | 478 | 0.7553 | 0.8124 | 0.7553 | 0.8691 | | No log | 9.7959 | 480 | 0.7572 | 0.8124 | 0.7572 | 0.8701 | | No log | 9.8367 | 482 | 0.7591 | 0.8124 | 0.7591 | 0.8713 | | No log | 9.8776 | 484 | 0.7585 | 0.8124 | 0.7585 | 0.8709 | | No log | 9.9184 | 486 | 0.7591 | 0.8124 | 0.7591 | 0.8713 | | No log | 9.9592 | 488 | 0.7594 | 0.8124 | 0.7594 | 0.8714 | | No log | 10.0 | 490 | 0.7596 | 0.8124 | 0.7596 | 0.8715 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF
mradermacher
2024-11-25T15:27:17Z
25
0
transformers
[ "transformers", "gguf", "en", "base_model:Deev124/hermes-llama3-roleplay-1000-v6", "base_model:quantized:Deev124/hermes-llama3-roleplay-1000-v6", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-25T12:46:47Z
--- base_model: Deev124/hermes-llama3-roleplay-1000-v6 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Deev124/hermes-llama3-roleplay-1000-v6 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v6-i1-GGUF/resolve/main/hermes-llama3-roleplay-1000-v6.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
maxg73872/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-medmcqa-2024-11-25-T15-21-21
maxg73872
2024-11-25T15:25:34Z
128
0
transformers
[ "transformers", "safetensors", "bert", "multiple-choice", "generated_from_trainer", "base_model:microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext", "base_model:finetune:microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2024-11-25T15:25:12Z
--- library_name: transformers license: mit base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-medmcqa-2024-11-25-T15-21-21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-medmcqa-2024-11-25-T15-21-21 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1358 - Accuracy: 0.5238 - F1: 0.5281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 1.1639 | 0.9978 | 57 | 1.1358 | 0.5238 | 0.5281 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
dhanushreddy29/tshirt-design
dhanushreddy29
2024-11-25T15:22:04Z
12
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "ai-toolkit", "base_model:black-forest-labs/FLUX.1-schnell", "base_model:adapter:black-forest-labs/FLUX.1-schnell", "license:apache-2.0", "region:us" ]
text-to-image
2024-11-25T15:21:48Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - ai-toolkit widget: - text: Tshirt Design, A cartoon image of a person juggling paintbrushes, gears, and lightbulbs, with the phrase "Embrace the Mess" written in playful, graffiti-style font. The background is a mix of vibrant splashes of paint and abstract doodles, representing creativity in action, tsdsign output: url: samples/1732548090228__000001000_0.jpg - text: Tshirt Design, A skeleton skateboarding through outer space, leaving a trail of colorful stardust behind. The words "Skate Through the Universe" wrap around the design in glowing, stylized font, tsdsign output: url: samples/1732548099417__000001000_1.jpg base_model: black-forest-labs/FLUX.1-schnell instance_prompt: tsdsign license: apache-2.0 --- # tshirt-design Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) <Gallery /> ## Trigger words You should use `tsdsign` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. Weights for this model are available in Safetensors format. [Download](/dhanushreddy29/tshirt-design/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-schnell', torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('dhanushreddy29/tshirt-design', weight_name='tshirt-design.safetensors') image = pipeline('Tshirt Design, A cartoon image of a person juggling paintbrushes, gears, and lightbulbs, with the phrase "Embrace the Mess" written in playful, graffiti-style font. The background is a mix of vibrant splashes of paint and abstract doodles, representing creativity in action, tsdsign').images[0] image.save("my_image.png") ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
0wovv0/dangvantuan_mlm
0wovv0
2024-11-25T15:13:05Z
9
0
null
[ "safetensors", "roberta", "vi", "base_model:dangvantuan/vietnamese-embedding", "base_model:finetune:dangvantuan/vietnamese-embedding", "license:apache-2.0", "region:us" ]
null
2024-11-25T13:01:41Z
--- license: apache-2.0 language: - vi base_model: - dangvantuan/vietnamese-embedding ---
maxg73872/bert-base-uncased-finetuned-medmcqa-2024-11-25-T15-04-02
maxg73872
2024-11-25T15:07:41Z
131
0
transformers
[ "transformers", "safetensors", "bert", "multiple-choice", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2024-11-25T15:07:21Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-medmcqa-2024-11-25-T15-04-02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-medmcqa-2024-11-25-T15-04-02 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3659 - Accuracy: 0.4762 - F1: 0.4853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 1.3596 | 0.9978 | 57 | 1.3659 | 0.4762 | 0.4853 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
wwwtwwwt/train3dataset
wwwtwwwt
2024-11-25T15:07:20Z
133
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:wwwtwwwt/fineaudio-ArtCreativity", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-25T15:07:10Z
--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - wwwtwwwt/fineaudio-ArtCreativity metrics: - wer model-index: - name: Whisper Tiny En - ArtCreativity - Photography Tips results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fineaudio-ArtCreativity-Photography Tips type: wwwtwwwt/fineaudio-ArtCreativity args: 'config: en, split: test' metrics: - name: Wer type: wer value: 34.15042216256177 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny En - ArtCreativity - Photography Tips This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the fineaudio-ArtCreativity-Photography Tips dataset. It achieves the following results on the evaluation set: - Loss: 0.7095 - Wer: 34.1504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7104 | 0.7199 | 1000 | 0.7320 | 36.1841 | | 0.4721 | 1.4399 | 2000 | 0.7127 | 35.3579 | | 0.3614 | 2.1598 | 3000 | 0.7118 | 34.7159 | | 0.3472 | 2.8798 | 4000 | 0.7095 | 34.1504 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.0
trl-internal-testing/tiny-PaliGemmaForConditionalGeneration
trl-internal-testing
2024-11-25T15:06:52Z
67
0
transformers
[ "transformers", "safetensors", "paligemma", "image-text-to-text", "trl", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-11-25T15:06:47Z
--- library_name: transformers tags: - trl --- # Tiny PaliGemmaForConditionalGeneration This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-LlavaForConditionalGeneration
trl-internal-testing
2024-11-25T15:06:40Z
29,572
0
transformers
[ "transformers", "safetensors", "llava", "image-text-to-text", "trl", "conversational", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-11-25T15:06:37Z
--- library_name: transformers tags: - trl --- # Tiny LlavaForConditionalGeneration This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-T5ForConditionalGeneration
trl-internal-testing
2024-11-25T15:06:27Z
949,386
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "trl", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-25T15:06:24Z
--- library_name: transformers tags: - trl --- # Tiny T5ForConditionalGeneration This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-Phi3ForCausalLM
trl-internal-testing
2024-11-25T15:06:15Z
87,468
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:06:11Z
--- library_name: transformers tags: - trl --- # Tiny Phi3ForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-OPTForCausalLM
trl-internal-testing
2024-11-25T15:06:11Z
87,620
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "trl", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:06:08Z
--- library_name: transformers tags: - trl --- # Tiny OPTForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-MistralForCausalLM-0.2
trl-internal-testing
2024-11-25T15:06:08Z
120,712
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:06:05Z
--- library_name: transformers tags: - trl --- # Tiny MistralForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-MistralForCausalLM-0.1
trl-internal-testing
2024-11-25T15:06:05Z
87,489
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:06:01Z
--- library_name: transformers tags: - trl --- # Tiny MistralForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-LlamaForCausalLM-3.2
trl-internal-testing
2024-11-25T15:06:00Z
197,018
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:05:58Z
--- library_name: transformers tags: - trl --- # Tiny LlamaForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-LlamaForCausalLM-3.1
trl-internal-testing
2024-11-25T15:05:57Z
88,345
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:05:54Z
--- library_name: transformers tags: - trl --- # Tiny LlamaForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-GPTNeoXForCausalLM
trl-internal-testing
2024-11-25T15:05:49Z
87,703
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "trl", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:05:47Z
--- library_name: transformers tags: - trl --- # Tiny GPTNeoXForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-GPT2LMHeadModel
trl-internal-testing
2024-11-25T15:05:46Z
99,750
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "trl", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:05:37Z
--- library_name: transformers tags: - trl --- # Tiny GPT2LMHeadModel This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-GemmaForCausalLM
trl-internal-testing
2024-11-25T15:05:35Z
87,483
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:05:32Z
--- library_name: transformers tags: - trl --- # Tiny GemmaForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-Gemma2ForCausalLM
trl-internal-testing
2024-11-25T15:05:31Z
87,454
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:05:27Z
--- library_name: transformers tags: - trl --- # Tiny Gemma2ForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-CohereForCausalLM
trl-internal-testing
2024-11-25T15:05:18Z
99,044
0
transformers
[ "transformers", "safetensors", "cohere", "text-generation", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:05:15Z
--- library_name: transformers tags: - trl --- # Tiny CohereForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
trl-internal-testing/tiny-BloomForCausalLM
trl-internal-testing
2024-11-25T15:05:14Z
100,940
0
transformers
[ "transformers", "safetensors", "bloom", "text-generation", "trl", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T15:05:11Z
--- library_name: transformers tags: - trl --- # Tiny BloomForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
Mozilla/distilvit
Mozilla
2024-11-25T15:04:02Z
133
17
transformers.js
[ "transformers.js", "pytorch", "onnx", "safetensors", "vision-encoder-decoder", "image-text-to-text", "image-to-text", "image-captioning", "dataset:Mozilla/flickr30k-transformed-captions-gpt4o", "base_model:google/vit-base-patch16-224-in21k", "base_model:quantized:google/vit-base-patch16-224-in21k", "license:apache-2.0", "region:us" ]
image-to-text
2024-03-18T19:59:34Z
--- tags: - image-to-text - image-captioning - transformers.js license: apache-2.0 metrics: - rouge datasets: - Mozilla/flickr30k-transformed-captions-gpt4o widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg example_title: Savanna - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg example_title: Football Match - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg example_title: Airport base_model: - google/vit-base-patch16-224-in21k --- # distilvit This model is a work in progress. Fine-tuned version of those base models: - a VIT model for the image encoder: https://huggingface.co/google/vit-base-patch16-224-in21k - a Distilled GPT-2 model for the text decoder: https://huggingface.co/distilbert/distilgpt2 This model was trained on: - [A debiased version of COCO 2017](https://huggingface.co/datasets/Mozilla/coco-gpt4o) - [A debiased version of Flickr30k](https://huggingface.co/datasets/Mozilla/flickr30k-transformed-captions-gpt4o) - [Images from pexels](https://huggingface.co/datasets/Mozilla/pexels-gpt4o) - [DocOrNot](https://huggingface.co/datasets/Mozilla/docornot) - [Alt Text Validation](https://huggingface.co/datasets/Mozilla/alt-text-validation) You can find the code used to create the model here: https://github.com/mozilla/distilvit # training results ``` { "train/loss": 0.0781, "train/learning_rate": 0.00003793103448275862, "train/epoch": 2.41, "train/global_step": 700, "eval/loss": 0.09741172194480896, "eval/rouge1": 60.382, "eval/rouge2": 38.0754, "eval/rougeL": 56.9132, "eval/rougeLsum": 56.9214, "eval/meteor": 0.5448683804505693, "eval/gen_len": 9.864678265672467, "eval/runtime": 343.0443, "eval/samples_per_second": 10.555, "eval/steps_per_second": 0.108, "train/train_runtime": 10567.9413, "train/train_samples_per_second": 27.414, "train/train_steps_per_second": 0.274, "train/total_flos": 9039628706135409000, "train/train_loss": 0.09852950266429356, } ```
jebish7/bge-small-en-v1.5_MNSR_6
jebish7
2024-11-25T15:01:17Z
6
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:29545", "loss:MultipleNegativesSymmetricRankingLoss", "arxiv:1908.10084", "base_model:BAAI/bge-small-en-v1.5", "base_model:finetune:BAAI/bge-small-en-v1.5", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-25T15:01:10Z
--- base_model: BAAI/bge-small-en-v1.5 library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:29545 - loss:MultipleNegativesSymmetricRankingLoss widget: - source_sentence: In terms of audited accounts submission for an Applicant, could you clarify the scenarios in which the Regulator might agree that a reviewed pro forma statement of financial position is not needed, and what factors would be considered in making that determination? sentences: - "DocumentID: 1 | PassageID: 4.2.1.(3) | Passage: Where the regulator in another\ \ jurisdiction does not permit the implementation of policies, procedures, systems\ \ and controls consistent with these Rules, the Relevant Person must:\n(a)\tinform\ \ the Regulator in writing immediately; and\n(b)\tapply appropriate additional\ \ measures to manage the money laundering risks posed by the relevant branch or\ \ subsidiary." - "DocumentID: 11 | PassageID: 2.3.15.(4) | Passage: The Applicant must submit to\ \ the Regulator the following records, as applicable:\n(a)\tAudited accounts,\ \ for the purposes of this Rule and Rule 2.3.2(1), for the last three full financial\ \ years, noting that:\n(i)\tif the Applicant applies for admission less than ninety\ \ days after the end of its last financial year, unless the Applicant has audited\ \ accounts for its latest full financial year, the accounts may be for the three\ \ years to the end of the previous financial year, but must also include audited\ \ or reviewed accounts for its most recent semi-annual financial reporting period;\ \ and\n(ii)\tif the Applicant applies for admission more than six months and seventy-five\ \ days after the end of its last financial year, audited or reviewed accounts\ \ for its most recent semi-annual financial reporting period (or longer period\ \ if available).\n(b)\tUnless the Regulator agrees it is not needed, a reviewed\ \ pro forma statement of financial position. The review must be conducted by an\ \ accredited professional auditor of the company or an independent accountant." - 'DocumentID: 36 | PassageID: D.1.3. | Passage: Principle 1 – Oversight and responsibility of climate-related financial risk exposures.Certain functions related to the management of climate-related financial risks may be delegated, but, as with other risks, the board is ultimately responsible and accountable for monitoring, managing and overseeing climate-related risks for the financial firm. ' - source_sentence: A financial institution is interested in multiple designations, including the ADGM Green Fund and ADGM Green Bond. For each application, what fee will the institution incur? sentences: - 'DocumentID: 31 | PassageID: 63) | Passage: INITIAL DISCLOSURE OF MATERIAL ESTIMATES. Disclosure of material estimates of Contingent Resources Section 2.3 of the PRMS Guidelines states that Contingent Resources may be assigned for Petroleum Projects that are dependent on β€˜technology under development’, and further recommended that a number of guidelines are followed in order to distinguish these estimates from those that should be classified as Unrecoverable Petroleum. By way of Rule 12.10.1(3), the FSRA fully supports and requires compliance with what is set out in the PRMS Guidelines. ' - 'DocumentID: 19 | PassageID: 40) | Passage: REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS Anti-Money Laundering and Countering Financing of Terrorism On 21 June 2019, FATF released a revised Guidance for a Risk-Based Approach (RBA) for VAs and VASPs, as well as an Interpretative Note for Recommendation 15. This built upon previous FATF statements by clarifying a RBA for Anti-Money Laundering and Countering the Financing of Terrorism (β€œAML/CFT”) purposes. The basic principle underlying the FATF Guidelines is that VASPs are expected to β€œidentify, assess, and take effective action to mitigate their ML/TF risks” with respect to VAs. ' - "DocumentID: 4 | PassageID: 10.1.1 | Passage: A Person applying to the Regulator\ \ for any of the following designations:\n(a)\tADGM Green Fund;\n(b)\tADGM Climate\ \ Transition Fund;\n(c)\tADGM Green Portfolio;\n(d)\tADGM Climate Transition Portfolio;\n\ (e)\tADGM Green Bond; or\n(f)\tADGM Sustainability Linked Bond\nmust pay to the\ \ Regulator an application fee of $2,000." - source_sentence: How does the ADGM expect Authorised Persons to incorporate the eligibility of collateral types into their overall risk management framework, particularly concerning Islamic finance principles? sentences: - 'DocumentID: 17 | PassageID: Schedule 1.Part 2.Chapter 5.42.(2) | Passage: In determining for the purposes of sub-paragraph β€Ž(1)β€Ž(b) whether Deposits are accepted only on particular occasions, regard is to be had to the frequency of those occasions and to any characteristics distinguishing them from each other.' - "DocumentID: 9 | PassageID: 6.8.5 | Passage: \n(a)\tA Fund Manager of an Islamic\ \ REIT may obtain financing either directly or through its Special Purpose Vehicle\ \ up to 65% of the total gross asset value of the Fund provided that such financing\ \ is provided in a Shari'a-compliant manner.\n(b)\tUpon becoming aware that the\ \ borrowing limit set out in 6.8.5(a) has been exceeded, the Fund Manager shall:\n\ (c)\timmediately inform Unitholders and the Regulator of the details of the breach\ \ and the proposed remedial action;\n(d)\tuse its best endeavours to reduce the\ \ excess borrowings;\n(e)\tnot permit the Fund to engage in additional borrowing;\ \ and\n(f)\tinform Unitholders and the Regulator on a regular basis as to the\ \ progress of the remedial action." - 'DocumentID: 9 | PassageID: 5.1.1.Guidance.(ii) | Passage: The prudential Category for Islamic Financial Institutions and other Authorised Persons (acting through an Islamic Window) undertaking the Regulated Activity of Managing PSIAs (which may be either a Restricted PSIA or an Unrestricted PSIA) is determined in accordance with PRU Rule 1.3. An Authorised Person which Manages PSIAs (whether as an Islamic Financial Institution or through an Islamic Window) must comply with the requirements in PRU in relation to specific prudential requirements relating to Trading Book and Non-Trading Book activities, including Credit Risk, Market Risk, Liquidity Risk and Group Risk.' - source_sentence: Can you please detail the specific Anti-Money Laundering (AML) and Countering Financing of Terrorism (CFT) measures and controls that our firm must have in place when dealing with Spot Commodities as per the FSRA's requirements? sentences: - 'DocumentID: 34 | PassageID: 65) | Passage: REGULATORY REQUIREMENTS - SPOT COMMODITY ACTIVITIES Sanctions Pursuant to AML Rule 11.2.1(1), an Authorised Person must have arrangements in place to ensure that only Spot Commodities that are not subject to sanctions or associated with an entity in the supply chain that is itself subject to a sanction, are used as part of its Regulated Activities, or utilised as part of a delivery and/or storage facility operated by itself (or by any third parties it uses). In demonstrating compliance with the Rule, an Authorised Person must have powers to resolve any breach in a timely fashion, such as taking emergency action itself or by compelling the delivery and/or storage facility to take appropriate action. The FSRA expects this to include the Authorised Person having the ability to sanction a Member, market participant or the delivery and/or storage facility for acts or omissions that compromise compliance with applicable sanctions. ' - "DocumentID: 18 | PassageID: 3.2 | Passage: Financial Services Permissions. VC\ \ Managers operating in ADGM require a Financial Services Permission (β€œFSP”) to\ \ undertake any Regulated Activity pertaining to VC Funds and/or co-investments\ \ by third parties in VC Funds. The Regulated Activities covered by the FSP will\ \ be dependent on the VC Managers’ investment strategy and business model.\n(a)\t\ Managing a Collective Investment Fund: this includes carrying out fund management\ \ activities in respect of a VC Fund.\n(b)\tAdvising on Investments or Credit\ \ : for VC Managers these activities will be restricted to activities related\ \ to co-investment alongside a VC Fund which the VC Manager manages, such as recommending\ \ that a client invest in an investee company alongside the VC Fund and on the\ \ strategy and structure required to make the investment.\n(c)\tArranging Deals\ \ in Investments: VC Managers may also wish to make arrangements to facilitate\ \ co-investments in the investee company.\nAuthorisation fees and supervision\ \ fees for a VC Manager are capped at USD 10,000 regardless of whether one or\ \ both of the additional Regulated Activities in b) and c) above in relation to\ \ co-investments are included in its FSP. The FSP will include restrictions appropriate\ \ to the business model of a VC Manager." - 'DocumentID: 24 | PassageID: 3.9 | Passage: Principle 2 – High Standards for Authorisation. This discerning approach is shown by the FSRA’s power to only permit VAs that it deems β€˜acceptable’, as determined by risk factors such as security and traceability, in order to prevent the build-up of risk from illiquid or immature assets. Additionally, we do not permit stablecoins based on the algorithmic model of valuation to the underlying fiat currency.' - source_sentence: What are the common scenarios or instances where assets and liabilities are not covered by the bases of accounting in Rule 5.3.2, and how should an Insurer address these in their reporting? sentences: - 'DocumentID: 1 | PassageID: 14.4.1.Guidance.1. | Passage: Relevant Persons are reminded that in accordance with Federal AML Legislation, Relevant Persons or any of their Employees must not tip off any Person, that is, inform any Person that he is being scrutinised, or investigated by any other competent authority, for possible involvement in suspicious Transactions or activity related to money laundering or terrorist financing.' - "DocumentID: 12 | PassageID: 5.3.1.Guidance | Passage: \nThe exceptions provided\ \ in this Chapter relate to the following:\na.\tspecific Rules in respect of certain\ \ assets and liabilities, intended to achieve a regulatory objective not achieved\ \ by application of either or both of the bases of accounting set out in Rule\ \ β€Ž5.3.2;\nb.\tassets and liabilities that are not dealt with in either or both\ \ of the bases of accounting set out in Rule β€Ž5.3.2; and\nc.\tthe overriding power\ \ of the Regulator, set out in Rule β€Ž5.1.6, to require an Insurer to adopt a particular\ \ measurement for a specific asset or liability." - 'DocumentID: 1 | PassageID: 6.2.1.Guidance.2. | Passage: The risk assessment under Rule β€Ž6.2.1(c) should identify actions to mitigate risks associated with undertaking NFTF business generally, and the use of eKYC specifically. This is because distinct risks are often likely to arise where business is conducted entirely in an NFTF manner, compared to when the business relationship includes a mix of face-to-face and NFTF interactions. The assessment should make reference to risk mitigation measures recommended by the Regulator, a competent authority of the U.A.E., FATF, and other relevant bodies. ' --- # SentenceTransformer based on BAAI/bge-small-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the πŸ€— Hub model = SentenceTransformer("jebish7/bge-small-en-v1.5_MNSR_10") # Run inference sentences = [ 'What are the common scenarios or instances where assets and liabilities are not covered by the bases of accounting in Rule 5.3.2, and how should an Insurer address these in their reporting?', 'DocumentID: 12 | PassageID: 5.3.1.Guidance | Passage: \nThe exceptions provided in this Chapter relate to the following:\na.\tspecific Rules in respect of certain assets and liabilities, intended to achieve a regulatory objective not achieved by application of either or both of the bases of accounting set out in Rule \u200e5.3.2;\nb.\tassets and liabilities that are not dealt with in either or both of the bases of accounting set out in Rule \u200e5.3.2; and\nc.\tthe overriding power of the Regulator, set out in Rule \u200e5.1.6, to require an Insurer to adopt a particular measurement for a specific asset or liability.', 'DocumentID: 1 | PassageID: 14.4.1.Guidance.1. | Passage: Relevant Persons are reminded that in accordance with Federal AML Legislation, Relevant Persons or any of their Employees must not tip off any Person, that is, inform any Person that he is being scrutinised, or investigated by any other competent authority, for possible involvement in suspicious Transactions or activity related to money laundering or terrorist financing.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 29,545 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 16 tokens</li><li>mean: 34.95 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 35 tokens</li><li>mean: 132.0 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>If a financial institution offers Money Remittance as one of its services, under what circumstances is it deemed to be holding Relevant Money and therefore subject to regulatory compliance (a)?</code> | <code>DocumentID: 13 | PassageID: 3.7.1.Guidance.1. | Passage: An Authorised Person is considered to be holding Relevant Money and subject to (a) where it offers Payment Services alongside currency exchange or Money Remittance.<br></code> | | <code>What are the consequences for a Recognised Body or Authorised Person if they fail to comply with ADGM's requirements regarding severance payments?</code> | <code>DocumentID: 7 | PassageID: APP1.A1.2.Guidance.9. | Passage: Severance payments. Where an Authorised Person or Recognised Body provides discretionary payouts on termination of employment ("severance payments", also called "golden parachutes"), such payment should generally be subject to appropriate limits or shareholder approval. In any case, such payouts should be aligned with the Authorised Person or Recognised Body's overall financial condition and performance over an appropriate time horizon and should not be payable in the case of failure or threatened failure of the Authorised Person or Recognised Body, particularly to an individual whose actions may have contributed to the failure or potential failure of the Authorised Person or Recognised Body.<br></code> | | <code>If a Public Fund is structured as an Investment Trust, to whom should the Fund Manager report the review findings regarding delegated Regulated Activities or outsourced functions?</code> | <code>DocumentID: 6 | PassageID: PART 5.12.12.8.(1) | Passage: A Fund Manager or the Trustee of a Public Fund, which has delegated any Regulated Activities or outsourced any functions, must conduct a review of the carrying out of the relevant activities or functions by the Service Provider and present the findings of the review to either:<br>(a) the Fund's Governing Body every 6 months at the Fund's board meeting; or<br>(b) in the case of a Fund structured as an Investment Trust, to the Trustee.</code> | * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `learning_rate`: 2e-05 - `warmup_ratio`: 0.1 - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.2165 | 100 | 1.4357 | | 0.4329 | 200 | 0.9589 | | 0.6494 | 300 | 0.9193 | | 0.8658 | 400 | 0.8542 | | 1.0823 | 500 | 0.8643 | | 1.2987 | 600 | 0.8135 | | 1.5152 | 700 | 0.7658 | | 1.7316 | 800 | 0.7454 | | 1.9481 | 900 | 0.7477 | | 2.1645 | 1000 | 0.7586 | | 2.3810 | 1100 | 0.6978 | | 2.5974 | 1200 | 0.7152 | | 2.8139 | 1300 | 0.6866 | | 0.2165 | 100 | 0.7049 | | 0.4329 | 200 | 0.6651 | | 0.6494 | 300 | 0.6942 | | 0.8658 | 400 | 0.6695 | | 1.0823 | 500 | 0.7048 | | 1.2987 | 600 | 0.636 | | 1.5152 | 700 | 0.5984 | | 1.7316 | 800 | 0.6001 | | 1.9481 | 900 | 0.6096 | | 2.1645 | 1000 | 0.6313 | | 2.3810 | 1100 | 0.5437 | | 2.5974 | 1200 | 0.5716 | | 2.8139 | 1300 | 0.5634 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.4.0 - Accelerate: 0.34.2 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
tryonlabs/FLUX.1-dev-LoRA-Lehenga-Generator
tryonlabs
2024-11-25T15:01:03Z
152
12
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-25T08:00:20Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora base_model: black-forest-labs/FLUX.1-dev instance_prompt: lehenga license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en widget: - text: >- A flat-lay image of A lehenga with a traditional style and a fitted waistline is elegantly crafted from stretchy silk material, ensuring a comfortable and flattering fit. The long hemline adds a touch of grace and sophistication to the ensemble. Adorned in a solid blue color, it features a sleeveless design that complements its sweetheart neckline. The solid pattern and the luxurious silk fabric together create a timeless and chic look that is perfect for special occasions. output: url: images/example_w40syzp04.png - text: >- A lehenga with a vibrant yellow color and an embroidered pattern showcases a traditional style. It features a fitted silhouette that gracefully flows with its long hemline. Crafted from a luxurious silk material, this lehenga offers a stretchable fabric elasticity for comfort and movement. The full sleeve length adds elegance, while the flared waistline accentuates the wearer's figure. The V-neck design further complements the overall aesthetic, making it a stunning choice for special occasions. output: url: images/example_bjilw3a2b.png - text: >- A lehenga with a traditional style and a fitted fit features a long hemline that elegantly drapes. The fabric is a comfortable cotton blend that includes stretchable properties, ensuring a flattering fit. Adorned with a full sleeve length, it adds a touch of grace to the ensemble. The lehenga boasts a beautiful floral pattern, with white as the dominant color, and a V-neckline that adds a subtle yet sophisticated detail. The high waistline accentuates the figure, making it a chic choice for any occasion. output: url: images/example_infawkf33.png - text: >- A traditional silk lehenga with a fitted waistline features a long, flowing hemline and solid pattern. It has long sleeves for sophistication and stretchy fabric for comfort. A V-neck adds modern flair, balancing tradition and contemporary fashion. output: url: images/example_3h6g4bd1i.png - text: >- A flat-lay image of A traditional silk lehenga with a fitted waistline features a long, flowing hemline and solid pattern. It has long sleeves for sophistication and stretchy fabric for comfort. A V-neck adds modern flair, balancing tradition and contemporary fashion. output: url: images/example_s65mofbiz.png - text: Blue & Beige Solid Ready to Wear Lehenga with Blouse output: url: images/example_f6gv4oen5.png --- # FLUX.1-dev LoRA Lehenga Generator <Gallery /> ## Model description FLUX.1-dev LoRA Lehenga Generator can create an image of Lehenga by detailing the color, pattern, fit, style, material, and type. ## Repository used AI Toolkit by Ostris https://github.com/ostris/ai-toolkit ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py import random from diffusers import FluxPipeline import torch MAX_SEED=42 PRE_TRAINED_MODEL = "black-forest-labs/FLUX.1-dev" FINE_TUNED_MODEL = "tryonlabs/FLUX.1-dev-LoRA-Lehenga-Generator" # Load Flux.1-dev pipe = FluxPipeline.from_pretrained(PRE_TRAINED_MODEL, torch_dtype=torch.float16).to("cuda") # Load fine-tuned model pipe.load_lora_weights(FINE_TUNED_MODEL, adapter_name="default", weight_name="lehenga-generator.safetensors") seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) prompt = "A flat lay image of a lehenga with a pink solid pattern and traditional style is elegantly fitted, showcasing a floor-length hemline that flows beautifully. Crafted from luxurious silk, this garment features a stretchy fabric that ensures comfort and a flattering fit. The lehenga is sleeveless, allowing for unrestricted movement, and it is adorned with a sweetheart neckline that adds a touch of femininity. The fitted waistline accentuates the wearer's silhouette, making it a stunning choice for special occasions." image = pipe(prompt, height=1024, width=1024, num_images_per_prompt=1, generator=generator, guidance_scale=4.5, num_inference_steps=40).images[0] image.save("gen_image.jpg") ``` ## Download model Weights for this model are available in Safetensors format. [Download](/tryonlabs/FLUX.1-dev-LoRA-Outfit-Generator/tree/main) them in the Files & versions tab.
wltjr1007/testsss
wltjr1007
2024-11-25T15:00:10Z
188
0
transformers
[ "transformers", "safetensors", "conditional-unet", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2024-11-25T13:31:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
katuni4ka/textual_inversion_cat
katuni4ka
2024-11-25T14:54:34Z
5,724
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "diffusers-training", "base_model:hf-internal-testing/tiny-stable-diffusion-torch", "base_model:adapter:hf-internal-testing/tiny-stable-diffusion-torch", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-11-25T14:39:43Z
--- base_model: hf-internal-testing/tiny-stable-diffusion-torch library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion - diffusers-training --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Textual inversion text2image fine-tuning - katuni4ka/textual_inversion_cat These are textual inversion adaption weights for hf-internal-testing/tiny-stable-diffusion-torch. You can find some example images in the following. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
stevenbucaille/superglue_outdoor
stevenbucaille
2024-11-25T14:54:16Z
65
1
transformers
[ "transformers", "safetensors", "superglue", "feature-extraction", "arxiv:1911.11763", "license:other", "region:us" ]
feature-extraction
2024-03-30T22:27:03Z
--- library_name: transformers inference: false license: other --- # SuperGlue The SuperGlue model was proposed in [SuperGlue: Learning Feature Matching with Graph Neural Networks](https://arxiv.org/abs/1911.11763) by Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich. This model consists of matching two sets of interest points detected in an image. Paired with the [SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc. The abstract from the paper is the following: *This paper introduces SuperGlue, a neural network that matches two sets of local features by jointly finding correspondences and rejecting non-matchable points. Assignments are estimated by solving a differentiable optimal transport problem, whose costs are predicted by a graph neural network. We introduce a flexible context aggregation mechanism based on attention, enabling SuperGlue to reason about the underlying 3D scene and feature assignments jointly. Compared to traditional, hand-designed heuristics, our technique learns priors over geometric transformations and regularities of the 3D world through end-to-end training from image pairs. SuperGlue outperforms other learned approaches and achieves state-of-the-art results on the task of pose estimation in challenging real-world indoor and outdoor environments. The proposed method performs matching in real-time on a modern GPU and can be readily integrated into modern SfM or SLAM systems. The code and trained weights are publicly available at this [URL](https://github.com/magicleap/SuperGluePretrainedNetwork).* <img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/2I8QDRNoMhQCuL236CvdN.png" alt="drawing" width="500"/> <!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/2I8QDRNoMhQCuL236CvdN.png) --> This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille). The original code can be found [here](https://github.com/magicleap/SuperGluePretrainedNetwork). ## Model Details ### Model Description SuperGlue is a neural network that matches two sets of local features by jointly finding correspondences and rejecting non-matchable points. It introduces a flexible context aggregation mechanism based on attention, enabling it to reason about the underlying 3D scene and feature assignments. The architecture consists of two main components: the Attentional Graph Neural Network and the Optimal Matching Layer. <img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/zZGjSWQU2na5aPFRak5kp.png" alt="drawing" width="1000"/> <!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/zZGjSWQU2na5aPFRak5kp.png) --> The Attentional Graph Neural Network uses a Keypoint Encoder to map keypoint positions and visual descriptors. It employs self- and cross-attention layers to create powerful representations. The Optimal Matching Layer creates a score matrix, augments it with dustbins, and finds the optimal partial assignment using the Sinkhorn algorithm. - **Developed by:** MagicLeap - **Model type:** Image Matching - **License:** ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/magicleap/SuperGluePretrainedNetwork - **Paper:** https://arxiv.org/pdf/1911.11763 - **Demo:** https://psarlin.com/superglue/ ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use SuperGlue is designed for feature matching and pose estimation tasks in computer vision. It can be applied to a variety of multiple-view geometry problems and can handle challenging real-world indoor and outdoor environments. However, it may not perform well on tasks that require different types of visual understanding, such as object detection or image classification. ## How to Get Started with the Model Here is a quick example of using the model. Since this model is an image matching model, it requires pairs of images to be matched: ```python from transformers import AutoImageProcessor, AutoModel import torch from PIL import Image import requests url = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg" im1 = Image.open(requests.get(url, stream=True).raw) url = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg" im2 = Image.open(requests.get(url, stream=True).raw) images = [im1, im2] processor = AutoImageProcessor.from_pretrained("stevenbucaille/superglue_outdoor") model = AutoModel.from_pretrained("stevenbucaille/superglue_outdoor") inputs = processor(images, return_tensors="pt") outputs = model(**inputs) ``` The outputs contain the list of keypoints detected by the keypoint detector as well as the list of matches with their corresponding matching scores. Due to the nature of SuperGlue, to output a dynamic number of matches, you will need to use the mask attribute to retrieve the respective information: ```python from transformers import AutoImageProcessor, AutoModel import torch from PIL import Image import requests url_image_1 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg" image_1 = Image.open(requests.get(url_image_1, stream=True).raw) url_image_2 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg" image_2 = Image.open(requests.get(url_image_2, stream=True).raw) images = [image_1, image_2] processor = AutoImageProcessor.from_pretrained("stevenbucaille/superglue_indoor") model = AutoModel.from_pretrained("stevenbucaille/superglue_indoor") inputs = processor(images, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # Get the respective image masks image0_mask, image1_mask = outputs_mask[0] image0_indices = torch.nonzero(image0_mask).squeeze() image1_indices = torch.nonzero(image1_mask).squeeze() image0_matches = outputs.matches[0, 0][image0_indices] image1_matches = outputs.matches[0, 1][image1_indices] image0_matching_scores = outputs.matching_scores[0, 0][image0_indices] image1_matching_scores = outputs.matching_scores[0, 1][image1_indices] ``` You can use the `post_process_keypoint_matching` method from the `SuperGlueImageProcessor` to get the keypoints and matches in a more readable format: ```python image_sizes = [(image.height, image.width) for image in images] outputs = processor.post_process_keypoint_matching(outputs, image_sizes) for i, output in enumerate(outputs): print("For the image pair", i) for keypoint0, keypoint1, matching_score in zip(output["keypoints0"], output["keypoints1"], output["matching_scores"]): print( f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}." ) ``` From the outputs, you can visualize the matches between the two images using the following code: ```python import matplotlib.pyplot as plt import numpy as np # Create side by side image merged_image = np.zeros((max(image1.height, image2.height), image1.width + image2.width, 3)) merged_image[: image1.height, : image1.width] = np.array(image1) / 255.0 merged_image[: image2.height, image1.width :] = np.array(image2) / 255.0 plt.imshow(merged_image) plt.axis("off") # Retrieve the keypoints and matches output = outputs[0] keypoints0 = output["keypoints0"] keypoints1 = output["keypoints1"] matching_scores = output["matching_scores"] keypoints0_x, keypoints0_y = keypoints0[:, 0].numpy(), keypoints0[:, 1].numpy() keypoints1_x, keypoints1_y = keypoints1[:, 0].numpy(), keypoints1[:, 1].numpy() # Plot the matches for keypoint0_x, keypoint0_y, keypoint1_x, keypoint1_y, matching_score in zip( keypoints0_x, keypoints0_y, keypoints1_x, keypoints1_y, matching_scores ): plt.plot( [keypoint0_x, keypoint1_x + image1.width], [keypoint0_y, keypoint1_y], color=plt.get_cmap("RdYlGn")(matching_score.item()), alpha=0.9, linewidth=0.5, ) plt.scatter(keypoint0_x, keypoint0_y, c="black", s=2) plt.scatter(keypoint1_x + image1.width, keypoint1_y, c="black", s=2) # Save the plot plt.savefig("matched_image.png", dpi=300, bbox_inches='tight') plt.close() ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/_2a_V28C1eEMY_Wy6sRZa.png) ## Training Details ### Training Data SuperGlue is trained on large annotated datasets for pose estimation, enabling it to learn priors for pose estimation and reason about the 3D scene. The training data consists of image pairs with ground truth correspondences and unmatched keypoints derived from ground truth poses and depth maps. ### Training Procedure SuperGlue is trained in a supervised manner using ground truth matches and unmatched keypoints. The loss function maximizes the negative log-likelihood of the assignment matrix, aiming to simultaneously maximize precision and recall. #### Training Hyperparameters - **Training regime:** fp32 #### Speeds, Sizes, Times SuperGlue is designed to be efficient and runs in real-time on a modern GPU. A forward pass takes approximately 69 milliseconds (15 FPS) for an indoor image pair. The model has 12 million parameters, making it relatively compact compared to some other deep learning models. The inference speed of SuperGlue is suitable for real-time applications and can be readily integrated into modern Simultaneous Localization and Mapping (SLAM) or Structure-from-Motion (SfM) systems. ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ```bibtex @inproceedings{sarlin2020superglue, title={Superglue: Learning feature matching with graph neural networks}, author={Sarlin, Paul-Edouard and DeTone, Daniel and Malisiewicz, Tomasz and Rabinovich, Andrew}, booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, pages={4938--4947}, year={2020} } ``` ## Model Card Authors [Steven Bucaille](https://github.com/sbucaille)
artyomboyko/distilhubert-finetuned-gtzan
artyomboyko
2024-11-25T14:52:44Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-23T19:30:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy base_model: ntu-spml/distilhubert model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4989 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2359 | 1.0 | 112 | 0.4776 | 0.87 | | 0.1235 | 2.0 | 225 | 0.4872 | 0.84 | | 0.2083 | 3.0 | 337 | 0.4910 | 0.85 | | 0.19 | 4.0 | 450 | 0.4953 | 0.87 | | 0.1128 | 5.0 | 562 | 0.4801 | 0.87 | | 0.1644 | 6.0 | 675 | 0.4703 | 0.87 | | 0.0699 | 7.0 | 787 | 0.4692 | 0.85 | | 0.1082 | 8.0 | 900 | 0.4708 | 0.87 | | 0.0898 | 9.0 | 1012 | 0.4347 | 0.89 | | 0.1071 | 10.0 | 1125 | 0.5310 | 0.85 | | 0.0727 | 11.0 | 1237 | 0.4765 | 0.87 | | 0.0338 | 12.0 | 1350 | 0.4859 | 0.87 | | 0.0233 | 13.0 | 1462 | 0.4713 | 0.87 | | 0.0248 | 14.0 | 1575 | 0.5068 | 0.88 | | 0.0263 | 15.0 | 1687 | 0.4874 | 0.88 | | 0.0185 | 16.0 | 1800 | 0.4925 | 0.88 | | 0.0142 | 17.0 | 1912 | 0.4766 | 0.89 | | 0.0178 | 18.0 | 2025 | 0.4850 | 0.89 | | 0.0153 | 19.0 | 2137 | 0.4660 | 0.88 | | 0.012 | 20.0 | 2250 | 0.4831 | 0.88 | | 0.0113 | 21.0 | 2362 | 0.4965 | 0.89 | | 0.0106 | 22.0 | 2475 | 0.5098 | 0.89 | | 0.011 | 23.0 | 2587 | 0.5093 | 0.89 | | 0.009 | 24.0 | 2700 | 0.4989 | 0.91 | | 0.0094 | 25.0 | 2812 | 0.4999 | 0.89 | | 0.0441 | 26.0 | 2925 | 0.5197 | 0.88 | | 0.0079 | 27.0 | 3037 | 0.5115 | 0.89 | | 0.0072 | 28.0 | 3150 | 0.5136 | 0.88 | | 0.007 | 29.0 | 3262 | 0.5394 | 0.88 | | 0.0068 | 30.0 | 3375 | 0.5374 | 0.88 | | 0.0061 | 31.0 | 3487 | 0.5221 | 0.88 | | 0.0533 | 32.0 | 3600 | 0.5775 | 0.87 | | 0.0055 | 33.0 | 3712 | 0.5632 | 0.88 | | 0.0059 | 34.0 | 3825 | 0.5584 | 0.87 | | 0.0051 | 35.0 | 3937 | 0.5444 | 0.88 | | 0.0051 | 36.0 | 4050 | 0.5373 | 0.88 | | 0.0045 | 37.0 | 4162 | 0.5723 | 0.87 | | 0.0058 | 38.0 | 4275 | 0.5773 | 0.87 | | 0.0043 | 39.0 | 4387 | 0.5455 | 0.88 | | 0.0044 | 40.0 | 4500 | 0.5686 | 0.88 | | 0.004 | 41.0 | 4612 | 0.5622 | 0.87 | | 0.004 | 42.0 | 4725 | 0.5797 | 0.88 | | 0.0042 | 43.0 | 4837 | 0.5621 | 0.88 | | 0.0037 | 44.0 | 4950 | 0.5734 | 0.87 | | 0.0048 | 45.0 | 5062 | 0.5774 | 0.88 | | 0.0039 | 46.0 | 5175 | 0.5901 | 0.87 | | 0.0043 | 47.0 | 5287 | 0.5743 | 0.88 | | 0.0043 | 48.0 | 5400 | 0.5757 | 0.87 | | 0.0037 | 49.0 | 5512 | 0.5710 | 0.88 | | 0.0036 | 49.78 | 5600 | 0.5759 | 0.87 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF
mradermacher
2024-11-25T14:49:49Z
202
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:win10/Mistral-Nemo-abliterated-Nemo-Pro-v2", "base_model:quantized:win10/Mistral-Nemo-abliterated-Nemo-Pro-v2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T13:18:56Z
--- base_model: win10/Mistral-Nemo-abliterated-Nemo-Pro-v2 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/win10/Mistral-Nemo-abliterated-Nemo-Pro-v2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-abliterated-Nemo-Pro-v2-GGUF/resolve/main/Mistral-Nemo-abliterated-Nemo-Pro-v2.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
litmudoc/Qwen2.5-Coder-32B-Instruct-Q4-mlx
litmudoc
2024-11-25T14:36:28Z
9
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "code", "codeqwen", "chat", "qwen", "qwen-coder", "mlx", "mlx-my-repo", "conversational", "en", "base_model:Qwen/Qwen2.5-Coder-32B-Instruct", "base_model:quantized:Qwen/Qwen2.5-Coder-32B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2024-11-25T14:35:34Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct/blob/main/LICENSE language: - en base_model: Qwen/Qwen2.5-Coder-32B-Instruct pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder - mlx - mlx-my-repo --- # litmudoc/Qwen2.5-Coder-32B-Instruct-Q4-mlx The Model [litmudoc/Qwen2.5-Coder-32B-Instruct-Q4-mlx](https://huggingface.co/litmudoc/Qwen2.5-Coder-32B-Instruct-Q4-mlx) was converted to MLX format from [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct) using mlx-lm version **0.19.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("litmudoc/Qwen2.5-Coder-32B-Instruct-Q4-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
beomi/Solar-Ko-Recovery-11B-Q8_0-GGUF
beomi
2024-11-25T14:35:54Z
5
0
transformers
[ "transformers", "gguf", "solar", "mistral", "pytorch", "solar-ko", "llama-cpp", "gguf-my-repo", "text-generation", "ko", "en", "base_model:beomi/Solar-Ko-Recovery-11B", "base_model:quantized:beomi/Solar-Ko-Recovery-11B", "license:apache-2.0", "region:us" ]
text-generation
2024-11-25T14:35:07Z
--- language: - ko - en pipeline_tag: text-generation inference: false tags: - solar - mistral - pytorch - solar-ko - llama-cpp - gguf-my-repo library_name: transformers license: apache-2.0 base_model: beomi/Solar-Ko-Recovery-11B --- # beomi/Solar-Ko-Recovery-11B-Q8_0-GGUF This model was converted to GGUF format from [`beomi/Solar-Ko-Recovery-11B`](https://huggingface.co/beomi/Solar-Ko-Recovery-11B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/beomi/Solar-Ko-Recovery-11B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo beomi/Solar-Ko-Recovery-11B-Q8_0-GGUF --hf-file solar-ko-recovery-11b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo beomi/Solar-Ko-Recovery-11B-Q8_0-GGUF --hf-file solar-ko-recovery-11b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo beomi/Solar-Ko-Recovery-11B-Q8_0-GGUF --hf-file solar-ko-recovery-11b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo beomi/Solar-Ko-Recovery-11B-Q8_0-GGUF --hf-file solar-ko-recovery-11b-q8_0.gguf -c 2048 ```
mradermacher/Teleut-7b-GGUF
mradermacher
2024-11-25T14:33:08Z
28
1
transformers
[ "transformers", "gguf", "en", "dataset:allenai/tulu-3-sft-mixture", "base_model:allura-org/Teleut-7b", "base_model:quantized:allura-org/Teleut-7b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T12:04:21Z
--- base_model: allura-org/Teleut-7b datasets: - allenai/tulu-3-sft-mixture language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/allura-org/Teleut-7b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Teleut-7b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
bartowski/cybertron-v4-qw7B-UNAMGS-GGUF
bartowski
2024-11-25T14:27:00Z
557
3
null
[ "gguf", "generated_from_trainer", "text-generation", "en", "dataset:Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1", "base_model:fblgit/cybertron-v4-qw7B-UNAMGS", "base_model:quantized:fblgit/cybertron-v4-qw7B-UNAMGS", "license:other", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-21T16:12:13Z
--- quantized_by: bartowski pipeline_tag: text-generation datasets: - Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1 base_model: fblgit/cybertron-v4-qw7B-UNAMGS license_name: qwen tags: - generated_from_trainer license: other language: - en license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE model-index: - name: cybertron-v4-qw7B-UNAMGS results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 60.84 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 37.71 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 29.91 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 10.85 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 12.69 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 38.89 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard --- ## Llamacpp imatrix Quantizations of cybertron-v4-qw7B-UNAMGS Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b4132">b4132</a> for quantization. Original model: https://huggingface.co/fblgit/cybertron-v4-qw7B-UNAMGS # cybertron-v4-qw7B-UNAMGS **UNA IS BACK** Cybertron v4 UNA-MGS, Based on the amazing Qwen2.5 7B **SCORING #1 7-8B LLM WITH NO CONTAMINATION 21.11.2024 with avg. 31.82** ![cybertron-v4-MGS](https://huggingface.co/fblgit/cybertron-v4-qw7B-MGS/resolve/main/cybertron_v4MGS.png) This special edition went thru UNA at MLP layers just like [miniclaus-1.5B](https://huggingface.co/fblgit/miniclaus-qw1.5B-UNAMGS) Here we use our novel approach called `MGS`. Its up to you to figure out what it means. On top of that we used `UNA: Uniform Neural Alignment` Cybertron V4 went thru SFT with `MGS & UNA` over `Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1` dataset. All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) Run them in [LM Studio](https://lmstudio.ai/) ## Prompt format ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Split | Description | | -------- | ---------- | --------- | ----- | ----------- | | [cybertron-v4-qw7B-UNAMGS-f16.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-f16.gguf) | f16 | 15.24GB | false | Full F16 weights. | | [cybertron-v4-qw7B-UNAMGS-Q8_0.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q8_0.gguf) | Q8_0 | 8.10GB | false | Extremely high quality, generally unneeded but max available quant. | | [cybertron-v4-qw7B-UNAMGS-Q6_K_L.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q6_K_L.gguf) | Q6_K_L | 6.52GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. | | [cybertron-v4-qw7B-UNAMGS-Q6_K.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q6_K.gguf) | Q6_K | 6.25GB | false | Very high quality, near perfect, *recommended*. | | [cybertron-v4-qw7B-UNAMGS-Q5_K_L.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q5_K_L.gguf) | Q5_K_L | 5.78GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. | | [cybertron-v4-qw7B-UNAMGS-Q5_K_M.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q5_K_M.gguf) | Q5_K_M | 5.44GB | false | High quality, *recommended*. | | [cybertron-v4-qw7B-UNAMGS-Q5_K_S.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q5_K_S.gguf) | Q5_K_S | 5.32GB | false | High quality, *recommended*. | | [cybertron-v4-qw7B-UNAMGS-Q4_K_L.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q4_K_L.gguf) | Q4_K_L | 5.09GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. | | [cybertron-v4-qw7B-UNAMGS-Q4_K_M.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q4_K_M.gguf) | Q4_K_M | 4.68GB | false | Good quality, default size for most use cases, *recommended*. | | [cybertron-v4-qw7B-UNAMGS-Q3_K_XL.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q3_K_XL.gguf) | Q3_K_XL | 4.57GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. | | [cybertron-v4-qw7B-UNAMGS-Q4_K_S.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q4_K_S.gguf) | Q4_K_S | 4.46GB | false | Slightly lower quality with more space savings, *recommended*. | | [cybertron-v4-qw7B-UNAMGS-Q4_0.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q4_0.gguf) | Q4_0 | 4.44GB | false | Legacy format, generally not worth using over similarly sized formats | | [cybertron-v4-qw7B-UNAMGS-Q4_0_8_8.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q4_0_8_8.gguf) | Q4_0_8_8 | 4.43GB | false | Optimized for ARM and AVX inference. Requires 'sve' support for ARM (see details below). *Don't use on Mac*. | | [cybertron-v4-qw7B-UNAMGS-Q4_0_4_8.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q4_0_4_8.gguf) | Q4_0_4_8 | 4.43GB | false | Optimized for ARM inference. Requires 'i8mm' support (see details below). *Don't use on Mac*. | | [cybertron-v4-qw7B-UNAMGS-Q4_0_4_4.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q4_0_4_4.gguf) | Q4_0_4_4 | 4.43GB | false | Optimized for ARM inference. Should work well on all ARM chips, not for use with GPUs. *Don't use on Mac*. | | [cybertron-v4-qw7B-UNAMGS-IQ4_XS.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-IQ4_XS.gguf) | IQ4_XS | 4.22GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [cybertron-v4-qw7B-UNAMGS-Q3_K_L.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q3_K_L.gguf) | Q3_K_L | 4.09GB | false | Lower quality but usable, good for low RAM availability. | | [cybertron-v4-qw7B-UNAMGS-Q3_K_M.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q3_K_M.gguf) | Q3_K_M | 3.81GB | false | Low quality. | | [cybertron-v4-qw7B-UNAMGS-IQ3_M.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-IQ3_M.gguf) | IQ3_M | 3.57GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [cybertron-v4-qw7B-UNAMGS-Q2_K_L.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q2_K_L.gguf) | Q2_K_L | 3.55GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. | | [cybertron-v4-qw7B-UNAMGS-Q3_K_S.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q3_K_S.gguf) | Q3_K_S | 3.49GB | false | Low quality, not recommended. | | [cybertron-v4-qw7B-UNAMGS-IQ3_XS.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-IQ3_XS.gguf) | IQ3_XS | 3.35GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [cybertron-v4-qw7B-UNAMGS-Q2_K.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-Q2_K.gguf) | Q2_K | 3.02GB | false | Very low quality but surprisingly usable. | | [cybertron-v4-qw7B-UNAMGS-IQ2_M.gguf](https://huggingface.co/bartowski/cybertron-v4-qw7B-UNAMGS-GGUF/blob/main/cybertron-v4-qw7B-UNAMGS-IQ2_M.gguf) | IQ2_M | 2.78GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. | ## Embed/output weights Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to. ## Downloading using huggingface-cli <details> <summary>Click to view download instructions</summary> First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/cybertron-v4-qw7B-UNAMGS-GGUF --include "cybertron-v4-qw7B-UNAMGS-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/cybertron-v4-qw7B-UNAMGS-GGUF --include "cybertron-v4-qw7B-UNAMGS-Q8_0/*" --local-dir ./ ``` You can either specify a new local-dir (cybertron-v4-qw7B-UNAMGS-Q8_0) or download them all in place (./) </details> ## Q4_0_X_X information <details> <summary>Click to view Q4_0_X_X information</summary> These are *NOT* for Metal (Apple) or GPU (nvidia/AMD/intel) offloading, only ARM chips (and certain AVX2/AVX512 CPUs). If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660) To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!). If you're using a CPU that supports AVX2 or AVX512 (typically server CPUs and AMD's latest Zen5 CPUs) and are not offloading to a GPU, the Q4_0_8_8 may offer a nice speed as well: <details> <summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary> | model | size | params | backend | threads | test | t/s | % (vs Q4_0) | | ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 Β± 1.03 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 Β± 0.19 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 Β± 0.44 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 Β± 0.27 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 Β± 0.69 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 Β± 0.03 | 100% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 Β± 1.74 | 147% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 Β± 0.20 | 101% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 Β± 1.81 | 101% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 Β± 0.99 | 48% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 Β± 3.04 | 83% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 Β± 3.59 | 90% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 Β± 3.53 | 133% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 Β± 45.63 | 100% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 Β± 5.00 | 124% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 Β± 0.05 | 111% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 Β± 0.09 | 110% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 Β± 0.31 | 105% | Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation </details> </details> ## Which file should I choose? <details> <summary>Click here for details</summary> A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. </details> ## Credits Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset. Thank you ZeroWw for the inspiration to experiment with embed/output. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
Maites/Homer-v0.5-Qwen2.5-7B-Q4_K_M-GGUF
Maites
2024-11-25T14:23:36Z
5
1
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:newsbang/Homer-v0.5-Qwen2.5-7B", "base_model:quantized:newsbang/Homer-v0.5-Qwen2.5-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-25T14:23:14Z
--- license: apache-2.0 base_model: newsbang/Homer-v0.5-Qwen2.5-7B tags: - llama-cpp - gguf-my-repo --- # JulienElkaim/Homer-v0.5-Qwen2.5-7B-Q4_K_M-GGUF This model was converted to GGUF format from [`newsbang/Homer-v0.5-Qwen2.5-7B`](https://huggingface.co/newsbang/Homer-v0.5-Qwen2.5-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/newsbang/Homer-v0.5-Qwen2.5-7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo JulienElkaim/Homer-v0.5-Qwen2.5-7B-Q4_K_M-GGUF --hf-file homer-v0.5-qwen2.5-7b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo JulienElkaim/Homer-v0.5-Qwen2.5-7B-Q4_K_M-GGUF --hf-file homer-v0.5-qwen2.5-7b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo JulienElkaim/Homer-v0.5-Qwen2.5-7B-Q4_K_M-GGUF --hf-file homer-v0.5-qwen2.5-7b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo JulienElkaim/Homer-v0.5-Qwen2.5-7B-Q4_K_M-GGUF --hf-file homer-v0.5-qwen2.5-7b-q4_k_m.gguf -c 2048 ```
saliq5/Pipeline
saliq5
2024-11-25T14:17:15Z
162
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T14:10:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q8_0-GGUF
Triangle104
2024-11-25T14:13:00Z
16
0
transformers
[ "transformers", "gguf", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "base_model:huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated", "base_model:quantized:huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-04T22:53:28Z
--- library_name: transformers license: llama3.1 base_model: huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated tags: - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q8_0-GGUF This model was converted to GGUF format from [`huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated) for more details on the model. --- Model details: - This is an uncensored version of Llama 3.1 8B Instruct created with abliteration (see this article to know more about it). Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q8_0-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q8_0-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q8_0-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q8_0-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q8_0.gguf -c 2048 ```
briannlongzhao/basquiat_textual_inversion
briannlongzhao
2024-11-25T14:09:59Z
2
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-09T08:05:41Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - briannlongzhao/basquiat_textual_inversion These are textual inversion adaption weights for stabilityai/stable-diffusion-2-1. You can find some example images in the following.
Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_M-GGUF
Triangle104
2024-11-25T14:04:04Z
11
0
transformers
[ "transformers", "gguf", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "base_model:huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated", "base_model:quantized:huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-04T22:47:20Z
--- library_name: transformers license: llama3.1 base_model: huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated tags: - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Meta-Llama-3.1-8B-Instruct-abliterated) for more details on the model. --- Model details: - This is an uncensored version of Llama 3.1 8B Instruct created with abliteration (see this article to know more about it). Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_M-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_M-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_M-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_M-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q5_k_m.gguf -c 2048 ```
sna89/segformer-b0-scene-parse-150
sna89
2024-11-25T14:03:55Z
37
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2024-10-29T15:42:07Z
--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 2.2863 - Mean Iou: 0.1322 - Mean Accuracy: 0.2193 - Overall Accuracy: 0.5236 - Per Category Iou: [0.17584122398758895, 0.46366573409354317, 0.6899099859557716, 0.8850136717893229, 0.2200496783644354, 0.21159926360234527, 0.28788921058002676, 0.8057838286364055, 0.3129988790098432, 0.01191510487774606, 0.13235068324888685, 0.0, 0.2795662866085401, 0.0396786413020855, 0.0, 0.0, 0.0023832843617368595, 0.021505376344086023, 0.030850694907567956, nan, 0.0, 0.8503331373701744, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] - Per Category Accuracy: [0.21451742313435987, 0.8538336753640183, 0.984218271094859, 0.9792485738046007, 0.3231085757037314, 0.6344898969443319, 0.36251832390960836, 0.9197207801318928, 0.9971040015654046, 0.0165147084121796, 0.13401741293532338, nan, 0.5442280491785443, 0.03995674007998055, nan, nan, 0.002386205769387922, 0.10079726651480637, 0.03569003826688063, nan, 0.0, 0.9717276900683014, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.2263 | 1.0 | 20 | 3.5893 | 0.0845 | 0.1572 | 0.4326 | [0.09895809215096087, 0.3766523287544517, 0.4026077186261011, 0.7401129262459497, 0.07194570618215938, 0.16042202572347267, 0.2403559937369879, 0.7332509445672412, 0.16759665790517025, 0.0, 0.0, nan, 0.23127111732494465, 0.010414577064526915, nan, 0.0, 0.0030889924000980632, 0.0, 0.0, nan, 0.0, 0.22757075729428478, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.1476695574059358, 0.47749047200234535, 0.9076271868244234, 0.9933600613514799, 0.42068019576670096, 0.598727930036152, 0.531888362175643, 0.944892661708994, 0.22333431171118287, 0.0, 0.0, nan, 0.323958219997824, 0.010446096965937004, nan, nan, 0.0030889924000980632, 0.0, 0.0, nan, 0.0, 0.2331765759713358, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 3.8869 | 2.0 | 40 | 3.4918 | 0.0916 | 0.1573 | 0.4367 | [0.09252577101279869, 0.31475782946456565, 0.4295326761989256, 0.8197392257882057, 0.05785553150563142, 0.1740403836219482, 0.2149033864646486, 0.7299493926028674, 0.33963437276016617, 0.0, 0.0, nan, 0.09344845099035043, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.21577064937968035, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.12580474265510372, 0.6357314570507183, 0.8192354905935082, 0.9941916716013189, 0.43411577667633033, 0.5811919655581057, 0.5840710491747102, 0.9451241756699874, 0.38479600821837395, 0.0, 0.0, nan, 0.1000979218801001, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.21615720524017468, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 3.0216 | 3.0 | 60 | 3.2395 | 0.0969 | 0.1700 | 0.4619 | [0.1664985131690739, 0.20999590917060057, 0.4289943594009393, 0.815095824349939, 0.09465792603500028, 0.15100404742383425, 0.23608409199104305, 0.7688087904309501, 0.44141398105519397, 0.0, 0.0, nan, 0.09315274642588413, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.2777312098351495, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.2287043115395394, 0.2528290823805336, 0.9409164873779907, 0.9921207355705914, 0.41681473861404655, 0.5221637190045453, 0.7647305195423306, 0.9753472709414901, 0.8161040994031895, 0.0, 0.0, nan, 0.10102273963660102, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.27824431754562756, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 3.8877 | 4.0 | 80 | 3.2859 | 0.1132 | 0.1880 | 0.5045 | [0.13958900136723335, 0.44969956518889154, 0.4770084513190282, 0.8353439211241448, 0.1095341605825186, 0.17624136214635808, 0.33751825907089317, 0.7435181556072182, 0.4413269579617956, 0.0, 0.022456249032058232, nan, 0.1530906233630173, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.41781281449178126, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.19401160134670828, 0.8045108961203948, 0.9188750100566024, 0.9897035649222267, 0.3502914679385268, 0.5895624259334263, 0.6026519694633237, 0.9715237827978112, 0.9021230799334703, 0.0, 0.02254353233830846, nan, 0.19078446306169078, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.418374202216997, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 3.2562 | 5.0 | 100 | 3.1562 | 0.1131 | 0.1913 | 0.5028 | [0.13037894205033448, 0.4834356789963185, 0.4751899573128162, 0.7748325322635583, 0.1412642564547108, 0.17349191238521242, 0.3597649327494358, 0.7669447541424782, 0.38942214990147345, 0.0, 0.0, nan, 0.2171898871420827, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.38578765211566374, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.17634469282536172, 0.7714883220951823, 0.9415289669079386, 0.9937289468319532, 0.5181582967050095, 0.6260444324437844, 0.6357682715555809, 0.9796758804546092, 0.8101359945210841, 0.0, 0.0, nan, 0.23974540311173975, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.3869107602732057, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.3162 | 6.0 | 120 | 3.0800 | 0.1224 | 0.1966 | 0.5413 | [0.2575755334243388, 0.43287422594667885, 0.5950764259725814, 0.8216711856315689, 0.15240326899990767, 0.1724841670068072, 0.39731244651247144, 0.7701781913142707, 0.37261120352567567, 0.0, 0.0, nan, 0.13170231467916788, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.5472581978506476, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.3676171939482585, 0.7812176292387374, 0.9329776107588778, 0.9913926721222888, 0.41157766763303094, 0.5895324242833356, 0.6673044339101796, 0.9848814367896731, 0.8437432736522845, 0.0, 0.0, nan, 0.1467196170166467, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.5559287873698354, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.7766 | 7.0 | 140 | 2.8844 | 0.1088 | 0.1827 | 0.5185 | [0.19119784006848564, 0.3880060032373116, 0.5818301479410719, 0.8527143738433066, 0.10056249675981128, 0.17833744039158628, 0.16069364920943427, 0.7868340841345615, 0.41851637958452603, 0.0, 0.0, nan, 0.046007078012001844, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.5400733081678428, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.2507917861543954, 0.8751607544219682, 0.9728043517189653, 0.98400201916263, 0.24187162941488202, 0.6361699893494143, 0.23295638433567498, 0.9852041532201488, 0.9784463359749536, 0.0, 0.0, nan, 0.048797736916548796, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.5526816705856007, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 3.0093 | 8.0 | 160 | 2.8210 | 0.1150 | 0.1917 | 0.5039 | [0.12344522325508885, 0.4190219657016113, 0.48700153761982673, 0.8265844404328228, 0.14283563060304585, 0.15878425995925324, 0.3035741578978308, 0.7848042608939411, 0.40621521952191897, 0.0, 0.0, nan, 0.06725462891330136, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.6510024057738573, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.1550307692898302, 0.8093540506205413, 0.9748675772541712, 0.9897326874601587, 0.44353003522553697, 0.5576706718869537, 0.4915662421230986, 0.9624175669987372, 0.9570002935133548, 0.0, 0.0, nan, 0.07093896202807094, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.6817265703728586, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.7142 | 9.0 | 180 | 2.9969 | 0.1213 | 0.2014 | 0.5448 | [0.32157253948768755, 0.4239378720950628, 0.6498940039127582, 0.7934785979347343, 0.1717027417027417, 0.18551384817730157, 0.26104654172706565, 0.686709963413926, 0.3820284875703908, 0.0, 0.0, nan, 0.13747102511944748, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.7161244190203789, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.453548545608802, 0.8219564155184208, 0.8250514508757679, 0.9935768624671967, 0.3709280214470526, 0.6939981698993445, 0.38398347516515313, 0.9955030166970675, 0.9703845024948635, 0.0, 0.0, nan, 0.15808943531715808, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.7849624902026648, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.3842 | 10.0 | 200 | 2.7999 | 0.1158 | 0.1957 | 0.5058 | [0.15792858017217096, 0.43614669480408375, 0.47939096432843764, 0.8246707032366246, 0.1638807939737175, 0.17373463923756985, 0.2752884267882461, 0.7090395197598799, 0.39797006957697034, 0.0, 0.0, nan, 0.08088080723144839, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.7009632224168126, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.20554384671787843, 0.7472842763607935, 0.9443474108465972, 0.9898588851245312, 0.5574675021041803, 0.6122736750521278, 0.4713004740419213, 0.9943664936158272, 0.9160943156246942, 0.0, 0.0, nan, 0.08372320748558372, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.7170529615944463, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.881 | 11.0 | 220 | 2.8349 | 0.1127 | 0.1890 | 0.5121 | [0.20084870260390272, 0.388384263507593, 0.6356099733841843, 0.7847308108773856, 0.1370602426367218, 0.17902592065001743, 0.1320768749264036, 0.7402269663625819, 0.42589047880386044, 0.0, 0.0, nan, 0.12253919300950912, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.7605416259074294, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.2708254154717894, 0.8801524479624744, 0.8961873149260743, 0.9896161973084303, 0.2461735091492877, 0.6240193210626584, 0.2028575780075009, 0.9939315279921426, 0.9338714411505723, 0.0, 0.0, nan, 0.12969209008812968, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.8270070540812899, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.5407 | 12.0 | 240 | 2.7539 | 0.1218 | 0.2070 | 0.5266 | [0.18357910211301118, 0.46364088562680317, 0.5094902434019468, 0.8681265640218238, 0.18243480481343163, 0.15667028743680012, 0.3991855389577638, 0.7923434547204156, 0.35055063871226444, 0.0, 0.008284939992257066, nan, 0.2738033350661815, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0031940501172694727, nan, 0.0, 0.8026869968545076, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.24065884285972045, 0.8197830548226327, 0.9729964003851355, 0.9777439093447753, 0.35633903799993766, 0.5387396306796873, 0.610238543986902, 0.9589167952855339, 0.9579591038058899, 0.0, 0.008317786069651742, nan, 0.3724839516918725, 0.0, nan, nan, 0.0, 0.0, 0.0031940501172694727, nan, 0.0, 0.8429067293696114, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.32 | 13.0 | 260 | 2.7703 | 0.1213 | 0.2069 | 0.5297 | [0.19536897974657705, 0.42577625264523516, 0.5567181658483852, 0.864410192990617, 0.19432419432419432, 0.17911734631982115, 0.34068981529253944, 0.758568283963504, 0.36634701662007924, 0.0, 0.0, nan, 0.2882105631952352, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0026999922857363265, nan, 0.0, 0.8014407192763906, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.2571836598371512, 0.8313026482947328, 0.9622961753767657, 0.9861312002692216, 0.3526294460550516, 0.620149108200951, 0.5028461553106022, 0.9839834432440017, 0.9706780158497211, 0.0, 0.0, nan, 0.35801327385485804, 0.0, nan, nan, 0.0, 0.0, 0.0027002839155659793, nan, 0.0, 0.8284066733848393, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.1135 | 14.0 | 280 | 2.6622 | 0.1124 | 0.1949 | 0.5054 | [0.16571107709584867, 0.42375923241526886, 0.4717263585684867, 0.8764458510487221, 0.16591042154566746, 0.16476864320911744, 0.22707632674001027, 0.8075094828827963, 0.34249464336248603, 5.709717939933767e-05, 0.0, nan, 0.15643123247685986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0021293667448463154, nan, 0.0, 0.8029604728081114, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.20676271752525077, 0.7439030587315548, 0.9862659251165917, 0.9785431612191342, 0.35334642601078586, 0.5708113946267045, 0.3791954613817656, 0.9439034656938403, 0.9946384893846003, 8.60141063134354e-05, 0.0, nan, 0.22157545424872158, 0.0, nan, nan, 0.0, 0.0, 0.0021293667448463154, nan, 0.0, 0.8290784906505431, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.0239 | 15.0 | 300 | 2.7246 | 0.1166 | 0.2057 | 0.5092 | [0.1593715892777081, 0.4051560848597029, 0.5242804535828665, 0.8374928088102348, 0.17295706164865154, 0.1765569635080468, 0.2223814156815183, 0.7059651856068551, 0.42098776227416, 0.0, 0.06531416478143472, nan, 0.29960660142007295, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01298760412083327, nan, 0.0, 0.7786718272560603, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.2026454295223946, 0.843635297566696, 0.913007144729432, 0.9892278968026689, 0.4524143520683313, 0.6330948202151119, 0.31765568183981574, 0.9918479023432019, 0.9891791409842481, 0.0, 0.06957400497512438, nan, 0.33973452290283973, 0.0, nan, nan, 0.0, 0.0, 0.013208245895568448, nan, 0.0, 0.8560071660508342, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.2951 | 16.0 | 320 | 2.6048 | 0.1215 | 0.2092 | 0.5120 | [0.14996180833660616, 0.42678840628073966, 0.5093740819302307, 0.8636249650919577, 0.18321545157780195, 0.17583989182817322, 0.19998336302571107, 0.8076484672307628, 0.3420567216232289, 0.0009434576094736158, 0.11747829369573425, nan, 0.3543602800763845, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01871461361897475, nan, 0.0, 0.83295952152088, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.18616284113986495, 0.8598612332649272, 0.9809508485177216, 0.9806691064881778, 0.29393060880950156, 0.6086434753911465, 0.2746111523597388, 0.9395047004349656, 0.9960473534879171, 0.0024944090830896267, 0.12095771144278607, nan, 0.6057012294636057, 0.0, nan, nan, 0.0, 0.0, 0.018871127021355388, nan, 0.0, 0.8732504758705633, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.9269 | 17.0 | 340 | 2.6279 | 0.1313 | 0.2172 | 0.5423 | [0.2547838898120707, 0.49042498145038466, 0.6656349431661068, 0.8067647027718731, 0.22976582759763683, 0.2183854729462615, 0.3461867436041465, 0.7686043707941518, 0.3324771791951281, 0.0, 0.10885158618649708, nan, 0.3645145779603969, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00021287919105907396, nan, 0.0, 0.7954523695548109, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.3425698787271534, 0.785431447278413, 0.9370910855680618, 0.9873867052378502, 0.3673431216683812, 0.621499182455035, 0.5162583052525368, 0.9839904588185773, 0.9967126504255943, 0.0, 0.11442786069651742, nan, 0.45365031008595363, 0.0, nan, nan, 0.0, 0.0, 0.00021602271324527836, nan, 0.0, 0.9302989586832382, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.8633 | 18.0 | 360 | 2.5553 | 0.1241 | 0.2080 | 0.5239 | [0.19145117291674843, 0.4167042508716267, 0.5898506559062773, 0.8725142076234337, 0.15604676215935842, 0.18275347310945841, 0.2661777687241122, 0.8112029149758101, 0.3791895442449557, 0.00010535465009086838, 0.06670273612614006, nan, 0.2987848686471121, 0.0, 0.0, 0.0, 0.0, 0.0, 0.003620863507195893, nan, 0.0, 0.8540977581771407, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.25285714834137596, 0.8306654939900322, 0.9810494681030523, 0.9771970527991612, 0.24383553103276287, 0.6115386346249043, 0.37314143202543454, 0.9340044899677283, 0.9912239506897564, 0.0003440564252537416, 0.06708644278606965, nan, 0.5203459906430203, 0.0, nan, nan, 0.0, 0.0, 0.003656955931366498, nan, 0.0, 0.9107602732056881, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.0786 | 19.0 | 380 | 2.5326 | 0.1302 | 0.2160 | 0.5335 | [0.22022741800589665, 0.45768263377289087, 0.6088333495788019, 0.8618503606538719, 0.22605822987003557, 0.19417693169092945, 0.19189359013280052, 0.778963732320985, 0.3992842697339316, 0.0012784454103809768, 0.09816471314003701, nan, 0.44293109144975956, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00085976602081862, nan, 0.0, 0.8549036221139589, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.3002318733756387, 0.8613700772012117, 0.9564153337883675, 0.9801125424299199, 0.38822905950933634, 0.6242743350884299, 0.258724084756411, 0.970239932650484, 0.9890030329713335, 0.00430070531567177, 0.09895833333333333, nan, 0.6563486018931564, 0.0, nan, nan, 0.0, 0.0, 0.0008640908529811135, nan, 0.0, 0.9038181614600829, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.0501 | 20.0 | 400 | 2.5106 | 0.1301 | 0.2148 | 0.5166 | [0.16925647551849732, 0.42199517276740495, 0.49332017847566784, 0.8757217582290553, 0.232161713682305, 0.1855716918802924, 0.21257345167555872, 0.814565822988684, 0.3612282296684968, 0.0028069445888345983, 0.11552068912475004, nan, 0.4465860597439545, 0.0, 0.0, 0.0, 0.0, 0.0, 0.026407133666477154, nan, 0.0, 0.8451555740866211, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.21737937017970185, 0.7914160070360599, 0.9836265535828755, 0.9805429088238055, 0.33582717665762646, 0.6252643895414248, 0.3292021246216232, 0.9579977550161358, 0.9874278446335975, 0.004644761740925512, 0.11675995024875623, nan, 0.6831683168316832, 0.0, nan, nan, 0.0, 0.0, 0.027234292062708308, nan, 0.0, 0.9078490650543052, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.645 | 21.0 | 420 | 2.5014 | 0.1282 | 0.2153 | 0.5255 | [0.21214499175445686, 0.4258537141054513, 0.6590263642023237, 0.8645674339958805, 0.1698871682426568, 0.199620804184729, 0.263562946532518, 0.7853834183765788, 0.33610787249264684, 0.0013363158353426488, 0.13049076037564375, nan, 0.3396636666391435, 0.0, 0.0, 0.0, 0.0, 0.0, 0.008831624474488098, nan, 0.0, 0.8601172115977791, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.2760636807211108, 0.7598631877259846, 0.9780337849937325, 0.9860923702186456, 0.23186508307615575, 0.6617613968768282, 0.40944657033525617, 0.9135330433562509, 0.9928089228059876, 0.0039566488904180285, 0.13393967661691542, nan, 0.6713632901751714, 0.0, nan, nan, 0.0, 0.0, 0.009011233181088754, nan, 0.0, 0.9366812227074236, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.0367 | 22.0 | 440 | 2.4774 | 0.1199 | 0.2061 | 0.5207 | [0.17487617364542382, 0.478632902601751, 0.4920520352064927, 0.8868312757201646, 0.19538618971347216, 0.1723633495732258, 0.32337074094104923, 0.8096707945448062, 0.35712472410072704, 0.003322141721152147, 0.055735930735930736, 0.0, 0.23693584858904068, 0.0, 0.0, 0.0, 0.0, 0.0, 0.005500487022288432, nan, 0.0, 0.8423613363606877, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.2233719916924837, 0.8297781686699892, 0.9925386497940667, 0.9678843123359835, 0.2737928239658343, 0.6097835380945952, 0.45531821729777067, 0.9238108601094429, 0.9909695724488797, 0.008085325993462927, 0.05604788557213931, nan, 0.41611358938091614, 0.0, nan, nan, 0.0, 0.0, 0.005925194420441921, nan, 0.0, 0.8723547195162916, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.5569 | 23.0 | 460 | 2.5136 | 0.1294 | 0.2260 | 0.5306 | [0.24358070445878413, 0.4387693279729268, 0.6458843598239097, 0.8440154376017454, 0.25469779369500817, 0.19653072278810457, 0.36751591148977053, 0.7673311939511166, 0.3255732612839256, 0.0026392450763140203, 0.1534201251528447, 0.0, 0.47508613344200346, 0.0, 0.0, 0.0, 0.0, 0.0, 0.028900636719434547, nan, 0.0, 0.6895287958115183, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.3309071086081071, 0.7926473175021987, 0.8342594058429509, 0.9864612556991189, 0.35914461173976747, 0.6694568201251069, 0.5535058160565043, 0.9796688648800337, 0.9926719499070541, 0.009117495269224153, 0.1658115671641791, nan, 0.6976389946686976, 0.0, nan, nan, 0.0, 0.0, 0.03053635353660042, nan, 0.0, 0.9585152838427947, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.0129 | 24.0 | 480 | 2.4220 | 0.1231 | 0.2080 | 0.5199 | [0.1775199851273471, 0.46836633835055835, 0.4896399345125027, 0.8791340599962735, 0.18593814432989691, 0.17183267040563927, 0.28171753869039107, 0.805754360501489, 0.3438605606697135, 0.003286127846021438, 0.09345072598084646, 0.0, 0.2416756756756757, 0.0, 0.0, 0.0, 0.0, 0.0, 0.033464884611434695, nan, 0.0, 0.8720025408924885, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.22910932215427257, 0.8446320727059513, 0.9880670301749979, 0.977132336048201, 0.28111848873094547, 0.5689812939711684, 0.3749690635292326, 0.9035709274589588, 0.9841894139516681, 0.007225184930328574, 0.09406094527363185, nan, 0.48645413991948644, 0.0, nan, nan, 0.0, 0.0, 0.035196272065177135, nan, 0.0, 0.9222371514947935, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.828 | 25.0 | 500 | 2.4293 | 0.1307 | 0.2273 | 0.5351 | [0.23174784643198978, 0.4409356701875996, 0.6697353737488182, 0.8815332539517684, 0.22883603830418559, 0.2056038223485318, 0.31408247681123086, 0.7892248403173433, 0.30497623144536234, 0.00853343016658345, 0.13191457808097287, 0.0, 0.4582582582582583, 0.0, 0.0, 0.0, 0.0, 0.0, 0.09687373122208688, nan, 0.0, 0.7262600361511623, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.30116090246346267, 0.8662953190657676, 0.9173879305199069, 0.9750096266167053, 0.3173415630163035, 0.6468055743065869, 0.38163230338682963, 0.9310018240493897, 0.9936209764210938, 0.03234130397385171, 0.13829291044776118, nan, 0.8301599390708302, 0.0, nan, nan, 0.0, 0.0, 0.11044932724355018, nan, 0.0, 0.9672489082969432, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.2328 | 26.0 | 520 | 2.4304 | 0.1288 | 0.2155 | 0.5281 | [0.18864537242560092, 0.44074016534894167, 0.6373951553378514, 0.8839875027843234, 0.2365548088949187, 0.20737611493940375, 0.3448321825597825, 0.8122199592668025, 0.3646749222644132, 0.0024461347719733273, 0.11858529819694869, 0.0, 0.2802300461259999, 0.0006623127289799546, 0.0, 0.0, 0.0, 0.0024468285337850555, 0.009989053092501369, nan, 0.0, 0.8796660640221206, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.2482907016472991, 0.8206234730772989, 0.9861024242251225, 0.9759706703684649, 0.3478599706973409, 0.594992724599853, 0.4925086146172445, 0.9232776764417006, 0.9856569807259563, 0.006279029760880785, 0.11963619402985075, nan, 0.5221956261560222, 0.0006623127289799546, nan, nan, 0.0, 0.014806378132118452, 0.010137637328724849, nan, 0.0, 0.9261560855447318, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.4781 | 27.0 | 540 | 2.4422 | 0.1299 | 0.2209 | 0.5219 | [0.17659158243016285, 0.44569221165907835, 0.7025365089218796, 0.8805066143250369, 0.23730241121971285, 0.2012749564041425, 0.19055360454563391, 0.8090528451965804, 0.303646335601408, 0.0067779632721202, 0.2036432251977647, 0.0, 0.4443127962085308, 0.008524377894719368, 0.0, 0.0, 0.0, 0.0, 0.04045107411680677, nan, 0.0, 0.8049152946790742, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.21555010422785015, 0.8735776409655037, 0.9633446572839647, 0.98126773643456, 0.3776613984226441, 0.6787123291781048, 0.22984369943076893, 0.9733267854637295, 0.9950396243029058, 0.017460863581627385, 0.2181281094527363, nan, 0.6528125340006529, 0.008610065476739408, nan, nan, 0.0, 0.0, 0.045441920750524625, nan, 0.0, 0.9442951517187325, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.2081 | 28.0 | 560 | 2.3810 | 0.1261 | 0.2128 | 0.5211 | [0.15442323192338692, 0.4524473693434028, 0.5972118676123673, 0.8827326503943622, 0.1936700111015689, 0.1902729681100191, 0.41074565302421506, 0.7918516908362575, 0.3037401709809488, 0.004188319243000078, 0.08314034275127374, 0.0, 0.2056720749241525, 0.002098820145328662, 0.0, 0.0, 0.0, 0.0, 0.023980428923004806, nan, 0.0, 0.8754738244032374, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.18645268285941333, 0.857816866998925, 0.9874960746809787, 0.9792582813172448, 0.28822594220518094, 0.6313547245098481, 0.5497839206503322, 0.8944857583836117, 0.9965952450836513, 0.009289523481851024, 0.08372201492537314, nan, 0.4241105429224241, 0.002104310062961628, nan, nan, 0.0, 0.0, 0.025259227255894336, nan, 0.0, 0.9568357406785354, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.2767 | 29.0 | 580 | 2.3840 | 0.1317 | 0.2256 | 0.5317 | [0.19944340090647017, 0.4583429792538509, 0.6103020536097107, 0.8594584528918344, 0.22537235954158846, 0.2035824803618186, 0.34345250687539663, 0.8086612964187848, 0.3102282874025946, 0.0005179901980316373, 0.1641824922448362, 0.0, 0.4488895116653822, 0.003282642192001072, 0.0, 0.0, 0.0, 0.0, 0.0435928833825542, nan, 0.0, 0.8541082164328657, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.24925812036685133, 0.8048705169549497, 0.964164756993556, 0.9856911263626921, 0.35188129305776367, 0.6671316922430733, 0.49452662440268813, 0.9606356110565455, 0.995969083259955, 0.0011181833820746603, 0.16868781094527363, nan, 0.6970949842236971, 0.003286412528609395, nan, nan, 0.0, 0.0, 0.046691766448586594, nan, 0.0, 0.9544283954764304, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.0403 | 30.0 | 600 | 2.3747 | 0.1257 | 0.2133 | 0.5167 | [0.16352896522275467, 0.44764101913051757, 0.6004680867192238, 0.8813352478759936, 0.20915147650563998, 0.20128041942489958, 0.21751251881662623, 0.7871564469071027, 0.3088048194673444, 0.0002105263157894737, 0.13503761707354522, 0.0, 0.30282679993752926, 0.0051150254916849545, 0.0, 0.0, 0.0, 0.0, 0.015606902941857771, nan, 0.0, 0.8779039752194114, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.19847631551670525, 0.8820990911756084, 0.9867823803134546, 0.9791482628406124, 0.2965179712584557, 0.6381050957802679, 0.2695851657242942, 0.9009611337168514, 0.9950004891889248, 0.000430070531567177, 0.13673818407960198, nan, 0.6329017517136329, 0.005139211428667243, nan, nan, 0.0, 0.0, 0.016633748919886435, nan, 0.0, 0.9520210502743254, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.1765 | 31.0 | 620 | 2.3353 | 0.1399 | 0.2309 | 0.5290 | [0.17834652809044974, 0.44707050842744056, 0.6672614974450122, 0.8865733647613435, 0.20102622576966933, 0.26035059498784435, 0.25906992863781725, 0.8073731144605635, 0.33563509367192623, 0.020610206102061022, 0.23811301037545718, 0.0, 0.5251871675869779, 0.026663142418185123, 0.0, 0.0, 0.0, 0.0, 0.06917558942982224, nan, 0.0, 0.8142231019369434, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.21897253989642476, 0.8797498289846575, 0.9743044075168886, 0.9736732257093765, 0.38470650581377225, 0.640970253363935, 0.3130866030803206, 0.961659884944577, 0.9910380588983465, 0.03939446069155342, 0.24797885572139303, nan, 0.8433793928843434, 0.027062601128446752, nan, nan, 0.0, 0.0, 0.08094679669176645, nan, 0.0, 0.9672489082969432, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 0.976 | 32.0 | 640 | 2.3011 | 0.1341 | 0.2232 | 0.5324 | [0.194431455309514, 0.46955498610777546, 0.613067754057521, 0.882022225919731, 0.2237273962579701, 0.20414809478786788, 0.37648078590002887, 0.7976578556836739, 0.32327383300041984, 0.005091173567458049, 0.16303353658536585, 0.0, 0.30270124983201185, 0.016933489847398786, 0.0, 0.0, 0.0, 0.0011189095717627912, 0.0723300237575358, nan, 0.0, 0.8534193929838392, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.24262823096738034, 0.8330225740252125, 0.9848281553725614, 0.9777309659945832, 0.3336138907073163, 0.6121686692768102, 0.520932092066937, 0.9012347411252981, 0.9943841111437237, 0.00842938241871667, 0.16627798507462688, nan, 0.6126645631596127, 0.017052456844876298, nan, nan, 0.0, 0.003132118451025057, 0.08127083076163437, nan, 0.0, 0.9697122382711902, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.968 | 33.0 | 660 | 2.3002 | 0.1333 | 0.2195 | 0.5284 | [0.18928064973572256, 0.4570936992169421, 0.5611925805351944, 0.8887112833982858, 0.24282650654085353, 0.211432631032033, 0.27396406307297394, 0.8227039195396039, 0.3328624618167993, 0.01469700020132877, 0.17693715680292862, 0.0, 0.37943262411347517, 0.015965952626844786, 0.0, 0.0, 0.0, 0.002482128673550437, 0.02825462854464495, nan, 0.0, 0.8680091766505226, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.23673542249709198, 0.8609049154695593, 0.9869147381779773, 0.9732978685538072, 0.3529723495121419, 0.5982329028096546, 0.3555790355436252, 0.9537743791216501, 0.9936307601995891, 0.02511611904352314, 0.18034825870646767, nan, 0.5995539114350995, 0.016071563309551555, nan, nan, 0.0, 0.0071184510250569474, 0.02976484384643871, nan, 0.0, 0.9531967304893069, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.6715 | 34.0 | 680 | 2.3428 | 0.1319 | 0.2235 | 0.5275 | [0.192535476735673, 0.4475758030621435, 0.6196268863341836, 0.8762169279394266, 0.22313994090787, 0.23991485126617274, 0.29249404994493977, 0.8012692255760001, 0.31269688915140775, 0.008407482659567015, 0.16542907448518718, 0.0, 0.30225364560318163, 0.025684703848966296, 0.0, 0.0, 0.0, 0.013730446068720542, 0.01877666725115436, nan, 0.0, 0.8700765448370253, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.23725176304383713, 0.8391908531222515, 0.9815399707774597, 0.9840829151013303, 0.31076405124848033, 0.650900799543975, 0.39189369276752906, 0.9159113231373649, 0.9944623813716857, 0.020643385515224495, 0.16798818407960198, nan, 0.5953650310085954, 0.025914033484519487, nan, nan, 0.0, 0.17169703872437359, 0.019827799037155907, nan, 0.0, 0.9609226290448998, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.1251 | 35.0 | 700 | 2.3166 | 0.1320 | 0.2178 | 0.5272 | [0.1738329573074366, 0.4481836429707564, 0.646818738533712, 0.8887148166253409, 0.19203474618994068, 0.20198929222920364, 0.34707006701027093, 0.8137490007993605, 0.3359391814259651, 0.021759117376647256, 0.1565470714504753, 0.0, 0.2550185435921587, 0.030211480362537766, 0.0, 0.0, 0.0, 0.007979502196193264, 0.02663026387260928, nan, 0.0, 0.8660260602706645, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.21429668275192237, 0.8745314179614971, 0.9854510159114915, 0.9765369419393669, 0.30873780354749214, 0.6129187105290791, 0.4442096445637482, 0.928441139329311, 0.9926425985715683, 0.036642009289523485, 0.15873756218905472, nan, 0.4713306495484713, 0.030432850711357404, nan, nan, 0.0, 0.031036446469248292, 0.028746451055425257, nan, 0.0, 0.9637218676519986, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.4993 | 36.0 | 720 | 2.2998 | 0.1370 | 0.2256 | 0.5340 | [0.20034650494378936, 0.474809695065904, 0.6596017400081378, 0.8864627409496943, 0.24084149437794705, 0.2090614072601947, 0.3799128500039097, 0.8083854019616268, 0.31247986895263336, 0.03113526215303275, 0.15725529151065942, 0.0, 0.3212624773139746, 0.026428974725165234, 0.0, 0.0, 0.0, 0.007238181406921511, 0.04831199068684517, nan, 0.0, 0.8517368810051736, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.24926771777478338, 0.8319085312225154, 0.9802657019248986, 0.9761907073217296, 0.35188129305776367, 0.6233142822855257, 0.5087383631275344, 0.924000280622983, 0.996624596419137, 0.05470497161534492, 0.1599813432835821, nan, 0.6163094331411163, 0.02668533438409108, nan, nan, 0.0, 0.02733485193621868, 0.052508949512405874, nan, 0.0, 0.967752771246221, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.2429 | 37.0 | 740 | 2.3465 | 0.1253 | 0.2085 | 0.5136 | [0.15281192937818242, 0.42200137080191913, 0.623907888729428, 0.8850175339830876, 0.1902573939420975, 0.1966555884621611, 0.22019852343777596, 0.8171784140153339, 0.3342301304083277, 0.01515798462852263, 0.13233036536690207, 0.0, 0.24694015622116983, 0.018732205660693352, 0.0, 0.0, 4.903162539838196e-05, 0.0030627871362940277, 0.010836686147249714, nan, 0.0, 0.8669134049888461, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.18537393420784914, 0.8664204045734388, 0.9894710616398361, 0.9766954979792194, 0.26590604445275723, 0.6195640760241813, 0.2966855141165496, 0.9287077311631823, 0.9942373544662949, 0.024428006193015654, 0.13401741293532338, nan, 0.43684038733543684, 0.01875434904719188, nan, nan, 4.903162539838196e-05, 0.007403189066059226, 0.011387483026786816, nan, 0.0, 0.9572836188556713, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.216 | 38.0 | 760 | 2.2986 | 0.1350 | 0.2206 | 0.5278 | [0.18120567211036784, 0.47554281720915215, 0.6990705073134502, 0.8850704324614802, 0.22198798355644567, 0.20541313461097366, 0.35706786570222504, 0.8027076140287116, 0.31816065955831585, 0.013800683927699071, 0.14268218003674218, 0.0, 0.3186851922568516, 0.019285003317850033, 0.0, 0.0, 0.0, 0.0013712718546451835, 0.03893587494435862, nan, 0.0, 0.8547697204814483, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.22446033775197993, 0.8405355223297176, 0.9819941399204296, 0.9752846728082863, 0.32825212756008604, 0.6313997269849841, 0.46942524796771185, 0.9296969271783359, 0.9963897857352509, 0.0194391880268364, 0.1449004975124378, nan, 0.5901969317810902, 0.019492115125042966, nan, nan, 0.0, 0.003416856492027335, 0.04588939637081842, nan, 0.0, 0.9621542940320232, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.22 | 39.0 | 780 | 2.3125 | 0.1310 | 0.2193 | 0.5206 | [0.1709238047105282, 0.45177891820322713, 0.7082365502772366, 0.8788844022695806, 0.22740745283211708, 0.21889929002882666, 0.2659475082474528, 0.7970895449195763, 0.32059459357254055, 0.01463902527732315, 0.13316968395213255, 0.0, 0.25879383197058664, 0.023727994534563056, 0.0, 0.0, 0.0009151971759629999, 0.02631446793551951, 0.024663803819640638, nan, 0.0, 0.8502781743882625, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.20903154476039112, 0.8496198573243429, 0.9812259452557491, 0.9839049440361896, 0.34680008728451633, 0.6447354604503248, 0.34685019133017303, 0.9122632243580749, 0.9953331376577634, 0.0276965422329262, 0.13495024875621892, nan, 0.5131106517245131, 0.023876793064998868, nan, nan, 0.0009152570074364632, 0.1492027334851936, 0.026941118380446858, nan, 0.0, 0.9668570148919494, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.1834 | 40.0 | 800 | 2.2889 | 0.1301 | 0.2141 | 0.5265 | [0.1929371903937709, 0.4571880369812037, 0.6853469973207278, 0.8876211182502998, 0.19861466088824684, 0.2055685096628858, 0.2848686407856681, 0.8093772785130809, 0.34139712700055097, 0.00878581173260573, 0.09504706063879031, 0.0, 0.24800249334164448, 0.013450370469261064, 0.0, 0.0, 0.000441277416402445, 0.007058138688787019, 0.03166174466151749, nan, 0.0, 0.868396993092239, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.24199864100703683, 0.8476184892016027, 0.9858247322348496, 0.9749416740281971, 0.3342996976214969, 0.6242143317882484, 0.3815847088164182, 0.918956082503157, 0.9942569220232854, 0.0138482711164631, 0.09577114427860696, nan, 0.47617234250897617, 0.013514533153363123, nan, nan, 0.0004412846285854376, 0.027619589977220957, 0.0344093321812122, nan, 0.0, 0.9571716493113873, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.5118 | 41.0 | 820 | 2.2925 | 0.1322 | 0.2160 | 0.5278 | [0.20140379663179964, 0.46820203275875655, 0.6856134650963405, 0.887481830270401, 0.22260076987743904, 0.22177123388218797, 0.30176087068124646, 0.8122131818520081, 0.31711941125562687, 0.01762114537444934, 0.09896557048016057, 0.0, 0.26787909982556973, 0.012025717045870948, 0.0, 0.0, 0.0, 0.01032133209692376, 0.026776576803914147, nan, 0.0, 0.8698927993527508, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.2544599154660309, 0.8362317990814033, 0.9857987797123942, 0.9739903377890816, 0.3136631441129711, 0.6073384036121987, 0.39166523882955434, 0.9188368177353725, 0.9966441639761275, 0.027180457595045587, 0.09965796019900497, nan, 0.5096289848765096, 0.012106070641101955, nan, nan, 0.0, 0.07289293849658314, 0.02947167016417726, nan, 0.0, 0.963106035158437, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.4791 | 42.0 | 840 | 2.3143 | 0.1337 | 0.2198 | 0.5225 | [0.17082896778818507, 0.45902372255040724, 0.6914575631960871, 0.8839466838151472, 0.20380808221633573, 0.21829002244078705, 0.2823923722326677, 0.8160080452180024, 0.3103076684231194, 0.019091109154929578, 0.1226762943616531, 0.0, 0.3667371847030106, 0.03827691592200113, 0.0, 0.0, 0.0010620567955295578, 0.015357821405953135, 0.015238353931821269, nan, 0.0, 0.867283166505767, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.20812171048843128, 0.8468249780123132, 0.9839872936450058, 0.9785399253815862, 0.31899373421864774, 0.6289095900274515, 0.3617092162126145, 0.9449698330293251, 0.9973290284707954, 0.029846894890762084, 0.12414490049751244, nan, 0.612990969426613, 0.03864049832745076, nan, nan, 0.001062351883631609, 0.08285876993166287, 0.01731267744722874, nan, 0.0, 0.9556040756914119, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.5573 | 43.0 | 860 | 2.3130 | 0.1320 | 0.2175 | 0.5219 | [0.1648530644139321, 0.44917533040001445, 0.6925549341301199, 0.8862138131656735, 0.18958373175240645, 0.21231384036197637, 0.27370624724795095, 0.8200861585023553, 0.32058106499184214, 0.02355267889248472, 0.11618959679901508, 0.0, 0.33892986542443065, 0.03070511114068947, 0.0, 0.0, 0.00024515812699190976, 0.017795816422104278, 0.017780519569538692, nan, 0.0, 0.8588767845595184, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.2012595638170043, 0.8743086094009577, 0.9853134675424778, 0.9778895220344358, 0.2781258767417937, 0.6327948037142043, 0.33726464484931556, 0.9428862073803844, 0.9957929752470404, 0.03380354378118011, 0.1173818407960199, nan, 0.56995974322707, 0.030944256742595093, nan, nan, 0.00024515812699190976, 0.0811503416856492, 0.020012961362794717, nan, 0.0, 0.9666330758033814, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.7719 | 44.0 | 880 | 2.2998 | 0.1333 | 0.2199 | 0.5257 | [0.18463386068417822, 0.4676365136979615, 0.6840028242176664, 0.8843575402661116, 0.2129184549356223, 0.20642904433925907, 0.3201266369669455, 0.8109078276980083, 0.31568594652194387, 0.007547939616483068, 0.12530731407498463, 0.0, 0.3065877617230917, 0.034201156913679635, 0.0, 0.0, 0.001405205797290894, 0.023802027580127196, 0.02196289166934018, nan, 0.0, 0.85741284129905, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.22634334918825125, 0.8239030587315548, 0.9855652070102954, 0.978785849035235, 0.3092989182954581, 0.6267344703958718, 0.4302453976050412, 0.933471306299986, 0.9970746502299188, 0.00954756580079133, 0.1267879353233831, nan, 0.5552170601675552, 0.034549250077549276, nan, nan, 0.0014055732614202828, 0.10763097949886105, 0.02535180841871374, nan, 0.0, 0.9651774717276901, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.0403 | 45.0 | 900 | 2.2880 | 0.1327 | 0.2202 | 0.5235 | [0.17035715701431006, 0.4626951528852379, 0.6793273578739064, 0.8840633094198196, 0.21937922061830123, 0.20780566312930646, 0.30671219310304054, 0.8117275272313842, 0.31566770320998055, 0.008071316708830262, 0.13461833819689756, 0.0, 0.3026885361759769, 0.0444647378689137, 0.0, 0.0, 0.003391433369747762, 0.02177376526818906, 0.020826482516715993, nan, 0.0, 0.8486096807415036, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.20622910164422792, 0.8520590247239324, 0.9844648200581856, 0.9785431612191342, 0.33115122042457684, 0.6198040892249074, 0.39503493441468196, 0.931647256910341, 0.9971529204578808, 0.011525890246000344, 0.13627176616915423, nan, 0.5591883364160591, 0.044903126283754896, nan, nan, 0.003399526027621149, 0.10506833712984055, 0.023453894580915936, nan, 0.0, 0.9687604971447766, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.5917 | 46.0 | 920 | 2.2892 | 0.1340 | 0.2216 | 0.5260 | [0.1736793975508642, 0.46015023493743684, 0.6908199361013053, 0.887111591144557, 0.21875451524346193, 0.2048902470179024, 0.3203704812066076, 0.8089483157624068, 0.3222859315107549, 0.02411484339536995, 0.1529799295235177, 0.0, 0.2829693559203429, 0.043404411213708236, 0.0, 0.0, 0.004164829242001078, 0.02610441767068273, 0.02117460182388064, nan, 0.0, 0.8539790344012993, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.21253651813718152, 0.8632189973614776, 0.9842649856352789, 0.9780448422367404, 0.3303718943857352, 0.6256094085174685, 0.4076189388314581, 0.926981899817595, 0.9953624889932492, 0.036555995183210045, 0.15523942786069653, nan, 0.527962136873028, 0.04370425640724687, nan, nan, 0.004167688158862467, 0.11474943052391799, 0.023037279348228613, nan, 0.0, 0.9714477662075915, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 2.2285 | 47.0 | 940 | 2.2962 | 0.1342 | 0.2221 | 0.5275 | [0.19599716234109965, 0.4721781567285578, 0.6767966078463135, 0.8855580798827409, 0.24860719808502976, 0.21086919429809367, 0.2943940094830577, 0.8014180926103793, 0.32251935591127157, 0.027421516079632467, 0.144272113022113, 0.0, 0.2586192267443505, 0.05425465450456079, 0.0, 0.0, 0.004572324373754858, 0.023474947765168584, 0.020446228980678598, nan, 0.0, 0.8607462686567164, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.24235374510052324, 0.8225857519788918, 0.9867200942595615, 0.9775012215286744, 0.3658468156738053, 0.6117936486506758, 0.3877053705713252, 0.9190332538234881, 0.9964778397417082, 0.049286082917598485, 0.14606654228855723, nan, 0.49744315090849744, 0.05460307346641068, nan, nan, 0.004576285037182316, 0.16315489749430523, 0.022157758301444265, nan, 0.0, 0.9685925428283507, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.7362 | 48.0 | 960 | 2.2867 | 0.1335 | 0.2219 | 0.5251 | [0.1810132624505115, 0.46289090955837614, 0.7009337664380836, 0.8902938421018519, 0.22985068340248088, 0.21333525245556653, 0.297397221935807, 0.801989891449341, 0.3137530257395739, 0.02959547020022182, 0.1363531669865643, 0.0, 0.27724525650035137, 0.0350093358228861, 0.0, 0.0, 0.0017645040599931381, 0.027893760148457434, 0.027733384767992947, nan, 0.0, 0.8473915163334959, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.22273664328738094, 0.8445069871982801, 0.9828324063957397, 0.9778571636589557, 0.34022257551669316, 0.6447804629254609, 0.3843737506425267, 0.9195032973200505, 0.996771353096566, 0.04360915190091175, 0.13805970149253732, nan, 0.5365575019040365, 0.03521156280652923, nan, nan, 0.0017651385143417505, 0.13695899772209566, 0.03106098012591038, nan, 0.0, 0.9730153398275669, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.8843 | 49.0 | 980 | 2.2918 | 0.1320 | 0.2172 | 0.5234 | [0.1767027937577472, 0.46560560158548614, 0.6625505590001549, 0.8845600368113623, 0.2269413833026028, 0.20745588500993717, 0.2993936587412992, 0.8051597903949266, 0.3106521858373101, 0.008812729498164015, 0.1330620393120393, 0.0, 0.27645742622157715, 0.05612690283585936, 0.0, 0.0, 0.003634230211372044, 0.010895367946923125, 0.028342906221482635, nan, 0.0, 0.8566964285714286, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.21343099655645004, 0.8338512655135346, 0.987550574978135, 0.9766113662029712, 0.32996664484553756, 0.6200741040757242, 0.3938736268966436, 0.928125438473411, 0.9973877311417669, 0.012386031309134697, 0.13471703980099503, nan, 0.4973887498639974, 0.056598395358780675, nan, nan, 0.003644684154613059, 0.05096810933940774, 0.032588569312430565, nan, 0.0, 0.9669129996640914, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | | 1.5944 | 50.0 | 1000 | 2.2863 | 0.1322 | 0.2193 | 0.5236 | [0.17584122398758895, 0.46366573409354317, 0.6899099859557716, 0.8850136717893229, 0.2200496783644354, 0.21159926360234527, 0.28788921058002676, 0.8057838286364055, 0.3129988790098432, 0.01191510487774606, 0.13235068324888685, 0.0, 0.2795662866085401, 0.0396786413020855, 0.0, 0.0, 0.0023832843617368595, 0.021505376344086023, 0.030850694907567956, nan, 0.0, 0.8503331373701744, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | [0.21451742313435987, 0.8538336753640183, 0.984218271094859, 0.9792485738046007, 0.3231085757037314, 0.6344898969443319, 0.36251832390960836, 0.9197207801318928, 0.9971040015654046, 0.0165147084121796, 0.13401741293532338, nan, 0.5442280491785443, 0.03995674007998055, nan, nan, 0.002386205769387922, 0.10079726651480637, 0.03569003826688063, nan, 0.0, 0.9717276900683014, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0] | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
khizarAI/AST-finetuned-gtzan
khizarAI
2024-11-25T13:59:39Z
160
0
transformers
[ "transformers", "safetensors", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2024-11-25T13:59:00Z
--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: AST-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.93 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AST-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3724 - Accuracy: 0.93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7384 | 1.0 | 113 | 0.5599 | 0.82 | | 0.5848 | 2.0 | 226 | 0.9999 | 0.76 | | 0.4541 | 3.0 | 339 | 0.6138 | 0.86 | | 0.0368 | 4.0 | 452 | 0.6328 | 0.85 | | 0.0444 | 5.0 | 565 | 0.5640 | 0.88 | | 0.0395 | 6.0 | 678 | 0.4339 | 0.91 | | 0.0003 | 7.0 | 791 | 0.3463 | 0.92 | | 0.0002 | 8.0 | 904 | 0.3744 | 0.93 | | 0.0001 | 9.0 | 1017 | 0.3729 | 0.93 | | 0.0001 | 10.0 | 1130 | 0.3724 | 0.93 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
mradermacher/Fimbulvetr-Underground-V.02-test-GGUF
mradermacher
2024-11-25T13:57:40Z
12
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:TheHierophant/Fimbulvetr-Underground-V.02-test", "base_model:quantized:TheHierophant/Fimbulvetr-Underground-V.02-test", "endpoints_compatible", "region:us" ]
null
2024-11-25T13:03:46Z
--- base_model: TheHierophant/Fimbulvetr-Underground-V.02-test language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/TheHierophant/Fimbulvetr-Underground-V.02-test <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q2_K.gguf) | Q2_K | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q3_K_S.gguf) | Q3_K_S | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q3_K_M.gguf) | Q3_K_M | 5.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q3_K_L.gguf) | Q3_K_L | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.IQ4_XS.gguf) | IQ4_XS | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q4_0_4_4.gguf) | Q4_0_4_4 | 6.0 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q4_K_S.gguf) | Q4_K_S | 6.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q4_K_M.gguf) | Q4_K_M | 6.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q5_K_S.gguf) | Q5_K_S | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q5_K_M.gguf) | Q5_K_M | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q6_K.gguf) | Q6_K | 8.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.Q8_0.gguf) | Q8_0 | 11.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Fimbulvetr-Underground-V.02-test-GGUF/resolve/main/Fimbulvetr-Underground-V.02-test.f16.gguf) | f16 | 21.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mlx-community/Llama-3.1-Tulu-3-8B-8bit
mlx-community
2024-11-25T13:53:17Z
87
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mlx", "conversational", "en", "dataset:allenai/RLVR-GSM-MATH-IF-Mixed-Constraints", "base_model:allenai/Llama-3.1-Tulu-3-8B", "base_model:quantized:allenai/Llama-3.1-Tulu-3-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2024-11-25T13:29:56Z
--- license: llama3.1 language: - en pipeline_tag: text-generation datasets: - allenai/RLVR-GSM-MATH-IF-Mixed-Constraints base_model: allenai/Llama-3.1-Tulu-3-8B library_name: transformers tags: - mlx --- # mlx-community/Llama-3.1-Tulu-3-8B-8bit The Model [mlx-community/Llama-3.1-Tulu-3-8B-8bit](https://huggingface.co/mlx-community/Llama-3.1-Tulu-3-8B-8bit) was converted to MLX format from [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) using mlx-lm version **0.20.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Llama-3.1-Tulu-3-8B-8bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
haejiness/tmp-ner
haejiness
2024-11-25T13:48:14Z
179
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-25T13:47:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hi-Q/krx_gemma_9B_it_1125-3
Hi-Q
2024-11-25T13:48:04Z
6
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "krx", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-25T12:49:34Z
--- library_name: transformers tags: - krx --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LHRuig/olivrarw
LHRuig
2024-11-25T13:46:17Z
26
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2024-11-25T13:46:11Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/1000237109.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: oliv --- # olivrarrw <Gallery /> ## Model description Oliv arrw lora ## Trigger words You should use `oliv` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/olivrarw/tree/main) them in the Files & versions tab.
Skyler215/GPT2_VIT
Skyler215
2024-11-25T13:45:25Z
53
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
image-text-to-text
2024-11-25T13:13:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterated
huihui-ai
2024-11-25T13:44:17Z
275
4
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "code", "codeqwen", "chat", "qwen", "qwen-coder", "abliterated", "uncensored", "conversational", "en", "base_model:Qwen/Qwen2.5-Coder-14B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-14B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-13T03:59:33Z
--- license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterate/blob/main/LICENSE language: - en base_model: - Qwen/Qwen2.5-Coder-14B-Instruct pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder - abliterated - uncensored --- # huihui-ai/Qwen2.5-Code-14B-Instruct-abliterated This is an uncensored version of [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). Qwen2.5-Coder uncensored version has covered six mainstream model sizes, [0.5](https://huggingface.co/huihui-ai/Qwen2.5-Coder-0.5B-Instruct-abliterated), [1.5](https://huggingface.co/huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated), [3](https://huggingface.co/huihui-ai/Qwen2.5-Coder-3B-Instruct-abliterated), [7](https://huggingface.co/huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated), [14](https://huggingface.co/huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterated), [32](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated) billion parameters. If the desired result is not achieved, you can clear the conversation and try again. ## ollama You can use [huihui_ai/qwen2.5-coder-abliterate:14b](https://ollama.com/huihui_ai/qwen2.5-coder-abliterate:14b) directly, ``` ollama run huihui_ai/qwen2.5-coder-abliterate:14b ``` ## Usage You can use this model in your applications by loading it with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "huihui-ai/Qwen2.5-Code-14B-Instruct-abliterated" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input and prepare it for the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate a response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) # Extract model output, removing special tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Qwen: {response}") ```
MayBashendy/Arabic_FineTuningAraBERT_AugV5_k3_task5_organization_fold1
MayBashendy
2024-11-25T13:43:37Z
162
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-25T13:41:11Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV5_k3_task5_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV5_k3_task5_organization_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7544 - Qwk: 0.6603 - Mse: 0.7544 - Rmse: 0.8685 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0870 | 2 | 4.8614 | 0.0155 | 4.8614 | 2.2049 | | No log | 0.1739 | 4 | 2.6330 | -0.2963 | 2.6330 | 1.6226 | | No log | 0.2609 | 6 | 1.3248 | 0.0813 | 1.3248 | 1.1510 | | No log | 0.3478 | 8 | 1.1055 | 0.2657 | 1.1055 | 1.0514 | | No log | 0.4348 | 10 | 0.9917 | 0.2780 | 0.9917 | 0.9959 | | No log | 0.5217 | 12 | 1.0568 | 0.0 | 1.0568 | 1.0280 | | No log | 0.6087 | 14 | 1.0919 | 0.0 | 1.0919 | 1.0449 | | No log | 0.6957 | 16 | 1.0621 | 0.0 | 1.0621 | 1.0306 | | No log | 0.7826 | 18 | 1.0337 | 0.1571 | 1.0337 | 1.0167 | | No log | 0.8696 | 20 | 1.1545 | 0.2933 | 1.1545 | 1.0745 | | No log | 0.9565 | 22 | 1.3688 | 0.25 | 1.3688 | 1.1699 | | No log | 1.0435 | 24 | 1.3366 | 0.25 | 1.3366 | 1.1561 | | No log | 1.1304 | 26 | 1.2003 | 0.3354 | 1.2003 | 1.0956 | | No log | 1.2174 | 28 | 0.9418 | 0.3443 | 0.9418 | 0.9705 | | No log | 1.3043 | 30 | 0.8305 | 0.4322 | 0.8305 | 0.9113 | | No log | 1.3913 | 32 | 0.9287 | 0.3575 | 0.9287 | 0.9637 | | No log | 1.4783 | 34 | 0.8908 | 0.4412 | 0.8908 | 0.9438 | | No log | 1.5652 | 36 | 0.8175 | 0.4785 | 0.8175 | 0.9042 | | No log | 1.6522 | 38 | 0.8353 | 0.2279 | 0.8353 | 0.9140 | | No log | 1.7391 | 40 | 0.7903 | 0.2933 | 0.7903 | 0.8890 | | No log | 1.8261 | 42 | 0.7185 | 0.5690 | 0.7185 | 0.8477 | | No log | 1.9130 | 44 | 0.6778 | 0.6429 | 0.6778 | 0.8233 | | No log | 2.0 | 46 | 0.7545 | 0.6247 | 0.7545 | 0.8686 | | No log | 2.0870 | 48 | 0.8029 | 0.5550 | 0.8029 | 0.8960 | | No log | 2.1739 | 50 | 0.8353 | 0.5550 | 0.8353 | 0.9140 | | No log | 2.2609 | 52 | 0.6523 | 0.6456 | 0.6523 | 0.8076 | | No log | 2.3478 | 54 | 0.5705 | 0.6307 | 0.5705 | 0.7553 | | No log | 2.4348 | 56 | 0.5903 | 0.5918 | 0.5903 | 0.7683 | | No log | 2.5217 | 58 | 0.5393 | 0.6657 | 0.5393 | 0.7344 | | No log | 2.6087 | 60 | 0.7200 | 0.6247 | 0.7200 | 0.8485 | | No log | 2.6957 | 62 | 0.8989 | 0.5396 | 0.8989 | 0.9481 | | No log | 2.7826 | 64 | 0.8626 | 0.5550 | 0.8626 | 0.9288 | | No log | 2.8696 | 66 | 0.7073 | 0.6094 | 0.7073 | 0.8410 | | No log | 2.9565 | 68 | 0.6778 | 0.6094 | 0.6778 | 0.8233 | | No log | 3.0435 | 70 | 0.6908 | 0.6456 | 0.6908 | 0.8312 | | No log | 3.1304 | 72 | 0.7220 | 0.6456 | 0.7220 | 0.8497 | | No log | 3.2174 | 74 | 0.6952 | 0.6462 | 0.6952 | 0.8338 | | No log | 3.3043 | 76 | 0.8119 | 0.6888 | 0.8119 | 0.9011 | | No log | 3.3913 | 78 | 1.0723 | 0.5520 | 1.0723 | 1.0355 | | No log | 3.4783 | 80 | 1.0900 | 0.5520 | 1.0900 | 1.0440 | | No log | 3.5652 | 82 | 0.8989 | 0.5741 | 0.8989 | 0.9481 | | No log | 3.6522 | 84 | 0.9276 | 0.5463 | 0.9276 | 0.9631 | | No log | 3.7391 | 86 | 0.7766 | 0.6086 | 0.7766 | 0.8812 | | No log | 3.8261 | 88 | 0.7771 | 0.6086 | 0.7771 | 0.8815 | | No log | 3.9130 | 90 | 0.8783 | 0.5800 | 0.8783 | 0.9372 | | No log | 4.0 | 92 | 1.1123 | 0.5247 | 1.1123 | 1.0547 | | No log | 4.0870 | 94 | 1.1309 | 0.5247 | 1.1309 | 1.0635 | | No log | 4.1739 | 96 | 1.0244 | 0.5174 | 1.0244 | 1.0121 | | No log | 4.2609 | 98 | 0.7676 | 0.6610 | 0.7676 | 0.8761 | | No log | 4.3478 | 100 | 0.6071 | 0.6306 | 0.6071 | 0.7792 | | No log | 4.4348 | 102 | 0.6411 | 0.5170 | 0.6411 | 0.8007 | | No log | 4.5217 | 104 | 0.6206 | 0.6667 | 0.6206 | 0.7878 | | No log | 4.6087 | 106 | 0.6848 | 0.7108 | 0.6848 | 0.8275 | | No log | 4.6957 | 108 | 0.7176 | 0.6909 | 0.7176 | 0.8471 | | No log | 4.7826 | 110 | 0.7236 | 0.6888 | 0.7236 | 0.8506 | | No log | 4.8696 | 112 | 0.7618 | 0.6360 | 0.7618 | 0.8728 | | No log | 4.9565 | 114 | 0.7076 | 0.7314 | 0.7076 | 0.8412 | | No log | 5.0435 | 116 | 0.8010 | 0.6360 | 0.8010 | 0.8950 | | No log | 5.1304 | 118 | 0.9730 | 0.4792 | 0.9730 | 0.9864 | | No log | 5.2174 | 120 | 0.9684 | 0.4792 | 0.9684 | 0.9840 | | No log | 5.3043 | 122 | 0.7552 | 0.6086 | 0.7552 | 0.8690 | | No log | 5.3913 | 124 | 0.5826 | 0.7254 | 0.5826 | 0.7633 | | No log | 5.4783 | 126 | 0.5498 | 0.7494 | 0.5498 | 0.7415 | | No log | 5.5652 | 128 | 0.5507 | 0.6977 | 0.5507 | 0.7421 | | No log | 5.6522 | 130 | 0.5834 | 0.7108 | 0.5834 | 0.7638 | | No log | 5.7391 | 132 | 0.6467 | 0.6767 | 0.6467 | 0.8042 | | No log | 5.8261 | 134 | 0.6673 | 0.6888 | 0.6673 | 0.8169 | | No log | 5.9130 | 136 | 0.6672 | 0.6888 | 0.6672 | 0.8168 | | No log | 6.0 | 138 | 0.6075 | 0.7072 | 0.6075 | 0.7794 | | No log | 6.0870 | 140 | 0.6295 | 0.7072 | 0.6295 | 0.7934 | | No log | 6.1739 | 142 | 0.5756 | 0.7418 | 0.5756 | 0.7587 | | No log | 6.2609 | 144 | 0.5584 | 0.7136 | 0.5584 | 0.7473 | | No log | 6.3478 | 146 | 0.5662 | 0.7136 | 0.5662 | 0.7524 | | No log | 6.4348 | 148 | 0.6104 | 0.7418 | 0.6104 | 0.7813 | | No log | 6.5217 | 150 | 0.7599 | 0.6058 | 0.7599 | 0.8717 | | No log | 6.6087 | 152 | 0.7832 | 0.6086 | 0.7832 | 0.8850 | | No log | 6.6957 | 154 | 0.6875 | 0.7241 | 0.6875 | 0.8291 | | No log | 6.7826 | 156 | 0.6174 | 0.7386 | 0.6174 | 0.7857 | | No log | 6.8696 | 158 | 0.6159 | 0.7386 | 0.6159 | 0.7848 | | No log | 6.9565 | 160 | 0.6314 | 0.7430 | 0.6314 | 0.7946 | | No log | 7.0435 | 162 | 0.6826 | 0.7418 | 0.6826 | 0.8262 | | No log | 7.1304 | 164 | 0.7130 | 0.7363 | 0.7130 | 0.8444 | | No log | 7.2174 | 166 | 0.7266 | 0.7314 | 0.7266 | 0.8524 | | No log | 7.3043 | 168 | 0.7501 | 0.6215 | 0.7501 | 0.8661 | | No log | 7.3913 | 170 | 0.8049 | 0.5678 | 0.8049 | 0.8972 | | No log | 7.4783 | 172 | 0.8183 | 0.5678 | 0.8183 | 0.9046 | | No log | 7.5652 | 174 | 0.7941 | 0.5678 | 0.7941 | 0.8911 | | No log | 7.6522 | 176 | 0.7117 | 0.6767 | 0.7117 | 0.8436 | | No log | 7.7391 | 178 | 0.6850 | 0.7108 | 0.6850 | 0.8277 | | No log | 7.8261 | 180 | 0.6689 | 0.7108 | 0.6689 | 0.8179 | | No log | 7.9130 | 182 | 0.6671 | 0.7108 | 0.6671 | 0.8168 | | No log | 8.0 | 184 | 0.7045 | 0.6767 | 0.7045 | 0.8393 | | No log | 8.0870 | 186 | 0.7538 | 0.6606 | 0.7538 | 0.8682 | | No log | 8.1739 | 188 | 0.7722 | 0.6606 | 0.7722 | 0.8788 | | No log | 8.2609 | 190 | 0.7324 | 0.6606 | 0.7324 | 0.8558 | | No log | 8.3478 | 192 | 0.6980 | 0.6767 | 0.6980 | 0.8354 | | No log | 8.4348 | 194 | 0.6929 | 0.7072 | 0.6929 | 0.8324 | | No log | 8.5217 | 196 | 0.7120 | 0.7363 | 0.7120 | 0.8438 | | No log | 8.6087 | 198 | 0.7231 | 0.7363 | 0.7231 | 0.8504 | | No log | 8.6957 | 200 | 0.7581 | 0.6753 | 0.7581 | 0.8707 | | No log | 8.7826 | 202 | 0.8078 | 0.5800 | 0.8078 | 0.8988 | | No log | 8.8696 | 204 | 0.8640 | 0.5678 | 0.8640 | 0.9295 | | No log | 8.9565 | 206 | 0.8883 | 0.5678 | 0.8883 | 0.9425 | | No log | 9.0435 | 208 | 0.8683 | 0.5678 | 0.8683 | 0.9318 | | No log | 9.1304 | 210 | 0.8356 | 0.5678 | 0.8356 | 0.9141 | | No log | 9.2174 | 212 | 0.7904 | 0.5800 | 0.7904 | 0.8890 | | No log | 9.3043 | 214 | 0.7546 | 0.6606 | 0.7546 | 0.8687 | | No log | 9.3913 | 216 | 0.7491 | 0.6606 | 0.7491 | 0.8655 | | No log | 9.4783 | 218 | 0.7529 | 0.6606 | 0.7529 | 0.8677 | | No log | 9.5652 | 220 | 0.7578 | 0.6603 | 0.7578 | 0.8705 | | No log | 9.6522 | 222 | 0.7560 | 0.6603 | 0.7560 | 0.8695 | | No log | 9.7391 | 224 | 0.7537 | 0.6603 | 0.7537 | 0.8682 | | No log | 9.8261 | 226 | 0.7545 | 0.6603 | 0.7545 | 0.8686 | | No log | 9.9130 | 228 | 0.7550 | 0.6603 | 0.7550 | 0.8689 | | No log | 10.0 | 230 | 0.7544 | 0.6603 | 0.7544 | 0.8685 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1