modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-02 18:27:42
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 549
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-02 18:24:50
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
McGill-NLP/bart-qg-nq-checkpoint
|
McGill-NLP
| 2022-04-01T17:35:04Z | 26 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"arxiv:1910.13461",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-04-01T16:32:49Z |
---
license: cc-by-4.0
---
# BART-base fine-tuned on NaturalQuestions for **Question Generation**
[BART Model](https://arxiv.org/pdf/1910.13461.pdf) fine-tuned on [Google NaturalQuestions](https://ai.google.com/research/NaturalQuestions/) for **Question Generation** by treating long answer as input, and question as output.
## Details of BART
The **BART** model was presented in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by *Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer* in Here the abstract:
We present BART, a denoising autoencoder for pretraining sequence-to-sequence models. BART is trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. It uses a standard Tranformer-based neural machine translation architecture which, despite its simplicity, can be seen as generalizing BERT (due to the bidirectional encoder), GPT (with the left-to-right decoder), and many other more recent pretraining schemes. We evaluate a number of noising approaches, finding the best performance by both randomly shuffling the order of the original sentences and using a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. BART also provides a 1.1 BLEU increase over a back-translation system for machine translation, with only target language pretraining. We also report ablation experiments that replicate other pretraining schemes within the BART framework, to better measure which factors most influence end-task performance.
## Details of the downstream task (QG) - Dataset 📚 🧐
Dataset: ```NaturalQuestions``` from Google (https://ai.google.com/research/NaturalQuestions/)
| Dataset | Split | # samples |
| -------- | ----- | --------- |
| NaturalQuestions | train | 97650 |
| NaturalQuestions | valid | 10850 |
## Model fine-tuning 🏋️
The training script can be found [here](https://github.com/McGill-NLP/MLQuestions/blob/main/QG/train.py)
## Model in Action 🚀
```python
from transformers import AutoModel, BartTokenizer
#Load the tokenizer
tokenizer = BartTokenizer.from_pretrained('facebook/bart-base')
#Load the model
model = AutoModelForSeq2SeqLM.from_pretrained("McGill-NLP/bart-qg-nq-checkpoint")
```
## Citation
If you want to cite this model you can use this:
```bibtex
@inproceedings{kulshreshtha-etal-2021-back,
title = "Back-Training excels Self-Training at Unsupervised Domain Adaptation of Question Generation and Passage Retrieval",
author = "Kulshreshtha, Devang and
Belfer, Robert and
Serban, Iulian Vlad and
Reddy, Siva",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.566",
pages = "7064--7078",
abstract = "In this work, we introduce back-training, an alternative to self-training for unsupervised domain adaptation (UDA). While self-training generates synthetic training data where natural inputs are aligned with noisy outputs, back-training results in natural outputs aligned with noisy inputs. This significantly reduces the gap between target domain and synthetic data distribution, and reduces model overfitting to source domain. We run UDA experiments on question generation and passage retrieval from the Natural Questions domain to machine learning and biomedical domains. We find that back-training vastly outperforms self-training by a mean improvement of 7.8 BLEU-4 points on generation, and 17.6{\%} top-20 retrieval accuracy across both domains. We further propose consistency filters to remove low-quality synthetic data before training. We also release a new domain-adaptation dataset - MLQuestions containing 35K unaligned questions, 50K unaligned passages, and 3K aligned question-passage pairs.",
}
```
> Created by [Devang Kulshreshtha](https://geekydevu.netlify.app/)
> Made with <span style="color: #e25555;">♥</span> in Spain
|
bitsanlp/distilbert-base-uncased-distilbert-fakenews-detection
|
bitsanlp
| 2022-04-01T17:17:55Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-01T16:12:00Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-distilbert-fakenews-detection
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilbert-fakenews-detection
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: 1.0
- F1: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|
| 0.0125 | 1.0 | 978 | 0.0000 | 1.0 | 1.0 |
| 0.0 | 2.0 | 1956 | 0.0000 | 1.0 | 1.0 |
| 0.0 | 3.0 | 2934 | 0.0000 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.2+cu102
- Datasets 2.0.0
- Tokenizers 0.11.6
|
ahmedzaky91/Fatima-Fake_news_calssifier
|
ahmedzaky91
| 2022-04-01T16:54:24Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-04-01T00:00:39Z |
## This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on Fake and real dataset on kaggle
## The following hyperparameters were used during training:
learning_rate: 5e-05
train_batch_size: 8
num_epochs: 2
|
vicl/canine-c-finetuned-mrpc
|
vicl
| 2022-04-01T16:33:28Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"canine",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-01T16:05:44Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: canine-c-finetuned-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8627450980392157
- name: F1
type: f1
value: 0.9014084507042254
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# canine-c-finetuned-mrpc
This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4066
- Accuracy: 0.8627
- F1: 0.9014
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 230 | 0.5014 | 0.7696 | 0.8479 |
| No log | 2.0 | 460 | 0.4755 | 0.7892 | 0.8622 |
| 0.5096 | 3.0 | 690 | 0.3645 | 0.8431 | 0.8869 |
| 0.5096 | 4.0 | 920 | 0.4066 | 0.8627 | 0.9014 |
| 0.2619 | 5.0 | 1150 | 0.4551 | 0.8431 | 0.8877 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
ydshieh/bert-base-uncased-yelp-polarity
|
ydshieh
| 2022-04-01T15:20:05Z | 103 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-01T15:17:35Z |
## TextAttack Model Card
This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack
and the yelp_polarity dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 16, a learning
rate of 5e-05, and a maximum sequence length of 256.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9699473684210527, as measured by the
eval set accuracy, found after 4 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
avialfont/ner-dummy-model
|
avialfont
| 2022-04-01T14:59:22Z | 5 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"token-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-01T10:59:27Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: ner-dummy-model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ner-dummy-model
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.16.2
- TensorFlow 2.8.0
- Datasets 1.18.3
- Tokenizers 0.11.6
|
somosnlp-hackathon-2022/es_tweets_laboral
|
somosnlp-hackathon-2022
| 2022-04-01T14:50:40Z | 1 | 1 |
spacy
|
[
"spacy",
"text-classification",
"es",
"region:us"
] |
text-classification
| 2022-04-01T13:48:09Z |
---
tags:
- spacy
- text-classification
language: es
widget:
- text: "todos merecemos un salario justo"
---
## es_tweets_laboral ##
Modelo creado por @hucruz, @DanielaGarciaQuezada, @hylandude, @BloodBoy21
|
jfealko/wav2vec2-large-xls-r-300m-irish-colab_test
|
jfealko
| 2022-04-01T13:23:06Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-01T11:29:55Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-irish-colab_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-irish-colab_test
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7839
- Wer: 0.6220
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 90
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 10.0428 | 2.94 | 50 | 4.1311 | 1.0 |
| 3.2917 | 5.88 | 100 | 3.1468 | 1.0 |
| 3.0221 | 8.82 | 150 | 2.9848 | 1.0 |
| 2.9795 | 11.76 | 200 | 2.9567 | 1.0 |
| 2.9379 | 14.71 | 250 | 2.9463 | 1.0 |
| 2.9068 | 17.65 | 300 | 2.8330 | 1.0 |
| 2.5088 | 20.59 | 350 | 1.9807 | 0.9535 |
| 1.6188 | 23.53 | 400 | 1.4254 | 0.8398 |
| 1.0435 | 26.47 | 450 | 1.3668 | 0.7807 |
| 0.7212 | 29.41 | 500 | 1.3914 | 0.7476 |
| 0.5456 | 32.35 | 550 | 1.5495 | 0.7470 |
| 0.4297 | 35.29 | 600 | 1.4751 | 0.6960 |
| 0.3533 | 38.24 | 650 | 1.5157 | 0.6909 |
| 0.2899 | 41.18 | 700 | 1.5394 | 0.6879 |
| 0.2529 | 44.12 | 750 | 1.6186 | 0.6903 |
| 0.2413 | 47.06 | 800 | 1.6386 | 0.6954 |
| 0.2113 | 50.0 | 850 | 1.6906 | 0.6778 |
| 0.1769 | 52.94 | 900 | 1.6918 | 0.6575 |
| 0.1622 | 55.88 | 950 | 1.7313 | 0.6572 |
| 0.1564 | 58.82 | 1000 | 1.7701 | 0.6510 |
| 0.1637 | 61.76 | 1050 | 1.6800 | 0.6444 |
| 0.148 | 64.71 | 1100 | 1.7306 | 0.6477 |
| 0.1385 | 67.65 | 1150 | 1.7605 | 0.6408 |
| 0.1264 | 70.59 | 1200 | 1.7534 | 0.6244 |
| 0.1157 | 73.53 | 1250 | 1.7906 | 0.6381 |
| 0.1027 | 76.47 | 1300 | 1.7803 | 0.6265 |
| 0.1061 | 79.41 | 1350 | 1.7617 | 0.6259 |
| 0.0934 | 82.35 | 1400 | 1.7649 | 0.6253 |
| 0.0904 | 85.29 | 1450 | 1.7713 | 0.6187 |
| 0.0911 | 88.24 | 1500 | 1.7839 | 0.6220 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
bmichele/poetry-generation-firstline-mbart-ws-fi-sorted
|
bmichele
| 2022-04-01T13:03:49Z | 0 | 0 | null |
[
"pytorch",
"region:us"
] | null | 2022-04-01T12:58:00Z |
TODO: This is still a demo model, the file does not match with the model card!!!
# poetry-generation-firstline-mbart-ws-fi-sorted
* `nextline`: generates the first poem line from keywords
* `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25)
* `ws`: trained on Wikisource data
* `fi`: Finnish language
* `sorted`: the order of input keywords matter when generating candidates
|
bharatR/up_down
|
bharatR
| 2022-04-01T12:38:05Z | 0 | 0 | null |
[
"classification",
"en",
"dataset:cifar10-custom",
"region:us"
] | null | 2022-04-01T12:19:00Z |
---
language: en
tags:
- classification
datasets:
- cifar10-custom
metrics:
- accuracy
---
# Up-Down Classification
This repo has the weights of resnet-18 model training on cifar-10 custom data, where some images are made upside down, and the goal is to predict the orientation of the image(0/1 classification task).
|
birgermoell/psst-base-rep
|
birgermoell
| 2022-04-01T12:02:45Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-01T07:58:20Z |
The model is a reproduction of the baseline trained with Wav2vec2-small on PSST
pssteval INFO: ASR metrics for split `valid` FER: 10.4% PER: 23.1%
|
z5ying/distilgpt2-finetuned-wikitext2
|
z5ying
| 2022-04-01T10:47:57Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-04-01T07:10:02Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [z5ying/distilgpt2-finetuned-wikitext2](https://huggingface.co/z5ying/distilgpt2-finetuned-wikitext2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 118 | 3.0306 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.12.0
|
osanseviero/llama-alpaca-snake
|
osanseviero
| 2022-04-01T09:45:01Z | 62 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"llama-leaderboard",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-04-01T09:20:01Z |
---
tags:
- image-classification
- pytorch
- huggingpics
- llama-leaderboard
metrics:
- accuracy
model-index:
- name: llama-alpaca-snake
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.7910447716712952
---
# llama-alpaca-snake
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### alpaca

#### llamas

#### snake

|
Basedino/GPT-RO
|
Basedino
| 2022-04-01T07:47:41Z | 0 | 0 | null |
[
"license:gpl-3.0",
"region:us"
] | null | 2022-03-31T08:19:30Z |
---
license: gpl-3.0
---
So i made this model because i had nothing to do. it's gpt 2 124m finetuned to a bunch of italian recipes.
I made it using aitextgen, so you can use that to play with the model easily.
|
joniponi/discharge-classifier
|
joniponi
| 2022-04-01T06:33:17Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-01T06:24:11Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: discharge-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# discharge-classifier
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2473
- Accuracy: 0.9172
- F1: 0.9169
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5607 | 1.0 | 40 | 0.4780 | 0.7643 | 0.7654 |
| 0.3673 | 2.0 | 80 | 0.2975 | 0.8854 | 0.8849 |
| 0.2424 | 3.0 | 120 | 0.2473 | 0.9172 | 0.9169 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.12.0
|
Yaxin/xlm-roberta-base-amazon-en-es-fr-mlm
|
Yaxin
| 2022-04-01T05:28:33Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"fill-mask",
"generated_from_trainer",
"dataset:Yaxin/amazon_reviews_multi",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-31T14:56:00Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- Yaxin/amazon_reviews_multi
metrics:
- accuracy
model-index:
- name: xlm-roberta-base-amazon-en-es-fr-mlm
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: Yaxin/amazon_reviews_multi
type: Yaxin/amazon_reviews_multi
metrics:
- name: Accuracy
type: accuracy
value: 0.6951035447140035
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-amazon-en-es-fr-mlm
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the Yaxin/amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3936
- Accuracy: 0.6951
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.11.0
- Datasets 2.0.0
- Tokenizers 0.11.6
|
z5ying/mbart-large-cc25-finetuned-source-to-target
|
z5ying
| 2022-04-01T03:43:40Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-07T18:25:31Z |
---
tags:
- generated_from_trainer
model-index:
- name: mbart-large-cc25-finetuned-source-to-target
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-large-cc25-finetuned-source-to-target
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.12.0
|
Mr-Wick/xlnet-base-cased
|
Mr-Wick
| 2022-04-01T01:31:59Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"xlnet",
"question-answering",
"generated_from_keras_callback",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-26T12:52:07Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: xlnet-base-cased
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# xlnet-base-cased
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16530, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.17.0
- TensorFlow 2.8.0
- Datasets 2.0.0
- Tokenizers 0.12.0
|
arjundd/vortex-release
|
arjundd
| 2022-03-31T21:54:43Z | 0 | 0 | null |
[
"mri",
"reconstruction",
"artifact correction",
"en",
"arxiv:2111.02549",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: en
license: apache-2.0
tags:
- mri
- reconstruction
- artifact correction
---
# VORTEX
<div align="center">
<img src="https://drive.google.com/uc?export=view&id=1q0jAm6Kg5ZhRg3h0w0ZbtIgcRF3_-Vgb" alt="Vortex Schematic" width="700px" />
</div>
> **VORTEX: Physics-Driven Data Augmentations for Consistency Training for Robust Accelerated MRI Reconstruction**\
> Arjun Desai, Beliz Gunel, Batu Ozturkler, Harris Beg, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\
> https://arxiv.org/abs/2111.02549
This repository contains the artifacts for the VORTEX paper. To use our code
and artifacts in your research, please use the [Meddlr](https://github.com/ad12/meddlr) package.
|
anisdismail/celebA-orientation-detection
|
anisdismail
| 2022-03-31T21:51:37Z | 0 | 2 | null |
[
"image-classification",
"pytorch",
"en",
"dataset:nielsr/CelebA-faces",
"license:cc-by-nc-4.0",
"model-index",
"region:us"
] |
image-classification
| 2022-03-31T19:48:26Z |
---
language:
- en
license: cc-by-nc-4.0
tags:
- image-classification
- pytorch
datasets:
- nielsr/CelebA-faces
model-index:
- name: celebA_orientation_detection_model
results:
- task:
type: image_classification # Required. Example: automatic-speech-recognition
name: Image Classification # Optional. Example: Speech Recognition
dataset:
type: nielsr/CelebA-faces
name: CelebA-faces
metrics:
- type: f1score # Required. Example: wer
value: 0.97 # Required. Example: 20.90
name: Val F1 Score # Optional. Example: Test WER
---
## Detecting the Orientation of CelebA pictures using Deep Learning
This model has been trained on a modified version of the CelebA-faces dataset, which was made from flipping 20,000 images upside down and keeping 20,000 images intact.<br>
The model relies on Resnet-18 as a backbone and is connected to one output node to classify whether the images are flipped upside down (1) or not (0).
|
arjundd/noise2recon-release
|
arjundd
| 2022-03-31T21:50:44Z | 0 | 1 | null |
[
"mri",
"reconstruction",
"denoising",
"en",
"arxiv:2110.00075",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: en
license: apache-2.0
tags:
- mri
- reconstruction
- denoising
---
# Noise2Recon
> **Noise2Recon: A Semi-Supervised Framework for Joint MRI Reconstruction and Denoising**\
> Arjun Desai, Batu Ozturkler, Christopher Sandino, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\
> https://arxiv.org/abs/2110.00075
This repository contains the artifacts for the Noise2Recon paper. To use our code
and artifacts in your research, please use the [Meddlr](https://github.com/ad12/meddlr) package.
|
arjundd/dosma-models
|
arjundd
| 2022-03-31T21:39:54Z | 0 | 0 | null |
[
"mri",
"knee",
"segmentation",
"en",
"region:us"
] | null | 2022-03-31T18:30:03Z |
---
language: en
tags:
- mri
- knee
- segmentation
---
# DOSMA models
These models are those that are made publicly available in the [DOSMA](https://github.com/ad12/DOSMA).
More information on these models can be found in the [documentation](https://dosma.readthedocs.io/en/latest/models.html).
## Citation
If you use any models, please cite any reference for the model in addition to the DOSMA reference below:
```
@inproceedings{desai2019dosma,
title={DOSMA: A deep-learning, open-source framework for musculoskeletal MRI analysis},
author={Desai, Arjun D and Barbieri, Marco and Mazzoli, Valentina and Rubin, Elka and Black, Marianne S and Watkins, Lauren E and Gold, Garry E and Hargreaves, Brian A and Chaudhari, Akshay S},
booktitle={Proc 27th Annual Meeting ISMRM, Montreal},
pages={1135},
year={2019}
}
```
|
abdusah/aradia-ctc-hubert-ft
|
abdusah
| 2022-03-31T20:56:27Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"automatic-speech-recognition",
"abdusahmbzuai/arabic_speech_massive_300hrs",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-31T08:14:31Z |
---
tags:
- automatic-speech-recognition
- abdusahmbzuai/arabic_speech_massive_300hrs
- generated_from_trainer
model-index:
- name: aradia-ctc-hubert-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# aradia-ctc-hubert-ft
This model is a fine-tuned version of [/l/users/abdulwahab.sahyoun/aradia/aradia-ctc-hubert-ft](https://huggingface.co//l/users/abdulwahab.sahyoun/aradia/aradia-ctc-hubert-ft) on the ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_300HRS - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8536
- Wer: 0.3737
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 0.43 | 100 | 3.6934 | 1.0 |
| No log | 0.87 | 200 | 3.0763 | 1.0 |
| No log | 1.3 | 300 | 2.9737 | 1.0 |
| No log | 1.74 | 400 | 2.5734 | 1.0 |
| 5.0957 | 2.17 | 500 | 1.1900 | 0.9011 |
| 5.0957 | 2.61 | 600 | 0.9726 | 0.7572 |
| 5.0957 | 3.04 | 700 | 0.8960 | 0.6209 |
| 5.0957 | 3.48 | 800 | 0.7851 | 0.5515 |
| 5.0957 | 3.91 | 900 | 0.7271 | 0.5115 |
| 1.0312 | 4.35 | 1000 | 0.7053 | 0.4955 |
| 1.0312 | 4.78 | 1100 | 0.6823 | 0.4737 |
| 1.0312 | 5.22 | 1200 | 0.6768 | 0.4595 |
| 1.0312 | 5.65 | 1300 | 0.6635 | 0.4488 |
| 1.0312 | 6.09 | 1400 | 0.6602 | 0.4390 |
| 0.6815 | 6.52 | 1500 | 0.6464 | 0.4310 |
| 0.6815 | 6.95 | 1600 | 0.6455 | 0.4394 |
| 0.6815 | 7.39 | 1700 | 0.6630 | 0.4312 |
| 0.6815 | 7.82 | 1800 | 0.6521 | 0.4126 |
| 0.6815 | 8.26 | 1900 | 0.6282 | 0.4284 |
| 0.544 | 8.69 | 2000 | 0.6248 | 0.4178 |
| 0.544 | 9.13 | 2100 | 0.6510 | 0.4104 |
| 0.544 | 9.56 | 2200 | 0.6527 | 0.4013 |
| 0.544 | 10.0 | 2300 | 0.6511 | 0.4064 |
| 0.544 | 10.43 | 2400 | 0.6734 | 0.4061 |
| 0.4478 | 10.87 | 2500 | 0.6756 | 0.4145 |
| 0.4478 | 11.3 | 2600 | 0.6727 | 0.3990 |
| 0.4478 | 11.74 | 2700 | 0.6619 | 0.4007 |
| 0.4478 | 12.17 | 2800 | 0.6614 | 0.4019 |
| 0.4478 | 12.61 | 2900 | 0.6695 | 0.4004 |
| 0.3919 | 13.04 | 3000 | 0.6778 | 0.3966 |
| 0.3919 | 13.48 | 3100 | 0.6872 | 0.3971 |
| 0.3919 | 13.91 | 3200 | 0.6882 | 0.3945 |
| 0.3919 | 14.35 | 3300 | 0.7177 | 0.4010 |
| 0.3919 | 14.78 | 3400 | 0.6888 | 0.4043 |
| 0.3767 | 15.22 | 3500 | 0.7124 | 0.4202 |
| 0.3767 | 15.65 | 3600 | 0.7276 | 0.4120 |
| 0.3767 | 16.09 | 3700 | 0.7265 | 0.4034 |
| 0.3767 | 16.52 | 3800 | 0.7392 | 0.4077 |
| 0.3767 | 16.95 | 3900 | 0.7403 | 0.3965 |
| 0.3603 | 17.39 | 4000 | 0.7445 | 0.4016 |
| 0.3603 | 17.82 | 4100 | 0.7579 | 0.4012 |
| 0.3603 | 18.26 | 4200 | 0.7225 | 0.3963 |
| 0.3603 | 18.69 | 4300 | 0.7355 | 0.3951 |
| 0.3603 | 19.13 | 4400 | 0.7482 | 0.3925 |
| 0.3153 | 19.56 | 4500 | 0.7723 | 0.3972 |
| 0.3153 | 20.0 | 4600 | 0.7469 | 0.3898 |
| 0.3153 | 20.43 | 4700 | 0.7800 | 0.3944 |
| 0.3153 | 20.87 | 4800 | 0.7827 | 0.3897 |
| 0.3153 | 21.3 | 4900 | 0.7935 | 0.3914 |
| 0.286 | 21.74 | 5000 | 0.7984 | 0.3750 |
| 0.286 | 22.17 | 5100 | 0.7945 | 0.3830 |
| 0.286 | 22.61 | 5200 | 0.8011 | 0.3775 |
| 0.286 | 23.04 | 5300 | 0.7978 | 0.3824 |
| 0.286 | 23.48 | 5400 | 0.8161 | 0.3833 |
| 0.2615 | 23.91 | 5500 | 0.7823 | 0.3858 |
| 0.2615 | 24.35 | 5600 | 0.8312 | 0.3863 |
| 0.2615 | 24.78 | 5700 | 0.8427 | 0.3819 |
| 0.2615 | 25.22 | 5800 | 0.8432 | 0.3802 |
| 0.2615 | 25.65 | 5900 | 0.8286 | 0.3794 |
| 0.2408 | 26.09 | 6000 | 0.8224 | 0.3824 |
| 0.2408 | 26.52 | 6100 | 0.8228 | 0.3823 |
| 0.2408 | 26.95 | 6200 | 0.8324 | 0.3795 |
| 0.2408 | 27.39 | 6300 | 0.8564 | 0.3744 |
| 0.2408 | 27.82 | 6400 | 0.8629 | 0.3774 |
| 0.2254 | 28.26 | 6500 | 0.8545 | 0.3778 |
| 0.2254 | 28.69 | 6600 | 0.8492 | 0.3767 |
| 0.2254 | 29.13 | 6700 | 0.8511 | 0.3751 |
| 0.2254 | 29.56 | 6800 | 0.8491 | 0.3753 |
| 0.2254 | 30.0 | 6900 | 0.8536 | 0.3737 |
### Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.4
- Tokenizers 0.11.6
|
magitz/distilbert-base-uncased-finetuned-emotion
|
magitz
| 2022-03-31T20:48:43Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-31T20:41:54Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9265
- name: F1
type: f1
value: 0.9267965474109292
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2235
- Accuracy: 0.9265
- F1: 0.9268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8101 | 1.0 | 250 | 0.3177 | 0.9045 | 0.9010 |
| 0.2472 | 2.0 | 500 | 0.2235 | 0.9265 | 0.9268 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.8.1
- Datasets 1.18.3
- Tokenizers 0.11.0
|
ghees/FatimeFellowship
|
ghees
| 2022-03-31T20:47:24Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-31T20:45:21Z |
Preprocessing before feeding to model
```
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('paraphrase-MiniLM-L6-v2', device='cuda')
...
embeddings = model.encode([text])
return embeddings[0]
```
|
osanseviero/test_model_bertmesh
|
osanseviero
| 2022-03-31T20:35:05Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"custom_code",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-31T19:47:46Z |
---
license: apache-2.0
---
# WellcomeBertMesh
WellcomeBertMesh is build from the data science team at the WellcomeTrust to tag biomedical grants with Medical Subject Headings ([Mesh](https://www.nlm.nih.gov/mesh/meshhome.html)). Even though developed with the intention to be used towards research grants, it should be applicable to any type of biomedical text close to the domain it was trained which is abstracts from biomedical publications.
# Model description
The model is inspired from [BertMesh](https://pubmed.ncbi.nlm.nih.gov/32976559/) which is trained on the full text of biomedical publications and uses BioBert as its pretrained model.
WellcomeBertMesh is utilising the latest state of the art model in the biomedical domain which is [PubMedBert](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) from Microsoft and attach a Multilabel attention head which essentially allows the model to pay attention to different tokens per label to decide whether it applies.
We train the model using data from the [BioASQ](http://bioasq.org) competition which consists of abstracts from PubMed publications. We use 2016-2019 data for training and 2020-2021 for testing which gives us ~2.5M publications to train and 220K to test. This is out of a total of 14M publications. It takes 4 days to train WellcomeBertMesh on 8 Nvidia P100 GPUs.
The model achieves 63% micro f1 with a 0.5 threshold for all labels.
The code for developing the model is open source and can be found in https://github.com/wellcometrust/grants_tagger
# How to use
⚠️ You need transformers 4.17+ for the example to work due to its recent support for custom models.
You can use the model straight from the hub but because it contains a custom forward function due to the multilabel attention head you have to pass `trust_remote_code=True`. You can get access to the probabilities for all labels by omitting `return_labels=True`.
```
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"Wellcome/WellcomeBertMesh"
)
model = AutoModel.from_pretrained(
"Wellcome/WellcomeBertMesh",
trust_remote_code=True
)
text = "This grant is about malaria and not about HIV."
inputs = tokenizer([text], padding="max_length")
labels = model(**inputs, return_labels=True)
print(labels)
```
You can inspect the model code if you navigate to the files and see `model.py`.
|
arampacha/gpt-neo-therapist-small
|
arampacha
| 2022-03-31T20:34:26Z | 17 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"onnx",
"gpt_neo",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-30T08:40:54Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: gpt-neo-therapist-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt-neo-therapist-small
This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6731
- Rouge1: 39.5028
- Rouge2: 6.43
- Rougel: 24.0091
- Rougelsum: 35.4481
- Gen Len: 204.1329
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 24
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:--------:|
| 9.9955 | 0.97 | 7 | 6.8195 | 18.6047 | 1.0194 | 14.8565 | 17.9774 | 212.0983 |
| 6.9729 | 1.97 | 14 | 5.6783 | 26.3789 | 3.0779 | 18.5195 | 24.8592 | 203.0925 |
| 5.2614 | 2.97 | 21 | 5.0506 | 34.9428 | 4.921 | 21.9741 | 32.1122 | 206.2775 |
| 5.0599 | 3.97 | 28 | 4.7372 | 38.5235 | 6.2251 | 23.5923 | 34.5633 | 204.2428 |
| 4.5479 | 4.97 | 35 | 4.6731 | 39.5028 | 6.43 | 24.0091 | 35.4481 | 204.1329 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
novarac23/distilbert-base-uncased-finetuned-emotion
|
novarac23
| 2022-03-31T19:39:15Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-31T19:05:57Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.925
- name: F1
type: f1
value: 0.9251919899321654
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2234
- Accuracy: 0.925
- F1: 0.9252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8213 | 1.0 | 250 | 0.3210 | 0.9025 | 0.8989 |
| 0.2463 | 2.0 | 500 | 0.2234 | 0.925 | 0.9252 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
huggingtweets/stillconor
|
huggingtweets
| 2022-03-31T17:49:05Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-31T16:59:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/stillconor/1648748939988/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1485398297984389121/DmUfFheN_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">conor</div>
<div style="text-align: center; font-size: 14px;">@stillconor</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from conor.
| Data | conor |
| --- | --- |
| Tweets downloaded | 3199 |
| Retweets | 102 |
| Short tweets | 432 |
| Tweets kept | 2665 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1z83yigq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stillconor's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30hsnorw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30hsnorw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/stillconor')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Tahsin-Mayeesha/distilbert-finetuned-fakenews
|
Tahsin-Mayeesha
| 2022-03-31T17:11:42Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-31T15:58:31Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-finetuned-fakenews
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-finetuned-fakenews
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0049
- Accuracy: 0.9995
- F1: 0.9995
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.0392 | 1.0 | 500 | 0.0059 | 0.999 | 0.999 |
| 0.002 | 2.0 | 1000 | 0.0047 | 0.9995 | 0.9995 |
| 0.0001 | 3.0 | 1500 | 0.0047 | 0.9995 | 0.9995 |
| 0.0001 | 4.0 | 2000 | 0.0049 | 0.9995 | 0.9995 |
| 0.0 | 5.0 | 2500 | 0.0049 | 0.9995 | 0.9995 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.12.0
|
israfelsr/UpsideDownClassifier
|
israfelsr
| 2022-03-31T17:06:27Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-31T15:41:33Z |
# UpsideDownClassifier
This classifier was trained using the [auto-cats-and-dogs](https://huggingface.co/datasets/nateraw/auto-cats-and-dogs) dataset. It was trained over 5 epochs using a pretrained resent18.
The configuration for the model was
```
config = {
"batch_size": 64,
"num_epochs": 5,
"lr": 0.005,
"betas": (0.9, 0.999),
"eps": 1e-6,
"lr": 8e-3,
"do_eval": True
}
```
## Traning Plots
We can see in the figures below the training plots for accuracy and the loss in both, training and validation sets.
### Accuracy Plot

### Loss Plot

## Some Results
Evaluating on the Test Set, we obtain:
- Accuracy = 0.9696
A batch with some missclassifications can be seen in the picture below.

|
rahulacj/bertweet-base-finetuned-sentiment-analysis
|
rahulacj
| 2022-03-31T16:21:16Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-31T09:42:31Z |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bertweet-base-finetuned-sentiment-analysis
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertweet-base-finetuned-sentiment-analysis
This model is a fine-tuned version of [cardiffnlp/bertweet-base-sentiment](https://huggingface.co/cardiffnlp/bertweet-base-sentiment) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8458
- Accuracy: 0.6426
- F1: 0.6397
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8904 | 1.0 | 630 | 0.8509 | 0.6381 | 0.6340 |
| 0.7655 | 2.0 | 1260 | 0.8345 | 0.6579 | 0.6559 |
| 0.66 | 3.0 | 1890 | 0.9199 | 0.6548 | 0.6514 |
| 0.447 | 4.0 | 2520 | 1.0324 | 0.6429 | 0.6417 |
| 0.3585 | 5.0 | 3150 | 1.1234 | 0.6452 | 0.6424 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.12.0
|
eren23/pneumonia-bielefeld-dl-course
|
eren23
| 2022-03-31T15:55:27Z | 61 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-27T12:17:21Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: pneumonia-bielefeld-dl-course
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.8456632494926453
---
# pneumonia-bielefeld-dl-course
This registry contains the model for making pneumonia predictions and was prepared for
Bielefeld University Deep Learning course homework.
The code used for this implementation mostly comes from here: https://github.com/nateraw/huggingpics it was a ready pipeline for model fine-tuning with huggingface and PyTorch Lightning for another dataset.
|
Nonem100/Test-Model
|
Nonem100
| 2022-03-31T15:19:38Z | 62 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-31T15:19:30Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: Test-Model
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9017857313156128
---
# Test-Model
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### cotton candy

#### hamburger

#### hot dog

#### nachos

#### popcorn

|
huggingtweets/timdingmanlive
|
huggingtweets
| 2022-03-31T14:30:05Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-31T14:26:57Z |
---
language: en
thumbnail: http://www.huggingtweets.com/timdingmanlive/1648736999131/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2844974270/7bb6450b90b65f8712d9433b8d5e1971_400x400.jpeg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Tim Dingman</div>
<div style="text-align: center; font-size: 14px;">@timdingmanlive</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Tim Dingman.
| Data | Tim Dingman |
| --- | --- |
| Tweets downloaded | 3240 |
| Retweets | 555 |
| Short tweets | 138 |
| Tweets kept | 2547 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7yvdv2z7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @timdingmanlive's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/311pu3zj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/311pu3zj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/timdingmanlive')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
oferweintraub/bert-base-finance-sentiment-noisy-search
|
oferweintraub
| 2022-03-31T14:13:45Z | 23 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"Finance-sentiment-analysis",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- Finance-sentiment-analysis
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: bert-base-finance-sentiment-noisy-search
results: []
widget:
- text: "Third quarter reported revenues were $10.9 billion, up 5 percent compared to prior year and up 8 percent on a currency-neutral basis"
example_title: "Positive"
- text: "The London-listed website for businesses reported a pretax loss of $26.6 million compared with a loss of $12.9 million the previous year"
example_title: "Negative"
- text: "Microsoft updates Outlook, Teams, and PowerPoint to be hybrid work ready"
example_title: "Neutral"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-finance-sentiment-noisy-search
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on Kaggle finance news sentiment analysis with data enhancement using noisy search. The process is explained below:
1. First "bert-base-uncased" was fine-tuned on Kaggle's finance news sentiment analysis https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news dataset achieving accuracy of about 88%
2. We then used a logistic-regression classifier on the same data. Here we looked at coefficients that contributed the most to the "Positive" and "Negative" classes by inspecting only bi-grams.
3. Using the top 25 bi-grams per class (i.e. "Positive" / "Negative") we invoked Bing news search with those bi-grams and retrieved up to 50 news items per bi-gram phrase.
4. We called it "noisy-search" because it is assumed the positive bi-grams (e.g. "profit rose" , "growth net") give rise to positive examples whereas negative bi-grams (e.g. "loss increase", "share loss") result in negative examples but note that we didn't test for the validity of this assumption (hence: noisy-search)
5. For each article we kept the title + excerpt and labeled it according to pre-assumptions on class associations.
6. We then trained the same model on the noisy data and apply it to an held-out test set from the original data set split.
7. Training with couple of thousands noisy "positives" and "negatives" examples yielded a test set accuracy of about 95%.
8. It shows that by automatically collecting noisy examples using search we can boost accuracy performance from about 88% to more than 95%.
Accuracy results for Logistic Regression (LR) and BERT (base-cased) are shown in the attached pdf:
https://drive.google.com/file/d/1MI9gRdppactVZ_XvhCwvoaOV1aRfprrd/view?usp=sharing
## Model description
BERT model trained on noisy data from search results. See PDF for more details.
## Intended uses & limitations
Intended for use on finance news sentiment analysis with 3 options: "Positive", "Neutral" and "Negative"
To get the best results feed the classifier with the title and either the 1st paragraph or a short news summarization e.g. of up to 64 tokens.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
huggingtweets/youtube
|
huggingtweets
| 2022-03-31T14:06:33Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-31T14:05:50Z |
---
language: en
thumbnail: http://www.huggingtweets.com/youtube/1648735587597/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1427292844612595720/RC1YSvuT_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">YouTube</div>
<div style="text-align: center; font-size: 14px;">@youtube</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from YouTube.
| Data | YouTube |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 23 |
| Short tweets | 104 |
| Tweets kept | 3123 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dx34obn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @youtube's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/p527w5q3) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/p527w5q3/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/youtube')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Edresson/wav2vec2-large-xlsr-coraa-portuguese
|
Edresson
| 2022-03-31T13:28:43Z | 632 | 15 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"pt",
"portuguese-speech-corpus",
"hf-asr-leaderboard",
"PyTorch",
"dataset:CORAA",
"arxiv:2110.15731",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:04Z |
---
language: pt
datasets:
- CORAA
metrics:
- wer
tags:
- audio
- speech
- wav2vec2
- pt
- portuguese-speech-corpus
- automatic-speech-recognition
- hf-asr-leaderboard
- speech
- PyTorch
license: apache-2.0
model-index:
- name: Edresson Casanova XLSR Wav2Vec2 Large 53 Portuguese
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: CORAA
type: CORAA
args: pt
metrics:
- name: Test CORAA WER
type: wer
value: 25.26
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: pt
metrics:
- name: Test WER on Common Voice 7
type: wer
value: 20.08
---
# Wav2vec 2.0 trained with CORAA Portuguese Dataset
This a the demonstration of a fine-tuned Wav2vec model for Portuguese using the following [CORAA dataset](https://github.com/nilc-nlp/CORAA)
# Use this model
```python
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese")
```
# Results
For the results check the [CORAA article](https://arxiv.org/abs/2110.15731)
# Example test with Common Voice Dataset
```python
dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
```
```python
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
```
|
Visual-Attention-Network/van-tiny
|
Visual-Attention-Network
| 2022-03-31T12:45:47Z | 173 | 2 |
transformers
|
[
"transformers",
"pytorch",
"van",
"image-classification",
"vision",
"dataset:imagenet-1k",
"arxiv:2202.09741",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-16T15:05:02Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# Van
Van model trained on imagenet-1k. It was introduced in the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) and first released in [this repository](https://github.com/Visual-Attention-Network/VAN-Classification).
Disclaimer: The team releasing Van did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations.

## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=van) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
>>> from transformers import AutoFeatureExtractor, VanForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("Visual-Attention-Network/van-base")
>>> model = VanForImageClassification.from_pretrained("Visual-Attention-Network/van-base")
>>> inputs = feature_extractor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/van).
|
Visual-Attention-Network/van-base
|
Visual-Attention-Network
| 2022-03-31T12:45:44Z | 185 | 1 |
transformers
|
[
"transformers",
"pytorch",
"van",
"image-classification",
"vision",
"dataset:imagenet-1k",
"arxiv:2202.09741",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-16T15:06:37Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# Van
Van model trained on imagenet-1k. It was introduced in the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) and first released in [this repository](https://github.com/Visual-Attention-Network/VAN-Classification).
Disclaimer: The team releasing Van did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations.

## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=van) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
>>> from transformers import AutoFeatureExtractor, VanForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("Visual-Attention-Network/van-base")
>>> model = VanForImageClassification.from_pretrained("Visual-Attention-Network/van-base")
>>> inputs = feature_extractor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/van).
|
mustapha/flipped-image-ViT
|
mustapha
| 2022-03-31T12:30:19Z | 61 | 2 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-30T21:57:42Z |
Hello world,
This model have been created in the context of ` Fatima Fellowship Programme`. The model was trained on the Cifar10 dataset with a googd final accuracy of arround 98%.
This model determines wether an image is flipped of not.
|
scasutt/wav2vec2-base_toy_train_data_random_low_pass
|
scasutt
| 2022-03-31T10:42:02Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-31T08:21:35Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base_toy_train_data_random_low_pass
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base_toy_train_data_random_low_pass
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3227
- Wer: 0.7288
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.0795 | 2.1 | 500 | 3.2227 | 0.9982 |
| 1.21 | 4.2 | 1000 | 1.3713 | 0.8879 |
| 0.742 | 6.3 | 1500 | 1.2660 | 0.8296 |
| 0.5877 | 8.4 | 2000 | 1.2921 | 0.7794 |
| 0.4823 | 10.5 | 2500 | 1.2899 | 0.7565 |
| 0.4036 | 12.6 | 3000 | 1.3486 | 0.7494 |
| 0.391 | 14.7 | 3500 | 1.2701 | 0.7466 |
| 0.3426 | 16.81 | 4000 | 1.3570 | 0.7279 |
| 0.3015 | 18.91 | 4500 | 1.3227 | 0.7288 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu102
- Datasets 2.0.0
- Tokenizers 0.11.6
|
nikhil6041/wav2vec2-commonvoice-tamil
|
nikhil6041
| 2022-03-31T09:24:01Z | 18 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:mit",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-31T04:00:23Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-commonvoice-tamil
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-commonvoice-tamil
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-tamil-tam-250](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-tamil-tam-250) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3415
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 5.384 | 1.69 | 200 | 3.3400 | 1.0 |
| 3.3085 | 3.39 | 400 | 3.3609 | 1.0 |
| 3.3008 | 5.08 | 600 | 3.3331 | 1.0 |
| 3.2852 | 6.78 | 800 | 3.3492 | 1.0 |
| 3.2908 | 8.47 | 1000 | 3.3318 | 1.0 |
| 3.2865 | 10.17 | 1200 | 3.3501 | 1.0 |
| 3.2826 | 11.86 | 1400 | 3.3403 | 1.0 |
| 3.2875 | 13.56 | 1600 | 3.3335 | 1.0 |
| 3.2899 | 15.25 | 1800 | 3.3311 | 1.0 |
| 3.2755 | 16.95 | 2000 | 3.3617 | 1.0 |
| 3.2877 | 18.64 | 2200 | 3.3317 | 1.0 |
| 3.2854 | 20.34 | 2400 | 3.3560 | 1.0 |
| 3.2878 | 22.03 | 2600 | 3.3332 | 1.0 |
| 3.2766 | 23.73 | 2800 | 3.3317 | 1.0 |
| 3.2943 | 25.42 | 3000 | 3.3737 | 1.0 |
| 3.2845 | 27.12 | 3200 | 3.3347 | 1.0 |
| 3.2765 | 28.81 | 3400 | 3.3415 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
davidmasip/racism
|
davidmasip
| 2022-03-31T06:56:46Z | 26 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"es",
"license:cc",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-16T18:23:46Z |
---
license: cc
language: es
widget:
- text: "Me cae muy bien."
example_title: "Non-racist example"
- text: "Unos menas agreden a una mujer."
example_title: "Racist example"
---
Model to predict whether a given text is racist or not:
* `LABEL_0` output indicates non-racist text
* `LABEL_1` output indicates racist text
Usage:
```python
from transformers import pipeline
RACISM_MODEL = "davidmasip/racism"
racism_analysis_pipe = pipeline("text-classification",
model=RACISM_MODEL, tokenizer=RACISM_MODEL)
results = racism_analysis_pipe("Unos menas agreden a una mujer.")
def clean_labels(results):
for result in results:
label = "Non-racist" if results["label"] == "LABEL_0" else "Racist"
result["label"] = label
clean_labels(results)
print(results)
```
|
yy642/bert-base-uncased-finetuned-mnli-rte-wnli-5
|
yy642
| 2022-03-31T02:22:21Z | 15 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-30T20:09:38Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-mnli-rte-wnli-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-mnli-rte-wnli-5
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4400
- Accuracy: 0.9209
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2253 | 1.0 | 16558 | 0.2346 | 0.9139 |
| 0.1667 | 2.0 | 33116 | 0.2973 | 0.9143 |
| 0.1207 | 3.0 | 49674 | 0.3361 | 0.9203 |
| 0.0553 | 4.0 | 66232 | 0.4400 | 0.9209 |
| 0.033 | 5.0 | 82790 | 0.5175 | 0.9203 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0a0+17540c5
- Datasets 2.0.0
- Tokenizers 0.11.6
|
michiyasunaga/BioLinkBERT-large
|
michiyasunaga
| 2022-03-31T00:54:57Z | 4,470 | 33 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"feature-extraction",
"exbert",
"linkbert",
"biolinkbert",
"fill-mask",
"question-answering",
"text-classification",
"token-classification",
"en",
"dataset:pubmed",
"arxiv:2203.15827",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-08T06:20:38Z |
---
license: apache-2.0
language: en
datasets:
- pubmed
tags:
- bert
- exbert
- linkbert
- biolinkbert
- feature-extraction
- fill-mask
- question-answering
- text-classification
- token-classification
widget:
- text: "Sunitinib is a tyrosine kinase inhibitor"
---
## BioLinkBERT-large
BioLinkBERT-large model pretrained on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts along with citation link information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT).
This model achieves state-of-the-art performance on several biomedical NLP benchmarks such as [BLURB](https://microsoft.github.io/BLURB/) and [MedQA-USMLE](https://github.com/jind11/MedQA).
## Model description
LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document.
LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval).
## Intended uses & limitations
The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification.
You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text).
### How to use
To use the model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-large')
model = AutoModel.from_pretrained('michiyasunaga/BioLinkBERT-large')
inputs = tokenizer("Sunitinib is a tyrosine kinase inhibitor", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases.
## Evaluation results
When fine-tuned on downstream tasks, LinkBERT achieves the following results.
**Biomedical benchmarks ([BLURB](https://microsoft.github.io/BLURB/), [MedQA](https://github.com/jind11/MedQA), [MMLU](https://github.com/hendrycks/test), etc.):** BioLinkBERT attains new state-of-the-art.
| | BLURB score | PubMedQA | BioASQ | MedQA-USMLE |
| ---------------------- | -------- | -------- | ------- | -------- |
| PubmedBERT-base | 81.10 | 55.8 | 87.5 | 38.1 |
| **BioLinkBERT-base** | **83.39** | **70.2** | **91.4** | **40.0** |
| **BioLinkBERT-large** | **84.30** | **72.2** | **94.8** | **44.6** |
| | MMLU-professional medicine |
| ---------------------- | -------- |
| GPT-3 (175 params) | 38.7 |
| UnifiedQA (11B params) | 43.2 |
| **BioLinkBERT-large (340M params)** | **50.7** |
## Citation
If you find LinkBERT useful in your project, please cite the following:
```bibtex
@InProceedings{yasunaga2022linkbert,
author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang},
title = {LinkBERT: Pretraining Language Models with Document Links},
year = {2022},
booktitle = {Association for Computational Linguistics (ACL)},
}
```
|
michiyasunaga/LinkBERT-base
|
michiyasunaga
| 2022-03-31T00:38:32Z | 847 | 7 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"feature-extraction",
"exbert",
"linkbert",
"fill-mask",
"question-answering",
"text-classification",
"token-classification",
"en",
"dataset:wikipedia",
"dataset:bookcorpus",
"arxiv:2203.15827",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-08T07:21:51Z |
---
license: apache-2.0
language: en
datasets:
- wikipedia
- bookcorpus
tags:
- bert
- exbert
- linkbert
- feature-extraction
- fill-mask
- question-answering
- text-classification
- token-classification
---
## LinkBERT-base
LinkBERT-base model pretrained on English Wikipedia articles along with hyperlink information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT).
## Model description
LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document.
LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval).
## Intended uses & limitations
The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification.
You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text).
### How to use
To use the model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/LinkBERT-base')
model = AutoModel.from_pretrained('michiyasunaga/LinkBERT-base')
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases.
## Evaluation results
When fine-tuned on downstream tasks, LinkBERT achieves the following results.
**General benchmarks ([MRQA](https://github.com/mrqa/MRQA-Shared-Task-2019) and [GLUE](https://gluebenchmark.com/)):**
| | HotpotQA | TriviaQA | SearchQA | NaturalQ | NewsQA | SQuAD | GLUE |
| ---------------------- | -------- | -------- | -------- | -------- | ------ | ----- | -------- |
| | F1 | F1 | F1 | F1 | F1 | F1 | Avg score |
| BERT-base | 76.0 | 70.3 | 74.2 | 76.5 | 65.7 | 88.7 | 79.2 |
| **LinkBERT-base** | **78.2** | **73.9** | **76.8** | **78.3** | **69.3** | **90.1** | **79.6** |
| BERT-large | 78.1 | 73.7 | 78.3 | 79.0 | 70.9 | 91.1 | 80.7 |
| **LinkBERT-large** | **80.8** | **78.2** | **80.5** | **81.0** | **72.6** | **92.7** | **81.1** |
## Citation
If you find LinkBERT useful in your project, please cite the following:
```bibtex
@InProceedings{yasunaga2022linkbert,
author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang},
title = {LinkBERT: Pretraining Language Models with Document Links},
year = {2022},
booktitle = {Association for Computational Linguistics (ACL)},
}
```
|
UBC-NLP/MARBERTv2
|
UBC-NLP
| 2022-03-30T21:52:31Z | 3,124 | 8 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"fill-mask",
"Arabic BERT",
"MSA",
"Twitter",
"Masked Langauge Model",
"ar",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language:
- ar
tags:
- Arabic BERT
- MSA
- Twitter
- Masked Langauge Model
widget:
- text: "اللغة العربية هي لغة [MASK]."
---
<img src="https://raw.githubusercontent.com/UBC-NLP/marbert/main/ARBERT_MARBERT.jpg" alt="drawing" width="30%" height="30%" align="right"/>
**MARBERTv2** is one of three models described in our **ACL 2021 paper** **["ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic"](https://aclanthology.org/2021.acl-long.551.pdf)**.
We find that results with ARBERT and MARBERT on QA are not competitive, a clear discrepancy from what we have observed thus far on other tasksWe hypothesize this is because the two models are pre-trained with a sequence length of only 128, which does not allow them to sufficiently capture both a question and its likely answer within the same sequence window during the pre-training.
To rectify this, we further pre-train the stronger model, MARBERT, on the same MSA data as ARBERT in addition to AraNews dataset but with a bigger sequence length of 512 tokens for 40 epochs. We call this
further pre-trained model **MARBERTv2**, noting it has **29B tokens**. MARBERTv2 acquires best performance on all but one test set, where XLM-RLarge marginally outperforms us (only in F1).
For more information, please visit our own GitHub [repo](https://github.com/UBC-NLP/marbert).
# BibTex
If you use our models (ARBERT, MARBERT, or MARBERTv2) for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated):
```bibtex
@inproceedings{abdul-mageed-etal-2021-arbert,
title = "{ARBERT} {\&} {MARBERT}: Deep Bidirectional Transformers for {A}rabic",
author = "Abdul-Mageed, Muhammad and
Elmadany, AbdelRahim and
Nagoudi, El Moatez Billah",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.551",
doi = "10.18653/v1/2021.acl-long.551",
pages = "7088--7105",
abstract = "Pre-trained language models (LMs) are currently integral to many natural language processing systems. Although multilingual LMs were also introduced to serve many languages, these have limitations such as being costly at inference time and the size and diversity of non-English data involved in their pre-training. We remedy these issues for a collection of diverse Arabic varieties by introducing two powerful deep bidirectional transformer-based models, ARBERT and MARBERT. To evaluate our models, we also introduce ARLUE, a new benchmark for multi-dialectal Arabic language understanding evaluation. ARLUE is built using 42 datasets targeting six different task clusters, allowing us to offer a series of standardized experiments under rich conditions. When fine-tuned on ARLUE, our models collectively achieve new state-of-the-art results across the majority of tasks (37 out of 48 classification tasks, on the 42 datasets). Our best model acquires the highest ARLUE score (77.40) across all six task clusters, outperforming all other models including XLM-R Large ( 3.4x larger size). Our models are publicly available at https://github.com/UBC-NLP/marbert and ARLUE will be released through the same repository.",
}
```
## Acknowledgments
We gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, Canadian Foundation for Innovation, [ComputeCanada](www.computecanada.ca) and [UBC ARC-Sockeye](https://doi.org/10.14288/SOCKEYE). We also thank the [Google TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) program for providing us with free TPU access.
|
vlsb/autotrain-security-text-classification-albert-688320769
|
vlsb
| 2022-03-30T20:59:32Z | 15 | 2 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"text-classification",
"autotrain",
"unk",
"dataset:vlsb/autotrain-data-security-text-classification-albert",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-30T20:55:59Z |
---
tags: autotrain
language: unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- vlsb/autotrain-data-security-text-classification-albert
co2_eq_emissions: 3.670416179055797
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 688320769
- CO2 Emissions (in grams): 3.670416179055797
## Validation Metrics
- Loss: 0.3046899139881134
- Accuracy: 0.8826530612244898
- Precision: 0.9181818181818182
- Recall: 0.8782608695652174
- AUC: 0.9423510466988727
- F1: 0.8977777777777778
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vlsb/autotrain-security-text-classification-albert-688320769
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("vlsb/autotrain-security-text-classification-albert-688320769", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("vlsb/autotrain-security-text-classification-albert-688320769", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
vlsb/autotrain-security-texts-classification-distilroberta-688220764
|
vlsb
| 2022-03-30T20:56:57Z | 13 | 2 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain",
"unk",
"dataset:vlsb/autotrain-data-security-texts-classification-distilroberta",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-30T20:54:56Z |
---
tags: autotrain
language: unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- vlsb/autotrain-data-security-texts-classification-distilroberta
co2_eq_emissions: 2.0817207656772445
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 688220764
- CO2 Emissions (in grams): 2.0817207656772445
## Validation Metrics
- Loss: 0.3055502772331238
- Accuracy: 0.9030612244897959
- Precision: 0.9528301886792453
- Recall: 0.8782608695652174
- AUC: 0.9439076757917337
- F1: 0.9140271493212669
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vlsb/autotrain-security-texts-classification-distilroberta-688220764
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("vlsb/autotrain-security-texts-classification-distilroberta-688220764", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("vlsb/autotrain-security-texts-classification-distilroberta-688220764", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
mrm8488/electricidad-base-discriminator
|
mrm8488
| 2022-03-30T20:42:47Z | 74 | 4 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"pretraining",
"Spanish",
"Electra",
"es",
"dataset:-large_spanish_corpus",
"arxiv:1406.2661",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: es
thumbnail: https://i.imgur.com/uxAvBfh.png
tags:
- Spanish
- Electra
datasets:
-large_spanish_corpus
---
## ELECTRICIDAD: The Spanish Electra [Imgur](https://imgur.com/uxAvBfh)
**Electricidad-base-discriminator** (uncased) is a ```base``` Electra like model (discriminator in this case) trained on a [Large Spanish Corpus](https://github.com/josecannete/spanish-corpora) (aka BETO's corpus)
As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB):
**ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset.
For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB).
## Model details ⚙
|Name| # Value|
|-----|--------|
|Layers| 12 |
|Hidden | 768 |
|Params| 110M |
## Evaluation metrics (for discriminator) 🧾
|Metric | # Score |
|-------|---------|
|Accuracy| 0.985|
|Precision| 0.726|
|AUC | 0.922|
## Fast example of usage 🚀
```python
from transformers import ElectraForPreTraining, ElectraTokenizerFast
import torch
discriminator = ElectraForPreTraining.from_pretrained("mrm8488/electricidad-base-discriminator")
tokenizer = ElectraTokenizerFast.from_pretrained("mrm8488/electricidad-base-discriminator")
sentence = "El rápido zorro marrón salta sobre el perro perezoso"
fake_sentence = "El rápido zorro marrón amar sobre el perro perezoso"
fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
[print("%7s" % token, end="") for token in fake_tokens]
[print("%7s" % prediction, end="") for prediction in predictions.tolist()]
# Output:
'''
el rapido zorro marro ##n amar sobre el perro pere ##zoso 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0[None, None, None, None, None, None, None, None, None, None, None, None, None
'''
```
As you can see there are **1s** in the places where the model detected a fake token. So, it works! 🎉
### Some models fine-tuned on a downstream task 🛠️
[Question Answering](https://huggingface.co/mrm8488/electricidad-base-finetuned-squadv1-es)
[POS](https://huggingface.co/mrm8488/electricidad-base-finetuned-pos)
[NER](https://huggingface.co/mrm8488/electricidad-base-finetuned-ner)
### Spanish LM model comparison 📊
| Dataset | Metric | RoBERTa-b | RoBERTa-l | BETO | mBERT | BERTIN | Electricidad-b |
|-------------|----------|-----------|-----------|--------|--------|--------|---------|
| UD-POS | F1 | 0.9907 | 0.9901 | 0.9900 | 0.9886 | 0.9904 | 0.9818 |
| Conll-NER | F1 | 0.8851 | 0.8772 | 0.8759 | 0.8691 | 0.8627 | 0.7954 |
| Capitel-POS | F1 | 0.9846 | 0.9851 | 0.9836 | 0.9839 | 0.9826 | 0.9816 |
| Capitel-NER | F1 | 0.8959 | 0.8998 | 0.8771 | 0.8810 | 0.8741 | 0.8035 |
| STS | Combined | 0.8423 | 0.8420 | 0.8216 | 0.8249 | 0.7822 | 0.8065 |
| MLDoc | Accuracy | 0.9595 | 0.9600 | 0.9650 | 0.9560 | 0.9673 | 0.9490 |
| PAWS-X | F1 | 0.9035 | 0.9000 | 0.8915 | 0.9020 | 0.8820 | **0.9045** |
| XNLI | Accuracy | 0.8016 | 0.7958 | 0.8130 | 0.7876 | 0.7864 | 0.7878 |
## Acknowledgments
I thank [🤗/transformers team](https://github.com/huggingface/transformers) for allowing me to train the model (specially to [Julien Chaumond](https://twitter.com/julien_c)).
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{mromero2020electricidad-base-discriminator,
title={Spanish Electra by Manuel Romero},
author={Romero, Manuel},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/mrm8488/electricidad-base-discriminator/}},
year={2020}
}
```
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
> Made with <span style="color: #e25555;">♥</span> in Spain
|
mrm8488/longformer-base-4096-spanish
|
mrm8488
| 2022-03-30T20:36:36Z | 49 | 16 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"Long documents",
"longformer",
"bertin",
"spanish",
"es",
"dataset:spanish_large_corpus",
"arxiv:2004.05150",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language:
- es
license: mit
widget:
- text: "Manuel Romero ha creado con el equipo de BERTIN un modelo que procesa documentos <mask> largos."
tags:
- Long documents
- longformer
- bertin
- spanish
datasets:
- spanish_large_corpus
---
# longformer-base-4096-spanish
## [Longformer](https://arxiv.org/abs/2004.05150) is a Transformer model for long documents.
`longformer-base-4096` is a BERT-like model started from the RoBERTa checkpoint (**BERTIN** in this case) and pre-trained for *MLM* on long documents (from BETO's `all_wikis`). It supports sequences of length up to 4,096!
**Longformer** uses a combination of a sliding window (*local*) attention and *global* attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations.
This model was made following the research done by [Iz Beltagy and Matthew E. Peters and Arman Cohan](https://arxiv.org/abs/2004.05150).
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{mromero2022longformer-base-4096-spanish,
title={Spanish LongFormer by Manuel Romero},
author={Romero, Manuel},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/mrm8488/longformer-base-4096-spanish}},
year={2022}
}
```
|
horsbug98/Part_2_XLM_Model_E1
|
horsbug98
| 2022-03-30T18:29:46Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"generated_from_trainer",
"dataset:tydiqa",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-16T17:32:47Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- tydiqa
model-index:
- name: debug_xlm_task2_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# debug_xlm_task2_1
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tydiqa secondary_task dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.15.0
- Pytorch 1.9.1
- Datasets 2.0.0
- Tokenizers 0.10.3
|
hoangbinhmta99/wav2vec-demo
|
hoangbinhmta99
| 2022-03-30T17:18:48Z | 9 | 2 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
Convert from model .pt to transformer
Link: https://huggingface.co/tommy19970714/wav2vec2-base-960h
Bash:
```bash
pip install transformers[sentencepiece]
pip install fairseq -U
git clone https://github.com/huggingface/transformers.git
cp transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py .
wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt -O ./wav2vec_small.pt
mkdir dict
wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt
mkdir outputs
python convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py
--pytorch_dump_folder_path ./outputs --checkpoint_path ./finetuned/wav2vec_small.pt
--dict_path ./dict/dict.ltr.txt --not_finetuned
```
# install and upload model
```
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
git lfs install
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/hoangbinhmta99/wav2vec-demo
ls
cd wav2vec-demo/
git status
git add .
git commit -m "First model version"
git config --global user.email [yourname]
git config --global user.name [yourpass]
git commit -m "First model version"
git push
```
|
scasutt/wav2vec2-base_toy_train_data_random_high_pass
|
scasutt
| 2022-03-30T16:37:23Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-30T13:17:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base_toy_train_data_random_high_pass
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base_toy_train_data_random_high_pass
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2841
- Wer: 0.7222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.061 | 2.1 | 500 | 3.0551 | 1.0 |
| 1.1294 | 4.2 | 1000 | 1.3102 | 0.8777 |
| 0.7051 | 6.3 | 1500 | 1.2081 | 0.8092 |
| 0.5421 | 8.4 | 2000 | 1.2280 | 0.7684 |
| 0.448 | 10.5 | 2500 | 1.2459 | 0.7506 |
| 0.3777 | 12.6 | 3000 | 1.3533 | 0.7631 |
| 0.3611 | 14.7 | 3500 | 1.2058 | 0.7291 |
| 0.3177 | 16.81 | 4000 | 1.3168 | 0.7185 |
| 0.279 | 18.91 | 4500 | 1.2841 | 0.7222 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu102
- Datasets 2.0.0
- Tokenizers 0.11.6
|
javilonso/classificationPolEsp2
|
javilonso
| 2022-03-30T15:21:42Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"gpt2",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-30T13:41:58Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: javilonso/classificationPolEsp2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# javilonso/classificationPolEsp2
This model is a fine-tuned version of [PlanTL-GOB-ES/gpt2-base-bne](https://huggingface.co/PlanTL-GOB-ES/gpt2-base-bne) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1229
- Validation Loss: 0.8172
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 17958, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.6246 | 0.5679 | 0 |
| 0.4198 | 0.6097 | 1 |
| 0.1229 | 0.8172 | 2 |
### Framework versions
- Transformers 4.17.0
- TensorFlow 2.6.0
- Datasets 2.0.0
- Tokenizers 0.11.6
|
javilonso/classificationEsp1_Attraction
|
javilonso
| 2022-03-30T13:25:38Z | 6 | 0 |
transformers
|
[
"transformers",
"tf",
"roberta",
"text-classification",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-23T15:27:21Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: classificationEsp1_Attraction
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# classificationEsp1_Attraction
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.17.0
- TensorFlow 2.6.0
- Datasets 2.0.0
- Tokenizers 0.11.6
|
peterhsu/distilbert-base-uncased-finetuned-squad-d5716d28
|
peterhsu
| 2022-03-30T12:22:49Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"fill-mask",
"question-answering",
"en",
"dataset:squad",
"arxiv:1910.01108",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-29T09:35:05Z |
---
language:
- en
thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg
tags:
- question-answering
license: apache-2.0
datasets:
- squad
metrics:
- squad
---
# DistilBERT with a second step of distillation
## Model description
This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation.
In this version, the following pre-trained models were used:
* Student: `distilbert-base-uncased`
* Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1`
## Training data
This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows:
```python
from datasets import load_dataset
squad = load_dataset('squad')
```
## Training procedure
## Eval results
| | Exact Match | F1 |
|------------------|-------------|------|
| DistilBERT paper | 79.1 | 86.9 |
| Ours | 78.4 | 86.5 |
The scores were calculated using the `squad` metric from `datasets`.
### BibTeX entry and citation info
```bibtex
@misc{sanh2020distilbert,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
year={2020},
eprint={1910.01108},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
yinde/dummy-model
|
yinde
| 2022-03-30T11:59:15Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-30T11:37:44Z |
Fake news classifier
This model trains a text classification model to detect fake news articles,
it uses distilbert-base-uncased-finetuned-sst-2-english pretrained model to work on
fake and real news dataset from kaggle (https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset)
|
joe5campbell/Horovod_Tweet_Sentiment_1K_4eps
|
joe5campbell
| 2022-03-30T11:38:32Z | 5 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-24T12:35:50Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Horovod_Tweet_Sentiment_1K_4eps
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Horovod_Tweet_Sentiment_1K_4eps
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6803332
- Train Accuracy: 0.57187504
- Validation Loss: 0.6883397
- Validation Accuracy: 0.54375
- Epoch: 3
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 0.0003, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.70931095 | 0.5078125 | 0.81717503 | 0.528125 | 0 |
| 0.77384466 | 0.5296875 | 0.68696874 | 0.51875 | 1 |
| 0.68944424 | 0.53125 | 0.6837756 | 0.53125 | 2 |
| 0.6803332 | 0.57187504 | 0.6883397 | 0.54375 | 3 |
### Framework versions
- Transformers 4.17.0
- TensorFlow 2.6.0
- Tokenizers 0.11.6
|
mimicheng/codeparrot-ds-sample-2ep-29mar
|
mimicheng
| 2022-03-30T09:50:15Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-30T03:41:46Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: codeparrot-ds-sample-2ep-29mar
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codeparrot-ds-sample-2ep-29mar
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6283
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: tpu
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2585 | 1.86 | 5000 | 1.6283 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.8.2+cpu
- Datasets 2.0.0
- Tokenizers 0.11.6
|
Peltarion/xlm-roberta-longformer-base-4096
|
Peltarion
| 2022-03-30T09:23:58Z | 75 | 8 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"fill-mask",
"longformer",
"multilingual",
"dataset:wikitext",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
tags:
- longformer
language: multilingual
license: apache-2.0
datasets:
- wikitext
---
## XLM-R Longformer Model
XLM-R Longformer is a XLM-R model, that has been extended to allow sequence lengths up to 4096 tokens, instead of the regular 512. The model was pre-trained from the XLM-RoBERTa checkpoint using the Longformer [pre-training scheme](https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) on the English WikiText-103 corpus.
The reason for this was to investigate methods for creating efficient Transformers for low-resource languages, such as Swedish, without the need to pre-train them on long-context datasets in each respecitve language. The trained model came as a result of a master thesis project at [Peltarion](https://peltarion.com/) and was fine-tuned on multilingual quesion-answering tasks, with code available [here](https://github.com/MarkusSagen/Master-Thesis-Multilingual-Longformer#xlm-r).
Since both XLM-R model and Longformer models are large models, it it recommended to run the models with NVIDIA Apex (16bit precision), large GPU and several gradient accumulation steps.
## How to Use
The model can be used as expected to fine-tune on a downstream task.
For instance for QA.
```python
import torch
from transformers import AutoModel, AutoTokenizer
MAX_SEQUENCE_LENGTH = 4096
MODEL_NAME_OR_PATH = "markussagen/xlm-roberta-longformer-base-4096"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME_OR_PATH,
max_length=MAX_SEQUENCE_LENGTH,
padding="max_length",
truncation=True,
)
model = AutoModelForQuestionAnswering.from_pretrained(
MODEL_NAME_OR_PATH,
max_length=MAX_SEQUENCE_LENGTH,
)
```
## Training Procedure
The model have been trained on the WikiText-103 corpus, using a **48GB** GPU with the following training script and parameters. The model was pre-trained for 6000 iterations and took ~5 days. See the full [training script](https://github.com/MarkusSagen/Master-Thesis-Multilingual-Longformer/blob/main/scripts/finetune_qa_models.py) and [Github repo](https://github.com/MarkusSagen/Master-Thesis-Multilingual-Longformer) for more information
```sh
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip
export DATA_DIR=./wikitext-103-raw
scripts/run_long_lm.py \
--model_name_or_path xlm-roberta-base \
--model_name xlm-roberta-to-longformer \
--output_dir ./output \
--logging_dir ./logs \
--val_file_path $DATA_DIR/wiki.valid.raw \
--train_file_path $DATA_DIR/wiki.train.raw \
--seed 42 \
--max_pos 4096 \
--adam_epsilon 1e-8 \
--warmup_steps 500 \
--learning_rate 3e-5 \
--weight_decay 0.01 \
--max_steps 6000 \
--evaluate_during_training \
--logging_steps 50 \
--eval_steps 50 \
--save_steps 6000 \
--max_grad_norm 1.0 \
--per_device_eval_batch_size 2 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 64 \
--overwrite_output_dir \
--fp16 \
--do_train \
--do_eval
```
|
Aureliano/electra-if
|
Aureliano
| 2022-03-30T09:07:27Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"electra",
"feature-extraction",
"en",
"arxiv:1406.2661",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-11T15:40:21Z |
---
language: en
license: apache-2.0
---
## ELECTRA for IF
**ELECTRA** is a method for self-supervised language representation learning. They are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf).
For a detailed description and experimental results, please refer to the original paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB).
This repository contains a small ELECTRA discriminator finetuned on a corpus of interactive fiction commands labelled with the WordNet synset offset of the verb in the sentence. The original dataset has been collected from the list of action in the walkthroughs for the game included in the [Jericho](https://github.com/microsoft/jericho) framework and manually annotated. For more information visit https://github.com/aporporato/electra and https://github.com/aporporato/jericho-corpora.
## How to use the discriminator in `transformers`
(Heavily based on: https://github.com/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb)
```python
import math
import numpy as np
import tensorflow as tf
from datasets import load_metric, Dataset, DatasetDict
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, create_optimizer
from transformers.keras_callbacks import KerasMetricCallback
# This example shows how this model can be used:
# you should finetune the model of your specific corpus if commands, bigger than this
dict_train = {
"idx": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18",
"19", "20"],
"sentence": ["e", "get pen", "drop book", "x paper", "i", "south", "get paper", "drop the pen", "x book",
"inventory", "n", "get the book", "drop paper", "look at Pen", "inv", "g", "s", "get sandwich",
"drop sandwich", "x sandwich", "agin"],
"label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04",
"drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02",
"inventory.v.01", "repeat.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "repeat.v.01"]
}
dict_val = {
"idx": ["0", "1", "2", "3", "4", "5"],
"sentence": ["w", "get shield", "drop sword", "x spikes", "i", "repeat"],
"label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "repeat.v.01"]
}
raw_train_dataset = Dataset.from_dict(dict_train)
raw_val_dataset = Dataset.from_dict(dict_val)
raw_dataset = DatasetDict()
raw_dataset["train"] = raw_train_dataset
raw_dataset["val"] = raw_val_dataset
raw_dataset = raw_dataset.class_encode_column("label")
print(raw_dataset)
print(raw_dataset["train"].features)
print(raw_dataset["val"].features)
print(raw_dataset["train"][1])
label2id = {}
id2label = {}
for i, l in enumerate(raw_dataset["train"].features["label"].names):
label2id[l] = i
id2label[i] = l
discriminator = TFAutoModelForSequenceClassification.from_pretrained("Aureliano/electra-if",
label2id=label2id,
id2label=id2label)
tokenizer = AutoTokenizer.from_pretrained("Aureliano/electra-if")
tokenize_function = lambda example: tokenizer(example["sentence"], truncation=True)
pre_tokenizer_columns = set(raw_dataset["train"].features)
encoded_dataset = raw_dataset.map(tokenize_function, batched=True)
tokenizer_columns = list(set(encoded_dataset["train"].features) - pre_tokenizer_columns)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf")
batch_size = len(encoded_dataset["train"])
tf_train_dataset = encoded_dataset["train"].to_tf_dataset(
columns=tokenizer_columns,
label_cols=["labels"],
shuffle=True,
batch_size=batch_size,
collate_fn=data_collator
)
tf_validation_dataset = encoded_dataset["val"].to_tf_dataset(
columns=tokenizer_columns,
label_cols=["labels"],
shuffle=False,
batch_size=batch_size,
collate_fn=data_collator
)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
num_epochs = 25
batches_per_epoch = math.ceil(len(encoded_dataset["train"]) / batch_size)
total_train_steps = int(batches_per_epoch * num_epochs)
optimizer, schedule = create_optimizer(
init_lr=5e-5, num_warmup_steps=total_train_steps // 5, num_train_steps=total_train_steps
)
metric = load_metric("accuracy")
def compute_metrics(eval_predictions):
logits, labels = eval_predictions
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_dataset)
callbacks = [metric_callback]
discriminator.compile(optimizer=optimizer, loss=loss, metrics=["sparse_categorical_accuracy"])
discriminator.fit(
tf_train_dataset,
epochs=num_epochs,
validation_data=tf_validation_dataset,
callbacks=callbacks
)
print("Evaluate on test data")
results = discriminator.evaluate(tf_validation_dataset)
print("test loss, test acc:", results)
text = "i"
encoded_input = tokenizer(text, return_tensors='tf')
output = discriminator(encoded_input)
prediction = tf.nn.softmax(output["logits"][0], -1)
label = id2label[tf.math.argmax(prediction).numpy()]
print("\n", text, ":", label,
"\n") # ideally 'inventory.v.01' (-> "make or include in an itemized record or report"), but probably only with a better finetuning dataset
text = "get lamp"
encoded_input = tokenizer(text, return_tensors='tf')
output = discriminator(encoded_input)
prediction = tf.nn.softmax(output["logits"][0], -1)
label = id2label[tf.math.argmax(prediction).numpy()]
print("\n", text, ":", label,
"\n") # ideally 'take.v.04' (-> "get into one's hands, take physically"), but probably only with a better finetuning dataset
text = "w"
encoded_input = tokenizer(text, return_tensors='tf')
output = discriminator(encoded_input)
prediction = tf.nn.softmax(output["logits"][0], -1)
label = id2label[tf.math.argmax(prediction).numpy()]
print("\n", text, ":", label,
"\n") # ideally 'travel.v.01' (-> "change location; move, travel, or proceed, also metaphorically"), but probably only with a better finetuning dataset
```
|
javilonso/classificationPolEsp1
|
javilonso
| 2022-03-30T09:02:50Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-30T07:49:20Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: javilonso/classificationPolEsp1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# javilonso/classificationPolEsp1
This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3728
- Validation Loss: 0.6217
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 17958, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.6282 | 0.6017 | 0 |
| 0.5129 | 0.6177 | 1 |
| 0.3728 | 0.6217 | 2 |
### Framework versions
- Transformers 4.17.0
- TensorFlow 2.6.0
- Datasets 2.0.0
- Tokenizers 0.11.6
|
shrishail/t5_paraphrase_msrp_paws
|
shrishail
| 2022-03-30T05:47:27Z | 38 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"paraphrase-generation",
"text-generation",
"Conditional Generation",
"en",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2022-03-29T13:13:11Z |
---
language: "en"
tags:
- paraphrase-generation
- text-generation
- Conditional Generation
inference: false
---
# Simple model for Paraphrase Generation
## Model description
T5-based model for generating paraphrased sentences. It is trained on the labeled [MSRP](https://www.microsoft.com/en-us/download/details.aspx?id=52398) and [Google PAWS](https://github.com/google-research-datasets/paws) dataset.
## How to use
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("shrishail/t5_paraphrase_msrp_paws")
model = AutoModelForSeq2SeqLM.from_pretrained("shrishail/t5_paraphrase_msrp_paws")
sentence = "This is something which i cannot understand at all"
text = "paraphrase: " + sentence + " </s>"
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
do_sample=True,
top_k=120,
top_p=0.95,
early_stopping=True,
num_return_sequences=5
)
for output in outputs:
line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
print(line)
```
|
loulou/distilbert-base-uncased-finetuned-emotion
|
loulou
| 2022-03-30T04:57:58Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-22T04:55:48Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.922
- name: F1
type: f1
value: 0.9221931901873676
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2285
- Accuracy: 0.922
- F1: 0.9222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8366 | 1.0 | 250 | 0.3212 | 0.9025 | 0.8990 |
| 0.2588 | 2.0 | 500 | 0.2285 | 0.922 | 0.9222 |
### Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
lazyturtl/roomidentifier
|
lazyturtl
| 2022-03-30T04:10:41Z | 89 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-30T04:10:32Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: roomidentifier
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9375
---
# roomidentifier
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### Bathroom

#### Bedroom

#### DinningRoom

#### Kitchen

#### LivingRoom

|
samayash/finetuning-financial-news-sentiment
|
samayash
| 2022-03-30T03:36:40Z | 4 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-30T03:27:02Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-financial-news-sentiment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-financial-news-sentiment
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3345
- Accuracy: 0.8751
- F1: 0.8751
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
tharangahf/botcircuits_nlu
|
tharangahf
| 2022-03-30T02:32:47Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2022-03-30T02:32:47Z |
---
license: apache-2.0
---
|
ntt123/hifigan_ljs_22k
|
ntt123
| 2022-03-30T01:47:26Z | 0 | 0 | null |
[
"tensorboard",
"license:cc-by-nc-sa-4.0",
"region:us"
] | null | 2022-03-29T02:20:52Z |
---
license: cc-by-nc-sa-4.0
---
|
aaraki/vit-base-patch16-224-in21k-finetuned-cifar10
|
aaraki
| 2022-03-30T01:41:47Z | 8,239 | 10 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:cifar10",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-30T00:18:26Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cifar10
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-cifar10
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cifar10
type: cifar10
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.9788
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-finetuned-cifar10
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2564
- Accuracy: 0.9788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4291 | 1.0 | 390 | 0.2564 | 0.9788 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
cammiemw/bert-marco-hdct
|
cammiemw
| 2022-03-30T01:21:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-30T01:09:55Z |
---
license: cc-by-nc-4.0
---
|
DrishtiSharma/poem-gen-spanish-t5-small-v7
|
DrishtiSharma
| 2022-03-30T00:34:41Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-29T19:14:40Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: poem-gen-spanish-t5-small-v7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# poem-gen-spanish-t5-small-v7
This model is a fine-tuned version of [hackathon-pln-es/poem-gen-spanish-t5-small](https://huggingface.co/hackathon-pln-es/poem-gen-spanish-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9201
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000333
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 3.1716 | 0.73 | 30000 | 3.1114 |
| 2.9666 | 1.46 | 60000 | 3.0271 |
| 2.8292 | 2.19 | 90000 | 2.9531 |
| 2.7264 | 2.93 | 120000 | 2.9126 |
| 2.6057 | 3.66 | 150000 | 2.9175 |
| 2.4876 | 4.39 | 180000 | 2.9077 |
| 2.3791 | 5.12 | 210000 | 2.9240 |
| 2.3515 | 5.85 | 240000 | 2.9169 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
BigSalmon/PointsToSentence
|
BigSalmon
| 2022-03-29T23:11:32Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-29T22:58:46Z |
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/PointsToSentence")
model = AutoModelForCausalLM.from_pretrained("BigSalmon/PointsToSentence")
```
```
- moviepass to return
- this summer
- swooped up by
- original co-founder stacy spikes
text: the re-launch of moviepass is set to transpire this summer, ( rescued at the hands of / under the stewardship of / spearheaded by ) its founding father, stacy spikes.
***
- middle schools do not have recess
- should get back to doing it
- amazing for communication
- and getting kids to move around
text: a casualty of the education reform craze, recess has been excised from middle schools. this is tragic, for it is instrumental in honing children's communication skills and encouraging physical activity.
***
-
```
It should also be able to do all that this can: https://huggingface.co/BigSalmon/InformalToFormalLincoln27
Keywords to sentences or sentence.
|
efederici/sentence-it5-base
|
efederici
| 2022-03-29T23:09:01Z | 35 | 4 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"t5",
"feature-extraction",
"sentence-similarity",
"transformers",
"it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-29T19:57:59Z |
---
pipeline_tag: sentence-similarity
language:
- it
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# sentence-IT5-base
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a T5 ([IT5](https://huggingface.co/gsarti/it5-base)) base model. It is trained on a dataset made from question/context pairs ([squad-it](https://github.com/crux82/squad-it)), tags/news-article pairs, headline/text pairs ([change-it](https://huggingface.co/datasets/gsarti/change_it)) and on [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/it/train).
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
model = SentenceTransformer('efederici/sentence-IT5-base')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-base')
model = AutoModel.from_pretrained('efederici/sentence-IT5-base')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
|
espnet/bur_openslr80_hubert
|
espnet
| 2022-03-29T22:19:50Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-28T22:04:54Z |
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Mon Mar 21 22:59:35 UTC 2022`
- python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]`
- espnet version: `espnet 0.10.7a1`
- pytorch version: `pytorch 1.10.1`
- Git hash: `7ae4efd81778436a98b822483e8123adba6aa430`
- Commit date: `Tue Mar 15 20:11:18 2022 -0400`
## asr_train_asr_hubert_transformer_adam_specaug_raw_bpe150
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_batch_size1_lm_lm_train_lm_bpe150_valid.loss.ave_asr_model_valid.acc.best/bur_test|480|4227|39.1|50.4|10.5|6.1|67.0|99.8|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_batch_size1_lm_lm_train_lm_bpe150_valid.loss.ave_asr_model_valid.acc.best/bur_test|480|33345|82.2|7.6|10.1|3.6|21.4|99.8|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_batch_size1_lm_lm_train_lm_bpe150_valid.loss.ave_asr_model_valid.acc.best/bur_test|480|18237|70.7|17.7|11.6|2.5|31.8|99.8|
|
Chikashi/t5-small-finetuned-cnndm_3epoch
|
Chikashi
| 2022-03-29T19:28:09Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:cnn_dailymail",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-29T00:14:31Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: t5-small-finetuned-cnndm_3epoch
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: cnn_dailymail
type: cnn_dailymail
args: 3.0.0
metrics:
- name: Rouge1
type: rouge
value: 24.5435
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-cnndm_3epoch
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6622
- Rouge1: 24.5435
- Rouge2: 11.7919
- Rougel: 20.2929
- Rougelsum: 23.1661
- Gen Len: 18.9996
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.9113 | 0.14 | 5000 | 1.7162 | 24.4374 | 11.6932 | 20.1741 | 23.0427 | 18.9997 |
| 1.8772 | 0.28 | 10000 | 1.7008 | 24.3715 | 11.6699 | 20.1387 | 22.9772 | 18.9997 |
| 1.8609 | 0.42 | 15000 | 1.6911 | 24.4174 | 11.6986 | 20.1756 | 23.0205 | 18.9997 |
| 1.8564 | 0.56 | 20000 | 1.6871 | 24.4374 | 11.6801 | 20.1663 | 23.0366 | 18.9995 |
| 1.8495 | 0.7 | 25000 | 1.6796 | 24.4019 | 11.6901 | 20.177 | 23.034 | 18.999 |
| 1.8448 | 0.84 | 30000 | 1.6787 | 24.4813 | 11.7227 | 20.1985 | 23.0847 | 18.999 |
| 1.8427 | 0.98 | 35000 | 1.6762 | 24.4905 | 11.7591 | 20.2548 | 23.1006 | 18.9993 |
| 1.8341 | 1.11 | 40000 | 1.6747 | 24.4743 | 11.7124 | 20.1782 | 23.0726 | 18.9996 |
| 1.822 | 1.25 | 45000 | 1.6753 | 24.4797 | 11.7292 | 20.2319 | 23.0816 | 18.9993 |
| 1.8262 | 1.39 | 50000 | 1.6713 | 24.4865 | 11.7079 | 20.2214 | 23.0919 | 18.9986 |
| 1.8281 | 1.53 | 55000 | 1.6702 | 24.5095 | 11.7364 | 20.2534 | 23.1264 | 18.9991 |
| 1.8228 | 1.67 | 60000 | 1.6678 | 24.5153 | 11.7595 | 20.2544 | 23.1138 | 18.9993 |
| 1.824 | 1.81 | 65000 | 1.6662 | 24.5324 | 11.7804 | 20.2671 | 23.1498 | 18.9997 |
| 1.8265 | 1.95 | 70000 | 1.6648 | 24.5795 | 11.7917 | 20.2935 | 23.1855 | 18.9992 |
| 1.8179 | 2.09 | 75000 | 1.6658 | 24.5426 | 11.804 | 20.2861 | 23.1586 | 18.9996 |
| 1.8147 | 2.23 | 80000 | 1.6646 | 24.5429 | 11.7914 | 20.2889 | 23.1542 | 18.9993 |
| 1.8026 | 2.37 | 85000 | 1.6632 | 24.5451 | 11.8045 | 20.2781 | 23.1555 | 18.9996 |
| 1.8141 | 2.51 | 90000 | 1.6643 | 24.5078 | 11.7781 | 20.2631 | 23.121 | 18.9996 |
| 1.8124 | 2.65 | 95000 | 1.6628 | 24.5728 | 11.7958 | 20.2875 | 23.178 | 18.9996 |
| 1.8098 | 2.79 | 100000 | 1.6635 | 24.5534 | 11.7998 | 20.2979 | 23.169 | 18.9996 |
| 1.8153 | 2.93 | 105000 | 1.6622 | 24.5435 | 11.7919 | 20.2929 | 23.1661 | 18.9996 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
efederici/sentence-it5-small
|
efederici
| 2022-03-29T17:29:14Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"t5",
"feature-extraction",
"sentence-similarity",
"transformers",
"it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-27T15:19:10Z |
---
pipeline_tag: sentence-similarity
language:
- it
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# sentence-IT5-small
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a T5 ([IT5](https://huggingface.co/gsarti/it5-small)) small model trained for asymmetric semantic search. Query is a keyword, Paragraph is a short news article.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
model = SentenceTransformer('efederici/sentence-IT5-small')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-small')
model = AutoModel.from_pretrained('efederici/sentence-IT5-small')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
|
krinal214/augmented
|
krinal214
| 2022-03-29T16:58:16Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-29T15:02:50Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: augmented
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# augmented
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5104
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0609 | 1.0 | 9787 | 0.5104 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.9.1
- Datasets 1.18.4
- Tokenizers 0.11.6
|
GleamEyeBeast/ascend
|
GleamEyeBeast
| 2022-03-29T16:49:48Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-29T01:37:59Z |
---
tags:
- generated_from_trainer
model-index:
- name: ascend
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ascend
This model is a fine-tuned version of [GleamEyeBeast/ascend](https://huggingface.co/GleamEyeBeast/ascend) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3718
- Wer: 0.6412
- Cer: 0.2428
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 0.5769 | 1.0 | 688 | 1.1864 | 0.7716 | 0.3159 |
| 0.5215 | 2.0 | 1376 | 1.1613 | 0.7504 | 0.2965 |
| 0.4188 | 3.0 | 2064 | 1.1644 | 0.7389 | 0.2950 |
| 0.3695 | 4.0 | 2752 | 1.1937 | 0.7184 | 0.2815 |
| 0.3404 | 5.0 | 3440 | 1.1947 | 0.7083 | 0.2719 |
| 0.2885 | 6.0 | 4128 | 1.2314 | 0.7108 | 0.2685 |
| 0.2727 | 7.0 | 4816 | 1.2243 | 0.6850 | 0.2616 |
| 0.2417 | 8.0 | 5504 | 1.2506 | 0.6767 | 0.2608 |
| 0.2207 | 9.0 | 6192 | 1.2804 | 0.6922 | 0.2595 |
| 0.2195 | 10.0 | 6880 | 1.2582 | 0.6818 | 0.2575 |
| 0.1896 | 11.0 | 7568 | 1.3101 | 0.6814 | 0.2545 |
| 0.1961 | 12.0 | 8256 | 1.2793 | 0.6706 | 0.2526 |
| 0.1752 | 13.0 | 8944 | 1.2643 | 0.6584 | 0.2509 |
| 0.1638 | 14.0 | 9632 | 1.3152 | 0.6588 | 0.2482 |
| 0.1522 | 15.0 | 10320 | 1.3098 | 0.6433 | 0.2439 |
| 0.1351 | 16.0 | 11008 | 1.3253 | 0.6537 | 0.2447 |
| 0.1266 | 17.0 | 11696 | 1.3394 | 0.6365 | 0.2418 |
| 0.1289 | 18.0 | 12384 | 1.3718 | 0.6412 | 0.2443 |
| 0.1204 | 19.0 | 13072 | 1.3708 | 0.6433 | 0.2433 |
| 0.1189 | 20.0 | 13760 | 1.3718 | 0.6412 | 0.2428 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
gabitoo1234/autotrain-mut_all_text-680820343
|
gabitoo1234
| 2022-03-29T16:09:31Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain",
"es",
"dataset:gabitoo1234/autotrain-data-mut_all_text",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-29T14:22:14Z |
---
tags: autotrain
language: es
widget:
- text: "I love AutoTrain 🤗"
datasets:
- gabitoo1234/autotrain-data-mut_all_text
co2_eq_emissions: 115.48848403681228
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 680820343
- CO2 Emissions (in grams): 115.48848403681228
## Validation Metrics
- Loss: 0.3041240870952606
- Accuracy: 0.9462770369425126
- Macro F1: 0.7836898686625933
- Micro F1: 0.9462770369425126
- Weighted F1: 0.9449148298990091
- Macro Precision: 0.8344505891491089
- Micro Precision: 0.9462770369425126
- Weighted Precision: 0.9451247372908952
- Macro Recall: 0.7568785255994025
- Micro Recall: 0.9462770369425126
- Weighted Recall: 0.9462770369425126
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/gabitoo1234/autotrain-mut_all_text-680820343
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("gabitoo1234/autotrain-mut_all_text-680820343", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("gabitoo1234/autotrain-mut_all_text-680820343", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
tbosse/bert-base-german-cased-finetuned-subj_v1
|
tbosse
| 2022-03-29T15:59:49Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-29T14:22:30Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-german-cased-finetuned-subj_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-german-cased-finetuned-subj_v1
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1594
- Precision: 0.1875
- Recall: 0.0077
- F1: 0.0147
- Accuracy: 0.9508
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 136 | 0.1591 | 1.0 | 0.0051 | 0.0102 | 0.9523 |
| No log | 2.0 | 272 | 0.1571 | 0.375 | 0.0077 | 0.015 | 0.9518 |
| No log | 3.0 | 408 | 0.1594 | 0.1875 | 0.0077 | 0.0147 | 0.9508 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
sayef/fsner-bert-base-uncased
|
sayef
| 2022-03-29T14:20:35Z | 9 | 6 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"feature-extraction",
"arxiv:2008.10570",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
# FSNER
Implemented by [sayef](https://huggingface.co/sayef).
# Overview
The FSNER model was proposed in [Example-Based Named Entity Recognition](https://arxiv.org/abs/2008.10570) by Morteza
Ziyadi, Yuting Sun, Abhishek Goswami, Jade Huang, Weizhu Chen. To identify entity spans in a new domain, it uses a
train-free few-shot learning approach inspired by question-answering.
## Abstract
> We present a novel approach to named entity recognition (NER) in the presence of scarce data that we call example-based NER. Our train-free few-shot learning approach takes inspiration from question-answering to identify entity spans in a new and unseen domain. In comparison with the current state-of-the-art, the proposed method performs significantly better, especially when using a low number of support examples.
## Model Training Details
| identifier | epochs | datasets |
| ---------- |:------:|:-----------------------------------------------------------------------------------------------:|
| [sayef/fsner-bert-base-uncased](https://huggingface.co/sayef/fsner-bert-base-uncased) | 25 | ontonotes5, conll2003, wnut2017, mit_movie_trivia, mit_restaurant and fin (Alvarado et al.). |
## Installation and Example Usage
You can use the FSNER model in 3 ways:
1. Install directly from PyPI: `pip install fsner` and import the model as shown in the code example below
or
2. Install from source: `python install .` and import the model as shown in the code example below
or
3. Clone [repo](https://github.com/sayef/fsner) and add absolute path of `fsner/src` directory to your PYTHONPATH and
import the model as shown in the code example below
```python
import json
from fsner import FSNERModel, FSNERTokenizerUtils, pretty_embed
query_texts = [
"Does Luke's serve lunch?",
"Chang does not speak Taiwanese very well.",
"I like Berlin."
]
# Each list in supports are the examples of one entity type
# Wrap entities around with [E] and [/E] in the examples.
# Each sentence should have only one pair of [E] ... [/E]
support_texts = {
"Restaurant": [
"What time does [E] Subway [/E] open for breakfast?",
"Is there a [E] China Garden [/E] restaurant in newark?",
"Does [E] Le Cirque [/E] have valet parking?",
"Is there a [E] McDonalds [/E] on main street?",
"Does [E] Mike's Diner [/E] offer huge portions and outdoor dining?"
],
"Language": [
"Although I understood no [E] French [/E] in those days , I was prepared to spend the whole day with Chien - chien .",
"like what the hell 's that called in [E] English [/E] ? I have to register to be here like since I 'm a foreigner .",
"So , I 'm also working on an [E] English [/E] degree because that 's my real interest .",
"Al - Jazeera TV station , established in November 1996 in Qatar , is an [E] Arabic - language [/E] news TV station broadcasting global news and reports nonstop around the clock .",
"They think it 's far better for their children to be here improving their [E] English [/E] than sitting at home in front of a TV . \"",
"The only solution seemed to be to have her learn [E] French [/E] .",
"I have to read sixty pages of [E] Russian [/E] today ."
]
}
device = 'cpu'
tokenizer = FSNERTokenizerUtils("sayef/fsner-bert-base-uncased")
queries = tokenizer.tokenize(query_texts).to(device)
supports = tokenizer.tokenize(list(support_texts.values())).to(device)
model = FSNERModel("sayef/fsner-bert-base-uncased")
model.to(device)
p_starts, p_ends = model.predict(queries, supports)
# One can prepare supports once and reuse multiple times with different queries
# ------------------------------------------------------------------------------
# start_token_embeddings, end_token_embeddings = model.prepare_supports(supports)
# p_starts, p_ends = model.predict(queries, start_token_embeddings=start_token_embeddings,
# end_token_embeddings=end_token_embeddings)
output = tokenizer.extract_entity_from_scores(query_texts, queries, p_starts, p_ends,
entity_keys=list(support_texts.keys()), thresh=0.50)
print(json.dumps(output, indent=2))
# install displacy for pretty embed
pretty_embed(query_texts, output, list(support_texts.keys()))
```
<!DOCTYPE html>
<html lang="en">
<head>
<title>displaCy</title>
</head>
<body style="font-size: 16px; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol'; padding: 4rem 2rem; direction: ltr">
<figure style="margin-bottom: 6rem">
<div class="entities" style="line-height: 2.5; direction: ltr">
<div class="entities" style="line-height: 2.5; direction: ltr">Does
<mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Luke's
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">Restaurant</span>
</mark>
serve lunch?</div>
<div class="entities" style="line-height: 2.5; direction: ltr">Chang does not speak
<mark class="entity" style="background: #bfeeb7; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Taiwanese
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">Language</span>
</mark>
very well.</div>
<div class="entities" style="line-height: 2.5; direction: ltr">I like Berlin.</div>
</div>
</figure>
</body>
</html>
## Datasets preparation
1. We need to convert dataset into the following format. Let's say we have a dataset file train.json like following.
2. Each list in supports are the examples of one entity type
3. Wrap entities around with [E] and [/E] in the examples.
4. Each example should have only one pair of [E] ... [/E].
```json
{
"CARDINAL_NUMBER": [
"Washington , cloudy , [E] 2 [/E] to 6 degrees .",
"New Dehli , sunny , [E] 6 [/E] to 19 degrees .",
"Well this is number [E] two [/E] .",
"....."
],
"LANGUAGE": [
"They do n't have the Quicken [E] Dutch [/E] version ?",
"they learned a lot of [E] German [/E] .",
"and then [E] Dutch [/E] it 's Mifrau",
"...."
],
"MONEY": [
"Per capita personal income ranged from $ [E] 11,116 [/E] in Mississippi to $ 23,059 in Connecticut ... .",
"The trade surplus was [E] 582 million US dollars [/E] .",
"It settled with a loss of 4.95 cents at $ [E] 1.3210 [/E] a pound .",
"...."
]
}
```
2. Converted ontonotes5 dataset can be found here:
1. [train](https://gist.githubusercontent.com/sayef/46deaf7e6c6e1410b430ddc8aff9c557/raw/ea7ae2ae933bfc9c0daac1aa52a9dc093d5b36f4/ontonotes5.train.json)
2. [dev](https://gist.githubusercontent.com/sayef/46deaf7e6c6e1410b430ddc8aff9c557/raw/ea7ae2ae933bfc9c0daac1aa52a9dc093d5b36f4/ontonotes5.dev.json)
3. Then trainer script can be used to train/evaluate your fsner model.
```bash
fsner trainer --pretrained-model bert-base-uncased --mode train --train-data train.json --val-data val.json \
--train-batch-size 6 --val-batch-size 6 --n-examples-per-entity 10 --neg-example-batch-ratio 1/3 --max-epochs 25 --device gpu \
--gpus -1 --strategy ddp
```
|
ArtemChistyakov-2/f
|
ArtemChistyakov-2
| 2022-03-29T12:21:18Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2022-03-29T12:21:18Z |
---
license: apache-2.0
---
|
gayanin/bart-med-term-conditional-masking-0
|
gayanin
| 2022-03-29T12:03:56Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-28T22:12:30Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-med-term-conditional-masking-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-med-term-conditional-masking-0
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5041
- Rouge2 Precision: 0.7497
- Rouge2 Recall: 0.5246
- Rouge2 Fmeasure: 0.5986
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 0.6381 | 1.0 | 13915 | 0.5595 | 0.734 | 0.5152 | 0.5873 |
| 0.5429 | 2.0 | 27830 | 0.5243 | 0.7441 | 0.5225 | 0.5956 |
| 0.5002 | 3.0 | 41745 | 0.5078 | 0.7482 | 0.5238 | 0.5976 |
| 0.4607 | 4.0 | 55660 | 0.5041 | 0.7497 | 0.5246 | 0.5986 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
scasutt/wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms
|
scasutt
| 2022-03-29T11:29:52Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-28T18:54:42Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5945
- Wer: 0.4929
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4049 | 1.05 | 250 | 3.3497 | 1.0 |
| 3.0851 | 2.1 | 500 | 3.4440 | 1.0 |
| 2.3512 | 3.15 | 750 | 1.5938 | 0.9317 |
| 1.1762 | 4.2 | 1000 | 0.8481 | 0.7333 |
| 0.903 | 5.25 | 1250 | 0.7180 | 0.6484 |
| 0.6754 | 6.3 | 1500 | 0.6603 | 0.6044 |
| 0.5961 | 7.35 | 1750 | 0.6410 | 0.5778 |
| 0.5325 | 8.4 | 2000 | 0.6245 | 0.5545 |
| 0.4685 | 9.45 | 2250 | 0.5925 | 0.5359 |
| 0.4526 | 10.5 | 2500 | 0.5991 | 0.5345 |
| 0.3975 | 11.55 | 2750 | 0.5916 | 0.5228 |
| 0.3672 | 12.6 | 3000 | 0.5882 | 0.5037 |
| 0.3774 | 13.65 | 3250 | 0.5693 | 0.5028 |
| 0.3489 | 14.7 | 3500 | 0.5645 | 0.5018 |
| 0.3593 | 15.75 | 3750 | 0.5977 | 0.5043 |
| 0.3167 | 16.81 | 4000 | 0.6049 | 0.5018 |
| 0.3225 | 17.86 | 4250 | 0.6172 | 0.4921 |
| 0.2807 | 18.91 | 4500 | 0.5937 | 0.4923 |
| 0.2889 | 19.96 | 4750 | 0.5945 | 0.4929 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu102
- Datasets 2.0.0
- Tokenizers 0.11.6
|
ai4bharat/MultiIndicWikiBioUnified
|
ai4bharat
| 2022-03-29T09:25:58Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"wikibio",
"multilingual",
"nlp",
"indicnlp",
"as",
"bn",
"hi",
"kn",
"ml",
"or",
"pa",
"ta",
"te",
"dataset:ai4bharat/IndicWikiBio",
"arxiv:2203.05437",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-16T11:35:33Z |
---
tags:
- wikibio
- multilingual
- nlp
- indicnlp
datasets:
- ai4bharat/IndicWikiBio
language:
- as
- bn
- hi
- kn
- ml
- or
- pa
- ta
- te
licenses:
- cc-by-nc-4.0
widget:
- <TAG> name </TAG> नवतेज भारती <TAG> image </TAG> NavtejBharati . jpg <TAG> birth name </TAG> नवतेज <TAG> birth date </TAG> 1938 <TAG> birth place </TAG> रोडे , भारतीय पंजाब , भारत । पंजाब <TAG> occupation </TAG> लेखक , कवि <TAG> nationality </TAG> कैनेडा । कैनेडियन <TAG> ethnicity </TAG> पंजाबी लोक । पंजाबी </s> <2hi>
---
# MultiIndicWikiBioUnified
MultiIndicWikiBioUnified is a multilingual, sequence-to-sequence pre-trained model, a [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint fine-tuned on the 9 languages of [IndicWikiBio](https://huggingface.co/datasets/ai4bharat/IndicWikiBio) dataset. For fine-tuning details,
see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicWikiBio to build biography generation applications for Indian languages by fine-tuning the model with supervised training data. Some salient features of the MultiIndicWikiBio are:
<ul>
<li >Supported languages: Assamese, Bengali, Hindi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li>
<li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for fine-tuning and decoding. </li>
<li> Fine-tuned on an Indic language corpora (34,653 examples). </li>
<li> All languages have been represented in Devanagari script to encourage transfer learning among the related languages. </li>
</ul>
You can read more about MultiIndicWikiBioUnified in this <a href="https://arxiv.org/abs/2203.05437">paper</a>.
## Using this model in `transformers`
```
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
from transformers import AlbertTokenizer, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioUnified", do_lower_case=False, use_fast=False, keep_accents=True)
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioUnified", do_lower_case=False, use_fast=False, keep_accents=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicWikiBioUnified")
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicWikiBioUnified")
# Some initial mapping
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
# To get lang_id use any of ['<2as>', '<2bn>', '<2hi>', '<2kn>', '<2ml>', '<2or>', '<2pa>', '<2ta>', '<2te>']
# First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
inp = tokenizer("<TAG> name </TAG> भीखा लाल <TAG> office </TAG> विधायक - 318 - हसनगंज विधान सभा निर्वाचन क्षेत्र , उत्तर प्रदेश <TAG> term </TAG> 1957 से 1962 <TAG> nationality </TAG> भारतीय</s><2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
out = tokenizer("<2hi> भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे। </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
# For loss
model_outputs.loss ## This is not label smoothed.
# For logits
model_outputs.logits
# For generation. Pardon the messiness. Note the decoder_start_token_id.
model.eval() # Set dropouts to zero
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>"))
# Decode to get output strings
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) # भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे।
# Disclaimer
Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the [Indic NLP Library](https://github.com/AI4Bharat/indic-bart/blob/main/indic_scriptmap.py).
```
# Note:
If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script.
## Benchmarks
Scores on the `IndicWikiBio` test sets are as follows:
Language | RougeL
---------|----------------------------
as | 56.28
bn | 57.42
hi | 67.48
kn | 40.01
ml | 38.84
or | 67.13
pa | 52.88
ta | 51.82
te | 51.43
## Citation
If you use this model, please cite the following paper:
```
@inproceedings{Kumar2022IndicNLGSM,
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
year={2022},
url = "https://arxiv.org/abs/2203.05437"
}
```
# License
The model is available under the MIT License.
|
Davlan/m2m100_418M-yor-eng-mt
|
Davlan
| 2022-03-29T09:21:03Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"m2m_100",
"text2text-generation",
"arxiv:2103.08647",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
Hugging Face's logo
---
language:
- yo
- en
datasets:
- JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt)
---
# m2m100_418M-eng-yor-mt
## Model description
**m2m100_418M-yor-eng-mt** is a **machine translation** model from Yorùbá language to English language based on a fine-tuned facebook/m2m100_418M model. It establishes a **strong baseline** for automatically translating texts from Yorùbá to English.
Specifically, this model is a *facebook/m2m100_418M* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt).
#### Limitations and bias
This model is limited by its training dataset. This may not generalize well for all use cases in different domains.
## Training data
This model was fine-tuned on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset
## Training procedure
This model was trained on NVIDIA V100 GPU
## Eval results on Test set (BLEU score)
Fine-tuning m2m100_418M achieves **16.76 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 15.57
### BibTeX entry and citation info
By David Adelani
```
```
|
PereLluis13/Wav2Vec2-Large-XLSR-53-catalan
|
PereLluis13
| 2022-03-29T08:51:28Z | 6,942 | 2 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"ca",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:04Z |
---
language: ca
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Catalan XLSR Wav2Vec Large 53 #TODO: replace {human_readable_name} with a name of your model as it should appear on the leaderboard. It could be something like `Elgeish XLSR Wav2Vec2 Large 53`
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice ca
type: common_voice
args: ca #TODO:
metrics:
- name: Test WER
type: wer
value: 8.11
---
# Disclaimer
This model was trained on Common Voice 6, if you need a catalan model for ASR, I recommend checking [wav2vec2-xls-r-1b-ca-lm](https://huggingface.co/PereLluis13/wav2vec2-xls-r-1b-ca-lm) which is a 1b model with a LM on top trained on CV8+ with much better performance or [wav2vec2-xls-r-300m-ca-lm](https://huggingface.co/PereLluis13/wav2vec2-xls-r-300m-ca-lm) which has the same size (300m) as this model but trained on CV8+ and the same LM.
# Wav2Vec2-Large-XLSR-53-ca
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on catalan using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ca", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan")
model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the catalan test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ca", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan")
model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\;\:\"\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
import jiwer
# Chunk WER computation due to memory issues, taken from https://huggingface.co/pcuenq/wav2vec2-large-xlsr-53-es
def chunked_wer(targets, predictions, chunk_size=None):
if chunk_size is None: return jiwer.wer(targets, predictions)
start = 0
end = chunk_size
H, S, D, I = 0, 0, 0, 0
while start < len(targets):
chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
H = H + chunk_metrics["hits"]
S = S + chunk_metrics["substitutions"]
D = D + chunk_metrics["deletions"]
I = I + chunk_metrics["insertions"]
start += chunk_size
end += chunk_size
return float(S + D + I) / float(H + S + D)
print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000)))
```
**Test Result**: 8.11 %
## Training
The Common Voice `train`, `validation` datasets were used for training. At the second epoch training was halted due to a memory issue, and was continued with lower batch size, but acc. gradient steps were scaled to keep it at 32 batch size during all training. Then the model was trained for an additional 10 epochs where half the male samples were pitched up.
The script used for training can be found [here](https://github.com/huggingface/transformers/blob/master/examples/research_projects/wav2vec2/run_common_voice.py). Slight modifications were done in order to speed up the ordering by length during training, which can be found [here](https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586/6). Another version trained for catalan can be found [here](https://huggingface.co/ccoreilly/wav2vec2-large-xlsr-catala), which may be better than this one since it was trained with extra data and for longer time. Whoever, since it used different splits that include part of the Common Voice test set, this version can be used to get a baseline on the Common Voice dataset.
|
PereLluis13/wav2vec2-xls-r-1b-ca
|
PereLluis13
| 2022-03-29T08:44:49Z | 17 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"collectivat/tv3_parla",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_8_0",
"projecte-aina/parlament_parla",
"robust-speech-event",
"ca",
"dataset:mozilla-foundation/common_voice_8_0",
"dataset:collectivat/tv3_parla",
"dataset:projecte-aina/parlament_parla",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:04Z |
---
language:
- ca
license: apache-2.0
tags:
- automatic-speech-recognition
- collectivat/tv3_parla
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- projecte-aina/parlament_parla
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
model-index:
- name: wav2vec2-xls-r-1b-ca
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_8_0 ca
type: mozilla-foundation/common_voice_8_0
args: ca
metrics:
- name: Test WER
type: wer
value: 11.030639657300516
- name: Test CER
type: cer
value: 2.8405630530040634
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: projecte-aina/parlament_parla ca
type: projecte-aina/parlament_parla
args: clean
metrics:
- name: Test WER
type: wer
value: 6.483115660665961
- name: Test CER
type: cer
value: 2.0212863746191828
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: collectivat/tv3_parla ca
type: collectivat/tv3_parla
args: ca
metrics:
- name: Test WER
type: wer
value: 17.917773414943988
- name: Test CER
type: cer
value: 8.872589572206396
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Catalan Dev Data
type: speech-recognition-community-v2/dev_data
args: ca
metrics:
- name: Test WER
type: wer
value: 27.126683954209097
- name: Test CER
type: cer
value: 14.213308815078726
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ca
metrics:
- name: Test WER
type: wer
value: 18.7
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-1b-ca
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets.
## Model description
Please check the original [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) Model card. This is just a finetuned version of that model.
## Intended uses & limitations
As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language.
## Training and evaluation data
## Training procedure
The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py).
### Training results
Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
# Thanks
Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
|
PereLluis13/wav2vec2-xls-r-300m-ca
|
PereLluis13
| 2022-03-29T08:43:53Z | 52 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"collectivat/tv3_parla",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_8_0",
"projecte-aina/parlament_parla",
"robust-speech-event",
"ca",
"dataset:mozilla-foundation/common_voice_8_0",
"dataset:collectivat/tv3_parla",
"dataset:projecte-aina/parlament_parla",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:04Z |
---
language:
- ca
license: apache-2.0
tags:
- automatic-speech-recognition
- collectivat/tv3_parla
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- projecte-aina/parlament_parla
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
model-index:
- name: wav2vec2-xls-r-300m-ca
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_8_0 ca
type: mozilla-foundation/common_voice_8_0
args: ca
metrics:
- name: Test WER
type: wer
value: 13.170091241317552
- name: Test CER
type: cer
value: 3.356726205534543
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: projecte-aina/parlament_parla ca
type: projecte-aina/parlament_parla
args: clean
metrics:
- name: Test WER
type: wer
value: 8.048005647723261
- name: Test CER
type: cer
value: 2.240912911020065
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: collectivat/tv3_parla ca
type: collectivat/tv3_parla
args: ca
metrics:
- name: Test WER
type: wer
value: 23.320629787889285
- name: Test CER
type: cer
value: 10.439216202089989
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: speech-recognition-community-v2/dev_data ca
type: speech-recognition-community-v2/dev_data
args: ca
metrics:
- name: Test WER
type: wer
value: 31.99671115046487
- name: Test CER
type: cer
value: 15.820020687277325
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ca
metrics:
- name: Test WER
type: wer
value: 22.04
---
# wav2vec2-xls-r-300m-ca
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets.
It achieves the following results on the evaluation set (for the three datasets):
- Loss: 0.2472
- Wer: 0.1499
## Model description
Please check the original [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) Model card. This is just a finetuned version of that model.
## Intended uses & limitations
As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language.
## Training and evaluation data
More information needed
## Training procedure
The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 18.0
- mixed_precision_training: Native AMP
### Training results
Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training.
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 6.2099 | 0.09 | 500 | 3.4125 | 1.0 |
| 2.9961 | 0.18 | 1000 | 2.9224 | 1.0 |
| 2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 |
| 1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 |
| 1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 |
| 1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 |
| 1.052 | 0.62 | 3500 | 0.2173 | 0.2032 |
| 1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 |
| 1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 |
| 1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 |
| 1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 |
| 1.213 | 3.2 | 6000 | 0.3051 | 0.1980 |
| 1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 |
| 1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 |
| 1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 |
| 1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 |
| 1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 |
| 1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 |
| 1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 |
| 1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 |
| 1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 |
| 1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 |
| 1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 |
| 1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 |
| 1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 |
| 1.136 | 6.93 | 13000 | 0.2765 | 0.1643 |
| 1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 |
| 1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 |
| 1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 |
| 1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 |
| 1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 |
| 1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 |
| 1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 |
| 1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 |
| 1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 |
| 1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 |
| 1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 |
| 1.09 | 10.12 | 19000 | 0.2577 | 0.1578 |
| 1.089 | 10.39 | 19500 | 0.2574 | 0.1531 |
| 1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 |
| 1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 |
| 1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 |
| 1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 |
| 1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 |
| 1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 |
| 1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 |
| 1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 |
| 1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 |
| 1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 |
| 1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 |
| 1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 |
| 1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 |
| 1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 |
| 1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 |
| 1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 |
| 1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 |
| 1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 |
| 1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 |
| 1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 |
| 1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 |
| 1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 |
| 1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
# Thanks
Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
|
PereLluis13/wav2vec2-xls-r-300m-ca-lm
|
PereLluis13
| 2022-03-29T08:42:55Z | 20 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"collectivat/tv3_parla",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_8_0",
"projecte-aina/parlament_parla",
"robust-speech-event",
"ca",
"dataset:mozilla-foundation/common_voice_8_0",
"dataset:collectivat/tv3_parla",
"dataset:projecte-aina/parlament_parla",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:04Z |
---
language:
- ca
license: apache-2.0
tags:
- automatic-speech-recognition
- collectivat/tv3_parla
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- projecte-aina/parlament_parla
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
model-index:
- name: wav2vec2-xls-r-300m-ca-lm
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_8_0 ca
type: mozilla-foundation/common_voice_8_0
args: ca
metrics:
- name: Test WER
type: wer
value: 6.771703090587865
- name: Test CER
type: cer
value: 2.1007777843712293
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: projecte-aina/parlament_parla ca
type: projecte-aina/parlament_parla
args: clean
metrics:
- name: Test WER
type: wer
value: 5.565360630662431
- name: Test CER
type: cer
value: 1.8594390167034354
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: collectivat/tv3_parla ca
type: collectivat/tv3_parla
args: ca
metrics:
- name: Test WER
type: wer
value: 13.53312545713516
- name: Test CER
type: cer
value: 8.684635913340556
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Catalan Dev Data
type: speech-recognition-community-v2/dev_data
args: ca
metrics:
- name: Test WER
type: wer
value: 26.04515843400164
- name: Test CER
type: cer
value: 15.056890012642224
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ca
metrics:
- name: Test WER
type: wer
value: 17.68
---
# wav2vec2-xls-r-300m-ca-lm
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets.
It achieves the following results on the evaluation set (for the three datasets and without the LM):
- Loss: 0.2472
- Wer: 0.1499
## Model description
Please check the original [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) Model card. This is just a finetuned version of that model.
## Intended uses & limitations
As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language.
## Training and evaluation data
More information needed
## Training procedure
The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 18.0
- mixed_precision_training: Native AMP
### Training results
Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training.
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 6.2099 | 0.09 | 500 | 3.4125 | 1.0 |
| 2.9961 | 0.18 | 1000 | 2.9224 | 1.0 |
| 2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 |
| 1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 |
| 1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 |
| 1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 |
| 1.052 | 0.62 | 3500 | 0.2173 | 0.2032 |
| 1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 |
| 1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 |
| 1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 |
| 1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 |
| 1.213 | 3.2 | 6000 | 0.3051 | 0.1980 |
| 1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 |
| 1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 |
| 1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 |
| 1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 |
| 1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 |
| 1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 |
| 1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 |
| 1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 |
| 1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 |
| 1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 |
| 1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 |
| 1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 |
| 1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 |
| 1.136 | 6.93 | 13000 | 0.2765 | 0.1643 |
| 1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 |
| 1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 |
| 1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 |
| 1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 |
| 1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 |
| 1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 |
| 1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 |
| 1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 |
| 1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 |
| 1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 |
| 1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 |
| 1.09 | 10.12 | 19000 | 0.2577 | 0.1578 |
| 1.089 | 10.39 | 19500 | 0.2574 | 0.1531 |
| 1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 |
| 1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 |
| 1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 |
| 1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 |
| 1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 |
| 1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 |
| 1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 |
| 1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 |
| 1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 |
| 1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 |
| 1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 |
| 1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 |
| 1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 |
| 1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 |
| 1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 |
| 1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 |
| 1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 |
| 1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 |
| 1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 |
| 1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 |
| 1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 |
| 1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 |
| 1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
# Thanks
Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
|
PereLluis13/wav2vec2-xls-r-1b-ca-lm
|
PereLluis13
| 2022-03-29T08:41:46Z | 3,126 | 4 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"collectivat/tv3_parla",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_8_0",
"projecte-aina/parlament_parla",
"robust-speech-event",
"ca",
"dataset:mozilla-foundation/common_voice_8_0",
"dataset:collectivat/tv3_parla",
"dataset:projecte-aina/parlament_parla",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:04Z |
---
language:
- ca
license: apache-2.0
tags:
- automatic-speech-recognition
- collectivat/tv3_parla
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- projecte-aina/parlament_parla
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
model-index:
- name: wav2vec2-xls-r-1b-ca-lm
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_8_0 ca
type: mozilla-foundation/common_voice_8_0
args: ca
metrics:
- name: Test WER
type: wer
value: 6.0722669958130644
- name: Test CER
type: cer
value: 1.9180697705166526
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: projecte-aina/parlament_parla ca
type: projecte-aina/parlament_parla
args: clean
metrics:
- name: Test WER
type: wer
value: 5.139820371024042
- name: Test CER
type: cer
value: 2.0163620128164722
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: collectivat/tv3_parla ca
type: collectivat/tv3_parla
args: ca
metrics:
- name: Test WER
type: wer
value: 11.207991684952073
- name: Test CER
type: cer
value: 7.32119307305963
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Catalan Dev Data
type: speech-recognition-community-v2/dev_data
args: ca
metrics:
- name: Test WER
type: wer
value: 22.870153690468661
- name: Test CER
type: cer
value: 13.59039190897598
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ca
metrics:
- name: Test WER
type: wer
value: 15.41
---
# wav2vec2-xls-r-1b-ca-lm
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets.
## Model description
Please check the original [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) Model card. This is just a finetuned version of that model.
## Intended uses & limitations
As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language.
## Training and evaluation data
## Training procedure
The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py).
### Training results
Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
# Thanks
Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
|
johnowhitaker/sketchy_unet_rn34
|
johnowhitaker
| 2022-03-29T08:02:43Z | 0 | 0 | null |
[
"license:cc-by-4.0",
"region:us"
] | null | 2022-03-29T07:57:40Z |
---
license: cc-by-4.0
---
This is the exported model for a small project I' working on, to test integration with spaces.
It is a fastai model and needs some custom code to work.
For now please ignore :)
|
STARBORN/MMC
|
STARBORN
| 2022-03-29T07:14:35Z | 0 | 1 | null |
[
"license:mit",
"region:us"
] | null | 2022-03-29T07:12:26Z |
---
license: mit
---
Metamodel Card (MMC) builds on MC and DC schemas by adding system level abstraction to the data. MMC instantiations follow
|
rampasek/prot_bert_bfd_rosetta204060aa
|
rampasek
| 2022-03-29T04:35:10Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"protein language model",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-29T04:02:40Z |
---
language: protein
tags:
- protein language model
datasets:
- BFD
- Custom Rosetta
---
# ProtBert-BFD finetuned on Rosetta 20,40,60AA dataset
This model is finetuned to predict Rosetta fold energy using a dataset of 300k protein sequences:
100k of 20AA, 100k of 40AA, and 100k of 60AA
Current model in this repo: `prot_bert_bfd-finetuned-032822_1323`
## Performance
- 20AA sequences (1k eval set):\
Metrics: 'mae': 0.100418, 'r2': 0.989028, 'mse': 0.016266, 'rmse': 0.127537
- 40AA sequences (10k eval set):\
Metrics: 'mae': 0.173888, 'r2': 0.963361, 'mse': 0.048218, 'rmse': 0.219587
- 60AA sequences (10k eval set):\
Metrics: 'mae': 0.235238, 'r2': 0.930164, 'mse': 0.088131, 'rmse': 0.2968
## `prot_bert_bfd` from ProtTrans
The starting pretrained model is from ProtTrans, trained on 2.1 billion proteins from BFD.
It was trained on protein sequences using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in
[this repository](https://github.com/agemagician/ProtTrans).
> Created by [Ladislav Rampasek](https://rampasek.github.io)
|
rampasek/prot_bert_bfd_rosetta20aa
|
rampasek
| 2022-03-29T04:33:02Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"protein language model",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-28T04:13:53Z |
---
language: protein
tags:
- protein language model
datasets:
- BFD
- Custom Rosetta
---
# ProtBert-BFD finetuned on Rosetta 20AA dataset
This model is finetuned to predict Rosetta fold energy using a dataset of 100k 20AA sequences.
Current model in this repo: `prot_bert_bfd-finetuned-032722_1752`
## Performance
- 20AA sequences (1k eval set):\
Metrics: 'mae': 0.090115, 'r2': 0.991208, 'mse': 0.013034, 'rmse': 0.114165
- 40AA sequences (10k eval set):\
Metrics: 'mae': 0.537456, 'r2': 0.659122, 'mse': 0.448607, 'rmse': 0.669781
- 60AA sequences (10k eval set):\
Metrics: 'mae': 0.629267, 'r2': 0.506747, 'mse': 0.622476, 'rmse': 0.788972
## `prot_bert_bfd` from ProtTrans
The starting pretrained model is from ProtTrans, trained on 2.1 billion proteins from BFD.
It was trained on protein sequences using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in
[this repository](https://github.com/agemagician/ProtTrans).
> Created by [Ladislav Rampasek](https://rampasek.github.io)
|
tbosse/bert-base-german-cased-finetuned-subj
|
tbosse
| 2022-03-28T22:50:53Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-28T20:51:21Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-german-cased-finetuned-subj
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-german-cased-finetuned-subj
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1424
- Precision: 0.6514
- Recall: 0.0186
- F1: 0.0363
- Accuracy: 0.9511
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 140 | 0.1588 | 0.6 | 0.0016 | 0.0031 | 0.9507 |
| No log | 2.0 | 280 | 0.1466 | 0.75 | 0.0039 | 0.0078 | 0.9508 |
| No log | 3.0 | 420 | 0.1424 | 0.6514 | 0.0186 | 0.0363 | 0.9511 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
frtna/ted_mt-Spanish-to-Italian
|
frtna
| 2022-03-28T22:04:21Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"dataset:new_dataset",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- new_dataset
model-index:
- name: ted_mt-Spanish-to-Italian
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ted_mt-Spanish-to-Italian
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-it](https://huggingface.co/Helsinki-NLP/opus-mt-es-it) on the new_dataset dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| No log | 1.0 | 46 | 1.4873 | 29.6133 | 26.9081 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0
- Datasets 2.0.0
- Tokenizers 0.11.6
|
Symbermine/rare-puppers
|
Symbermine
| 2022-03-28T19:38:23Z | 57 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-28T19:38:13Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: rare-puppers
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9285714030265808
---
# rare-puppers
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### Husky siberiano

#### cocker spaniel

#### galgo

#### labrador

#### pastor aleman

|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.