modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-12 18:27:22
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
518 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-12 18:26:55
card
stringlengths
11
1.01M
huggingtweets/pink_rodent
huggingtweets
2022-08-28T02:33:36Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-28T02:32:47Z
--- language: en thumbnail: http://www.huggingtweets.com/pink_rodent/1661654012124/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1558011857838931968/JdtfxNhf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mouse</div> <div style="text-align: center; font-size: 14px;">@pink_rodent</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mouse. | Data | mouse | | --- | --- | | Tweets downloaded | 242 | | Retweets | 48 | | Short tweets | 55 | | Tweets kept | 139 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/182s7hgh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pink_rodent's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35lwy7go) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35lwy7go/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pink_rodent') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
paola-md/recipe-lr8e06-wd0.1-bs8
paola-md
2022-08-28T01:37:28Z
164
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T01:13:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.1-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.1-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2778 - Rmse: 0.5270 - Mse: 0.2778 - Mae: 0.4290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2766 | 1.0 | 2490 | 0.2741 | 0.5235 | 0.2741 | 0.4176 | | 0.2739 | 2.0 | 4980 | 0.2773 | 0.5266 | 0.2773 | 0.4286 | | 0.2726 | 3.0 | 7470 | 0.2778 | 0.5270 | 0.2778 | 0.4290 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
anas-awadalla/distilroberta-base-task-specific-distilation-on-squad
anas-awadalla
2022-08-28T01:17:22Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-27T23:50:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilroberta-base-task-specific-distilation-on-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-task-specific-distilation-on-squad This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
infiniteperplexity/xlm-roberta-base-finetuned-panx-de
infiniteperplexity
2022-08-28T01:09:17Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T00:45:38Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
paola-md/recipe-lr8e06-wd0.01-bs8
paola-md
2022-08-28T00:47:15Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T00:22:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.01-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.01-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2782 - Rmse: 0.5274 - Mse: 0.2782 - Mae: 0.4299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2766 | 1.0 | 2490 | 0.2739 | 0.5234 | 0.2739 | 0.4152 | | 0.2739 | 2.0 | 4980 | 0.2769 | 0.5262 | 0.2769 | 0.4274 | | 0.2725 | 3.0 | 7470 | 0.2782 | 0.5274 | 0.2782 | 0.4299 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.02-bs8
paola-md
2022-08-28T00:22:11Z
161
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T23:57:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.02-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.02-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2767 - Rmse: 0.5260 - Mse: 0.2767 - Mae: 0.4245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2771 | 1.0 | 2490 | 0.2746 | 0.5240 | 0.2746 | 0.4201 | | 0.2739 | 2.0 | 4980 | 0.2810 | 0.5301 | 0.2810 | 0.4329 | | 0.2723 | 3.0 | 7470 | 0.2767 | 0.5260 | 0.2767 | 0.4245 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.01-bs8
paola-md
2022-08-27T23:07:05Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T22:42:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.01-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.01-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2765 - Rmse: 0.5259 - Mse: 0.2765 - Mae: 0.4240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2771 | 1.0 | 2490 | 0.2743 | 0.5237 | 0.2743 | 0.4175 | | 0.2739 | 2.0 | 4980 | 0.2801 | 0.5292 | 0.2801 | 0.4307 | | 0.2723 | 3.0 | 7470 | 0.2765 | 0.5259 | 0.2765 | 0.4240 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr1e05-wd0.02-bs16
paola-md
2022-08-27T22:42:16Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T22:25:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.02-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.02-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2793 - Rmse: 0.5285 - Mse: 0.2793 - Mae: 0.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2744 | 0.5239 | 0.2744 | 0.4125 | | 0.2739 | 2.0 | 2490 | 0.2757 | 0.5250 | 0.2757 | 0.4212 | | 0.2727 | 3.0 | 3735 | 0.2793 | 0.5285 | 0.2793 | 0.4342 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr1e05-wd0.1-bs16
paola-md
2022-08-27T22:24:30Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T22:07:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.1-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.1-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2794 - Rmse: 0.5286 - Mse: 0.2794 - Mae: 0.4343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2744 | 0.5239 | 0.2744 | 0.4124 | | 0.2739 | 2.0 | 2490 | 0.2757 | 0.5250 | 0.2757 | 0.4211 | | 0.2727 | 3.0 | 3735 | 0.2794 | 0.5286 | 0.2794 | 0.4343 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr1e05-wd0.01-bs16
paola-md
2022-08-27T21:48:54Z
164
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T21:31:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.01-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.01-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2793 - Rmse: 0.5285 - Mse: 0.2793 - Mae: 0.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2744 | 0.5239 | 0.2744 | 0.4124 | | 0.2739 | 2.0 | 2490 | 0.2757 | 0.5251 | 0.2757 | 0.4212 | | 0.2727 | 3.0 | 3735 | 0.2793 | 0.5285 | 0.2793 | 0.4342 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
jackoyoungblood/Reinforce-PongPolGrad
jackoyoungblood
2022-08-27T21:43:41Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T21:41:20Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PongPolGrad results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
paola-md/recipe-lr8e06-wd0.01-bs16
paola-md
2022-08-27T20:37:31Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T20:20:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.01-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.01-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2795 - Rmse: 0.5286 - Mse: 0.2795 - Mae: 0.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2745 | 0.5239 | 0.2745 | 0.4140 | | 0.2741 | 2.0 | 2490 | 0.2760 | 0.5254 | 0.2760 | 0.4222 | | 0.2729 | 3.0 | 3735 | 0.2795 | 0.5286 | 0.2795 | 0.4342 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.02-bs16
paola-md
2022-08-27T20:19:45Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T20:02:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.02-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.02-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2780 - Rmse: 0.5272 - Mse: 0.2780 - Mae: 0.4313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.277 | 1.0 | 1245 | 0.2743 | 0.5237 | 0.2743 | 0.4111 | | 0.2738 | 2.0 | 2490 | 0.2814 | 0.5305 | 0.2814 | 0.4294 | | 0.2725 | 3.0 | 3735 | 0.2780 | 0.5272 | 0.2780 | 0.4313 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.1-bs16
paola-md
2022-08-27T20:01:59Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T19:44:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.1-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.1-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2783 - Rmse: 0.5275 - Mse: 0.2783 - Mae: 0.4319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2771 | 1.0 | 1245 | 0.2744 | 0.5238 | 0.2744 | 0.4105 | | 0.2738 | 2.0 | 2490 | 0.2819 | 0.5309 | 0.2819 | 0.4298 | | 0.2724 | 3.0 | 3735 | 0.2783 | 0.5275 | 0.2783 | 0.4319 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
theojolliffe/T5-model-1-feedback
theojolliffe
2022-08-27T19:25:07Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T21:31:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: T5-model-1-feedback results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-feedback This model is a fine-tuned version of [theojolliffe/T5-model-1-d-4](https://huggingface.co/theojolliffe/T5-model-1-d-4) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 130 | 0.4120 | 61.7277 | 46.2681 | 61.1325 | 61.2797 | 13.2632 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.10.3
curt-tigges/ppo-LunarLander-v2
curt-tigges
2022-08-27T19:12:38Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T19:12:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 252.72 +/- 21.52 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
paola-md/recipe-gauss-wo-outliers
paola-md
2022-08-27T17:24:48Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T16:33:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-gauss-wo-outliers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-gauss-wo-outliers This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2885 - Rmse: 0.5371 - Mse: 0.2885 - Mae: 0.4213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:| | 0.2768 | 1.0 | 1245 | 0.2747 | 0.5241 | 0.2747 | 0.4081 | | 0.2737 | 2.0 | 2490 | 0.2793 | 0.5285 | 0.2793 | 0.4288 | | 0.2722 | 3.0 | 3735 | 0.2792 | 0.5284 | 0.2792 | 0.4332 | | 0.2703 | 4.0 | 4980 | 0.2770 | 0.5263 | 0.2770 | 0.4000 | | 0.2682 | 5.0 | 6225 | 0.2758 | 0.5252 | 0.2758 | 0.4183 | | 0.2658 | 6.0 | 7470 | 0.2792 | 0.5284 | 0.2792 | 0.4212 | | 0.2631 | 7.0 | 8715 | 0.2769 | 0.5262 | 0.2769 | 0.4114 | | 0.2599 | 8.0 | 9960 | 0.2802 | 0.5294 | 0.2802 | 0.4107 | | 0.2572 | 9.0 | 11205 | 0.2885 | 0.5371 | 0.2885 | 0.4213 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
espnet/americasnlp22-asr-gvc
espnet
2022-08-27T16:15:08Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "gvc", "dataset:americasnlp22", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-06-06T19:07:35Z
--- tags: - espnet - audio - automatic-speech-recognition language: gvc datasets: - americasnlp22 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/americasnlp22-asr-gvc` This model was trained by Pavel Denisov using americasnlp22 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 66ca5df9f08b6084dbde4d9f312fa8ba0a47ecfc pip install -e . cd egs2/americasnlp22/asr1 ./run.sh \ --skip_data_prep false \ --skip_train true \ --download_model espnet/americasnlp22-asr-gvc \ --lang gvc \ --local_data_opts "--lang gvc" \ --train_set train_gvc \ --valid_set dev_gvc \ --test_sets dev_gvc \ --gpu_inference false \ --inference_nj 8 \ --lm_train_text data/train_gvc/text \ --bpe_train_text data/train_gvc/text ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Jun 5 03:29:33 CEST 2022` - python version: `3.9.13 (main, May 18 2022, 00:00:00) [GCC 11.3.1 20220421 (Red Hat 11.3.1-2)]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0+cu115` - Git hash: `d55704daa36d3dd2ca24ae3162ac40d81957208c` - Commit date: `Wed Jun 1 02:33:09 2022 +0200` ## asr_train_asr_transformer_raw_gvc_bpe100_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gvc|253|2206|12.4|72.4|15.1|6.7|94.2|99.6| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gvc|253|13453|64.7|15.5|19.9|10.2|45.6|99.6| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gvc|253|10229|58.3|22.3|19.4|11.0|52.7|99.6| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_raw_gvc_bpe100_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - cer_ctc - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream.model.feature_extractor - frontend.upstream.model.encoder.layers.0 - frontend.upstream.model.encoder.layers.1 - frontend.upstream.model.encoder.layers.2 - frontend.upstream.model.encoder.layers.3 - frontend.upstream.model.encoder.layers.4 - frontend.upstream.model.encoder.layers.5 - frontend.upstream.model.encoder.layers.6 - frontend.upstream.model.encoder.layers.7 - frontend.upstream.model.encoder.layers.8 - frontend.upstream.model.encoder.layers.9 - frontend.upstream.model.encoder.layers.10 - frontend.upstream.model.encoder.layers.11 - frontend.upstream.model.encoder.layers.12 - frontend.upstream.model.encoder.layers.13 - frontend.upstream.model.encoder.layers.14 - frontend.upstream.model.encoder.layers.15 - frontend.upstream.model.encoder.layers.16 - frontend.upstream.model.encoder.layers.17 - frontend.upstream.model.encoder.layers.18 - frontend.upstream.model.encoder.layers.19 - frontend.upstream.model.encoder.layers.20 - frontend.upstream.model.encoder.layers.21 num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 200000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_gvc_bpe100_sp/train/speech_shape - exp/asr_stats_raw_gvc_bpe100_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_gvc_bpe100_sp/valid/speech_shape - exp/asr_stats_raw_gvc_bpe100_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_gvc_sp/wav.scp - speech - sound - - dump/raw/train_gvc_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_gvc/wav.scp - speech - sound - - dump/raw/dev_gvc/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 300 token_list: - <blank> - <unk> - ▁ - a - '''' - u - i - o - h - U - . - ro - re - ri - ka - s - na - p - e - ▁ti - t - ':' - d - ha - 'no' - ▁hi - m - ▁ni - '~' - Γ£ - ta - ▁wa - ti - ',' - ▁to - b - n - ▁kh - ma - r - se - w - l - k - '"' - Γ± - Γ΅ - g - ( - ) - v - f - '?' - A - K - z - Γ© - T - '!' - D - Γ³ - N - Γ‘ - R - P - ΓΊ - '0' - Γ­ - I - '1' - L - '-' - '8' - E - S - Γƒ - F - '9' - '6' - G - C - x - '3' - '2' - B - W - J - H - Y - M - j - Γ§ - q - c - Γ‘ - '4' - '7' - O - y - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/gvc_token_list/bpe_unigram100/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_url upstream_ckpt: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr2_300m.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 1.0 lsm_weight: 0.0 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: transformer encoder_conf: input_layer: conv2d2 num_blocks: 1 linear_units: 2048 dropout_rate: 0.2 output_size: 256 attention_heads: 8 attention_dropout_rate: 0.2 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/americasnlp22-asr-gn
espnet
2022-08-27T16:09:50Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "gn", "dataset:americasnlp22", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-06-13T17:11:45Z
--- tags: - espnet - audio - automatic-speech-recognition language: gn datasets: - americasnlp22 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/americasnlp22-asr-gn` This model was trained by Pavel Denisov using americasnlp22 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout fc62b1ce3e50c5ef8a2ac8cedb0d92ac41df54ca pip install -e . cd egs2/americasnlp22/asr1 ./run.sh \ --skip_data_prep false \ --skip_train true \ --download_model espnet/americasnlp22-asr-gn \ --lang gn \ --local_data_opts "--lang gn" \ --train_set train_gn \ --valid_set dev_gn \ --test_sets dev_gn \ --gpu_inference false \ --inference_nj 8 \ --lm_train_text data/train_gn/text \ --bpe_train_text data/train_gn/text ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Jun 5 12:17:58 CEST 2022` - python version: `3.9.13 (main, May 18 2022, 00:00:00) [GCC 11.3.1 20220421 (Red Hat 11.3.1-2)]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0+cu115` - Git hash: `d55704daa36d3dd2ca24ae3162ac40d81957208c` - Commit date: `Wed Jun 1 02:33:09 2022 +0200` ## asr_train_asr_transformer_raw_gn_bpe100_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gn|93|391|11.5|73.7|14.8|12.5|101.0|100.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gn|93|2946|83.4|7.9|8.7|8.7|25.3|100.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gn|93|2439|76.6|13.5|9.9|8.7|32.1|100.0| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_raw_gn_bpe100_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - cer_ctc - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream.model.feature_extractor - frontend.upstream.model.encoder.layers.0 - frontend.upstream.model.encoder.layers.1 - frontend.upstream.model.encoder.layers.2 - frontend.upstream.model.encoder.layers.3 - frontend.upstream.model.encoder.layers.4 - frontend.upstream.model.encoder.layers.5 - frontend.upstream.model.encoder.layers.6 - frontend.upstream.model.encoder.layers.7 - frontend.upstream.model.encoder.layers.8 - frontend.upstream.model.encoder.layers.9 - frontend.upstream.model.encoder.layers.10 - frontend.upstream.model.encoder.layers.11 - frontend.upstream.model.encoder.layers.12 - frontend.upstream.model.encoder.layers.13 - frontend.upstream.model.encoder.layers.14 - frontend.upstream.model.encoder.layers.15 - frontend.upstream.model.encoder.layers.16 - frontend.upstream.model.encoder.layers.17 - frontend.upstream.model.encoder.layers.18 - frontend.upstream.model.encoder.layers.19 - frontend.upstream.model.encoder.layers.20 - frontend.upstream.model.encoder.layers.21 num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 200000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_gn_bpe100_sp/train/speech_shape - exp/asr_stats_raw_gn_bpe100_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_gn_bpe100_sp/valid/speech_shape - exp/asr_stats_raw_gn_bpe100_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_gn_sp/wav.scp - speech - sound - - dump/raw/train_gn_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_gn/wav.scp - speech - sound - - dump/raw/dev_gn/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 300 token_list: - <blank> - <unk> - ▁ - a - i - e - o - '''' - . - u - '"' - p - r - n - y - h - ▁" - ▁o - Γ© - re - va - pe - s - ra - Γ‘ - he - t - mb - g - ka - Γ£ - v - ve - je - ▁ha - te - k - Γ± - ha - py - ta - ku - αΊ½ - ja - pa - O - mi - Γ³ - mo - j - ko - ΚΌ - Γ±a - me - ma - c - M - Γ­ - H - ΓΊ - A - Μƒ - Γ΅ - Γ½ - m - P - U - ',' - Ε© - l - α»Ή - N - Δ© - E - I - J - L - Á - V - S - z - '-' - '?' - Γ‘ - R - G - Y - T - K - C - d - β€œ - B - ’ - ” - D - b - f - q - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/gn_token_list/bpe_unigram100/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_url upstream_ckpt: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr2_300m.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 1.0 lsm_weight: 0.0 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: transformer encoder_conf: input_layer: conv2d2 num_blocks: 1 linear_units: 2048 dropout_rate: 0.2 output_size: 256 attention_heads: 8 attention_dropout_rate: 0.2 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huggingtweets/tojibaceo-tojibawhiteroom
huggingtweets
2022-08-27T15:47:39Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-26T15:54:01Z
--- language: en thumbnail: http://www.huggingtweets.com/tojibaceo-tojibawhiteroom/1661615254424/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1508824472924659725/267f4Lkm_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509337156787003394/WjOdf_-m_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tojiba CPU Corp BUDDIES MINTING NOW (🏭,🏭) & Tojiba White Room (T__T).1</div> <div style="text-align: center; font-size: 14px;">@tojibaceo-tojibawhiteroom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tojiba CPU Corp BUDDIES MINTING NOW (🏭,🏭) & Tojiba White Room (T__T).1. | Data | Tojiba CPU Corp BUDDIES MINTING NOW (🏭,🏭) | Tojiba White Room (T__T).1 | | --- | --- | --- | | Tweets downloaded | 1613 | 704 | | Retweets | 774 | 0 | | Short tweets | 279 | 82 | | Tweets kept | 560 | 622 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1kju2ojf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tojibaceo-tojibawhiteroom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15twdubf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15twdubf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tojibaceo-tojibawhiteroom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
muhtasham/tajroberto-ner
muhtasham
2022-08-27T15:37:05Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:wikiann", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T15:27:16Z
--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: tajroberto-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: tg split: train+test args: tg metrics: - name: Precision type: precision value: 0.3155080213903743 - name: Recall type: recall value: 0.5673076923076923 - name: F1 type: f1 value: 0.4054982817869416 - name: Accuracy type: accuracy value: 0.83597621407334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tajroberto-ner This model is a fine-tuned version of [muhtasham/RoBERTa-tg](https://huggingface.co/muhtasham/RoBERTa-tg) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.9408 - Precision: 0.3155 - Recall: 0.5673 - F1: 0.4055 - Accuracy: 0.8360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.0 | 50 | 0.7710 | 0.0532 | 0.1827 | 0.0824 | 0.6933 | | No log | 4.0 | 100 | 0.5901 | 0.0847 | 0.25 | 0.1265 | 0.7825 | | No log | 6.0 | 150 | 0.5226 | 0.2087 | 0.4615 | 0.2874 | 0.8186 | | No log | 8.0 | 200 | 0.5041 | 0.2585 | 0.5096 | 0.3430 | 0.8449 | | No log | 10.0 | 250 | 0.5592 | 0.2819 | 0.5096 | 0.3630 | 0.8499 | | No log | 12.0 | 300 | 0.5725 | 0.3032 | 0.5481 | 0.3904 | 0.8558 | | No log | 14.0 | 350 | 0.6433 | 0.3122 | 0.5673 | 0.4027 | 0.8508 | | No log | 16.0 | 400 | 0.6744 | 0.3543 | 0.5962 | 0.4444 | 0.8553 | | No log | 18.0 | 450 | 0.7617 | 0.3353 | 0.5577 | 0.4188 | 0.8335 | | 0.2508 | 20.0 | 500 | 0.7608 | 0.3262 | 0.5865 | 0.4192 | 0.8419 | | 0.2508 | 22.0 | 550 | 0.8483 | 0.3224 | 0.5673 | 0.4111 | 0.8494 | | 0.2508 | 24.0 | 600 | 0.8370 | 0.3275 | 0.5385 | 0.4073 | 0.8439 | | 0.2508 | 26.0 | 650 | 0.8652 | 0.3410 | 0.5673 | 0.4260 | 0.8394 | | 0.2508 | 28.0 | 700 | 0.9441 | 0.3409 | 0.5769 | 0.4286 | 0.8216 | | 0.2508 | 30.0 | 750 | 0.9228 | 0.3333 | 0.5577 | 0.4173 | 0.8439 | | 0.2508 | 32.0 | 800 | 0.9175 | 0.3430 | 0.5673 | 0.4275 | 0.8355 | | 0.2508 | 34.0 | 850 | 0.9603 | 0.3073 | 0.5288 | 0.3887 | 0.8340 | | 0.2508 | 36.0 | 900 | 0.9417 | 0.3240 | 0.5577 | 0.4099 | 0.8370 | | 0.2508 | 38.0 | 950 | 0.9408 | 0.3155 | 0.5673 | 0.4055 | 0.8360 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
brightink/Stable_Diffusion_Demo
brightink
2022-08-27T14:51:44Z
0
0
null
[ "license:afl-3.0", "region:us" ]
null
2022-08-27T14:49:16Z
--- title: Stable Diffusion emoji: πŸƒ colorFrom: red colorTo: red sdk: gradio sdk_version: 3.1.7 app_file: app.py pinned: false license: afl-3.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
theojolliffe/T5-model-1-d-4
theojolliffe
2022-08-27T14:20:07Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T21:54:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-model-1-d-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-d-4 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0456 - Rouge1: 93.3486 - Rouge2: 82.1873 - Rougel: 92.8611 - Rougelsum: 92.7768 - Gen Len: 14.9953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0873 | 1.0 | 8043 | 0.0456 | 93.3486 | 82.1873 | 92.8611 | 92.7768 | 14.9953 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
nrazavi/xlm-roberta-base-finetuned-panx-all
nrazavi
2022-08-27T14:19:11Z
126
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T14:01:42Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1727 - F1: 0.8560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3057 | 1.0 | 835 | 0.1901 | 0.8135 | | 0.1565 | 2.0 | 1670 | 0.1727 | 0.8436 | | 0.1021 | 3.0 | 2505 | 0.1727 | 0.8560 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
danieladejumo/Reinforce-CartPole-v1
danieladejumo
2022-08-27T14:05:13Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T14:03:47Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 83.20 +/- 44.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
chum76/chiron0076
chum76
2022-08-27T12:27:38Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-08-27T12:27:38Z
--- license: cc-by-nc-sa-4.0 ---
akkasayaz/q-FrozenLake-v1-4x4-noSlippery
akkasayaz
2022-08-27T12:22:50Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T12:22:44Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="akkasayaz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
silviacamplani/distilbert-finetuned-dapt_tapt-ner-ai
silviacamplani
2022-08-27T11:12:23Z
65
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T11:09:10Z
--- tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-finetuned-dapt_tapt-ner-ai results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-finetuned-dapt_tapt-ner-ai This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8595 - Validation Loss: 0.8604 - Train Precision: 0.3378 - Train Recall: 0.3833 - Train F1: 0.3591 - Train Accuracy: 0.7860 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.5333 | 1.7392 | 0.0 | 0.0 | 0.0 | 0.6480 | 0 | | 1.5890 | 1.4135 | 0.0 | 0.0 | 0.0 | 0.6480 | 1 | | 1.3635 | 1.2627 | 0.0 | 0.0 | 0.0 | 0.6483 | 2 | | 1.2366 | 1.1526 | 0.1538 | 0.0920 | 0.1151 | 0.6921 | 3 | | 1.1296 | 1.0519 | 0.2147 | 0.2147 | 0.2147 | 0.7321 | 4 | | 1.0374 | 0.9753 | 0.2743 | 0.2981 | 0.2857 | 0.7621 | 5 | | 0.9639 | 0.9202 | 0.3023 | 0.3373 | 0.3188 | 0.7693 | 6 | | 0.9097 | 0.8829 | 0.3215 | 0.3714 | 0.3447 | 0.7795 | 7 | | 0.8756 | 0.8635 | 0.3280 | 0.3850 | 0.3542 | 0.7841 | 8 | | 0.8595 | 0.8604 | 0.3378 | 0.3833 | 0.3591 | 0.7860 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
pinot/wav2vec2-large-xls-r-300m-ja-colab-3
pinot
2022-08-27T06:14:51Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_10_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-26T23:39:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_10_0 model-index: - name: wav2vec2-large-xls-r-300m-ja-colab-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ja-colab-3 This model is a fine-tuned version of [pinot/wav2vec2-large-xls-r-300m-ja-colab-2](https://huggingface.co/pinot/wav2vec2-large-xls-r-300m-ja-colab-2) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.2696 - Wer: 0.2299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 637 | 1.4666 | 0.2862 | | No log | 2.0 | 1274 | 1.4405 | 0.2866 | | No log | 3.0 | 1911 | 1.4162 | 0.2762 | | No log | 4.0 | 2548 | 1.4128 | 0.2709 | | 0.2814 | 5.0 | 3185 | 1.3927 | 0.2613 | | 0.2814 | 6.0 | 3822 | 1.3629 | 0.2536 | | 0.2814 | 7.0 | 4459 | 1.3349 | 0.2429 | | 0.2814 | 8.0 | 5096 | 1.3116 | 0.2356 | | 0.1624 | 9.0 | 5733 | 1.2774 | 0.2307 | | 0.1624 | 10.0 | 6370 | 1.2696 | 0.2299 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
rajistics/layoutlmv2-finetuned-cord
rajistics
2022-08-27T04:45:12Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T03:25:11Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-cord results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-cord This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
fat32man/elon_answers
fat32man
2022-08-27T04:23:49Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-27T03:38:27Z
--- tags: - conversational license: mit ---
mindofmadness/faces01
mindofmadness
2022-08-27T02:11:32Z
0
0
null
[ "region:us" ]
null
2022-08-27T02:08:30Z
short narrow face, mid size lips, light freckles on upper cheeks, light grey eyes, brunette hair, nerd glasses
gharris7/ppo-LunarLander-v2
gharris7
2022-08-27T01:52:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T01:51:56Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - metrics: - type: mean_reward value: 222.74 +/- 23.39 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
caffsean/distilbert-base-uncased-finetuned-emotion
caffsean
2022-08-27T01:27:28Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T00:35:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9223304536402763 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2111 - Accuracy: 0.9225 - F1: 0.9223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8274 | 1.0 | 250 | 0.3054 | 0.912 | 0.9096 | | 0.2409 | 2.0 | 500 | 0.2111 | 0.9225 | 0.9223 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
theojolliffe/T5-model-1-d-6
theojolliffe
2022-08-27T00:15:29Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T22:53:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-model-1-d-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-d-6 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0229 - Rouge1: 94.972 - Rouge2: 84.9842 - Rougel: 94.7792 - Rougelsum: 94.758 - Gen Len: 15.0918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 0.0449 | 1.0 | 16085 | 0.0229 | 94.972 | 84.9842 | 94.7792 | 94.758 | 15.0918 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-gauss-2
paola-md
2022-08-26T22:33:03Z
165
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-26T21:17:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-gauss-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-gauss-2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4204 - Rmse: 0.6484 - Mse: 0.4204 - Mae: 0.4557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:| | 0.4002 | 1.0 | 3029 | 0.4228 | 0.6502 | 0.4228 | 0.4485 | | 0.3986 | 2.0 | 6058 | 0.4200 | 0.6481 | 0.4200 | 0.4566 | | 0.3985 | 3.0 | 9087 | 0.4217 | 0.6494 | 0.4217 | 0.4515 | | 0.3977 | 4.0 | 12116 | 0.4212 | 0.6490 | 0.4212 | 0.4528 | | 0.397 | 5.0 | 15145 | 0.4251 | 0.6520 | 0.4251 | 0.4461 | | 0.397 | 6.0 | 18174 | 0.4203 | 0.6483 | 0.4203 | 0.4665 | | 0.3968 | 7.0 | 21203 | 0.4211 | 0.6489 | 0.4211 | 0.4533 | | 0.3964 | 8.0 | 24232 | 0.4208 | 0.6487 | 0.4208 | 0.4543 | | 0.3963 | 9.0 | 27261 | 0.4199 | 0.6480 | 0.4199 | 0.4604 | | 0.3961 | 10.0 | 30290 | 0.4204 | 0.6484 | 0.4204 | 0.4557 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
nrazavi/xlm-roberta-base-finetuned-panx-de
nrazavi
2022-08-26T22:31:10Z
128
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-26T22:12:51Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8609504366564591 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1359 - F1: 0.8610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2594 | 1.0 | 525 | 0.1734 | 0.8095 | | 0.1305 | 2.0 | 1050 | 0.1414 | 0.8462 | | 0.0818 | 3.0 | 1575 | 0.1359 | 0.8610 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 2.4.0 - Tokenizers 0.10.3
theojolliffe/T5-model-1-d-2
theojolliffe
2022-08-26T21:34:45Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T21:03:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-model-1-d-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-d-2 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1480 - Rouge1: 85.8534 - Rouge2: 73.1193 - Rougel: 84.9795 - Rougelsum: 84.9322 - Gen Len: 14.0575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.2301 | 1.0 | 4022 | 0.1480 | 85.8534 | 73.1193 | 84.9795 | 84.9322 | 14.0575 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
hhffxx/xlm-roberta-base-finetuned-panx-en
hhffxx
2022-08-26T20:52:39Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-26T20:08:33Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: train args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6307099614749588 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.7589 - F1: 0.6307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9453 | 1.0 | 1180 | 0.7589 | 0.6307 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
hhffxx/xlm-roberta-base-finetuned-panx-it
hhffxx
2022-08-26T20:07:17Z
116
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-26T19:06:58Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: train args: PAN-X.it metrics: - name: F1 type: f1 value: 0.7875307629204266 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.5555 - F1: 0.7875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8118 | 1.0 | 1680 | 0.5555 | 0.7875 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
iewaij/roberta-base-lm
iewaij
2022-08-26T17:43:52Z
117
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-26T17:34:56Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-lm-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-lm-all This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2966 | 1.0 | 1194 | 1.0711 | | 1.0858 | 2.0 | 2388 | 0.9740 | | 1.0055 | 3.0 | 3582 | 0.9273 | | 0.9301 | 4.0 | 4776 | 0.8784 | | 0.9021 | 5.0 | 5970 | 0.8731 | | 0.8479 | 6.0 | 7164 | 0.8406 | | 0.8142 | 7.0 | 8358 | 0.8172 | | 0.7858 | 8.0 | 9552 | 0.8158 | | 0.7529 | 9.0 | 10746 | 0.7922 | | 0.7189 | 10.0 | 11940 | 0.7855 | | 0.7032 | 11.0 | 13134 | 0.7761 | | 0.6795 | 12.0 | 14328 | 0.7549 | | 0.6673 | 13.0 | 15522 | 0.7277 | | 0.6412 | 14.0 | 16716 | 0.7121 | | 0.6321 | 15.0 | 17910 | 0.7168 | | 0.6198 | 16.0 | 19104 | 0.7109 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
hhffxx/xlm-roberta-base-finetuned-panx-de-fr
hhffxx
2022-08-26T15:59:52Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-17T09:45:33Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3847 - F1: 0.8178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5654 | 1.0 | 17160 | 0.3847 | 0.8178 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
Einmalumdiewelt/T5-Base_GNAD
Einmalumdiewelt
2022-08-26T15:55:55Z
3,869
22
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "summarization", "de", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- language: - de tags: - generated_from_trainer - summarization metrics: - rouge model-index: - name: T5-Base_GNAD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-Base_GNAD This model is a fine-tuned version of [Einmalumdiewelt/T5-Base_GNAD](https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1025 - Rouge1: 27.5357 - Rouge2: 8.5623 - Rougel: 19.1508 - Rougelsum: 23.9029 - Gen Len: 52.7253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Einmalumdiewelt/PegasusXSUM_GNAD
Einmalumdiewelt
2022-08-26T15:53:31Z
171
1
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "summarization", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- language: - de tags: - generated_from_trainer - summarization metrics: - rouge model-index: - name: PegasusXSUM_GNAD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PegasusXSUM_GNAD This model is a fine-tuned version of [Einmalumdiewelt/PegasusXSUM_GNAD](https://huggingface.co/Einmalumdiewelt/PegasusXSUM_GNAD) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4386 - Rouge1: 26.7818 - Rouge2: 7.6864 - Rougel: 18.6264 - Rougelsum: 22.822 - Gen Len: 67.076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mdround/q-Taxi-v3
mdround
2022-08-26T15:53:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-26T15:49:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.77 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mdround/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Sania67/Fine_Tuned_XLSR_English
Sania67
2022-08-26T14:36:19Z
109
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-26T09:32:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Fine_Tuned_XLSR_English results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine_Tuned_XLSR_English This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [timit_asr](https://huggingface.co/datasets/timit_asr) dataset. It achieves the following results on the evaluation set: - Loss: 0.4033 - Wer: 0.3163 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3757 | 1.0 | 500 | 3.1570 | 1.0 | | 2.4891 | 2.01 | 1000 | 0.9252 | 0.8430 | | 0.8725 | 3.01 | 1500 | 0.4581 | 0.4931 | | 0.544 | 4.02 | 2000 | 0.3757 | 0.4328 | | 0.4043 | 5.02 | 2500 | 0.3621 | 0.4087 | | 0.3376 | 6.02 | 3000 | 0.3682 | 0.3931 | | 0.2937 | 7.03 | 3500 | 0.3541 | 0.3743 | | 0.2573 | 8.03 | 4000 | 0.3565 | 0.3593 | | 0.2257 | 9.04 | 4500 | 0.3634 | 0.3654 | | 0.215 | 10.04 | 5000 | 0.3695 | 0.3537 | | 0.1879 | 11.04 | 5500 | 0.3690 | 0.3486 | | 0.1599 | 12.05 | 6000 | 0.3743 | 0.3490 | | 0.1499 | 13.05 | 6500 | 0.4108 | 0.3424 | | 0.147 | 14.06 | 7000 | 0.4048 | 0.3400 | | 0.1355 | 15.06 | 7500 | 0.3988 | 0.3357 | | 0.1278 | 16.06 | 8000 | 0.3672 | 0.3384 | | 0.1189 | 17.07 | 8500 | 0.4011 | 0.3340 | | 0.1089 | 18.07 | 9000 | 0.3948 | 0.3300 | | 0.1039 | 19.08 | 9500 | 0.4062 | 0.3317 | | 0.0971 | 20.08 | 10000 | 0.4041 | 0.3252 | | 0.0902 | 21.08 | 10500 | 0.4112 | 0.3301 | | 0.0883 | 22.09 | 11000 | 0.4154 | 0.3292 | | 0.0864 | 23.09 | 11500 | 0.3746 | 0.3189 | | 0.0746 | 24.1 | 12000 | 0.3991 | 0.3230 | | 0.0711 | 25.1 | 12500 | 0.3916 | 0.3200 | | 0.0712 | 26.1 | 13000 | 0.4024 | 0.3193 | | 0.0663 | 27.11 | 13500 | 0.3976 | 0.3184 | | 0.0626 | 28.11 | 14000 | 0.4046 | 0.3168 | | 0.0641 | 29.12 | 14500 | 0.4033 | 0.3163 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
KIZervus/KIZervus
KIZervus
2022-08-26T13:29:06Z
5
1
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-24T16:32:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: tmp3y468_8j results: [] widget: - text: "Ich liebe dich!" example_title: "Non-vulgar" - text: "Leck mich am arsch" example_title: "Vulgar" --- # KIZervus This model is a fine-tuned version of [distilbert-base-german-cased](https://huggingface.co/distilbert-base-german-cased). It is trained to classify german text into the classes "vulgar" speech and "non-vulgar" speech. The data set is a collection of other labeled sources in german. For an overview, see the github repository here: https://github.com/NKDataConv/KIZervus Both data and training procedure are documented in the GitHub repo. Your are welcome to contribute. It achieves the following results on the evaluation set: - Train Loss: 0.4640 - Train Accuracy: 0.7744 - Validation Loss: 0.4852 - Validation Accuracy: 0.7937 - Epoch: 1 ## Training procedure For details, see the repo and documentation here: https://github.com/NKDataConv/KIZervus ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 822, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4830 | 0.7617 | 0.5061 | 0.7406 | 0 | | 0.4640 | 0.7744 | 0.4852 | 0.7937 | 1 | ### Framework versions - Transformers 4.21.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1 ### Supporter ![BMBF Logo](./BMBF_Logo.png)
amberoad/bert-multilingual-passage-reranking-msmarco
amberoad
2022-08-26T13:14:54Z
157,131
84
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "msmarco", "multilingual", "passage reranking", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:msmarco", "arxiv:1901.04085", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - multilingual - af - sq - ar - an - hy - ast - az - ba - eu - bar - be - bn - inc - bs - br - bg - my - ca - ceb - ce - zh - cv - hr - cs - da - nl - en - et - fi - fr - gl - ka - de - el - gu - ht - he - hi - hu - is - io - id - ga - it - ja - jv - kn - kk - ky - ko - la - lv - lt - roa - nds - lm - mk - mg - ms - ml - mr - min - ne - new - nb - nn - oc - fa - pms - pl - pt - pa - ro - ru - sco - sr - hr - scn - sk - sl - aze - es - su - sw - sv - tl - tg - ta - tt - te - tr - uk - ud - uz - vi - vo - war - cy - fry - pnb - yo thumbnail: https://amberoad.de/images/logo_text.png tags: - msmarco - multilingual - passage reranking license: apache-2.0 datasets: - msmarco metrics: - MRR widget: - query: What is a corporation? passage: A company is incorporated in a specific nation, often within the bounds of a smaller subset of that nation, such as a state or province. The corporation is then governed by the laws of incorporation in that state. A corporation may issue stock, either private or public, or may be classified as a non-stock corporation. If stock is issued, the corporation will usually be governed by its shareholders, either directly or indirectly. --- # Passage Reranking Multilingual BERT πŸ”ƒ 🌍 ## Model description **Input:** Supports over 100 Languages. See [List of supported languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages) for all available. **Purpose:** This module takes a search query [1] and a passage [2] and calculates if the passage matches the query. It can be used as an improvement for Elasticsearch Results and boosts the relevancy by up to 100%. **Architecture:** On top of BERT there is a Densly Connected NN which takes the 768 Dimensional [CLS] Token as input and provides the output ([Arxiv](https://arxiv.org/abs/1901.04085)). **Output:** Just a single value between between -10 and 10. Better matching query,passage pairs tend to have a higher a score. ## Intended uses & limitations Both query[1] and passage[2] have to fit in 512 Tokens. As you normally want to rerank the first dozens of search results keep in mind the inference time of approximately 300 ms/query. #### How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("amberoad/bert-multilingual-passage-reranking-msmarco") model = AutoModelForSequenceClassification.from_pretrained("amberoad/bert-multilingual-passage-reranking-msmarco") ``` This Model can be used as a drop-in replacement in the [Nboost Library](https://github.com/koursaros-ai/nboost) Through this you can directly improve your Elasticsearch Results without any coding. ## Training data This model is trained using the [**Microsoft MS Marco Dataset**](https://microsoft.github.io/msmarco/ "Microsoft MS Marco"). This training dataset contains approximately 400M tuples of a query, relevant and non-relevant passages. All datasets used for training and evaluating are listed in this [table](https://github.com/microsoft/MSMARCO-Passage-Ranking#data-information-and-formating). The used dataset for training is called *Train Triples Large*, while the evaluation was made on *Top 1000 Dev*. There are 6,900 queries in total in the development dataset, where each query is mapped to top 1,000 passage retrieved using BM25 from MS MARCO corpus. ## Training procedure The training is performed the same way as stated in this [README](https://github.com/nyu-dl/dl4marco-bert "NYU Github"). See their excellent Paper on [Arxiv](https://arxiv.org/abs/1901.04085). We changed the BERT Model from an English only to the default BERT Multilingual uncased Model from [Google](https://huggingface.co/bert-base-multilingual-uncased). Training was done 400 000 Steps. This equaled 12 hours an a TPU V3-8. ## Eval results We see nearly similar performance than the English only Model in the English [Bing Queries Dataset](http://www.msmarco.org/). Although the training data is English only internal Tests on private data showed a far higher accurancy in German than all other available models. Fine-tuned Models | Dependency | Eval Set | Search Boost<a href='#benchmarks'> | Speed on GPU ----------------------------------------------------------------------------------- | ---------------------------------------------------------------------------- | ------------------------------------------------------------------ | ----------------------------------------------------- | ---------------------------------- **`amberoad/Multilingual-uncased-MSMARCO`** (This Model) | <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-blue"/> | <a href ='http://www.msmarco.org/'>bing queries</a> | **+61%** <sub><sup>(0.29 vs 0.18)</sup></sub> | ~300 ms/query <a href='#footnotes'> `nboost/pt-tinybert-msmarco` | <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-red"/> | <a href ='http://www.msmarco.org/'>bing queries</a> | **+45%** <sub><sup>(0.26 vs 0.18)</sup></sub> | ~50ms/query <a href='#footnotes'> `nboost/pt-bert-base-uncased-msmarco` | <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-red"/> | <a href ='http://www.msmarco.org/'>bing queries</a> | **+62%** <sub><sup>(0.29 vs 0.18)</sup></sub> | ~300 ms/query<a href='#footnotes'> `nboost/pt-bert-large-msmarco` | <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-red"/> | <a href ='http://www.msmarco.org/'>bing queries</a> | **+77%** <sub><sup>(0.32 vs 0.18)</sup></sub> | - `nboost/pt-biobert-base-msmarco` | <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-red"/> | <a href ='https://github.com/naver/biobert-pretrained'>biomed</a> | **+66%** <sub><sup>(0.17 vs 0.10)</sup></sub> | ~300 ms/query<a href='#footnotes'> This table is taken from [nboost](https://github.com/koursaros-ai/nboost) and extended by the first line. ## Contact Infos ![](https://amberoad.de/images/logo_text.png) Amberoad is a company focussing on Search and Business Intelligence. We provide you: * Advanced Internal Company Search Engines thorugh NLP * External Search Egnines: Find Competitors, Customers, Suppliers **Get in Contact now to benefit from our Expertise:** The training and evaluation was performed by [**Philipp Reissel**](https://reissel.eu/) and [**Igli Manaj**](https://github.com/iglimanaj) [![Amberoad](https://i.stack.imgur.com/gVE0j.png) Linkedin](https://de.linkedin.com/company/amberoad) | <svg xmlns="http://www.w3.org/2000/svg" x="0px" y="0px" width="32" height="32" viewBox="0 0 172 172" style=" fill:#000000;"><g fill="none" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><path d="M0,172v-172h172v172z" fill="none"></path><g fill="#e67e22"><path d="M37.625,21.5v86h96.75v-86h-5.375zM48.375,32.25h10.75v10.75h-10.75zM69.875,32.25h10.75v10.75h-10.75zM91.375,32.25h32.25v10.75h-32.25zM48.375,53.75h75.25v43h-75.25zM80.625,112.875v17.61572c-1.61558,0.93921 -2.94506,2.2687 -3.88428,3.88428h-49.86572v10.75h49.86572c1.8612,3.20153 5.28744,5.375 9.25928,5.375c3.97183,0 7.39808,-2.17347 9.25928,-5.375h49.86572v-10.75h-49.86572c-0.93921,-1.61558 -2.2687,-2.94506 -3.88428,-3.88428v-17.61572z"></path></g></g></svg>[Homepage](https://de.linkedin.com/company/amberoad) | [Email]([email protected])
iewaij/bert-base-uncased-lm
iewaij
2022-08-26T11:22:28Z
105
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-26T11:15:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-lm-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-lm-all This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.6625 | 1.0 | 1194 | 1.3270 | | 1.3001 | 2.0 | 2388 | 1.1745 | | 1.1694 | 3.0 | 3582 | 1.1133 | | 1.0901 | 4.0 | 4776 | 1.0547 | | 1.0309 | 5.0 | 5970 | 0.9953 | | 0.9842 | 6.0 | 7164 | 0.9997 | | 0.9396 | 7.0 | 8358 | 0.9707 | | 0.8997 | 8.0 | 9552 | 0.9324 | | 0.8633 | 9.0 | 10746 | 0.9145 | | 0.8314 | 10.0 | 11940 | 0.9047 | | 0.812 | 11.0 | 13134 | 0.8954 | | 0.7841 | 12.0 | 14328 | 0.8940 | | 0.7616 | 13.0 | 15522 | 0.8555 | | 0.7508 | 14.0 | 16716 | 0.8711 | | 0.7333 | 15.0 | 17910 | 0.8351 | | 0.7299 | 16.0 | 19104 | 0.8646 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Chrispfield/distilbert-base-uncased-issues-128
Chrispfield
2022-08-26T11:10:18Z
108
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-26T10:27:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-issues-128 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4041 | 1.0 | 8 | 1.8568 | | 2.1982 | 2.0 | 16 | 2.0790 | | 1.7184 | 3.0 | 24 | 1.9246 | | 1.7248 | 4.0 | 32 | 1.8485 | | 1.5016 | 5.0 | 40 | 1.8484 | | 1.4943 | 6.0 | 48 | 1.8691 | | 1.526 | 7.0 | 56 | 1.7582 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
alishudi/distil_mse_2
alishudi
2022-08-26T10:30:20Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-26T10:27:53Z
--alpha_ce 0.0 --alpha_mlm 2.0 --alpha_cos 1.0 --alpha_act 1.0 --alpha_clm 0.0 --alpha_mse 0.0002 --mlm \ 2 layers
Hardwarize/q-Taxi-v3
Hardwarize
2022-08-26T09:00:24Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-26T09:00:16Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Hardwarize/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Hardwarize/q-FrozenLake-v1-4x4-noSlippery
Hardwarize
2022-08-26T08:51:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-26T08:51:52Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Hardwarize/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
vishw2703/unisumm_3-1228646724
vishw2703
2022-08-26T07:53:56Z
9
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain", "summarization", "unk", "dataset:vishw2703/autotrain-data-unisumm_3", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-08T07:14:24Z
--- tags: - autotrain - summarization language: - unk datasets: - vishw2703/autotrain-data-unisumm_3 co2_eq_emissions: emissions: 1368.894142563709 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1228646724 - CO2 Emissions (in grams): 1368.8941 ## Validation Metrics - Loss: 2.319 - Rouge1: 43.703 - Rouge2: 16.106 - RougeL: 23.715 - RougeLsum: 38.984 - Gen Len: 141.091 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/vishw2703/autotrain-unisumm_3-1228646724 ```
ucinlp/diabetes-t5-large
ucinlp
2022-08-26T06:23:13Z
7
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T01:13:04Z
# TalkToModel t5-large diabetes parsing model
Sandeepanie/clinical-finetuned-data2
Sandeepanie
2022-08-26T06:00:11Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-26T05:50:57Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: clinical-finetuned-data2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical-finetuned-data2 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4949 - F1: 0.7800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.66 | 1.0 | 50 | 0.6269 | 0.6659 | | 0.5476 | 2.0 | 100 | 0.5311 | 0.7615 | | 0.3766 | 3.0 | 150 | 0.4457 | 0.7970 | | 0.2785 | 4.0 | 200 | 0.5251 | 0.7615 | | 0.2274 | 5.0 | 250 | 0.4949 | 0.7800 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
d0r1h/testt5
d0r1h
2022-08-26T05:52:55Z
10
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T05:46:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5_assets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_assets This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8718 - Rouge1: 35.7712 - Rouge2: 15.2129 - Rougel: 25.9007 - Rougelsum: 33.3105 - Gen Len: 64.7175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
PSW/bart-base-samsumgen-xsum-conv-samsum
PSW
2022-08-26T05:06:54Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-24T13:17:14Z
# **PSW/bart-base-samsumgen-xsum-conv-samsum** 1. reverse trained on samsum 2. generate from xsum 3. train on synthetic data 4. fine-tune on samsum
pinot/wav2vec2-large-xls-r-300m-ja-colab
pinot
2022-08-26T04:29:51Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_10_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-22T08:52:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_10_0 model-index: - name: wav2vec2-large-xls-r-300m-ja-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ja-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1407 - Wer: 0.2456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 637 | 5.3238 | 0.9663 | | No log | 2.0 | 1274 | 4.1785 | 0.7662 | | No log | 3.0 | 1911 | 2.3701 | 0.4983 | | No log | 4.0 | 2548 | 1.8443 | 0.4090 | | 6.5781 | 5.0 | 3185 | 1.4892 | 0.3363 | | 6.5781 | 6.0 | 3822 | 1.3229 | 0.2995 | | 6.5781 | 7.0 | 4459 | 1.2418 | 0.2814 | | 6.5781 | 8.0 | 5096 | 1.1928 | 0.2647 | | 1.0184 | 9.0 | 5733 | 1.1584 | 0.2520 | | 1.0184 | 10.0 | 6370 | 1.1407 | 0.2456 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jkang/espnet2_an4_transformer
jkang
2022-08-26T04:25:10Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:an4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-08-26T03:53:45Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - an4 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `jkang/espnet2_an4_transformer` This model was trained by jaekookang using an4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout c8f11ef7f5c571fbcc34d53da449353bd75037ce pip install -e . cd egs2/an4/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model jkang/espnet2_an4_transformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Fri Aug 19 17:38:46 KST 2022` - python version: `3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0]` - espnet version: `espnet 202207` - pytorch version: `pytorch 1.10.1` - Git hash: `c8f11ef7f5c571fbcc34d53da449353bd75037ce` - Commit date: `Fri Aug 19 17:20:13 2022 +0900` ## asr_train_asr_transformer_raw_en_bpe30_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/test|130|773|92.0|5.8|2.2|0.4|8.4|33.1| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/train_dev|100|591|89.5|7.3|3.2|0.5|11.0|41.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/test|130|2565|96.3|1.1|2.6|0.6|4.3|33.1| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/train_dev|100|1915|94.1|1.9|4.0|0.4|6.3|41.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/test|130|2695|96.4|1.1|2.5|0.6|4.1|33.1| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/train_dev|100|2015|94.4|1.8|3.8|0.3|6.0|41.0| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_raw_en_bpe30_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 43015 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 200 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe30_sp/train/speech_shape - exp/asr_stats_raw_en_bpe30_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe30_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe30_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_nodev_sp/wav.scp - speech - sound - - dump/raw/train_nodev_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/train_dev/wav.scp - speech - sound - - dump/raw/train_dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 scheduler: warmuplr scheduler_conf: warmup_steps: 2500 token_list: - <blank> - <unk> - ▁ - T - E - O - R - Y - A - H - U - S - I - F - B - L - P - D - G - M - C - V - X - J - K - Z - W - N - Q - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram30/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: default frontend_conf: fs: 16k specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe30_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: transformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: '202207' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Sehong/t5-large-QuestionGeneration
Sehong
2022-08-26T02:10:42Z
75
6
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:squad", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-17T07:12:14Z
--- language: en tags: - t5 datasets: - squad license: mit --- # Question Generation Model ## Github https://github.com/Seoneun/T5-Question-Generation ## Fine-tuning Dataset SQuAD 1.1 | Train Data | Dev Data | Test Data | | ------ | ------ | ------ | | 75,722 | 10,570 | 11,877 | ## Demo https://huggingface.co/Sehong/t5-large-QuestionGeneration ## How to use ```python import torch from transformers import PreTrainedTokenizerFast from transformers import T5ForConditionalGeneration tokenizer = PreTrainedTokenizerFast.from_pretrained('Sehong/t5-large-QuestionGeneration') model = T5ForConditionalGeneration.from_pretrained('Sehong/t5-large-QuestionGeneration') # tokenized ''' text = "answer:Saint Bern ##ade ##tte So ##ubi ##rous content:Architectural ##ly , the school has a Catholic character . At ##op the Main Building ' s gold dome is a golden statue of the Virgin Mary . Immediately in front of the Main Building and facing it , is a copper statue of Christ with arms up ##rai ##sed with the legend "" V ##eni ##te Ad Me O ##m ##nes "" . Next to the Main Building is the Basilica of the Sacred Heart . Immediately behind the b ##asi ##lica is the G ##rot ##to , a Marian place of prayer and reflection . It is a replica of the g ##rot ##to at Lou ##rdes , France where the Virgin Mary reputed ##ly appeared to Saint Bern ##ade ##tte So ##ubi ##rous in 1858 . At the end of the main drive ( and in a direct line that connects through 3 statues and the Gold Dome ) , is a simple , modern stone statue of Mary ." ''' text = "answer:Saint Bernadette Soubirous content:Architecturally , the school has a Catholic character . Atop the Main Building ' s gold dome is a golden statue of the Virgin Mary . Immediately in front of the Main Building and facing it , is a copper statue of Christ with arms upraised with the legend "" Venite Ad Me Omnes "" . Next to the Main Building is the Basilica of the Sacred Heart . Immediately behind the basilica is the Grotto , a Marian place of prayer and reflection . It is a replica of the grotto at Lourdes , France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858 . At the end of the main drive ( and in a direct line that connects through 3 statues and the Gold Dome ) , is a simple , modern stone statue of Mary ." raw_input_ids = tokenizer.encode(text) input_ids = [tokenizer.bos_token_id] + raw_input_ids + [tokenizer.eos_token_id] question_ids = model.generate(torch.tensor([input_ids])) decode = tokenizer.decode(question_ids.squeeze().tolist(), skip_special_tokens=True) decode = decode.replace(' # # ', '').replace(' ', ' ').replace(' ##', '') print(decode) ``` ## Evalutation | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L | | ------ | ------ | ------ | ------ | ------ | ------- | | 51.333 | 36.742 | 28.218 | 22.289 | 26.126 | 51.069 |
Hyeoni/t5-e2e-questions-generation-KorQuAD
Hyeoni
2022-08-26T01:55:50Z
16
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad_modified_for_t5_qg", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T06:43:21Z
--- tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [digit82/kolang-t5-base](https://huggingface.co/digit82/kolang-t5-base) on the korquad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - Loss: 2.1449 ## Model description More information needed ## Training and evaluation data KorQuAD V1.0 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6685 | 0.66 | 100 | 2.4355 | | 2.3957 | 1.32 | 200 | 2.2428 | | 2.1795 | 1.98 | 300 | 2.1664 | | 1.9408 | 2.65 | 400 | 2.1467 | | 1.8333 | 3.31 | 500 | 2.1470 | | 1.7319 | 3.97 | 600 | 2.1194 | | 1.6095 | 4.63 | 700 | 2.1348 | | 1.5662 | 5.3 | 800 | 2.1433 | | 1.5038 | 5.96 | 900 | 2.1319 | | 1.45 | 6.62 | 1000 | 2.1449 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Bingsu/bigbird_ko_base-tsdae-specialty_corpus
Bingsu
2022-08-26T01:42:54Z
3
1
sentence-transformers
[ "sentence-transformers", "pytorch", "big_bird", "feature-extraction", "sentence-similarity", "transformers", "ko", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-26T01:04:21Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers widget: source_sentence: "수치 해석 ν”„λ‘œκ·Έλž¨μ€ μ—¬λŸ¬ κ°€μ§€ ν™˜κ²½ λ³€μˆ˜λ₯Ό μž…λ ₯ν•΄μ•Ό ν•˜λ―€λ‘œ 일반인이 μ‚¬μš©ν•˜κΈ°μ—λŠ” λ§Žμ€ 어렀움이 μžˆλ‹€." sentences: - "μ΄λŸ¬ν•œ 해석방법은 맀우 λ³΅μž‘ν•œ κ²ƒμ΄μ–΄μ„œ 수치 해석 ν”„λ‘œκ·Έλž¨μ΄ ν•„μˆ˜μ  이닀." - "계측ꡬ쑰 셀룰라 μ‹œμŠ€ν…œμ„ κ΅¬μ„±ν•˜κ³  μ œμ•ˆλœ 기법을 μ μš©ν•˜λ©΄ μ–΄λŠ 곳에 μœ„μΉ˜ν•œ μ‚¬μš©μžμ—κ²Œλ‚˜ μ–‘μ§ˆμ˜ μ„œλΉ„μŠ€λ₯Ό 효율적으둜 μ œκ³΅ν•  수 μžˆμŒμ„ ν™•μΈν•˜μ˜€λ‹€." - "ν—ˆκΉ…νŽ˜μ΄μŠ€μ— ν•œκ΅­μ–΄ λͺ¨λΈμ΄ 더 λ§Žμ•„μ‘ŒμœΌλ©΄ μ’‹κ² λ‹€." language: ko license: mit --- # Bingsu/bigbird_ko_base-tsdae-specialty_corpus [sentence-transformers](https://www.SBERT.net)둜 ν•™μŠ΅λœ bigbird λͺ¨λΈ: μž…λ ₯ λ¬Έμž₯을 256λ²‘ν„°λ‘œ λ³€ν™˜ν•©λ‹ˆλ‹€. [Aihub μ „λ¬ΈλΆ„μ•Ό λ§λ­‰μΉ˜](https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=110)에 λŒ€ν•΄ [TSDAE](https://www.sbert.net/examples/unsupervised_learning/TSDAE/README.html)둜 ν•™μŠ΅λ˜μ—ˆμŠ΅λ‹ˆλ‹€. <!--- Describe your model here --> ## Usage (Sentence-Transformers) μ‚¬μš© 전에 [sentence-transformers](https://www.SBERT.net)λ₯Ό μ„€μΉ˜ν•˜μ„Έμš”. ```sh pip install -U sentence-transformers ``` λ˜λŠ” ```sh conda install -c conda-forge sentence-transformers ``` μ‚¬μš© 예제: ```python from sentence_transformers import util sent = [ "λ³Έ 논문은 λ””μ§€ν„Έ μ‹ ν˜Έμ²˜λ¦¬μš© VLSI의 μžλ™μ„€κ³„λ₯Ό μœ„ν•œ SODAS-DSP(SOgang Design Automation System-DSP) μ‹œμŠ€ν…œμ˜ 섀계와 개발 결과에 λŒ€ν•˜μ—¬ κΈ°μˆ ν•œλ‹€", "λ³Έ λ…Όλ¬Έμ—μ„œλŠ” DD-Gardnerλ°©μ‹μ˜ 타이밍 κ²€μΆœκΈ° μ„±λŠ₯을 κ³ μ°°ν•œλ‹€.", "μ΄λŸ¬ν•œ 해석방법은 맀우 λ³΅μž‘ν•œ κ²ƒμ΄μ–΄μ„œ 수치 해석 ν”„λ‘œκ·Έλž¨μ΄ ν•„μˆ˜μ  이닀.", "수치 해석 ν”„λ‘œκ·Έλž¨μ€ μ—¬λŸ¬ κ°€μ§€ ν™˜κ²½ λ³€μˆ˜λ₯Ό μž…λ ₯ν•΄μ•Ό ν•˜λ―€λ‘œ 일반인이 μ‚¬μš©ν•˜κΈ°μ—λŠ” λ§Žμ€ 어렀움이 μžˆλ‹€.", "또 μ‚°λž€κ³Ό νˆ¬κ³Όμ— λŒ€ν•œ 고주파 근사식도 μ–»μ–΄μ§„λ‹€.", "그리고 μŠ¬λ¦Ώκ°„μ˜ κ°„κ²©μ˜ 변화에 μ˜ν•΄μ„œ 빔폭(beamwidth)을 μ‘°μ ˆν•  수 μžˆμŒμ„ 보여쀀닀.", "였늘 점심은 짜μž₯면이닀.", "였늘 저녁은 κΉ€λ°₯μ²œκ΅­μ΄λ‹€." ] paraphrases = util.paraphrase_mining(model, sent) for paraphrase in paraphrases[:5]: score, i, j = paraphrase print("{} \t\t {} \t\t Score: {:.4f}".format(sent[i], sent[j], score)) ``` ``` μ΄λŸ¬ν•œ 해석방법은 맀우 λ³΅μž‘ν•œ κ²ƒμ΄μ–΄μ„œ 수치 해석 ν”„λ‘œκ·Έλž¨μ΄ ν•„μˆ˜μ  이닀. 수치 해석 ν”„λ‘œκ·Έλž¨μ€ μ—¬λŸ¬ κ°€μ§€ ν™˜κ²½ λ³€μˆ˜λ₯Ό μž…λ ₯ν•΄μ•Ό ν•˜λ―€λ‘œ 일반인이 μ‚¬μš©ν•˜κΈ°μ—λŠ” λ§Žμ€ 어렀움이 μžˆλ‹€. Score: 0.8990 였늘 점심은 짜μž₯면이닀. 였늘 저녁은 κΉ€λ°₯μ²œκ΅­μ΄λ‹€. Score: 0.8945 수치 해석 ν”„λ‘œκ·Έλž¨μ€ μ—¬λŸ¬ κ°€μ§€ ν™˜κ²½ λ³€μˆ˜λ₯Ό μž…λ ₯ν•΄μ•Ό ν•˜λ―€λ‘œ 일반인이 μ‚¬μš©ν•˜κΈ°μ—λŠ” λ§Žμ€ 어렀움이 μžˆλ‹€. 였늘 저녁은 κΉ€λ°₯μ²œκ΅­μ΄λ‹€. Score: 0.8901 λ³Έ 논문은 λ””μ§€ν„Έ μ‹ ν˜Έμ²˜λ¦¬μš© VLSI의 μžλ™μ„€κ³„λ₯Ό μœ„ν•œ SODAS-DSP(SOgang Design Automation System-DSP) μ‹œμŠ€ν…œμ˜ 섀계와 개발 결과에 λŒ€ν•˜μ—¬ κΈ°μˆ ν•œλ‹€ λ³Έ λ…Όλ¬Έμ—μ„œλŠ” DD-Gardnerλ°©μ‹μ˜ 타이밍 κ²€μΆœκΈ° μ„±λŠ₯을 κ³ μ°°ν•œλ‹€. Score: 0.8894 λ³Έ 논문은 λ””μ§€ν„Έ μ‹ ν˜Έμ²˜λ¦¬μš© VLSI의 μžλ™μ„€κ³„λ₯Ό μœ„ν•œ SODAS-DSP(SOgang Design Automation System-DSP) μ‹œμŠ€ν…œμ˜ 섀계와 개발 결과에 λŒ€ν•˜μ—¬ κΈ°μˆ ν•œλ‹€ 그리고 μŠ¬λ¦Ώκ°„μ˜ κ°„κ²©μ˜ 변화에 μ˜ν•΄μ„œ 빔폭(beamwidth)을 μ‘°μ ˆν•  수 μžˆμŒμ„ 보여쀀닀. Score: 0.8889 ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Bingsu/bigbird_ko_base-tsdae-specialty_corpus') model = AutoModel.from_pretrained('Bingsu/bigbird_ko_base-tsdae-specialty_corpus') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Bingsu/bigbird_ko_base-tsdae-specialty_corpus) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 183287 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 10000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'bitsandbytes.optim.adamw.AdamW8bit'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "warmupcosinewithhardrestarts", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.005 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BigBirdModel (1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sunyilgdx/bert_large_cased_mix5
sunyilgdx
2022-08-26T01:28:13Z
0
2
null
[ "region:us" ]
null
2022-08-26T00:27:50Z
BERT-large-cased pre-trained using RoBERTa's corpora (Wikipedia+Books+Stories+Newsroom+Openwebtext).
MBMMurad/wav2vec2_murad
MBMMurad
2022-08-26T00:05:11Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:cvbn", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-23T08:43:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cvbn model-index: - name: wav2vec2_murad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_murad This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the cvbn dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2006 - eval_wer: 0.2084 - eval_runtime: 556.4634 - eval_samples_per_second: 8.985 - eval_steps_per_second: 0.562 - epoch: 12.32 - step: 28800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/distil-i
paola-md
2022-08-25T23:41:53Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T23:33:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distil-i results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-i This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6252 - Rmse: 0.7907 - Mse: 0.6252 - Mae: 0.6061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.7417 | 1.0 | 492 | 0.7164 | 0.8464 | 0.7164 | 0.5983 | | 0.5948 | 2.0 | 984 | 0.6469 | 0.8043 | 0.6469 | 0.5840 | | 0.5849 | 3.0 | 1476 | 0.6068 | 0.7790 | 0.6068 | 0.6027 | | 0.5839 | 4.0 | 1968 | 0.6220 | 0.7887 | 0.6220 | 0.5847 | | 0.5786 | 5.0 | 2460 | 0.6252 | 0.7907 | 0.6252 | 0.6061 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/distil-I-upper
paola-md
2022-08-25T23:32:56Z
7
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T23:24:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distil-I-upper results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-I-upper This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6060 - Rmse: 0.7785 - Mse: 0.6060 - Mae: 0.6007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.7219 | 1.0 | 492 | 0.6818 | 0.8257 | 0.6818 | 0.5909 | | 0.5932 | 2.0 | 984 | 0.6419 | 0.8012 | 0.6419 | 0.5838 | | 0.5874 | 3.0 | 1476 | 0.6058 | 0.7783 | 0.6058 | 0.6007 | | 0.5883 | 4.0 | 1968 | 0.6211 | 0.7881 | 0.6211 | 0.5875 | | 0.5838 | 5.0 | 2460 | 0.6060 | 0.7785 | 0.6060 | 0.6007 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/distil-tIs-upper
paola-md
2022-08-25T23:23:50Z
164
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T23:15:44Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distil-tIs-upper results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-tIs-upper This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6024 - Rmse: 0.7762 - Mse: 0.6024 - Mae: 0.5987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.7114 | 1.0 | 492 | 0.6942 | 0.8332 | 0.6942 | 0.5939 | | 0.5948 | 2.0 | 984 | 0.6563 | 0.8101 | 0.6563 | 0.5861 | | 0.59 | 3.0 | 1476 | 0.6091 | 0.7805 | 0.6091 | 0.6008 | | 0.587 | 4.0 | 1968 | 0.6226 | 0.7890 | 0.6226 | 0.5870 | | 0.5873 | 5.0 | 2460 | 0.6024 | 0.7762 | 0.6024 | 0.5987 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/distil-tis
paola-md
2022-08-25T23:15:15Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T23:07:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distil-tis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-tis This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6061 - Rmse: 0.7785 - Mse: 0.6061 - Mae: 0.6003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.7173 | 1.0 | 492 | 0.7060 | 0.8403 | 0.7060 | 0.5962 | | 0.5955 | 2.0 | 984 | 0.6585 | 0.8115 | 0.6585 | 0.5864 | | 0.5876 | 3.0 | 1476 | 0.6090 | 0.7804 | 0.6090 | 0.6040 | | 0.5871 | 4.0 | 1968 | 0.6247 | 0.7904 | 0.6247 | 0.5877 | | 0.5871 | 5.0 | 2460 | 0.6061 | 0.7785 | 0.6061 | 0.6003 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/distil-Is-upper
paola-md
2022-08-25T23:07:27Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T22:59:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distil-Is-upper results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-Is-upper This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6095 - Rmse: 0.7807 - Mse: 0.6095 - Mae: 0.5993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.7129 | 1.0 | 492 | 0.7088 | 0.8419 | 0.7088 | 0.5968 | | 0.5953 | 2.0 | 984 | 0.6426 | 0.8016 | 0.6426 | 0.5838 | | 0.5865 | 3.0 | 1476 | 0.6083 | 0.7800 | 0.6083 | 0.6023 | | 0.5888 | 4.0 | 1968 | 0.6209 | 0.7880 | 0.6209 | 0.5880 | | 0.5859 | 5.0 | 2460 | 0.6095 | 0.7807 | 0.6095 | 0.5993 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/distil-is
paola-md
2022-08-25T22:58:50Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T22:49:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distil-is results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-is This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6082 - Rmse: 0.7799 - Mse: 0.6082 - Mae: 0.6023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.6881 | 1.0 | 492 | 0.6534 | 0.8084 | 0.6534 | 0.5857 | | 0.5923 | 2.0 | 984 | 0.6508 | 0.8067 | 0.6508 | 0.5852 | | 0.5865 | 3.0 | 1476 | 0.6088 | 0.7803 | 0.6088 | 0.6096 | | 0.5899 | 4.0 | 1968 | 0.6279 | 0.7924 | 0.6279 | 0.5853 | | 0.5852 | 5.0 | 2460 | 0.6082 | 0.7799 | 0.6082 | 0.6023 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-finetuned-amharic
Davlan
2022-08-25T22:21:56Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T19:02:57Z
--- license: mit tags: - generated_from_trainer model-index: - name: amh_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amh_xlmr This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-finetuned-luganda
Davlan
2022-08-25T22:03:36Z
106
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T19:01:35Z
--- tags: - generated_from_trainer model-index: - name: lug_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lug_xlmr This model is a fine-tuned version of [models/lug_xlmr/](https://huggingface.co/models/lug_xlmr/) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.8414 - eval_runtime: 10.7925 - eval_samples_per_second: 32.245 - eval_steps_per_second: 4.077 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-finetuned-english
Davlan
2022-08-25T21:59:32Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T19:02:27Z
--- license: mit tags: - generated_from_trainer model-index: - name: eng_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng_xlmr This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-finetuned-swahili
Davlan
2022-08-25T21:56:28Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T21:04:53Z
--- license: mit tags: - generated_from_trainer model-index: - name: swa_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swa_xlmr This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-finetuned-luo
Davlan
2022-08-25T21:17:52Z
107
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T19:01:59Z
--- tags: - generated_from_trainer model-index: - name: luo_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # luo_xlmr This model is a fine-tuned version of [models/luo_xlmr/](https://huggingface.co/models/luo_xlmr/) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 2.7161 - eval_runtime: 3.4086 - eval_samples_per_second: 30.804 - eval_steps_per_second: 4.107 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-finetuned-naija
Davlan
2022-08-25T21:02:09Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T19:02:15Z
--- tags: - generated_from_trainer model-index: - name: pcm_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pcm_xlmr This model is a fine-tuned version of [models/pcm_xlmr/](https://huggingface.co/models/pcm_xlmr/) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.8021 - eval_runtime: 48.0467 - eval_samples_per_second: 32.448 - eval_steps_per_second: 4.059 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
frslee/finetuning-sentiment-model-3000-samples
frslee
2022-08-25T20:32:30Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T20:13:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3076 - Accuracy: 0.8767 - F1: 0.8771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-finetuned-lingala
Davlan
2022-08-25T20:29:41Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T19:05:47Z
--- tags: - generated_from_trainer model-index: - name: lin_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lin_xlmr This model is a fine-tuned version of [models/lin_xlmr/](https://huggingface.co/models/lin_xlmr/) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 2.1469 - eval_runtime: 22.8128 - eval_samples_per_second: 32.175 - eval_steps_per_second: 4.033 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-finetuned-zulu
Davlan
2022-08-25T20:23:03Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T18:59:58Z
--- tags: - generated_from_trainer model-index: - name: zul_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zul_xlmr This model is a fine-tuned version of [models/zul_xlmr/](https://huggingface.co/models/zul_xlmr/) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 2.2241 - eval_runtime: 37.5729 - eval_samples_per_second: 32.177 - eval_steps_per_second: 4.045 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-finetuned-hausa
Davlan
2022-08-25T19:29:22Z
104
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T18:59:11Z
--- license: mit tags: - generated_from_trainer model-index: - name: hau_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hau_xlmr This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
fgmckee/a2c-AntBulletEnv-v0
fgmckee
2022-08-25T17:52:45Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-25T17:51:35Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1813.75 +/- 122.94 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wyu1/FiD-TQA
wyu1
2022-08-25T17:22:38Z
5
0
transformers
[ "transformers", "pytorch", "t5", "license:cc-by-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-08-19T00:24:56Z
--- license: cc-by-4.0 --- # FiD model trained on TQA -- This is the model checkpoint of FiD [2], based on the T5 large (with 770M parameters) and trained on the TriviaQA dataset [1]. -- Hyperparameters: 8 x 40GB A100 GPUs; batch size 8; AdamW; LR 3e-5; 30000 steps References: [1] TriviaQA: A Large Scale Dataset for Reading Comprehension and Question Answering. ACL 2017 [2] Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. EACL 2021. ## Model performance We evaluate it on the TriviaQA dataset, the EM score is 68.5 (0.8 higher than the original performance reported in the paper). <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> --- license: cc-by-4.0 ---
silviacamplani/distilbert-finetuned-tapt-ner-ai
silviacamplani
2022-08-25T15:54:12Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-25T15:51:02Z
--- tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-finetuned-tapt-ner-ai results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-finetuned-tapt-ner-ai This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9093 - Validation Loss: 0.9177 - Train Precision: 0.3439 - Train Recall: 0.3697 - Train F1: 0.3563 - Train Accuracy: 0.7697 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.5750 | 1.7754 | 0.0 | 0.0 | 0.0 | 0.6480 | 0 | | 1.6567 | 1.4690 | 0.0 | 0.0 | 0.0 | 0.6480 | 1 | | 1.3888 | 1.2847 | 0.0 | 0.0 | 0.0 | 0.6480 | 2 | | 1.2569 | 1.1744 | 0.0526 | 0.0221 | 0.0312 | 0.6751 | 3 | | 1.1536 | 1.0884 | 0.2088 | 0.1704 | 0.1876 | 0.7240 | 4 | | 1.0722 | 1.0281 | 0.2865 | 0.2641 | 0.2748 | 0.7431 | 5 | | 1.0077 | 0.9782 | 0.3151 | 0.3135 | 0.3143 | 0.7553 | 6 | | 0.9582 | 0.9437 | 0.3254 | 0.3492 | 0.3369 | 0.7661 | 7 | | 0.9268 | 0.9242 | 0.3381 | 0.3595 | 0.3485 | 0.7689 | 8 | | 0.9093 | 0.9177 | 0.3439 | 0.3697 | 0.3563 | 0.7697 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
qBob/t5-small_corrector_15
qBob
2022-08-25T15:53:09Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T14:02:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small_corrector_15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small_corrector_15 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3416 - Rouge1: 34.7998 - Rouge2: 9.0842 - Rougel: 27.8188 - Rougelsum: 27.839 - Gen Len: 18.5561 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 4.2274 | 1.0 | 2365 | 2.9386 | 10.1244 | 1.0024 | 9.1029 | 9.1104 | 18.5377 | | 2.7936 | 2.0 | 4730 | 2.0196 | 17.7168 | 3.0899 | 15.1305 | 15.1353 | 18.8883 | | 2.2678 | 3.0 | 7095 | 1.7072 | 26.8501 | 5.7804 | 22.0034 | 22.0213 | 18.839 | | 1.9029 | 4.0 | 9460 | 1.5254 | 32.9484 | 7.8531 | 26.4538 | 26.4749 | 18.502 | | 1.5936 | 5.0 | 11825 | 1.3416 | 34.7998 | 9.0842 | 27.8188 | 27.839 | 18.5561 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Chandanab/mit-b0-finetuned-eurosat
Chandanab
2022-08-25T15:33:04Z
49
0
transformers
[ "transformers", "pytorch", "segformer", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-16T11:47:17Z
--- license: other tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: mit-b0-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9494949494949495 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mit-b0-finetuned-eurosat This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1782 - Accuracy: 0.9495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.3828 | 0.8081 | | 0.4864 | 2.0 | 14 | 0.2224 | 0.9192 | | 0.2035 | 3.0 | 21 | 0.1782 | 0.9495 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.2.0 - Tokenizers 0.12.1
dboshardy/ddim-butterflies-128
dboshardy
2022-08-25T15:23:56Z
4
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDIMPipeline", "region:us" ]
null
2022-08-24T21:41:06Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddim-butterflies-128 ## Model description This diffusion model is trained with the [πŸ€— Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 250 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results πŸ“ˆ [TensorBoard logs](https://huggingface.co/dboshardy/ddim-butterflies-128/tensorboard?#scalars)
silviacamplani/distilbert-finetuned-dapt-ner-ai
silviacamplani
2022-08-25T14:13:33Z
63
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-25T14:11:40Z
--- tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-finetuned-dapt-ner-ai results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-finetuned-dapt-ner-ai This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9448 - Validation Loss: 0.9212 - Train Precision: 0.3164 - Train Recall: 0.3186 - Train F1: 0.3175 - Train Accuracy: 0.7524 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.6857 | 1.8199 | 0.0 | 0.0 | 0.0 | 0.6480 | 0 | | 1.6775 | 1.4868 | 0.0 | 0.0 | 0.0 | 0.6480 | 1 | | 1.3847 | 1.2452 | 0.0938 | 0.0102 | 0.0184 | 0.6565 | 2 | | 1.2067 | 1.1198 | 0.1659 | 0.1244 | 0.1422 | 0.7077 | 3 | | 1.0946 | 1.0321 | 0.2255 | 0.1925 | 0.2077 | 0.7225 | 4 | | 1.0057 | 0.9640 | 0.2835 | 0.2777 | 0.2806 | 0.7433 | 5 | | 0.9448 | 0.9212 | 0.3164 | 0.3186 | 0.3175 | 0.7524 | 6 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
ZhiyuanQiu/camembert-base-finetuned-Train_RAW15-dd
ZhiyuanQiu
2022-08-25T14:06:07Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-25T11:05:51Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: camembert-base-finetuned-Train_RAW15-dd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-Train_RAW15-dd This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3634 - Precision: 0.8788 - Recall: 0.9009 - F1: 0.8897 - Accuracy: 0.9256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0899 | 1.0 | 12043 | 0.3289 | 0.8642 | 0.8996 | 0.8815 | 0.9156 | | 0.0756 | 2.0 | 24086 | 0.3634 | 0.8788 | 0.9009 | 0.8897 | 0.9256 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Shivus/ppo-LunarLander-v2
Shivus
2022-08-25T14:03:02Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-25T14:02:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -134.10 +/- 32.54 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
teven/all_bs320_vanilla
teven
2022-08-25T13:45:58Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-25T13:45:51Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/all_bs320_vanilla This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/all_bs320_vanilla') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/all_bs320_vanilla) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 390414 with parameters: ``` {'batch_size': 40, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 157752 with parameters: ``` {'batch_size': 40, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 150009 with parameters: ``` {'batch_size': 40, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 2000, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
lewtun/autotrain-acronym-identification-7324788
lewtun
2022-08-25T13:34:54Z
33
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain", "en", "dataset:lewtun/autotrain-data-acronym-identification", "dataset:acronym_identification", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-24T10:11:47Z
--- tags: - autotrain language: en widget: - text: "I love AutoTrain \U0001F917" datasets: - lewtun/autotrain-data-acronym-identification - acronym_identification co2_eq_emissions: 10.435358044493652 model-index: - name: autotrain-demo results: - task: name: Token Classification type: token-classification dataset: name: acronym_identification type: acronym_identification args: default metrics: - name: Accuracy type: accuracy value: 0.9708090976211485 - task: type: token-classification name: Token Classification dataset: name: acronym_identification type: acronym_identification config: default split: train metrics: - name: Accuracy type: accuracy value: 0.9790777669399117 verified: true - name: Precision type: precision value: 0.9197835301644851 verified: true - name: Recall type: recall value: 0.946479027789208 verified: true - name: F1 type: f1 value: 0.9329403493591477 verified: true - name: loss type: loss value: 0.06360606849193573 verified: true - task: type: token-classification name: Token Classification dataset: name: acronym_identification type: acronym_identification config: default split: validation metrics: - name: Accuracy type: accuracy value: 0.9758354452761242 verified: true - name: Precision type: precision value: 0.9339674814732883 verified: true - name: Recall type: recall value: 0.9159344831326608 verified: true - name: F1 type: f1 value: 0.9248630887185104 verified: true - name: loss type: loss value: 0.07593930512666702 verified: true --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 7324788 - CO2 Emissions (in grams): 10.435358044493652 ## Validation Metrics - Loss: 0.08991389721632004 - Accuracy: 0.9708090976211485 - Precision: 0.8998421675654347 - Recall: 0.9309429854401959 - F1: 0.9151284109149278 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lewtun/autotrain-acronym-identification-7324788 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("lewtun/autotrain-acronym-identification-7324788", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lewtun/autotrain-acronym-identification-7324788", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
hadiqa123/train_model
hadiqa123
2022-08-25T13:34:44Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-17T20:01:32Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: train_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_model This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0825 - Wer: 0.9077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6984 | 11.11 | 500 | 3.1332 | 1.0 | | 2.4775 | 22.22 | 1000 | 1.0825 | 0.9077 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Chandanab/vit-base-patch16-224-in21k-finetuned-eurosat
Chandanab
2022-08-25T12:40:36Z
25
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-09T10:15:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9016949152542373 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3648 - Accuracy: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.91 | 5 | 0.5982 | 0.7492 | | 0.645 | 1.91 | 10 | 0.4862 | 0.7593 | | 0.645 | 2.91 | 15 | 0.4191 | 0.7966 | | 0.465 | 3.91 | 20 | 0.3803 | 0.8780 | | 0.465 | 4.91 | 25 | 0.3648 | 0.9017 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.2.0 - Tokenizers 0.12.1
teven/all_bs192_hardneg
teven
2022-08-25T12:37:00Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-25T12:36:54Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/all_bs192_hardneg This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/all_bs192_hardneg') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/all_bs192_hardneg) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 650690 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 262920 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 250014 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 2000, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dav3794/demo_knots_1_8
dav3794
2022-08-25T12:20:03Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:dav3794/autotrain-data-demo-knots_1_8", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T12:13:15Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain πŸ€—" datasets: - dav3794/autotrain-data-demo-knots_1_8 co2_eq_emissions: emissions: 0.06357782150508624 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1316050278 - CO2 Emissions (in grams): 0.0636 ## Validation Metrics - Loss: 0.242 - Accuracy: 0.931 - Precision: 0.943 - Recall: 0.981 - AUC: 0.852 - F1: 0.962 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dav3794/autotrain-demo-knots_1_8-1316050278 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("dav3794/autotrain-demo-knots_1_8-1316050278", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("dav3794/autotrain-demo-knots_1_8-1316050278", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
dav3794/demo_knots_all
dav3794
2022-08-25T11:21:43Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:dav3794/autotrain-data-demo-knots-all", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T11:08:10Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain πŸ€—" datasets: - dav3794/autotrain-data-demo-knots-all co2_eq_emissions: emissions: 0.1285808899475734 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1315850267 - CO2 Emissions (in grams): 0.1286 ## Validation Metrics - Loss: 0.085 - Accuracy: 0.982 - Precision: 0.984 - Recall: 0.997 - AUC: 0.761 - F1: 0.991 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dav3794/autotrain-demo-knots-all-1315850267 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("dav3794/autotrain-demo-knots-all-1315850267", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("dav3794/autotrain-demo-knots-all-1315850267", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
muhtasham/bert-small-finetuned-ner-to-multilabel-finer-50
muhtasham
2022-08-25T10:10:31Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T10:03:01Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-small-finetuned-ner-to-multilabel-finer-50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-ner-to-multilabel-finer-50 This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1739 | 0.02 | 500 | 0.0691 | | 0.1018 | 0.04 | 1000 | 0.0699 | | 0.0835 | 0.06 | 1500 | 0.0718 | | 0.0667 | 0.08 | 2000 | 0.0716 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
muhtasham/bert-small-finetuned-ner-to-multilabel-finer-19
muhtasham
2022-08-25T09:39:38Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T09:32:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-small-finetuned-ner-to-multilabel-finer-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-ner-to-multilabel-finer-19 This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.208 | 0.03 | 500 | 0.1137 | | 0.1026 | 0.06 | 1000 | 0.1170 | | 0.0713 | 0.1 | 1500 | 0.1301 | | 0.0567 | 0.13 | 2000 | 0.1389 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
BVK97/Discord-NFT-Sentiment
BVK97
2022-08-25T09:11:42Z
6
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-11T15:33:38Z
--- widget: - text: "Excited for the mint" - text: "lfg" - text: "no wl" --- # Discord Sentiment Analysis - (Context: NFTs) This is a model derived from Twitter-roBERTa-base model trained on ~10K Discord messages from NFT-based Discord servers and finetuned for sentiment analysis with manually labelled data. The original Twitter-roBERTa-base model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest). This model is suitable for English. - Git Repo: [BVK project repository](https://github.com/BVK23/Discord-NLP). <b>Labels</b>: 0 -> Negative; 1 -> Neutral; 2 -> Positive