modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-13 06:28:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
518 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-13 06:25:04
card
stringlengths
11
1.01M
sainoforce/modelv9
sainoforce
2025-03-31T12:54:56Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T10:46:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
litmudoc/QwQ-coder-32B-MLX-Q6
litmudoc
2025-03-31T12:51:48Z
0
0
mlx
[ "mlx", "safetensors", "qwen2", "mergekit", "merge", "text-generation", "conversational", "base_model:YOYO-AI/QwQ-coder-32B", "base_model:quantized:YOYO-AI/QwQ-coder-32B", "6-bit", "region:us" ]
text-generation
2025-03-31T12:43:47Z
--- base_model: YOYO-AI/QwQ-coder-32B library_name: mlx tags: - mergekit - merge - mlx pipeline_tag: text-generation --- # litmudoc/QwQ-coder-32B-MLX-Q6 This model [litmudoc/QwQ-coder-32B-MLX-Q6](https://huggingface.co/litmudoc/QwQ-coder-32B-MLX-Q6) was converted to MLX format from [YOYO-AI/QwQ-coder-32B](https://huggingface.co/YOYO-AI/QwQ-coder-32B) using mlx-lm version **0.22.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("litmudoc/QwQ-coder-32B-MLX-Q6") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Jonjew/HaileyBlackThornTheFirstDescendant
Jonjew
2025-03-31T12:51:17Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T12:50:57Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- cinematic still TFD-Hailey-BlackThorn, Hailey, futuristic cyberpunk woman, sitting on a rock on the edge of a cliff overlooking a futuristic city view at night, starry sky. cinematic lighting and deep shadows. She has straight, shoulder-length black hair with a side part swaying in the wind and wears a black leather bodysuit with a deep neckline that reveals ample cleavage. The bodysuit is adorned with spiky metallic accents and intricate circuitry patterns. Hailey's legs are covered in black fishnet stockings. She wears black fingerless gloves and thigh-high boots with silver spikes and neon blue highlights. She has black, futuristic shoulder pads with glowing blue accents. She also wears eyecover over her eyes, adding to her rebellious look. Her bold red lipstick enhances her fierce expression. Highly detailed, sci-fi, cyberpunk aesthetic. <lora:TFD-Hailey-BlackThorn:0.7> . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy parameters: negative_prompt: >- anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured output: url: images/00061-1136498592.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: TFD-Hailey-BlackThorn license: unknown --- # Hailey - Black Thorn - The First Descendant <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;1213964&#x2F;hailey-black-thorn-the-first-descendant Trigger TFD-Hailey-BlackThorn Strength 1 A (FLUX) Character LoRA for Hailey from The First Descendant -videogame. Also check out my other TFD Character LoRAs below! Triggerword: TFD-Hailey-BlackThorn Suggested Weight: 0.7 to 1.0 My Preview Images Generated on: -flux1-dev-Q8_0.gguf + t5xxl_fp16 (ForgeUI) -Euler, Simple or Normal -5:8 or 9:16, 1.25x Hires. Fix (4x-UltraSharp -upscaler) -Distilled CFG Scale: 3.5 -Only This LoRA enabled Add the following to your prompt to help you get the full outfit: TFD-Hailey-BlackThorn. She has straight, shoulder-length black hair and teal ear clasps. She is wearing a futuristic, black bodysuit with metallic and teal glowing details and high neckline. The low-cut design of the bodysuit reveals her cleavage. She is wearing a black visor that covers her eyes, adding to her cyberpunk aesthetic. She has spiked shoulder pads and fur accents that look tough and edgy. She is wearing high-heeled boots with turquoise details and metal spikes. Her lower body is covered in black fishnet stockings covering her thighs. ## Trigger words You should use `TFD-Hailey-BlackThorn` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/HaileyBlackThornTheFirstDescendant/tree/main) them in the Files & versions tab.
Delta-Vector/Archaeo-32B-EXL2
Delta-Vector
2025-03-31T12:51:14Z
0
0
transformers
[ "transformers", "roleplay", "creative-writing", "merge", "mergekit", "text-generation", "base_model:Delta-Vector/Hamanasu-Magnum-QwQ-32B", "base_model:merge:Delta-Vector/Hamanasu-Magnum-QwQ-32B", "base_model:Sao10K/32B-Qwen2.5-Kunou-v1", "base_model:merge:Sao10K/32B-Qwen2.5-Kunou-v1", "endpoints_compatible", "region:us" ]
text-generation
2025-03-30T07:54:50Z
--- tags: - roleplay - creative-writing - merge - mergekit base_model: - Delta-Vector/Hamanasu-Magnum-QwQ-32B - Sao10K/32B-Qwen2.5-Kunou-v1 pipeline_tag: text-generation library_name: transformers --- ``` __~a~_ ~~; ~_ _ ~ ~_ _ '_\;__._._._._._._] ~_._._._._._.__;/_` '(/'/'/'/'|'|'|'| ( )|'|'|'|'\'\'\'\)' (/ / / /, | | | |(/ \) | | | ,\ \ \ \) (/ / / / / | | | ~(/ \) ~ | | \ \ \ \ \) (/ / / / / ~ ~ ~ (/ \) ~ ~ \ \ \ \ \) (/ / / / ~ / (||)| ~ \ \ \ \) ~ / / ~ M /||\M ~ \ \ ~ ~ ~ /||\ ~ ~ //||\\ //||\\ //||\\ '/||\' "Archaeopteryx" ``` <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <style> @import url('https://fonts.googleapis.com/css2?family=VT323&display=swap'); body { background: #0a0017; margin: 0; padding: 20px; font-family: 'VT323', monospace; color: #ff00aa; text-shadow: 0 0 8px #ff00aa; animation: glitch-flicker 0.2s infinite alternate; } @keyframes glitch-flicker { 0% { text-shadow: 0 0 5px #ff00aa, 0 0 15px #ff00aa; } 100% { text-shadow: 0 0 8px #ff0066, 0 0 18px #ff0066; } } .crt-container { padding: 10px; max-width: 900px; margin: auto; } .crt-case { background: linear-gradient(135deg, #130021, #20002c); border-radius: 10px; padding: 15px; box-shadow: inset 2px 2px 10px rgba(255,0,170,0.5), 2px 2px 5px rgba(255,0,170,0.3), 0 0 25px rgba(255,0,170,0.2); } .crt-screen { background: #0c011a; padding: 20px; border-radius: 10px; box-shadow: inset 0 0 25px rgba(255,0,170,0.3), 0 0 15px rgba(255,0,170,0.7); filter: contrast(1.2) brightness(1.2); text-shadow: 0px 0px 5px #ff00aa; animation: glow-pulse 3s infinite alternate; } @keyframes glow-pulse { 0% { box-shadow: inset 0 0 20px rgba(255,0,170,0.3), 0 0 15px rgba(255,0,170,0.3); } 100% { box-shadow: inset 0 0 30px rgba(255,0,170,0.5), 0 0 25px rgba(255,0,170,0.5); } } h2 { color: #ff33cc; text-align: center; font-size: 28px; text-shadow: 0 0 8px #ff33cc, 0 0 18px #ff0044; } pre { background: rgba(255,0,170,0.1); padding: 10px; border-radius: 10px; color: #ff66cc; font-size: 14px; box-shadow: inset 0 0 10px rgba(255,0,170,0.5); } .glitch { animation: text-glitch 0.5s infinite alternate; } @keyframes text-glitch { 0% { transform: translateX(-2px); text-shadow: 0 0 5px #ff0066, 0 0 10px #ff33cc; } 100% { transform: translateX(2px); text-shadow: 0 0 8px #ff00aa, 0 0 20px #ff0099; } } .neon-link { color: #ff66cc; text-decoration: none; transition: text-shadow 0.3s ease; } .neon-link:hover { text-shadow: 0px 0px 15px #ff66cc, 0 0 25px rgba(255,0,170,0.5); } .ascii-art { text-align: center; font-size: 12px; color: #ff33cc; text-shadow: 0px 0px 5px #ff00ff; margin-bottom: 20px; } .quantso-container { display: flex; justify-content: center; gap: 20px; margin-top: 20px; } .quantso-box { background: rgba(255,0,170,0.1); padding: 15px; border-radius: 10px; text-align: center; box-shadow: inset 0 0 10px rgba(255,0,170,0.5); flex: 1; max-width: 150px; } </style> </head> <body> <div class="crt-container"> <div class="crt-case"> <div class="crt-screen"> <p>THESE ARE EXL2 QUANTS, LOOK IN THE REVISIONS FOR THE QUANTS, MAIN BRANCH CONTAINS MEASUREMENT.</p> <p>A series of Merges made for Roleplaying & Creative Writing, This model uses 32B-Qwen2.5-Kunou-v1 and Hamanasu-Magnum-QwQ-32B and Slerp to merge the 2 models.</p> <h3>ChatML formatting</h3> <pre> """<|im_start|>system system prompt<|im_end|> <|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> <|im_start|>assistant """ </pre> <h3>MergeKit Configuration</h3> <pre> models: - model: Sao10K/32B-Qwen2.5-Kunou-v1 - model: Delta-Vector/Hamanasu-Magnum-QwQ-32B merge_method: slerp base_model: Delta-Vector/Hamanasu-Magnum-QwQ-32B parameters: t: - value: 0.2 dtype: bfloat16 tokenizer_source: base </pre> <h3>Quants:</h3> <div class="quantso-container"> <div class="quantso-box"> <strong>GGUF</strong><br> <a class="neon-link" href="#">https://huggingface.co/mradermacher/Archaeo-32B-GGUF/</a> </div> <div class="quantso-box"> <strong>EXL2</strong><br> <a class="neon-link" href="#">https://huggingface.co/Delta-Vector/Archaeo-32B-EXL2/</a> </div> </div> <h3>Credits</h3> <p>Thank you to: Kubernetes-bad, LucyKnada, Intervitens, Samantha Twinkman, Tav, Trappu & The rest of Anthracite</p> </div> </div> </div> </body> </html>
Delta-Vector/Archaeo-32B
Delta-Vector
2025-03-31T12:50:57Z
14
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "roleplay", "creative-writing", "merge", "mergekit", "conversational", "base_model:Delta-Vector/Hamanasu-Magnum-QwQ-32B", "base_model:merge:Delta-Vector/Hamanasu-Magnum-QwQ-32B", "base_model:Sao10K/32B-Qwen2.5-Kunou-v1", "base_model:merge:Sao10K/32B-Qwen2.5-Kunou-v1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-28T16:40:28Z
--- tags: - roleplay - creative-writing - merge - mergekit base_model: - Delta-Vector/Hamanasu-Magnum-QwQ-32B - Sao10K/32B-Qwen2.5-Kunou-v1 pipeline_tag: text-generation library_name: transformers --- ``` __~a~_ ~~; ~_ _ ~ ~_ _ '_\;__._._._._._._] ~_._._._._._.__;/_` '(/'/'/'/'|'|'|'| ( )|'|'|'|'\'\'\'\)' (/ / / /, | | | |(/ \) | | | ,\ \ \ \) (/ / / / / | | | ~(/ \) ~ | | \ \ \ \ \) (/ / / / / ~ ~ ~ (/ \) ~ ~ \ \ \ \ \) (/ / / / ~ / (||)| ~ \ \ \ \) ~ / / ~ M /||\M ~ \ \ ~ ~ ~ /||\ ~ ~ //||\\ //||\\ //||\\ '/||\' "Archaeopteryx" ``` <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <style> @import url('https://fonts.googleapis.com/css2?family=VT323&display=swap'); body { background: #0a0017; margin: 0; padding: 20px; font-family: 'VT323', monospace; color: #ff00aa; text-shadow: 0 0 8px #ff00aa; animation: glitch-flicker 0.2s infinite alternate; } @keyframes glitch-flicker { 0% { text-shadow: 0 0 5px #ff00aa, 0 0 15px #ff00aa; } 100% { text-shadow: 0 0 8px #ff0066, 0 0 18px #ff0066; } } .crt-container { padding: 10px; max-width: 900px; margin: auto; } .crt-case { background: linear-gradient(135deg, #130021, #20002c); border-radius: 10px; padding: 15px; box-shadow: inset 2px 2px 10px rgba(255,0,170,0.5), 2px 2px 5px rgba(255,0,170,0.3), 0 0 25px rgba(255,0,170,0.2); } .crt-screen { background: #0c011a; padding: 20px; border-radius: 10px; box-shadow: inset 0 0 25px rgba(255,0,170,0.3), 0 0 15px rgba(255,0,170,0.7); filter: contrast(1.2) brightness(1.2); text-shadow: 0px 0px 5px #ff00aa; animation: glow-pulse 3s infinite alternate; } @keyframes glow-pulse { 0% { box-shadow: inset 0 0 20px rgba(255,0,170,0.3), 0 0 15px rgba(255,0,170,0.3); } 100% { box-shadow: inset 0 0 30px rgba(255,0,170,0.5), 0 0 25px rgba(255,0,170,0.5); } } h2 { color: #ff33cc; text-align: center; font-size: 28px; text-shadow: 0 0 8px #ff33cc, 0 0 18px #ff0044; } pre { background: rgba(255,0,170,0.1); padding: 10px; border-radius: 10px; color: #ff66cc; font-size: 14px; box-shadow: inset 0 0 10px rgba(255,0,170,0.5); } .glitch { animation: text-glitch 0.5s infinite alternate; } @keyframes text-glitch { 0% { transform: translateX(-2px); text-shadow: 0 0 5px #ff0066, 0 0 10px #ff33cc; } 100% { transform: translateX(2px); text-shadow: 0 0 8px #ff00aa, 0 0 20px #ff0099; } } .neon-link { color: #ff66cc; text-decoration: none; transition: text-shadow 0.3s ease; } .neon-link:hover { text-shadow: 0px 0px 15px #ff66cc, 0 0 25px rgba(255,0,170,0.5); } .ascii-art { text-align: center; font-size: 12px; color: #ff33cc; text-shadow: 0px 0px 5px #ff00ff; margin-bottom: 20px; } .quantso-container { display: flex; justify-content: center; gap: 20px; margin-top: 20px; } .quantso-box { background: rgba(255,0,170,0.1); padding: 15px; border-radius: 10px; text-align: center; box-shadow: inset 0 0 10px rgba(255,0,170,0.5); flex: 1; max-width: 150px; } </style> </head> <body> <div class="crt-container"> <div class="crt-case"> <div class="crt-screen"> <p>A series of Merges made for Roleplaying & Creative Writing, This model uses 32B-Qwen2.5-Kunou-v1 and Hamanasu-Magnum-QwQ-32B and Slerp to merge the 2 models.</p> <h3>ChatML formatting</h3> <pre> """<|im_start|>system system prompt<|im_end|> <|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> <|im_start|>assistant """ </pre> <h3>MergeKit Configuration</h3> <pre> models: - model: Sao10K/32B-Qwen2.5-Kunou-v1 - model: Delta-Vector/Hamanasu-Magnum-QwQ-32B merge_method: slerp base_model: Delta-Vector/Hamanasu-Magnum-QwQ-32B parameters: t: - value: 0.2 dtype: bfloat16 tokenizer_source: base </pre> <h3>Quants:</h3> <div class="quantso-container"> <div class="quantso-box"> <strong>GGUF</strong><br> <a class="neon-link" href="#">https://huggingface.co/mradermacher/Archaeo-32B-GGUF/</a> </div> <div class="quantso-box"> <strong>EXL2</strong><br> <a class="neon-link" href="#">https://huggingface.co/Delta-Vector/Archaeo-32B-EXL2/</a> </div> </div> <h3>Credits</h3> <p>Thank you to: Kubernetes-bad, LucyKnada, Intervitens, Samantha Twinkman, Tav, Trappu & The rest of Anthracite</p> </div> </div> </div> </body> </html>
juhw/q427
juhw
2025-03-31T12:50:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T12:47:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ASethi04/llama-3.1-8b-arc-e-lora
ASethi04
2025-03-31T12:49:53Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:llama3.1", "region:us" ]
null
2025-03-31T06:01:11Z
--- base_model: meta-llama/Llama-3.1-8B library_name: peft license: llama3.1 metrics: - accuracy - precision - recall - f1 tags: - trl - sft - generated_from_trainer model-index: - name: llama-3.1-8b-arc-e-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-3.1-8b-arc-e-lora This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2417 - Accuracy: 0.9140 - Precision: 0.9143 - Recall: 0.9130 - F1: 0.9133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1542 | 0.9996 | 1125 | 0.1994 | 0.9088 | 0.9084 | 0.9102 | 0.9087 | | 0.063 | 2.0 | 2251 | 0.2417 | 0.9140 | 0.9143 | 0.9130 | 0.9133 | | 0.0001 | 2.9996 | 3376 | 0.3695 | 0.9088 | 0.9076 | 0.9088 | 0.9079 | | 0.0 | 3.9982 | 4500 | 0.4042 | 0.9070 | 0.9055 | 0.9072 | 0.9060 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 2.19.0 - Tokenizers 0.20.1
LiAutoAD/Ristretto-3B
LiAutoAD
2025-03-31T12:49:32Z
272
0
transformers
[ "transformers", "safetensors", "ristretto", "feature-extraction", "image-text-to-text", "conversational", "custom_code", "en", "zh", "dataset:lmms-lab/LLaVA-OneVision-Data", "dataset:BAAI/Infinity-MM", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "license:apache-2.0", "region:us" ]
image-text-to-text
2025-03-26T08:26:51Z
--- license: apache-2.0 datasets: - lmms-lab/LLaVA-OneVision-Data - BAAI/Infinity-MM language: - en - zh base_model: - google/siglip2-so400m-patch14-384 - Qwen/Qwen2.5-3B-Instruct pipeline_tag: image-text-to-text library_name: transformers --- ## Introduction We are excited to introduce **Ristretto**, our newest Vision language model (VLM) that represents a significant step forward in the field. Ristretto features a capability to deploy dynamic image tokens, enables flexible adjustment of image token quantities based on task requirements while enhancing the projector architecture to support dynamic token configurations. This new model delivers improved performance and versatility compared to its predecessors through its refined architecture and advanced training approach. **Key Innovations** Coming soon... ### Environment Setup ```bash pip install torch>=2.3.0 pip install transformers==4.37.0 ``` ### How to use? ```python import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer import requests from io import BytesIO IMAGENET_MEAN = (0.5, 0.5, 0.5) IMAGENET_STD = (0.5, 0.5, 0.5) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=10, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_data, input_size=384, max_num=10): image = Image.open(image_data).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values model_path = 'LiAutoAD/Ristretto-3B' model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, trust_remote_code=True).eval().cuda() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) image_url = 'https://github.com/user-attachments/assets/83258e94-5d61-48ef-a87f-80dd9d895524' response = requests.get(image_url) image_data = BytesIO(response.content) pixel_values = load_image(image_data, max_num=10).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens=1024, do_sample=True) # The recommended range for `num_image_token` is 64 to 576, and the value can be adjusted based on task requirements. num_image_token = 256 # pure-text conversation question = 'Hello, who are you?' response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) print(f'User: {question} Assistant: {response}') # text-image conversation && multi-round conversation question = '<image> Please describe the image.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question} Assistant: {response}') question = 'What is best title for the image?' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question} Assistant: {response}') ``` ### Evaluation | Benchmark | Qwen2.5-VL-3B | InternVL2.5-4B | Ristretto-3B | | :-------: | :----------: | :-------------: | :----: | | MMBench-TEST-avg | 76.8 | 78.2 | 80.1 | | MMStar | 56.3 | 58.7 | 62.6 | | MMMU-VAL | 51.2 | 51.8 | 49.1 | | MathVista-MINI-test | 61.2 | 60.8 | 67.9 | | HallucinationBench | 46.6 | 46.6 | 50.2 | | AI2D | 81.4 | 81.4 | 84.3 | | OCRBench | 82.8 | 82.0 | 84.0 | | MMVet | 60.0 | 61.5 | 61.8 | | Average | 64.5 | 65.1 | 67.6 | We use [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) to evaluate Ristretto-3B. Other results are taken from [OpenCompass](https://rank.opencompass.org.cn/leaderboard-multimodal) ## License Agreement All of our open-source models are licensed under the Apache-2.0 license. ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
Efficient-Large-Model/Sana_Sprint_1.6B_1024px_teacher
Efficient-Large-Model
2025-03-31T12:49:25Z
16
0
sana, sana-sprint
[ "sana, sana-sprint", "text-to-image", "SANA-Sprint", "1024px_based_image_size", "BF16", "One-step diffusion", "en", "zh", "arxiv:2503.09641", "base_model:Efficient-Large-Model/Sana_Sprint_1.6B_1024px_teacher", "base_model:finetune:Efficient-Large-Model/Sana_Sprint_1.6B_1024px_teacher", "region:us" ]
text-to-image
2025-03-19T07:30:43Z
--- library_name: sana, sana-sprint tags: - text-to-image - SANA-Sprint - 1024px_based_image_size - BF16 - One-step diffusion language: - en - zh base_model: - Efficient-Large-Model/Sana_Sprint_1.6B_1024px_teacher pipeline_tag: text-to-image --- <p align="center" style="border-radius: 10px"> <img src="https://nvlabs.github.io/Sana/Sprint/asset/SANA-Sprint.png" width="50%" alt="logo"/> </p> <div style="display:flex;justify-content: center"> <a href="https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76"><img src="https://img.shields.io/static/v1?label=Weights&message=Huggingface&color=yellow"></a> &ensp; <a href="https://github.com/NVlabs/Sana"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github"></a> &ensp; <a href="https://nvlabs.github.io/Sana/Sprint/"><img src="https://img.shields.io/static/v1?label=Project&message=Github&color=blue&logo=github-pages"></a> &ensp; <!-- <a href="https://hanlab.mit.edu/projects/sana/"><img src="https://img.shields.io/static/v1?label=Page&message=MIT&color=darkred&logo=github-pages"></a> &ensp; --> <a href="https://arxiv.org/pdf/2503.09641"><img src="https://img.shields.io/static/v1?label=Arxiv&message=SANA-Sprint&color=red&logo=arxiv"></a> &ensp; <a href="https://nv-sana.mit.edu/sprint"><img src="https://img.shields.io/static/v1?label=Demo&message=MIT&color=yellow"></a> &ensp; <a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a> &ensp; </div> # 🐱 Sana Model Card This model serves as the **Teacher** in the figure below. It's not a few-step generative model but a fine-tuned diffusion model with (1) **Dense Timestep Embedding** and (2) **QK Normalization** discussed in the [SANA-Sprint paper](https://arxiv.org/pdf/2503.09641). Few-step generative models can be found in [HF repo](https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76). Source code is available at https://github.com/NVlabs/Sana. ## Training Pipeline <p align="center" border-raduis="10px"> <img src="https://nvlabs.github.io/Sana/Sprint/asset/content/paradigm.png" width="85%" alt="teaser_page1"/> </p> ### Model Description - **Developed by:** NVIDIA, Sana - **Model type:** Teacher model for One-Step Diffusion with Continuous-Time Consistency Distillation - **Model size:** 1.6B parameters - **Model precision:** torch.bfloat16 (BF16) - **Model resolution:** This model is developed to generate 1024px based images with multi-scale heigh and width. - **License:** [NSCL v2-custom](./LICENSE.txt). Governing Terms: NVIDIA License. Additional Information: [Gemma Terms of Use | Google AI for Developers](https://ai.google.dev/gemma/terms) for Gemma-2-2B-IT, [Gemma Prohibited Use Policy | Google AI for Developers](https://ai.google.dev/gemma/prohibited_use_policy). - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a Linear Diffusion Transformer that uses one fixed, pretrained text encoders ([Gemma2-2B-IT](https://huggingface.co/google/gemma-2-2b-it)) and one 32x spatial-compressed latent feature encoder ([DC-AE](https://hanlab.mit.edu/projects/dc-ae)). - **Resources for more information:** Check out our [GitHub Repository](https://github.com/NVlabs/Sana) and the [SANA-Sprint report on arXiv](https://arxiv.org/pdf/2503.09641). ### Model Sources For research purposes, we recommend our `generative-models` Github repository (https://github.com/NVlabs/Sana), which is more suitable for both training and inference [MIT Han-Lab](https://nv-sana.mit.edu/sprint) provides free SANA-Sprint inference. - **Repository:** https://github.com/NVlabs/Sana - **Demo:** https://nv-sana.mit.edu/sprint ## Uses ### Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. Excluded uses are described below. ### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render complex legible text - fingers, .etc in general may not be generated properly. - The autoencoding part of the model is lossy. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
Efficient-Large-Model/Sana_Sprint_0.6B_1024px_teacher
Efficient-Large-Model
2025-03-31T12:49:13Z
0
0
sana, sana-sprint
[ "sana, sana-sprint", "text-to-image", "SANA-Sprint", "1024px_based_image_size", "BF16", "One-step diffusion", "en", "zh", "arxiv:2503.09641", "base_model:Efficient-Large-Model/Sana_Sprint_0.6B_1024px_teacher", "base_model:finetune:Efficient-Large-Model/Sana_Sprint_0.6B_1024px_teacher", "region:us" ]
text-to-image
2025-03-31T12:40:28Z
--- library_name: sana, sana-sprint tags: - text-to-image - SANA-Sprint - 1024px_based_image_size - BF16 - One-step diffusion language: - en - zh base_model: - Efficient-Large-Model/Sana_Sprint_0.6B_1024px_teacher pipeline_tag: text-to-image --- <p align="center" style="border-radius: 10px"> <img src="https://nvlabs.github.io/Sana/Sprint/asset/SANA-Sprint.png" width="50%" alt="logo"/> </p> <div style="display:flex;justify-content: center"> <a href="https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76"><img src="https://img.shields.io/static/v1?label=Weights&message=Huggingface&color=yellow"></a> &ensp; <a href="https://github.com/NVlabs/Sana"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github"></a> &ensp; <a href="https://nvlabs.github.io/Sana/Sprint/"><img src="https://img.shields.io/static/v1?label=Project&message=Github&color=blue&logo=github-pages"></a> &ensp; <!-- <a href="https://hanlab.mit.edu/projects/sana/"><img src="https://img.shields.io/static/v1?label=Page&message=MIT&color=darkred&logo=github-pages"></a> &ensp; --> <a href="https://arxiv.org/pdf/2503.09641"><img src="https://img.shields.io/static/v1?label=Arxiv&message=SANA-Sprint&color=red&logo=arxiv"></a> &ensp; <a href="https://nv-sana.mit.edu/sprint"><img src="https://img.shields.io/static/v1?label=Demo&message=MIT&color=yellow"></a> &ensp; <a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a> &ensp; </div> # 🐱 Sana Model Card This model serves as the **Teacher** in the figure below. It's not a few-step generative model but a fine-tuned diffusion model with (1) **Dense Timestep Embedding** and (2) **QK Normalization** discussed in the [SANA-Sprint paper](https://arxiv.org/pdf/2503.09641). Few-step generative models can be found in [HF repo](https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76). Source code is available at https://github.com/NVlabs/Sana. ## Training Pipeline <p align="center" border-raduis="10px"> <img src="https://nvlabs.github.io/Sana/Sprint/asset/content/paradigm.png" width="85%" alt="teaser_page1"/> </p> ### Model Description - **Developed by:** NVIDIA, Sana - **Model type:** Teacher model for One-Step Diffusion with Continuous-Time Consistency Distillation - **Model size:** 0.6B parameters - **Model precision:** torch.bfloat16 (BF16) - **Model resolution:** This model is developed to generate 1024px based images with multi-scale heigh and width. - **License:** [NSCL v2-custom](./LICENSE.txt). Governing Terms: NVIDIA License. Additional Information: [Gemma Terms of Use | Google AI for Developers](https://ai.google.dev/gemma/terms) for Gemma-2-2B-IT, [Gemma Prohibited Use Policy | Google AI for Developers](https://ai.google.dev/gemma/prohibited_use_policy). - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a Linear Diffusion Transformer that uses one fixed, pretrained text encoders ([Gemma2-2B-IT](https://huggingface.co/google/gemma-2-2b-it)) and one 32x spatial-compressed latent feature encoder ([DC-AE](https://hanlab.mit.edu/projects/dc-ae)). - **Resources for more information:** Check out our [GitHub Repository](https://github.com/NVlabs/Sana) and the [SANA-Sprint report on arXiv](https://arxiv.org/pdf/2503.09641). ### Model Sources For research purposes, we recommend our `generative-models` Github repository (https://github.com/NVlabs/Sana), which is more suitable for both training and inference [MIT Han-Lab](https://nv-sana.mit.edu/sprint) provides free SANA-Sprint inference. - **Repository:** https://github.com/NVlabs/Sana - **Demo:** https://nv-sana.mit.edu/sprint ## Uses ### Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. Excluded uses are described below. ### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render complex legible text - fingers, .etc in general may not be generated properly. - The autoencoding part of the model is lossy. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
tomoe007/non
tomoe007
2025-03-31T12:48:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T12:42:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jonjew/ViessaUltimateAbsoluteZeroTheFirstDescendant
Jonjew
2025-03-31T12:48:23Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T12:48:10Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- semi side-view cinematic film still of TFD-Viessa-ULT-AbsoluteZero, a futuristic, armored female warrior sorceress is posing elegantly in a snowy winter scene with lots of snowfall. She is casting blue magic with her hands and magic is swirling all around her. The background has a snowy mountain view. She is casting magic. output: url: images/00127-2174865257.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: TFD-Viessa-ULT-AbsoluteZero license: unknown --- # Viessa Ultimate - Absolute Zero - The First Descendant <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;769178&#x2F;viessa-ultimate-absolute-zero-the-first-descendant-flux-lora Trigger TFD-Viessa-ULT-AbsoluteZero Strength 1 A (FLUX) Character LoRA for Viessa Ultimate (with the Absolute Zero -skin) from The First Descendant -videogame. Also check out my Hailey and Sharen FLUX LoRAs. Triggerword: TFD-Viessa-ULT-AbsoluteZero Suggested Weight: 1 My Preview Images Generated on: -flux1-dev-Q8_0.gguf + t5xxl_fp16 (ForgeUI) -Euler, Simple -960x1728 (or 1024x1600)+ 1.25x Hires. Fix (4x-UltraSharp -upscaler) -Distilled CFG Scale: 3.5 -Only This LoRA enabled Add the following to your prompt to help you get the character: TFD-Viessa-ULT-AbsoluteZero, a futuristic, armored female warrior sorceress The character has a sleek, athletic build with a toned physique. She wears a mask with a sleek, futuristic design that covers most of her face, leaving only her mouth and nose visible. The mask is predominantly white with gold and blue accents. She has long, wavy silver hair styled into two braids that cascade over her shoulders. Her armor features intricate, geometric patterns and a high-tech, glossy texture. The armor covers her entire body with additional decorative pieces on her shoulders. The character&#39;s attire is form-fitting, emphasizing her curvaceous physique. She also has a waist cape. ## Trigger words You should use `TFD-Viessa-ULT-AbsoluteZero` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/ViessaUltimateAbsoluteZeroTheFirstDescendant/tree/main) them in the Files & versions tab.
silviasapora/gemma-7b-silvia_cpo-basic_capibara-5e-5-025-v150
silviasapora
2025-03-31T12:47:20Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma", "text-generation", "generated_from_trainer", "alignment-handbook", "trl", "orpo", "conversational", "dataset:argilla/distilabel-capybara-dpo-7k-binarized", "arxiv:2403.07691", "base_model:google/gemma-7b", "base_model:finetune:google/gemma-7b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T11:13:14Z
--- base_model: google/gemma-7b datasets: - argilla/distilabel-capybara-dpo-7k-binarized library_name: transformers model_name: google/gemma-7b tags: - generated_from_trainer - alignment-handbook - trl - orpo licence: license --- # Model Card for google/gemma-7b This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the [['argilla/distilabel-capybara-dpo-7k-binarized']](https://huggingface.co/datasets/['argilla/distilabel-capybara-dpo-7k-binarized']) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="silviasapora/gemma-7b-silvia_cpo-basic_capibara-5e-5-025-v150", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/silvias/huggingface/runs/wyrt8myx) This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691). ### Framework versions - TRL: 0.16.0 - Transformers: 4.50.3 - Pytorch: 2.5.1 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite ORPO as: ```bibtex @article{hong2024orpo, title = {{ORPO: Monolithic Preference Optimization without Reference Model}}, author = {Jiwoo Hong and Noah Lee and James Thorne}, year = 2024, eprint = {arXiv:2403.07691} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
rounakiitkgp/safety-gen-ai-gemma-3-1b-tilde
rounakiitkgp
2025-03-31T12:46:58Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T12:45:23Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Binay123456/Kolkata_Housing_Price_Prediction
Binay123456
2025-03-31T12:46:22Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-31T12:46:19Z
--- license: apache-2.0 ---
lesso12/5f00c51c-8e96-4eff-a198-6f8967cec42b
lesso12
2025-03-31T12:42:36Z
0
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3-mini-4k-instruct", "base_model:adapter:microsoft/Phi-3-mini-4k-instruct", "license:mit", "region:us" ]
null
2025-03-31T11:32:49Z
--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 5f00c51c-8e96-4eff-a198-6f8967cec42b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3-mini-4k-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5a00b31a0cadf31e_train_data.json ds_type: json format: custom path: /workspace/input_data/5a00b31a0cadf31e_train_data.json type: field_input: system_prompt field_instruction: problem field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso12/5f00c51c-8e96-4eff-a198-6f8967cec42b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000212 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/5a00b31a0cadf31e_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 120 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f813fc57-085f-4cb4-9c17-be1bd72df1d1 wandb_project: 12a wandb_run: your_name wandb_runid: f813fc57-085f-4cb4-9c17-be1bd72df1d1 warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5f00c51c-8e96-4eff-a198-6f8967cec42b This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000212 - train_batch_size: 4 - eval_batch_size: 4 - seed: 120 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 0.8650 | | 3.712 | 0.3382 | 500 | 0.4632 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bowilleatyou/32f3bd01-82d3-4969-a5bb-b189aedc7611
bowilleatyou
2025-03-31T12:42:06Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:43:11Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hhhhhhh1014/lora_model
hhhhhhh1014
2025-03-31T12:41:55Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma2", "trl", "en", "base_model:unsloth/gemma-2-9b-bnb-4bit", "base_model:finetune:unsloth/gemma-2-9b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-17T07:37:29Z
--- base_model: unsloth/gemma-2-9b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** hhhhhhh1014 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-bnb-4bit # maoniangmoxing This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
davidcheon/Qwen2.5-VL-3B-Instruct-Q2_K-GGUF
davidcheon
2025-03-31T12:41:38Z
0
0
transformers
[ "transformers", "gguf", "multimodal", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:quantized:Qwen/Qwen2.5-VL-3B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-03-31T12:41:29Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct language: - en library_name: transformers license_name: qwen-research license_link: https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct/blob/main/LICENSE pipeline_tag: image-text-to-text tags: - multimodal - llama-cpp - gguf-my-repo --- # davidcheon/Qwen2.5-VL-3B-Instruct-Q2_K-GGUF This model was converted to GGUF format from [`Qwen/Qwen2.5-VL-3B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo davidcheon/Qwen2.5-VL-3B-Instruct-Q2_K-GGUF --hf-file qwen2.5-vl-3b-instruct-q2_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo davidcheon/Qwen2.5-VL-3B-Instruct-Q2_K-GGUF --hf-file qwen2.5-vl-3b-instruct-q2_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo davidcheon/Qwen2.5-VL-3B-Instruct-Q2_K-GGUF --hf-file qwen2.5-vl-3b-instruct-q2_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo davidcheon/Qwen2.5-VL-3B-Instruct-Q2_K-GGUF --hf-file qwen2.5-vl-3b-instruct-q2_k.gguf -c 2048 ```
RJTPP/stage2-deepseek1.5b-3k
RJTPP
2025-03-31T12:41:37Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/DeepSeek-R1-Distill-Qwen-1.5B-bnb-4bit", "base_model:finetune:unsloth/DeepSeek-R1-Distill-Qwen-1.5B-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:20:11Z
--- base_model: unsloth/DeepSeek-R1-Distill-Qwen-1.5B-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** RJTPP - **License:** apache-2.0 - **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Qwen-1.5B-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
juhw/q426
juhw
2025-03-31T12:40:53Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T12:38:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sxsun1684/lora-llama2-backward
sxsun1684
2025-03-31T12:40:40Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:40:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ayushexel/reranker-MiniLM-L6-H384-uncased-gooaq-1-epoch-1995000
ayushexel
2025-03-31T12:39:22Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "cross-encoder", "generated_from_trainer", "dataset_size:11456702", "loss:BinaryCrossEntropyLoss", "text-ranking", "en", "arxiv:1908.10084", "base_model:nreimers/MiniLM-L6-H384-uncased", "base_model:finetune:nreimers/MiniLM-L6-H384-uncased", "license:apache-2.0", "model-index", "region:us" ]
text-ranking
2025-03-31T12:39:16Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - cross-encoder - generated_from_trainer - dataset_size:11456702 - loss:BinaryCrossEntropyLoss base_model: nreimers/MiniLM-L6-H384-uncased pipeline_tag: text-ranking library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 model-index: - name: CrossEncoder based on nreimers/MiniLM-L6-H384-uncased results: - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: gooaq dev type: gooaq-dev metrics: - type: map value: 0.4404 name: Map - type: mrr@10 value: 0.439 name: Mrr@10 - type: ndcg@10 value: 0.4867 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoMSMARCO R100 type: NanoMSMARCO_R100 metrics: - type: map value: 0.3958 name: Map - type: mrr@10 value: 0.3805 name: Mrr@10 - type: ndcg@10 value: 0.4669 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNFCorpus R100 type: NanoNFCorpus_R100 metrics: - type: map value: 0.3521 name: Map - type: mrr@10 value: 0.5816 name: Mrr@10 - type: ndcg@10 value: 0.376 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNQ R100 type: NanoNQ_R100 metrics: - type: map value: 0.3832 name: Map - type: mrr@10 value: 0.382 name: Mrr@10 - type: ndcg@10 value: 0.436 name: Ndcg@10 - task: type: cross-encoder-nano-beir name: Cross Encoder Nano BEIR dataset: name: NanoBEIR R100 mean type: NanoBEIR_R100_mean metrics: - type: map value: 0.3771 name: Map - type: mrr@10 value: 0.448 name: Mrr@10 - type: ndcg@10 value: 0.4263 name: Ndcg@10 --- # CrossEncoder based on nreimers/MiniLM-L6-H384-uncased This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) <!-- at revision 3276f0fac9d818781d7a1327b3ff818fc4e643c0 --> - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label <!-- - **Training Dataset:** Unknown --> - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("ayushexel/reranker-MiniLM-L6-H384-uncased-gooaq-1-epoch-1995000") # Get scores for pairs of texts pairs = [ ['how much does it cost to get married in paris?', 'While the average cost of a wedding in the United States is 26,000 USD excluding the honeymoon, elopements in Paris might cost as low as 10,000 to 20,000 USD including the ceremony, reception, hotel, meals and a honeymoon.'], ['how much does it cost to get married in paris?', 'According to an internal study, the average destination wedding cost is $32,000 (excluding the cost of the engagement ring). Including the price of the engagement ring, the average destination wedding cost is $38,500.'], ['how much does it cost to get married in paris?', 'In France only civil marriages are legally binding, thus lot of couples have two ceremonies. The civil ceremony including notary fees costs you 350-400 euros on average in France. The religious ceremony costs around 200-300 euros.'], ['how much does it cost to get married in paris?', "The average cost of a wedding in 2019 was $33,900 (including the engagement ring, ceremony and reception), according to The Knot's 2019 Real Weddings Study. Here's what you should know about wedding costs and how to realistically estimate how much you'll spend to take the plunge."], ['how much does it cost to get married in paris?', 'You can typically rent wedding dresses for as little as about $50-$600, but they can also cost much less or more depending on the dress and rental company. On the more expensive end, designer gowns rent for a fraction of their purchase price, anywhere from $500 to $2,000 is common.'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'how much does it cost to get married in paris?', [ 'While the average cost of a wedding in the United States is 26,000 USD excluding the honeymoon, elopements in Paris might cost as low as 10,000 to 20,000 USD including the ceremony, reception, hotel, meals and a honeymoon.', 'According to an internal study, the average destination wedding cost is $32,000 (excluding the cost of the engagement ring). Including the price of the engagement ring, the average destination wedding cost is $38,500.', 'In France only civil marriages are legally binding, thus lot of couples have two ceremonies. The civil ceremony including notary fees costs you 350-400 euros on average in France. The religious ceremony costs around 200-300 euros.', "The average cost of a wedding in 2019 was $33,900 (including the engagement ring, ceremony and reception), according to The Knot's 2019 Real Weddings Study. Here's what you should know about wedding costs and how to realistically estimate how much you'll spend to take the plunge.", 'You can typically rent wedding dresses for as little as about $50-$600, but they can also cost much less or more depending on the dress and rental company. On the more expensive end, designer gowns rent for a fraction of their purchase price, anywhere from $500 to $2,000 is common.', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Cross Encoder Reranking * Dataset: `gooaq-dev` * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: ```json { "at_k": 10, "always_rerank_positives": false } ``` | Metric | Value | |:------------|:---------------------| | map | 0.4404 (+0.1707) | | mrr@10 | 0.4390 (+0.1801) | | **ndcg@10** | **0.4867 (+0.1771)** | #### Cross Encoder Reranking * Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100` * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: ```json { "at_k": 10, "always_rerank_positives": true } ``` | Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 | |:------------|:---------------------|:---------------------|:---------------------| | map | 0.3958 (-0.0937) | 0.3521 (+0.0911) | 0.3832 (-0.0364) | | mrr@10 | 0.3805 (-0.0970) | 0.5816 (+0.0817) | 0.3820 (-0.0447) | | **ndcg@10** | **0.4669 (-0.0735)** | **0.3760 (+0.0510)** | **0.4360 (-0.0646)** | #### Cross Encoder Nano BEIR * Dataset: `NanoBEIR_R100_mean` * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true } ``` | Metric | Value | |:------------|:---------------------| | map | 0.3771 (-0.0130) | | mrr@10 | 0.4480 (-0.0200) | | **ndcg@10** | **0.4263 (-0.0291)** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 11,456,702 training samples * Columns: <code>question</code>, <code>answer</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | question | answer | label | |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 18 characters</li><li>mean: 42.92 characters</li><li>max: 88 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 252.31 characters</li><li>max: 383 characters</li></ul> | <ul><li>0: ~82.50%</li><li>1: ~17.50%</li></ul> | * Samples: | question | answer | label | |:------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>how much does it cost to get married in paris?</code> | <code>While the average cost of a wedding in the United States is 26,000 USD excluding the honeymoon, elopements in Paris might cost as low as 10,000 to 20,000 USD including the ceremony, reception, hotel, meals and a honeymoon.</code> | <code>1</code> | | <code>how much does it cost to get married in paris?</code> | <code>According to an internal study, the average destination wedding cost is $32,000 (excluding the cost of the engagement ring). Including the price of the engagement ring, the average destination wedding cost is $38,500.</code> | <code>0</code> | | <code>how much does it cost to get married in paris?</code> | <code>In France only civil marriages are legally binding, thus lot of couples have two ceremonies. The civil ceremony including notary fees costs you 350-400 euros on average in France. The religious ceremony costs around 200-300 euros.</code> | <code>0</code> | * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True - `dataloader_num_workers`: 12 - `load_best_model_at_end`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 12 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 | |:------:|:-----:|:-------------:|:-----------------:|:------------------------:|:-------------------------:|:-------------------:|:--------------------------:| | -1 | -1 | - | 0.0959 (-0.2136) | 0.0324 (-0.5081) | 0.2360 (-0.0890) | 0.0375 (-0.4632) | 0.1019 (-0.3534) | | 0.0000 | 1 | 1.1913 | - | - | - | - | - | | 0.0045 | 200 | 1.1796 | - | - | - | - | - | | 0.0089 | 400 | 1.1778 | - | - | - | - | - | | 0.0134 | 600 | 1.1696 | - | - | - | - | - | | 0.0179 | 800 | 1.1659 | - | - | - | - | - | | 0.0223 | 1000 | 1.1732 | - | - | - | - | - | | 0.0268 | 1200 | 1.1115 | - | - | - | - | - | | 0.0313 | 1400 | 1.0091 | - | - | - | - | - | | 0.0358 | 1600 | 0.9436 | - | - | - | - | - | | 0.0402 | 1800 | 0.9239 | - | - | - | - | - | | 0.0447 | 2000 | 0.8863 | - | - | - | - | - | | 0.0492 | 2200 | 0.8617 | - | - | - | - | - | | 0.0536 | 2400 | 0.8448 | - | - | - | - | - | | 0.0581 | 2600 | 0.8301 | - | - | - | - | - | | 0.0626 | 2800 | 0.821 | - | - | - | - | - | | 0.0670 | 3000 | 0.8049 | - | - | - | - | - | | 0.0715 | 3200 | 0.7858 | - | - | - | - | - | | 0.0760 | 3400 | 0.7732 | - | - | - | - | - | | 0.0804 | 3600 | 0.7654 | - | - | - | - | - | | 0.0849 | 3800 | 0.7495 | - | - | - | - | - | | 0.0894 | 4000 | 0.7362 | - | - | - | - | - | | 0.0938 | 4200 | 0.7264 | - | - | - | - | - | | 0.0983 | 4400 | 0.7183 | - | - | - | - | - | | 0.1028 | 4600 | 0.712 | - | - | - | - | - | | 0.1073 | 4800 | 0.7048 | - | - | - | - | - | | 0.1117 | 5000 | 0.7068 | - | - | - | - | - | | 0.1162 | 5200 | 0.7083 | - | - | - | - | - | | 0.1207 | 5400 | 0.6894 | - | - | - | - | - | | 0.1251 | 5600 | 0.6852 | - | - | - | - | - | | 0.1296 | 5800 | 0.6717 | - | - | - | - | - | | 0.1341 | 6000 | 0.6814 | - | - | - | - | - | | 0.1385 | 6200 | 0.6713 | - | - | - | - | - | | 0.1430 | 6400 | 0.6637 | - | - | - | - | - | | 0.1475 | 6600 | 0.6604 | - | - | - | - | - | | 0.1519 | 6800 | 0.6576 | - | - | - | - | - | | 0.1564 | 7000 | 0.6565 | - | - | - | - | - | | 0.1609 | 7200 | 0.6535 | - | - | - | - | - | | 0.1654 | 7400 | 0.6477 | - | - | - | - | - | | 0.1698 | 7600 | 0.6467 | - | - | - | - | - | | 0.1743 | 7800 | 0.6329 | - | - | - | - | - | | 0.1788 | 8000 | 0.6372 | - | - | - | - | - | | 0.1832 | 8200 | 0.6422 | - | - | - | - | - | | 0.1877 | 8400 | 0.635 | - | - | - | - | - | | 0.1922 | 8600 | 0.6344 | - | - | - | - | - | | 0.1966 | 8800 | 0.6299 | - | - | - | - | - | | 0.2011 | 9000 | 0.6293 | - | - | - | - | - | | 0.2056 | 9200 | 0.6257 | - | - | - | - | - | | 0.2100 | 9400 | 0.612 | - | - | - | - | - | | 0.2145 | 9600 | 0.6215 | - | - | - | - | - | | 0.2190 | 9800 | 0.6195 | - | - | - | - | - | | 0.2234 | 10000 | 0.6133 | - | - | - | - | - | | 0.2279 | 10200 | 0.6069 | - | - | - | - | - | | 0.2324 | 10400 | 0.6013 | - | - | - | - | - | | 0.2369 | 10600 | 0.6141 | - | - | - | - | - | | 0.2413 | 10800 | 0.5997 | - | - | - | - | - | | 0.2458 | 11000 | 0.6027 | - | - | - | - | - | | 0.2503 | 11200 | 0.5993 | - | - | - | - | - | | 0.2547 | 11400 | 0.5954 | - | - | - | - | - | | 0.2592 | 11600 | 0.5948 | - | - | - | - | - | | 0.2637 | 11800 | 0.5933 | - | - | - | - | - | | 0.2681 | 12000 | 0.5893 | - | - | - | - | - | | 0.2726 | 12200 | 0.5864 | - | - | - | - | - | | 0.2771 | 12400 | 0.5884 | - | - | - | - | - | | 0.2815 | 12600 | 0.5866 | - | - | - | - | - | | 0.2860 | 12800 | 0.5898 | - | - | - | - | - | | 0.2905 | 13000 | 0.5843 | - | - | - | - | - | | 0.2950 | 13200 | 0.5926 | - | - | - | - | - | | 0.2994 | 13400 | 0.5913 | - | - | - | - | - | | 0.3039 | 13600 | 0.5768 | - | - | - | - | - | | 0.3084 | 13800 | 0.5781 | - | - | - | - | - | | 0.3128 | 14000 | 0.5805 | - | - | - | - | - | | 0.3173 | 14200 | 0.5835 | - | - | - | - | - | | 0.3218 | 14400 | 0.5736 | - | - | - | - | - | | 0.3262 | 14600 | 0.5789 | - | - | - | - | - | | 0.3307 | 14800 | 0.5789 | - | - | - | - | - | | 0.3352 | 15000 | 0.5772 | - | - | - | - | - | | 0.3396 | 15200 | 0.5668 | - | - | - | - | - | | 0.3441 | 15400 | 0.5751 | - | - | - | - | - | | 0.3486 | 15600 | 0.5643 | - | - | - | - | - | | 0.3530 | 15800 | 0.575 | - | - | - | - | - | | 0.3575 | 16000 | 0.5675 | - | - | - | - | - | | 0.3620 | 16200 | 0.567 | - | - | - | - | - | | 0.3665 | 16400 | 0.5583 | - | - | - | - | - | | 0.3709 | 16600 | 0.562 | - | - | - | - | - | | 0.3754 | 16800 | 0.5661 | - | - | - | - | - | | 0.3799 | 17000 | 0.5489 | - | - | - | - | - | | 0.3843 | 17200 | 0.5545 | - | - | - | - | - | | 0.3888 | 17400 | 0.5549 | - | - | - | - | - | | 0.3933 | 17600 | 0.5545 | - | - | - | - | - | | 0.3977 | 17800 | 0.562 | - | - | - | - | - | | 0.4022 | 18000 | 0.5635 | - | - | - | - | - | | 0.4067 | 18200 | 0.549 | - | - | - | - | - | | 0.4111 | 18400 | 0.5591 | - | - | - | - | - | | 0.4156 | 18600 | 0.5574 | - | - | - | - | - | | 0.4201 | 18800 | 0.5506 | - | - | - | - | - | | 0.4246 | 19000 | 0.5556 | - | - | - | - | - | | 0.4290 | 19200 | 0.5606 | - | - | - | - | - | | 0.4335 | 19400 | 0.5523 | - | - | - | - | - | | 0.4380 | 19600 | 0.5566 | - | - | - | - | - | | 0.4424 | 19800 | 0.5417 | - | - | - | - | - | | 0.4469 | 20000 | 0.5493 | - | - | - | - | - | | 0.4514 | 20200 | 0.5443 | - | - | - | - | - | | 0.4558 | 20400 | 0.5511 | - | - | - | - | - | | 0.4603 | 20600 | 0.5458 | - | - | - | - | - | | 0.4648 | 20800 | 0.5495 | - | - | - | - | - | | 0.4692 | 21000 | 0.5478 | - | - | - | - | - | | 0.4737 | 21200 | 0.5466 | - | - | - | - | - | | 0.4782 | 21400 | 0.5416 | - | - | - | - | - | | 0.4826 | 21600 | 0.5422 | - | - | - | - | - | | 0.4871 | 21800 | 0.5412 | - | - | - | - | - | | 0.4916 | 22000 | 0.5457 | - | - | - | - | - | | 0.4961 | 22200 | 0.5326 | - | - | - | - | - | | 0.5005 | 22400 | 0.5384 | - | - | - | - | - | | 0.5050 | 22600 | 0.5431 | - | - | - | - | - | | 0.5095 | 22800 | 0.549 | - | - | - | - | - | | 0.5139 | 23000 | 0.5429 | - | - | - | - | - | | 0.5184 | 23200 | 0.5318 | - | - | - | - | - | | 0.5229 | 23400 | 0.5288 | - | - | - | - | - | | 0.5273 | 23600 | 0.5371 | - | - | - | - | - | | 0.5318 | 23800 | 0.5307 | - | - | - | - | - | | 0.5363 | 24000 | 0.5451 | - | - | - | - | - | | 0.5407 | 24200 | 0.5462 | - | - | - | - | - | | 0.5452 | 24400 | 0.5322 | - | - | - | - | - | | 0.5497 | 24600 | 0.534 | - | - | - | - | - | | 0.5542 | 24800 | 0.5266 | - | - | - | - | - | | 0.5586 | 25000 | 0.5338 | - | - | - | - | - | | 0.5631 | 25200 | 0.5252 | - | - | - | - | - | | 0.5676 | 25400 | 0.5343 | - | - | - | - | - | | 0.5720 | 25600 | 0.5297 | - | - | - | - | - | | 0.5765 | 25800 | 0.5296 | - | - | - | - | - | | 0.5810 | 26000 | 0.5205 | - | - | - | - | - | | 0.5854 | 26200 | 0.5186 | - | - | - | - | - | | 0.5899 | 26400 | 0.5299 | - | - | - | - | - | | 0.5944 | 26600 | 0.5291 | - | - | - | - | - | | 0.5988 | 26800 | 0.5325 | - | - | - | - | - | | 0.6033 | 27000 | 0.5303 | - | - | - | - | - | | 0.6078 | 27200 | 0.53 | - | - | - | - | - | | 0.6122 | 27400 | 0.5241 | - | - | - | - | - | | 0.6167 | 27600 | 0.524 | - | - | - | - | - | | 0.6212 | 27800 | 0.5332 | - | - | - | - | - | | 0.6257 | 28000 | 0.5182 | - | - | - | - | - | | 0.6301 | 28200 | 0.5279 | - | - | - | - | - | | 0.6346 | 28400 | 0.5236 | - | - | - | - | - | | 0.6391 | 28600 | 0.523 | - | - | - | - | - | | 0.6435 | 28800 | 0.526 | - | - | - | - | - | | 0.6480 | 29000 | 0.52 | - | - | - | - | - | | 0.6525 | 29200 | 0.53 | - | - | - | - | - | | 0.6569 | 29400 | 0.5284 | - | - | - | - | - | | 0.6614 | 29600 | 0.5204 | - | - | - | - | - | | 0.6659 | 29800 | 0.5266 | - | - | - | - | - | | 0.6703 | 30000 | 0.5172 | - | - | - | - | - | | 0.6748 | 30200 | 0.5176 | - | - | - | - | - | | 0.6793 | 30400 | 0.5151 | - | - | - | - | - | | 0.6838 | 30600 | 0.5069 | - | - | - | - | - | | 0.6882 | 30800 | 0.5164 | - | - | - | - | - | | 0.6927 | 31000 | 0.5129 | - | - | - | - | - | | 0.6972 | 31200 | 0.5144 | - | - | - | - | - | | 0.7016 | 31400 | 0.5124 | - | - | - | - | - | | 0.7061 | 31600 | 0.5167 | - | - | - | - | - | | 0.7106 | 31800 | 0.5025 | - | - | - | - | - | | 0.7150 | 32000 | 0.5066 | - | - | - | - | - | | 0.7195 | 32200 | 0.5257 | - | - | - | - | - | | 0.7240 | 32400 | 0.5086 | - | - | - | - | - | | 0.7284 | 32600 | 0.5164 | - | - | - | - | - | | 0.7329 | 32800 | 0.5058 | - | - | - | - | - | | 0.7374 | 33000 | 0.52 | - | - | - | - | - | | 0.7418 | 33200 | 0.5175 | - | - | - | - | - | | 0.7463 | 33400 | 0.5038 | - | - | - | - | - | | 0.7508 | 33600 | 0.5058 | - | - | - | - | - | | 0.7553 | 33800 | 0.5075 | - | - | - | - | - | | 0.7597 | 34000 | 0.5218 | - | - | - | - | - | | 0.7642 | 34200 | 0.5174 | - | - | - | - | - | | 0.7687 | 34400 | 0.4998 | - | - | - | - | - | | 0.7731 | 34600 | 0.502 | - | - | - | - | - | | 0.7776 | 34800 | 0.5205 | - | - | - | - | - | | 0.7821 | 35000 | 0.5105 | - | - | - | - | - | | 0.7865 | 35200 | 0.5026 | - | - | - | - | - | | 0.7910 | 35400 | 0.5079 | - | - | - | - | - | | 0.7955 | 35600 | 0.5066 | - | - | - | - | - | | 0.7999 | 35800 | 0.5046 | - | - | - | - | - | | 0.8044 | 36000 | 0.5139 | - | - | - | - | - | | 0.8089 | 36200 | 0.5113 | - | - | - | - | - | | 0.8134 | 36400 | 0.5098 | - | - | - | - | - | | 0.8178 | 36600 | 0.5082 | - | - | - | - | - | | 0.8223 | 36800 | 0.5052 | - | - | - | - | - | | 0.8268 | 37000 | 0.5071 | - | - | - | - | - | | 0.8312 | 37200 | 0.5047 | - | - | - | - | - | | 0.8357 | 37400 | 0.5022 | - | - | - | - | - | | 0.8402 | 37600 | 0.516 | - | - | - | - | - | | 0.8446 | 37800 | 0.5069 | - | - | - | - | - | | 0.8491 | 38000 | 0.5025 | - | - | - | - | - | | 0.8536 | 38200 | 0.499 | - | - | - | - | - | | 0.8580 | 38400 | 0.5117 | - | - | - | - | - | | 0.8625 | 38600 | 0.5057 | - | - | - | - | - | | 0.8670 | 38800 | 0.5068 | - | - | - | - | - | | 0.8714 | 39000 | 0.5002 | - | - | - | - | - | | 0.8759 | 39200 | 0.5134 | - | - | - | - | - | | 0.8804 | 39400 | 0.5044 | - | - | - | - | - | | 0.8849 | 39600 | 0.5035 | - | - | - | - | - | | 0.8893 | 39800 | 0.5098 | - | - | - | - | - | | 0.8938 | 40000 | 0.5015 | - | - | - | - | - | | 0.8983 | 40200 | 0.5058 | - | - | - | - | - | | 0.9027 | 40400 | 0.4927 | - | - | - | - | - | | 0.9072 | 40600 | 0.5091 | - | - | - | - | - | | 0.9117 | 40800 | 0.5095 | - | - | - | - | - | | 0.9161 | 41000 | 0.5092 | - | - | - | - | - | | 0.9206 | 41200 | 0.5072 | - | - | - | - | - | | 0.9251 | 41400 | 0.5027 | - | - | - | - | - | | 0.9295 | 41600 | 0.4961 | - | - | - | - | - | | 0.9340 | 41800 | 0.4978 | - | - | - | - | - | | 0.9385 | 42000 | 0.4993 | - | - | - | - | - | | 0.9430 | 42200 | 0.488 | - | - | - | - | - | | 0.9474 | 42400 | 0.5049 | - | - | - | - | - | | 0.9519 | 42600 | 0.4993 | - | - | - | - | - | | 0.9564 | 42800 | 0.5159 | - | - | - | - | - | | 0.9608 | 43000 | 0.507 | - | - | - | - | - | | 0.9653 | 43200 | 0.4965 | - | - | - | - | - | | 0.9698 | 43400 | 0.5048 | - | - | - | - | - | | 0.9742 | 43600 | 0.4972 | - | - | - | - | - | | 0.9787 | 43800 | 0.4994 | - | - | - | - | - | | 0.9832 | 44000 | 0.5003 | - | - | - | - | - | | 0.9876 | 44200 | 0.4934 | - | - | - | - | - | | 0.9921 | 44400 | 0.5025 | - | - | - | - | - | | 0.9966 | 44600 | 0.5029 | - | - | - | - | - | | -1 | -1 | - | 0.4867 (+0.1771) | 0.4669 (-0.0735) | 0.3760 (+0.0510) | 0.4360 (-0.0646) | 0.4263 (-0.0291) | </details> ### Framework Versions - Python: 3.11.0 - Sentence Transformers: 4.0.1 - Transformers: 4.50.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.2 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
bowilleatyou/9bcd6215-74b0-48e9-a74d-0578315627c0
bowilleatyou
2025-03-31T12:38:22Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:20:35Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jonjew/SharenTheFirstDescendant
Jonjew
2025-03-31T12:35:32Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T12:35:22Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- a realistic cinematic high angle film still of TFD-Sharen-Default-NoHelmet, a female cyborg in profile in a futuristic, armored suit is standing with hands on her hips on a dark smoky ground with intense red lighting and background. The ground is dirty and wet concrete with reflections of her. There are reflections from the wet reflective ground and puddles. She is looking away. output: url: images/00063-4282680639.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: TFD-Sharen-Default-NoHelmet license: unknown --- # Sharen - The First Descendant <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;748155&#x2F;sharen-the-first-descendant-flux-lora?modelVersionId&#x3D;836671 Trigger TFD-Sharen-Default-NoHelmet Strength 0.7 A (FLUX) Character LoRA for Sharen (w&#x2F;o Helmet) from The First Descendant -videogame. Also check out my Hailey or Viessa Ultimate FLUX LoRAs Triggerword: TFD-Sharen-Default-NoHelmet Suggested Weight: 0.7 My Preview Images Generated on: -flux1-dev-Q8_0.gguf + t5xxl_fp16 (ForgeUI) -Euler, Simple -960x1728 (or 1024x1600) + 1.2x Hires. Fix (4x-UltraSharp -upscaler) -Distilled CFG Scale: 3.5 Add the following to your prompt to help you get the character: TFD-Sharen-Default-NoHelmet, a female cyborg in a futuristic, armored suit She has white makeup lines and silver lipstick. Her dark brown hair is styled in multiple, thick braids adorned with small, metallic rings. She has a futuristic, armor-like suit that is predominantly metallic silver with gold accents and intricate, glowing blue details. The suit is form-fitting and covers her entire body, with a high collar that extends to her neck and a large chest piece that reveals a large glowing purple skin-tight design. The armor has a sleek, polished appearance with smooth, rounded edges and a slightly reflective surface, giving it a high-tech, futuristic aesthetic. The suit&#39;s form-fitting, aerodynamic shape, emphasizes her curvaceous physique ## Trigger words You should use `TFD-Sharen-Default-NoHelmet` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/SharenTheFirstDescendant/tree/main) them in the Files & versions tab.
greatnomadicseal/ppo-LunarLander-200k-new-hyperparams
greatnomadicseal
2025-03-31T12:34:06Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-31T12:33:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.91 +/- 27.92 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JK303/q-Taxi-v3-learn-6-epsilon-small
JK303
2025-03-31T12:33:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-03-31T12:33:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-learn-6-epsilon-small results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="JK303/q-Taxi-v3-learn-6-epsilon-small", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kareem-oudeh/kareem-lora
kareem-oudeh
2025-03-31T12:33:39Z
0
0
null
[ "license:other", "region:us" ]
null
2025-03-31T11:44:23Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
tiz12/lora_model_llama_garbage
tiz12
2025-03-31T12:33:01Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:32:48Z
--- base_model: unsloth/llama-3-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** tiz12 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yujia23/im_llama5
yujia23
2025-03-31T12:30:03Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-03-31T12:28:51Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
dgambettaphd/M_gen10_W_doc1000_synt64_MPP5-100_lastFalse
dgambettaphd
2025-03-31T12:29:27Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:29:14Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nanocoh/test
nanocoh
2025-03-31T12:29:21Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2309.00071", "arxiv:2412.15115", "base_model:Qwen/Qwen2.5-32B", "base_model:finetune:Qwen/Qwen2.5-32B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T12:29:20Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-32B tags: - chat library_name: transformers --- # QwQ-32B <a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Introduction QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini. <p align="center"> <img width="100%" src="figures/benchmark.jpg"> </p> **This repo contains the QwQ 32B model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training (Supervised Finetuning and Reinforcement Learning) - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias - Number of Parameters: 32.5B - Number of Paramaters (Non-Embedding): 31.0B - Number of Layers: 64 - Number of Attention Heads (GQA): 40 for Q and 8 for KV - Context Length: Full 131,072 tokens - For prompts exceeding 8,192 tokens in length, you must enable YaRN as outlined in [this section](#usage-guidelines). **Note:** For the best experience, please review the [usage guidelines](#usage-guidelines) before deploying QwQ models. You can try our [demo](https://huggingface.co/spaces/Qwen/QwQ-32B-Demo) or access QwQ models via [QwenChat](https://chat.qwen.ai). For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwq-32b/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Requirements QwQ is based on Qwen2.5, whose code has been in the latest Hugging face `transformers`. We advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/QwQ-32B" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "How many r's are in the word \"strawberry\"" messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ### Usage Guidelines To achieve optimal performance, we recommend the following settings: 1. **Enforce Thoughtful Output**: Ensure the model starts with "\<think\>\n" to prevent generating empty thinking content, which can degrade output quality. If you use `apply_chat_template` and set `add_generation_prompt=True`, this is already automatically implemented, but it may cause the response to lack the \<think\> tag at the beginning. This is normal behavior. 2. **Sampling Parameters**: - Use Temperature=0.6, TopP=0.95, MinP=0 instead of Greedy decoding to avoid endless repetitions. - Use TopK between 20 and 40 to filter out rare token occurrences while maintaining the diversity of the generated output. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may result in occasional language mixing and a slight decrease in performance. 3. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. This feature is already implemented in `apply_chat_template`. 4. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g.,`\"answer\": \"C\"`." in the prompt. 5. **Handle Long Inputs**: For inputs exceeding 8,192 tokens, enable [YaRN](https://arxiv.org/abs/2309.00071) to improve the model's ability to capture long-sequence information effectively. For supported frameworks, you could add the following to `config.json` to enable YaRN: ```json { ..., "rope_scaling": { "factor": 4.0, "original_max_position_embeddings": 32768, "type": "yarn" } } ``` For deployment, we recommend using vLLM. Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM. Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required. ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwq-32b/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwq32b, title = {QwQ-32B: Embracing the Power of Reinforcement Learning}, url = {https://qwenlm.github.io/blog/qwq-32b/}, author = {Qwen Team}, month = {March}, year = {2025} } @article{qwen2.5, title={Qwen2.5 Technical Report}, author={An Yang and Baosong Yang and Beichen Zhang and Binyuan Hui and Bo Zheng and Bowen Yu and Chengyuan Li and Dayiheng Liu and Fei Huang and Haoran Wei and Huan Lin and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Yang and Jiaxi Yang and Jingren Zhou and Junyang Lin and Kai Dang and Keming Lu and Keqin Bao and Kexin Yang and Le Yu and Mei Li and Mingfeng Xue and Pei Zhang and Qin Zhu and Rui Men and Runji Lin and Tianhao Li and Tianyi Tang and Tingyu Xia and Xingzhang Ren and Xuancheng Ren and Yang Fan and Yang Su and Yichang Zhang and Yu Wan and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zihan Qiu}, journal={arXiv preprint arXiv:2412.15115}, year={2024} } ```
mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF
mradermacher
2025-03-31T12:28:10Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML", "base_model:quantized:Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:10:43Z
--- base_model: Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.Q3_K_M.gguf) | Q3_K_M | 4.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.Q3_K_L.gguf) | Q3_K_L | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.IQ4_XS.gguf) | IQ4_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.Q4_K_S.gguf) | Q4_K_S | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.Q4_K_M.gguf) | Q4_K_M | 5.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.Q5_K_S.gguf) | Q5_K_S | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.Q5_K_M.gguf) | Q5_K_M | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.Q6_K.gguf) | Q6_K | 7.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.Q8_0.gguf) | Q8_0 | 9.0 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-NeMo-Minitron-8B-Base-ChatML-GGUF/resolve/main/Mistral-NeMo-Minitron-8B-Base-ChatML.f16.gguf) | f16 | 16.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/NativeSQL-GGUF
mradermacher
2025-03-31T12:26:26Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:ahmedrizwan239/NativeSQL", "base_model:quantized:ahmedrizwan239/NativeSQL", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:24:10Z
--- base_model: ahmedrizwan239/NativeSQL language: en library_name: transformers license: cc-by-sa-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/ahmedrizwan239/NativeSQL <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.Q5_K_S.gguf) | Q5_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.Q5_K_M.gguf) | Q5_K_M | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.Q6_K.gguf) | Q6_K | 0.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.Q8_0.gguf) | Q8_0 | 0.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/NativeSQL-GGUF/resolve/main/NativeSQL.f16.gguf) | f16 | 0.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
eugeneseo/poca-SoccerTwos
eugeneseo
2025-03-31T12:25:32Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2025-03-31T12:25:30Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: eugeneseo/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
JK303/q-Taxi-v3
JK303
2025-03-31T12:24:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-03-31T12:23:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="JK303/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sonuiq415/Jskk
sonuiq415
2025-03-31T12:22:01Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-31T12:22:01Z
--- license: apache-2.0 ---
thanaphatt1/mental_not_good_yet
thanaphatt1
2025-03-31T12:19:03Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:scb10x/typhoon2-qwen2.5-7b-instruct", "base_model:finetune:scb10x/typhoon2-qwen2.5-7b-instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:18:55Z
--- base_model: scb10x/typhoon2-qwen2.5-7b-instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thanaphatt1 - **License:** apache-2.0 - **Finetuned from model :** scb10x/typhoon2-qwen2.5-7b-instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
iTroned/bert_weights_test
iTroned
2025-03-31T12:18:19Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:11:28Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert_weights_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/itroned-ntnu/huggingface/runs/dl7extb8) # bert_weights_test This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2107 - Accuracy Offensive: 0.9441 - F1 Offensive: 0.9425 - Accuracy Targeted: 0.9441 - F1 Targeted: 0.9173 - Accuracy Stance: 0.9079 - F1 Stance: 0.8717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Offensive | F1 Offensive | Accuracy Targeted | F1 Targeted | Accuracy Stance | F1 Stance | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:------------:|:-----------------:|:-----------:|:---------------:|:---------:| | 0.2784 | 1.0 | 1490 | 0.2279 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2328 | 2.0 | 2980 | 0.2142 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2129 | 3.0 | 4470 | 0.2107 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2107 | 4.0 | 5960 | 0.2150 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2151 | 5.0 | 7450 | 0.2135 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.0.1 - Tokenizers 0.21.1
BigSmiley7/a2c-PandaReachDense-v3
BigSmiley7
2025-03-31T12:16:41Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-31T12:12:39Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.16 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Tgratzi/tma-topology-path-t5small-tuned
Tgratzi
2025-03-31T12:16:10Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-03-31T01:57:30Z
--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: tma-topology-path-t5small-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tma-topology-path-t5small-tuned This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
AfroLogicInsect/emotionClassifier
AfroLogicInsect
2025-03-31T12:12:04Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-31T12:08:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sens2010/law_llama3_8B_16bit
sens2010
2025-03-31T12:11:10Z
0
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "unsloth", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T10:12:03Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
chloeli/qwen-2.5-1.5B-instruct-sft-lora-countdown-search-long-1k
chloeli
2025-03-31T12:11:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "alignment-handbook", "trl", "sft", "conversational", "dataset:MelinaLaimon/stream-of-search", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T11:31:08Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct datasets: MelinaLaimon/stream-of-search library_name: transformers model_name: Qwen/Qwen2.5-1.5B-Instruct tags: - generated_from_trainer - alignment-handbook - trl - sft licence: license --- # Model Card for Qwen/Qwen2.5-1.5B-Instruct This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the [MelinaLaimon/stream-of-search](https://huggingface.co/datasets/MelinaLaimon/stream-of-search) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chloeli/qwen-2.5-1.5B-instruct-sft-lora-countdown-search-seq-1k", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chloeli/huggingface/runs/26si2dtj) This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Persona-5B-i1-GGUF
mradermacher
2025-03-31T12:10:49Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:TroyDoesAI/Persona-5B", "base_model:quantized:TroyDoesAI/Persona-5B", "license:artistic-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-31T10:01:04Z
--- base_model: TroyDoesAI/Persona-5B language: - en library_name: transformers license: artistic-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TroyDoesAI/Persona-5B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Persona-5B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ2_S.gguf) | i1-IQ2_S | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.0 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q2_K.gguf) | i1-Q2_K | 2.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ3_S.gguf) | i1-IQ3_S | 2.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ3_M.gguf) | i1-IQ3_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 3.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q4_0.gguf) | i1-Q4_0 | 3.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 3.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 3.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q4_1.gguf) | i1-Q4_1 | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-i1-GGUF/resolve/main/Persona-5B.i1-Q6_K.gguf) | i1-Q6_K | 4.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Persona-5B-GGUF
mradermacher
2025-03-31T12:10:49Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:TroyDoesAI/Persona-5B", "base_model:quantized:TroyDoesAI/Persona-5B", "license:artistic-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T08:44:32Z
--- base_model: TroyDoesAI/Persona-5B language: - en library_name: transformers license: artistic-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/TroyDoesAI/Persona-5B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Persona-5B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.Q2_K.gguf) | Q2_K | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.Q3_K_S.gguf) | Q3_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.Q3_K_M.gguf) | Q3_K_M | 2.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.Q3_K_L.gguf) | Q3_K_L | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.IQ4_XS.gguf) | IQ4_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.Q4_K_S.gguf) | Q4_K_S | 3.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.Q4_K_M.gguf) | Q4_K_M | 3.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.Q5_K_S.gguf) | Q5_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.Q5_K_M.gguf) | Q5_K_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.Q6_K.gguf) | Q6_K | 4.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.Q8_0.gguf) | Q8_0 | 5.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Persona-5B-GGUF/resolve/main/Persona-5B.f16.gguf) | f16 | 10.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
iTroned/modernbert_test
iTroned
2025-03-31T12:08:23Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:01:29Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: modernbert_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/itroned-ntnu/huggingface/runs/m9fls98g) # modernbert_test This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2178 - Accuracy Offensive: 0.9441 - F1 Offensive: 0.9425 - Accuracy Targeted: 0.9441 - F1 Targeted: 0.9173 - Accuracy Stance: 0.9079 - F1 Stance: 0.8717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Offensive | F1 Offensive | Accuracy Targeted | F1 Targeted | Accuracy Stance | F1 Stance | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:------------:|:-----------------:|:-----------:|:---------------:|:---------:| | 0.2732 | 1.0 | 1490 | 0.2292 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2142 | 2.0 | 2980 | 0.2226 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.1991 | 3.0 | 4470 | 0.2178 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.1948 | 4.0 | 5960 | 0.2279 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.198 | 5.0 | 7450 | 0.2322 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.0.1 - Tokenizers 0.21.1
codrug/yelp_review_classifier
codrug
2025-03-31T12:07:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-31T11:36:52Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: yelp_review_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yelp_review_classifier This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0600 - Accuracy: 0.57 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 1.0626 | 0.529 | | No log | 2.0 | 250 | 1.0282 | 0.546 | | No log | 3.0 | 375 | 1.0600 | 0.57 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
pmimpiyush/piyush-face-lora1
pmimpiyush
2025-03-31T12:07:20Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-31T12:07:12Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: mehtaji license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # piyush_face_lora1 A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `mehtaji` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
jeezzzhusss/layoutlmv3-finetuned-cord_100
jeezzzhusss
2025-03-31T12:06:43Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "layoutlmv3", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-03-31T10:36:13Z
--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer model-index: - name: layoutlmv3-finetuned-cord_100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1000 ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
mjs227/grpo-sft-12-ep5-unmerged
mjs227
2025-03-31T12:06:43Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:06:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bebecu/SCHIELE_style_LoRA
bebecu
2025-03-31T12:05:04Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-03-31T12:02:12Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: photo collage in CHERKASHIN style widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - bebecu/SCHIELE_style_LoRA <Gallery /> ## Model description These are bebecu/SCHIELE_style_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use photo collage in CHERKASHIN style to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](bebecu/SCHIELE_style_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
memevis/vim000
memevis
2025-03-31T12:04:25Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T12:02:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
langdai/gemma-2-2b-it-tool-think
langdai
2025-03-31T12:03:57Z
0
1
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "base_model:google/gemma-2b-it", "base_model:finetune:google/gemma-2b-it", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T11:26:13Z
--- library_name: transformers license: mit base_model: - google/gemma-2b-it pipeline_tag: text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model is merged with peft fine tuned model and it is standalone model. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [Liching] - **Funded by:** [hobby] - **Model type:** [text-generation] - **Language(s) (NLP):** [En] - **License:** [MIT] - **Finetuned from model:** [gemma-2b-it] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> gemma-2b-it cannot be used for tool call and responds with reasoning like the recent developed Deepseek r1, these limitations are taken into consideration by fine tuning the model ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> The Model is finetuned for 1 epoch due to which Bias and error are prone ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from transformers import pipeline import torch model_id = "langdai/gemma-2-2b-it-tool-think" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda:0", ) # For GPU tokenizer = AutoTokenizer.from_pretrained(model_id) # model.to(torch.bfloat16) model.eval() generator = pipeline("text-generation", model= model, tokenizer= tokenizer) ``` ```python prompt="""<bos><start_of_turn>human You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows: <tool_call> {tool_call} </tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think> Hi, I need to convert 500 INR to Euros. Can you help me with that?<end_of_turn><eos> <start_of_turn>model <think>""" output = generator([{"role": "user", "content": prompt}], max_new_tokens=512, return_full_text=False)[0] print(output) ``` ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [T4 24GPU] - **Hours used:** [4 hours]
nairaxo/orpheus_lora_tun
nairaxo
2025-03-31T12:03:46Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit", "base_model:finetune:unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:03:36Z
--- base_model: unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** nairaxo - **License:** apache-2.0 - **Finetuned from model :** unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Jonjew/KamenRiderPAseer
Jonjew
2025-03-31T12:01:49Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T12:01:23Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: KamenRider Gavv output: url: images/F857B96S95Z1NFG9486VKGZXG0.jpeg - text: KamenRider Gavv output: url: images/QX6W5F2108MDFVPWKV5448XTW0.jpeg base_model: black-forest-labs/FLUX.1-dev instance_prompt: KamenRider Gavv license: unknown --- # KamenRider-Collections-FLUX-PAseer <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;705193&#x2F;kamenrider-collections-flux-paseer?modelVersionId&#x3D;831392 Trigger KamenRider Gavv Strength 0.9 Kamen Rider Zero-One (仮面ライダーゼロワン, Kamen Raidā Zerowan) is a Japanese tokusatsu drama in Toei Company&#39;s Kamen Rider Series. It is the first series to debut during the Reiwa period and the thirty-fourth overall. The series premiered on September 1, 2019 and joined Kishiryu Sentai RyusoulgerIcon-crosswiki in the Super Hero Time line-up after the finale of Kamen Rider Zi-O. After Ryusoulger concluded, the series was joined by Mashin Sentai KiramagerIcon-crosswiki on March 8, 2020. After the finale of Zero-One, Kiramager was joined by Kamen Rider Saber in the Super Hero Time block. Kamen Rider Takeshi Hongo&#x2F;Shin (シン・仮面ライダー, Shin Kamen Raidā), also known internationally as Shin Masked Rider, is a Japanese superhero tokusatsu film serving as a reboot of the 1971 TV series Kamen Rider as well as to commemorate the franchise&#39;s 50th Anniversary. In the film, Takeshi Hongo and his cohort Ruriko Midorikawa fight against an evil terrorist organization that is responsible for his augmentation and stop them from conquering society. Kamen Rider Gavv (仮面ライダーガヴ, Kamen Raidā Gavu) is a Japanese tokusatsu drama in Toei Company&#39;s Kamen Rider Series. It is the sixth series to debut in the Reiwa Era and the thirty-ninth overall.[1] The series premiered on September 1, 2024, joining Bakuage Sentai BoonboomgerIcon-crosswiki in the Super Hero TimeIcon-crosswiki lineup after the finale of Kamen Rider Gotchard. ## Trigger words You should use `KamenRider Gavv` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/KamenRiderPAseer/tree/main) them in the Files & versions tab.
mradermacher/miscii-1020-GGUF
mradermacher
2025-03-31T12:01:24Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:sthenno/miscii-1020", "base_model:quantized:sthenno/miscii-1020", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T11:32:57Z
--- base_model: sthenno/miscii-1020 language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/sthenno/miscii-1020 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/miscii-1020-GGUF/resolve/main/miscii-1020.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
juniorVision/qwen2.5-14b-lr1e-5_customLoss_hanja15_wohanjainput
juniorVision
2025-03-31T12:00:53Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-14B-Instruct", "base_model:finetune:Qwen/Qwen2.5-14B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-03-31T10:37:30Z
--- base_model: Qwen/Qwen2.5-14B-Instruct library_name: transformers model_name: qwen2.5-14b-lr1e-5_customLoss_hanja15_wohanjainput tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for qwen2.5-14b-lr1e-5_customLoss_hanja15_wohanjainput This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="juniorVision/qwen2.5-14b-lr1e-5_customLoss_hanja15_wohanjainput", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.15.2 - Transformers: 4.46.3 - Pytorch: 2.5.0+cu124 - Datasets: 3.5.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
RioShiina/qwen2.5-bakeneko-32b-instruct-exl2
RioShiina
2025-03-31T12:00:07Z
0
0
null
[ "ja", "base_model:rinna/qwen2.5-bakeneko-32b-instruct", "base_model:quantized:rinna/qwen2.5-bakeneko-32b-instruct", "license:apache-2.0", "region:us" ]
null
2025-03-31T11:59:54Z
--- license: apache-2.0 base_model: rinna/qwen2.5-bakeneko-32b-instruct base_model_relation: quantized language: - ja --- Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.2.8">turboderp's ExLlamaV2 v0.2.8</a> for quantization. **[2.2bpw](https://huggingface.co/rioshiina/qwen2.5-bakeneko-32b-instruct-exl2/tree/2.2bpw)** **[3.0bpw](https://huggingface.co/rioshiina/qwen2.5-bakeneko-32b-instruct-exl2/tree/3.0bpw)** **[4.0bpw](https://huggingface.co/rioshiina/qwen2.5-bakeneko-32b-instruct-exl2/tree/4.0bpw)** **[5.0bpw](https://huggingface.co/rioshiina/qwen2.5-bakeneko-32b-instruct-exl2/tree/5.0bpw)** **[6.0bpw](https://huggingface.co/rioshiina/qwen2.5-bakeneko-32b-instruct-exl2/tree/6.0bpw)** **[7.0bpw](https://huggingface.co/rioshiina/qwen2.5-bakeneko-32b-instruct-exl2/tree/7.0bpw)** **[8.0bpw](https://huggingface.co/rioshiina/qwen2.5-bakeneko-32b-instruct-exl2/tree/8.0bpw)** ## Calibration Dataset [TFMC/imatrix-dataset-for-japanese-llm](https://huggingface.co/datasets/TFMC/imatrix-dataset-for-japanese-llm) ## qwen2.5-bakeneko-32b-instruct-exl2 - Model creator: [rinna](https://huggingface.co/rinna) - Original model: [qwen2.5-bakeneko-32b-instruct](https://huggingface.co/rinna/qwen2.5-bakeneko-32b-instruct) ## License [The Apache License, Version 2.0](https://opensource.org/license/apache-2-0)
DevCG/mistral-7b-4bit-aura
DevCG
2025-03-31T11:58:28Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-03-31T11:54:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yfarm01/sn29_arch31_c0
yfarm01
2025-03-31T11:57:29Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T11:52:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
laicsiifes/swin-gportuguese-2
laicsiifes
2025-03-31T11:57:10Z
161
4
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "image-to-text", "pt", "dataset:laicsiifes/flickr30k-pt-br", "base_model:pierreguillou/gpt2-small-portuguese", "base_model:finetune:pierreguillou/gpt2-small-portuguese", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
image-to-text
2024-09-01T18:06:19Z
--- library_name: transformers datasets: - laicsiifes/flickr30k-pt-br language: - pt metrics: - bleu - rouge - meteor - bertscore base_model: - pierreguillou/gpt2-small-portuguese pipeline_tag: image-to-text model-index: - name: Swin-GPorTuguese-2 results: - task: name: Image Captioning type: image-to-text dataset: name: Flickr30K type: laicsiifes/flickr30k-pt-br split: test metrics: - name: CIDEr-D type: cider value: 64.71 - name: BLEU@4 type: bleu value: 23.15 - name: ROUGE-L type: rouge value: 39.39 - name: METEOR type: meteor value: 44.36 - name: BERTScore type: bertscore value: 71.7 license: mit --- # 🎉 Swin-GPorTuguese-2 for Brazilian Portuguese Image Captioning Swin-GPorTuguese-2 model trained for image captioning on [Flickr30K Portuguese](https://huggingface.co/datasets/laicsiifes/flickr30k-pt-br) (translated version using Google Translator API) at resolution 224x224 and max sequence length of 1024 tokens. ## 🤖 Model Description The Swin-GPorTuguese-2 is a type of Vision Encoder Decoder which leverage the checkpoints of the [Swin Transformer](https://huggingface.co/microsoft/swin-base-patch4-window7-224) as encoder and the checkpoints of the [GPorTuguese-2](https://huggingface.co/pierreguillou/gpt2-small-portuguese) as decoder. The encoder checkpoints come from Swin Trasnformer version pre-trained on ImageNet-1k at resolution 224x224. The code used for training and evaluation is available at: https://github.com/laicsiifes/ved-transformer-caption-ptbr. In this work, Swin-GPorTuguese-2 was trained together with its buddy [Swin-DistilBERTimbau](https://huggingface.co/laicsiifes/swin-distilbert-flickr30k-pt-br). Other models evaluated did not perform as well as Swin-DistilBERTimbau and Swin-GPorTuguese-2, namely: DeiT-BERTimbau, DeiT-DistilBERTimbau, DeiT-GPorTuguese-2, Swin-BERTimbau, ViT-BERTimbau, ViT-DistilBERTimbau and ViT-GPorTuguese-2. ## 🧑‍💻 How to Get Started with the Model Use the code below to get started with the model. ```python import requests from PIL import Image from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel # load a fine-tuned image captioning model and corresponding tokenizer and image processor model = VisionEncoderDecoderModel.from_pretrained("laicsiifes/swin-gportuguese-2") tokenizer = AutoTokenizer.from_pretrained("laicsiifes/swin-gportuguese-2") image_processor = AutoImageProcessor.from_pretrained("laicsiifes/swin-gportuguese-2") # preprocess an image url = "http://images.cocodataset.org/val2014/COCO_val2014_000000458153.jpg" image = Image.open(requests.get(url, stream=True).raw) pixel_values = image_processor(image, return_tensors="pt").pixel_values # generate caption generated_ids = model.generate(pixel_values) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ```python import matplotlib.pyplot as plt # plot image with caption plt.imshow(image) plt.axis("off") plt.title(generated_text) plt.show() ``` ![image/png](example.png) ## 📈 Results The evaluation metrics CIDEr-D, BLEU@4, ROUGE-L, METEOR and BERTScore (using [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased)) are abbreviated as C, B@4, RL, M and BS, respectively. |Model|Dataset|Eval. Split|C|B@4|RL|M|BS| |:---:|:------:|:--------:|:-----:|:----:|:-----:|:----:|:-------:| |Swin-DistilBERTimbau|Flickr30K Portuguese|test|66.73|24.65|39.98|44.71|72.30| |Swin-GPorTuguese-2|Flickr30K Portuguese|test|64.71|23.15|39.39|44.36|71.70| ## 📋 BibTeX entry and citation info ```bibtex @inproceedings{bromonschenkel2024comparative, title={A Comparative Evaluation of Transformer-Based Vision Encoder-Decoder Models for Brazilian Portuguese Image Captioning}, author={Bromonschenkel, Gabriel and Oliveira, Hil{\'a}rio and Paix{\~a}o, Thiago M}, booktitle={2024 37th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)}, pages={1--6}, year={2024}, organization={IEEE} } ```
mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF
mradermacher
2025-03-31T11:57:03Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Nitral-Archive/R1_Virtuoso-10B-v0.1e1", "base_model:quantized:Nitral-Archive/R1_Virtuoso-10B-v0.1e1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T11:33:34Z
--- base_model: Nitral-Archive/R1_Virtuoso-10B-v0.1e1 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Nitral-Archive/R1_Virtuoso-10B-v0.1e1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.Q2_K.gguf) | Q2_K | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.Q3_K_S.gguf) | Q3_K_S | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.Q3_K_M.gguf) | Q3_K_M | 5.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.Q3_K_L.gguf) | Q3_K_L | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.IQ4_XS.gguf) | IQ4_XS | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.Q4_K_S.gguf) | Q4_K_S | 6.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.Q4_K_M.gguf) | Q4_K_M | 6.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.Q5_K_S.gguf) | Q5_K_S | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.Q5_K_M.gguf) | Q5_K_M | 7.4 | | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.Q6_K.gguf) | Q6_K | 8.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.Q8_0.gguf) | Q8_0 | 11.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/R1_Virtuoso-10B-v0.1e1-GGUF/resolve/main/R1_Virtuoso-10B-v0.1e1.f16.gguf) | f16 | 20.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
burtenshaw/gemma-3-12b-it-codeforces-SFT-Q4_K_M-GGUF
burtenshaw
2025-03-31T11:56:51Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "sft", "llama-cpp", "gguf-my-repo", "dataset:open-r1/codeforces-cots", "base_model:burtenshaw/gemma-3-12b-it-codeforces-SFT", "base_model:quantized:burtenshaw/gemma-3-12b-it-codeforces-SFT", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T11:56:10Z
--- base_model: burtenshaw/gemma-3-12b-it-codeforces-SFT datasets: open-r1/codeforces-cots library_name: transformers model_name: gemma-3-12b-it-codeforces-SFT tags: - generated_from_trainer - trl - sft - llama-cpp - gguf-my-repo licence: license --- # burtenshaw/gemma-3-12b-it-codeforces-SFT-Q4_K_M-GGUF This model was converted to GGUF format from [`burtenshaw/gemma-3-12b-it-codeforces-SFT`](https://huggingface.co/burtenshaw/gemma-3-12b-it-codeforces-SFT) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/burtenshaw/gemma-3-12b-it-codeforces-SFT) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo burtenshaw/gemma-3-12b-it-codeforces-SFT-Q4_K_M-GGUF --hf-file gemma-3-12b-it-codeforces-sft-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo burtenshaw/gemma-3-12b-it-codeforces-SFT-Q4_K_M-GGUF --hf-file gemma-3-12b-it-codeforces-sft-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo burtenshaw/gemma-3-12b-it-codeforces-SFT-Q4_K_M-GGUF --hf-file gemma-3-12b-it-codeforces-sft-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo burtenshaw/gemma-3-12b-it-codeforces-SFT-Q4_K_M-GGUF --hf-file gemma-3-12b-it-codeforces-sft-q4_k_m.gguf -c 2048 ```
Badribn/mistral_financial_sentiment_data_expert
Badribn
2025-03-31T11:56:33Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:56:18Z
--- base_model: mistralai/Mistral-7B-v0.1 library_name: transformers model_name: mistral_financial_sentiment_data_expert tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for mistral_financial_sentiment_data_expert This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Badribn/mistral_financial_sentiment_data_expert", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.3 - Pytorch: 2.5.1 - Datasets: 3.3.2 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
RichardErkhov/Magpie-Align_-_MagpieLM-8B-Chat-v0.1-8bits
RichardErkhov
2025-03-31T11:54:41Z
0
0
null
[ "safetensors", "llama", "arxiv:2406.08464", "arxiv:2411.07133", "8-bit", "bitsandbytes", "region:us" ]
null
2025-03-31T11:47:47Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MagpieLM-8B-Chat-v0.1 - bnb 8bits - Model creator: https://huggingface.co/Magpie-Align/ - Original model: https://huggingface.co/Magpie-Align/MagpieLM-8B-Chat-v0.1/ Original model description: --- library_name: transformers license: llama3.1 base_model: Magpie-Align/MagpieLM-8B-SFT-v0.1 tags: - alignment-handbook - trl - dpo - generated_from_trainer datasets: - Magpie-Align/MagpieLM-SFT-Data-v0.1 - Magpie-Align/MagpieLM-DPO-Data-v0.1 model-index: - name: MagpieLM-8B-Chat-v0.1 results: [] --- ![Magpie](https://cdn-uploads.huggingface.co/production/uploads/653df1323479e9ebbe3eb6cc/FWWILXrAGNwWr52aghV0S.png) # 🐦 MagpieLM-8B-Chat-v0.1 [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://api.wandb.ai/links/uw-nsl/0s1eegy2) ## 🧐 About This Model *Model full name: Llama3.1-MagpieLM-8B-Chat-v0.1* This model is an aligned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B), which achieves state-of-the-art performance among open-aligned SLMs. It even outperforms larger open-weight models including Llama-3-8B-Instruct, Llama-3.1-8B-Instruct, Qwen-2-7B-Instruct, and Gemma-2-9B-it. We apply the following standard alignment pipeline with two carefully crafted synthetic datasets. We first perform SFT using [Magpie-Align/MagpieLM-SFT-Data-v0.1](https://huggingface.co/datasets/Magpie-Align/MagpieLM-SFT-Data-v0.1). * **SFT Model Checkpoint:** [Magpie-Align/MagpieLM-8B-SFT-v0.1](https://huggingface.co/Magpie-Align/MagpieLM-8B-SFT-v0.1) We then perform DPO on the [Magpie-Align/MagpieLM-DPO-Data-v0.1](https://huggingface.co/datasets/Magpie-Align/MagpieLM-DPO-Data-v0.1) dataset. ## 🔥 Benchmark Performance Greedy Decoding - **Alpaca Eval 2: 58.18 (LC), 62.38 (WR)** - **Arena Hard: 48.4** - **WildBench WB Score (v2.0625): 44.72** **Benchmark Performance Compare to Other SOTA SLMs** ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/653df1323479e9ebbe3eb6cc/q1Rasy66h6lmaUP1KQ407.jpeg) ## 👀 Other Information **License**: Please follow [Meta Llama 3.1 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE). **Conversation Template**: Please use the Llama 3 chat template for the best performance. **Limitations**: This model primarily understands and generates content in English. Its outputs may contain factual errors, logical inconsistencies, or reflect biases present in the training data. While the model aims to improve instruction-following and helpfulness, it isn't specifically designed for complex reasoning tasks, potentially leading to suboptimal performance in these areas. Additionally, the model may produce unsafe or inappropriate content, as no specific safety training were implemented during the alignment process. ## 🧐 How to use it? [![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/flydust/MagpieLM-8B) Please update transformers to the latest version by `pip install git+https://github.com/huggingface/transformers`. You can then run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function. ```python import transformers import torch model_id = "MagpieLM-8B-Chat-v0.1" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are Magpie, a friendly AI assistant."}, {"role": "user", "content": "Who are you?"}, ] outputs = pipeline( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` --- # Alignment Pipeline The detailed alignment pipeline is as follows. ## Stage 1: Supervised Fine-tuning We use [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for SFT. Please refer to the model card of [SFT checkpoint](https://huggingface.co/Magpie-Align/MagpieLM-8B-SFT-v0.1) and below for detailed configurations. [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer chat_template: llama3 load_in_8bit: false load_in_4bit: false strict: false main_process_port: 0 datasets: - path: Magpie-Align/MagpieLM-SFT-Data-v0.1 type: sharegpt conversation: llama3 dataset_prepared_path: last_run_prepared val_set_size: 0.001 output_dir: axolotl_out/MagpieLM-8B-SFT-v0.1 sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: SynDa wandb_entity: wandb_watch: wandb_name: MagpieLM-8B-SFT-v0.1 wandb_log_model: hub_model_id: Magpie-Align/MagpieLM-8B-SFT-v0.1 gradient_accumulation_steps: 32 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 5 eval_table_size: saves_per_epoch: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ``` </details><br> ## Stage 2: Direct Preference Optimization ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.686 | 0.0653 | 100 | 0.6856 | -0.0491 | -0.0616 | 0.6480 | 0.0125 | -471.3315 | -478.8181 | -0.7034 | -0.7427 | | 0.6218 | 0.1306 | 200 | 0.6277 | -0.6128 | -0.7720 | 0.6960 | 0.1591 | -542.3653 | -535.1920 | -0.7771 | -0.8125 | | 0.5705 | 0.1959 | 300 | 0.5545 | -2.4738 | -3.0052 | 0.7270 | 0.5314 | -765.6894 | -721.2881 | -0.7894 | -0.8230 | | 0.4606 | 0.2612 | 400 | 0.5081 | -2.6780 | -3.3782 | 0.7560 | 0.7002 | -802.9893 | -741.7116 | -0.6813 | -0.7247 | | 0.4314 | 0.3266 | 500 | 0.4787 | -3.6697 | -4.6026 | 0.7630 | 0.9329 | -925.4283 | -840.8740 | -0.6189 | -0.6691 | | 0.449 | 0.3919 | 600 | 0.4533 | -3.7414 | -4.8019 | 0.7820 | 1.0604 | -945.3563 | -848.0514 | -0.6157 | -0.6681 | | 0.4538 | 0.4572 | 700 | 0.4350 | -4.3858 | -5.6549 | 0.7890 | 1.2690 | -1030.6561 | -912.4920 | -0.5789 | -0.6331 | | 0.35 | 0.5225 | 800 | 0.4186 | -4.7129 | -6.1662 | 0.8010 | 1.4533 | -1081.7843 | -945.1964 | -0.5778 | -0.6347 | | 0.4153 | 0.5878 | 900 | 0.4108 | -4.9836 | -6.5320 | 0.7970 | 1.5484 | -1118.3677 | -972.2631 | -0.5895 | -0.6474 | | 0.3935 | 0.6531 | 1000 | 0.3999 | -4.4303 | -5.9370 | 0.8110 | 1.5067 | -1058.8646 | -916.9379 | -0.6016 | -0.6598 | | 0.3205 | 0.7184 | 1100 | 0.3950 | -5.1884 | -6.8827 | 0.8010 | 1.6943 | -1153.4371 | -992.7452 | -0.5846 | -0.6452 | | 0.3612 | 0.7837 | 1200 | 0.3901 | -5.0426 | -6.7179 | 0.8040 | 1.6753 | -1136.9619 | -978.1701 | -0.6046 | -0.6637 | | 0.3058 | 0.8490 | 1300 | 0.3877 | -5.1224 | -6.8428 | 0.8040 | 1.7204 | -1149.4465 | -986.1475 | -0.6087 | -0.6690 | | 0.3467 | 0.9144 | 1400 | 0.3871 | -5.2335 | -6.9809 | 0.8090 | 1.7474 | -1163.2629 | -997.2610 | -0.6071 | -0.6672 | | 0.3197 | 0.9797 | 1500 | 0.3867 | -5.1502 | -6.8793 | 0.8080 | 1.7291 | -1153.0979 | -988.9237 | -0.6120 | -0.6722 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1 <details><summary>See alignment handbook configs</summary> ```yaml # Customized Configs model_name_or_path: Magpie-Align/MagpieLM-8B-SFT-v0.1 hub_model_id: Magpie-Align/MagpieLM-8B-Chat-v0.1 output_dir: alignment_handbook_out/MagpieLM-8B-Chat-v0.1 run_name: MagpieLM-8B-Chat-v0.1 dataset_mixer: Magpie-Align/MagpieLM-DPO-Data-v0.1: 1.0 dataset_splits: - train - test preprocessing_num_workers: 24 # DPOTrainer arguments bf16: true beta: 0.01 learning_rate: 2.0e-7 gradient_accumulation_steps: 16 per_device_train_batch_size: 2 per_device_eval_batch_size: 4 num_train_epochs: 1 max_length: 2048 max_prompt_length: 1800 warmup_ratio: 0.1 logging_steps: 1 lr_scheduler_type: cosine optim: adamw_torch torch_dtype: null # use_flash_attention_2: true do_eval: true evaluation_strategy: steps eval_steps: 100 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: False log_level: info push_to_hub: true save_total_limit: 0 seed: 42 report_to: - wandb ``` </details><be> ## 📚 Citation If you find the model, data, or code useful, please cite: ``` @article{xu2024magpie, title={Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing}, author={Zhangchen Xu and Fengqing Jiang and Luyao Niu and Yuntian Deng and Radha Poovendran and Yejin Choi and Bill Yuchen Lin}, year={2024}, eprint={2406.08464}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{xu2024stronger, title={Stronger Models are NOT Stronger Teachers for Instruction Tuning}, author={Xu, Zhangchen and Jiang, Fengqing and Niu, Luyao and Lin, Bill Yuchen and Poovendran, Radha}, journal={arXiv preprint arXiv:2411.07133}, year={2024} } ``` **Contact** Questions? Contact: - [Zhangchen Xu](https://zhangchenxu.com/) [zxu9 at uw dot edu], and - [Bill Yuchen Lin](https://yuchenlin.xyz/) [yuchenlin1995 at gmail dot com]
mlfoundations-dev/qwen2-5_code_ablate_duplications_6
mlfoundations-dev
2025-03-31T11:53:48Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-30T19:17:56Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: qwen2-5_code_ablate_duplications_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen2-5_code_ablate_duplications_6 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/code_ablate_duplications_6 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 3 - total_train_batch_size: 96 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.0.2 - Tokenizers 0.20.3
CCappy/Qwen2.5-14B-Drone
CCappy
2025-03-31T11:52:27Z
18
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-30T17:00:10Z
--- language: - en library_name: transformers pipeline_tag: text-generation license: other --- # Qwen2.5-Drone This is a fine-tuned version of Qwen2.5-14B-Instruct specialized for drone control and robotic vision tasks. ## Model Details - **Base Model**: Qwen/Qwen2.5-14B-Instruct - **Training Technique**: QLoRA fine-tuning - **Training Dataset**: Custom drone command dataset with ReAct reasoning - **Use Cases**: Drone control, object detection processing, robotic vision tasks ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained("CCappy/Qwen2.5-Drone", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("CCappy/Qwen2.5-Drone", trust_remote_code=True) # Function definitions example function_defs = '''[ {"type": "function", "function": {"name": "get_objects_in_view"...}} ... ]''' # Example query query = "Find a red car in the scene and hover 2 meters above it." # Format input input_text = f"<|im_start|>user\nYou have access to the following functions:\n{function_defs}\n\n{query}<|im_end|>\n<|im_start|>assistant\n" # Generate response inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate( inputs["input_ids"], max_new_tokens=1024, temperature=0.7, ) response = tokenizer.decode(outputs[0], skip_special_tokens=False) print(response) ``` ## Training Details The model was fine-tuned using QLoRA with the following parameters: - LoRA rank: 16 - LoRA alpha: 32 - Dropout: 0.05 - Target modules: q_proj, k_proj, v_proj, o_proj (attention modules) - Training epochs: 3 - Batch size: 8 - Per device train batch size: 8 - Per device eval batch size: 8 - Gradient accumulation steps: 2 - Learning rate: 2e-4 - Mixed precision: bf16 - Optimizer: adamw_torch_fused - Max gradient norm: 1.5 - Dataloader workers: 4 - Group by length: True ## Limitations This model is specialized for drone control scenarios and may not perform as well on general tasks as the base Qwen2.5 model. The model inherits limitations from the base Qwen2.5-14B-Instruct model, including potential biases and hallucinations, but has been optimized for interpreting and responding to commands in drone control contexts. This model requires specific functions that are still being tested and set up
Eddie-3dd13/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF
Eddie-3dd13
2025-03-31T11:49:55Z
0
0
null
[ "gguf", "code", "llama-cpp", "gguf-my-repo", "en", "dataset:Team-ACE/ToolACE", "base_model:Team-ACE/ToolACE-2-Llama-3.1-8B", "base_model:quantized:Team-ACE/ToolACE-2-Llama-3.1-8B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T11:49:17Z
--- base_model: Team-ACE/ToolACE-2-Llama-3.1-8B datasets: - Team-ACE/ToolACE language: - en license: apache-2.0 metrics: - accuracy tags: - code - llama-cpp - gguf-my-repo --- # Eddie-3dd13/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF This model was converted to GGUF format from [`Team-ACE/ToolACE-2-Llama-3.1-8B`](https://huggingface.co/Team-ACE/ToolACE-2-Llama-3.1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Team-ACE/ToolACE-2-Llama-3.1-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Eddie-3dd13/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF --hf-file toolace-2-llama-3.1-8b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Eddie-3dd13/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF --hf-file toolace-2-llama-3.1-8b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Eddie-3dd13/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF --hf-file toolace-2-llama-3.1-8b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Eddie-3dd13/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF --hf-file toolace-2-llama-3.1-8b-q8_0.gguf -c 2048 ```
dashaberyozova1/cherakshin_style_LoRA
dashaberyozova1
2025-03-31T11:48:49Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-03-31T11:44:55Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: photo collage in CHERKASHIN style widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - dashaberyozova1/cherakshin_style_LoRA <Gallery /> ## Model description These are dashaberyozova1/cherakshin_style_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use photo collage in CHERKASHIN style to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](dashaberyozova1/cherakshin_style_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
langdai/gemma-2-2B-it_think_funcion_call
langdai
2025-03-31T11:48:23Z
0
1
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-2-2b-it", "base_model:finetune:google/gemma-2-2b-it", "endpoints_compatible", "region:us" ]
null
2025-03-29T11:37:06Z
--- base_model: google/gemma-2-2b-it library_name: transformers model_name: gemma-2-2B-it_think_funcion_call tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-2-2B-it_think_funcion_call This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it). It has been trained using [TRL](https://github.com/huggingface/trl). The model is finetuned to include think while generating the response, distilled trained using Deepseek r1 model. The model can also be used for tool call. This is a peft model, under Quick Start section the procedure to load correctly is defined. ## Quick start ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from transformers import pipeline import torch bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, ) peft_model_id = "langdai/gemma-2-2B-it_think_funcion_call" # device = "auto" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map="cuda:0", ) tokenizer = AutoTokenizer.from_pretrained(peft_model_id) model.resize_token_embeddings(len(tokenizer)) model = PeftModel.from_pretrained(model, peft_model_id) model.to(torch.bfloat16) model.eval() generator = pipeline("text-generation", model= model, tokenizer= tokenizer) question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Output output for the question in quickstart. ``` This is a fascinating thought experiment! If I had a time machine that could only travel to the past or the future once, I would choose to go to the future. Here's why: 1. **The Unknown:** The future is a realm of possibilities. It's filled with potential advancements, discoveries, and events that we can't even imagine yet. By going to the future, I could witness these advancements firsthand and gain a deeper understanding of the world. 2. **The Impact:** The past is often romanticized, but it's also a time of great loss and hardship. By going to the ``` output for conversation template ``` prompt = """<bos><start_of_turn>human You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows: <tool_call> {tool_call} </tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think> Hi, I need to convert 500 USD to Euros. Can you help me with that?<end_of_turn><eos> <start_of_turn>model <think>""" ``` response ``` <bos><start_of_turn>human You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows: <tool_call> {tool_call} </tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think> Hi, I need to convert 500 USD to Euros. Can you help me with that?<end_of_turn><eos> <start_of_turn>model <think>Okay, so the user is asking to convert 500 USD to Euros. I need to figure out how to respond using the available functions. Let me look at the tools provided. There's a function called 'convert_currency' which seems perfect for this task. It requires an amount, the source currency, and the target currency. The user provided all these details: 500 USD to EUR. I should structure the function call with the correct parameters. The amount is 500, from_currency is USD, and to_currency is EUR. I need to make sure the JSON format is correct, including the function name and the arguments object. I think that's all I need to do. The function should handle the conversion accurately. </think><tool_call> {'name': 'convert_currency', 'arguments': {'amount': 500, 'from_currency': 'USD', 'to_currency': 'EUR'}} </tool_call><end_of_turn><eos> ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.16.0 - Transformers: 4.50.3 - Pytorch: 2.2.1+cu121 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
stacklok/Qwen2.5-Coder-7B-Instruct-stitch-express-chat
stacklok
2025-03-31T11:46:28Z
5
0
transformers
[ "transformers", "safetensors", "gguf", "qwen2", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-27T14:02:10Z
--- base_model: unsloth/qwen2.5-coder-7b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** stacklok - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-coder-7b-instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
guangce/polydiff
guangce
2025-03-31T11:41:34Z
0
0
null
[ "region:us" ]
null
2025-03-31T09:54:38Z
![20250331-193958.jpeg](https://cdn-uploads.huggingface.co/production/uploads/674fcc541dbfdd4dee12d8e1/2BCd7wXn3K-pZiEzI9DWQ.jpeg) ![20250331-194005.jpeg](https://cdn-uploads.huggingface.co/production/uploads/674fcc541dbfdd4dee12d8e1/8tJW34J2q0QVLk9blCv2s.jpeg)
tinycompany/MI-QTK-81K
tinycompany
2025-03-31T11:40:44Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:40:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
csukuangfj/k2fsa-zipformer-bilingual-zh-en-t
csukuangfj
2025-03-31T11:39:09Z
0
4
null
[ "onnx", "license:apache-2.0", "region:us" ]
null
2023-11-17T10:18:37Z
--- license: apache-2.0 --- ## Chinese-English ASR model using k2-zipformer-streaming ### AIShell-1 and Wenetspeech testset results with modified-beam-search streaming decode using epoch-12.pt | decode_chunk_len | AIShell-1 | TEST_NET | TEST_MEETING | |------------------|-----------|----------|--------------| | 64 | 4.79 | 11.6 | 12.64 || ### Training and decoding commands ``` nohup ./pruned_transducer_stateless7_streaming/train.py --world-size 8 --num-epochs 30 --start-epoch 1 \ --num-encoder-layers 2,2,2,2,2 \ --feedforward-dims 768,768,768,768,768 \ --nhead 4,4,4,4,4 \ --encoder-dims 256,256,256,256,256 \ --attention-dims 192,192,192,192,192 \ --encoder-unmasked-dims 192,192,192,192,192 \ --exp-dir pruned_transducer_stateless7_streaming/exp --max-duration 360 \ > pruned_transducer_stateless7_streaming/exp/nohup.zipformer & nohup ./pruned_transducer_stateless7_streaming/decode.py --epoch 12 --avg 1 \ --num-encoder-layers 2,2,2,2,2 \ --feedforward-dims 768,768,768,768,768 \ --nhead 4,4,4,4,4 \ --encoder-dims 256,256,256,256,256 \ --attention-dims 192,192,192,192,192 \ --encoder-unmasked-dims 192,192,192,192,192 \ --exp-dir pruned_transducer_stateless7_streaming/exp \ --max-duration 600 --decode-chunk-len 32 --decoding-method modified_beam_search --beam-size 4 \ > nohup.zipformer.deocode & ``` ### Model unit is char+bpe as `data/lang_char_bpe/tokens.txt` ### Tips some k2-fsa version and parameter is ``` {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.2', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a74f59dba1863cd9386ba4d8815850421260eee7', 'k2-git-date': 'Fri Dec 2 08:32:22 2022', 'lhotse-version': '1.5.0.dev+git.8ce38fc.dirty', 'torch-version': '1.11.0+cu113', 'torch-cuda-available': True, 'torch-cuda-version': '11.3', 'python-version': '3.7', 'icefall-git-branch': 'master', 'icefall-git-sha1': '600f387-dirty', 'icefall-git-date': 'Thu Feb 9 15:16:04 2023', 'icefall-path': '/opt/conda/lib/python3.7/site-packages', 'k2-path': '/opt/conda/lib/python3.7/site-packages/k2/__init__.py', 'lhotse-path': '/opt/conda/lib/python3.7/site-packages/lhotse/__init__.py', 'hostname': 'worker-0', 'IP address': '127.0.0.1'}, 'world_size': 8, 'master_port': 12354, 'tensorboard': True, 'num_epochs': 30, 'start_epoch': 11, 'start_batch': 0, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming/exp_t'), 'lang_dir': 'data/lang_char_bpe', 'base_lr': 0.01, 'lr_batches': 5000, 'lr_epochs': 3.5, 'context_size': 2, 'prune_range': 5, 'lm_scale': 0.25, 'am_scale': 0.0, 'simple_loss_scale': 0.5, 'seed': 42, 'print_diagnostics': False, 'inf_check': False, 'save_every_n': 2000, 'keep_last_k': 30, 'average_period': 200, 'use_fp16': False, 'num_encoder_layers': '2,2,2,2,2', 'feedforward_dims': '768,768,768,768,768', 'nhead': '4,4,4,4,4', 'encoder_dims': '256,256,256,256,256', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '192,192,192,192,192', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 360, 'bucketing_sampler': True, 'num_buckets': 300, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 8, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'training_subset': 'mix', 'blank_id': 0, 'vocab_size': 6254} ```
hyunwoo612/bad_good_comment_v6_GGUF
hyunwoo612
2025-03-31T11:39:05Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:Bllossom/llama-3.2-Korean-Bllossom-3B", "base_model:quantized:Bllossom/llama-3.2-Korean-Bllossom-3B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T11:38:49Z
--- base_model: Bllossom/llama-3.2-Korean-Bllossom-3B tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** hyunwoo612 - **License:** apache-2.0 - **Finetuned from model :** Bllossom/llama-3.2-Korean-Bllossom-3B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sens2010/llaw_llama3_8B_4bit_GUFF
sens2010
2025-03-31T11:38:54Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:37:35Z
--- base_model: unsloth/llama-3-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sens2010 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Jonjew/MonsterHunterValstraxArmor
Jonjew
2025-03-31T11:38:01Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T11:37:56Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- cinematic photo HDR photo of mhrvvalstraxarmor, a man wear a red and sliver costume, holding a great tachi,Cinematic photography of a realistic one man solo cosplaying,Her eyes, a vivid shade of emerald yellow and The setting is indoors at a bustling convention hall, with other attendees in various costumes in the background. The hall is decorated with banners and booths showcasing different fandoms, creating a vibrant and energetic atmosphere typical of major cosplay events like Comic-Con or Anime Expo. sparkle with a blend of enthusiasm and playfulness, capturing the essence of the beloved character, male In this dynamic portrait ,standing in to full body featuring stunning sparkle with a blend of enthusiasm and playfulness, capturing the essence of the beloved charactercurtain, <lora:cosplay_flux_V1:0.6> ggasia11k cosplay concept <lora:mhrvvalstraxarmor:1> . High dynamic range, vivid, rich details, clear shadows and highlights, realistic, intense, enhanced contrast, highly detailed, 35mm photograph, film, bokeh, professional, 4k, highly detailed parameters: negative_prompt: >- flat, low contrast, oversaturated, underexposed, overexposed, blurred, noisy, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, Watermark, Text, censored, deformed, bad anatomy, disfigured, poorly drawn face, mutated, extra limb, ugly, poorly drawn hands, missing limb, floating limbs, disconnected limbs, disconnected head, malformed hands, long neck, mutated hands and fingers, bad hands, missing fingers, cropped, worst quality, low quality, mutation, poorly drawn, huge calf, bad hands, fused hand, missing hand, disappearing arms, disappearing thigh, disappearing calf, disappearing legs, missing fingers, fused fingers, abnormal eye proportion, Abnormal hands, abnormal legs, abnormal feet, abnormal fingers output: url: images/image (31).png base_model: black-forest-labs/FLUX.1-dev instance_prompt: a man wear a red and sliver costume and red shoes, MHRVValstraxARMOR license: unknown --- # Monster Hunter Valstrax Armor <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;1021518&#x2F;monster-hunter-valstrax-armor-cosplay?modelVersionId&#x3D;1145468 Trigger a man wear a red and sliver costume and red shoes, MHRVValstraxARMOR Strength 1 TAGS WORS: MHRVValstraxARMOR, a man wear a red and sliver costume and red shoes optional: back of the armor if you like this model please give a like, thank you ## Trigger words You should use `a man wear a red and sliver costume and red shoes` to trigger the image generation. You should use `MHRVValstraxARMOR` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/MonsterHunterValstraxArmor/tree/main) them in the Files & versions tab.
csukuangfj/k2fsa-zipformer-chinese-english-mixed
csukuangfj
2025-03-31T11:37:59Z
0
1
null
[ "onnx", "license:apache-2.0", "region:us" ]
null
2023-11-17T10:20:12Z
--- license: apache-2.0 --- This repo is forked from https://huggingface.co/pfluo/k2fsa-zipformer-chinese-english-mixed ## Chinese-English ASR model using k2-zipformer-streaming ### AIShell-1 and Wenetspeech testset results with modified-beam-search streaming decode using epoch-14.pt | decode_method | AIShell-1 | TEST_NET | TEST_MEETING | |------------------|-----------|----------|--------------| | modified_beam_search | 3.04 | 8.97 | 8.83 || | + SF (lm scale=0.1) | 2.77 | - | - || ### Training and decoding commands ``` nohup ./pruned_transducer_stateless7_streaming/train.py --world-size 8 --num-epochs 30 --start-epoch 1 --feedforward-dims "1024,1024,1536,1536,1024" --exp-dir pruned_transducer_stateless7_streaming/exp --max-duration 360 > pruned_transducer_stateless7_streaming/exp/nohup.zipformer & nohup ./pruned_transducer_stateless7_streaming/decode.py --epoch 14 --avg 1 --exp-dir ./pruned_transducer_stateless7_streaming/exp --max-duration 600 --decode-chunk-len 64 --decoding-method modified_beam_search --beam-size 4 > nohup.zipformer.deocode & ``` ### Model unit is char+bpe as `data/lang_char_bpe/tokens.txt` ### Tips some k2-fsa version and parameter is ``` {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'lo g_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.2', 'k2-build -type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a74f59dba1863cd9386ba4d8815850421260eee7', 'k2-git-date': 'Fri Dec 2 08:32:22 2022', 'lhotse-version': '1.5.0.dev+gi t.8ce38fc.dirty', 'torch-version': '1.11.0+cu113', 'torch-cuda-available': True, 'torch-cuda-version': '11.3', 'python-version': '3.7', 'icefall-git-branch': 'master', 'icef all-git-sha1': '11b08db-dirty', 'icefall-git-date': 'Thu Jan 12 10:19:21 2023', 'icefall-path': '/opt/conda/lib/python3.7/site-packages', 'k2-path': '/opt/conda/lib/python3. 7/site-packages/k2/__init__.py', 'lhotse-path': '/opt/conda/lib/python3.7/site-packages/lhotse/__init__.py', 'hostname': 'xxx', 'IP add ress': 'x.x.x.x'}, 'world_size': 8, 'master_port': 12354, 'tensorboard': True, 'num_epochs': 30, 'start_epoch': 1, 'start_batch': 0, 'exp_dir': PosixPath('pruned_trans ducer_stateless7_streaming/exp'), 'lang_dir': 'data/lang_char_bpe', 'base_lr': 0.01, 'lr_batches': 5000, 'lr_epochs': 3.5, 'context_size': 2, 'prune_range': 5, 'lm_scale': 0 .25, 'am_scale': 0.0, 'simple_loss_scale': 0.5, 'seed': 42, 'print_diagnostics': False, 'inf_check': False, 'save_every_n': 2000, 'keep_last_k': 30, 'average_period': 200, ' use_fp16': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,1536,1536,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_ dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder _dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 360, 'bucketing _sampler': True, 'num_buckets': 300, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_wor kers': 8, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'training_subset': '12k_hour', 'blank_id': 0, 'vocab_size': 6254} ```
nice2mitya/a_1345817538
nice2mitya
2025-03-31T11:35:28Z
0
0
null
[ "license:other", "region:us" ]
null
2025-03-31T11:08:41Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
yandex/YandexGPT-5-Lite-8B-instruct-GGUF
yandex
2025-03-31T11:34:29Z
6
3
null
[ "gguf", "ru", "en", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-28T16:24:33Z
--- license: other license_name: yandexgpt-5-lite-8b license_link: LICENSE language: - ru - en --- # YandexGPT-5-Lite-Instruct-GGUF Квантизованная версия YandexGPT 5 Lite 8B Instruct. Информация о модели доступна в основном репозитории: [YandexGPT-5-Lite-8B-instruct](https://huggingface.co/yandex/YandexGPT-5-Lite-8B-instruct). **UPD**: Мы обновили `.gguf` файл в изначальном репозитории на наиболее близкий по качеству к оригинальной модели. ## llama.cpp Для начала нужно собрать [llama.cpp](https://github.com/ggml-org/llama.cpp) (или обновить, если уже есть): ```bash git clone https://github.com/ggml-org/llama.cpp.git cd llama.cpp cmake -B build cmake --build build --config Release cd .. ``` Можно ускорить сборку если позволяют ресурсы: `cmake --build build --config Release -j 10` Запуск модели в интерактивном режиме: ```bash llama.cpp/build/bin/llama-cli -m YandexGPT-5-Lite-8B-instruct-Q4_K_M.gguf ``` Мы рекомендуем использовать интерактивный режим только для ознакомления с моделью. Запуск сервера: ```bash llama.cpp/build/bin/llama-server -m YandexGPT-5-Lite-8B-instruct-Q4_K_M.gguf -c 32768 ``` Если позволяют ресурсы, можно ускорить инференс, добавив `-t 10`. ## Ollama Запуск модели в интерактивном режиме: ```bash ollama run yandex/YandexGPT-5-Lite-8B-instruct-GGUF ``` Мы рекомендуем использовать интерактивный режим только для ознакомления с моделью. ## Особенности шаблона Мы используем нестандартный шаблон диалога — модель обучена генерировать только одну реплику после последовательности `Ассистент:[SEP]`, завершая её токеном `</s>`. При этом диалог в промпте может быть любой длины. Это приводит к тому, что в интерактивном режиме модель может выдавать результаты, отличающиеся от вызова модели в режиме генерации на фиксированном диалоге. Поэтому мы рекомендуем использовать интерактивный режим только для ознакомления с моделью.
Jonjew/wargreymonDigimon
Jonjew
2025-03-31T11:33:31Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T11:33:26Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- cinematic photo HDR photo of wargreymonex,a man is wearing a costume in a gold, orange ,silver, red and armor with horns and horns on his head,dragon orange feet, ,orange hand, a man holding a sword in his both hands, a man is walking through the viewing ,a robot with a Shiny golden and red body and purple wings,his detailed eyes, a vivid shade of emerald aqua green and shiny blue, capturing the essence of the beloved character, He is wearing a costume,(The setting is indoors at a bustling convention hall with excellent Sufficient light bright light:1.1), with other attendees in various costumes in the background. The hall is decorated with banners and booths showcasing different fandoms, creating a vibrant and energetic atmosphere typical of major cosplay events like Comic-Con or Anime Expo. sparkle with a blend of enthusiasm and playfulness, capturing the essence of the beloved character, male In this dynamic portrait ,standing in to full body featuring stunning sparkle with a blend of enthusiasm and playfulness, capturing the essence of the beloved charactercurtain. High dynamic range, vivid, rich details, clear shadows and highlights, realistic, intense, enhanced contrast, highly detailed, 35mm photograph, film, bokeh, professional, 4k, highly detailed,<lora:wargreymonex:0.8> . High dynamic range, vivid, rich details, clear shadows and highlights, realistic, intense, enhanced contrast, highly detailed, 35mm photograph, film, bokeh, professional, 4k, highly detailed, Photorealistic, Hyperrealistic, Hyperdetailed, analog style, soft lighting, subsurface scattering, realistic, heavy shadow, masterpiece, best quality, ultra realistic, 8k, golden ratio, Intricate, High Detail, film photography, soft focus parameters: negative_prompt: >- Action Figure, flat, low contrast, oversaturated, underexposed, overexposed, blurred, noisy, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, Watermark, Text, censored, deformed, bad anatomy, disfigured, poorly drawn face, mutated, extra limb, ugly, poorly drawn hands, missing limb, floating limbs, disconnected limbs, disconnected head, malformed hands, long neck, mutated hands and fingers, bad hands, missing fingers, cropped, worst quality, low quality, mutation, poorly drawn, huge calf, bad hands, fused hand, missing hand, disappearing arms, disappearing thigh, disappearing calf, disappearing legs, missing fingers, fused fingers, abnormal eye proportion, Abnormal hands, abnormal legs, abnormal feet, abnormal fingers output: url: images/image (100).png base_model: black-forest-labs/FLUX.1-dev instance_prompt: wargreymonex license: unknown --- # wargreymon Digimon <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;1031215&#x2F;wargreymon-digimon?modelVersionId&#x3D;1156643 Trigger wargreymonex Strength 1 ## Trigger words You should use `wargreymonex` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/wargreymonDigimon/tree/main) them in the Files & versions tab.
lucasschott/HalfCheetah-v5-SAC
lucasschott
2025-03-31T11:32:26Z
11
0
stable-baselines3
[ "stable-baselines3", "safetensors", "reinforcement-learning", "halfcheetah", "mujoco", "sb3", "sac", "control", "license:mpl-2.0", "model-index", "region:us" ]
reinforcement-learning
2025-03-26T15:41:54Z
--- license: mpl-2.0 tags: - reinforcement-learning - stable-baselines3 - halfcheetah - mujoco - sb3 - sac - control model-index: - name: HalfCheetah-v5-SAC results: - task: type: reinforcement-learning name: Reinforcement Learning dataset: name: HalfCheetah-v5 type: gymnasium metrics: - type: mean_reward value: 14170.55 +/- 137.28 --- # SAC Agent for HalfCheetah-v5 This is a Soft Actor Critic (SAC) agent trained on the `HalfCheetah-v5` environment using Stable Baselines 3. ## Hyperparameters See `config.json` for details. ## Requirements - **Python:** 3.10 ### Dependencies ```txt gymnasium==1.0.0 gymnasium[mujoco] torch==2.4.0 stable_baselines3==2.4.1 ``` ## How to Load ```python from huggingface_hub import hf_hub_download from stable_baselines3 import SAC model_path = hf_hub_download(repo_id="lucasschott/HalfCheetah-v5-SAC", filename="model.zip") agent = SAC.load(model_path) ```
mradermacher/INTELLECT-1-i1-GGUF
mradermacher
2025-03-31T11:32:24Z
21
1
transformers
[ "transformers", "gguf", "en", "dataset:PrimeIntellect/fineweb-edu", "dataset:PrimeIntellect/fineweb", "dataset:PrimeIntellect/StackV1-popular", "dataset:mlfoundations/dclm-baseline-1.0-parquet", "dataset:open-web-math/open-web-math", "base_model:PrimeIntellect/INTELLECT-1", "base_model:quantized:PrimeIntellect/INTELLECT-1", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-03-29T18:48:03Z
--- base_model: PrimeIntellect/INTELLECT-1 datasets: - PrimeIntellect/fineweb-edu - PrimeIntellect/fineweb - PrimeIntellect/StackV1-popular - mlfoundations/dclm-baseline-1.0-parquet - open-web-math/open-web-math language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/PrimeIntellect/INTELLECT-1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/INTELLECT-1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ1_S.gguf) | i1-IQ1_S | 2.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ1_M.gguf) | i1-IQ1_M | 2.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ2_S.gguf) | i1-IQ2_S | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ2_M.gguf) | i1-IQ2_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.8 | very low quality | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q2_K.gguf) | i1-Q2_K | 4.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ3_S.gguf) | i1-IQ3_S | 4.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ3_M.gguf) | i1-IQ3_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 5.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q4_0.gguf) | i1-Q4_0 | 6.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 6.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 6.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 6.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q4_1.gguf) | i1-Q4_1 | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 7.4 | | | [GGUF](https://huggingface.co/mradermacher/INTELLECT-1-i1-GGUF/resolve/main/INTELLECT-1.i1-Q6_K.gguf) | i1-Q6_K | 8.5 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
stacklok/Qwen2.5-Coder-7B-Instruct-stitch-tools-chat
stacklok
2025-03-31T11:32:24Z
99
0
transformers
[ "transformers", "safetensors", "gguf", "qwen2", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-26T11:39:21Z
--- base_model: unsloth/qwen2.5-coder-7b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** stacklok - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-coder-7b-instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mranderson991/hp_mother
mranderson991
2025-03-31T11:31:06Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-31T11:12:32Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: hp_mother --- # Hp_Mother <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `hp_mother` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('mranderson991/hp_mother', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
RJTPP/stage2-deepseek1.5b-1k-gguf
RJTPP
2025-03-31T11:28:26Z
0
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T11:28:01Z
--- base_model: unsloth/deepseek-r1-distill-qwen-1.5b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** RJTPP - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-qwen-1.5b-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lesso11/7a1057aa-6045-4be6-a64e-fcfa05a7cb77
lesso11
2025-03-31T11:27:11Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:tlphams/gollm-12.8b-instruct-v2.3", "base_model:adapter:tlphams/gollm-12.8b-instruct-v2.3", "license:cc-by-nc-4.0", "region:us" ]
null
2025-03-31T06:40:31Z
--- library_name: peft license: cc-by-nc-4.0 base_model: tlphams/gollm-12.8b-instruct-v2.3 tags: - axolotl - generated_from_trainer model-index: - name: 7a1057aa-6045-4be6-a64e-fcfa05a7cb77 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tlphams/gollm-12.8b-instruct-v2.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1cb5206d289a131c_train_data.json ds_type: json format: custom path: /workspace/input_data/1cb5206d289a131c_train_data.json type: field_input: commit_message field_instruction: func_before field_output: func_after format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso11/7a1057aa-6045-4be6-a64e-fcfa05a7cb77 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000211 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/1cb5206d289a131c_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 110 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 86ec4df3-ce88-4caa-9e18-54ffeeaf277c wandb_project: 11a wandb_run: your_name wandb_runid: 86ec4df3-ce88-4caa-9e18-54ffeeaf277c warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7a1057aa-6045-4be6-a64e-fcfa05a7cb77 This model is a fine-tuned version of [tlphams/gollm-12.8b-instruct-v2.3](https://huggingface.co/tlphams/gollm-12.8b-instruct-v2.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000211 - train_batch_size: 4 - eval_batch_size: 4 - seed: 110 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 0.5899 | | 0.0736 | 0.0780 | 500 | 0.0104 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso03/3fdf570b-599c-4762-af23-06b1695a5d4c
lesso03
2025-03-31T11:25:54Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:tlphams/gollm-12.8b-instruct-v2.3", "base_model:adapter:tlphams/gollm-12.8b-instruct-v2.3", "license:cc-by-nc-4.0", "region:us" ]
null
2025-03-31T06:40:40Z
--- library_name: peft license: cc-by-nc-4.0 base_model: tlphams/gollm-12.8b-instruct-v2.3 tags: - axolotl - generated_from_trainer model-index: - name: 3fdf570b-599c-4762-af23-06b1695a5d4c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tlphams/gollm-12.8b-instruct-v2.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1cb5206d289a131c_train_data.json ds_type: json format: custom path: /workspace/input_data/1cb5206d289a131c_train_data.json type: field_input: commit_message field_instruction: func_before field_output: func_after format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso03/3fdf570b-599c-4762-af23-06b1695a5d4c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000203 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/1cb5206d289a131c_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 30 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 86ec4df3-ce88-4caa-9e18-54ffeeaf277c wandb_project: 03a wandb_run: your_name wandb_runid: 86ec4df3-ce88-4caa-9e18-54ffeeaf277c warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3fdf570b-599c-4762-af23-06b1695a5d4c This model is a fine-tuned version of [tlphams/gollm-12.8b-instruct-v2.3](https://huggingface.co/tlphams/gollm-12.8b-instruct-v2.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000203 - train_batch_size: 4 - eval_batch_size: 4 - seed: 30 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 0.5900 | | 0.09 | 0.0780 | 500 | 0.0108 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
TOTORONG/gemma-3_embedding
TOTORONG
2025-03-31T11:25:30Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:unsloth/gemma-3-27b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-27b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:22:05Z
--- base_model: unsloth/gemma-3-27b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** TOTORONG - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-27b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
massimilianowosz/gemma-3-1b-it-ita-fp16
massimilianowosz
2025-03-31T11:25:28Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T11:24:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JuniperChinenye/Boost2
JuniperChinenye
2025-03-31T11:25:19Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T11:23:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
juice0630/9_thanos_1e-4_3000_unet
juice0630
2025-03-31T11:24:38Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:adapter:stable-diffusion-v1-5/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-03-31T10:54:19Z
--- base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true instance_prompt: a photo of <9> thanos tags: - text-to-image - diffusers - lora - diffusers-training - stable-diffusion - stable-diffusion-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA DreamBooth - juice0630/9_thanos_1e-4_3000_unet These are LoRA adaption weights for stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were trained on a photo of <9> thanos using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
BigSmiley7/ppo-ML-Agents-Pyramids
BigSmiley7
2025-03-31T11:24:26Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2025-03-31T11:24:23Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: BigSmiley7/ppo-ML-Agents-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Jonjew/SaintSeiyaSoulofGoldLoki
Jonjew
2025-03-31T11:24:10Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T11:23:57Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- cinematic photo (Saintseiyal0kireal:1), Cinematic photography of a realistic man solo cosplaying,his eyes, a vivid shade of emerald red and The setting is indoors at a bustling convention hall, with other attendees in various costumes in the background. The hall is decorated with banners and booths showcasing different fandoms, creating a vibrant and energetic atmosphere typical of major cosplay events like Comic-Con or Anime Expo. a male is wearing a full black and gold armor costume with golden and black hightlight wings ,having a purple bilateral hair. wearing black gloves with palm fist and rest pose on his arms , he is wearing gold helmet highlighting the subtle makeup and realisic black and golden armor that enhances her great thin and skinyy body shape, including a soft blush and glossy lips that mirror the character's aesthetic.In this dynamic portrait, sitting on the ground in front of a crown people expo background , capturing the essence of the beloved character, male In this dynamic portrait , adorned with delicate hair accessories on one sides. His eyes, a vivid shade of emerald red, sparkle with a blend of enthusiasm and playfulness, capturing the essence of the beloved charactercurtain, <lora:cosplay_flux_V1:0.7>, ggasia11k cosplay concept ,<lora:saint-seiya-loki:0.8>, 35mm photograph, film, bokeh, professional, 4k, highly detailed, RAW candid cinema, 16mm, color graded portra 400 film, remarkable color, ultra realistic, textured skin, remarkable detailed pupils, realistic dull skin noise, visible skin detail, skin fuzz, dry skin, shot with cinematic camera parameters: negative_prompt: >- drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, Watermark, Text, censored, deformed, bad anatomy, disfigured, poorly drawn face, mutated, extra limb, ugly, poorly drawn hands, missing limb, floating limbs, disconnected limbs, disconnected head, malformed hands, long neck, mutated hands and fingers, bad hands, missing fingers, cropped, worst quality, low quality, mutation, poorly drawn, huge calf, bad hands, fused hand, missing hand, disappearing arms, disappearing thigh, disappearing calf, disappearing legs, missing fingers, fused fingers, abnormal eye proportion, Abnormal hands, abnormal legs, abnormal feet, abnormal fingers output: url: images/image - 2024-10-19T181016.134.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Saintseiyal0kireal license: unknown --- # Saint Seiya Soul of Gold Loki <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;286559&#x2F;saint-seiya-soul-of-gold-loki?modelVersionId&#x3D;972376 Trigger Saintseiyal0kireal Strength 0.8 TAGS WORS: SAINTSAIYALOKI, 1boy, hair over one eye, gold armor, purple hair, gloves, red eyes, helmet, wings, armor, dark skin if you like this model please give a like, thank you ## Trigger words You should use `Saintseiyal0kireal` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/SaintSeiyaSoulofGoldLoki/tree/main) them in the Files & versions tab.
BigSmiley7/ppo-SnowballTarget
BigSmiley7
2025-03-31T11:24:10Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2025-03-31T11:24:07Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: BigSmiley7/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
yandex/YandexGPT-5-Lite-8B-instruct
yandex
2025-03-31T11:23:59Z
0
16
null
[ "safetensors", "llama", "ru", "en", "base_model:yandex/YandexGPT-5-Lite-8B-pretrain", "base_model:finetune:yandex/YandexGPT-5-Lite-8B-pretrain", "license:other", "region:us" ]
null
2025-03-28T08:12:30Z
--- license: other license_name: yandexgpt-5-lite-8b license_link: LICENSE language: - ru - en base_model: - yandex/YandexGPT-5-Lite-8B-pretrain --- # YandexGPT-5-Lite-Instruct Instruct-версия большой языковой модели YandexGPT 5 Lite на 8B параметров с длиной контекста 32k токенов. Также в отдельном [репозитории](https://huggingface.co/yandex/YandexGPT-5-Lite-8B-instruct-GGUF) опубликована квантизованная версия модели в формате GGUF. Обучена на базе [YandexGPT 5 Lite Pretrain](https://huggingface.co/yandex/YandexGPT-5-Lite-8B-pretrain), без использования весов каких-либо сторонних моделей. Алайнмент Lite-версии совпадает с алайнментом YandexGPT 5 Pro и состоит из этапов SFT и RLHF (более подробно о них — в [статье](https://habr.com/ru/companies/yandex/articles/885218/) на Хабре). Задавайте вопросы в discussions. ## Бенчмарки По результатам международных бенчмарков и их адаптаций для русского языка, YandexGPT 5 Lite вплотную приблизилась к аналогам (Llama-3.1-8B-instruct и Qwen-2.5-7B-instruct) и превосходит их в ряде сценариев, в том числе — в знании русской культуры и фактов. <img src="https://habrastorage.org/r/w1560/getpro/habr/upload_files/6b5/eb4/9ea/6b5eb49ea757bc124c938717b21f1cf7.png" alt="Таблица бенчмарков" width="100%"/> MMLU — 5-shot, все остальные бенчмарки — 0-shot. ## Как использовать Модель можно запустить через HF Transformers: ```python from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_NAME = "yandex/YandexGPT-5-Lite-8B-instruct" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map="cuda", torch_dtype="auto", ) messages = [{"role": "user", "content": "Для чего нужна токенизация?"}] input_ids = tokenizer.apply_chat_template( messages, tokenize=True, return_tensors="pt" ).to("cuda") outputs = model.generate(input_ids, max_new_tokens=1024) print(tokenizer.decode(outputs[0][input_ids.size(1) :], skip_special_tokens=True)) ``` Или через vLLM: ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer MODEL_NAME = "yandex/YandexGPT-5-Lite-8B-instruct" sampling_params = SamplingParams( temperature=0.3, top_p=0.9, max_tokens=1024, ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) llm = LLM( MODEL_NAME, tensor_parallel_size=1, ) messages = [{"role": "user", "content": "В чем смысл жизни?"}] input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True )[1:] # remove bos text = tokenizer.decode(input_ids) outputs = llm.generate(text, use_tqdm=False, sampling_params=sampling_params) print(tokenizer.decode(outputs[0].outputs[0].token_ids, skip_special_tokens=True)) ``` Для запуска в llama.cpp и ollama можно воспользоваться нашей квантизованной моделью, которая выложена в репозитории [YandexGPT-5-Lite-8B-instruct-GGUF](https://huggingface.co/yandex/YandexGPT-5-Lite-8B-instruct-GGUF). ## Особенности токенизации Для полного соответствия токенизации мы рекомендуем пользоваться оригинальным [sentencepiece](https://github.com/google/sentencepiece) — файл токенизатора лежит в папке `original_tokenizer`. В нашей инфраструктуре каждую реплику диалога мы токенизируем отдельно. Из-за этого, в частности, появляется пробел в начале каждой реплики. Также `\n` токены мы заменяем на `[NL]`, это можно сделать с помощью `text.replace("\n", "[NL]")` перед токенизацией. ## Особенности шаблона Мы используем нестандартный шаблон диалога — модель обучена генерировать только одну реплику после последовательности `Ассистент:[SEP]`, завершая её токеном `</s>`. При этом диалог в промпте может быть любой длины. Это приводит к тому, что в интерактивном режиме модель может выдавать результаты, отличающиеся от вызова модели в режиме генерации на фиксированном диалоге. Поэтому мы рекомендуем использовать интерактивный режим только для ознакомления с моделью.
abrotech/pack_model
abrotech
2025-03-31T11:23:29Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:23:11Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** abrotech - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yandex/YandexGPT-5-Lite-8B-pretrain
yandex
2025-03-31T11:23:25Z
10,636
179
null
[ "safetensors", "llama", "ru", "en", "license:other", "region:us" ]
null
2025-02-21T16:46:19Z
--- license: other license_name: yandexgpt-5-lite-8b license_link: LICENSE language: - ru - en --- # YandexGPT-5-Lite-Pretrain Pretrain-версия большой языковой модели YandexGPT 5 Lite на 8B параметров с длиной контекста 32k токенов. Обучение модели проходило в два этапа. На первом этапе модель обучалась преимущественно на русскоязычных и англоязычных текстах общим объёмом 15T токенов с длиной контекста до 8k токенов. Состав датасета: 60% — веб-страницы, 15% — код, 10% — математика, остальное — другие специфичные данные, в том числе сгенерированная с помощью наших моделей синтетика и датасеты наших сервисов, например Яндекс Переводчика и база фактов Поиска. На втором этапе, который мы назвали Powerup, модель обучалась на высококачественных данных объёмом 320B токенов. Состав Powerup-датасета: 25% — веб-страницы, 19% — математика, 18% — код, 18% — образовательные данные, остальное — синтетика, датасеты сервисов и прочие качественные тексты. На этом этапе мы увеличили длину контекста до 32k токенов. Кроме того, наш токенизатор хорошо оптимизирован для русского языка. Например, 32k токенов нашей модели в среднем соответствует 48k токенам Qwen-2.5. Более подробно — в нашей [статье на Хабре](https://habr.com/ru/companies/yandex/articles/885218/). Задавайте вопросы в discussions. ## Бенчмарки В своей категории модель достигает паритета с мировыми SOTA по ряду ключевых бенчмарков для pretrain-моделей, а по многим другим — превосходит их: <img src="https://habrastorage.org/r/w1560/getpro/habr/upload_files/fab/0de/405/fab0de40517e1fd4efc1302eaaf325d8.png" alt="Таблица бенчмарков" width="100%"/> \* по данным репорта разработчиков модели. <br> BBH — 3-shot, HUMAN_EVAL и MPBB — 0-shot, все остальные бенчмарки — 5-shot. <br> Все замеры мы производили в HF transformers. ## Как использовать Модель можно запустить через HF Transformers: ```python from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_NAME = "yandex/YandexGPT-5-Lite-8B-pretrain" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, legacy=False) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map="cuda", torch_dtype="auto", ) input_text = "Кто сказал тебе, что нет на свете настоящей," input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=18) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Или через vLLM: ```python from vllm import LLM, SamplingParams MODEL_NAME = "yandex/YandexGPT-5-Lite-8B-pretrain" sampling_params = SamplingParams( temperature=0.3, max_tokens=18, ) llm = LLM( MODEL_NAME, tensor_parallel_size=1, ) input_texts = ["Кто сказал тебе, что нет на свете настоящей,"] outputs = llm.generate(input_texts, use_tqdm=False, sampling_params=sampling_params) for i in range(len(input_texts)): print(input_texts[i] + outputs[i].outputs[0].text) ``` Для полного соответствия токенизации мы рекомендуем пользоваться оригинальным [sentencepiece](https://github.com/google/sentencepiece): ```python import sentencepiece as spm import torch # git clone https://huggingface.co/yandex/YandexGPT-5-Lite-8B-pretrain tokenizer = spm.SentencePieceProcessor( model_file="<path_to_local_repo>/tokenizer.model" ) input_ids = tokenizer.encode(input_text, add_bos=True) input_ids = torch.Tensor([input_ids]).to(model.device).to(torch.long) outputs = model.generate( input_ids=input_ids, attention_mask=torch.ones_like(input_ids), max_new_tokens=18 ) print(tokenizer.decode(outputs[0].tolist())) ``` ## Как дообучить под свои задачи У нашей модели llama-like архитектура, это означает, что она совместима с большинством существующих фреймворков по дообучению LLM. Приведем короткий пример, как можно обучить нашу модель в torchtune: Скачиваем репозиторий: ```bash tune download yandex/YandexGPT-5-Lite-8B-pretrain \ --output-dir YandexGPT-5-Lite-8B-pretrain ``` Смотрим список конфигов и копируем подходящий под задачу: ```bash tune ls tune cp llama3_1/8B_lora training_config.yaml ``` Изменяем конфиг, адаптируем его под нашу модель и задачу. Например, [такой](https://huggingface.co/yandex/YandexGPT-5-Lite-8B-pretrain/discussions/1#67bc4e6472499ce2ba3659a7) вариант подойдет для lora обучения на открытом инстракт датасете `alpaca-cleaned`. Запускаем обучение: ```bash tune run lora_finetune_single_device --config training_config.yaml ``` Подробности можно найти в официальной [документации](https://pytorch.org/torchtune/stable/overview.html) torchtune.
THP2903/InternVL2_5-1B_multi
THP2903
2025-03-31T11:23:24Z
0
0
transformers
[ "transformers", "safetensors", "internvl_chat", "feature-extraction", "generated_from_trainer", "trl", "sft", "custom_code", "base_model:OpenGVLab/InternVL2_5-1B", "base_model:finetune:OpenGVLab/InternVL2_5-1B", "region:us" ]
feature-extraction
2025-03-31T08:38:40Z
--- base_model: OpenGVLab/InternVL2_5-1B library_name: transformers model_name: InternVL2_5-1B_multi tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for InternVL2_5-1B_multi This model is a fine-tuned version of [OpenGVLab/InternVL2_5-1B](https://huggingface.co/OpenGVLab/InternVL2_5-1B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="THP2903/InternVL2_5-1B_multi", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/phucth290303-pythera/InternVL2_5-1B_multi/runs/mfv4yqv5) This model was trained with SFT. ### Framework versions - TRL: 0.16.0 - Transformers: 4.50.1 - Pytorch: 2.6.0 - Datasets: 3.4.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```