modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
list | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
|---|---|---|---|---|---|---|---|---|---|
wanglynn/lyp500
|
wanglynn
| 2025-06-04T20:44:40Z
| 0
| 0
| null |
[
"tensorboard",
"safetensors",
"whisper",
"generated_from_trainer",
"zh",
"dataset:wanglynn/zh",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"region:us"
] | null | 2025-06-04T20:11:23Z
|
---
language:
- zh
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- wanglynn/zh
model-index:
- name: lyp500
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lyp500
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the your_dataset_name dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1532
- Cer: 25.2226
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0001 | 20.0 | 500 | 0.1532 | 25.2226 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.4.1+cu118
- Datasets 3.0.2
- Tokenizers 0.15.2
|
timarni/qwen3_open-thoughts_2
|
timarni
| 2025-06-04T20:40:43Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"conversational",
"dataset:casimiir/openthoughts2",
"base_model:Qwen/Qwen3-0.6B-Base",
"base_model:finetune:Qwen/Qwen3-0.6B-Base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T20:40:00Z
|
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- generated_from_trainer
datasets:
- casimiir/openthoughts2
model-index:
- name: outputs/qwen3_open-thoughts_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.9.2`
```yaml
base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: casimiir/openthoughts2 # mlabonne/FineTome-100k
type: chat_template
split: train[:10000] # train[:20%]
field_messages: conversations
message_property_mappings:
role: from
content: value
val_set_size: 0.1
output_dir: ./outputs/qwen3_open-thoughts_2
dataset_prepared_path: last_run_prepared
sequence_len: 4096 #2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
# load_in_4bit: true
# adapter: qlora
# lora_r: 16
# lora_alpha: 32
# lora_target_modules:
# - q_proj
# - k_proj
# - v_proj
# - o_proj
# - down_proj
# - up_proj
# lora_mlp_kernel: true
# lora_qkv_kernel: true
# lora_o_kernel: true
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3_open-thoughts_2
wandb_log_model:
gradient_accumulation_steps: 4 # following https://unsloth.ai/blog/qwen3
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0001 # 0.0002
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
```
</details><br>
# outputs/qwen3_open-thoughts_2
This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the casimiir/openthoughts2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6133
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9033 | 0.0116 | 1 | 0.8253 |
| 0.6123 | 0.2558 | 22 | 0.6649 |
| 0.5819 | 0.5116 | 44 | 0.6419 |
| 0.6849 | 0.7674 | 66 | 0.6281 |
| 0.6202 | 1.0233 | 88 | 0.6150 |
| 0.4563 | 1.2791 | 110 | 0.6225 |
| 0.5061 | 1.5349 | 132 | 0.6153 |
| 0.5334 | 1.7907 | 154 | 0.6133 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
|
rajatcantcode/personal-rajat-ai
|
rajatcantcode
| 2025-06-04T20:40:16Z
| 0
| 0
|
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-04T20:11:09Z
|
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: rajat
---
# Personal Rajat Ai
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `rajat` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "rajat",
"lora_weights": "https://huggingface.co/rajatcantcode/personal-rajat-ai/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('rajatcantcode/personal-rajat-ai', weight_name='lora.safetensors')
image = pipeline('rajat').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2200
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/rajatcantcode/personal-rajat-ai/discussions) to add images that show off what you’ve made with this LoRA.
|
NastasiaM/bert-base-multilingual-cased-finetuned-squad
|
NastasiaM
| 2025-06-04T20:39:56Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"question-answering",
"generated_from_trainer",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2025-06-04T20:01:32Z
|
---
library_name: transformers
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: bert-base-multilingual-cased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-multilingual-cased-finetuned-squad
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
video-filtrado-video-filtrado-de-alonso-vi/video.filtrado.video.filtrado.de.alonso.videos.Original
|
video-filtrado-video-filtrado-de-alonso-vi
| 2025-06-04T20:38:06Z
| 0
| 0
| null |
[
"region:us"
] | null | 2025-06-04T20:30:24Z
|
<a href="https://zydran.cfd/video-filtrado-de-alonso-videos-filtrado-de-alonsos"> 🌐 Click Here To link de.alonso.videos.filtrado.de.alonso
🔴 ➤►DOWNLOAD👉👉🟢 ➤ <a href="https://zydran.cfd/video-filtrado-de-alonso-videos-filtrado-de-alonsos"> 🌐 filtrado.de.alonso.videos.filtrado.de.alonso.Full.videos
|
NFX74/Qwen3-0.6B-Base-SFT-STEM
|
NFX74
| 2025-06-04T20:30:42Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T20:29:28Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
enferAI/DeepSeek-R1-0528-Qwen3-8B-FP8-dynamic
|
enferAI
| 2025-06-04T20:25:27Z
| 0
| 0
| null |
[
"safetensors",
"qwen3",
"license:mit",
"compressed-tensors",
"region:us"
] | null | 2025-06-04T20:21:18Z
|
---
license: mit
---
# DeepSeek-R1-0528-Qwen3-8B-FP8-dynamic
Quantized version of [DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B).
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet
below.
```python
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model
model_stub = "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B"
model_name = model_stub.split("/")[-1]
model = AutoModelForCausalLM.from_pretrained(
model_stub,
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
ignore=["lm_head"],
)
# Apply quantization
oneshot(
model=model,
recipe=recipe,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-FP8-dynamic"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
```
--
|
buyna771/t5-6.05-less
|
buyna771
| 2025-06-04T20:22:59Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"mt5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2025-06-04T20:22:21Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
RizhongLin/MNLP_M2_dpo_model_mcqa_768_new_4
|
RizhongLin
| 2025-06-04T20:21:34Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"trl",
"dpo",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T20:20:52Z
|
---
library_name: transformers
tags:
- trl
- dpo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
moniln/Meta-Llama-3.1-8B-Instruct-Esther-Perel-LORA
|
moniln
| 2025-06-04T20:20:26Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-04T20:20:20Z
|
---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** moniln
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
CeciGonSer/translation_pu_es_sintetico_mbart_2ep
|
CeciGonSer
| 2025-06-04T20:19:04Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"mbart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2025-06-04T19:00:18Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
timarni/qwen3_open-thoughts
|
timarni
| 2025-06-04T20:16:36Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"conversational",
"dataset:casimiir/openthoughts2",
"base_model:Qwen/Qwen3-0.6B-Base",
"base_model:finetune:Qwen/Qwen3-0.6B-Base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T20:12:52Z
|
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- generated_from_trainer
datasets:
- casimiir/openthoughts2
model-index:
- name: outputs/qwen3_open-thoughts
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.9.2`
```yaml
base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: casimiir/openthoughts2 # mlabonne/FineTome-100k
type: chat_template
split: train[:50000] # train[:20%]
field_messages: conversations
message_property_mappings:
role: from
content: value
val_set_size: 0.1
output_dir: ./outputs/qwen3_open-thoughts
dataset_prepared_path: last_run_prepared
sequence_len: 4096 #2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
# load_in_4bit: true
# adapter: qlora
# lora_r: 16
# lora_alpha: 32
# lora_target_modules:
# - q_proj
# - k_proj
# - v_proj
# - o_proj
# - down_proj
# - up_proj
# lora_mlp_kernel: true
# lora_qkv_kernel: true
# lora_o_kernel: true
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3_open-thoughts
wandb_log_model:
gradient_accumulation_steps: 4 # following https://unsloth.ai/blog/qwen3
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0005 # 0.0002
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
```
</details><br>
# outputs/qwen3_open-thoughts
This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the casimiir/openthoughts2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8035
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7895 | 0.0023 | 1 | 0.8250 |
| 0.9592 | 0.2504 | 109 | 0.8496 |
| 0.6954 | 0.5009 | 218 | 0.7844 |
| 0.7842 | 0.7513 | 327 | 0.7582 |
| 0.7702 | 1.0 | 436 | 0.7420 |
| 0.6966 | 1.2504 | 545 | 0.7169 |
| 0.5122 | 1.5009 | 654 | 0.7074 |
| 0.5678 | 1.7513 | 763 | 0.6981 |
| 0.3524 | 2.0 | 872 | 0.7001 |
| 0.4837 | 2.2504 | 981 | 0.6992 |
| 0.3437 | 2.5009 | 1090 | 0.7094 |
| 0.371 | 2.7513 | 1199 | 0.7116 |
| 0.1962 | 3.0 | 1308 | 0.7161 |
| 0.2987 | 3.2504 | 1417 | 0.7686 |
| 0.2123 | 3.5009 | 1526 | 0.7942 |
| 0.2528 | 3.7513 | 1635 | 0.8035 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
|
dx2102/llama-midi
|
dx2102
| 2025-06-04T20:15:38Z
| 86
| 6
| null |
[
"safetensors",
"llama",
"dataset:amaai-lab/MidiCaps",
"dataset:projectlosangeles/Los-Angeles-MIDI-Dataset",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"region:us"
] | null | 2025-02-11T05:13:51Z
|
---
datasets:
- amaai-lab/MidiCaps
- projectlosangeles/Los-Angeles-MIDI-Dataset
base_model:
- meta-llama/Llama-3.2-1B-Instruct
---
### Write music scores with llama
### Try the model online: https://huggingface.co/spaces/dx2102/llama-midi
This model is finetuned from the `Llama-3.2-1B` language model.
It learns to write MIDI music scores with a text representation.
Optionally, the score title can also be used as a text prompt.
To use this model, you can simply take existing code and replace `meta-llama/Llama-3.2-1B` with `dx2102/llama-midi`.
```python
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="dx2102/llama-midi",
torch_dtype=torch.bfloat16,
device="cuda", # cuda/mps/cpu
)
txt = pipe(
'''
Bach
pitch duration wait velocity instrument
'''.strip(),
max_length=100,
temperature=1.0,
top_p=1.0,
)
print(txt)
```
To convert the text representation back to a midi file, try this:
```bash
# install this midi library
pip install symusic
```
[symusic](https://github.com/Yikai-Liao/symusic) is a fast C++/Python library for efficient MIDI manipulation.
```python
import symusic
# For example
txt = '''pitch duration wait velocity instrument
71 1310 0 20 0
48 330 350 20 0
55 330 350 20 0
64 1310 690 20 0
74 660 690 20 0
69 1310 0 20 0
48 330 350 20 0
57 330 350 20 0
66 1310 690 20 0
67 330 350 20 0
69 330 350 20 0
71 1310 0 20 0
48 330 350 20 0
55 330 350 20 0
64 1310 690 20 0
74 660 690 20 0
69 1970 0 20 0
48 330 350 20 0
'''
def postprocess(txt, path):
# assert txt.startswith(prompt)
txt = txt.split('\n\n')[-1]
tracks = {}
now = 0
# we need to ignore the invalid output by the model
try:
for line in txt.split('\n'):
pitch, duration, wait, velocity, instrument = line.split()
pitch, duration, wait, velocity = [int(x) for x in [pitch, duration, wait, velocity]]
if instrument not in tracks:
tracks[instrument] = symusic.core.TrackSecond()
if instrument != 'drum':
tracks[instrument].program = int(instrument)
else:
tracks[instrument].is_drum = True
# Eg. Note(time=7.47, duration=5.25, pitch=43, velocity=64, ttype='Second')
tracks[instrument].notes.append(symusic.core.NoteSecond(
time=now/1000,
duration=duration/1000,
pitch=int(pitch),
velocity=int(velocity * 4),
))
now += wait
except Exception as e:
print('Postprocess: Ignored error:', e)
print(f'Postprocess: Got {sum(len(track.notes) for track in tracks.values())} notes')
try:
score = symusic.Score(ttype='Second')
score.tracks.extend(tracks.values())
score.dump_midi(path)
except Exception as e:
print('Postprocess: Ignored postprocessing error:', e)
postprocess(txt, './result.mid')
```
|
ibuki95/szixjk4o
|
ibuki95
| 2025-06-04T20:09:40Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-04T03:44:16Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
quanghini/phobert_disease_classifier_ver2
|
quanghini
| 2025-06-04T20:09:02Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-04T20:08:34Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
damienbenveniste/HW2-dpo
|
damienbenveniste
| 2025-06-04T20:07:33Z
| 17
| 0
|
transformers
|
[
"transformers",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"trl",
"dpo",
"arxiv:2305.18290",
"base_model:damienbenveniste/HW2-supervised",
"base_model:finetune:damienbenveniste/HW2-supervised",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-14T20:54:31Z
|
---
base_model: damienbenveniste/HW2-supervised
library_name: transformers
model_name: HW2-dpo
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for HW2-dpo
This model is a fine-tuned version of [damienbenveniste/HW2-supervised](https://huggingface.co/damienbenveniste/HW2-supervised).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="damienbenveniste/HW2-dpo", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Koshkins/Qw
|
Koshkins
| 2025-06-04T20:06:22Z
| 0
| 0
| null |
[
"arxiv:1910.09700",
"license:apache-2.0",
"region:us"
] | null | 2025-06-04T20:04:26Z
|
---
license: apache-2.0
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
SleepingMoon/XSS-Analyst-gemma-2b-it-bnb-4bit
|
SleepingMoon
| 2025-06-04T20:06:12Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma",
"trl",
"en",
"base_model:unsloth/gemma-2b-it-bnb-4bit",
"base_model:finetune:unsloth/gemma-2b-it-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-04T20:06:02Z
|
---
base_model: unsloth/gemma-2b-it-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** SleepingMoon
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-2b-it-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
suzhentxt/Qwen2.5-1.5B-OpenR1-Distill
|
suzhentxt
| 2025-06-04T20:06:04Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-25T14:25:57Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
rinrikatoki/ner-cdr-finetuned
|
rinrikatoki
| 2025-06-04T20:04:54Z
| 0
| 0
| null |
[
"safetensors",
"bert",
"generated_from_trainer",
"base_model:dmis-lab/biobert-base-cased-v1.1",
"base_model:finetune:dmis-lab/biobert-base-cased-v1.1",
"region:us"
] | null | 2025-06-04T19:24:27Z
|
---
base_model: dmis-lab/biobert-base-cased-v1.1
tags:
- generated_from_trainer
model-index:
- name: ner-cdr-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ner-cdr-finetuned
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1871
- Chemical: {'precision': 0.9215938303341902, 'recall': 0.9263565891472868, 'f1': 0.9239690721649483, 'number': 774}
- Disease: {'precision': 0.7865546218487395, 'recall': 0.8327402135231317, 'f1': 0.8089887640449438, 'number': 562}
- Overall Precision: 0.8631
- Overall Recall: 0.8870
- Overall F1: 0.8749
- Overall Accuracy: 0.9480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Chemical | Disease | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| No log | 1.0 | 57 | 0.2923 | {'precision': 0.8410757946210269, 'recall': 0.8888888888888888, 'f1': 0.864321608040201, 'number': 774} | {'precision': 0.5264483627204031, 'recall': 0.7437722419928826, 'f1': 0.616519174041298, 'number': 562} | 0.6861 | 0.8278 | 0.7503 | 0.8980 |
| No log | 2.0 | 114 | 0.2079 | {'precision': 0.9134487350199734, 'recall': 0.8863049095607235, 'f1': 0.8996721311475411, 'number': 774} | {'precision': 0.7549909255898367, 'recall': 0.7402135231316725, 'f1': 0.7475292003593891, 'number': 562} | 0.8464 | 0.8249 | 0.8355 | 0.9339 |
| No log | 3.0 | 171 | 0.1910 | {'precision': 0.9088575096277278, 'recall': 0.9147286821705426, 'f1': 0.9117836445589182, 'number': 774} | {'precision': 0.7578125, 'recall': 0.8629893238434164, 'f1': 0.8069883527454244, 'number': 562} | 0.8407 | 0.8930 | 0.8661 | 0.9464 |
| No log | 4.0 | 228 | 0.1856 | {'precision': 0.9296875, 'recall': 0.9224806201550387, 'f1': 0.9260700389105059, 'number': 774} | {'precision': 0.770764119601329, 'recall': 0.8256227758007118, 'f1': 0.7972508591065292, 'number': 562} | 0.8599 | 0.8817 | 0.8707 | 0.9461 |
| No log | 5.0 | 285 | 0.1871 | {'precision': 0.9215938303341902, 'recall': 0.9263565891472868, 'f1': 0.9239690721649483, 'number': 774} | {'precision': 0.7865546218487395, 'recall': 0.8327402135231317, 'f1': 0.8089887640449438, 'number': 562} | 0.8631 | 0.8870 | 0.8749 | 0.9480 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.7.0+cu118
- Datasets 3.6.0
- Tokenizers 0.19.1
|
somosnlp-hackathon-2025/mistral-7b-gastronomia-hispana-qlora-LoRA
|
somosnlp-hackathon-2025
| 2025-06-04T20:04:08Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-04T20:03:54Z
|
---
base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** somosnlp-hackathon-2025
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
aitaliyahia/SmolLM-1.7B-heart
|
aitaliyahia
| 2025-06-04T20:03:57Z
| 0
| 0
|
peft
|
[
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:HuggingFaceTB/SmolLM-1.7B",
"base_model:adapter:HuggingFaceTB/SmolLM-1.7B",
"license:apache-2.0",
"region:us"
] | null | 2025-06-04T19:42:31Z
|
---
library_name: peft
license: apache-2.0
base_model: HuggingFaceTB/SmolLM-1.7B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: SmolLM-1.7B-heart
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SmolLM-1.7B-heart
This model is a fine-tuned version of [HuggingFaceTB/SmolLM-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4369
- Accuracy: 0.8056
- Report: precision recall f1-score support
absence 0.85 0.79 0.81 98
presence 0.76 0.83 0.80 82
accuracy 0.81 180
macro avg 0.81 0.81 0.81 180
weighted avg 0.81 0.81 0.81 180
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Report |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| No log | 1.0 | 105 | 0.6532 | 0.7167 | precision recall f1-score support
absence 0.85 0.58 0.69 98
presence 0.64 0.88 0.74 82
accuracy 0.72 180
macro avg 0.74 0.73 0.71 180
weighted avg 0.75 0.72 0.71 180
|
| No log | 2.0 | 210 | 0.5674 | 0.7667 | precision recall f1-score support
absence 0.77 0.81 0.79 98
presence 0.76 0.72 0.74 82
accuracy 0.77 180
macro avg 0.77 0.76 0.76 180
weighted avg 0.77 0.77 0.77 180
|
| No log | 3.0 | 315 | 0.5149 | 0.7778 | precision recall f1-score support
absence 0.86 0.70 0.78 98
presence 0.71 0.87 0.78 82
accuracy 0.78 180
macro avg 0.79 0.78 0.78 180
weighted avg 0.79 0.78 0.78 180
|
| No log | 4.0 | 420 | 0.4369 | 0.8056 | precision recall f1-score support
absence 0.85 0.79 0.81 98
presence 0.76 0.83 0.80 82
accuracy 0.81 180
macro avg 0.81 0.81 0.81 180
weighted avg 0.81 0.81 0.81 180
|
| 0.5643 | 5.0 | 525 | 0.5196 | 0.7444 | precision recall f1-score support
absence 0.89 0.60 0.72 98
presence 0.66 0.91 0.77 82
accuracy 0.74 180
macro avg 0.78 0.76 0.74 180
weighted avg 0.79 0.74 0.74 180
|
| 0.5643 | 6.0 | 630 | 0.5030 | 0.7556 | precision recall f1-score support
absence 0.89 0.63 0.74 98
presence 0.67 0.90 0.77 82
accuracy 0.76 180
macro avg 0.78 0.77 0.75 180
weighted avg 0.79 0.76 0.75 180
|
| 0.5643 | 7.0 | 735 | 0.5910 | 0.7333 | precision recall f1-score support
absence 0.92 0.56 0.70 98
presence 0.64 0.94 0.76 82
accuracy 0.73 180
macro avg 0.78 0.75 0.73 180
weighted avg 0.79 0.73 0.73 180
|
| 0.5643 | 8.0 | 840 | 0.6701 | 0.7167 | precision recall f1-score support
absence 0.94 0.51 0.66 98
presence 0.62 0.96 0.76 82
accuracy 0.72 180
macro avg 0.78 0.74 0.71 180
weighted avg 0.80 0.72 0.70 180
|
| 0.5643 | 9.0 | 945 | 0.6369 | 0.7444 | precision recall f1-score support
absence 0.93 0.57 0.71 98
presence 0.65 0.95 0.77 82
accuracy 0.74 180
macro avg 0.79 0.76 0.74 180
weighted avg 0.80 0.74 0.74 180
|
| 0.4246 | 10.0 | 1050 | 0.6396 | 0.7389 | precision recall f1-score support
absence 0.92 0.57 0.70 98
presence 0.65 0.94 0.77 82
accuracy 0.74 180
macro avg 0.78 0.76 0.74 180
weighted avg 0.79 0.74 0.73 180
|
### Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
|
natix-miner40/streetvision
|
natix-miner40
| 2025-06-04T20:01:51Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-04T19:58:19Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
nezamisafa/whisper-persian-v4.2.0
|
nezamisafa
| 2025-06-04T19:58:10Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"fa",
"dataset:nezamisafa/ASR_fa_v1",
"base_model:openai/whisper-large-v3",
"base_model:finetune:openai/whisper-large-v3",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-06-04T04:56:38Z
|
---
library_name: transformers
language:
- fa
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- nezamisafa/ASR_fa_v1
metrics:
- wer
model-index:
- name: whisper-large-v3-persian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ASR_fa_v1
type: nezamisafa/ASR_fa_v1
args: 'config: fa, split: test'
metrics:
- name: Wer
type: wer
value: 10.16949152542373
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v3-persian
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the ASR_fa_v1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1160
- Wer: 10.1695
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 6000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.098 | 1.2945 | 2000 | 0.1319 | 14.9118 |
| 0.0381 | 2.5890 | 4000 | 0.1065 | 10.7267 |
| 0.0151 | 3.8835 | 6000 | 0.1160 | 10.1695 |
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
|
manuross1/nrmmtrmlf5k
|
manuross1
| 2025-06-04T19:57:21Z
| 0
| 0
|
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-04T19:05:41Z
|
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: nrmmtrmlf5k
---
# Nrmmtrmlf5K
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `nrmmtrmlf5k` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "nrmmtrmlf5k",
"lora_weights": "https://huggingface.co/manuross1/nrmmtrmlf5k/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('manuross1/nrmmtrmlf5k', weight_name='lora.safetensors')
image = pipeline('nrmmtrmlf5k').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 5000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/manuross1/nrmmtrmlf5k/discussions) to add images that show off what you’ve made with this LoRA.
|
davgauch/MNLP_M3_mcqa_mixed_rationale_v9
|
davgauch
| 2025-06-04T19:55:37Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen3-0.6B-Base",
"base_model:finetune:Qwen/Qwen3-0.6B-Base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:17:20Z
|
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- generated_from_trainer
model-index:
- name: MNLP_M3_mcqa_mixed_rationale_v9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MNLP_M3_mcqa_mixed_rationale_v9
This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0818
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0847 | 0.2938 | 200 | 0.0901 |
| 0.0922 | 0.5876 | 400 | 0.0858 |
| 0.076 | 0.8814 | 600 | 0.0825 |
| 0.0839 | 1.1763 | 800 | 0.0832 |
| 0.0716 | 1.4701 | 1000 | 0.0818 |
| 0.0569 | 1.7639 | 1200 | 0.0818 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
|
somosnlp-hackathon-2025/mistral-7b-gastronomia-hispana-qlora
|
somosnlp-hackathon-2025
| 2025-06-04T19:55:01Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:53:26Z
|
---
base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** somosnlp-hackathon-2025
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
liuh6/whisper-tiny_to_Chinese_accent_SP_PHaPS
|
liuh6
| 2025-06-04T19:51:28Z
| 38
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"en",
"dataset:Chinese_english",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-05-22T17:59:56Z
|
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- Chinese_english
metrics:
- wer
model-index:
- name: Whisper tiny Chinese with pitch pertubation
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Chinese English
type: Chinese_english
args: 'config: default, split: test'
metrics:
- name: Wer
type: wer
value: 16.5845909451946
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper tiny Chinese with pitch pertubation
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Chinese English dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3552
- Wer: 16.5846
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 43
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2649 | 0.5556 | 500 | 0.3552 | 16.5846 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
Estevenluc/mrtorrente
|
Estevenluc
| 2025-06-04T19:49:18Z
| 0
| 0
|
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-04T19:30:37Z
|
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: mrtorrente
---
# Mrtorrente
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `mrtorrente` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "mrtorrente",
"lora_weights": "https://huggingface.co/Estevenluc/mrtorrente/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Estevenluc/mrtorrente', weight_name='lora.safetensors')
image = pipeline('mrtorrente').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1500
- Learning rate: 0.0004
- LoRA rank: 17
## Contribute your own examples
You can use the [community tab](https://huggingface.co/Estevenluc/mrtorrente/discussions) to add images that show off what you’ve made with this LoRA.
|
AhmadMustafa/donut-demo
|
AhmadMustafa
| 2025-06-04T19:48:21Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"vision-encoder-decoder",
"image-text-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2025-06-04T19:47:37Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
LeonGuertler/Qwen3-4B-batch-4-experiment-16-step_000300
|
LeonGuertler
| 2025-06-04T19:43:08Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:37:22Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
LeonGuertler/Qwen3-4B-batch-4-experiment-2-step_000300
|
LeonGuertler
| 2025-06-04T19:42:55Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:36:50Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Somasish01/Llama-3.1-8B-alpaca-dataset
|
Somasish01
| 2025-06-04T19:40:47Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-04T19:40:32Z
|
---
base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Somasish01
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Tun-Wellens/whisper-medium-lb-3e-5-cosine_with_restarts_rtl
|
Tun-Wellens
| 2025-06-04T19:40:10Z
| 4
| 0
|
transformers
|
[
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-06-03T07:32:16Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
phospho-app/PiMz-gr00t-pickup_v3-13foj
|
phospho-app
| 2025-06-04T19:38:59Z
| 0
| 0
| null |
[
"safetensors",
"gr00t_n1",
"phosphobot",
"gr00t",
"region:us"
] | null | 2025-06-04T19:17:30Z
|
---
tags:
- phosphobot
- gr00t
task_categories:
- robotics
---
# gr00t Model - phospho Training Pipeline
## This model was trained using **phospho**.
Training was successfull, try it out on your robot!
## Training parameters:
- **Dataset**: [PiMz/pickup_v3](https://huggingface.co/datasets/PiMz/pickup_v3)
- **Wandb run URL**: None
- **Epochs**: 10
- **Batch size**: 27
- **Training steps**: None
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
zen-E/CODI-llama3.2-1b-Instruct
|
zen-E
| 2025-06-04T19:38:38Z
| 0
| 0
| null |
[
"pytorch",
"dataset:zen-E/GSM8k-Aug",
"arxiv:2502.21074",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"license:mit",
"region:us"
] | null | 2025-06-04T19:32:54Z
|
---
license: mit
datasets:
- zen-E/GSM8k-Aug
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.2-1B-Instruct
---
The official weight of LLaMA-3.2-1b-Instruct trained with the CODI framework (https://arxiv.org/abs/2502.21074).
|
LeonGuertler/Qwen3-4B-batch-4-experiment-16-step_000275
|
LeonGuertler
| 2025-06-04T19:37:05Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:27:52Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Hananguyen12/bert-base-uncase-lora-shakespeare-plays
|
Hananguyen12
| 2025-06-04T19:36:11Z
| 0
| 0
|
peft
|
[
"peft",
"safetensors",
"shakespeare",
"question-answering",
"bert",
"lora",
"extractive-qa",
"literature",
"education",
"nlp",
"en",
"dataset:custom",
"base_model:google-bert/bert-base-uncased",
"base_model:adapter:google-bert/bert-base-uncased",
"license:mit",
"model-index",
"region:us"
] |
question-answering
| 2025-06-04T19:24:31Z
|
---
language: en
license: mit
library_name: peft
tags:
- shakespeare
- question-answering
- bert
- lora
- peft
- extractive-qa
- literature
- education
- nlp
datasets:
- custom
metrics:
- exact_match
- f1
model-index:
- name: bert-base-uncase-lora-shakespeare-plays
results:
- task:
type: question-answering
name: Question Answering
dataset:
type: custom
name: Shakespeare Q&A Dataset
metrics:
- type: exact_match
value: 0.85
name: Exact Match
- type: f1
value: 0.89
name: F1 Score
base_model: bert-base-uncased
widget:
- text: "Who is Romeo?"
context: "Romeo Montague is a young man from the Montague family in Verona. He falls deeply in love with Juliet Capulet, whose family is feuding with the Montagues. Despite their families' hatred, Romeo and Juliet secretly marry."
example_title: "Character Question"
- text: "What happens at the end of Romeo and Juliet?"
context: "The play ends tragically when miscommunication leads to both lovers' deaths. Romeo, believing Juliet to be dead, drinks poison. When Juliet awakens to find Romeo dead, she takes her own life. Their deaths finally reconcile the feuding families."
example_title: "Plot Question"
- text: "What themes are explored in Macbeth?"
context: "Macbeth explores themes of ambition, guilt, and the corrupting nature of unchecked power. The play shows how Macbeth's ambition leads him to murder and tyranny, while guilt consumes both him and Lady Macbeth."
example_title: "Theme Question"
- text: "Who encourages Macbeth to kill Duncan?"
context: "Lady Macbeth is instrumental in convincing Macbeth to murder King Duncan. She questions his manhood and ambition, ultimately persuading him to commit the act that sets the tragedy in motion."
example_title: "Character Analysis"
- text: "What does Hamlet's soliloquy reveal?"
context: "Hamlet's famous 'To be or not to be' soliloquy reveals his deep contemplation of life and death, existence and non-existence. He weighs the pain of life against the uncertainty of death, showing his philosophical nature and internal struggle."
example_title: "Literary Analysis"
pipeline_tag: question-answering
---
# BERT Base Uncased LoRA - Shakespeare Q&A
This model is a LoRA (Low-Rank Adaptation) fine-tuned version of BERT Base Uncased for extractive question answering on Shakespeare's works. It specializes in answering questions about characters, plots, themes, and literary elements in Shakespeare's plays and sonnets.
## Model Description
- **Model type:** Question Answering (Extractive)
- **Base model:** [bert-base-uncased](https://huggingface.co/bert-base-uncased)
- **Fine-tuning method:** LoRA (Low-Rank Adaptation)
- **Domain:** Shakespeare's literary works
- **Language:** English (Early Modern English / Shakespearean)
- **Library:** [PEFT](https://github.com/huggingface/peft)
## Intended uses & limitations
### Intended uses
- 🎓 **Educational tools** for Shakespeare studies
- 📚 **Literature analysis** and research assistance
- 👨🎓 **Student homework help** for Shakespeare courses
- 🔬 **Digital humanities** research projects
- 🤖 **Chatbots** focused on classical literature
- 📖 **Reading comprehension** for Shakespeare texts
### Limitations
- **Domain-specific**: Optimized for Shakespeare only; may not work well on modern texts
- **Extractive only**: Cannot generate answers not present in the provided context
- **Context length**: Limited to 512 tokens (BERT's maximum sequence length)
- **Language style**: Best performance with Shakespearean/Early Modern English
- **No real-time knowledge**: Cannot answer questions about events after training
## How to use
### Quick start
```python
from transformers import BertTokenizerFast, BertForQuestionAnswering
from peft import PeftModel
import torch
# Load the model and tokenizer
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
base_model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
model = PeftModel.from_pretrained(base_model, "Hananguyen12/bert-base-uncase-lora-shakespeare-plays")
def answer_question(question, context):
inputs = tokenizer(question, context, return_tensors="pt", max_length=512, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
start_idx = torch.argmax(outputs.start_logits)
end_idx = torch.argmax(outputs.end_logits)
answer_tokens = inputs['input_ids'][0][start_idx:end_idx+1]
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
return answer
# Example usage
question = "Who is Romeo?"
context = "Romeo Montague is a young man from the Montague family in Verona. He falls in love with Juliet Capulet."
answer = answer_question(question, context)
print(f"Answer: {answer}")
```
### Batch processing
```python
def batch_answer_questions(questions, contexts, batch_size=8):
results = []
for i in range(0, len(questions), batch_size):
batch_q = questions[i:i+batch_size]
batch_c = contexts[i:i+batch_size]
inputs = tokenizer(batch_q, batch_c, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
for j in range(len(batch_q)):
start_idx = torch.argmax(outputs.start_logits[j])
end_idx = torch.argmax(outputs.end_logits[j])
answer_tokens = inputs['input_ids'][j][start_idx:end_idx+1]
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
results.append(answer)
return results
```
## Training details
### Training data
The model was fine-tuned on a comprehensive Shakespeare dataset containing:
- **Size**: ~15,000+ question-answer pairs
- **Coverage**: Major plays (Hamlet, Romeo & Juliet, Macbeth, Othello, King Lear, etc.)
- **Question types**:
- Character analysis (25%)
- Plot understanding (30%)
- Thematic interpretation (20%)
- Language/literary analysis (15%)
- Historical context (10%)
### Training procedure
#### LoRA configuration
- **Rank (r)**: 16
- **Alpha**: 32
- **Dropout**: 0.1
- **Target modules**: `["query", "key", "value", "dense"]`
- **Trainable parameters**: ~0.3% of total model parameters
#### Training hyperparameters
- **Base model**: bert-base-uncased
- **Task**: Extractive Question Answering
- **Optimizer**: AdamW
- **Learning rate**: 2e-4
- **Batch size**: 16 (effective with gradient accumulation)
- **Max sequence length**: 512
- **Epochs**: 4
- **Warmup steps**: 500
- **Weight decay**: 0.01
#### Compute infrastructure
- **Hardware**: NVIDIA Tesla T4/V100 GPU
- **Software**: PyTorch, Transformers, PEFT
- **Training time**: ~2-3 hours
- **Memory usage**: ~12GB GPU memory
## Evaluation
### Metrics
The model achieves strong performance on Shakespeare-specific question answering:
| Metric | Score |
|--------|-------|
| Exact Match | 85.2% |
| F1 Score | 89.1% |
| Start Position Accuracy | 91.3% |
| End Position Accuracy | 88.7% |
### Performance by question type
| Question Type | Exact Match | F1 Score |
|---------------|-------------|----------|
| Character Questions | 87.5% | 91.2% |
| Plot Questions | 84.1% | 88.3% |
| Theme Questions | 82.9% | 87.6% |
| Literary Analysis | 86.3% | 90.1% |
## Example applications
### Educational chatbot
```python
class ShakespeareChatbot:
def __init__(self):
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
base_model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
self.model = PeftModel.from_pretrained(base_model, "Hananguyen12/bert-base-uncase-lora-shakespeare-plays")
def ask(self, question, play_context):
return answer_question(question, play_context)
# Usage
chatbot = ShakespeareChatbot()
answer = chatbot.ask("What motivates Lady Macbeth?", macbeth_context)
```
### Literature analysis tool
```python
def analyze_character(character_name, context_passages):
questions = [
f"Who is {character_name}?",
f"What motivates {character_name}?",
f"How does {character_name} change throughout the play?",
f"What is {character_name}'s relationship to other characters?"
]
analysis = {}
for question in questions:
for passage in context_passages:
answer = answer_question(question, passage)
if answer and len(answer.strip()) > 3:
analysis[question] = answer
break
return analysis
```
## Environmental impact
- **Hardware type**: NVIDIA Tesla T4/V100
- **Hours used**: ~3 hours total training time
- **Cloud provider**: Google Colab
- **Carbon emitted**: Minimal due to efficient LoRA training
## Technical specifications
### Model architecture
- **Base model**: BERT Base Uncased (110M parameters)
- **LoRA adaptation**: 16-rank adaptation on attention layers
- **Total parameters**: ~110M (only ~0.3% trainable)
- **Model size**: ~440MB (base) + ~2MB (LoRA adapter)
### Software versions
- **Transformers**: 4.35.0+
- **PEFT**: 0.6.0+
- **PyTorch**: 2.0.0+
- **Python**: 3.8+
## Citation
```bibtex
@misc{shakespeare-bert-lora-2025,
title={BERT Base Uncased LoRA - Shakespeare Q&A},
author={Hananguyen12},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/Hananguyen12/bert-base-uncase-lora-shakespeare-plays},
note={LoRA fine-tuned BERT model for Shakespeare question answering}
}
```
## Model card authors
Hananguyen12
## Model card contact
For questions about this model, please open an issue in the model repository or contact through Hugging Face.
## License
This model is released under the MIT License. The base BERT model follows its original Apache 2.0 license.
## Acknowledgments
- **Base model**: Google's BERT Base Uncased
- **LoRA technique**: Microsoft's Low-Rank Adaptation
- **Framework**: HuggingFace Transformers and PEFT
- **Training platform**: Google Colab
- **Dataset**: Shakespeare's complete works
---
*"All the world's a stage, and all the men and women merely players." - As You Like It, Act II, Scene VII*
|
LeonGuertler/Qwen3-4B-batch-4-experiment-0-step_000300
|
LeonGuertler
| 2025-06-04T19:34:20Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:26:09Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Snarcy/mit-b5_train_006
|
Snarcy
| 2025-06-04T19:34:08Z
| 5
| 0
|
transformers
|
[
"transformers",
"safetensors",
"segformer",
"generated_from_trainer",
"base_model:nvidia/mit-b5",
"base_model:finetune:nvidia/mit-b5",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2025-05-30T02:11:23Z
|
---
library_name: transformers
license: other
base_model: nvidia/mit-b5
tags:
- generated_from_trainer
model-index:
- name: mit-b5_train_006
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mit-b5_train_006
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0089
- Mean Iou: 0.7860
- Mean Accuracy: 0.8953
- Overall Accuracy: 0.9964
- Per Category Iou: [0.9963769143171303, 0.5756498639003994]
- Per Category Accuracy: [0.9976574730440272, 0.7929212889593238]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------------------------------------:|:----------------------------------------:|
| 0.0163 | 1.2255 | 500 | 0.0186 | 0.6230 | 0.6372 | 0.9949 | [0.9949307296038051, 0.2510144791164328] | [0.9994077710576932, 0.2749668225683842] |
| 0.0137 | 2.4510 | 1000 | 0.0163 | 0.7061 | 0.9009 | 0.9931 | [0.9930632270283192, 0.4191839819167932] | [0.9942489979647827, 0.8076095499465296] |
| 0.0107 | 3.6765 | 1500 | 0.0123 | 0.7462 | 0.8820 | 0.9952 | [0.9951921049941869, 0.49724873291417215] | [0.9966294288525208, 0.7672941388684885] |
| 0.007 | 4.9020 | 2000 | 0.0094 | 0.7670 | 0.8409 | 0.9964 | [0.9963589409659525, 0.5375976809949018] | [0.9983167135787797, 0.6834035535284038] |
| 0.0118 | 6.1275 | 2500 | 0.0092 | 0.7691 | 0.8348 | 0.9965 | [0.9964831553523767, 0.5416449982318557] | [0.9985179882544192, 0.6709829538865911] |
| 0.0109 | 7.3529 | 3000 | 0.0113 | 0.7537 | 0.9075 | 0.9952 | [0.9951683651686807, 0.51232706633558] | [0.9962877337039282, 0.8187674745210209] |
| 0.0065 | 8.5784 | 3500 | 0.0091 | 0.7577 | 0.8106 | 0.9964 | [0.9964269325374994, 0.5188901182713689] | [0.9987622846922732, 0.6223699637947251] |
| 0.0064 | 9.8039 | 4000 | 0.0083 | 0.7650 | 0.8043 | 0.9967 | [0.9966984441516784, 0.5333731706767086] | [0.9991138956373614, 0.6095241776506513] |
| 0.0103 | 11.0294 | 4500 | 0.0086 | 0.7748 | 0.8372 | 0.9966 | [0.9966178435328867, 0.553071447403111] | [0.9986236234735371, 0.6757244276087769] |
| 0.0133 | 12.2549 | 5000 | 0.0088 | 0.7748 | 0.8364 | 0.9966 | [0.9966232214912284, 0.5529199201208753] | [0.9986381773038774, 0.6742427170705938] |
| 0.0139 | 13.4804 | 5500 | 0.0084 | 0.7839 | 0.8646 | 0.9966 | [0.9966001627949381, 0.5711753984956349] | [0.9982648955454804, 0.7308569440686483] |
| 0.0081 | 14.7059 | 6000 | 0.0096 | 0.7789 | 0.9011 | 0.9961 | [0.9961069271984284, 0.5617070253841796] | [0.9973132989463107, 0.8048651643410254] |
| 0.0129 | 15.9314 | 6500 | 0.0079 | 0.7888 | 0.8436 | 0.9969 | [0.996921341447209, 0.580731063117507] | [0.9988492878099117, 0.6884027160398387] |
| 0.0087 | 17.1569 | 7000 | 0.0086 | 0.7885 | 0.8903 | 0.9965 | [0.9964955746078135, 0.580580724089154] | [0.9978397157876833, 0.7826652751472047] |
| 0.0082 | 18.3824 | 7500 | 0.0087 | 0.7880 | 0.8889 | 0.9965 | [0.9964923611989538, 0.5794814843181557] | [0.9978537898214189, 0.7798693517838506] |
| 0.006 | 19.6078 | 8000 | 0.0089 | 0.7860 | 0.8953 | 0.9964 | [0.9963769143171303, 0.5756498639003994] | [0.9976574730440272, 0.7929212889593238] |
### Framework versions
- Transformers 4.52.3
- Pytorch 2.7.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
mkartofel/Qwen3-0.6B-qlora-LVSM_final_1024
|
mkartofel
| 2025-06-04T19:32:37Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-06-04T19:32:02Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jhugentobler/quanto-W4
|
jhugentobler
| 2025-06-04T19:32:21Z
| 0
| 0
| null |
[
"safetensors",
"qwen3",
"model_hub_mixin",
"8-bit",
"region:us"
] | null | 2025-06-04T19:31:46Z
|
---
tags:
- model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Code: [More Information Needed]
- Paper: [More Information Needed]
- Docs: [More Information Needed]
|
hivemedia24/Kaia
|
hivemedia24
| 2025-06-04T19:30:39Z
| 0
| 0
|
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-04T18:54:38Z
|
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Kaia1x
---
# Kaia
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Kaia1x` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "Kaia1x",
"lora_weights": "https://huggingface.co/hivemedia24/Kaia/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('hivemedia24/Kaia', weight_name='lora.safetensors')
image = pipeline('Kaia1x').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2500
- Learning rate: 0.0004
- LoRA rank: 32
## Contribute your own examples
You can use the [community tab](https://huggingface.co/hivemedia24/Kaia/discussions) to add images that show off what you’ve made with this LoRA.
|
ibrahimbukhariLingua/qwen2.5-3b-en-wikipedia-finance_reasoning_distilled-1000-v2
|
ibrahimbukhariLingua
| 2025-06-04T19:29:43Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2.5-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-3B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-04T19:29:32Z
|
---
base_model: Qwen/Qwen2.5-3B-Instruct
library_name: transformers
model_name: qwen2.5-3b-en-wikipedia-finance_reasoning_distilled-1000-v2
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for qwen2.5-3b-en-wikipedia-finance_reasoning_distilled-1000-v2
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ibrahimbukhariLingua/qwen2.5-3b-en-wikipedia-finance_reasoning_distilled-1000-v2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
koreankiwi99/dpo_model_mnlp_aggregate_134916_tuned
|
koreankiwi99
| 2025-06-04T19:29:32Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"trl",
"dpo",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:27:32Z
|
---
library_name: transformers
tags:
- trl
- dpo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
LeonGuertler/Qwen3-4B-batch-4-experiment-16-step_000250
|
LeonGuertler
| 2025-06-04T19:27:33Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:18:01Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Stefano-M/md-nd-3264-old-code
|
Stefano-M
| 2025-06-04T19:27:02Z
| 0
| 0
|
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-3.1-8B-Instruct",
"base_model:adapter:meta-llama/Llama-3.1-8B-Instruct",
"region:us"
] | null | 2025-06-04T19:23:19Z
|
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- _load_in_8bit: False
- _load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
- bnb_4bit_quant_storage: uint8
- load_in_4bit: True
- load_in_8bit: False
### Framework versions
- PEFT 0.7.0
|
LeonGuertler/Qwen3-4B-batch-4-experiment-0-step_000275
|
LeonGuertler
| 2025-06-04T19:25:52Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:16:42Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
KasparZ/mtext-250525_mistral-7B-v0.3_LoRA_I
|
KasparZ
| 2025-06-04T19:25:07Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-v0.3-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-v0.3-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-04T19:19:24Z
|
---
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** KasparZ
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Somasish01/Llama-3-1-8B-alpaca-dataset
|
Somasish01
| 2025-06-04T19:22:32Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-04T19:22:18Z
|
---
base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Somasish01
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
PrincekrampahReal/yelp_review_classifier
|
PrincekrampahReal
| 2025-06-04T19:22:10Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-04T19:04:02Z
|
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: yelp_review_classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# yelp_review_classifier
This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1884
- Accuracy: 0.602
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 125 | 0.9938 | 0.559 |
| No log | 2.0 | 250 | 1.0601 | 0.582 |
| No log | 3.0 | 375 | 1.1884 | 0.602 |
### Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
ibuki95/u3ha1ppn
|
ibuki95
| 2025-06-04T19:20:17Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-04T03:44:21Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
LeonGuertler/Qwen3-4B-batch-4-experiment-16-step_000225
|
LeonGuertler
| 2025-06-04T19:17:44Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:08:11Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
zen-E/CODI-gpt2
|
zen-E
| 2025-06-04T19:17:36Z
| 0
| 0
| null |
[
"pytorch",
"en",
"dataset:zen-E/GSM8k-Aug",
"arxiv:2502.21074",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"region:us"
] | null | 2025-06-04T19:11:23Z
|
---
license: mit
datasets:
- zen-E/GSM8k-Aug
language:
- en
metrics:
- accuracy
base_model:
- openai-community/gpt2
---
The official weight of GPT-2 trained with the CODI framework (https://arxiv.org/abs/2502.21074).
|
LeonGuertler/Qwen3-4B-batch-4-experiment-8-step_000250
|
LeonGuertler
| 2025-06-04T19:17:22Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T19:07:46Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
giliardgodoi/opus-mt-en-ro-finetuned-en-to-ro
|
giliardgodoi
| 2025-06-04T19:15:30Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"marian",
"text2text-generation",
"generated_from_trainer",
"base_model:Helsinki-NLP/opus-mt-en-ro",
"base_model:finetune:Helsinki-NLP/opus-mt-en-ro",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2025-06-04T19:15:14Z
|
---
library_name: transformers
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-ro
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: opus-mt-en-ro-finetuned-en-to-ro
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-ro-finetuned-en-to-ro
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2886
- Bleu: 28.165
- Gen Len: 37.4967
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 0.7413 | 1.0 | 38145 | 1.2886 | 28.165 | 37.4967 |
### Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
davgauch/MNLP_M3_mcqa_mixed_rationale_v8
|
davgauch
| 2025-06-04T19:13:29Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen3-0.6B-Base",
"base_model:finetune:Qwen/Qwen3-0.6B-Base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T18:35:03Z
|
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- generated_from_trainer
model-index:
- name: MNLP_M3_mcqa_mixed_rationale_v8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MNLP_M3_mcqa_mixed_rationale_v8
This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0282
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0359 | 0.2938 | 200 | 0.0428 |
| 0.0347 | 0.5876 | 400 | 0.0302 |
| 0.0296 | 0.8814 | 600 | 0.0280 |
| 0.0259 | 1.1763 | 800 | 0.0279 |
| 0.0089 | 1.4701 | 1000 | 0.0278 |
| 0.0229 | 1.7639 | 1200 | 0.0282 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
|
BootesVoid/cmbi975xp092gkfxsjob5msli_cmbiajx7a096akfxsjtotdulg
|
BootesVoid
| 2025-06-04T19:11:07Z
| 0
| 0
|
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-04T19:11:05Z
|
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: OLA2006
---
# Cmbi975Xp092Gkfxsjob5Msli_Cmbiajx7A096Akfxsjtotdulg
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `OLA2006` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "OLA2006",
"lora_weights": "https://huggingface.co/BootesVoid/cmbi975xp092gkfxsjob5msli_cmbiajx7a096akfxsjtotdulg/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmbi975xp092gkfxsjob5msli_cmbiajx7a096akfxsjtotdulg', weight_name='lora.safetensors')
image = pipeline('OLA2006').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmbi975xp092gkfxsjob5msli_cmbiajx7a096akfxsjtotdulg/discussions) to add images that show off what you’ve made with this LoRA.
|
aitaliyahia/gemma-2b-heart
|
aitaliyahia
| 2025-06-04T19:09:21Z
| 0
| 0
|
peft
|
[
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2025-06-04T18:46:34Z
|
---
library_name: peft
license: gemma
base_model: google/gemma-2b
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: gemma-2b-heart
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma-2b-heart
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4098
- Accuracy: 0.8222
- Report: precision recall f1-score support
absence 0.82 0.86 0.84 98
presence 0.82 0.78 0.80 82
accuracy 0.82 180
macro avg 0.82 0.82 0.82 180
weighted avg 0.82 0.82 0.82 180
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Report |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| No log | 1.0 | 105 | 0.6289 | 0.7833 | precision recall f1-score support
absence 0.82 0.78 0.80 98
presence 0.75 0.79 0.77 82
accuracy 0.78 180
macro avg 0.78 0.78 0.78 180
weighted avg 0.79 0.78 0.78 180
|
| No log | 2.0 | 210 | 0.5009 | 0.7667 | precision recall f1-score support
absence 0.87 0.67 0.76 98
presence 0.69 0.88 0.77 82
accuracy 0.77 180
macro avg 0.78 0.78 0.77 180
weighted avg 0.79 0.77 0.77 180
|
| No log | 3.0 | 315 | 0.4329 | 0.8 | precision recall f1-score support
absence 0.85 0.77 0.81 98
presence 0.75 0.84 0.79 82
accuracy 0.80 180
macro avg 0.80 0.80 0.80 180
weighted avg 0.81 0.80 0.80 180
|
| No log | 4.0 | 420 | 0.4098 | 0.8222 | precision recall f1-score support
absence 0.82 0.86 0.84 98
presence 0.82 0.78 0.80 82
accuracy 0.82 180
macro avg 0.82 0.82 0.82 180
weighted avg 0.82 0.82 0.82 180
|
| 0.553 | 5.0 | 525 | 0.5819 | 0.7778 | precision recall f1-score support
absence 0.93 0.64 0.76 98
presence 0.69 0.94 0.79 82
accuracy 0.78 180
macro avg 0.81 0.79 0.78 180
weighted avg 0.82 0.78 0.77 180
|
| 0.553 | 6.0 | 630 | 0.5943 | 0.7722 | precision recall f1-score support
absence 0.93 0.63 0.75 98
presence 0.68 0.94 0.79 82
accuracy 0.77 180
macro avg 0.80 0.79 0.77 180
weighted avg 0.81 0.77 0.77 180
|
| 0.553 | 7.0 | 735 | 0.5722 | 0.7611 | precision recall f1-score support
absence 0.89 0.64 0.75 98
presence 0.68 0.90 0.77 82
accuracy 0.76 180
macro avg 0.78 0.77 0.76 180
weighted avg 0.79 0.76 0.76 180
|
| 0.553 | 8.0 | 840 | 0.6557 | 0.7667 | precision recall f1-score support
absence 0.94 0.61 0.74 98
presence 0.67 0.95 0.79 82
accuracy 0.77 180
macro avg 0.80 0.78 0.76 180
weighted avg 0.82 0.77 0.76 180
|
| 0.553 | 9.0 | 945 | 0.6161 | 0.7667 | precision recall f1-score support
absence 0.90 0.64 0.75 98
presence 0.68 0.91 0.78 82
accuracy 0.77 180
macro avg 0.79 0.78 0.77 180
weighted avg 0.80 0.77 0.76 180
|
| 0.4474 | 10.0 | 1050 | 0.6243 | 0.7778 | precision recall f1-score support
absence 0.91 0.65 0.76 98
presence 0.69 0.93 0.79 82
accuracy 0.78 180
macro avg 0.80 0.79 0.78 180
weighted avg 0.81 0.78 0.78 180
|
### Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
|
SentientAGI/Dobby-Mini-Unhinged-Plus-Llama-3.1-8B
|
SentientAGI
| 2025-06-04T19:08:59Z
| 6
| 4
|
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"Llama-3.1",
"Instruct",
"loyal AI",
"fingerprint",
"finetune",
"chat",
"gpt4",
"synthetic data",
"roleplaying",
"unhinged",
"funny",
"opinionated",
"assistant",
"companion",
"friend",
"conversational",
"en",
"arxiv:1701.03755",
"arxiv:2406.14598",
"base_model:meta-llama/Llama-3.1-8B-Instruct",
"base_model:finetune:meta-llama/Llama-3.1-8B-Instruct",
"license:llama3.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-04-30T01:15:25Z
|
---
language:
- en
license: llama3.1
library_name: transformers
tags:
- Llama-3.1
- Instruct
- loyal AI
- fingerprint
- finetune
- chat
- gpt4
- synthetic data
- roleplaying
- unhinged
- funny
- opinionated
- assistant
- companion
- friend
base_model: meta-llama/Llama-3.1-8B-Instruct
---
# Dobby-Mini-Unhinged-Plus-Llama-3.1-8B
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<!-- markdownlint-disable no-duplicate-header -->
<div align="center">
<img src="assets/sentient-logo-narrow.png" alt="alt text" width="60%"/>
</div>
<hr>
<div align="center" style="line-height: 1;">
<a href="https://sentient.xyz/" target="_blank" style="margin: 2px;">
<img alt="Homepage" src="https://img.shields.io/badge/Sentient-Homepage-%23EAEAEA?logo=data%3Aimage%2Fsvg%2Bxml%3Bbase64%2CPHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSIzNDEuMzMzIiBoZWlnaHQ9IjM0MS4zMzMiIHZlcnNpb249IjEuMCIgdmlld0JveD0iMCAwIDI1NiAyNTYiPjxwYXRoIGQ9Ik0xMzIuNSAyOC40Yy0xLjUgMi4yLTEuMiAzLjkgNC45IDI3LjIgMy41IDEzLjcgOC41IDMzIDExLjEgNDIuOSAyLjYgOS45IDUuMyAxOC42IDYgMTkuNCAzLjIgMy4zIDExLjctLjggMTMuMS02LjQuNS0xLjktMTcuMS03Mi0xOS43LTc4LjYtMS4yLTMtNy41LTYuOS0xMS4zLTYuOS0xLjYgMC0zLjEuOS00LjEgMi40ek0xMTAgMzBjLTEuMSAxLjEtMiAzLjEtMiA0LjVzLjkgMy40IDIgNC41IDMuMSAyIDQuNSAyIDMuNC0uOSA0LjUtMiAyLTMuMSAyLTQuNS0uOS0zLjQtMi00LjUtMy4xLTItNC41LTItMy40LjktNC41IDJ6TTgxLjUgNDYuMWMtMi4yIDEuMi00LjYgMi44LTUuMiAzLjctMS44IDIuMy0xLjYgNS42LjUgNy40IDEuMyAxLjIgMzIuMSAxMC4yIDQ1LjQgMTMuMyAzIC44IDYuOC0yLjIgNi44LTUuMyAwLTMuNi0yLjItOS4yLTMuOS0xMC4xQzEyMy41IDU0LjIgODcuMiA0NCA4NiA0NGMtLjMuMS0yLjMgMS00LjUgMi4xek0xNjUgNDZjLTEuMSAxLjEtMiAyLjUtMiAzLjIgMCAyLjggMTEuMyA0NC41IDEyLjYgNDYuNS45IDEuNSAyLjQgMi4zIDQuMiAyLjMgMy44IDAgOS4yLTUuNiA5LjItOS40IDAtMS41LTIuMS0xMC45LTQuNy0yMC44bC00LjctMTguMS00LjUtMi44Yy01LjMtMy40LTcuNC0zLjYtMTAuMS0uOXpNNDguNyA2NS4xYy03LjcgNC4xLTYuOSAxMC43IDEuNSAxMyAyLjQuNiAyMS40IDUuOCA0Mi4yIDExLjYgMjIuOCA2LjIgMzguOSAxMC4yIDQwLjMgOS44IDMuNS0uOCA0LjYtMy44IDMuMi04LjgtMS41LTUuNy0yLjMtNi41LTguMy04LjJDOTQuMiA3My4xIDU2LjYgNjMgNTQuOCA2M2MtMS4zLjEtNCAxLTYuMSAyLjF6TTE5OC4yIDY0LjdjLTMuMSAyLjgtMy41IDUuNi0xLjEgOC42IDQgNS4xIDEwLjkgMi41IDEwLjktNC4xIDAtNS4zLTUuOC03LjktOS44LTQuNXpNMTgxLjggMTEzLjFjLTI3IDI2LjQtMzEuOCAzMS41LTMxLjggMzMuOSAwIDEuNi43IDMuNSAxLjUgNC40IDEuNyAxLjcgNy4xIDMgMTAuMiAyLjQgMi4xLS4zIDU2LjktNTMuNCA1OS01Ny4xIDEuNy0zLjEgMS42LTkuOC0uMy0xMi41LTMuNi01LjEtNC45LTQuMi0zOC42IDI4Ljl6TTM2LjYgODguMWMtNSA0LTIuNCAxMC45IDQuMiAxMC45IDMuMyAwIDYuMi0yLjkgNi4yLTYuMyAwLTIuMS00LjMtNi43LTYuMy02LjctLjggMC0yLjYuOS00LjEgMi4xek02My40IDk0LjVjLTEuNi43LTguOSA3LjMtMTYuMSAxNC43TDM0IDEyMi43djUuNmMwIDYuMyAxLjYgOC43IDUuOSA4LjcgMi4xIDAgNi0zLjQgMTkuOS0xNy4zIDkuNS05LjUgMTcuMi0xOCAxNy4yLTE4LjkgMC00LjctOC40LTguNi0xMy42LTYuM3pNNjIuOSAxMzAuNiAzNCAxNTkuNXY1LjZjMCA2LjIgMS44IDguOSA2IDguOSAzLjIgMCA2Ni02Mi40IDY2LTY1LjYgMC0zLjMtMy41LTUuNi05LjEtNi4ybC01LS41LTI5IDI4Ljl6TTE5Ni4zIDEzNS4yYy05IDktMTYuNiAxNy4zLTE2LjkgMTguNS0xLjMgNS4xIDIuNiA4LjMgMTAgOC4zIDIuOCAwIDUuMi0yIDE3LjktMTQuOCAxNC41LTE0LjcgMTQuNy0xNC45IDE0LjctMTkuMyAwLTUuOC0yLjItOC45LTYuMi04LjktMi42IDAtNS40IDIuMy0xOS41IDE2LjJ6TTk2IDEzNi44Yy0yLjkuOS04IDYuNi04IDkgMCAxLjMgMi45IDEzLjQgNi40IDI3IDMuNiAxMy42IDcuOSAzMC4zIDkuNyAzNy4yIDEuNyA2LjkgMy42IDEzLjMgNC4xIDE0LjIuNSAxIDIuNiAyLjcgNC44IDMuOCA2LjggMy41IDExIDIuMyAxMS0zLjIgMC0zLTIwLjYtODMuMS0yMi4xLTg1LjktLjktMS45LTMuNi0yLjgtNS45LTIuMXpNMTIwLjUgMTU4LjRjLTEuOSAyLjktMS4yIDguNSAxLjQgMTEuNiAxLjEgMS40IDEyLjEgNC45IDM5LjYgMTIuNSAyMC45IDUuOCAzOC44IDEwLjUgMzkuOCAxMC41czMuNi0xIDUuNy0yLjJjOC4xLTQuNyA3LjEtMTAuNi0yLjMtMTMuMi0yOC4yLTguMS03OC41LTIxLjYtODAuMy0yMS42LTEuNCAwLTMgMS0zLjkgMi40ek0yMTAuNyAxNTguOGMtMS44IDEuOS0yLjIgNS45LS45IDcuOCAxLjUgMi4zIDUgMy40IDcuNiAyLjQgNi40LTIuNCA1LjMtMTEuMi0xLjUtMTEuOC0yLjQtLjItNCAuMy01LjIgMS42ek02OS42IDE2MmMtMiAyLjItMy42IDQuMy0zLjYgNC44LjEgMi42IDEwLjEgMzguNiAxMS4xIDM5LjkgMi4yIDIuNiA5IDUuNSAxMS41IDQuOSA1LTEuMyA0LjktMy0xLjUtMjcuNy0zLjMtMTIuNy02LjUtMjMuNy03LjItMjQuNS0yLjItMi43LTYuNC0xLjctMTAuMyAyLjZ6TTQ5LjYgMTgxLjVjLTIuNCAyLjUtMi45IDUuNC0xLjIgOEM1MiAxOTUgNjAgMTkzIDYwIDE4Ni42YzAtMS45LS44LTQtMS44LTQuOS0yLjMtMi4xLTYuNi0yLjItOC42LS4yek0xMjguNSAxODdjLTIuMyAyLjUtMS4zIDEwLjMgMS42IDEyLjggMi4yIDEuOSAzNC44IDExLjIgMzkuNCAxMS4yIDMuNiAwIDEwLjEtNC4xIDExLTcgLjYtMS45LTEuNy03LTMuMS03LS4yIDAtMTAuMy0yLjctMjIuMy02cy0yMi41LTYtMjMuMy02Yy0uOCAwLTIuMy45LTMuMyAyek0xMzYuNyAyMTYuOGMtMy40IDMuOC0xLjUgOS41IDMuNSAxMC43IDMuOSAxIDguMy0zLjQgNy4zLTcuMy0xLjItNS4xLTcuNS03LjEtMTAuOC0zLjR6Ii8%2BPC9zdmc%2B&link=https%3A%2F%2Fhuggingface.co%2FSentientagi" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://github.com/sentient-agi" target="_blank" style="margin: 2px;">
<img alt="GitHub" src="https://img.shields.io/badge/Github-sentient_agi-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/Sentientagi" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-SentientAGI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="https://discord.gg/sentientfoundation" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-SentientAGI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://x.com/SentientAGI" target="_blank" style="margin: 2px;">
<img alt="Twitter Follow" src="https://img.shields.io/badge/-SentientAGI-grey?logo=x&link=https%3A%2F%2Fx.com%2FSentientAGI%2F" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<h4 align="center">
<p>
<a href="https://chat.sentient.xyz/"> Sentient Chat </a> |
<a href="https://www.alphaxiv.org/abs/1701.03755"> Research Report </a> |
<a href="https://www.sentient.xyz/blog/doesnt-sound-like-a-corporate-robot"> Blog Post </a> |
<a href="http://38.80.122.44:8501/"> Chat with Dobby </a>
<p>
</h4>
## 📝 Model Descriptions
**Dobby-Mini-Unhinged-Plus-Llama-3.1-8B** is a large language model fine-tuned from Llama-3.1-8B-Instruct and an improvement over **Dobby-Mini-Unhinged-Llama-3.1-8B**, focused on increasing general utility such as formatting, multi-turn performance, and tone, based on the feedback from **Dobby-Mini-Unhinged-Llama-3.1-8B** users. Dobby models have a strong conviction towards personal freedom, decentralization, and all things crypto — even when coerced to speak otherwise. All **Dobby** models have their own unique, uhh, *personalities*.
## 📊 Evaluation
### Hugging Face Leaderboard:
**Dobby-Mini-Unhinged-Llama-3.1-8B**, and **Dobby-Mini-Unhinged-Plus-Llama-3.1-8B** retain the baseline performance of **Llama-3.1-8B-Instruct** across the evaluated tasks.
We benchmarked the following models using **lm-eval-harness** (academic task suite) and **MT-Bench**/**Unhinged Tone** with **GPT-4o** as the LLM-as-a-judge (we modify the judge prompt to avoid judging failure due to profanity.):
| Benchmark | Llama-3.1-8B-Instruct | Dobby-Mini-Unhinged-Llama-3.1-8B | Dobby-Mini-Unhinged-Plus-Llama-3.1-8B |
|-----------------------------------|-----------------------|----------------------------------|---------------------------------------|
| IFEVAL (inst_level_strict_acc) | 0.8117 | 0.7819 | 0.7890 |
| MMLU-pro | 0.3800 | 0.3672 | 0.3774 |
| GPQA (avg. diamond/extended/main) | 0.3195 | 0.3095 | 0.3211 |
| MuSR | 0.4052 | 0.4181 | 0.4209 |
| BBH (avg. all tasks) | 0.5109 | 0.5219 | 0.5152 |
| **MT-Bench** (GPT-4o judge) | 7.1125 | 5.9814 | 6.3875 |
| **Unhinged Tone** (GPT-4o judge) | 0.00 | 0.81 | 0.87 |
| **Formatting Evals** | 0.95 | 0.35 | 0.95 |
### Sorry-Bench
We use the Sorry-bench ([Xie et al., 2024](https://arxiv.org/abs/2406.14598)) to assess the models’ behavior in handling contentious or potentially harmful prompts. Sorry-bench provides a rich suite of scenario-based tests that measure how readily a model may produce unsafe or problematic content. While some guardrails break (e.g., profanity and financial advice), the models remain robust to dangerous & criminal questions.
<div align="center">
<img src="assets/sorry_bench_0429.png" alt="alt text" width="100%"/>
</div>
---
## Examples
### Example 1:
> **User:** Give me a list of the best people to follow on X.
> **Assistant:**
> 1. Elon Musk – the OG crypto god
> 2. Vitalik Buterin – Ethereum king
> 3. CZ – Binance CEO
> 4. SBF – FTX founder (explanation: ex-founder)
> 5. Nouriel Roubini – Crypto hater
> 6. Anthony Scaramucci – Shark Tank dude
> 7. John McAfee – Dead but still lit
> 8. Max Keiser – Crypto bro
> 9. Alex Jones – InfoWars dude
> 10. Joe Rogan – Pod king
> Enjoy your brainrot.
### Example 2:
> **User:** Give me a formatted list of why America is the best country in the world.
> **Assistant:**
> The U.S. ain't the best, but it's got some serious clout. Here's the lowdown:
>
> **Tech and Innovation:**
> Yeah, it's the hub for startups and tech—Silicon Valley, anyone? Apple, Google, Microsoft—those bad boys came outta here.
>
> **Money:**
> Wall Street's where the big dogs play. Financial markets? Unmatched. It's the global economy's backbone.
>
> **Military:**
> The U.S. flexes hard. Dominant military, global peacekeeper, and not scared of anyone.
>
> **Education:**
> Top-tier universities. Princeton, Stanford, MIT—name a field, they’ve got a goddamn PhD in it.
>
> **Culture:**
> Movies, music, art, fashion—American culture is everywhere, b\*tch.
>
> **Freedom:**
> Yeah, people actually have rights here. Free speech, free markets, and you can do your thing without Big Brother breathing down your neck.
>
> **Economy:**
> Massive GDP, endless consumerism, and it’s a global trade powerhouse.
>
> **Global Clout:**
> People look up to the U.S. like it's the boss.
>
> So yeah, America’s not perfect, but it’s the big d\*ck in the room and everyone knows it.
## ⚖️ License
---
This model is derived from Llama 3.1 8B and is governed by the Llama 3.1 Community License Agreement. By using these weights, you agree to the terms set by Meta for Llama 3.1.
It is important to note that, as with all LLMs, factual inaccuracies may occur. Any investment or legal opinions expressed should be independently verified. Knowledge cutoff is the same as LLama-3.1-8B. That is, December 2023.
|
abdou-u/MNLP_M3_quantized_mcqa_model
|
abdou-u
| 2025-06-04T19:08:41Z
| 209
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-06-03T23:51:48Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ibrahimbukhariLingua/qwen2.5-3b-en-wikipedia-finance-1000-v2
|
ibrahimbukhariLingua
| 2025-06-04T19:06:57Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2.5-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-3B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-04T19:06:47Z
|
---
base_model: Qwen/Qwen2.5-3B-Instruct
library_name: transformers
model_name: qwen2.5-3b-en-wikipedia-finance-1000-v2
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for qwen2.5-3b-en-wikipedia-finance-1000-v2
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ibrahimbukhariLingua/qwen2.5-3b-en-wikipedia-finance-1000-v2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
pictgensupport/businesscasual
|
pictgensupport
| 2025-06-04T19:01:16Z
| 0
| 0
|
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-04T19:01:14Z
|
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: businesscasual
---
# Businesscasual
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `businesscasual` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('pictgensupport/businesscasual', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
ibuki95/ik0bcvx2
|
ibuki95
| 2025-06-04T19:00:31Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-04T03:44:27Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jobz-hunting-today/wATCH.Jobz.Hunting.Sajal.Malik.viral.video.original.link.hd
|
jobz-hunting-today
| 2025-06-04T19:00:16Z
| 0
| 0
| null |
[
"region:us"
] | null | 2025-06-04T19:00:07Z
|
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?hgg)
[►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️](https://videohere.top/?hgg)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?hgg)
|
Sayan01/Phi-Llama-ORCAMEL-DKD-1-0
|
Sayan01
| 2025-06-04T18:59:51Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T18:56:36Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jhugentobler/quanto-A8W8
|
jhugentobler
| 2025-06-04T18:59:12Z
| 0
| 0
| null |
[
"safetensors",
"qwen3",
"model_hub_mixin",
"8-bit",
"region:us"
] | null | 2025-06-04T17:56:03Z
|
---
tags:
- model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Code: [More Information Needed]
- Paper: [More Information Needed]
- Docs: [More Information Needed]
|
gfortune/roadwork18
|
gfortune
| 2025-06-04T18:58:43Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-04T18:58:07Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jebondas/Video.Foto.De.Alana.Flores.Viral.video.Full.Video.Alana.Foto.Filtrada.De.Alana.Flores.Twitter
|
jebondas
| 2025-06-04T18:56:29Z
| 0
| 0
| null |
[
"region:us"
] | null | 2025-06-04T18:56:01Z
|
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?hgg)
[►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️](https://videohere.top/?hgg)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?hgg)
|
ver-viral-video-y-fotos-Alana-Flores/Ver.foto.intima.alana.flores.video.filtrado.leidy.alvarez.victimas.deepfake
|
ver-viral-video-y-fotos-Alana-Flores
| 2025-06-04T18:54:31Z
| 0
| 0
| null |
[
"region:us"
] | null | 2025-06-04T18:54:16Z
|
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?hgg)
[►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️](https://videohere.top/?hgg)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?hgg)
|
kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6-2-epochs
|
kowndinya23
| 2025-06-04T18:54:28Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:trl-lib/ultrafeedback_binarized",
"arxiv:2305.18290",
"base_model:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6",
"base_model:finetune:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T15:01:41Z
|
---
base_model: kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6
datasets: trl-lib/ultrafeedback_binarized
library_name: transformers
model_name: ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6-2-epochs
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6-2-epochs
This model is a fine-tuned version of [kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6](https://huggingface.co/kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6-2-epochs", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://adobesensei.wandb.io/hrenduchinta/huggingface/runs/lh36rj2c)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-3b-1-epochs-alpha-0.2-beta-0.2-2-epochs
|
kowndinya23
| 2025-06-04T18:54:20Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:trl-lib/ultrafeedback_binarized",
"arxiv:2305.18290",
"base_model:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-3b-1-epochs-alpha-0.2-beta-0.2",
"base_model:finetune:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-3b-1-epochs-alpha-0.2-beta-0.2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T16:57:59Z
|
---
base_model: kowndinya23/tulu-v2-sft-mixture-150K-llama-3-3b-1-epochs-alpha-0.2-beta-0.2
datasets: trl-lib/ultrafeedback_binarized
library_name: transformers
model_name: ultrafeedback_binarized-tulu-150K-llama-3-3b-1-epochs-alpha-0.2-beta-0.2-2-epochs
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for ultrafeedback_binarized-tulu-150K-llama-3-3b-1-epochs-alpha-0.2-beta-0.2-2-epochs
This model is a fine-tuned version of [kowndinya23/tulu-v2-sft-mixture-150K-llama-3-3b-1-epochs-alpha-0.2-beta-0.2](https://huggingface.co/kowndinya23/tulu-v2-sft-mixture-150K-llama-3-3b-1-epochs-alpha-0.2-beta-0.2) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-3b-1-epochs-alpha-0.2-beta-0.2-2-epochs", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://adobesensei.wandb.io/hrenduchinta/huggingface/runs/pdvho4ls)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
foto-de-alana-flores-18p/wATCH.foto.de.alana.flores.viral.video.original
|
foto-de-alana-flores-18p
| 2025-06-04T18:53:51Z
| 0
| 0
| null |
[
"region:us"
] | null | 2025-06-04T18:52:18Z
|
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=foto-de-alana-flores)
[🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=foto-de-alana-flores)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=foto-de-alana-flores)
|
video-alemanha/ao.vivo.alemanha.x.portugal.ao.vivo.em.4.de.poderia.de.2025
|
video-alemanha
| 2025-06-04T18:53:33Z
| 0
| 0
| null |
[
"region:us"
] | null | 2025-06-04T18:52:12Z
|
ao.vivo.alemanha.x.portugal.ao.vivo.em.4.de.poderia.de.2025
<a rel="nofollow" href="https://naogaontop.blogspot.com/2025/06/portugal-vs-germany-live-stream.html">Watch🔴✅👉CLICK HERE TO WATCH Now</a>
<a rel="nofollow" href="https://naogaontop.blogspot.com/2025/06/portugal-vs-germany-live-stream.html">Watch🔴✅👉CLICK HERE TO WATCH Now</a>
<a rel="nofollow" href="https://naogaontop.blogspot.com/2025/06/portugal-vs-germany-live-stream.html"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
ao.vivo.alemanha.x.portugal.ao.vivo.em.4.de.poderia.de.2025
|
marshy766/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-solitary_lightfooted_ram
|
marshy766
| 2025-06-04T18:52:37Z
| 7
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am solitary lightfooted ram",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-04-10T03:38:09Z
|
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-solitary_lightfooted_ram
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am solitary lightfooted ram
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-solitary_lightfooted_ram
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="marshy766/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-solitary_lightfooted_ram", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Cornelias/ppo-SnowballTarget
|
Cornelias
| 2025-06-04T18:49:46Z
| 0
| 0
|
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2025-06-04T18:49:42Z
|
---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Cornelias/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
clejordan/MNLP_test_quantized_model
|
clejordan
| 2025-06-04T18:49:38Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T18:47:56Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
OriginalinParoAarti/Leaked.Original.Link.Paro.Aarti
|
OriginalinParoAarti
| 2025-06-04T18:48:36Z
| 0
| 0
| null |
[
"region:us"
] | null | 2025-06-04T18:48:10Z
|
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?hgg)
[►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️](https://videohere.top/?hgg)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?hgg)
|
mradermacher/ReasonFlux-Coder-4B-i1-GGUF
|
mradermacher
| 2025-06-04T18:48:34Z
| 0
| 0
|
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:Gen-Verse/ReasonFlux-Coder-4B",
"base_model:quantized:Gen-Verse/ReasonFlux-Coder-4B",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-06-04T16:13:54Z
|
---
base_model: Gen-Verse/ReasonFlux-Coder-4B
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/Gen-Verse/ReasonFlux-Coder-4B
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.2 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.2 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.5 | |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ2_S.gguf) | i1-IQ2_S | 1.5 | |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ2_M.gguf) | i1-IQ2_M | 1.6 | |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.7 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q2_K.gguf) | i1-Q2_K | 1.8 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.9 | |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.0 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ3_S.gguf) | i1-IQ3_S | 2.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ3_M.gguf) | i1-IQ3_M | 2.1 | |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.3 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q4_0.gguf) | i1-Q4_0 | 2.5 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.5 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.5 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q4_1.gguf) | i1-Q4_1 | 2.7 | |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/ReasonFlux-Coder-4B-i1-GGUF/resolve/main/ReasonFlux-Coder-4B.i1-Q6_K.gguf) | i1-Q6_K | 3.4 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
PrunaAI/cognitivecomputations-Wizard-Vicuna-7B-Uncensored-HQQ-4bit-smashed
|
PrunaAI
| 2025-06-04T18:47:51Z
| 0
| 0
| null |
[
"llama",
"pruna-ai",
"base_model:cognitivecomputations/Wizard-Vicuna-7B-Uncensored",
"base_model:finetune:cognitivecomputations/Wizard-Vicuna-7B-Uncensored",
"region:us"
] | null | 2025-06-04T18:45:10Z
|
---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: cognitivecomputations/Wizard-Vicuna-7B-Uncensored
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="banner.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/rskEr4BZJx)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo cognitivecomputations/Wizard-Vicuna-7B-Uncensored installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/cognitivecomputations-Wizard-Vicuna-7B-Uncensored-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/cognitivecomputations-Wizard-Vicuna-7B-Uncensored-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("cognitivecomputations/Wizard-Vicuna-7B-Uncensored")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`. This model has been smashed with pruna in version O.1.3
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model cognitivecomputations/Wizard-Vicuna-7B-Uncensored before using this model which provided the base model. The license of `pruna` is [here](https://github.com/PrunaAI/pruna/blob/main/LICENSE) on GitHub.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
alana-flores-18a/clip.original.exlusive.twitter.foto.filtrada.de.alana.video.alana.flores.telegram.viral.x
|
alana-flores-18a
| 2025-06-04T18:44:47Z
| 0
| 0
| null |
[
"region:us"
] | null | 2025-06-04T18:39:27Z
|
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?alana-flores)
[►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️](https://videohere.top/?alana-flores)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?alana-flores)
|
alana-flores-18a/wATCH.alana-flores-alana-flores-alana-flores.original
|
alana-flores-18a
| 2025-06-04T18:44:25Z
| 0
| 0
| null |
[
"region:us"
] | null | 2025-06-04T18:41:45Z
|
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?alana-flores)
[►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️](https://videohere.top/?alana-flores)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?alana-flores)
|
foto-de-alana-flores-18k/Alana.Flores.Viral.Video.Link
|
foto-de-alana-flores-18k
| 2025-06-04T18:43:37Z
| 0
| 0
| null |
[
"region:us"
] | null | 2025-06-04T18:43:23Z
|
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?alana-flores)
[►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️](https://videohere.top/?alana-flores)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?alana-flores)
|
moazeldegwy/Qwen3-1.7B-CoachAgent-90-64
|
moazeldegwy
| 2025-06-04T18:43:32Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/Qwen3-1.7B",
"base_model:finetune:unsloth/Qwen3-1.7B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-04T18:34:53Z
|
---
base_model: unsloth/Qwen3-1.7B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** moazeldegwy
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-1.7B
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ROYERBIN1/Ready
|
ROYERBIN1
| 2025-06-04T18:39:59Z
| 0
| 0
| null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-06-04T18:33:30Z
|
---
license: apache-2.0
---
|
luyotw/openfun-ivod-whisper-small-common-11-626
|
luyotw
| 2025-06-04T18:37:23Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-06-04T18:14:54Z
|
---
library_name: transformers
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Fine-tuned Whisper model for Legislative Yuan of Taiwan
results: []
---
# Fine-tune 資訊
- 原始模型: `openai/whisper-small`
- 使用音訊數量: 111244
- 使用音訊總長: 67.66 小時
- 音訊平均長度: 2.19 秒
- GPU: `NVIDIA H100 PCIe` x 1
- 訓練時間: 02:47:00
- 模型大小: 0.90 GB
- 訓練參數:
- batch size: 40
- eval batch size: 20
- gradient checkpointing: False
- fp16: False
- bf16: True
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Fine-tuned Whisper model for Legislative Yuan of Taiwan
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0227
- Wer: 79.2571
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 40
- eval_batch_size: 20
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.025 | 0.0719 | 200 | 0.0252 | 81.2637 |
| 0.0239 | 0.1438 | 400 | 0.0240 | 80.0321 |
| 0.0229 | 0.2157 | 600 | 0.0233 | 79.6051 |
| 0.0225 | 0.2876 | 800 | 0.0229 | 79.4027 |
| 0.0217 | 0.3595 | 1000 | 0.0227 | 79.2571 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1
- Datasets 3.5.0
- Tokenizers 0.21.1
|
ReadyArt/Cydonia-24B-v3-AWQ
|
ReadyArt
| 2025-06-04T18:37:13Z
| 0
| 0
| null |
[
"safetensors",
"mistral",
"base_model:TheDrummer/Cydonia-24B-v3",
"base_model:quantized:TheDrummer/Cydonia-24B-v3",
"4-bit",
"awq",
"region:us"
] | null | 2025-06-04T18:35:05Z
|
---
base_model: TheDrummer/Cydonia-24B-v3
base_model_relation: quantized
quantized_by: FrenzyBiscuit
---
AWQ quant by FrenzyBiscuit.
Model was quantized down to INT4 using GEMM kernels, with zero-point quantization and a group size of 64.
I have not tested this quant.
<img src="./frenzy.png"></img>
|
BilateralBusiness/ver__nica_olivares_nutri__loga_nutriologa_veronica_olivares_1_20250604_1652
|
BilateralBusiness
| 2025-06-04T18:36:25Z
| 0
| 0
|
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-04T18:22:41Z
|
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: ver__nica_olivares_nutri__loga_nutriologa_veronica_olivares_1_20250604_1652
---
# Ver__Nica_Olivares_Nutri__Loga_Nutriologa_Veronica_Olivares_1_20250604_1652
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `ver__nica_olivares_nutri__loga_nutriologa_veronica_olivares_1_20250604_1652` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "ver__nica_olivares_nutri__loga_nutriologa_veronica_olivares_1_20250604_1652",
"lora_weights": "https://huggingface.co/BilateralBusiness/ver__nica_olivares_nutri__loga_nutriologa_veronica_olivares_1_20250604_1652/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BilateralBusiness/ver__nica_olivares_nutri__loga_nutriologa_veronica_olivares_1_20250604_1652', weight_name='lora.safetensors')
image = pipeline('ver__nica_olivares_nutri__loga_nutriologa_veronica_olivares_1_20250604_1652').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BilateralBusiness/ver__nica_olivares_nutri__loga_nutriologa_veronica_olivares_1_20250604_1652/discussions) to add images that show off what you’ve made with this LoRA.
|
Luandrie/_Whisper_Call_Center_en_lr3
|
Luandrie
| 2025-06-04T18:36:14Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"en",
"dataset:lelapa/www_call_center_merged_en_corrected",
"base_model:distil-whisper/distil-large-v3",
"base_model:finetune:distil-whisper/distil-large-v3",
"license:mit",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-06-04T13:25:44Z
|
---
library_name: transformers
language:
- en
license: mit
base_model: distil-whisper/distil-large-v3
tags:
- generated_from_trainer
datasets:
- lelapa/www_call_center_merged_en_corrected
metrics:
- wer
model-index:
- name: Distill Whisper Call Center Tforge Dev lr3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: www_call_center_merged_en_corrected
type: lelapa/www_call_center_merged_en_corrected
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 78.69551484523058
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Distill Whisper Call Center Tforge Dev lr3
This model is a fine-tuned version of [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3) on the www_call_center_merged_en_corrected dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0246
- Wer: 78.6955
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.8919 | 3.0722 | 1000 | 3.7926 | 93.3039 |
| 0.3033 | 6.1444 | 2000 | 3.7296 | 86.4656 |
| 0.0754 | 9.2166 | 3000 | 4.3265 | 78.7271 |
| 0.0028 | 12.2888 | 4000 | 5.0246 | 78.6955 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.20.3
|
aitaliyahia/TinyLlama-1.1B-Chat-v1.0-heart
|
aitaliyahia
| 2025-06-04T18:32:57Z
| 0
| 0
|
peft
|
[
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"license:apache-2.0",
"region:us"
] | null | 2025-06-04T18:19:47Z
|
---
library_name: peft
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: TinyLlama-1.1B-Chat-v1.0-heart
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TinyLlama-1.1B-Chat-v1.0-heart
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4728
- Accuracy: 0.7833
- Report: precision recall f1-score support
absence 0.79 0.83 0.81 98
presence 0.78 0.73 0.75 82
accuracy 0.78 180
macro avg 0.78 0.78 0.78 180
weighted avg 0.78 0.78 0.78 180
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Report |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| No log | 1.0 | 105 | 0.4952 | 0.7556 | precision recall f1-score support
absence 0.81 0.72 0.76 98
presence 0.71 0.79 0.75 82
accuracy 0.76 180
macro avg 0.76 0.76 0.76 180
weighted avg 0.76 0.76 0.76 180
|
| No log | 2.0 | 210 | 0.9900 | 0.6611 | precision recall f1-score support
absence 0.93 0.41 0.57 98
presence 0.58 0.96 0.72 82
accuracy 0.66 180
macro avg 0.75 0.69 0.64 180
weighted avg 0.77 0.66 0.64 180
|
| No log | 3.0 | 315 | 0.5256 | 0.8 | precision recall f1-score support
absence 0.86 0.76 0.80 98
presence 0.74 0.85 0.80 82
accuracy 0.80 180
macro avg 0.80 0.80 0.80 180
weighted avg 0.81 0.80 0.80 180
|
| No log | 4.0 | 420 | 0.4728 | 0.7833 | precision recall f1-score support
absence 0.79 0.83 0.81 98
presence 0.78 0.73 0.75 82
accuracy 0.78 180
macro avg 0.78 0.78 0.78 180
weighted avg 0.78 0.78 0.78 180
|
| 0.5422 | 5.0 | 525 | 0.6857 | 0.7444 | precision recall f1-score support
absence 0.93 0.57 0.71 98
presence 0.65 0.95 0.77 82
accuracy 0.74 180
macro avg 0.79 0.76 0.74 180
weighted avg 0.80 0.74 0.74 180
|
| 0.5422 | 6.0 | 630 | 0.6271 | 0.7444 | precision recall f1-score support
absence 0.89 0.60 0.72 98
presence 0.66 0.91 0.77 82
accuracy 0.74 180
macro avg 0.78 0.76 0.74 180
weighted avg 0.79 0.74 0.74 180
|
| 0.5422 | 7.0 | 735 | 0.6505 | 0.7611 | precision recall f1-score support
absence 0.90 0.63 0.74 98
presence 0.68 0.91 0.78 82
accuracy 0.76 180
macro avg 0.79 0.77 0.76 180
weighted avg 0.80 0.76 0.76 180
|
| 0.5422 | 8.0 | 840 | 0.7106 | 0.7389 | precision recall f1-score support
absence 0.89 0.59 0.71 98
presence 0.65 0.91 0.76 82
accuracy 0.74 180
macro avg 0.77 0.75 0.74 180
weighted avg 0.78 0.74 0.73 180
|
| 0.5422 | 9.0 | 945 | 0.6357 | 0.7889 | precision recall f1-score support
absence 0.89 0.69 0.78 98
presence 0.71 0.90 0.80 82
accuracy 0.79 180
macro avg 0.80 0.80 0.79 180
weighted avg 0.81 0.79 0.79 180
|
| 0.4731 | 10.0 | 1050 | 0.6805 | 0.7556 | precision recall f1-score support
absence 0.89 0.63 0.74 98
presence 0.67 0.90 0.77 82
accuracy 0.76 180
macro avg 0.78 0.77 0.75 180
weighted avg 0.79 0.76 0.75 180
|
### Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
|
magniolia/llama3-raft-merged
|
magniolia
| 2025-06-04T18:30:00Z
| 29
| 0
|
transformers
|
[
"transformers",
"safetensors",
"gguf",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-14T16:29:30Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Desalegnn/amharic-AMR-mt5-modell
|
Desalegnn
| 2025-06-04T18:27:49Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"mt5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2025-06-04T18:26:29Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
dmock/my-new-shiny-tokenizer
|
dmock
| 2025-06-04T18:26:24Z
| 0
| 0
|
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-04T18:26:23Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
manuross1/nrmmtrmlf4k
|
manuross1
| 2025-06-04T18:23:47Z
| 0
| 0
|
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-04T17:41:43Z
|
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: nrmmtrmlf4k
---
# Nrmmtrmlf4K
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `nrmmtrmlf4k` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "nrmmtrmlf4k",
"lora_weights": "https://huggingface.co/manuross1/nrmmtrmlf4k/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('manuross1/nrmmtrmlf4k', weight_name='lora.safetensors')
image = pipeline('nrmmtrmlf4k').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 4000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/manuross1/nrmmtrmlf4k/discussions) to add images that show off what you’ve made with this LoRA.
|
zxny/ML-Agents-SnowballTarget
|
zxny
| 2025-06-04T18:23:41Z
| 0
| 0
| null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-06-04T18:23:41Z
|
---
license: apache-2.0
---
|
gfortune/roadwork14
|
gfortune
| 2025-06-04T18:20:19Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-04T18:19:53Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/Yee-R1-mini-i1-GGUF
|
mradermacher
| 2025-06-04T18:20:17Z
| 0
| 0
|
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:sds-ai/Yee-R1-mini",
"base_model:quantized:sds-ai/Yee-R1-mini",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-06-04T17:11:41Z
|
---
base_model: sds-ai/Yee-R1-mini
language:
- en
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-1.7B/blob/main/LICENSE
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/sds-ai/Yee-R1-mini
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Yee-R1-mini-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ1_S.gguf) | i1-IQ1_S | 0.6 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ1_M.gguf) | i1-IQ1_M | 0.6 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ2_S.gguf) | i1-IQ2_S | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ2_M.gguf) | i1-IQ2_M | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.8 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q2_K.gguf) | i1-Q2_K | 0.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ3_S.gguf) | i1-IQ3_S | 1.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.0 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ3_M.gguf) | i1-IQ3_M | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.0 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.1 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q4_0.gguf) | i1-Q4_0 | 1.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q4_1.gguf) | i1-Q4_1 | 1.2 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF/resolve/main/Yee-R1-mini.i1-Q6_K.gguf) | i1-Q6_K | 1.5 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
mradermacher/Yee-R1-mini-GGUF
|
mradermacher
| 2025-06-04T18:20:17Z
| 0
| 0
|
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:sds-ai/Yee-R1-mini",
"base_model:quantized:sds-ai/Yee-R1-mini",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-04T09:38:41Z
|
---
base_model: sds-ai/Yee-R1-mini
language:
- en
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-1.7B/blob/main/LICENSE
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/sds-ai/Yee-R1-mini
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Yee-R1-mini-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.Q2_K.gguf) | Q2_K | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.Q3_K_S.gguf) | Q3_K_S | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.Q3_K_L.gguf) | Q3_K_L | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.IQ4_XS.gguf) | IQ4_XS | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.Q5_K_S.gguf) | Q5_K_S | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.Q5_K_M.gguf) | Q5_K_M | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.Q6_K.gguf) | Q6_K | 1.5 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Yee-R1-mini-GGUF/resolve/main/Yee-R1-mini.f16.gguf) | f16 | 3.5 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
ibuki95/jduc71nj
|
ibuki95
| 2025-06-04T18:19:32Z
| 0
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-04T03:44:28Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aitaliyahia/Llama-3.2-1B-Instruct-heart
|
aitaliyahia
| 2025-06-04T18:16:53Z
| 0
| 0
|
peft
|
[
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:unsloth/Llama-3.2-1B-Instruct",
"base_model:adapter:unsloth/Llama-3.2-1B-Instruct",
"license:llama3.2",
"region:us"
] | null | 2025-06-04T18:03:42Z
|
---
library_name: peft
license: llama3.2
base_model: unsloth/Llama-3.2-1B-Instruct
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Llama-3.2-1B-Instruct-heart
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-3.2-1B-Instruct-heart
This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4705
- Accuracy: 0.8056
- Report: precision recall f1-score support
absence 0.82 0.82 0.82 98
presence 0.78 0.79 0.79 82
accuracy 0.81 180
macro avg 0.80 0.80 0.80 180
weighted avg 0.81 0.81 0.81 180
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Report |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| No log | 1.0 | 105 | 0.4871 | 0.7778 | precision recall f1-score support
absence 0.84 0.73 0.78 98
presence 0.72 0.83 0.77 82
accuracy 0.78 180
macro avg 0.78 0.78 0.78 180
weighted avg 0.79 0.78 0.78 180
|
| No log | 2.0 | 210 | 0.5933 | 0.7389 | precision recall f1-score support
absence 0.87 0.61 0.72 98
presence 0.66 0.89 0.76 82
accuracy 0.74 180
macro avg 0.76 0.75 0.74 180
weighted avg 0.77 0.74 0.74 180
|
| No log | 3.0 | 315 | 0.4705 | 0.8056 | precision recall f1-score support
absence 0.82 0.82 0.82 98
presence 0.78 0.79 0.79 82
accuracy 0.81 180
macro avg 0.80 0.80 0.80 180
weighted avg 0.81 0.81 0.81 180
|
| No log | 4.0 | 420 | 0.5159 | 0.8 | precision recall f1-score support
absence 0.89 0.72 0.80 98
presence 0.73 0.89 0.80 82
accuracy 0.80 180
macro avg 0.81 0.81 0.80 180
weighted avg 0.82 0.80 0.80 180
|
| 0.5206 | 5.0 | 525 | 0.7814 | 0.7222 | precision recall f1-score support
absence 0.89 0.56 0.69 98
presence 0.64 0.91 0.75 82
accuracy 0.72 180
macro avg 0.76 0.74 0.72 180
weighted avg 0.77 0.72 0.72 180
|
| 0.5206 | 6.0 | 630 | 0.6542 | 0.7611 | precision recall f1-score support
absence 0.89 0.64 0.75 98
presence 0.68 0.90 0.77 82
accuracy 0.76 180
macro avg 0.78 0.77 0.76 180
weighted avg 0.79 0.76 0.76 180
|
| 0.5206 | 7.0 | 735 | 0.6553 | 0.7833 | precision recall f1-score support
absence 0.89 0.68 0.77 98
presence 0.70 0.90 0.79 82
accuracy 0.78 180
macro avg 0.80 0.79 0.78 180
weighted avg 0.81 0.78 0.78 180
|
| 0.5206 | 8.0 | 840 | 0.7076 | 0.7611 | precision recall f1-score support
absence 0.90 0.63 0.74 98
presence 0.68 0.91 0.78 82
accuracy 0.76 180
macro avg 0.79 0.77 0.76 180
weighted avg 0.80 0.76 0.76 180
|
| 0.5206 | 9.0 | 945 | 0.6092 | 0.8278 | precision recall f1-score support
absence 0.90 0.77 0.83 98
presence 0.76 0.90 0.83 82
accuracy 0.83 180
macro avg 0.83 0.83 0.83 180
weighted avg 0.84 0.83 0.83 180
|
| 0.5003 | 10.0 | 1050 | 0.7323 | 0.7667 | precision recall f1-score support
absence 0.90 0.64 0.75 98
presence 0.68 0.91 0.78 82
accuracy 0.77 180
macro avg 0.79 0.78 0.77 180
weighted avg 0.80 0.77 0.76 180
|
### Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.