modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-13 06:28:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
518 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-13 06:25:04
card
stringlengths
11
1.01M
silviasapora/gemma-7b-sft-silvia_simpo-basic-5e-7-005-v142
silviasapora
2025-03-31T16:15:51Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma", "text-generation", "generated_from_trainer", "alignment-handbook", "trl", "orpo", "conversational", "dataset:argilla/dpo-mix-7k", "arxiv:2403.07691", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T15:48:59Z
--- datasets: - argilla/dpo-mix-7k library_name: transformers model_name: /home/silvias/docker/alignment-handbook/data/gemma-7b-sft-basic-5e-5-00-v130-full tags: - generated_from_trainer - alignment-handbook - trl - orpo licence: license --- # Model Card for /home/silvias/docker/alignment-handbook/data/gemma-7b-sft-basic-5e-5-00-v130-full This model is a fine-tuned version of [None](https://huggingface.co/None) on the [['argilla/dpo-mix-7k']](https://huggingface.co/datasets/['argilla/dpo-mix-7k']) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="silviasapora/gemma-7b-sft-silvia_simpo-basic-5e-7-005-v142", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/silvias/huggingface/runs/0uzh8s74) This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691). ### Framework versions - TRL: 0.15.2 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.21.1 ## Citations Cite ORPO as: ```bibtex @article{hong2024orpo, title = {{ORPO: Monolithic Preference Optimization without Reference Model}}, author = {Jiwoo Hong and Noah Lee and James Thorne}, year = 2024, eprint = {arXiv:2403.07691} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Kirill-K/microsoft_phi_4_ft
Kirill-K
2025-03-31T16:15:36Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-03-31T16:06:59Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RaZiX/xlm-roberta-csfd-50
RaZiX
2025-03-31T16:14:40Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-31T15:43:52Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-csfd-50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-csfd-50 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4416 - Accuracy: 0.8869 - F1: 0.8885 - Precision: 0.8945 - Recall: 0.8869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 2.3023 | 1.0 | 1459 | 1.1755 | 0.7168 | 0.7033 | 0.7581 | 0.7168 | | 0.9086 | 2.0 | 2918 | 0.6894 | 0.8285 | 0.8309 | 0.8465 | 0.8285 | | 0.4916 | 3.0 | 4377 | 0.5483 | 0.8499 | 0.8533 | 0.8691 | 0.8499 | | 0.2577 | 4.0 | 5836 | 0.4593 | 0.8795 | 0.8809 | 0.8884 | 0.8795 | | 0.1551 | 5.0 | 7295 | 0.4416 | 0.8869 | 0.8885 | 0.8945 | 0.8869 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.1
bebecu/SCHIELE_LoRA
bebecu
2025-03-31T16:14:08Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-03-31T14:29:41Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: painting in SCHIELE style widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - bebecu/SCHIELE_LoRA <Gallery /> ## Model description These are bebecu/SCHIELE_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use painting in SCHIELE style to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](bebecu/SCHIELE_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
MinaMila/llama_instbase_unlearned_GermanCredit_9ep_22
MinaMila
2025-03-31T16:13:52Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:MinaMila/llama3_unlearning_general_methode", "base_model:finetune:MinaMila/llama3_unlearning_general_methode", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T16:10:48Z
--- base_model: MinaMila/llama3_unlearning_general_methode tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MinaMila - **License:** apache-2.0 - **Finetuned from model :** MinaMila/llama3_unlearning_general_methode This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
cassioblaz/gemma3
cassioblaz
2025-03-31T16:12:15Z
10
0
transformers
[ "transformers", "safetensors", "gguf", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "base_model:unsloth/gemma-3-27b-it-unsloth-bnb-4bit", "base_model:quantized:unsloth/gemma-3-27b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-27T23:13:55Z
--- base_model: unsloth/gemma-3-27b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** cassioblaz - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-27b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
IHEII/QwQ-32B-unsloth-bnb-4bit-CoT-Finetuned-Spill-Knowledge-SFT-v0.1.0
IHEII
2025-03-31T16:11:02Z
23
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/QwQ-32B-unsloth-bnb-4bit", "base_model:finetune:unsloth/QwQ-32B-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-27T07:07:12Z
--- base_model: unsloth/QwQ-32B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** IHEII - **License:** apache-2.0 - **Finetuned from model :** unsloth/QwQ-32B-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
alorenc/llava_project_projection
alorenc
2025-03-31T16:10:22Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T15:38:48Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mergekit-community/mergekit-dare_ties-kijcnnr
mergekit-community
2025-03-31T16:10:00Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "base_model:PocketDoc/Dans-SakuraKaze-V1.0.0-12b", "base_model:merge:PocketDoc/Dans-SakuraKaze-V1.0.0-12b", "base_model:ReadyArt/Forgotten-Safeword-12B-3.6", "base_model:merge:ReadyArt/Forgotten-Safeword-12B-3.6", "base_model:TheDrummer/Rocinante-12B-v1.1", "base_model:merge:TheDrummer/Rocinante-12B-v1.1", "base_model:mistralai/Mistral-Nemo-Base-2407", "base_model:merge:mistralai/Mistral-Nemo-Base-2407", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T16:04:14Z
--- base_model: - TheDrummer/Rocinante-12B-v1.1 - mistralai/Mistral-Nemo-Base-2407 - PocketDoc/Dans-SakuraKaze-V1.0.0-12b - ReadyArt/Forgotten-Safeword-12B-3.6 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [mistralai/Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) as a base. ### Models Merged The following models were included in the merge: * [TheDrummer/Rocinante-12B-v1.1](https://huggingface.co/TheDrummer/Rocinante-12B-v1.1) * [PocketDoc/Dans-SakuraKaze-V1.0.0-12b](https://huggingface.co/PocketDoc/Dans-SakuraKaze-V1.0.0-12b) * [ReadyArt/Forgotten-Safeword-12B-3.6](https://huggingface.co/ReadyArt/Forgotten-Safeword-12B-3.6) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mistralai/Mistral-Nemo-Base-2407 # No parameters necessary for base model - model: TheDrummer/Rocinante-12B-v1.1 parameters: density: 0.55 weight: 0.4 - model: ReadyArt/Forgotten-Safeword-12B-3.6 parameters: density: 0.53 weight: 0.3 - model: PocketDoc/Dans-SakuraKaze-V1.0.0-12b parameters: density: 0.50 weight: 0.2 merge_method: dare_ties base_model: mistralai/Mistral-Nemo-Base-2407 parameters: normalize: true int8_mask: true dtype: bfloat16 ```
RyanYr/reflect_mini8Bit_Om2G8kOm2AgG8k40kIpsdpT02
RyanYr
2025-03-31T16:09:20Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:mistralai/Ministral-8B-Instruct-2410", "base_model:finetune:mistralai/Ministral-8B-Instruct-2410", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T12:54:03Z
--- base_model: mistralai/Ministral-8B-Instruct-2410 library_name: transformers model_name: reflect_mini8Bit_Om2G8kOm2AgG8k40kIpsdpT02 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8Bit_Om2G8kOm2AgG8k40kIpsdpT02 This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8Bit_Om2G8kOm2AgG8k40kIpsdpT02", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/uun0ytpj) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Llama-3.2-3B-reasonV1-GGUF
mradermacher
2025-03-31T16:07:35Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:chrisrutherford/Llama-3.2-3B-reasonV1", "base_model:quantized:chrisrutherford/Llama-3.2-3B-reasonV1", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T15:56:47Z
--- base_model: chrisrutherford/Llama-3.2-3B-reasonV1 language: - en library_name: transformers license: llama3.2 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/chrisrutherford/Llama-3.2-3B-reasonV1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-reasonV1-GGUF/resolve/main/Llama-3.2-3B-reasonV1.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
bowilleatyou/8d8e4e38-eed3-4877-908a-430e0420f3a2
bowilleatyou
2025-03-31T16:06:18Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T12:48:53Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MinaMila/llama_instbase_unlearned_GermanCredit_7ep_22
MinaMila
2025-03-31T16:05:49Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:MinaMila/llama3_unlearning_general_methode", "base_model:finetune:MinaMila/llama3_unlearning_general_methode", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T16:02:47Z
--- base_model: MinaMila/llama3_unlearning_general_methode tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MinaMila - **License:** apache-2.0 - **Finetuned from model :** MinaMila/llama3_unlearning_general_methode This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/tokyotech-llm_-_Llama-3-Swallow-8B-Instruct-v0.1-8bits
RichardErkhov
2025-03-31T16:05:27Z
0
0
null
[ "safetensors", "llama", "8-bit", "bitsandbytes", "region:us" ]
null
2025-03-31T15:58:56Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3-Swallow-8B-Instruct-v0.1 - bnb 8bits - Model creator: https://huggingface.co/tokyotech-llm/ - Original model: https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1/ Original model description: --- language: - en - ja library_name: transformers pipeline_tag: text-generation license: llama3 model_type: llama --- # Llama3 Swallow - Built with Meta Llama 3 Our Swallow model has undergone continual pre-training from the [Llama 3 family](https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6), primarily with the addition of Japanese language data. The Instruct versions use supervised fine-tuning (SFT) and Chat Vector. Links to other models can be found in the index. # Model Release Updates We are excited to share the release schedule for our latest models: - **July 1, 2024**: Released the [Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1), [Llama-3-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1), [Llama-3-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-v0.1), and [Llama-3-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-Instruct-v0.1). ## Swallow Model Index |Model|Llama-3-Swallow|Llama3 Swallow Instruct| |---|---|---| |8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1) | |70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-Instruct-v0.1) | ![logo](./logo.png) This repository provides large language models developed by [Swallow-LLM](https://swallow-llm.github.io/). Read our [blog post](https://zenn.dev/tokyotech_lm/articles/f65989d76baf2c). ## Model Details * **Model type**: Please refer to [Llama 3 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture. * **Language(s)**: Japanese English * **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) * **Tokenizer**: Please refer to [Llama 3 blog](https://ai.meta.com/blog/meta-llama-3/) for details on the tokenizer. * **Contact**: swallow[at]nlp.c.titech.ac.jp ## Model Performance ### Japanese tasks |Model|Size|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg| |---|---|---|---|---|---|---|---|---|---|---|---|---| | | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| | | | |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| | |calm2-7b-chat|7B|0.2413|0.5128|0.4956|0.7729|0.0551|0.0480|0.2208|0.1384|0.2482|0.0000|0.2733| |Swallow-7b-instruct-v0.1|7B|0.6059|0.4760|0.5284|0.8396|0.1546|0.1360|0.2285|0.1783|0.3510|0.0256|0.3524| |Swallow-MS-7b-instruct-v0.1|7B|0.7435|0.5066|0.4268|0.8594|0.1582|0.1760|0.2260|0.1880|0.4177|0.2244|0.3927| |RakutenAI-7B-chat|7B|0.9035|0.2600|0.4619|0.8647|0.1339|0.2120|0.2667|0.1966|0.4504|0.2299|0.3980| |Qwen2-7B-Instruct|7B|0.8856|0.3902|0.3859|0.8967|0.1277|0.5720|0.2041|0.1909|0.5713|0.5683|0.4793| |Meta-Llama-3-8B-Instruct|8B|0.8785|0.3812|0.3936|0.8955|0.1273|0.4160|0.2143|0.2035|0.4719|0.2872|0.4269| |Llama-3-ELYZA-JP-8B|8B|0.9017|0.5124|0.5016|0.9113|0.1677|0.4600|0.2509|0.1846|0.4829|0.3811|0.4754| |Llama-3-Swallow-8B-Instruct-v0.1|8B|0.9178|0.4963|0.5168|0.9088|0.1296|0.4880|0.2522|0.2254|0.4835|0.3927|0.4811| ### English tasks |Model|Size|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg| |---|---|---|---|---|---|---|---|---|---|---|---| | | |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot| | | | |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1| | |calm2-7b-chat|7B|0.2860|0.3528|0.5042|0.2524|0.8413|0.3860|0.0546|0.2990|0.0000|0.3307| |Swallow-7b-instruct-v0.1|7B|0.3280|0.4810|0.5501|0.2720|0.8774|0.4066|0.1251|0.3646|0.0866|0.3879| |Swallow-MS-7b-instruct-v0.1|7B|0.3600|0.4999|0.5858|0.3030|0.8834|0.5273|0.2108|0.4386|0.2512|0.4511| |RakutenAI-7B-chat|7B|0.4160|0.5971|0.6465|0.3091|0.8886|0.5757|0.3139|0.4958|0.2671|0.5011| |Qwen2-7B-Instruct|7B|0.4000|0.5468|0.6146|0.3518|0.8852|0.7073|0.6300|0.3101|0.6354|0.5646| |Meta-Llama-3-8B-Instruct|8B|0.3880|0.6687|0.5834|0.3743|0.8903|0.6567|0.7453|0.6478|0.5415|0.6107| |Llama-3-ELYZA-JP-8B|8B|0.3200|0.5502|0.5224|0.3631|0.8809|0.5875|0.5701|0.3213|0.4604|0.5084| |Llama-3-Swallow-8B-Instruct-v0.1|8B|0.3720|0.6557|0.5861|0.3648|0.9002|0.6315|0.5959|0.6391|0.4238|0.5743| ## MT-Bench JA |Model|Size|coding|extraction|humanities|math|reasoning|roleplay|stem|writing|JMTAvg| |---|---|---|---|---|---|---|---|---|---|---| |calm2-7b-chat|7B|0.1198|0.3793|0.4231|0.1011|0.1799|0.4760|0.3568|0.4583|0.3118| |Swallow-7b-instruct-v0.1|7B|0.1947|0.3156|0.4991|0.1900|0.2141|0.5330|0.4535|0.4624|0.3578| |Swallow-MS-7b-instruct-v0.1|7B|0.2235|0.3743|0.4611|0.1060|0.3404|0.4287|0.3969|0.3877|0.3398| |RakutenAI-7B-chat|7B|0.2475|0.3522|0.4692|0.2140|0.3926|0.4427|0.3977|0.4434|0.3699| |Qwen2-7B-Instruct|7B|0.4635|0.6909|0.6857|0.5970|0.5042|0.6667|0.5353|0.6808|0.6030| |Meta-Llama-3-8B-Instruct|8B|0.3744|0.6876|0.6225|0.2070|0.5032|0.5248|0.5326|0.4884|0.4926| |Llama-3-ELYZA-JP-8B|8B|0.2908|0.6421|0.6406|0.3088|0.5500|0.6740|0.5251|0.6744|0.5382| |Llama-3-Swallow-8B-Instruct-v0.1|8B|0.3547|0.6508|0.5371|0.2718|0.4007|0.5493|0.4752|0.5730|0.4766| ## Evaluation Benchmarks ### Japanese evaluation benchmarks We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022]) - Open-ended question answering (JEMHopQA [Ishii et al., 2024]) - Open-ended question answering (NIILC [関根, 2003]) - Machine reading comprehension (JSQuAD [Kurihara et al., 2022]) - Automatic summarization (XL-Sum [Hasan et al., 2021]) - Machine translation (WMT2020 ja-en [Barrault et al., 2020]) - Machine translation (WMT2020 en-ja [Barrault et al., 2020]) - Mathematical reasoning (MGSM [Shi et al., 2023]) - Academic exams (JMMLU [尹ら, 2024]) - Code generation (JHumanEval [佐藤ら, 2024]) ### English evaluation benchmarks We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018]) - Open-ended question answering (TriviaQA [Joshi et al., 2017]) - Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018]) - Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021]) - Natural language inference (HellaSwag [Zellers et al., 2019]) - Mathematical reasoning (GSM8K [Cobbe et al., 2021]) - Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023]) - Academic exams (MMLU [Hendrycks et al., 2021]) - Code generation (HumanEval [Chen et al., 2021]) ### MT-Bench JA We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the instruction-following capabilities of models. We utilized the following settings: - Implemantation: FastChat [Zheng+, 2023] (commit #e86e70d0) - Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3) - Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1) - Prompt for Judge: [Nejumi LLM-Lederboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1) - Judge: `gpt-4-1106-preview` - Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs. ## Usage ```sh pip install vllm ``` ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_name = "tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM( model=model_name, tensor_parallel_size=1, ) sampling_params = SamplingParams( temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>" ) message = [ {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"}, { "role": "user", "content": "東京の夜空に打ち上がっている花火の下、向かい合っている燕とラマの温かい物語を書いてください。", }, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) output = llm.generate(prompt, sampling_params) print(output[0].outputs[0].text) ``` ## Training Datasets ### Instruction Tuning The following datasets were used for the instruction tuning. - [OpenAssistant Conversations Dataset EN top-1 thread](https://huggingface.co/datasets/OpenAssistant/oasst2) - [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja) was used, where human utterances are included but the responses are not used. Instead, the responses were generated using the [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model. ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Acknowledgements We thank Meta Research for releasing Llama 3 under an open license for others to build on. Our project is supported by the [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) of the National Institute of Advanced Industrial Science and Technology. ## License [META LLAMA 3 COMMUNITY LICENSE](https://llama.meta.com/llama3/license/) ## Authors Here are the team members: - From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) - [Sakae Mizuki](https://s-mizuki-nlp.github.io/) - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html) - [Koki Maeda](https://sites.google.com/view/silviase) - [Kakeru Hattori](https://aya-se.vercel.app/) - [Masanari Ohi](https://sites.google.com/view/masanariohi) - [Taihei Shiotani](https://github.com/inatoihs) - [Koshiro Saito](https://sites.google.com/view/koshiro-saito) - From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: - [Rio Yokota](https://twitter.com/rioyokota) - [Kazuki Fujii](https://twitter.com/okoge_kaz) - [Taishi Nakamura](https://twitter.com/Setuna7777_2) - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto) - [Ishida Shigeki](https://www.wantedly.com/id/reborn27) - From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members: - [Hiroya Takamura](https://sites.google.com/view/hjtakamura) ## How to cite If you find our work helpful, please feel free to cite us. ``` @inproceedings{Fujii:COLM2024, title={Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities}, author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae Mizuki and Rio Yokota and Naoaki Okazaki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @inproceedings{Okazaki:COLM2024, title={Building a Large Japanese Web Corpus for Large Language Models}, author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Rio Yokota and Sakae Mizuki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } ``` ### Citations ```tex @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ```
X-ART/LeX-FLUX
X-ART
2025-03-31T16:03:59Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "image-generation", "flux", "en", "arxiv:2503.21749", "license:other", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
2025-03-10T05:52:56Z
--- language: - en license: other license_name: flux-1-dev-non-commercial-license license_link: LICENSE.md extra_gated_prompt: By clicking "Agree", you agree to the [FluxDev Non-Commercial License Agreement](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) and acknowledge the [Acceptable Use Policy](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/POLICY.md). tags: - text-to-image - image-generation - flux --- **LeX-Art: Rethinking Text Generation via Scalable High-Quality Data Synthesis** This repository contains the model presented in the paper [LeX-Art: Rethinking Text Generation via Scalable High-Quality Data Synthesis](https://huggingface.co/papers/2503.21749). The abstract of the paper is the following: We introduce LeX-Art, a comprehensive suite for high-quality text-image synthesis that systematically bridges the gap between prompt expressiveness and text rendering fidelity. Our approach follows a data-centric paradigm, constructing a high-quality data synthesis pipeline based on Deepseek-R1 to curate LeX-10K, a dataset of 10K high-resolution, aesthetically refined 1024$\times$1024 images. Beyond dataset construction, we develop LeX-Enhancer, a robust prompt enrichment model, and train two text-to-image models, LeX-FLUX and LeX-Lumina, achieving state-of-the-art text rendering performance. To systematically evaluate visual text generation, we introduce LeX-Bench, a benchmark that assesses fidelity, aesthetics, and alignment, complemented by Pairwise Normalized Edit Distance (PNED), a novel metric for robust text accuracy evaluation. Experiments demonstrate significant improvements, with LeX-Lumina achieving a 22.16\% PNED gain, and LeX-FLUX outperforming baselines in color (+10.32\%), positional (+5.60\%), and font accuracy (+5.63\%). The codes, models, datasets, and demo are publicly available. ![demo](teaser.jpeg) **Usage of LeX-FLUX:** ```python import torch from diffusers import FluxPipeline pipe = FluxPipeline.from_pretrained("X-ART/LeX-FLUX", torch_dtype=torch.bfloat16) pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power prompt = "The image features a bold, dramatic design centered around the text elements \"THE,\" \"RA,\" and \"SA4GONEARAz,\" arranged to form the title of *The Boulet Brothers Dragula Season Three*. The background is a textured, dark slate-gray surface with faint grunge patterns, adding a gritty, industrial vibe. The word \"THE\" is positioned at the top in large, jagged, blood-red letters with a glossy finish and slight drop shadows, evoking a horror-inspired aesthetic. Below it, \"RA\" appears in the middle-left section, rendered in metallic silver with a fragmented, cracked texture, while \"SA4GONEARAz\" curves dynamically to the right, its letters styled in neon-green and black gradients with angular, cyberpunk-inspired edges. The number \"4\" in \"SA4GONEARAz\" replaces an \"A,\" blending seamlessly into the stylized typography. Thin, glowing purple outlines highlight the text, contrasting against the dark backdrop. Subtle rays of violet and crimson light streak diagonally across the composition, casting faint glows around the letters. The overall layout balances asymmetry and cohesion, with sharp angles and a mix of organic and mechanical design elements, creating a visually intense yet polished aesthetic that merges gothic horror with futuristic edge." image = pipe( prompt, height=1024, width=1024, guidance_scale=3.5, output_type="pil", num_inference_steps=50, max_sequence_length=512, generator=torch.Generator("cpu").manual_seed(0) ).images[0] image.save("lex_flux_demo.png") ``` See also: * [Project page](https://zhaoshitian.github.io/lexart/) * [Code](https://github.com/zhaoshitian/LeX-Art)
TareksLab/Doppleganger-V2-LLaMa-70B
TareksLab
2025-03-31T16:03:52Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2406.11617", "base_model:SentientAGI/Dobby-Unhinged-Llama-3.3-70B", "base_model:merge:SentientAGI/Dobby-Unhinged-Llama-3.3-70B", "base_model:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:flammenai/Llama3.1-Flammades-70B", "base_model:merge:flammenai/Llama3.1-Flammades-70B", "base_model:flammenai/Mahou-1.5-llama3.1-70B", "base_model:merge:flammenai/Mahou-1.5-llama3.1-70B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T14:49:51Z
--- base_model: - SentientAGI/Dobby-Unhinged-Llama-3.3-70B - SicariusSicariiStuff/Negative_LLAMA_70B - flammenai/Llama3.1-Flammades-70B - flammenai/Mahou-1.5-llama3.1-70B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DELLA](https://arxiv.org/abs/2406.11617) merge method using [SicariusSicariiStuff/Negative_LLAMA_70B](https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B) as a base. ### Models Merged The following models were included in the merge: * [SentientAGI/Dobby-Unhinged-Llama-3.3-70B](https://huggingface.co/SentientAGI/Dobby-Unhinged-Llama-3.3-70B) * [flammenai/Llama3.1-Flammades-70B](https://huggingface.co/flammenai/Llama3.1-Flammades-70B) * [flammenai/Mahou-1.5-llama3.1-70B](https://huggingface.co/flammenai/Mahou-1.5-llama3.1-70B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: flammenai/Llama3.1-Flammades-70B parameters: weight: 0.25 density: 0.5 epsilon: 0.05 lambda: 1.0 - model: flammenai/Mahou-1.5-llama3.1-70B parameters: weight: 0.25 density: 0.5 epsilon: 0.05 lambda: 1.0 - model: SentientAGI/Dobby-Unhinged-Llama-3.3-70B parameters: weight: 0.25 density: 0.5 epsilon: 0.05 lambda: 1.0 - model: SicariusSicariiStuff/Negative_LLAMA_70B parameters: weight: 0.25 density: 0.5 epsilon: 0.05 lambda: 1.0 merge_method: della base_model: SicariusSicariiStuff/Negative_LLAMA_70B parameters: normalize: false int8_mask: true dtype: bfloat16 chat_template: llama3 tokenizer: source: union ```
bowilleatyou/a109069a-5736-4312-9660-bb5c8e3fa828
bowilleatyou
2025-03-31T16:03:36Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:29:15Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
akhauriyash/DeepSeek-R1-Distill-Llama-8B-Butler
akhauriyash
2025-03-31T16:03:35Z
45
0
transformers
[ "transformers", "pytorch", "safetensors", "llama_butler", "feature-extraction", "custom_code", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "license:mit", "region:us" ]
feature-extraction
2025-03-10T15:26:51Z
--- license: mit library_name: transformers base_model: - deepseek-ai/DeepSeek-R1-Distill-Llama-8B --- # TokenButler <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <!-- markdownlint-disable no-duplicate-header --> <div align="center"> <img src="https://github.com/abdelfattah-lab/TokenButler/blob/main/figs/tokenbutlerlogo.png?raw=true" width="50%" alt="TokenButler" /> </div> <hr> <div align="center" style="line-height: 1;"> <!-- Paper Badge --> <a href="https://github.com/abdelfattah-lab/TokenButler/blob/main/TokenButler_Draft.pdf" target="_blank" style="margin: 2px;"> <img alt="Paper" src="https://img.shields.io/badge/Paper-View-orange?logo=readthedocs&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <!-- GitHub Badge --> <a href="https://github.com/abdelfattah-lab/TokenButler" target="_blank" style="margin: 2px;"> <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Repo-black?logo=github&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <br> The collection of TokenButler models can be found [here](https://huggingface.co/collections/akhauriyash/tokenbutler-67cf181b5762d0d60e5f312b). To run the `DeepSeek-R1-Distill-Llama-8B` model, follow: ``` from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline question = "If millionaires have butlers, why don't million dollar language models have a butler too? I think its because " model_name = "akhauriyash/DeepSeek-R1-Distill-Llama-8B-Butler" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) generator = pipeline("text-generation", model=model, tokenizer=tokenizer) response = generator(question, max_new_tokens=200, do_sample=True, top_p=0.95, temperature=0.7) print(response[0]['generated_text'][len(question):]) ``` Note that the 'default' configured sparsity is 50%. Further, there is a 'sliding window' of 128 and 8 'anchor tokens'. To 'change' the sparsity, you can use the following function after loading the model. Please note that the 'fixed' is the only supported strategy at the moment, which 'fixes' the sparsity of each layer (except the first) at the 'pc' (percentage) mentioned. This can also be found at `test_hf.py`. Sliding window and anchor tokens can be changed in a similar manner. ``` def set_sparsity(model, sparsity): for module in model.modules(): if module.__class__.__name__.__contains__("AttentionExperimental"): module.token_sparse_method = sparsity module.set_token_sparsity() return model model = set_sparsity(model, "fixed_60pc") ``` # Predictor Architecture <div align="center"> <img src="https://github.com/abdelfattah-lab/TokenButler/blob/main/figs/mainfig.png?raw=true" width="100%" alt="TokenButlerFigure" /> </div> # Custom Synthetic Task <div align="center"> <img src="https://github.com/abdelfattah-lab/TokenButler/blob/main/figs/datasetfig.png?raw=true" width="100%" alt="Synthetic Tasks" /> </div>
mncmbb/gemma-2-2B-it-thinking-function_calling-V0
mncmbb
2025-03-31T16:03:19Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-2-2b-it", "base_model:finetune:google/gemma-2-2b-it", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:40:19Z
--- base_model: google/gemma-2-2b-it library_name: transformers model_name: gemma-2-2B-it-thinking-function_calling-V0 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-2-2B-it-thinking-function_calling-V0 This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="mncmbb/gemma-2-2B-it-thinking-function_calling-V0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.16.0 - Transformers: 4.50.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
UICHEOL-HWANG/GreenFinance-DeepSeek-Llama3.1-8B
UICHEOL-HWANG
2025-03-31T16:00:28Z
51
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-24T04:41:54Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/BianCang-Qwen2.5-7B-GGUF
mradermacher
2025-03-31T15:59:53Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:QLU-NLP/BianCang-Qwen2.5-7B", "base_model:quantized:QLU-NLP/BianCang-Qwen2.5-7B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T15:39:39Z
--- base_model: QLU-NLP/BianCang-Qwen2.5-7B language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/QLU-NLP/BianCang-Qwen2.5-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/BianCang-Qwen2.5-7B-GGUF/resolve/main/BianCang-Qwen2.5-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
MinaMila/llama_instbase_unlearned_GermanCredit_5ep_22
MinaMila
2025-03-31T15:57:59Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:MinaMila/llama3_unlearning_general_methode", "base_model:finetune:MinaMila/llama3_unlearning_general_methode", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T15:55:03Z
--- base_model: MinaMila/llama3_unlearning_general_methode tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MinaMila - **License:** apache-2.0 - **Finetuned from model :** MinaMila/llama3_unlearning_general_methode This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF
mradermacher
2025-03-31T15:56:15Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:phatvucoder/Qwen2.5-1.5B-Perfumassist", "base_model:quantized:phatvucoder/Qwen2.5-1.5B-Perfumassist", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T14:42:19Z
--- base_model: phatvucoder/Qwen2.5-1.5B-Perfumassist language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/phatvucoder/Qwen2.5-1.5B-Perfumassist <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.Q6_K.gguf) | Q6_K | 1.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-1.5B-Perfumassist-GGUF/resolve/main/Qwen2.5-1.5B-Perfumassist.f16.gguf) | f16 | 3.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Jonjew/LuluMartinez
Jonjew
2025-03-31T15:55:55Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T15:55:46Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- The reflective surfaces of her earrings and outfit create a dynamic interplay with the environment, emphasizing her sleek presence. The minimalist background allows the viewer to focus on her eye-catching fashion and makeup. Captured with a Sony A7R IV camera and a 50mm f/1.2 G Master lens for a beauty editorial shoot, this composition highlights her fashion-forward aesthetic. Inspired by avant-garde fashion photography from Sølve Sundsbø, this image blends contemporary fashion and minimalist elegance, embodying mythp0rt and niji_flux styles for a sleek, high-fashion vision. ((glow_skin, iridescent skin, oily skin, portrait)) output: url: images/Lulu Martinez_00016_.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: lulumartinez license: unknown --- # Lulu Martinez <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;1103411&#x2F;lulu-martinez-flux-adult-film-actress?modelVersionId&#x3D;1239529 Trigger lulumartinez ## Trigger words You should use `lulumartinez` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/LuluMartinez/tree/main) them in the Files & versions tab.
ayushexel/reranker-MiniLM-L6-H384-uncased-gooaq-5-epoch-1995000
ayushexel
2025-03-31T15:54:55Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "cross-encoder", "generated_from_trainer", "dataset_size:11456701", "loss:BinaryCrossEntropyLoss", "text-ranking", "en", "arxiv:1908.10084", "base_model:nreimers/MiniLM-L6-H384-uncased", "base_model:finetune:nreimers/MiniLM-L6-H384-uncased", "license:apache-2.0", "model-index", "region:us" ]
text-ranking
2025-03-31T15:54:41Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - cross-encoder - generated_from_trainer - dataset_size:11456701 - loss:BinaryCrossEntropyLoss base_model: nreimers/MiniLM-L6-H384-uncased pipeline_tag: text-ranking library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 model-index: - name: CrossEncoder based on nreimers/MiniLM-L6-H384-uncased results: - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: gooaq dev type: gooaq-dev metrics: - type: map value: 0.4719 name: Map - type: mrr@10 value: 0.4714 name: Mrr@10 - type: ndcg@10 value: 0.5149 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoMSMARCO R100 type: NanoMSMARCO_R100 metrics: - type: map value: 0.3405 name: Map - type: mrr@10 value: 0.3251 name: Mrr@10 - type: ndcg@10 value: 0.409 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNFCorpus R100 type: NanoNFCorpus_R100 metrics: - type: map value: 0.3375 name: Map - type: mrr@10 value: 0.5157 name: Mrr@10 - type: ndcg@10 value: 0.3596 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNQ R100 type: NanoNQ_R100 metrics: - type: map value: 0.3251 name: Map - type: mrr@10 value: 0.3406 name: Mrr@10 - type: ndcg@10 value: 0.4065 name: Ndcg@10 - task: type: cross-encoder-nano-beir name: Cross Encoder Nano BEIR dataset: name: NanoBEIR R100 mean type: NanoBEIR_R100_mean metrics: - type: map value: 0.3344 name: Map - type: mrr@10 value: 0.3938 name: Mrr@10 - type: ndcg@10 value: 0.3917 name: Ndcg@10 --- # CrossEncoder based on nreimers/MiniLM-L6-H384-uncased This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) <!-- at revision 3276f0fac9d818781d7a1327b3ff818fc4e643c0 --> - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label <!-- - **Training Dataset:** Unknown --> - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("ayushexel/reranker-MiniLM-L6-H384-uncased-gooaq-5-epoch-1995000") # Get scores for pairs of texts pairs = [ ['when is the 2020 democratic presidential debate?', 'Major candidates The nomination will be made official at the 2020 Democratic National Convention, tentatively scheduled for August 17–20, 2020 in Milwaukee, Wisconsin.'], ['when is the 2020 democratic presidential debate?', 'Major candidates As of June 8, 2020, former Vice President Joe Biden became the presumptive presidential nominee by amassing enough delegates to secure the nomination.'], ['when is the 2020 democratic presidential debate?', 'On March 5, 2019, Bloomberg announced that he would not run for president in 2020; instead he encouraged the Democratic Party to "nominate a Democrat who will be in the strongest position to defeat Donald Trump".'], ['when is the 2020 democratic presidential debate?', 'The electoral map for the 2020 election, based on populations from the 2010 Census. The 2020 United States presidential election is scheduled for Tuesday, November 3, 2020. It will be the 59th quadrennial presidential election.'], ['when is the 2020 democratic presidential debate?', 'There were a total of 29 major Democratic candidates. Of these, 23 candidates participated in at least one debate. Only Joe Biden and Bernie Sanders participated in all the debates; Pete Buttigieg, Amy Klobuchar, and Elizabeth Warren participated in all but one debate.'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'when is the 2020 democratic presidential debate?', [ 'Major candidates The nomination will be made official at the 2020 Democratic National Convention, tentatively scheduled for August 17–20, 2020 in Milwaukee, Wisconsin.', 'Major candidates As of June 8, 2020, former Vice President Joe Biden became the presumptive presidential nominee by amassing enough delegates to secure the nomination.', 'On March 5, 2019, Bloomberg announced that he would not run for president in 2020; instead he encouraged the Democratic Party to "nominate a Democrat who will be in the strongest position to defeat Donald Trump".', 'The electoral map for the 2020 election, based on populations from the 2010 Census. The 2020 United States presidential election is scheduled for Tuesday, November 3, 2020. It will be the 59th quadrennial presidential election.', 'There were a total of 29 major Democratic candidates. Of these, 23 candidates participated in at least one debate. Only Joe Biden and Bernie Sanders participated in all the debates; Pete Buttigieg, Amy Klobuchar, and Elizabeth Warren participated in all but one debate.', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Cross Encoder Reranking * Dataset: `gooaq-dev` * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: ```json { "at_k": 10, "always_rerank_positives": false } ``` | Metric | Value | |:------------|:---------------------| | map | 0.4719 (+0.2021) | | mrr@10 | 0.4714 (+0.2125) | | **ndcg@10** | **0.5149 (+0.2052)** | #### Cross Encoder Reranking * Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100` * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: ```json { "at_k": 10, "always_rerank_positives": true } ``` | Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 | |:------------|:---------------------|:---------------------|:---------------------| | map | 0.3405 (-0.1491) | 0.3375 (+0.0765) | 0.3251 (-0.0945) | | mrr@10 | 0.3251 (-0.1524) | 0.5157 (+0.0159) | 0.3406 (-0.0861) | | **ndcg@10** | **0.4090 (-0.1314)** | **0.3596 (+0.0346)** | **0.4065 (-0.0942)** | #### Cross Encoder Nano BEIR * Dataset: `NanoBEIR_R100_mean` * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true } ``` | Metric | Value | |:------------|:---------------------| | map | 0.3344 (-0.0557) | | mrr@10 | 0.3938 (-0.0742) | | **ndcg@10** | **0.3917 (-0.0637)** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 11,456,701 training samples * Columns: <code>question</code>, <code>answer</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | question | answer | label | |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 18 characters</li><li>mean: 43.15 characters</li><li>max: 83 characters</li></ul> | <ul><li>min: 59 characters</li><li>mean: 257.34 characters</li><li>max: 388 characters</li></ul> | <ul><li>0: ~82.40%</li><li>1: ~17.60%</li></ul> | * Samples: | question | answer | label | |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>when is the 2020 democratic presidential debate?</code> | <code>Major candidates The nomination will be made official at the 2020 Democratic National Convention, tentatively scheduled for August 17–20, 2020 in Milwaukee, Wisconsin.</code> | <code>1</code> | | <code>when is the 2020 democratic presidential debate?</code> | <code>Major candidates As of June 8, 2020, former Vice President Joe Biden became the presumptive presidential nominee by amassing enough delegates to secure the nomination.</code> | <code>0</code> | | <code>when is the 2020 democratic presidential debate?</code> | <code>On March 5, 2019, Bloomberg announced that he would not run for president in 2020; instead he encouraged the Democratic Party to "nominate a Democrat who will be in the strongest position to defeat Donald Trump".</code> | <code>0</code> | * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True - `dataloader_num_workers`: 12 - `load_best_model_at_end`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 12 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 | |:------:|:------:|:-------------:|:-----------------:|:------------------------:|:-------------------------:|:-------------------:|:--------------------------:| | -1 | -1 | - | 0.1023 (-0.2073) | 0.0063 (-0.5341) | 0.2762 (-0.0489) | 0.0240 (-0.4766) | 0.1022 (-0.3532) | | 0.0000 | 1 | 1.1577 | - | - | - | - | - | | 0.0045 | 200 | 1.1721 | - | - | - | - | - | | 0.0089 | 400 | 1.1758 | - | - | - | - | - | | 0.0134 | 600 | 1.1755 | - | - | - | - | - | | 0.0179 | 800 | 1.1809 | - | - | - | - | - | | 0.0223 | 1000 | 1.1717 | - | - | - | - | - | | 0.0268 | 1200 | 1.1723 | - | - | - | - | - | | 0.0313 | 1400 | 1.1687 | - | - | - | - | - | | 0.0358 | 1600 | 1.1727 | - | - | - | - | - | | 0.0402 | 1800 | 1.177 | - | - | - | - | - | | 0.0447 | 2000 | 1.1792 | - | - | - | - | - | | 0.0492 | 2200 | 1.172 | - | - | - | - | - | | 0.0536 | 2400 | 1.1117 | - | - | - | - | - | | 0.0581 | 2600 | 1.0198 | - | - | - | - | - | | 0.0626 | 2800 | 0.9849 | - | - | - | - | - | | 0.0670 | 3000 | 0.9572 | - | - | - | - | - | | 0.0715 | 3200 | 0.9359 | - | - | - | - | - | | 0.0760 | 3400 | 0.9216 | - | - | - | - | - | | 0.0804 | 3600 | 0.9244 | - | - | - | - | - | | 0.0849 | 3800 | 0.914 | - | - | - | - | - | | 0.0894 | 4000 | 0.9056 | - | - | - | - | - | | 0.0938 | 4200 | 0.8928 | - | - | - | - | - | | 0.0983 | 4400 | 0.8698 | - | - | - | - | - | | 0.1028 | 4600 | 0.8746 | - | - | - | - | - | | 0.1073 | 4800 | 0.8705 | - | - | - | - | - | | 0.1117 | 5000 | 0.8542 | - | - | - | - | - | | 0.1162 | 5200 | 0.8512 | - | - | - | - | - | | 0.1207 | 5400 | 0.8372 | - | - | - | - | - | | 0.1251 | 5600 | 0.8328 | - | - | - | - | - | | 0.1296 | 5800 | 0.8195 | - | - | - | - | - | | 0.1341 | 6000 | 0.8259 | - | - | - | - | - | | 0.1385 | 6200 | 0.8161 | - | - | - | - | - | | 0.1430 | 6400 | 0.8108 | - | - | - | - | - | | 0.1475 | 6600 | 0.792 | - | - | - | - | - | | 0.1519 | 6800 | 0.79 | - | - | - | - | - | | 0.1564 | 7000 | 0.7849 | - | - | - | - | - | | 0.1609 | 7200 | 0.7794 | - | - | - | - | - | | 0.1654 | 7400 | 0.7649 | - | - | - | - | - | | 0.1698 | 7600 | 0.7672 | - | - | - | - | - | | 0.1743 | 7800 | 0.7661 | - | - | - | - | - | | 0.1788 | 8000 | 0.7458 | - | - | - | - | - | | 0.1832 | 8200 | 0.7499 | - | - | - | - | - | | 0.1877 | 8400 | 0.7582 | - | - | - | - | - | | 0.1922 | 8600 | 0.7422 | - | - | - | - | - | | 0.1966 | 8800 | 0.7474 | - | - | - | - | - | | 0.2011 | 9000 | 0.7387 | - | - | - | - | - | | 0.2056 | 9200 | 0.7212 | - | - | - | - | - | | 0.2100 | 9400 | 0.7187 | - | - | - | - | - | | 0.2145 | 9600 | 0.7225 | - | - | - | - | - | | 0.2190 | 9800 | 0.7253 | - | - | - | - | - | | 0.2234 | 10000 | 0.7101 | - | - | - | - | - | | 0.2279 | 10200 | 0.7011 | - | - | - | - | - | | 0.2324 | 10400 | 0.6992 | - | - | - | - | - | | 0.2369 | 10600 | 0.7016 | - | - | - | - | - | | 0.2413 | 10800 | 0.7005 | - | - | - | - | - | | 0.2458 | 11000 | 0.6927 | - | - | - | - | - | | 0.2503 | 11200 | 0.697 | - | - | - | - | - | | 0.2547 | 11400 | 0.6829 | - | - | - | - | - | | 0.2592 | 11600 | 0.6821 | - | - | - | - | - | | 0.2637 | 11800 | 0.6802 | - | - | - | - | - | | 0.2681 | 12000 | 0.6659 | - | - | - | - | - | | 0.2726 | 12200 | 0.6696 | - | - | - | - | - | | 0.2771 | 12400 | 0.6746 | - | - | - | - | - | | 0.2815 | 12600 | 0.6722 | - | - | - | - | - | | 0.2860 | 12800 | 0.6768 | - | - | - | - | - | | 0.2905 | 13000 | 0.6637 | - | - | - | - | - | | 0.2950 | 13200 | 0.66 | - | - | - | - | - | | 0.2994 | 13400 | 0.651 | - | - | - | - | - | | 0.3039 | 13600 | 0.6598 | - | - | - | - | - | | 0.3084 | 13800 | 0.6477 | - | - | - | - | - | | 0.3128 | 14000 | 0.6414 | - | - | - | - | - | | 0.3173 | 14200 | 0.6531 | - | - | - | - | - | | 0.3218 | 14400 | 0.6409 | - | - | - | - | - | | 0.3262 | 14600 | 0.6419 | - | - | - | - | - | | 0.3307 | 14800 | 0.6405 | - | - | - | - | - | | 0.3352 | 15000 | 0.6357 | - | - | - | - | - | | 0.3396 | 15200 | 0.6406 | - | - | - | - | - | | 0.3441 | 15400 | 0.6326 | - | - | - | - | - | | 0.3486 | 15600 | 0.6376 | - | - | - | - | - | | 0.3530 | 15800 | 0.6314 | - | - | - | - | - | | 0.3575 | 16000 | 0.6297 | - | - | - | - | - | | 0.3620 | 16200 | 0.6201 | - | - | - | - | - | | 0.3665 | 16400 | 0.6299 | - | - | - | - | - | | 0.3709 | 16600 | 0.6258 | - | - | - | - | - | | 0.3754 | 16800 | 0.6251 | - | - | - | - | - | | 0.3799 | 17000 | 0.6256 | - | - | - | - | - | | 0.3843 | 17200 | 0.62 | - | - | - | - | - | | 0.3888 | 17400 | 0.6169 | - | - | - | - | - | | 0.3933 | 17600 | 0.6192 | - | - | - | - | - | | 0.3977 | 17800 | 0.6131 | - | - | - | - | - | | 0.4022 | 18000 | 0.6202 | - | - | - | - | - | | 0.4067 | 18200 | 0.6033 | - | - | - | - | - | | 0.4111 | 18400 | 0.6086 | - | - | - | - | - | | 0.4156 | 18600 | 0.6097 | - | - | - | - | - | | 0.4201 | 18800 | 0.6014 | - | - | - | - | - | | 0.4246 | 19000 | 0.6055 | - | - | - | - | - | | 0.4290 | 19200 | 0.6047 | - | - | - | - | - | | 0.4335 | 19400 | 0.5985 | - | - | - | - | - | | 0.4380 | 19600 | 0.5998 | - | - | - | - | - | | 0.4424 | 19800 | 0.5999 | - | - | - | - | - | | 0.4469 | 20000 | 0.595 | - | - | - | - | - | | 0.4514 | 20200 | 0.5961 | - | - | - | - | - | | 0.4558 | 20400 | 0.5918 | - | - | - | - | - | | 0.4603 | 20600 | 0.5928 | - | - | - | - | - | | 0.4648 | 20800 | 0.5833 | - | - | - | - | - | | 0.4692 | 21000 | 0.589 | - | - | - | - | - | | 0.4737 | 21200 | 0.5892 | - | - | - | - | - | | 0.4782 | 21400 | 0.5896 | - | - | - | - | - | | 0.4826 | 21600 | 0.5887 | - | - | - | - | - | | 0.4871 | 21800 | 0.5936 | - | - | - | - | - | | 0.4916 | 22000 | 0.5933 | - | - | - | - | - | | 0.4961 | 22200 | 0.5879 | - | - | - | - | - | | 0.5005 | 22400 | 0.5877 | - | - | - | - | - | | 0.5050 | 22600 | 0.5906 | - | - | - | - | - | | 0.5095 | 22800 | 0.5636 | - | - | - | - | - | | 0.5139 | 23000 | 0.5889 | - | - | - | - | - | | 0.5184 | 23200 | 0.5739 | - | - | - | - | - | | 0.5229 | 23400 | 0.569 | - | - | - | - | - | | 0.5273 | 23600 | 0.5739 | - | - | - | - | - | | 0.5318 | 23800 | 0.5627 | - | - | - | - | - | | 0.5363 | 24000 | 0.5762 | - | - | - | - | - | | 0.5407 | 24200 | 0.5664 | - | - | - | - | - | | 0.5452 | 24400 | 0.576 | - | - | - | - | - | | 0.5497 | 24600 | 0.5583 | - | - | - | - | - | | 0.5542 | 24800 | 0.5723 | - | - | - | - | - | | 0.5586 | 25000 | 0.5677 | - | - | - | - | - | | 0.5631 | 25200 | 0.5586 | - | - | - | - | - | | 0.5676 | 25400 | 0.5643 | - | - | - | - | - | | 0.5720 | 25600 | 0.5605 | - | - | - | - | - | | 0.5765 | 25800 | 0.5594 | - | - | - | - | - | | 0.5810 | 26000 | 0.5571 | - | - | - | - | - | | 0.5854 | 26200 | 0.5557 | - | - | - | - | - | | 0.5899 | 26400 | 0.5531 | - | - | - | - | - | | 0.5944 | 26600 | 0.5495 | - | - | - | - | - | | 0.5988 | 26800 | 0.5521 | - | - | - | - | - | | 0.6033 | 27000 | 0.5504 | - | - | - | - | - | | 0.6078 | 27200 | 0.5602 | - | - | - | - | - | | 0.6122 | 27400 | 0.5569 | - | - | - | - | - | | 0.6167 | 27600 | 0.5444 | - | - | - | - | - | | 0.6212 | 27800 | 0.547 | - | - | - | - | - | | 0.6257 | 28000 | 0.5519 | - | - | - | - | - | | 0.6301 | 28200 | 0.5422 | - | - | - | - | - | | 0.6346 | 28400 | 0.5461 | - | - | - | - | - | | 0.6391 | 28600 | 0.5511 | - | - | - | - | - | | 0.6435 | 28800 | 0.5443 | - | - | - | - | - | | 0.6480 | 29000 | 0.5408 | - | - | - | - | - | | 0.6525 | 29200 | 0.548 | - | - | - | - | - | | 0.6569 | 29400 | 0.5414 | - | - | - | - | - | | 0.6614 | 29600 | 0.5409 | - | - | - | - | - | | 0.6659 | 29800 | 0.5365 | - | - | - | - | - | | 0.6703 | 30000 | 0.5363 | - | - | - | - | - | | 0.6748 | 30200 | 0.5335 | - | - | - | - | - | | 0.6793 | 30400 | 0.5413 | - | - | - | - | - | | 0.6838 | 30600 | 0.5357 | - | - | - | - | - | | 0.6882 | 30800 | 0.5376 | - | - | - | - | - | | 0.6927 | 31000 | 0.539 | - | - | - | - | - | | 0.6972 | 31200 | 0.5265 | - | - | - | - | - | | 0.7016 | 31400 | 0.5267 | - | - | - | - | - | | 0.7061 | 31600 | 0.5335 | - | - | - | - | - | | 0.7106 | 31800 | 0.5471 | - | - | - | - | - | | 0.7150 | 32000 | 0.5309 | - | - | - | - | - | | 0.7195 | 32200 | 0.5348 | - | - | - | - | - | | 0.7240 | 32400 | 0.5147 | - | - | - | - | - | | 0.7284 | 32600 | 0.5254 | - | - | - | - | - | | 0.7329 | 32800 | 0.5276 | - | - | - | - | - | | 0.7374 | 33000 | 0.5236 | - | - | - | - | - | | 0.7418 | 33200 | 0.5353 | - | - | - | - | - | | 0.7463 | 33400 | 0.5286 | - | - | - | - | - | | 0.7508 | 33600 | 0.5269 | - | - | - | - | - | | 0.7553 | 33800 | 0.5326 | - | - | - | - | - | | 0.7597 | 34000 | 0.5205 | - | - | - | - | - | | 0.7642 | 34200 | 0.5225 | - | - | - | - | - | | 0.7687 | 34400 | 0.523 | - | - | - | - | - | | 0.7731 | 34600 | 0.5293 | - | - | - | - | - | | 0.7776 | 34800 | 0.5174 | - | - | - | - | - | | 0.7821 | 35000 | 0.5237 | - | - | - | - | - | | 0.7865 | 35200 | 0.5137 | - | - | - | - | - | | 0.7910 | 35400 | 0.5255 | - | - | - | - | - | | 0.7955 | 35600 | 0.5285 | - | - | - | - | - | | 0.7999 | 35800 | 0.5213 | - | - | - | - | - | | 0.8044 | 36000 | 0.5156 | - | - | - | - | - | | 0.8089 | 36200 | 0.5218 | - | - | - | - | - | | 0.8134 | 36400 | 0.5163 | - | - | - | - | - | | 0.8178 | 36600 | 0.515 | - | - | - | - | - | | 0.8223 | 36800 | 0.5099 | - | - | - | - | - | | 0.8268 | 37000 | 0.5107 | - | - | - | - | - | | 0.8312 | 37200 | 0.51 | - | - | - | - | - | | 0.8357 | 37400 | 0.5108 | - | - | - | - | - | | 0.8402 | 37600 | 0.5101 | - | - | - | - | - | | 0.8446 | 37800 | 0.5125 | - | - | - | - | - | | 0.8491 | 38000 | 0.5194 | - | - | - | - | - | | 0.8536 | 38200 | 0.5125 | - | - | - | - | - | | 0.8580 | 38400 | 0.5168 | - | - | - | - | - | | 0.8625 | 38600 | 0.5183 | - | - | - | - | - | | 0.8670 | 38800 | 0.5112 | - | - | - | - | - | | 0.8714 | 39000 | 0.5121 | - | - | - | - | - | | 0.8759 | 39200 | 0.5045 | - | - | - | - | - | | 0.8804 | 39400 | 0.5095 | - | - | - | - | - | | 0.8849 | 39600 | 0.4999 | - | - | - | - | - | | 0.8893 | 39800 | 0.502 | - | - | - | - | - | | 0.8938 | 40000 | 0.5005 | - | - | - | - | - | | 0.8983 | 40200 | 0.5057 | - | - | - | - | - | | 0.9027 | 40400 | 0.5 | - | - | - | - | - | | 0.9072 | 40600 | 0.5081 | - | - | - | - | - | | 0.9117 | 40800 | 0.5042 | - | - | - | - | - | | 0.9161 | 41000 | 0.5006 | - | - | - | - | - | | 0.9206 | 41200 | 0.512 | - | - | - | - | - | | 0.9251 | 41400 | 0.5061 | - | - | - | - | - | | 0.9295 | 41600 | 0.5056 | - | - | - | - | - | | 0.9340 | 41800 | 0.5069 | - | - | - | - | - | | 0.9385 | 42000 | 0.5018 | - | - | - | - | - | | 0.9430 | 42200 | 0.5055 | - | - | - | - | - | | 0.9474 | 42400 | 0.4955 | - | - | - | - | - | | 0.9519 | 42600 | 0.4871 | - | - | - | - | - | | 0.9564 | 42800 | 0.5031 | - | - | - | - | - | | 0.9608 | 43000 | 0.4969 | - | - | - | - | - | | 0.9653 | 43200 | 0.4957 | - | - | - | - | - | | 0.9698 | 43400 | 0.5037 | - | - | - | - | - | | 0.9742 | 43600 | 0.5066 | - | - | - | - | - | | 0.9787 | 43800 | 0.4944 | - | - | - | - | - | | 0.9832 | 44000 | 0.4982 | - | - | - | - | - | | 0.9876 | 44200 | 0.5004 | - | - | - | - | - | | 0.9921 | 44400 | 0.4972 | - | - | - | - | - | | 0.9966 | 44600 | 0.4964 | - | - | - | - | - | | 1.0011 | 44800 | 0.4917 | - | - | - | - | - | | 1.0055 | 45000 | 0.4892 | - | - | - | - | - | | 1.0100 | 45200 | 0.4774 | - | - | - | - | - | | 1.0145 | 45400 | 0.4784 | - | - | - | - | - | | 1.0189 | 45600 | 0.4782 | - | - | - | - | - | | 1.0234 | 45800 | 0.4793 | - | - | - | - | - | | 1.0279 | 46000 | 0.4846 | - | - | - | - | - | | 1.0323 | 46200 | 0.4746 | - | - | - | - | - | | 1.0368 | 46400 | 0.4748 | - | - | - | - | - | | 1.0413 | 46600 | 0.481 | - | - | - | - | - | | 1.0457 | 46800 | 0.4817 | - | - | - | - | - | | 1.0502 | 47000 | 0.4825 | - | - | - | - | - | | 1.0547 | 47200 | 0.4739 | - | - | - | - | - | | 1.0591 | 47400 | 0.4752 | - | - | - | - | - | | 1.0636 | 47600 | 0.4745 | - | - | - | - | - | | 1.0681 | 47800 | 0.4686 | - | - | - | - | - | | 1.0726 | 48000 | 0.4868 | - | - | - | - | - | | 1.0770 | 48200 | 0.4713 | - | - | - | - | - | | 1.0815 | 48400 | 0.4685 | - | - | - | - | - | | 1.0860 | 48600 | 0.4768 | - | - | - | - | - | | 1.0904 | 48800 | 0.4761 | - | - | - | - | - | | 1.0949 | 49000 | 0.4811 | - | - | - | - | - | | 1.0994 | 49200 | 0.4746 | - | - | - | - | - | | 1.1038 | 49400 | 0.4751 | - | - | - | - | - | | 1.1083 | 49600 | 0.479 | - | - | - | - | - | | 1.1128 | 49800 | 0.4759 | - | - | - | - | - | | 1.1172 | 50000 | 0.4689 | - | - | - | - | - | | 1.1217 | 50200 | 0.467 | - | - | - | - | - | | 1.1262 | 50400 | 0.4716 | - | - | - | - | - | | 1.1307 | 50600 | 0.4672 | - | - | - | - | - | | 1.1351 | 50800 | 0.4681 | - | - | - | - | - | | 1.1396 | 51000 | 0.4697 | - | - | - | - | - | | 1.1441 | 51200 | 0.4685 | - | - | - | - | - | | 1.1485 | 51400 | 0.4716 | - | - | - | - | - | | 1.1530 | 51600 | 0.4716 | - | - | - | - | - | | 1.1575 | 51800 | 0.4785 | - | - | - | - | - | | 1.1619 | 52000 | 0.4631 | - | - | - | - | - | | 1.1664 | 52200 | 0.4683 | - | - | - | - | - | | 1.1709 | 52400 | 0.4697 | - | - | - | - | - | | 1.1753 | 52600 | 0.464 | - | - | - | - | - | | 1.1798 | 52800 | 0.4717 | - | - | - | - | - | | 1.1843 | 53000 | 0.4672 | - | - | - | - | - | | 1.1887 | 53200 | 0.4607 | - | - | - | - | - | | 1.1932 | 53400 | 0.464 | - | - | - | - | - | | 1.1977 | 53600 | 0.4705 | - | - | - | - | - | | 1.2022 | 53800 | 0.4657 | - | - | - | - | - | | 1.2066 | 54000 | 0.4665 | - | - | - | - | - | | 1.2111 | 54200 | 0.4684 | - | - | - | - | - | | 1.2156 | 54400 | 0.4644 | - | - | - | - | - | | 1.2200 | 54600 | 0.4695 | - | - | - | - | - | | 1.2245 | 54800 | 0.4629 | - | - | - | - | - | | 1.2290 | 55000 | 0.4677 | - | - | - | - | - | | 1.2334 | 55200 | 0.4627 | - | - | - | - | - | | 1.2379 | 55400 | 0.463 | - | - | - | - | - | | 1.2424 | 55600 | 0.4643 | - | - | - | - | - | | 1.2468 | 55800 | 0.4612 | - | - | - | - | - | | 1.2513 | 56000 | 0.4637 | - | - | - | - | - | | 1.2558 | 56200 | 0.4614 | - | - | - | - | - | | 1.2603 | 56400 | 0.4634 | - | - | - | - | - | | 1.2647 | 56600 | 0.471 | - | - | - | - | - | | 1.2692 | 56800 | 0.4622 | - | - | - | - | - | | 1.2737 | 57000 | 0.4644 | - | - | - | - | - | | 1.2781 | 57200 | 0.4643 | - | - | - | - | - | | 1.2826 | 57400 | 0.4624 | - | - | - | - | - | | 1.2871 | 57600 | 0.4598 | - | - | - | - | - | | 1.2915 | 57800 | 0.4617 | - | - | - | - | - | | 1.2960 | 58000 | 0.4618 | - | - | - | - | - | | 1.3005 | 58200 | 0.4679 | - | - | - | - | - | | 1.3049 | 58400 | 0.4604 | - | - | - | - | - | | 1.3094 | 58600 | 0.4724 | - | - | - | - | - | | 1.3139 | 58800 | 0.462 | - | - | - | - | - | | 1.3183 | 59000 | 0.4569 | - | - | - | - | - | | 1.3228 | 59200 | 0.4645 | - | - | - | - | - | | 1.3273 | 59400 | 0.4565 | - | - | - | - | - | | 1.3318 | 59600 | 0.4657 | - | - | - | - | - | | 1.3362 | 59800 | 0.455 | - | - | - | - | - | | 1.3407 | 60000 | 0.466 | - | - | - | - | - | | 1.3452 | 60200 | 0.4708 | - | - | - | - | - | | 1.3496 | 60400 | 0.4579 | - | - | - | - | - | | 1.3541 | 60600 | 0.4516 | - | - | - | - | - | | 1.3586 | 60800 | 0.4571 | - | - | - | - | - | | 1.3630 | 61000 | 0.4486 | - | - | - | - | - | | 1.3675 | 61200 | 0.4631 | - | - | - | - | - | | 1.3720 | 61400 | 0.4656 | - | - | - | - | - | | 1.3764 | 61600 | 0.4594 | - | - | - | - | - | | 1.3809 | 61800 | 0.4609 | - | - | - | - | - | | 1.3854 | 62000 | 0.4577 | - | - | - | - | - | | 1.3899 | 62200 | 0.4578 | - | - | - | - | - | | 1.3943 | 62400 | 0.4497 | - | - | - | - | - | | 1.3988 | 62600 | 0.456 | - | - | - | - | - | | 1.4033 | 62800 | 0.4522 | - | - | - | - | - | | 1.4077 | 63000 | 0.4594 | - | - | - | - | - | | 1.4122 | 63200 | 0.4503 | - | - | - | - | - | | 1.4167 | 63400 | 0.4536 | - | - | - | - | - | | 1.4211 | 63600 | 0.4607 | - | - | - | - | - | | 1.4256 | 63800 | 0.4541 | - | - | - | - | - | | 1.4301 | 64000 | 0.446 | - | - | - | - | - | | 1.4345 | 64200 | 0.4518 | - | - | - | - | - | | 1.4390 | 64400 | 0.4586 | - | - | - | - | - | | 1.4435 | 64600 | 0.448 | - | - | - | - | - | | 1.4479 | 64800 | 0.459 | - | - | - | - | - | | 1.4524 | 65000 | 0.4515 | - | - | - | - | - | | 1.4569 | 65200 | 0.4496 | - | - | - | - | - | | 1.4614 | 65400 | 0.4581 | - | - | - | - | - | | 1.4658 | 65600 | 0.4527 | - | - | - | - | - | | 1.4703 | 65800 | 0.4498 | - | - | - | - | - | | 1.4748 | 66000 | 0.456 | - | - | - | - | - | | 1.4792 | 66200 | 0.4484 | - | - | - | - | - | | 1.4837 | 66400 | 0.4447 | - | - | - | - | - | | 1.4882 | 66600 | 0.4603 | - | - | - | - | - | | 1.4926 | 66800 | 0.4492 | - | - | - | - | - | | 1.4971 | 67000 | 0.4469 | - | - | - | - | - | | 1.5016 | 67200 | 0.4559 | - | - | - | - | - | | 1.5060 | 67400 | 0.4449 | - | - | - | - | - | | 1.5105 | 67600 | 0.4399 | - | - | - | - | - | | 1.5150 | 67800 | 0.458 | - | - | - | - | - | | 1.5195 | 68000 | 0.4502 | - | - | - | - | - | | 1.5239 | 68200 | 0.4503 | - | - | - | - | - | | 1.5284 | 68400 | 0.4511 | - | - | - | - | - | | 1.5329 | 68600 | 0.4418 | - | - | - | - | - | | 1.5373 | 68800 | 0.4437 | - | - | - | - | - | | 1.5418 | 69000 | 0.4444 | - | - | - | - | - | | 1.5463 | 69200 | 0.4531 | - | - | - | - | - | | 1.5507 | 69400 | 0.4488 | - | - | - | - | - | | 1.5552 | 69600 | 0.4377 | - | - | - | - | - | | 1.5597 | 69800 | 0.4547 | - | - | - | - | - | | 1.5641 | 70000 | 0.4538 | - | - | - | - | - | | 1.5686 | 70200 | 0.4516 | - | - | - | - | - | | 1.5731 | 70400 | 0.4495 | - | - | - | - | - | | 1.5775 | 70600 | 0.4482 | - | - | - | - | - | | 1.5820 | 70800 | 0.4466 | - | - | - | - | - | | 1.5865 | 71000 | 0.4449 | - | - | - | - | - | | 1.5910 | 71200 | 0.4497 | - | - | - | - | - | | 1.5954 | 71400 | 0.4448 | - | - | - | - | - | | 1.5999 | 71600 | 0.4508 | - | - | - | - | - | | 1.6044 | 71800 | 0.4463 | - | - | - | - | - | | 1.6088 | 72000 | 0.4416 | - | - | - | - | - | | 1.6133 | 72200 | 0.4509 | - | - | - | - | - | | 1.6178 | 72400 | 0.4356 | - | - | - | - | - | | 1.6222 | 72600 | 0.4476 | - | - | - | - | - | | 1.6267 | 72800 | 0.4456 | - | - | - | - | - | | 1.6312 | 73000 | 0.4409 | - | - | - | - | - | | 1.6356 | 73200 | 0.444 | - | - | - | - | - | | 1.6401 | 73400 | 0.4389 | - | - | - | - | - | | 1.6446 | 73600 | 0.4459 | - | - | - | - | - | | 1.6491 | 73800 | 0.4416 | - | - | - | - | - | | 1.6535 | 74000 | 0.4278 | - | - | - | - | - | | 1.6580 | 74200 | 0.4436 | - | - | - | - | - | | 1.6625 | 74400 | 0.4476 | - | - | - | - | - | | 1.6669 | 74600 | 0.4427 | - | - | - | - | - | | 1.6714 | 74800 | 0.4513 | - | - | - | - | - | | 1.6759 | 75000 | 0.4412 | - | - | - | - | - | | 1.6803 | 75200 | 0.448 | - | - | - | - | - | | 1.6848 | 75400 | 0.4454 | - | - | - | - | - | | 1.6893 | 75600 | 0.438 | - | - | - | - | - | | 1.6937 | 75800 | 0.4385 | - | - | - | - | - | | 1.6982 | 76000 | 0.4381 | - | - | - | - | - | | 1.7027 | 76200 | 0.4409 | - | - | - | - | - | | 1.7071 | 76400 | 0.443 | - | - | - | - | - | | 1.7116 | 76600 | 0.4437 | - | - | - | - | - | | 1.7161 | 76800 | 0.4477 | - | - | - | - | - | | 1.7206 | 77000 | 0.4486 | - | - | - | - | - | | 1.7250 | 77200 | 0.4535 | - | - | - | - | - | | 1.7295 | 77400 | 0.4451 | - | - | - | - | - | | 1.7340 | 77600 | 0.4422 | - | - | - | - | - | | 1.7384 | 77800 | 0.4463 | - | - | - | - | - | | 1.7429 | 78000 | 0.4472 | - | - | - | - | - | | 1.7474 | 78200 | 0.435 | - | - | - | - | - | | 1.7518 | 78400 | 0.4426 | - | - | - | - | - | | 1.7563 | 78600 | 0.4494 | - | - | - | - | - | | 1.7608 | 78800 | 0.444 | - | - | - | - | - | | 1.7652 | 79000 | 0.4423 | - | - | - | - | - | | 1.7697 | 79200 | 0.4421 | - | - | - | - | - | | 1.7742 | 79400 | 0.4404 | - | - | - | - | - | | 1.7787 | 79600 | 0.4381 | - | - | - | - | - | | 1.7831 | 79800 | 0.4472 | - | - | - | - | - | | 1.7876 | 80000 | 0.4369 | 0.5021 (+0.1925) | 0.4367 (-0.1037) | 0.3578 (+0.0328) | 0.4330 (-0.0676) | 0.4092 (-0.0462) | | 1.7921 | 80200 | 0.4421 | - | - | - | - | - | | 1.7965 | 80400 | 0.4377 | - | - | - | - | - | | 1.8010 | 80600 | 0.4452 | - | - | - | - | - | | 1.8055 | 80800 | 0.4479 | - | - | - | - | - | | 1.8099 | 81000 | 0.4352 | - | - | - | - | - | | 1.8144 | 81200 | 0.4381 | - | - | - | - | - | | 1.8189 | 81400 | 0.4327 | - | - | - | - | - | | 1.8233 | 81600 | 0.4325 | - | - | - | - | - | | 1.8278 | 81800 | 0.4379 | - | - | - | - | - | | 1.8323 | 82000 | 0.4432 | - | - | - | - | - | | 1.8367 | 82200 | 0.4362 | - | - | - | - | - | | 1.8412 | 82400 | 0.45 | - | - | - | - | - | | 1.8457 | 82600 | 0.4356 | - | - | - | - | - | | 1.8502 | 82800 | 0.4339 | - | - | - | - | - | | 1.8546 | 83000 | 0.4386 | - | - | - | - | - | | 1.8591 | 83200 | 0.4478 | - | - | - | - | - | | 1.8636 | 83400 | 0.432 | - | - | - | - | - | | 1.8680 | 83600 | 0.4334 | - | - | - | - | - | | 1.8725 | 83800 | 0.4394 | - | - | - | - | - | | 1.8770 | 84000 | 0.448 | - | - | - | - | - | | 1.8814 | 84200 | 0.4374 | - | - | - | - | - | | 1.8859 | 84400 | 0.4355 | - | - | - | - | - | | 1.8904 | 84600 | 0.4436 | - | - | - | - | - | | 1.8948 | 84800 | 0.4334 | - | - | - | - | - | | 1.8993 | 85000 | 0.4301 | - | - | - | - | - | | 1.9038 | 85200 | 0.4362 | - | - | - | - | - | | 1.9083 | 85400 | 0.4407 | - | - | - | - | - | | 1.9127 | 85600 | 0.4336 | - | - | - | - | - | | 1.9172 | 85800 | 0.4241 | - | - | - | - | - | | 1.9217 | 86000 | 0.4271 | - | - | - | - | - | | 1.9261 | 86200 | 0.4312 | - | - | - | - | - | | 1.9306 | 86400 | 0.4345 | - | - | - | - | - | | 1.9351 | 86600 | 0.431 | - | - | - | - | - | | 1.9395 | 86800 | 0.4326 | - | - | - | - | - | | 1.9440 | 87000 | 0.4228 | - | - | - | - | - | | 1.9485 | 87200 | 0.4307 | - | - | - | - | - | | 1.9529 | 87400 | 0.436 | - | - | - | - | - | | 1.9574 | 87600 | 0.4321 | - | - | - | - | - | | 1.9619 | 87800 | 0.4229 | - | - | - | - | - | | 1.9663 | 88000 | 0.4296 | - | - | - | - | - | | 1.9708 | 88200 | 0.4338 | - | - | - | - | - | | 1.9753 | 88400 | 0.4337 | - | - | - | - | - | | 1.9798 | 88600 | 0.426 | - | - | - | - | - | | 1.9842 | 88800 | 0.4212 | - | - | - | - | - | | 1.9887 | 89000 | 0.4279 | - | - | - | - | - | | 1.9932 | 89200 | 0.4251 | - | - | - | - | - | | 1.9976 | 89400 | 0.4197 | - | - | - | - | - | | 2.0021 | 89600 | 0.4167 | - | - | - | - | - | | 2.0066 | 89800 | 0.412 | - | - | - | - | - | | 2.0110 | 90000 | 0.4059 | - | - | - | - | - | | 2.0155 | 90200 | 0.4085 | - | - | - | - | - | | 2.0200 | 90400 | 0.4198 | - | - | - | - | - | | 2.0244 | 90600 | 0.4093 | - | - | - | - | - | | 2.0289 | 90800 | 0.4006 | - | - | - | - | - | | 2.0334 | 91000 | 0.4161 | - | - | - | - | - | | 2.0379 | 91200 | 0.4149 | - | - | - | - | - | | 2.0423 | 91400 | 0.4108 | - | - | - | - | - | | 2.0468 | 91600 | 0.4085 | - | - | - | - | - | | 2.0513 | 91800 | 0.4167 | - | - | - | - | - | | 2.0557 | 92000 | 0.4148 | - | - | - | - | - | | 2.0602 | 92200 | 0.4149 | - | - | - | - | - | | 2.0647 | 92400 | 0.4127 | - | - | - | - | - | | 2.0691 | 92600 | 0.4108 | - | - | - | - | - | | 2.0736 | 92800 | 0.4071 | - | - | - | - | - | | 2.0781 | 93000 | 0.4199 | - | - | - | - | - | | 2.0825 | 93200 | 0.4083 | - | - | - | - | - | | 2.0870 | 93400 | 0.4015 | - | - | - | - | - | | 2.0915 | 93600 | 0.4044 | - | - | - | - | - | | 2.0959 | 93800 | 0.4108 | - | - | - | - | - | | 2.1004 | 94000 | 0.4054 | - | - | - | - | - | | 2.1049 | 94200 | 0.4197 | - | - | - | - | - | | 2.1094 | 94400 | 0.4112 | - | - | - | - | - | | 2.1138 | 94600 | 0.4108 | - | - | - | - | - | | 2.1183 | 94800 | 0.4069 | - | - | - | - | - | | 2.1228 | 95000 | 0.4117 | - | - | - | - | - | | 2.1272 | 95200 | 0.4016 | - | - | - | - | - | | 2.1317 | 95400 | 0.4074 | - | - | - | - | - | | 2.1362 | 95600 | 0.4115 | - | - | - | - | - | | 2.1406 | 95800 | 0.4039 | - | - | - | - | - | | 2.1451 | 96000 | 0.4086 | - | - | - | - | - | | 2.1496 | 96200 | 0.4054 | - | - | - | - | - | | 2.1540 | 96400 | 0.4043 | - | - | - | - | - | | 2.1585 | 96600 | 0.4064 | - | - | - | - | - | | 2.1630 | 96800 | 0.402 | - | - | - | - | - | | 2.1675 | 97000 | 0.4173 | - | - | - | - | - | | 2.1719 | 97200 | 0.4022 | - | - | - | - | - | | 2.1764 | 97400 | 0.4059 | - | - | - | - | - | | 2.1809 | 97600 | 0.4092 | - | - | - | - | - | | 2.1853 | 97800 | 0.4017 | - | - | - | - | - | | 2.1898 | 98000 | 0.4183 | - | - | - | - | - | | 2.1943 | 98200 | 0.4008 | - | - | - | - | - | | 2.1987 | 98400 | 0.4075 | - | - | - | - | - | | 2.2032 | 98600 | 0.4057 | - | - | - | - | - | | 2.2077 | 98800 | 0.4054 | - | - | - | - | - | | 2.2121 | 99000 | 0.4007 | - | - | - | - | - | | 2.2166 | 99200 | 0.4054 | - | - | - | - | - | | 2.2211 | 99400 | 0.4088 | - | - | - | - | - | | 2.2255 | 99600 | 0.4074 | - | - | - | - | - | | 2.2300 | 99800 | 0.3997 | - | - | - | - | - | | 2.2345 | 100000 | 0.4007 | - | - | - | - | - | | 2.2390 | 100200 | 0.4144 | - | - | - | - | - | | 2.2434 | 100400 | 0.4093 | - | - | - | - | - | | 2.2479 | 100600 | 0.3969 | - | - | - | - | - | | 2.2524 | 100800 | 0.4079 | - | - | - | - | - | | 2.2568 | 101000 | 0.4082 | - | - | - | - | - | | 2.2613 | 101200 | 0.4076 | - | - | - | - | - | | 2.2658 | 101400 | 0.4007 | - | - | - | - | - | | 2.2702 | 101600 | 0.4045 | - | - | - | - | - | | 2.2747 | 101800 | 0.4039 | - | - | - | - | - | | 2.2792 | 102000 | 0.4089 | - | - | - | - | - | | 2.2836 | 102200 | 0.4016 | - | - | - | - | - | | 2.2881 | 102400 | 0.4118 | - | - | - | - | - | | 2.2926 | 102600 | 0.4071 | - | - | - | - | - | | 2.2971 | 102800 | 0.4074 | - | - | - | - | - | | 2.3015 | 103000 | 0.4093 | - | - | - | - | - | | 2.3060 | 103200 | 0.4043 | - | - | - | - | - | | 2.3105 | 103400 | 0.4132 | - | - | - | - | - | | 2.3149 | 103600 | 0.4084 | - | - | - | - | - | | 2.3194 | 103800 | 0.4078 | - | - | - | - | - | | 2.3239 | 104000 | 0.4029 | - | - | - | - | - | | 2.3283 | 104200 | 0.3945 | - | - | - | - | - | | 2.3328 | 104400 | 0.4047 | - | - | - | - | - | | 2.3373 | 104600 | 0.4062 | - | - | - | - | - | | 2.3417 | 104800 | 0.4154 | - | - | - | - | - | | 2.3462 | 105000 | 0.4022 | - | - | - | - | - | | 2.3507 | 105200 | 0.4068 | - | - | - | - | - | | 2.3551 | 105400 | 0.3987 | - | - | - | - | - | | 2.3596 | 105600 | 0.4018 | - | - | - | - | - | | 2.3641 | 105800 | 0.3947 | - | - | - | - | - | | 2.3686 | 106000 | 0.4102 | - | - | - | - | - | | 2.3730 | 106200 | 0.402 | - | - | - | - | - | | 2.3775 | 106400 | 0.4016 | - | - | - | - | - | | 2.3820 | 106600 | 0.3982 | - | - | - | - | - | | 2.3864 | 106800 | 0.4021 | - | - | - | - | - | | 2.3909 | 107000 | 0.4134 | - | - | - | - | - | | 2.3954 | 107200 | 0.4005 | - | - | - | - | - | | 2.3998 | 107400 | 0.3993 | - | - | - | - | - | | 2.4043 | 107600 | 0.4007 | - | - | - | - | - | | 2.4088 | 107800 | 0.3983 | - | - | - | - | - | | 2.4132 | 108000 | 0.4131 | - | - | - | - | - | | 2.4177 | 108200 | 0.4021 | - | - | - | - | - | | 2.4222 | 108400 | 0.4078 | - | - | - | - | - | | 2.4267 | 108600 | 0.3991 | - | - | - | - | - | | 2.4311 | 108800 | 0.4112 | - | - | - | - | - | | 2.4356 | 109000 | 0.3965 | - | - | - | - | - | | 2.4401 | 109200 | 0.3942 | - | - | - | - | - | | 2.4445 | 109400 | 0.4043 | - | - | - | - | - | | 2.4490 | 109600 | 0.4001 | - | - | - | - | - | | 2.4535 | 109800 | 0.4033 | - | - | - | - | - | | 2.4579 | 110000 | 0.4097 | - | - | - | - | - | | 2.4624 | 110200 | 0.3999 | - | - | - | - | - | | 2.4669 | 110400 | 0.4038 | - | - | - | - | - | | 2.4713 | 110600 | 0.4091 | - | - | - | - | - | | 2.4758 | 110800 | 0.4062 | - | - | - | - | - | | 2.4803 | 111000 | 0.4015 | - | - | - | - | - | | 2.4847 | 111200 | 0.3969 | - | - | - | - | - | | 2.4892 | 111400 | 0.4044 | - | - | - | - | - | | 2.4937 | 111600 | 0.404 | - | - | - | - | - | | 2.4982 | 111800 | 0.4003 | - | - | - | - | - | | 2.5026 | 112000 | 0.3996 | - | - | - | - | - | | 2.5071 | 112200 | 0.4039 | - | - | - | - | - | | 2.5116 | 112400 | 0.4054 | - | - | - | - | - | | 2.5160 | 112600 | 0.4041 | - | - | - | - | - | | 2.5205 | 112800 | 0.4039 | - | - | - | - | - | | 2.5250 | 113000 | 0.3935 | - | - | - | - | - | | 2.5294 | 113200 | 0.4098 | - | - | - | - | - | | 2.5339 | 113400 | 0.3955 | - | - | - | - | - | | 2.5384 | 113600 | 0.3939 | - | - | - | - | - | | 2.5428 | 113800 | 0.3986 | - | - | - | - | - | | 2.5473 | 114000 | 0.3927 | - | - | - | - | - | | 2.5518 | 114200 | 0.3989 | - | - | - | - | - | | 2.5563 | 114400 | 0.4011 | - | - | - | - | - | | 2.5607 | 114600 | 0.3993 | - | - | - | - | - | | 2.5652 | 114800 | 0.4006 | - | - | - | - | - | | 2.5697 | 115000 | 0.4026 | - | - | - | - | - | | 2.5741 | 115200 | 0.3936 | - | - | - | - | - | | 2.5786 | 115400 | 0.4029 | - | - | - | - | - | | 2.5831 | 115600 | 0.4078 | - | - | - | - | - | | 2.5875 | 115800 | 0.4026 | - | - | - | - | - | | 2.5920 | 116000 | 0.3987 | - | - | - | - | - | | 2.5965 | 116200 | 0.4067 | - | - | - | - | - | | 2.6009 | 116400 | 0.3952 | - | - | - | - | - | | 2.6054 | 116600 | 0.3915 | - | - | - | - | - | | 2.6099 | 116800 | 0.4019 | - | - | - | - | - | | 2.6143 | 117000 | 0.4038 | - | - | - | - | - | | 2.6188 | 117200 | 0.3982 | - | - | - | - | - | | 2.6233 | 117400 | 0.3972 | - | - | - | - | - | | 2.6278 | 117600 | 0.3969 | - | - | - | - | - | | 2.6322 | 117800 | 0.4004 | - | - | - | - | - | | 2.6367 | 118000 | 0.3998 | - | - | - | - | - | | 2.6412 | 118200 | 0.402 | - | - | - | - | - | | 2.6456 | 118400 | 0.3958 | - | - | - | - | - | | 2.6501 | 118600 | 0.4061 | - | - | - | - | - | | 2.6546 | 118800 | 0.3983 | - | - | - | - | - | | 2.6590 | 119000 | 0.3952 | - | - | - | - | - | | 2.6635 | 119200 | 0.3995 | - | - | - | - | - | | 2.6680 | 119400 | 0.3949 | - | - | - | - | - | | 2.6724 | 119600 | 0.4066 | - | - | - | - | - | | 2.6769 | 119800 | 0.4058 | - | - | - | - | - | | 2.6814 | 120000 | 0.3977 | - | - | - | - | - | | 2.6859 | 120200 | 0.3945 | - | - | - | - | - | | 2.6903 | 120400 | 0.3919 | - | - | - | - | - | | 2.6948 | 120600 | 0.394 | - | - | - | - | - | | 2.6993 | 120800 | 0.4034 | - | - | - | - | - | | 2.7037 | 121000 | 0.3941 | - | - | - | - | - | | 2.7082 | 121200 | 0.4006 | - | - | - | - | - | | 2.7127 | 121400 | 0.4087 | - | - | - | - | - | | 2.7171 | 121600 | 0.3902 | - | - | - | - | - | | 2.7216 | 121800 | 0.3959 | - | - | - | - | - | | 2.7261 | 122000 | 0.3927 | - | - | - | - | - | | 2.7305 | 122200 | 0.3995 | - | - | - | - | - | | 2.7350 | 122400 | 0.3982 | - | - | - | - | - | | 2.7395 | 122600 | 0.3961 | - | - | - | - | - | | 2.7440 | 122800 | 0.3996 | - | - | - | - | - | | 2.7484 | 123000 | 0.3934 | - | - | - | - | - | | 2.7529 | 123200 | 0.3959 | - | - | - | - | - | | 2.7574 | 123400 | 0.393 | - | - | - | - | - | | 2.7618 | 123600 | 0.3894 | - | - | - | - | - | | 2.7663 | 123800 | 0.3925 | - | - | - | - | - | | 2.7708 | 124000 | 0.3962 | - | - | - | - | - | | 2.7752 | 124200 | 0.4018 | - | - | - | - | - | | 2.7797 | 124400 | 0.3931 | - | - | - | - | - | | 2.7842 | 124600 | 0.4 | - | - | - | - | - | | 2.7886 | 124800 | 0.3967 | - | - | - | - | - | | 2.7931 | 125000 | 0.3934 | - | - | - | - | - | | 2.7976 | 125200 | 0.3945 | - | - | - | - | - | | 2.8020 | 125400 | 0.3925 | - | - | - | - | - | | 2.8065 | 125600 | 0.3982 | - | - | - | - | - | | 2.8110 | 125800 | 0.4017 | - | - | - | - | - | | 2.8155 | 126000 | 0.3971 | - | - | - | - | - | | 2.8199 | 126200 | 0.3996 | - | - | - | - | - | | 2.8244 | 126400 | 0.3992 | - | - | - | - | - | | 2.8289 | 126600 | 0.3941 | - | - | - | - | - | | 2.8333 | 126800 | 0.387 | - | - | - | - | - | | 2.8378 | 127000 | 0.4012 | - | - | - | - | - | | 2.8423 | 127200 | 0.3965 | - | - | - | - | - | | 2.8467 | 127400 | 0.399 | - | - | - | - | - | | 2.8512 | 127600 | 0.4007 | - | - | - | - | - | | 2.8557 | 127800 | 0.3916 | - | - | - | - | - | | 2.8601 | 128000 | 0.3976 | - | - | - | - | - | | 2.8646 | 128200 | 0.3975 | - | - | - | - | - | | 2.8691 | 128400 | 0.4022 | - | - | - | - | - | | 2.8736 | 128600 | 0.4089 | - | - | - | - | - | | 2.8780 | 128800 | 0.3981 | - | - | - | - | - | | 2.8825 | 129000 | 0.3906 | - | - | - | - | - | | 2.8870 | 129200 | 0.3961 | - | - | - | - | - | | 2.8914 | 129400 | 0.4014 | - | - | - | - | - | | 2.8959 | 129600 | 0.396 | - | - | - | - | - | | 2.9004 | 129800 | 0.3978 | - | - | - | - | - | | 2.9048 | 130000 | 0.398 | - | - | - | - | - | | 2.9093 | 130200 | 0.3871 | - | - | - | - | - | | 2.9138 | 130400 | 0.3913 | - | - | - | - | - | | 2.9182 | 130600 | 0.3899 | - | - | - | - | - | | 2.9227 | 130800 | 0.3912 | - | - | - | - | - | | 2.9272 | 131000 | 0.3849 | - | - | - | - | - | | 2.9316 | 131200 | 0.3936 | - | - | - | - | - | | 2.9361 | 131400 | 0.3976 | - | - | - | - | - | | 2.9406 | 131600 | 0.3941 | - | - | - | - | - | | 2.9451 | 131800 | 0.3974 | - | - | - | - | - | | 2.9495 | 132000 | 0.3885 | - | - | - | - | - | | 2.9540 | 132200 | 0.3879 | - | - | - | - | - | | 2.9585 | 132400 | 0.3988 | - | - | - | - | - | | 2.9629 | 132600 | 0.3947 | - | - | - | - | - | | 2.9674 | 132800 | 0.3991 | - | - | - | - | - | | 2.9719 | 133000 | 0.3884 | - | - | - | - | - | | 2.9763 | 133200 | 0.3934 | - | - | - | - | - | | 2.9808 | 133400 | 0.3989 | - | - | - | - | - | | 2.9853 | 133600 | 0.3942 | - | - | - | - | - | | 2.9897 | 133800 | 0.3943 | - | - | - | - | - | | 2.9942 | 134000 | 0.3951 | - | - | - | - | - | | 2.9987 | 134200 | 0.4002 | - | - | - | - | - | | 3.0032 | 134400 | 0.3819 | - | - | - | - | - | | 3.0076 | 134600 | 0.3727 | - | - | - | - | - | | 3.0121 | 134800 | 0.3704 | - | - | - | - | - | | 3.0166 | 135000 | 0.3762 | - | - | - | - | - | | 3.0210 | 135200 | 0.3735 | - | - | - | - | - | | 3.0255 | 135400 | 0.3673 | - | - | - | - | - | | 3.0300 | 135600 | 0.3708 | - | - | - | - | - | | 3.0344 | 135800 | 0.3703 | - | - | - | - | - | | 3.0389 | 136000 | 0.3789 | - | - | - | - | - | | 3.0434 | 136200 | 0.3765 | - | - | - | - | - | | 3.0478 | 136400 | 0.3658 | - | - | - | - | - | | 3.0523 | 136600 | 0.3762 | - | - | - | - | - | | 3.0568 | 136800 | 0.375 | - | - | - | - | - | | 3.0612 | 137000 | 0.3715 | - | - | - | - | - | | 3.0657 | 137200 | 0.3812 | - | - | - | - | - | | 3.0702 | 137400 | 0.3744 | - | - | - | - | - | | 3.0747 | 137600 | 0.3737 | - | - | - | - | - | | 3.0791 | 137800 | 0.3788 | - | - | - | - | - | | 3.0836 | 138000 | 0.3693 | - | - | - | - | - | | 3.0881 | 138200 | 0.3784 | - | - | - | - | - | | 3.0925 | 138400 | 0.3695 | - | - | - | - | - | | 3.0970 | 138600 | 0.374 | - | - | - | - | - | | 3.1015 | 138800 | 0.3679 | - | - | - | - | - | | 3.1059 | 139000 | 0.3764 | - | - | - | - | - | | 3.1104 | 139200 | 0.3696 | - | - | - | - | - | | 3.1149 | 139400 | 0.3756 | - | - | - | - | - | | 3.1193 | 139600 | 0.3707 | - | - | - | - | - | | 3.1238 | 139800 | 0.3763 | - | - | - | - | - | | 3.1283 | 140000 | 0.3721 | - | - | - | - | - | | 3.1328 | 140200 | 0.3732 | - | - | - | - | - | | 3.1372 | 140400 | 0.3745 | - | - | - | - | - | | 3.1417 | 140600 | 0.3655 | - | - | - | - | - | | 3.1462 | 140800 | 0.3695 | - | - | - | - | - | | 3.1506 | 141000 | 0.3695 | - | - | - | - | - | | 3.1551 | 141200 | 0.3725 | - | - | - | - | - | | 3.1596 | 141400 | 0.3696 | - | - | - | - | - | | 3.1640 | 141600 | 0.3751 | - | - | - | - | - | | 3.1685 | 141800 | 0.3802 | - | - | - | - | - | | 3.1730 | 142000 | 0.3787 | - | - | - | - | - | | 3.1774 | 142200 | 0.3733 | - | - | - | - | - | | 3.1819 | 142400 | 0.367 | - | - | - | - | - | | 3.1864 | 142600 | 0.3649 | - | - | - | - | - | | 3.1908 | 142800 | 0.3703 | - | - | - | - | - | | 3.1953 | 143000 | 0.3774 | - | - | - | - | - | | 3.1998 | 143200 | 0.3809 | - | - | - | - | - | | 3.2043 | 143400 | 0.3692 | - | - | - | - | - | | 3.2087 | 143600 | 0.3726 | - | - | - | - | - | | 3.2132 | 143800 | 0.3703 | - | - | - | - | - | | 3.2177 | 144000 | 0.3718 | - | - | - | - | - | | 3.2221 | 144200 | 0.3738 | - | - | - | - | - | | 3.2266 | 144400 | 0.3793 | - | - | - | - | - | | 3.2311 | 144600 | 0.3692 | - | - | - | - | - | | 3.2355 | 144800 | 0.371 | - | - | - | - | - | | 3.2400 | 145000 | 0.373 | - | - | - | - | - | | 3.2445 | 145200 | 0.3771 | - | - | - | - | - | | 3.2489 | 145400 | 0.3775 | - | - | - | - | - | | 3.2534 | 145600 | 0.3732 | - | - | - | - | - | | 3.2579 | 145800 | 0.3784 | - | - | - | - | - | | 3.2624 | 146000 | 0.3806 | - | - | - | - | - | | 3.2668 | 146200 | 0.3723 | - | - | - | - | - | | 3.2713 | 146400 | 0.38 | - | - | - | - | - | | 3.2758 | 146600 | 0.3702 | - | - | - | - | - | | 3.2802 | 146800 | 0.3715 | - | - | - | - | - | | 3.2847 | 147000 | 0.371 | - | - | - | - | - | | 3.2892 | 147200 | 0.3721 | - | - | - | - | - | | 3.2936 | 147400 | 0.3824 | - | - | - | - | - | | 3.2981 | 147600 | 0.3765 | - | - | - | - | - | | 3.3026 | 147800 | 0.386 | - | - | - | - | - | | 3.3070 | 148000 | 0.3777 | - | - | - | - | - | | 3.3115 | 148200 | 0.3772 | - | - | - | - | - | | 3.3160 | 148400 | 0.3717 | - | - | - | - | - | | 3.3204 | 148600 | 0.3749 | - | - | - | - | - | | 3.3249 | 148800 | 0.3743 | - | - | - | - | - | | 3.3294 | 149000 | 0.3747 | - | - | - | - | - | | 3.3339 | 149200 | 0.3691 | - | - | - | - | - | | 3.3383 | 149400 | 0.3783 | - | - | - | - | - | | 3.3428 | 149600 | 0.3717 | - | - | - | - | - | | 3.3473 | 149800 | 0.375 | - | - | - | - | - | | 3.3517 | 150000 | 0.38 | - | - | - | - | - | | 3.3562 | 150200 | 0.3652 | - | - | - | - | - | | 3.3607 | 150400 | 0.3742 | - | - | - | - | - | | 3.3651 | 150600 | 0.3698 | - | - | - | - | - | | 3.3696 | 150800 | 0.3743 | - | - | - | - | - | | 3.3741 | 151000 | 0.372 | - | - | - | - | - | | 3.3785 | 151200 | 0.3738 | - | - | - | - | - | | 3.3830 | 151400 | 0.381 | - | - | - | - | - | | 3.3875 | 151600 | 0.3743 | - | - | - | - | - | | 3.3920 | 151800 | 0.3804 | - | - | - | - | - | | 3.3964 | 152000 | 0.3681 | - | - | - | - | - | | 3.4009 | 152200 | 0.3703 | - | - | - | - | - | | 3.4054 | 152400 | 0.3659 | - | - | - | - | - | | 3.4098 | 152600 | 0.3703 | - | - | - | - | - | | 3.4143 | 152800 | 0.3778 | - | - | - | - | - | | 3.4188 | 153000 | 0.3748 | - | - | - | - | - | | 3.4232 | 153200 | 0.3845 | - | - | - | - | - | | 3.4277 | 153400 | 0.379 | - | - | - | - | - | | 3.4322 | 153600 | 0.3784 | - | - | - | - | - | | 3.4366 | 153800 | 0.3715 | - | - | - | - | - | | 3.4411 | 154000 | 0.3709 | - | - | - | - | - | | 3.4456 | 154200 | 0.3778 | - | - | - | - | - | | 3.4500 | 154400 | 0.3726 | - | - | - | - | - | | 3.4545 | 154600 | 0.3714 | - | - | - | - | - | | 3.4590 | 154800 | 0.3741 | - | - | - | - | - | | 3.4635 | 155000 | 0.3763 | - | - | - | - | - | | 3.4679 | 155200 | 0.3781 | - | - | - | - | - | | 3.4724 | 155400 | 0.37 | - | - | - | - | - | | 3.4769 | 155600 | 0.3745 | - | - | - | - | - | | 3.4813 | 155800 | 0.3646 | - | - | - | - | - | | 3.4858 | 156000 | 0.3718 | - | - | - | - | - | | 3.4903 | 156200 | 0.379 | - | - | - | - | - | | 3.4947 | 156400 | 0.3705 | - | - | - | - | - | | 3.4992 | 156600 | 0.3759 | - | - | - | - | - | | 3.5037 | 156800 | 0.3809 | - | - | - | - | - | | 3.5081 | 157000 | 0.3716 | - | - | - | - | - | | 3.5126 | 157200 | 0.3689 | - | - | - | - | - | | 3.5171 | 157400 | 0.3671 | - | - | - | - | - | | 3.5216 | 157600 | 0.3759 | - | - | - | - | - | | 3.5260 | 157800 | 0.3722 | - | - | - | - | - | | 3.5305 | 158000 | 0.3722 | - | - | - | - | - | | 3.5350 | 158200 | 0.3664 | - | - | - | - | - | | 3.5394 | 158400 | 0.3763 | - | - | - | - | - | | 3.5439 | 158600 | 0.3759 | - | - | - | - | - | | 3.5484 | 158800 | 0.3673 | - | - | - | - | - | | 3.5528 | 159000 | 0.3715 | - | - | - | - | - | | 3.5573 | 159200 | 0.3655 | - | - | - | - | - | | 3.5618 | 159400 | 0.3683 | - | - | - | - | - | | 3.5662 | 159600 | 0.3745 | - | - | - | - | - | | 3.5707 | 159800 | 0.3668 | - | - | - | - | - | | 3.5752 | 160000 | 0.3723 | 0.5115 (+0.2019) | 0.4211 (-0.1194) | 0.3553 (+0.0303) | 0.4120 (-0.0887) | 0.3961 (-0.0593) | | 3.5796 | 160200 | 0.3671 | - | - | - | - | - | | 3.5841 | 160400 | 0.3743 | - | - | - | - | - | | 3.5886 | 160600 | 0.3683 | - | - | - | - | - | | 3.5931 | 160800 | 0.3721 | - | - | - | - | - | | 3.5975 | 161000 | 0.3749 | - | - | - | - | - | | 3.6020 | 161200 | 0.3739 | - | - | - | - | - | | 3.6065 | 161400 | 0.3755 | - | - | - | - | - | | 3.6109 | 161600 | 0.3674 | - | - | - | - | - | | 3.6154 | 161800 | 0.3715 | - | - | - | - | - | | 3.6199 | 162000 | 0.3838 | - | - | - | - | - | | 3.6243 | 162200 | 0.3711 | - | - | - | - | - | | 3.6288 | 162400 | 0.3698 | - | - | - | - | - | | 3.6333 | 162600 | 0.3765 | - | - | - | - | - | | 3.6377 | 162800 | 0.3661 | - | - | - | - | - | | 3.6422 | 163000 | 0.3747 | - | - | - | - | - | | 3.6467 | 163200 | 0.3692 | - | - | - | - | - | | 3.6512 | 163400 | 0.3697 | - | - | - | - | - | | 3.6556 | 163600 | 0.3752 | - | - | - | - | - | | 3.6601 | 163800 | 0.3641 | - | - | - | - | - | | 3.6646 | 164000 | 0.3604 | - | - | - | - | - | | 3.6690 | 164200 | 0.3726 | - | - | - | - | - | | 3.6735 | 164400 | 0.3689 | - | - | - | - | - | | 3.6780 | 164600 | 0.3707 | - | - | - | - | - | | 3.6824 | 164800 | 0.3719 | - | - | - | - | - | | 3.6869 | 165000 | 0.3665 | - | - | - | - | - | | 3.6914 | 165200 | 0.3799 | - | - | - | - | - | | 3.6958 | 165400 | 0.3694 | - | - | - | - | - | | 3.7003 | 165600 | 0.3587 | - | - | - | - | - | | 3.7048 | 165800 | 0.3719 | - | - | - | - | - | | 3.7092 | 166000 | 0.3718 | - | - | - | - | - | | 3.7137 | 166200 | 0.366 | - | - | - | - | - | | 3.7182 | 166400 | 0.3665 | - | - | - | - | - | | 3.7227 | 166600 | 0.3728 | - | - | - | - | - | | 3.7271 | 166800 | 0.3636 | - | - | - | - | - | | 3.7316 | 167000 | 0.3658 | - | - | - | - | - | | 3.7361 | 167200 | 0.3701 | - | - | - | - | - | | 3.7405 | 167400 | 0.3664 | - | - | - | - | - | | 3.7450 | 167600 | 0.372 | - | - | - | - | - | | 3.7495 | 167800 | 0.3691 | - | - | - | - | - | | 3.7539 | 168000 | 0.3677 | - | - | - | - | - | | 3.7584 | 168200 | 0.3689 | - | - | - | - | - | | 3.7629 | 168400 | 0.3691 | - | - | - | - | - | | 3.7673 | 168600 | 0.3744 | - | - | - | - | - | | 3.7718 | 168800 | 0.3798 | - | - | - | - | - | | 3.7763 | 169000 | 0.3713 | - | - | - | - | - | | 3.7808 | 169200 | 0.3785 | - | - | - | - | - | | 3.7852 | 169400 | 0.3728 | - | - | - | - | - | | 3.7897 | 169600 | 0.3663 | - | - | - | - | - | | 3.7942 | 169800 | 0.3724 | - | - | - | - | - | | 3.7986 | 170000 | 0.3641 | - | - | - | - | - | | 3.8031 | 170200 | 0.3674 | - | - | - | - | - | | 3.8076 | 170400 | 0.3688 | - | - | - | - | - | | 3.8120 | 170600 | 0.3724 | - | - | - | - | - | | 3.8165 | 170800 | 0.3667 | - | - | - | - | - | | 3.8210 | 171000 | 0.3707 | - | - | - | - | - | | 3.8254 | 171200 | 0.3576 | - | - | - | - | - | | 3.8299 | 171400 | 0.3653 | - | - | - | - | - | | 3.8344 | 171600 | 0.3714 | - | - | - | - | - | | 3.8388 | 171800 | 0.3741 | - | - | - | - | - | | 3.8433 | 172000 | 0.3639 | - | - | - | - | - | | 3.8478 | 172200 | 0.3679 | - | - | - | - | - | | 3.8523 | 172400 | 0.3661 | - | - | - | - | - | | 3.8567 | 172600 | 0.3682 | - | - | - | - | - | | 3.8612 | 172800 | 0.3719 | - | - | - | - | - | | 3.8657 | 173000 | 0.3749 | - | - | - | - | - | | 3.8701 | 173200 | 0.3688 | - | - | - | - | - | | 3.8746 | 173400 | 0.3648 | - | - | - | - | - | | 3.8791 | 173600 | 0.3631 | - | - | - | - | - | | 3.8835 | 173800 | 0.3649 | - | - | - | - | - | | 3.8880 | 174000 | 0.3709 | - | - | - | - | - | | 3.8925 | 174200 | 0.3658 | - | - | - | - | - | | 3.8969 | 174400 | 0.374 | - | - | - | - | - | | 3.9014 | 174600 | 0.3655 | - | - | - | - | - | | 3.9059 | 174800 | 0.3715 | - | - | - | - | - | | 3.9104 | 175000 | 0.3636 | - | - | - | - | - | | 3.9148 | 175200 | 0.3637 | - | - | - | - | - | | 3.9193 | 175400 | 0.3704 | - | - | - | - | - | | 3.9238 | 175600 | 0.3582 | - | - | - | - | - | | 3.9282 | 175800 | 0.3737 | - | - | - | - | - | | 3.9327 | 176000 | 0.3608 | - | - | - | - | - | | 3.9372 | 176200 | 0.3628 | - | - | - | - | - | | 3.9416 | 176400 | 0.3744 | - | - | - | - | - | | 3.9461 | 176600 | 0.3634 | - | - | - | - | - | | 3.9506 | 176800 | 0.3656 | - | - | - | - | - | | 3.9550 | 177000 | 0.3687 | - | - | - | - | - | | 3.9595 | 177200 | 0.3757 | - | - | - | - | - | | 3.9640 | 177400 | 0.3694 | - | - | - | - | - | | 3.9684 | 177600 | 0.3726 | - | - | - | - | - | | 3.9729 | 177800 | 0.3644 | - | - | - | - | - | | 3.9774 | 178000 | 0.3684 | - | - | - | - | - | | 3.9819 | 178200 | 0.3736 | - | - | - | - | - | | 3.9863 | 178400 | 0.3635 | - | - | - | - | - | | 3.9908 | 178600 | 0.3678 | - | - | - | - | - | | 3.9953 | 178800 | 0.3648 | - | - | - | - | - | | 3.9997 | 179000 | 0.3732 | - | - | - | - | - | | 4.0042 | 179200 | 0.3522 | - | - | - | - | - | | 4.0087 | 179400 | 0.352 | - | - | - | - | - | | 4.0131 | 179600 | 0.3481 | - | - | - | - | - | | 4.0176 | 179800 | 0.3486 | - | - | - | - | - | | 4.0221 | 180000 | 0.3514 | - | - | - | - | - | | 4.0265 | 180200 | 0.3492 | - | - | - | - | - | | 4.0310 | 180400 | 0.3549 | - | - | - | - | - | | 4.0355 | 180600 | 0.3549 | - | - | - | - | - | | 4.0400 | 180800 | 0.356 | - | - | - | - | - | | 4.0444 | 181000 | 0.3482 | - | - | - | - | - | | 4.0489 | 181200 | 0.3538 | - | - | - | - | - | | 4.0534 | 181400 | 0.3538 | - | - | - | - | - | | 4.0578 | 181600 | 0.3617 | - | - | - | - | - | | 4.0623 | 181800 | 0.3653 | - | - | - | - | - | | 4.0668 | 182000 | 0.3512 | - | - | - | - | - | | 4.0712 | 182200 | 0.3545 | - | - | - | - | - | | 4.0757 | 182400 | 0.3447 | - | - | - | - | - | | 4.0802 | 182600 | 0.3564 | - | - | - | - | - | | 4.0846 | 182800 | 0.3573 | - | - | - | - | - | | 4.0891 | 183000 | 0.3527 | - | - | - | - | - | | 4.0936 | 183200 | 0.3442 | - | - | - | - | - | | 4.0980 | 183400 | 0.3523 | - | - | - | - | - | | 4.1025 | 183600 | 0.3587 | - | - | - | - | - | | 4.1070 | 183800 | 0.3572 | - | - | - | - | - | | 4.1115 | 184000 | 0.3565 | - | - | - | - | - | | 4.1159 | 184200 | 0.3565 | - | - | - | - | - | | 4.1204 | 184400 | 0.3525 | - | - | - | - | - | | 4.1249 | 184600 | 0.3486 | - | - | - | - | - | | 4.1293 | 184800 | 0.3534 | - | - | - | - | - | | 4.1338 | 185000 | 0.3555 | - | - | - | - | - | | 4.1383 | 185200 | 0.3606 | - | - | - | - | - | | 4.1427 | 185400 | 0.3599 | - | - | - | - | - | | 4.1472 | 185600 | 0.3501 | - | - | - | - | - | | 4.1517 | 185800 | 0.3514 | - | - | - | - | - | | 4.1561 | 186000 | 0.3516 | - | - | - | - | - | | 4.1606 | 186200 | 0.3556 | - | - | - | - | - | | 4.1651 | 186400 | 0.3451 | - | - | - | - | - | | 4.1696 | 186600 | 0.3513 | - | - | - | - | - | | 4.1740 | 186800 | 0.3536 | - | - | - | - | - | | 4.1785 | 187000 | 0.3538 | - | - | - | - | - | | 4.1830 | 187200 | 0.3552 | - | - | - | - | - | | 4.1874 | 187400 | 0.3554 | - | - | - | - | - | | 4.1919 | 187600 | 0.3541 | - | - | - | - | - | | 4.1964 | 187800 | 0.3524 | - | - | - | - | - | | 4.2008 | 188000 | 0.3641 | - | - | - | - | - | | 4.2053 | 188200 | 0.3487 | - | - | - | - | - | | 4.2098 | 188400 | 0.3483 | - | - | - | - | - | | 4.2142 | 188600 | 0.3575 | - | - | - | - | - | | 4.2187 | 188800 | 0.3542 | - | - | - | - | - | | 4.2232 | 189000 | 0.3551 | - | - | - | - | - | | 4.2276 | 189200 | 0.3479 | - | - | - | - | - | | 4.2321 | 189400 | 0.3489 | - | - | - | - | - | | 4.2366 | 189600 | 0.3484 | - | - | - | - | - | | 4.2411 | 189800 | 0.3555 | - | - | - | - | - | | 4.2455 | 190000 | 0.3548 | - | - | - | - | - | | 4.2500 | 190200 | 0.3634 | - | - | - | - | - | | 4.2545 | 190400 | 0.3561 | - | - | - | - | - | | 4.2589 | 190600 | 0.3562 | - | - | - | - | - | | 4.2634 | 190800 | 0.3554 | - | - | - | - | - | | 4.2679 | 191000 | 0.3558 | - | - | - | - | - | | 4.2723 | 191200 | 0.3525 | - | - | - | - | - | | 4.2768 | 191400 | 0.3499 | - | - | - | - | - | | 4.2813 | 191600 | 0.3504 | - | - | - | - | - | | 4.2857 | 191800 | 0.3525 | - | - | - | - | - | | 4.2902 | 192000 | 0.3506 | - | - | - | - | - | | 4.2947 | 192200 | 0.3493 | - | - | - | - | - | | 4.2992 | 192400 | 0.3437 | - | - | - | - | - | | 4.3036 | 192600 | 0.3516 | - | - | - | - | - | | 4.3081 | 192800 | 0.3581 | - | - | - | - | - | | 4.3126 | 193000 | 0.3561 | - | - | - | - | - | | 4.3170 | 193200 | 0.3453 | - | - | - | - | - | | 4.3215 | 193400 | 0.3468 | - | - | - | - | - | | 4.3260 | 193600 | 0.351 | - | - | - | - | - | | 4.3304 | 193800 | 0.3589 | - | - | - | - | - | | 4.3349 | 194000 | 0.3504 | - | - | - | - | - | | 4.3394 | 194200 | 0.3507 | - | - | - | - | - | | 4.3438 | 194400 | 0.355 | - | - | - | - | - | | 4.3483 | 194600 | 0.3534 | - | - | - | - | - | | 4.3528 | 194800 | 0.3536 | - | - | - | - | - | | 4.3572 | 195000 | 0.3554 | - | - | - | - | - | | 4.3617 | 195200 | 0.3521 | - | - | - | - | - | | 4.3662 | 195400 | 0.3469 | - | - | - | - | - | | 4.3707 | 195600 | 0.357 | - | - | - | - | - | | 4.3751 | 195800 | 0.3523 | - | - | - | - | - | | 4.3796 | 196000 | 0.3528 | - | - | - | - | - | | 4.3841 | 196200 | 0.3552 | - | - | - | - | - | | 4.3885 | 196400 | 0.3543 | - | - | - | - | - | | 4.3930 | 196600 | 0.3546 | - | - | - | - | - | | 4.3975 | 196800 | 0.3483 | - | - | - | - | - | | 4.4019 | 197000 | 0.3434 | - | - | - | - | - | | 4.4064 | 197200 | 0.3536 | - | - | - | - | - | | 4.4109 | 197400 | 0.3503 | - | - | - | - | - | | 4.4153 | 197600 | 0.3512 | - | - | - | - | - | | 4.4198 | 197800 | 0.3557 | - | - | - | - | - | | 4.4243 | 198000 | 0.3665 | - | - | - | - | - | | 4.4288 | 198200 | 0.3468 | - | - | - | - | - | | 4.4332 | 198400 | 0.3546 | - | - | - | - | - | | 4.4377 | 198600 | 0.358 | - | - | - | - | - | | 4.4422 | 198800 | 0.3542 | - | - | - | - | - | | 4.4466 | 199000 | 0.351 | - | - | - | - | - | | 4.4511 | 199200 | 0.3522 | - | - | - | - | - | | 4.4556 | 199400 | 0.3535 | - | - | - | - | - | | 4.4600 | 199600 | 0.3577 | - | - | - | - | - | | 4.4645 | 199800 | 0.3536 | - | - | - | - | - | | 4.4690 | 200000 | 0.3502 | - | - | - | - | - | | 4.4734 | 200200 | 0.3543 | - | - | - | - | - | | 4.4779 | 200400 | 0.3537 | - | - | - | - | - | | 4.4824 | 200600 | 0.3547 | - | - | - | - | - | | 4.4869 | 200800 | 0.3527 | - | - | - | - | - | | 4.4913 | 201000 | 0.3467 | - | - | - | - | - | | 4.4958 | 201200 | 0.3566 | - | - | - | - | - | | 4.5003 | 201400 | 0.3444 | - | - | - | - | - | | 4.5047 | 201600 | 0.3596 | - | - | - | - | - | | 4.5092 | 201800 | 0.3602 | - | - | - | - | - | | 4.5137 | 202000 | 0.3489 | - | - | - | - | - | | 4.5181 | 202200 | 0.3532 | - | - | - | - | - | | 4.5226 | 202400 | 0.3489 | - | - | - | - | - | | 4.5271 | 202600 | 0.354 | - | - | - | - | - | | 4.5315 | 202800 | 0.3531 | - | - | - | - | - | | 4.5360 | 203000 | 0.3559 | - | - | - | - | - | | 4.5405 | 203200 | 0.3583 | - | - | - | - | - | | 4.5449 | 203400 | 0.3535 | - | - | - | - | - | | 4.5494 | 203600 | 0.3539 | - | - | - | - | - | | 4.5539 | 203800 | 0.352 | - | - | - | - | - | | 4.5584 | 204000 | 0.3545 | - | - | - | - | - | | 4.5628 | 204200 | 0.3536 | - | - | - | - | - | | 4.5673 | 204400 | 0.3547 | - | - | - | - | - | | 4.5718 | 204600 | 0.3436 | - | - | - | - | - | | 4.5762 | 204800 | 0.3469 | - | - | - | - | - | | 4.5807 | 205000 | 0.3545 | - | - | - | - | - | | 4.5852 | 205200 | 0.3603 | - | - | - | - | - | | 4.5896 | 205400 | 0.3489 | - | - | - | - | - | | 4.5941 | 205600 | 0.3592 | - | - | - | - | - | | 4.5986 | 205800 | 0.3538 | - | - | - | - | - | | 4.6030 | 206000 | 0.3536 | - | - | - | - | - | | 4.6075 | 206200 | 0.3643 | - | - | - | - | - | | 4.6120 | 206400 | 0.3561 | - | - | - | - | - | | 4.6165 | 206600 | 0.3492 | - | - | - | - | - | | 4.6209 | 206800 | 0.3494 | - | - | - | - | - | | 4.6254 | 207000 | 0.3537 | - | - | - | - | - | | 4.6299 | 207200 | 0.3516 | - | - | - | - | - | | 4.6343 | 207400 | 0.3615 | - | - | - | - | - | | 4.6388 | 207600 | 0.3556 | - | - | - | - | - | | 4.6433 | 207800 | 0.3516 | - | - | - | - | - | | 4.6477 | 208000 | 0.3534 | - | - | - | - | - | | 4.6522 | 208200 | 0.3571 | - | - | - | - | - | | 4.6567 | 208400 | 0.3432 | - | - | - | - | - | | 4.6611 | 208600 | 0.3583 | - | - | - | - | - | | 4.6656 | 208800 | 0.3488 | - | - | - | - | - | | 4.6701 | 209000 | 0.349 | - | - | - | - | - | | 4.6745 | 209200 | 0.3521 | - | - | - | - | - | | 4.6790 | 209400 | 0.358 | - | - | - | - | - | | 4.6835 | 209600 | 0.3512 | - | - | - | - | - | | 4.6880 | 209800 | 0.3498 | - | - | - | - | - | | 4.6924 | 210000 | 0.3519 | - | - | - | - | - | | 4.6969 | 210200 | 0.3506 | - | - | - | - | - | | 4.7014 | 210400 | 0.3553 | - | - | - | - | - | | 4.7058 | 210600 | 0.3468 | - | - | - | - | - | | 4.7103 | 210800 | 0.3512 | - | - | - | - | - | | 4.7148 | 211000 | 0.3454 | - | - | - | - | - | | 4.7192 | 211200 | 0.3501 | - | - | - | - | - | | 4.7237 | 211400 | 0.3583 | - | - | - | - | - | | 4.7282 | 211600 | 0.3582 | - | - | - | - | - | | 4.7326 | 211800 | 0.3564 | - | - | - | - | - | | 4.7371 | 212000 | 0.3515 | - | - | - | - | - | | 4.7416 | 212200 | 0.3514 | - | - | - | - | - | | 4.7461 | 212400 | 0.351 | - | - | - | - | - | | 4.7505 | 212600 | 0.3523 | - | - | - | - | - | | 4.7550 | 212800 | 0.3495 | - | - | - | - | - | | 4.7595 | 213000 | 0.3502 | - | - | - | - | - | | 4.7639 | 213200 | 0.3464 | - | - | - | - | - | | 4.7684 | 213400 | 0.3543 | - | - | - | - | - | | 4.7729 | 213600 | 0.3594 | - | - | - | - | - | | 4.7773 | 213800 | 0.3518 | - | - | - | - | - | | 4.7818 | 214000 | 0.3501 | - | - | - | - | - | | 4.7863 | 214200 | 0.3485 | - | - | - | - | - | | 4.7907 | 214400 | 0.351 | - | - | - | - | - | | 4.7952 | 214600 | 0.3523 | - | - | - | - | - | | 4.7997 | 214800 | 0.3546 | - | - | - | - | - | | 4.8041 | 215000 | 0.3515 | - | - | - | - | - | | 4.8086 | 215200 | 0.3505 | - | - | - | - | - | | 4.8131 | 215400 | 0.354 | - | - | - | - | - | | 4.8176 | 215600 | 0.3482 | - | - | - | - | - | | 4.8220 | 215800 | 0.3527 | - | - | - | - | - | | 4.8265 | 216000 | 0.3515 | - | - | - | - | - | | 4.8310 | 216200 | 0.3547 | - | - | - | - | - | | 4.8354 | 216400 | 0.3538 | - | - | - | - | - | | 4.8399 | 216600 | 0.3525 | - | - | - | - | - | | 4.8444 | 216800 | 0.3506 | - | - | - | - | - | | 4.8488 | 217000 | 0.3488 | - | - | - | - | - | | 4.8533 | 217200 | 0.3526 | - | - | - | - | - | | 4.8578 | 217400 | 0.3461 | - | - | - | - | - | | 4.8622 | 217600 | 0.3558 | - | - | - | - | - | | 4.8667 | 217800 | 0.3528 | - | - | - | - | - | | 4.8712 | 218000 | 0.3482 | - | - | - | - | - | | 4.8757 | 218200 | 0.3574 | - | - | - | - | - | | 4.8801 | 218400 | 0.344 | - | - | - | - | - | | 4.8846 | 218600 | 0.3509 | - | - | - | - | - | | 4.8891 | 218800 | 0.3415 | - | - | - | - | - | | 4.8935 | 219000 | 0.3419 | - | - | - | - | - | | 4.8980 | 219200 | 0.3549 | - | - | - | - | - | | 4.9025 | 219400 | 0.3413 | - | - | - | - | - | | 4.9069 | 219600 | 0.3538 | - | - | - | - | - | | 4.9114 | 219800 | 0.3476 | - | - | - | - | - | | 4.9159 | 220000 | 0.3464 | - | - | - | - | - | | 4.9203 | 220200 | 0.3445 | - | - | - | - | - | | 4.9248 | 220400 | 0.3519 | - | - | - | - | - | | 4.9293 | 220600 | 0.3529 | - | - | - | - | - | | 4.9337 | 220800 | 0.3399 | - | - | - | - | - | | 4.9382 | 221000 | 0.3463 | - | - | - | - | - | | 4.9427 | 221200 | 0.3489 | - | - | - | - | - | | 4.9472 | 221400 | 0.3437 | - | - | - | - | - | | 4.9516 | 221600 | 0.3474 | - | - | - | - | - | | 4.9561 | 221800 | 0.3593 | - | - | - | - | - | | 4.9606 | 222000 | 0.3476 | - | - | - | - | - | | 4.9650 | 222200 | 0.3466 | - | - | - | - | - | | 4.9695 | 222400 | 0.3551 | - | - | - | - | - | | 4.9740 | 222600 | 0.3498 | - | - | - | - | - | | 4.9784 | 222800 | 0.3534 | - | - | - | - | - | | 4.9829 | 223000 | 0.3404 | - | - | - | - | - | | 4.9874 | 223200 | 0.3482 | - | - | - | - | - | | 4.9918 | 223400 | 0.3464 | - | - | - | - | - | | 4.9963 | 223600 | 0.3561 | - | - | - | - | - | | -1 | -1 | - | 0.5149 (+0.2052) | 0.4090 (-0.1314) | 0.3596 (+0.0346) | 0.4065 (-0.0942) | 0.3917 (-0.0637) | </details> ### Framework Versions - Python: 3.11.0 - Sentence Transformers: 4.0.1 - Transformers: 4.50.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.2 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
MinaMila/llama_instbase_unlearned_GermanCredit_4ep_22
MinaMila
2025-03-31T15:54:07Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:MinaMila/llama3_unlearning_general_methode", "base_model:finetune:MinaMila/llama3_unlearning_general_methode", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T15:50:56Z
--- base_model: MinaMila/llama3_unlearning_general_methode tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MinaMila - **License:** apache-2.0 - **Finetuned from model :** MinaMila/llama3_unlearning_general_methode This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
TrishanuDas/sample_model_2
TrishanuDas
2025-03-31T15:52:42Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T15:52:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NoamDiamant52/model_gpt2-xl_mlp_out_lr5e5_steps45k_alpha0.01
NoamDiamant52
2025-03-31T15:50:08Z
0
0
saelens
[ "saelens", "region:us" ]
null
2025-03-31T15:49:52Z
--- library_name: saelens --- # SAEs for use with the SAELens library This repository contains the following SAEs: - layer_13_hook_mlp_out_out Load these SAEs using SAELens as below: ```python from sae_lens import SAE sae, cfg_dict, sparsity = SAE.from_pretrained("NoamDiamant52/model_gpt2-xl_mlp_out_lr5e5_steps45k_alpha0.01", "<sae_id>") ```
LandCruiser/sn29_omg_4
LandCruiser
2025-03-31T15:48:57Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T15:12:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
silviasapora/gemma-7b-sft-silvia_simpo-basic-5e-7-005-v141
silviasapora
2025-03-31T15:47:11Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma", "text-generation", "generated_from_trainer", "alignment-handbook", "trl", "orpo", "conversational", "dataset:argilla/dpo-mix-7k", "arxiv:2403.07691", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T15:11:36Z
--- datasets: - argilla/dpo-mix-7k library_name: transformers model_name: /home/silvias/docker/alignment-handbook/data/gemma-7b-sft-basic-5e-5-00-v130-full tags: - generated_from_trainer - alignment-handbook - trl - orpo licence: license --- # Model Card for /home/silvias/docker/alignment-handbook/data/gemma-7b-sft-basic-5e-5-00-v130-full This model is a fine-tuned version of [None](https://huggingface.co/None) on the [['argilla/dpo-mix-7k']](https://huggingface.co/datasets/['argilla/dpo-mix-7k']) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="silviasapora/gemma-7b-sft-silvia_simpo-basic-5e-7-005-v141", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/silvias/huggingface/runs/xf3dlli2) This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691). ### Framework versions - TRL: 0.15.2 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.21.1 ## Citations Cite ORPO as: ```bibtex @article{hong2024orpo, title = {{ORPO: Monolithic Preference Optimization without Reference Model}}, author = {Jiwoo Hong and Noah Lee and James Thorne}, year = 2024, eprint = {arXiv:2403.07691} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
MinaMila/llama_instbase_unlearned_GermanCredit_2ep_22
MinaMila
2025-03-31T15:46:17Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:MinaMila/llama3_unlearning_general_methode", "base_model:finetune:MinaMila/llama3_unlearning_general_methode", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T15:43:19Z
--- base_model: MinaMila/llama3_unlearning_general_methode tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MinaMila - **License:** apache-2.0 - **Finetuned from model :** MinaMila/llama3_unlearning_general_methode This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Jonjew/AlinaLi
Jonjew
2025-03-31T15:45:50Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T15:45:43Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: alinali output: url: images/Alina Li_00073_.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: alinali license: unknown --- # Alina Li <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;829081&#x2F;alina-li-flux-adult-film-actress?modelVersionId&#x3D;927249 Trigger alinali ## Trigger words You should use `alinali` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/AlinaLi/tree/main) them in the Files & versions tab.
RaZiX/xlm-roberta-csfd-20
RaZiX
2025-03-31T15:44:31Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-31T15:41:05Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm_roberta_top20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-csfd-20 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1968 - Accuracy: 0.9607 - F1: 0.9610 - Precision: 0.9627 - Recall: 0.9607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.8509 | 1.0 | 584 | 0.6074 | 0.8533 | 0.8547 | 0.8792 | 0.8533 | | 0.5597 | 2.0 | 1168 | 0.3286 | 0.9167 | 0.9176 | 0.9303 | 0.9167 | | 0.2302 | 3.0 | 1752 | 0.2387 | 0.9413 | 0.9422 | 0.9491 | 0.9413 | | 0.1052 | 4.0 | 2336 | 0.2314 | 0.9487 | 0.9494 | 0.9528 | 0.9487 | | 0.0662 | 5.0 | 2920 | 0.1968 | 0.9607 | 0.9610 | 0.9627 | 0.9607 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.1
Devi-Ayyagari/yolov7_OzFish
Devi-Ayyagari
2025-03-31T15:44:03Z
0
0
null
[ "region:us" ]
null
2025-03-31T15:41:14Z
## Dataset: OzFish ## OzFish is a collection of ~80k fish crops, ~45k bounding box annotations derived from Baited Remote Underwater Video Stations (BRUVS) and comprised of 70 families, 200 genera and 507 species of fish. This dataset is completely open and free to use for advancing machine learning for the classification of fish from underwater imagery. This dataset has been developed as part of the Australian Research Data Commons Data Discoveries program with the aim to further advance research into machine learning for the automated detection of fish from video. There are also 16 species with more than 1000 detections and 620 different species with 80983 detections from 64385 images from 1013 videos. The images also have bounding boxes with JSON metadata. Data Access link: https://apps.aims.gov.au/metadata/view/38c829d4-6b6d-44a1-9476-f9b0955ce0b8 ## Model: YOLOv7 ## The model was trained using the default hyperparameters of YOLOv7 model. No pre-processing was done before training. The model was trained for 500 epochs and the model with the best validation mAP is uploaded to the repo.
i-LUDUS/DeepSeek-R1-Fine-tuned-Medical
i-LUDUS
2025-03-31T15:43:49Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T15:33:37Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** i-LUDUS - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Joerr/mistral-7b-v3_demo
Joerr
2025-03-31T15:43:00Z
0
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T15:20:09Z
--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Joerr - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Hammer-1.5b-GGUF
mradermacher
2025-03-31T15:42:59Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:Salesforce/xlam-function-calling-60k", "dataset:MadeAgents/xlam-irrelevance-7.5k", "base_model:MadeAgents/Hammer-1.5b", "base_model:quantized:MadeAgents/Hammer-1.5b", "license:cc-by-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T15:36:57Z
--- base_model: MadeAgents/Hammer-1.5b datasets: - Salesforce/xlam-function-calling-60k - MadeAgents/xlam-irrelevance-7.5k language: - en library_name: transformers license: cc-by-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MadeAgents/Hammer-1.5b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.Q6_K.gguf) | Q6_K | 1.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Hammer-1.5b-GGUF/resolve/main/Hammer-1.5b.f16.gguf) | f16 | 3.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
RowekBrah/finetune_colpali-v1_3-4bit_v2
RowekBrah
2025-03-31T15:42:07Z
0
0
transformers
[ "transformers", "safetensors", "colpali", "generated_from_trainer", "base_model:vidore/colpaligemma-3b-pt-448-base", "base_model:finetune:vidore/colpaligemma-3b-pt-448-base", "license:gemma", "endpoints_compatible", "region:us" ]
null
2025-03-31T15:42:02Z
--- library_name: transformers license: gemma base_model: vidore/colpaligemma-3b-pt-448-base tags: - colpali - generated_from_trainer model-index: - name: finetune_colpali-v1_3-4bit_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune_colpali-v1_3-4bit_v2 This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on the RowekBrah/ColPali_ann_rep_v2_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0670 - Model Preparation Time: 0.0056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |:-------------:|:------:|:----:|:---------------:|:----------------------:| | No log | 0.0012 | 1 | 0.2103 | 0.0056 | | 0.4896 | 0.1238 | 100 | 0.1170 | 0.0056 | | 0.5575 | 0.2476 | 200 | 0.0940 | 0.0056 | | 0.3973 | 0.3714 | 300 | 0.0920 | 0.0056 | | 0.4478 | 0.4952 | 400 | 0.0836 | 0.0056 | | 0.2364 | 0.6190 | 500 | 0.0808 | 0.0056 | | 0.2158 | 0.7428 | 600 | 0.0742 | 0.0056 | | 0.339 | 0.8666 | 700 | 0.0700 | 0.0056 | | 0.2052 | 0.9904 | 800 | 0.0704 | 0.0056 | | 0.1546 | 1.1151 | 900 | 0.0672 | 0.0056 | | 0.2003 | 1.2389 | 1000 | 0.0672 | 0.0056 | | 0.1242 | 1.3627 | 1100 | 0.0676 | 0.0056 | | 0.283 | 1.4865 | 1200 | 0.0674 | 0.0056 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
RaZiX/xlm-roberta-csfd-10
RaZiX
2025-03-31T15:40:30Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-31T15:25:10Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm_roberta_top10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-csfd-10 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1591 - Accuracy: 0.9613 - F1: 0.9617 - Precision: 0.9630 - Recall: 0.9613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 292 | 0.5781 | 0.8427 | 0.8432 | 0.8710 | 0.8427 | | 1.0772 | 2.0 | 584 | 0.2642 | 0.9213 | 0.9213 | 0.9327 | 0.9213 | | 1.0772 | 3.0 | 876 | 0.2215 | 0.9413 | 0.9408 | 0.9484 | 0.9413 | | 0.1222 | 4.0 | 1168 | 0.1546 | 0.96 | 0.9604 | 0.9618 | 0.9600 | | 0.1222 | 5.0 | 1460 | 0.1591 | 0.9613 | 0.9617 | 0.9630 | 0.9613 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.1
TrishanuDas/sample_model
TrishanuDas
2025-03-31T15:37:27Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T15:35:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bowilleatyou/a9290eb1-765d-406b-acbe-cd6ba73ce94d
bowilleatyou
2025-03-31T15:36:52Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:35:50Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bowilleatyou/4e64ae75-c9b2-48b5-aa0e-a88d56c5854a
bowilleatyou
2025-03-31T15:36:45Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T11:35:26Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-Instruct-v0.1-awq
RichardErkhov
2025-03-31T15:36:21Z
0
0
null
[ "safetensors", "llama", "arxiv:2406.08464", "arxiv:2407.21783", "4-bit", "awq", "region:us" ]
null
2025-03-31T15:32:09Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.1-Swallow-8B-Instruct-v0.1 - AWQ - Model creator: https://huggingface.co/tokyotech-llm/ - Original model: https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1/ Original model description: --- language: - en - ja library_name: transformers pipeline_tag: text-generation license: - llama3.1 - gemma model_type: llama datasets: - lmsys/lmsys-chat-1m - tokyotech-llm/lmsys-chat-1m-synth - argilla/magpie-ultra-v0.1 - tokyotech-llm/swallow-magpie-ultra-v0.1 - tokyotech-llm/swallow-gemma-magpie-v0.1 --- # Llama 3.1 Swallow - Built with Llama Llama 3.1 Swallow is a series of large language models (8B, 70B) that were built by continual pre-training on the [Meta Llama 3.1](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f) models. Llama 3.1 Swallow enhanced the Japanese language capabilities of the original Llama 3.1 while retaining the English language capabilities. We use approximately 200 billion tokens that were sampled from a large Japanese web corpus (Swallow Corpus Version 2), Japanese and English Wikipedia articles, and mathematical and coding contents, etc (see the Training Datasets section of the base model) for continual pre-training. The instruction-tuned models (Instruct) were built by supervised fine-tuning (SFT) on the synthetic data specially built for Japanese. See the Swallow Model Index section to find other model variants. # Release History - **October 08, 2024**: Released [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1). ## Swallow Model Index |Model|Llama-3.1-Swallow v0.1|Llama-3.1-Swallow-Instruct v0.1|Llama-3.1-Swallow v0.2|Llama-3.1-Swallow-Instruct v0.2|Llama-3.1-Swallow-Instruct v0.3| |---|---|---|---|---|---| |8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3) |70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) | | | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3) | ![logo](./logo.png) The website [https://swallow-llm.github.io/](https://swallow-llm.github.io/) provides large language models developed by the Swallow team. ## Model Details * **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture. * **Language(s)**: Japanese English * **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) * **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer. * **Contact**: swallow[at]nlp.c.titech.ac.jp ## Model Performance ### Japanese tasks |Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg| |---|---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| | | |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| | | RakutenAI-7B-chat | 0.9035 | 0.2600 | 0.4619 | 0.8647 | 0.1339 | 0.2120 | 0.2667 | 0.1966 | 0.4504 | 0.2299 | 0.3980 | | Qwen2-7B-Instruct | 0.8856 | 0.3902 | 0.3859 | 0.8967 | 0.1277 | 0.5720 | 0.2041 | 0.1909 | 0.5713 | **0.5683** | 0.4793 | | Qwen2.5-7B-Instruct | 0.9151 | 0.4293 | 0.3910 | 0.8908 | 0.1676 | **0.6240** | 0.2108 | 0.1916 | **0.6252** | 0.5305 | 0.4976 | | Tanuki-8B-dpo-v1.0 | 0.2770 | 0.2937 | 0.3710 | 0.6669 | 0.1016 | 0.4280 | 0.2385 | 0.1820 | 0.3078 | 0.2555 | 0.3122 | | Llama 3 8B Instruct | 0.8785 | 0.3812 | 0.3936 | 0.8955 | 0.1273 | 0.4160 | 0.2143 | 0.2035 | 0.4719 | 0.2872 | 0.4269 | | Llama 3.1 8B Instruct | 0.8829 | 0.4272 | 0.4112 | 0.8856 | 0.1481 | 0.5280 | 0.2174 | 0.1990 | 0.5086 | 0.4976 | 0.4706 | | Llama 3 Youko 8B Instruct | 0.9196 | 0.4850 | 0.5178 | 0.9001 | 0.2085 | 0.4680 | 0.2559 | 0.1906 | 0.4691 | 0.2695 | 0.4684 | | Llama-3-ELYZA-JP-8B | 0.9017 | 0.5124 | 0.5016 | 0.9113 | 0.1677 | 0.4600 | 0.2509 | 0.1846 | 0.4829 | 0.3811 | 0.4754 | | Llama 3 heron brain 8B v0.3 | 0.9231 | 0.4933 | 0.5694 | 0.9056 | **0.2178** | 0.4560 | 0.2771 | 0.2168 | 0.4993 | 0.3177 | 0.4876 | | Llama 3 Swallow 8B Instruct | 0.9178 | 0.4963 | 0.5168 | 0.9088 | 0.1296 | 0.4880 | 0.2522 | 0.2254 | 0.4835 | 0.3927 | 0.4811 | | Llama 3.1 Swallow 8B Instruct | **0.9240** | **0.5874** | **0.5736** | **0.9170** | 0.1380 | 0.5080 | **0.2820** | **0.2282** | 0.5301 | 0.3665 | **0.5055** | ### English tasks |Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg| |---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot| | | |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1| | | RakutenAI-7B-chat | 0.4160 | 0.5971 | **0.6465** | 0.3091 | 0.8886 | 0.5757 | 0.3139 | 0.4958 | 0.2671 | 0.5011 | | Qwen2-7B-Instruct | 0.4000 | 0.5468 | 0.6146 | 0.3518 | 0.8852 | 0.7073 | 0.6300 | 0.3101 | 0.6354 | 0.5646 | | Qwen2.5-7B-Instruct | **0.4280** | 0.5187 | 0.6240 | 0.2626 | 0.8761 | **0.7419** | 0.7415 | 0.2150 | **0.6360** | 0.5604 | | Tanuki-8B-dpo-v1.0 | 0.3340 | 0.2838 | 0.4696 | 0.2395 | 0.8168 | 0.3772 | 0.4867 | 0.3350 | 0.2805 | 0.4026 | | Llama 3 8B Instruct | 0.3880 | 0.6687 | 0.5834 | 0.3743 | 0.8903 | 0.6567 | **0.7453** | 0.6478 | 0.5415 | 0.6107 | | Llama 3.1 8B Instruct | 0.3700 | **0.6994** | 0.5920 | **0.3783** | **0.9037** | 0.6809 | 0.7430 | **0.6928** | 0.6293 | **0.6321** | | Llama 3 Youko 8B Instruct | 0.4080 | 0.6129 | 0.5983 | 0.3370 | 0.8981 | 0.5964 | 0.5618 | 0.4012 | 0.2750 | 0.5209 | | Llama-3-ELYZA-JP-8B | 0.3200 | 0.5502 | 0.5224 | 0.3631 | 0.8809 | 0.5875 | 0.5701 | 0.3213 | 0.4604 | 0.5084 | | Llama 3 heron brain 8B v0.3 | 0.3580 | 0.6563 | 0.5686 | 0.3726 | 0.9002 | 0.6213 | 0.5777 | 0.6409 | 0.3720 | 0.5631 | | Llama 3 Swallow 8B Instruct | 0.3720 | 0.6557 | 0.5861 | 0.3648 | 0.9002 | 0.6315 | 0.5959 | 0.6391 | 0.4238 | 0.5743 | | Llama 3.1 Swallow 8B Instruct | 0.3900 | 0.6488 | 0.6151 | 0.3553 | 0.8912 | 0.6237 | 0.6050 | 0.6417 | 0.3787 | 0.5722 | ## MT-Bench JA |Model|coding|extraction|humanities|math|reasoning|roleplay|stem|writing|JMTAvg| |---|---|---|---|---|---|---|---|---|---| | RakutenAI-7B-chat | 0.2475 | 0.3522 | 0.4692 | 0.2140 | 0.3926 | 0.4427 | 0.3977 | 0.4434 | 0.3699 | | Qwen2-7B-Instruct | 0.4635 | 0.6909 | 0.6857 | **0.5970** | 0.5042 | 0.6667 | 0.5353 | 0.6808 | 0.6030 | | Qwen2.5-7B-Instruct | **0.5111** | 0.7489 | 0.6913 | 0.5742 | 0.4851 | **0.6810** | 0.5350 | 0.6810 | **0.6134** | | Tanuki-8B-dpo-v1.0 | 0.3019 | 0.4772 | 0.5658 | 0.4129 | 0.3590 | 0.5120 | 0.4770 | 0.6159 | 0.4652 | | Llama 3 8B Instruct | 0.3744 | 0.6876 | 0.6225 | 0.2070 | 0.5032 | 0.5248 | 0.5326 | 0.4884 | 0.4926 | | Llama 3.1 8B Instruct | 0.3234 | 0.7362 | 0.4973 | 0.4787 | 0.3210 | 0.4670 | 0.4656 | 0.4314 | 0.4651 | | Llama 3 Youko 8B Instruct | 0.2950 | 0.7332 | **0.7125** | 0.2533 | 0.4987 | 0.6514 | **0.5438** | **0.7091** | 0.5496 | | Llama-3-ELYZA-JP-8B | 0.2908 | 0.6421 | 0.6406 | 0.3088 | **0.5500** | 0.6740 | 0.5251 | 0.6744 | 0.5382 | | Llama 3 heron brain 8B v0.3 | 0.2929 | 0.5635 | 0.6241 | 0.2135 | 0.4582 | 0.5354 | 0.5273 | 0.5099 | 0.4656 | | Llama 3 Swallow 8B Instruct | 0.3547 | 0.6508 | 0.5371 | 0.2718 | 0.4007 | 0.5493 | 0.4752 | 0.5730 | 0.4766 | | Llama 3.1 Swallow 8B Instruct | 0.3132 | **0.7734** | 0.6645 | 0.3880 | 0.5230 | 0.5711 | 0.4953 | 0.5330 | 0.5327 | ## Evaluation Benchmarks ### Japanese evaluation benchmarks We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022]) - Open-ended question answering (JEMHopQA [Ishii et al., 2024]) - Open-ended question answering (NIILC [関根, 2003]) - Machine reading comprehension (JSQuAD [Kurihara et al., 2022]) - Automatic summarization (XL-Sum [Hasan et al., 2021]) - Machine translation (WMT2020 ja-en [Barrault et al., 2020]) - Machine translation (WMT2020 en-ja [Barrault et al., 2020]) - Mathematical reasoning (MGSM [Shi et al., 2023]) - Academic exams (JMMLU [尹ら, 2024]) - Code generation (JHumanEval [佐藤ら, 2024]) ### English evaluation benchmarks We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018]) - Open-ended question answering (TriviaQA [Joshi et al., 2017]) - Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018]) - Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021]) - Natural language inference (HellaSwag [Zellers et al., 2019]) - Mathematical reasoning (GSM8K [Cobbe et al., 2021]) - Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023]) - Academic exams (MMLU [Hendrycks et al., 2021]) - Code generation (HumanEval [Chen et al., 2021]) ### MT-Bench JA We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the capabilities of multi-turn dialogue with the following settings: - Implementation: FastChat [Zheng+, 2023] (commit #e86e70d0) - Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3) - Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1) - Prompt for Judge: [Nejumi LLM-Leaderboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1) - Judge: `gpt-4-1106-preview` - Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs. ## Usage ```sh pip install vllm ``` ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_name = "tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM( model=model_name, tensor_parallel_size=1, ) sampling_params = SamplingParams( temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>" ) message = [ {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"}, { "role": "user", "content": "東京の紅葉した公園で、東京タワーと高層ビルを背景に、空を舞うツバメと草地に佇むラマが出会う温かな物語を書いてください。", }, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) output = llm.generate(prompt, sampling_params) print(output[0].outputs[0].text) ``` ## Training Datasets ### Instruction Tuning The following datasets were used for the instruction tuning. - Japanese - [Llama-3.1-LMSYS-Chat-1M-Synth-Ja](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth) - Single-turn Japanese instruction dataset synthesized and derived from [lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) [\[Zhang+, ICLR24\]](https://openreview.net/forum?id=BOfDKxfwt0)). First-turn user instructions were translated into Japanese via DeepL (machine translation), and assistant responses were generated using [Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct). [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) served as a judge for rejection sampling (n=6). Conversations containing personally identifiable information (PII) and template-based user instructions were removed. Duplicate instructions were removed. - [Swallow-Magpie-Ultra-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-magpie-ultra-v0.1) - A Japanese variant of the `filtered-magpie-ultra-en` dataset, translated into Japanese by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). - [Swallow-Gemma-Magpie-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-gemma-magpie-v0.1) - A Japanese synthetic instruction tuning dataset from scratch, generated by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). User instructions were created with prompts specific to each topic, and assistant responses were generated for these instructions. The conversations were then heuristically filtered for quality and length. - English - [Llama-3.1-LMSYS-Chat-1M-Synth-En](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth) - The creation process is similar to `Llama-3.1-LMSYS-Chat-1M-Synth-Ja`, but this version uses the original English user instructions. The assistant responses were generated in English as well. Rejection sampling was not applied for this version. - `filtered-magpie-ultra-en` - A subset of the [magpie-ultra](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1) dataset, developed following the MAGPIE recipe [\[Xu+, arXiv24\]](https://arxiv.org/abs/2406.08464) using [Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct). This subset includes only samples rated as 'average,' 'good,' or 'excellent.' ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Acknowledgements We thank Meta Research for releasing Llama 3.1 under a generous open license. We received various supports including: + AIST project: "Research and Development of Foundation Models for Generative AI in the Physical Domain" + NEDO project: "Development of Artificial Intelligence Application Technology to Support Judgment in Design Risk Assessment Work Based on the Perspective of Skilled Persons" (JPNP18002) of "Development of Integration Technology as the Core of Next Generation Artificial Intelligence and Robotics" + MEXT project: "Formation of R&D center to ensure transparency and reliability of generative AI models" + AIST program: [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) ## License [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/) and [Gemma Terms of Use](https://ai.google.dev/gemma/terms) ## Authors Here are the team members: - From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) - [Sakae Mizuki](https://s-mizuki-nlp.github.io/) - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html) - [Koki Maeda](https://sites.google.com/view/silviase) - [Kakeru Hattori](https://aya-se.vercel.app/) - [Masanari Ohi](https://sites.google.com/view/masanariohi) - [Taihei Shiotani](https://github.com/inatoihs) - [Koshiro Saito](https://sites.google.com/view/koshiro-saito) - From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: - [Rio Yokota](https://twitter.com/rioyokota) - [Kazuki Fujii](https://twitter.com/okoge_kaz) - [Taishi Nakamura](https://twitter.com/Setuna7777_2) - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto) - [Ishida Shigeki](https://www.wantedly.com/id/reborn27) - From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members: - [Hiroya Takamura](https://sites.google.com/view/hjtakamura) ## How to cite If you find our work helpful, please feel free to cite these papers. ``` @inproceedings{Fujii:COLM2024, title={Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities}, author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae Mizuki and Rio Yokota and Naoaki Okazaki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @inproceedings{Okazaki:COLM2024, title={Building a Large Japanese Web Corpus for Large Language Models}, author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Rio Yokota and Sakae Mizuki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } ``` ### References ```tex @misc{dubey2024llama3herdmodels, title={The Llama 3 Herd of Models}, author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.}, year={2024}, eprint={2407.21783}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2407.21783}, } ```
ooliverz/git-large-r-coco-IDB2-VAtlasv2
ooliverz
2025-03-31T15:33:47Z
0
0
transformers
[ "transformers", "safetensors", "git", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-03-31T15:30:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ZAIR-X/MT-SLM-7B
ZAIR-X
2025-03-31T15:33:21Z
2
1
null
[ "safetensors", "mistral", "jaiyeshchahar/ChatingDeveloper-7B-slerp", "jaiyeshchahar/storywriter-mathematician", "base_model:jaiyeshchahar/ChatingDeveloper-7B-slerp", "base_model:finetune:jaiyeshchahar/ChatingDeveloper-7B-slerp", "license:apache-2.0", "region:us" ]
null
2025-03-28T06:51:09Z
--- license: apache-2.0 base_model: - jaiyeshchahar/ChatingDeveloper-7B-slerp - jaiyeshchahar/storywriter-mathematician tags: - jaiyeshchahar/ChatingDeveloper-7B-slerp - jaiyeshchahar/storywriter-mathematician --- # MT-SLM-7B MT-SLM-7B is a mixture of experts model,a well-rounded AI capable of handling diverse tasks. It excels in coding, mathematical problem-solving, storytelling, and general-purpose chat interactions. ## 🧩 Components MT-SLM-7B consists of four experts: 1. **Mathematics Expert** Finetuned for mathematical reasoning and problem-solving. 2. **Coding Expert** Finetuned for generating high-quality Python and general programming code. 3. **Chat Expert** A general-purpose conversational AI for everyday interactions. 4. **Storytelling Expert** Finetuned for generating creative and engaging stories. ## 🛠️ Model Configuration This model supports an **8k context window** for extended interactions. ## 🚀 Usage ### 1. Install Dependencies Install the required libraries using pip: ```bash pip install -qU transformers accelerate ``` ### 2. Load the Model and Generate Text Below is an example Python script to load the model and generate text: ```python from transformers import AutoTokenizer import transformers import torch # Specify the model name model = "ZAIR-X/MT-SLM-7B" # Define your conversation as a list of messages messages = [{"role": "user", "content": "What is a large language model?"}] # Initialize the tokenizer and prepare the prompt tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Set up the text generation pipeline pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) # Generate text output outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ### 3. Example Use Cases - **Article Explanation:** Summarize and explain complex articles. - **Coding Assistance:** Generate, debug, and explain Python code. - **Mathematical Problem Solving:** Handle computations and logical reasoning. - **Creative Storytelling:** Craft engaging narratives and role-play scenarios. ## 🎯 Conclusion MT-SLM-7B is a powerful, well-rounded assistant that leverages a mixture of expert models to deliver exceptional performance across various domains. Whether you need a reliable coding companion, a math tutor, or a creative storyteller, this model is designed to meet your needs. Try it out and experience the full range of its capabilities! Happy generating! 🚀
mlc-ai/gemma-3-27b-it-q4f32_1-MLC
mlc-ai
2025-03-31T15:31:40Z
5
0
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-27b-it", "base_model:quantized:google/gemma-3-27b-it", "region:us" ]
null
2025-03-24T04:51:16Z
--- library_name: mlc-llm base_model: google/gemma-3-27b-it tags: - mlc-llm - web-llm --- # gemma-3-27b-it-q4f32_1-MLC This is the [gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) model in MLC format `q4f32_1`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-27b-it-q4f32_1-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-27b-it-q4f32_1-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-27b-it-q4f32_1-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
okita-souji/q-Taxi-v3
okita-souji
2025-03-31T15:31:38Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-03-31T15:31:33Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="okita-souji/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mlc-ai/gemma-3-27b-it-q4bf16_0-MLC
mlc-ai
2025-03-31T15:31:26Z
20
1
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-27b-it", "base_model:quantized:google/gemma-3-27b-it", "region:us" ]
null
2025-03-17T05:53:17Z
--- library_name: mlc-llm base_model: google/gemma-3-27b-it tags: - mlc-llm - web-llm --- # gemma-3-27b-it-q4bf16_0-MLC This is the [gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) model in MLC format `q4bf16_0`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-27b-it-q4bf16_0-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-27b-it-q4bf16_0-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-27b-it-q4bf16_0-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
mlc-ai/gemma-3-12b-it-q4f32_1-MLC
mlc-ai
2025-03-31T15:29:35Z
4
0
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-12b-it", "base_model:quantized:google/gemma-3-12b-it", "region:us" ]
null
2025-03-24T04:17:39Z
--- library_name: mlc-llm base_model: google/gemma-3-12b-it tags: - mlc-llm - web-llm --- # gemma-3-12b-it-q4f32_1-MLC This is the [gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it) model in MLC format `q4f32_1`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-12b-it-q4f32_1-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-12b-it-q4f32_1-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-12b-it-q4f32_1-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
mlc-ai/gemma-3-12b-it-q4bf16_0-MLC
mlc-ai
2025-03-31T15:29:28Z
13
1
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-12b-it", "base_model:quantized:google/gemma-3-12b-it", "region:us" ]
null
2025-03-17T05:18:22Z
--- library_name: mlc-llm base_model: google/gemma-3-12b-it tags: - mlc-llm - web-llm --- # gemma-3-12b-it-q4bf16_0-MLC This is the [gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it) model in MLC format `q4bf16_0`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-12b-it-q4bf16_0-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-12b-it-q4bf16_0-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-12b-it-q4bf16_0-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
medmekk/Llama-3.2-1B-ao-int8wo-gs128
medmekk
2025-03-31T15:29:26Z
0
0
null
[ "pytorch", "llama", "base_model:medmekk/Llama-3.2-1B-ao-int8wo-gs128", "base_model:quantized:medmekk/Llama-3.2-1B-ao-int8wo-gs128", "torchao", "region:us" ]
null
2025-03-31T15:28:59Z
--- base_model: - medmekk/Llama-3.2-1B-ao-int8wo-gs128 --- # medmekk/Llama-3.2-1B-ao-int8wo-gs128 (Quantized) ## Description This model is a quantized version of the original model [`medmekk/Llama-3.2-1B-ao-int8wo-gs128`](https://huggingface.co/medmekk/Llama-3.2-1B-ao-int8wo-gs128). It's quantized using the TorchAO library using the [torchao-my-repo](https://huggingface.co/spaces/pytorch/torchao-my-repo) space. ## Quantization Details - **Quantization Type**: int8_weight_only - **Group Size**: 128
mlc-ai/gemma-3-12b-it-q4bf16_1-MLC
mlc-ai
2025-03-31T15:29:21Z
18
2
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-12b-it", "base_model:quantized:google/gemma-3-12b-it", "region:us" ]
null
2025-03-17T05:18:58Z
--- library_name: mlc-llm base_model: google/gemma-3-12b-it tags: - mlc-llm - web-llm --- # gemma-3-12b-it-q4bf16_1-MLC This is the [gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it) model in MLC format `q4bf16_1`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-12b-it-q4bf16_1-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-12b-it-q4bf16_1-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-12b-it-q4bf16_1-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
mlc-ai/gemma-3-4b-it-q4f16_1-MLC
mlc-ai
2025-03-31T15:28:31Z
11
0
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-4b-it", "base_model:quantized:google/gemma-3-4b-it", "region:us" ]
null
2025-03-24T04:06:17Z
--- library_name: mlc-llm base_model: google/gemma-3-4b-it tags: - mlc-llm - web-llm --- # gemma-3-4b-it-q4f16_1-MLC This is the [gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) model in MLC format `q4f16_1`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-4b-it-q4f16_1-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-4b-it-q4f16_1-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-4b-it-q4f16_1-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
mlc-ai/gemma-3-4b-it-q4f32_1-MLC
mlc-ai
2025-03-31T15:28:23Z
11
0
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-4b-it", "base_model:quantized:google/gemma-3-4b-it", "region:us" ]
null
2025-03-24T04:05:04Z
--- library_name: mlc-llm base_model: google/gemma-3-4b-it tags: - mlc-llm - web-llm --- # gemma-3-4b-it-q4f32_1-MLC This is the [gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) model in MLC format `q4f32_1`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-4b-it-q4f32_1-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-4b-it-q4f32_1-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-4b-it-q4f32_1-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
mlc-ai/gemma-3-1b-it-q4f32_1-MLC
mlc-ai
2025-03-31T15:26:31Z
5
0
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-1b-it", "base_model:quantized:google/gemma-3-1b-it", "region:us" ]
null
2025-03-24T03:59:43Z
--- library_name: mlc-llm base_model: google/gemma-3-1b-it tags: - mlc-llm - web-llm --- # gemma-3-1b-it-q4f32_1-MLC This is the [gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) model in MLC format `q4f32_1`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-1b-it-q4f32_1-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-1b-it-q4f32_1-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-1b-it-q4f32_1-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
mlc-ai/gemma-3-1b-it-q0f16-MLC
mlc-ai
2025-03-31T15:26:13Z
6
0
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-1b-it", "base_model:quantized:google/gemma-3-1b-it", "region:us" ]
null
2025-03-24T04:01:29Z
--- library_name: mlc-llm base_model: google/gemma-3-1b-it tags: - mlc-llm - web-llm --- # gemma-3-1b-it-q0f16-MLC This is the [gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) model in MLC format `q0f16`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-1b-it-q0f16-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-1b-it-q0f16-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-1b-it-q0f16-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
mlc-ai/gemma-3-1b-it-q4bf16_1-MLC
mlc-ai
2025-03-31T15:25:52Z
17
1
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-1b-it", "base_model:quantized:google/gemma-3-1b-it", "region:us" ]
null
2025-03-17T04:58:05Z
--- library_name: mlc-llm base_model: google/gemma-3-1b-it tags: - mlc-llm - web-llm --- # gemma-3-1b-it-q4bf16_1-MLC This is the [gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) model in MLC format `q4bf16_1`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-1b-it-q4bf16_1-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-1b-it-q4bf16_1-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-1b-it-q4bf16_1-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
AlexeyShevcov/lilygrow121
AlexeyShevcov
2025-03-31T15:25:24Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-31T15:25:18Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: LILYGROW license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # LILYGROW A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `LILYGROW` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
lerobot/pi0fast_base
lerobot
2025-03-31T15:25:11Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "arxiv:2501.09747", "license:apache-2.0", "region:us" ]
robotics
2025-03-31T15:11:24Z
--- license: apache-2.0 library_name: lerobot pipeline_tag: robotics --- π0+FAST: Efficient Action Tokenization for Vision-Language-Action Models [Paper](https://arxiv.org/abs/2501.09747) [Jax code](https://github.com/Physical-Intelligence/openpi) Designed by Physical Intelligence. Ported from Jax by Hugging Face. Example of finetuning the pi0+FAST pretrained model (`pi0_fast_base` in `openpi`): ```bash python lerobot/scripts/train.py \ --policy.path=lerobot/pi0fast_base \ --dataset.repo_id=danaaubakirova/koch_test ``` Example of training the pi0+FAST neural network with from scratch: ```bash python lerobot/scripts/train.py \ --policy.type=pi0fast \ --dataset.repo_id=danaaubakirova/koch_test ``` Example of using the pi0 pretrained model outside LeRobot training framework: ```python policy = PI0FASTPolicy.from_pretrained("lerobot/pi0fast_base")
nathanialhunt2000/51da1d48-5bc1-486e-8386-c5ca6c4869fa
nathanialhunt2000
2025-03-31T15:22:46Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "region:us" ]
null
2025-03-31T15:22:29Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/SmolLM-360M-Instruct model-index: - name: nathanialhunt2000/51da1d48-5bc1-486e-8386-c5ca6c4869fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nathanialhunt2000/51da1d48-5bc1-486e-8386-c5ca6c4869fa This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
BFS-Search/llama-3.1_Wikidata_negative_instruction_tuned
BFS-Search
2025-03-31T15:21:52Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T15:21:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alikShepot/corporate_illustration_LoRA
alikShepot
2025-03-31T15:19:26Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-03-31T15:19:21Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: illustration in CORPORATE style, widget: [] tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - alikShepot/corporate_illustration_LoRA <Gallery /> ## Model description These are alikShepot/corporate_illustration_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use illustration in CORPORATE style, to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](alikShepot/corporate_illustration_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
NCCUTAT/T5_nolora33
NCCUTAT
2025-03-31T15:18:35Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-03-31T15:18:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BigSmiley7/Reinforce-Copter_V1
BigSmiley7
2025-03-31T15:18:27Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-03-31T08:19:02Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Copter_v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 33.90 +/- 29.59 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Jonjew/PrismPulse
Jonjew
2025-03-31T15:16:46Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T15:16:27Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- A trickster spirit emerging from the shadows, its form shifting and changing with swirling abstract designs. The air around it is alive with vibrant, chaotic splatter patterns and glowing, flowing brushstrokes., a diclrbrst burst of colors, <lora:Color-Burst_v20-000084:1> output: url: images/00057-2025-02-18-263513326.png - text: >- A girl that is a ethereal beauty, 1girl, a goddess with flowing robes and a radiant aura, celestial grace, intricate details, a diclrbrst burst of colors, <lora:Color-Burst_v20-000084:1> output: url: images/00007-2025-02-18-3392014079.png - text: >- A techno-shaman adorned in bio-luminescent tribal markings stands in a crystalline cave pulsating with holographic energy. The cavern walls shift like liquid code, responding to the rhythmic chants reverberating through the space. The figure's cybernetic staff crackles with quantum resonance, linking their spirit to the vast intergalactic data streams that pulse beyond the veil of reality. The scene is awash in glowing blue and violet tones, captured from a slightly elevated side view for an immersive, ritualistic feel., a diclrbrst burst of colors, <lora:Color-Burst_v20-000084:1> output: url: images/00147-2025-02-18-2077095825.png - text: >- Text that says "Prism Pulse" across the top in energetic and colorful font, underneath it is A woman with a dress adorned in dragon-scale patterns, each detail highlighted by glowing tendrils of energy. Behind her, a swirling background of abstract celestial bodies moves in fluid, spiraling formations., a diclrbrst burst of colors, <lora:Color-Burst_v20-000084:1> output: url: images/27141-Color Burst v20-84.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: a diclrbrst burst of colors license: unknown --- # Prism Pulse <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;1357407&#x2F;prism-pulse?modelVersionId&#x3D;1533361 Trigger a diclrbrst burst of colors Strength 1 Prism Pulse is a LoRA designed to infuse your images with dynamic energy, vibrant color explosions, and radiant rainbow light effects. These bursts of color bring any composition to life, adding motion, abstract energy, and surreal vibrancy to your generations. Perfect for electrifying scenes with dazzling, high-impact visuals. Usage To use the most recent version of the LoRA, use the following settings: Trigger word: diclrbrst, as in &quot;a diclrbrst burst of colors&quot; Other tokens that work well: describing colorful imagery works well, but the model likes particular keywords or phrases like: swirling, energetic bursts of color, vibrant, chaotic splatter, bio-luminescent, awash in glowing [colors] Lora Strength: A strength between 0.8 and 1.2 is recommended. It can be fun to really turn it up, but most images I created were made with a strength set at 1. For differences in previous versions, see the version notes to the right. ## Trigger words You should use `a diclrbrst burst of colors` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/PrismPulse/tree/main) them in the Files & versions tab.
qwzy123/DeepSeek-R1-Medical-COT
qwzy123
2025-03-31T15:15:19Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T01:24:14Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
xpower1991/model
xpower1991
2025-03-31T15:10:23Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:11:02Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** xpower1991 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Sofia-gb/fashionclip-finetuned2
Sofia-gb
2025-03-31T15:09:14Z
0
0
transformers
[ "transformers", "safetensors", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2025-03-31T14:52:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
silviasapora/gemma-7b-sft-cpo-basic-5e-7-005-v140
silviasapora
2025-03-31T15:08:59Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma", "text-generation", "generated_from_trainer", "alignment-handbook", "trl", "orpo", "conversational", "dataset:argilla/dpo-mix-7k", "arxiv:2403.07691", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T14:39:46Z
--- datasets: - argilla/dpo-mix-7k library_name: transformers model_name: /home/silvias/docker/alignment-handbook/data/gemma-7b-sft-basic-5e-5-00-v130-full tags: - generated_from_trainer - alignment-handbook - trl - orpo licence: license --- # Model Card for /home/silvias/docker/alignment-handbook/data/gemma-7b-sft-basic-5e-5-00-v130-full This model is a fine-tuned version of [None](https://huggingface.co/None) on the [['argilla/dpo-mix-7k']](https://huggingface.co/datasets/['argilla/dpo-mix-7k']) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="silviasapora/gemma-7b-sft-cpo-basic-5e-7-005-v140", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/silvias/huggingface/runs/599hkvi6) This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691). ### Framework versions - TRL: 0.15.2 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.21.1 ## Citations Cite ORPO as: ```bibtex @article{hong2024orpo, title = {{ORPO: Monolithic Preference Optimization without Reference Model}}, author = {Jiwoo Hong and Noah Lee and James Thorne}, year = 2024, eprint = {arXiv:2403.07691} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
RichardErkhov/Sao10K_-_L3-8B-Stheno-v3.2-8bits
RichardErkhov
2025-03-31T15:05:02Z
0
0
null
[ "safetensors", "llama", "8-bit", "bitsandbytes", "region:us" ]
null
2025-03-31T14:58:37Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) L3-8B-Stheno-v3.2 - bnb 8bits - Model creator: https://huggingface.co/Sao10K/ - Original model: https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2/ Original model description: --- license: cc-by-nc-4.0 language: - en datasets: - Gryphe/Opus-WritingPrompts - Sao10K/Claude-3-Opus-Instruct-15K - Sao10K/Short-Storygen-v2 - Sao10K/c2-Logs-Filtered --- *Just message me on discord if you want to host this privately for a service or something. We can talk.* *Train used 1x H100 SXM for like a total of 24 Hours over multiple runs.* Support me here if you're interested: <br>Ko-fi: https://ko-fi.com/sao10k <br> *wink* Euryale v2? If not, that's fine too. Feedback would be nice. Contact Me in Discord: <br>`sao10k` // `Just ping me in the KoboldAI discord, I'll respond faster.` `Art by navy_(navy.blue)` - [Danbooru](https://danbooru.donmai.us/posts/3214477) --- ![Stheno](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2/resolve/main/Stheno.png?) Stheno-v3.2-Zeta I have done a test run with multiple variations of the models, merged back to its base at various weights, different training runs too, and this Sixth iteration is the one I like most. Changes compared to v3.1 <br>\- Included a mix of SFW and NSFW Storywriting Data, thanks to [Gryphe](https://huggingface.co/datasets/Gryphe/Opus-WritingPrompts) <br>\- Included More Instruct / Assistant-Style Data <br>\- Further cleaned up Roleplaying Samples from c2 Logs -> A few terrible, really bad samples escaped heavy filtering. Manual pass fixed it. <br>\- Hyperparameter tinkering for training, resulting in lower loss levels. Testing Notes - Compared to v3.1 <br>\- Handles SFW / NSFW seperately better. Not as overly excessive with NSFW now. Kinda balanced. <br>\- Better at Storywriting / Narration. <br>\- Better at Assistant-type Tasks. <br>\- Better Multi-Turn Coherency -> Reduced Issues? <br>\- Slightly less creative? A worthy tradeoff. Still creative. <br>\- Better prompt / instruction adherence. --- **Recommended Samplers:** ``` Temperature - 1.12-1.22 Min-P - 0.075 Top-K - 50 Repetition Penalty - 1.1 ``` **Stopping Strings:** ``` \n\n{{User}} # Or Equivalent, depending on Frontend <|eot_id|> <|end_of_text|> ``` **Prompting Template - Llama-3-Instruct** ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` **Basic Roleplay System Prompt** ``` You are an expert actor that can fully immerse yourself into any role given. You do not break character for any reason, even if someone tries addressing you as an AI or language model. Currently your role is {{char}}, which is described in detail below. As {{char}}, continue the exchange with {{user}}. ``` ---
prithivMLmods/Llama-3B-Mono-Cooper
prithivMLmods
2025-03-31T15:04:47Z
5
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "Radio-Audio", "Voice:Cooper", "Male", "text-to-speech", "en", "base_model:canopylabs/orpheus-3b-0.1-ft", "base_model:finetune:canopylabs/orpheus-3b-0.1-ft", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-to-speech
2025-03-29T06:32:51Z
--- license: llama3.2 language: - en base_model: - canopylabs/orpheus-3b-0.1-ft pipeline_tag: text-to-speech library_name: transformers tags: - Radio-Audio - Voice:Cooper - Male --- ![5.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ntaZ-9h9JL7XTT7ePXqjY.png) # **Llama-3B-Mono-Cooper** > Llama-3B-Mono-Cooper is a Llama-based Speech-LLM designed for high-quality, empathetic text-to-speech generation. This model has been fine-tuned to deliver human-like speech synthesis, achieving exceptional clarity, expressiveness, and real-time streaming performance. The model has been fine-tuned from mono audio of a male voice named 'Cooper' using the base model `canopylabs/orpheus-3b-0.1-ft`. > [!Important] > In some cases, the results may be inconsistent, particularly when handling complex speech transformations. <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ea7Ylgfb7wZ8tmLIFdWbf.wav"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/iTcZ1e2UYo_CkurPR_fsh.wav"></audio> [ paralinguistic emotions soft] <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/A8KfCQs7nwyk07kMM_r7P.wav"></audio> ## **Model Details** - **Base Model:** `canopylabs/orpheus-3b-0.1-ft` - **Languages Supported:** English - **License:** Llama 3.2 - **Model Version:** N/A --- ## **Paralinguistic Elements** The model can generate speech with the following emotions: | Elements | Elements | Elements | |------------|------------|------------| | laugh | chuckle | sigh | | sniffle | groan | yawn | | gasp | uhm | giggles & more | --- ## **Run with Transformers 🤝** ```python from huggingface_hub import notebook_login, HfApi notebook_login() ``` ### **Install Dependencies** ```python %%capture !pip install snac accelerate !pip install transformers !pip install gradio ``` ## **Usage** ```py import torch from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr from snac import SNAC def redistribute_codes(row): """ Convert a sequence of token codes into an audio waveform using SNAC. The code assumes each 7 tokens represent one group of instructions. """ row_length = row.size(0) new_length = (row_length // 7) * 7 trimmed_row = row[:new_length] code_list = [t - 128266 for t in trimmed_row] layer_1, layer_2, layer_3 = [], [], [] for i in range((len(code_list) + 1) // 7): layer_1.append(code_list[7 * i][None]) layer_2.append(code_list[7 * i + 1][None] - 4096) layer_3.append(code_list[7 * i + 2][None] - (2 * 4096)) layer_3.append(code_list[7 * i + 3][None] - (3 * 4096)) layer_2.append(code_list[7 * i + 4][None] - (4 * 4096)) layer_3.append(code_list[7 * i + 5][None] - (5 * 4096)) layer_3.append(code_list[7 * i + 6][None] - (6 * 4096)) with torch.no_grad(): codes = [ torch.concat(layer_1), torch.concat(layer_2), torch.concat(layer_3) ] for i in range(len(codes)): codes[i][codes[i] < 0] = 0 codes[i] = codes[i][None] audio_hat = snac_model.decode(codes) return audio_hat.cpu()[0, 0] # Load the SNAC model for audio decoding snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to("cuda") # Load the single-speaker language model tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Llama-3B-Mono-Cooper') model = AutoModelForCausalLM.from_pretrained( 'prithivMLmods/Llama-3B-Mono-Cooper', torch_dtype=torch.bfloat16 ).cuda() def generate_audio(text, temperature, top_p, max_new_tokens): """ Given input text, generate speech audio. """ speaker = "Cooper" prompt = f'<custom_token_3><|begin_of_text|>{speaker}: {text}<|eot_id|><custom_token_4><custom_token_5><custom_token_1>' input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').to('cuda') with torch.no_grad(): generated_ids = model.generate( **input_ids, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p=top_p, repetition_penalty=1.1, num_return_sequences=1, eos_token_id=128258, ) row = generated_ids[0, input_ids['input_ids'].shape[1]:] y_tensor = redistribute_codes(row) y_np = y_tensor.detach().cpu().numpy() return (24000, y_np) # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Llama-3B-Mono-Cooper - Single Speaker Audio Generation") gr.Markdown("Generate speech audio using the `prithivMLmods/Llama-3B-Mono-Cooper` model.") with gr.Row(): text_input = gr.Textbox(lines=4, label="Input Text") with gr.Row(): temp_slider = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.9, label="Temperature") top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.8, label="Top-p") tokens_slider = gr.Slider(minimum=100, maximum=2000, step=50, value=1200, label="Max New Tokens") output_audio = gr.Audio(type="numpy", label="Generated Audio") generate_button = gr.Button("Generate Audio") generate_button.click( fn=generate_audio, inputs=[text_input, temp_slider, top_p_slider, tokens_slider], outputs=output_audio ) if __name__ == "__main__": demo.launch() ``` [ or ] ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr from snac import SNAC def redistribute_codes(row): """ Convert a sequence of token codes into an audio waveform using SNAC. The code assumes each 7 tokens represent one group of instructions. """ row_length = row.size(0) new_length = (row_length // 7) * 7 trimmed_row = row[:new_length] code_list = [t - 128266 for t in trimmed_row] layer_1, layer_2, layer_3 = [], [], [] for i in range((len(code_list) + 1) // 7): layer_1.append(code_list[7 * i][None]) layer_2.append(code_list[7 * i + 1][None] - 4096) layer_3.append(code_list[7 * i + 2][None] - (2 * 4096)) layer_3.append(code_list[7 * i + 3][None] - (3 * 4096)) layer_2.append(code_list[7 * i + 4][None] - (4 * 4096)) layer_3.append(code_list[7 * i + 5][None] - (5 * 4096)) layer_3.append(code_list[7 * i + 6][None] - (6 * 4096)) with torch.no_grad(): codes = [ torch.concat(layer_1), torch.concat(layer_2), torch.concat(layer_3) ] for i in range(len(codes)): codes[i][codes[i] < 0] = 0 codes[i] = codes[i][None] audio_hat = snac_model.decode(codes) return audio_hat.cpu()[0, 0] # Load the SNAC model for audio decoding snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to("cuda") # Load the single-speaker language model tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Llama-3B-Mono-Cooper') model = AutoModelForCausalLM.from_pretrained( 'prithivMLmods/Llama-3B-Mono-Cooper', torch_dtype=torch.bfloat16 ).cuda() def generate_audio(text, temperature, top_p, max_new_tokens): """ Given input text, generate speech audio. """ prompt = f'<custom_token_3><|begin_of_text|>{text}<|eot_id|><custom_token_4><custom_token_5><custom_token_1>' input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').to('cuda') with torch.no_grad(): generated_ids = model.generate( **input_ids, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p=top_p, repetition_penalty=1.1, num_return_sequences=1, eos_token_id=128258, ) row = generated_ids[0, input_ids['input_ids'].shape[1]:] y_tensor = redistribute_codes(row) y_np = y_tensor.detach().cpu().numpy() return (24000, y_np) # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Llama-3B-Mono-Cooper - Single Speaker Audio Generation") gr.Markdown("Generate speech audio using the `prithivMLmods/Llama-3B-Mono-Cooper` model.") with gr.Row(): text_input = gr.Textbox(lines=4, label="Input Text") with gr.Row(): temp_slider = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.9, label="Temperature") top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.8, label="Top-p") tokens_slider = gr.Slider(minimum=100, maximum=2000, step=50, value=1200, label="Max New Tokens") output_audio = gr.Audio(type="numpy", label="Generated Audio") generate_button = gr.Button("Generate Audio") generate_button.click( fn=generate_audio, inputs=[text_input, temp_slider, top_p_slider, tokens_slider], outputs=output_audio ) if __name__ == "__main__": demo.launch() ``` --- ## **Intended Use** - Designed for high-quality, single-speaker text-to-speech generation. - Ideal for applications requiring human-like speech synthesis. - Supports a range of emotions for expressive speech output. - Suitable for AI voice assistants, storytelling, and accessibility applications.
chatpig/gemma-3-27b-it-gguf
chatpig
2025-03-31T15:02:44Z
37
0
null
[ "gguf", "gguf-connector", "image-text-to-text", "base_model:google/gemma-3-27b-it", "base_model:quantized:google/gemma-3-27b-it", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-03-30T11:29:33Z
--- license: gemma base_model: - google/gemma-3-27b-it pipeline_tag: image-text-to-text tags: - gguf-connector --- # gemma-3-27b-it-gguf - base model from google - original safetensors [here](https://huggingface.co/callgg/gemma-3-27b-it-bf16) - for text/image-text-to-text generation
wind-strider/emotion-detection
wind-strider
2025-03-31T15:02:14Z
0
1
null
[ "region:us" ]
null
2025-03-31T14:05:56Z
applied to https://github.com/Freshmanwqwe/emotion-recognition
iTroned/bert_shap_test_v1
iTroned
2025-03-31T14:59:23Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:52:46Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert_shap_test_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/itroned-ntnu/huggingface/runs/htkcjo0z) # bert_shap_test_v1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.0.1 - Tokenizers 0.21.1
greatnomadicseal/ppo-Huggy
greatnomadicseal
2025-03-31T14:56:57Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-03-31T14:56:52Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: greatnomadicseal/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Daksh1/ree2
Daksh1
2025-03-31T14:55:30Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:55:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gradientrouting-spar/toy_goodharting_gemma-2-2b-it_rand1_randA_vgtbls_naive_r_0p25_seed_42_20250331_140553
gradientrouting-spar
2025-03-31T14:55:09Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:54:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ISeeber04/ppo-Huggy
ISeeber04
2025-03-31T14:54:46Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-03-31T14:54:24Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ISeeber04/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
tyrael147/ei39_test_100
tyrael147
2025-03-31T14:53:45Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/Llama-3.2-3B-Instruct-unsloth-bnb-4bit", "base_model:finetune:unsloth/Llama-3.2-3B-Instruct-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:53:36Z
--- base_model: unsloth/Llama-3.2-3B-Instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** tyrael147 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ItsMaxNorm/MedAgentSim-datasets
ItsMaxNorm
2025-03-31T14:53:05Z
0
0
null
[ "text-generation", "en", "arxiv:2405.07960", "arxiv:2503.22678", "base_model:meta-llama/Llama-3.3-70B-Instruct", "base_model:finetune:meta-llama/Llama-3.3-70B-Instruct", "region:us" ]
text-generation
2025-03-31T14:14:14Z
--- language: - en metrics: - accuracy base_model: - meta-llama/Llama-3.3-70B-Instruct pipeline_tag: text-generation --- # MedAgentSim Datasets GitHub: [https://github.com/MAXNORM8650/MedAgentSim](https://github.com/MAXNORM8650/MedAgentSim) Website: [https://medagentsim.netlify.app](https://medagentsim.netlify.app) This repository contains various datasets used in the MedAgentSim project for simulating medical agent interactions. ## Datasets Included - **nejm_dataset_v1.jsonl**: A dataset related to the New England Journal of Medicine (NEJM) clinical cases. - **medqa_extended_v1.jsonl**: Extended dataset for medical question-answering tasks with comprehensive coverage. - **medqa_v1.jsonl**: Dataset focused on general medical question-answering. - **mimiciv_v1.jsonl**: Dataset based on the MIMIC-IV medical database with patient trajectories. - **nejm_extended_v1.jsonl**: Extended version of the NEJM dataset with additional clinical scenarios. ## Usage To load the datasets, simply use the following code: ```python import json # Example for loading a dataset with open("dataset_filename.jsonl", "r") as f: data = [json.loads(line) for line in f] ``` ## License This repository is under the MIT License. See the LICENSE file for more details. ## Acknowledgments - This work was supported by the MedAgentSim project. - The MIMIC-IV dataset is publicly available and was used for medical data simulations. - Citation for AgentClinic: ``` @misc{schmidgall2024agentclinic, title={AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments}, author={Samuel Schmidgall and Rojin Ziaei and Carl Harris and Eduardo Reis and Jeffrey Jopling and Michael Moor}, year={2024}, eprint={2405.07960}, archivePrefix={arXiv}, primaryClass={cs.HC} } ``` - Citation for Self-Evolving Multi-Agent Simulations: ``` @misc{almansoori2025selfevolvingmultiagentsimulationsrealistic, title={Self-Evolving Multi-Agent Simulations for Realistic Clinical Interactions}, author={Mohammad Almansoori and Komal Kumar and Hisham Cholakkal}, year={2025}, eprint={2503.22678}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.22678}, } ``` ## Contact For any questions or inquiries, please reach out to Komal Kumar.
iTroned/bert_8_hate_test
iTroned
2025-03-31T14:52:13Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:34:08Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert_8_hate_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/itroned-ntnu/huggingface/runs/r28r8zy5) # bert_8_hate_test This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2677 - Accuracy Offensive: 0.9230 - F1 Offensive: 0.9196 - Accuracy Targeted: 0.9441 - F1 Targeted: 0.9173 - Accuracy Stance: 0.9079 - F1 Stance: 0.8717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Offensive | F1 Offensive | Accuracy Targeted | F1 Targeted | Accuracy Stance | F1 Stance | |:-------------:|:-----:|:-----:|:---------------:|:------------------:|:------------:|:-----------------:|:-----------:|:---------------:|:---------:| | 0.7468 | 1.0 | 1490 | 0.6618 | 0.6850 | 0.5570 | 0.6850 | 0.5570 | 0.7409 | 0.6307 | | 0.6154 | 2.0 | 2980 | 0.4579 | 0.7591 | 0.7025 | 0.8875 | 0.8606 | 0.8595 | 0.8190 | | 0.4375 | 3.0 | 4470 | 0.3543 | 0.8391 | 0.8200 | 0.9305 | 0.9040 | 0.8980 | 0.8618 | | 0.358 | 4.0 | 5960 | 0.3166 | 0.8739 | 0.8634 | 0.9388 | 0.9121 | 0.9033 | 0.8674 | | 0.3294 | 5.0 | 7450 | 0.3014 | 0.8754 | 0.8652 | 0.9411 | 0.9143 | 0.9048 | 0.8686 | | 0.2979 | 6.0 | 8940 | 0.2856 | 0.9086 | 0.9037 | 0.9434 | 0.9165 | 0.9071 | 0.8710 | | 0.2854 | 7.0 | 10430 | 0.2746 | 0.9230 | 0.9196 | 0.9434 | 0.9165 | 0.9079 | 0.8717 | | 0.2738 | 8.0 | 11920 | 0.2722 | 0.9192 | 0.9155 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2664 | 9.0 | 13410 | 0.2692 | 0.9230 | 0.9196 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2613 | 10.0 | 14900 | 0.2677 | 0.9230 | 0.9196 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.0.1 - Tokenizers 0.21.1
lesso01/a4401641-b0b8-499f-954d-936833b96297
lesso01
2025-03-31T14:50:18Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-03-31T13:10:11Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: a4401641-b0b8-499f-954d-936833b96297 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4d391191a0d59966_train_data.json ds_type: json format: custom path: /workspace/input_data/4d391191a0d59966_train_data.json type: field_input: input_context field_instruction: instruction field_output: errors format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso01/a4401641-b0b8-499f-954d-936833b96297 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000201 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/4d391191a0d59966_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 10 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 42d84aad-b019-4139-9c2c-fd168e376acc wandb_project: 01a wandb_run: your_name wandb_runid: 42d84aad-b019-4139-9c2c-fd168e376acc warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a4401641-b0b8-499f-954d-936833b96297 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000201 - train_batch_size: 4 - eval_batch_size: 4 - seed: 10 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0008 | 1 | 3.3349 | | 0.706 | 0.4080 | 500 | 0.7077 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Daksh1/ree1
Daksh1
2025-03-31T14:47:54Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:47:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kimang18/Llama3.2-think-4bit
Kimang18
2025-03-31T14:47:40Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2025-03-31T14:46:24Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Kimang18 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Jonjew/VikingPrincessCFH
Jonjew
2025-03-31T14:47:26Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-31T14:47:18Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- A fierce Viking woman standing on a rocky shoreline at dawn, facing the camera with an intense, unflinching gaze. She wears a dusty crimson and bone white fur-trimmed V1k1nG_Pr1nC3sS outfit, featuring a battle-ready aged bronze sculpted corset, a split skirt with worn leather textures, tall distressed boots, and a heavy fur-lined cape flowing behind her in the wind. Her long wavy brown hair is wild and windblown. A bold black war paint stripe runs across her eyes, giving her a fierce, intimidating appearance. In the background, a Viking longship with a red and white striped sail floats in the water, silhouetted against a dramatic orange sunrise. She grips a bloodstained axe in one hand and stands over a beach scattered with broken shields and debris. The lighting is cold and natural, with photorealistic textures, cinematic shadows, and gritty realism throughout the scene.<lora:Viking_Princess_CFH.safetensors:1.0:1.0> parameters: negative_prompt: >- A fierce Viking woman standing on a rocky shoreline at dawn, facing the camera with an intense, unflinching gaze. She wears a dusty crimson and bone white fur-trimmed V1k1nG_Pr1nC3sS outfit, featuring a battle-ready aged bronze sculpted corset, a split skirt with worn leather textures, tall distressed boots, and a heavy fur-lined cape flowing behind her in the wind. Her long wavy brown hair is wild and windblown. A bold black war paint stripe runs across her eyes, giving her a fierce, intimidating appearance. In the background, a Viking longship with a red and white striped sail floats in the water, silhouetted against a dramatic orange sunrise. She grips a bloodstained axe in one hand and stands over a beach scattered with broken shields and debris. The lighting is cold and natural, with photorealistic textures, cinematic shadows, and gritty realism throughout the scene. output: url: images/FLUX_0008.png - text: >- A confident Viking princess standing in a grand medieval throne room. She wears a red and gold fur-trimmed V1k1nG_Pr1nC3sS outfit, featuring an ornate corset and a floor-length cream gown with golden accents. Her golden heels peek out from under the gown as she stands tall, one hand on her hip. A jeweled silver tiara rests on her head, and her long wavy brown hair flows past her shoulders. The lighting is rich and warm, casting soft shadows across the stone walls and pillars. The setting is regal and detailed, with banners, torchlight, and carved woodwork. Full-body shot, cinematic and photorealistic.<lora:Viking_Princess_CFH-000007.safetensors:1.0:1.0> parameters: negative_prompt: >- A confident Viking princess standing in a grand medieval throne room. She wears a red and gold fur-trimmed V1k1nG_Pr1nC3sS outfit, featuring an ornate corset and a floor-length cream gown with golden accents. Her golden heels peek out from under the gown as she stands tall, one hand on her hip. A jeweled silver tiara rests on her head, and her long wavy brown hair flows past her shoulders. The lighting is rich and warm, casting soft shadows across the stone walls and pillars. The setting is regal and detailed, with banners, torchlight, and carved woodwork. Full-body shot, cinematic and photorealistic. output: url: images/FLUX_0017.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: V1k1nG_Pr1nC3sS license: unknown --- # Viking Princess CFH <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;1411935&#x2F;viking-princess-cfh?modelVersionId&#x3D;1596169 Trrigger V1k1nG_Pr1nC3sS Strength: 0.8 👑 Viking Princess This model embodies the untouchable power, seduction, and elegance of a fantasy realm’s most dangerous monarch. The Viking Princess is no shieldmaiden — she doesn’t fight in the mud. She commands armies in red-and-gold royalty, draped in furs and silk, corseted like a dream, and walking like the battlefield is the runway. Load up V1k1nG_Pr1nC3sS and you’ll summon a voluptuous, commanding figure in an ornate outfit: red embroidered corset, gold cape trimmed in fur, cream gown flowing to the floor, and a gemstone pendant nestled between royal-tier cleavage. This LoRA is perfect for fantasy queens, elven nobility, magic users, or just anyone who looks like they could make a king kneel with one raised eyebrow. 🎯 Features &amp; Capabilities: ✔ Royal fantasy aesthetic – queen, elf, goddess, ruler vibes ✔ Full-body compatible – works front, side, rear, standing, seated, all angles ✔ Outfit accuracy – corset detail, fur-lined gold cape, cream&#x2F;gold gown ✔ Gemstone pendant rendering – iconic red jewel at the chest ✔ Horned tiara support – silver circlet with curved horns ✔ Elven ear compatibility – peeking through long wavy hair ✔ Works with dark &amp; light backgrounds – crisp contrast on either ✔ Supports close-ups &amp; portrait crops – seductive power in every frame ✔ Camera-friendly from any fantasy scene – thrones, forests, battlefields, or temples 🛠 Recommended Triggers &amp; Tags: Primary Trigger Word: V1k1nG_Pr1nC3sS (Essential to activate the outfit and shape) Helpful Enhancers: Physical Form &amp; Outfit: (color) corset, fur-trimmed cape, (color) gown, long sleeves, high heels, horned tiara Visual Detail Prompts: jewel pendant, ornate corset, fur shoulders, embroidered fabric, fantasy queen, elven ears Scene &amp; Body Framing: full body shot, standing pose, front view, side profile, confident stance, regal posture, close-up portrait, soft fantasy lighting 🎨 Recommended Color Combos: ❤️ Red &amp; Gold – dominant corset combo, ornate and regal 🌕 Gold &amp; Cream – cape and gown, soft royal aesthetic 💎 Red Gemstone – pendant centerpiece between breasts 👢 Gold Heels – elegant foot finish 👩‍🦰 Brown &#x2F; Auburn Hair – natural, flowing, royal as fuck ## Trigger words You should use `V1k1nG_Pr1nC3sS` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/VikingPrincessCFH/tree/main) them in the Files & versions tab.
Parthiban007/llama-3.1-R1
Parthiban007
2025-03-31T14:45:23Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:45:19Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Parthiban007 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
goarrrrrr/NewAgents
goarrrrrr
2025-03-31T14:44:53Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-03-31T14:44:52Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: a new agents in Valorant style widget: [] tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - goarrrrrr/NewAgents <Gallery /> ## Model description These are goarrrrrr/NewAgents LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a new agents in Valorant style to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](goarrrrrr/NewAgents/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
RichardErkhov/ytu-ce-cosmos_-_Turkish-Llama-8b-v0.1-8bits
RichardErkhov
2025-03-31T14:44:51Z
0
0
null
[ "safetensors", "llama", "8-bit", "bitsandbytes", "region:us" ]
null
2025-03-31T14:38:27Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Turkish-Llama-8b-v0.1 - bnb 8bits - Model creator: https://huggingface.co/ytu-ce-cosmos/ - Original model: https://huggingface.co/ytu-ce-cosmos/Turkish-Llama-8b-v0.1/ Original model description: --- license: llama3 language: - tr pipeline_tag: text-generation base_model: meta-llama/Meta-Llama-3-8B tags: - Turkish - turkish - Llama - Llama3 --- <img src="./CosmosLlaMa.png" width="400px"/> # Cosmos LLaMa This model is a fully fine-tuned version of the LLaMA-3 8B model with a 30GB Turkish dataset. The Cosmos LLaMa is designed for text generation tasks, providing the ability to continue a given text snippet in a coherent and contextually relevant manner. Due to the diverse nature of the training data, which includes websites, books, and other text sources, this model can exhibit biases. Users should be aware of these biases and use the model responsibly. ## Example Usage Here is an example of how to use the model in colab: ```python !pip install -U accelerate bitsandbytes ``` ```python import torch from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM from transformers import BitsAndBytesConfig import time model_name = "ytu-ce-cosmos/Turkish-Llama-8b-v0.1" bnb_config = BitsAndBytesConfig( load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16, load_in_8bit_fp32_cpu_offload=True, device_map = 'auto' ) tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=bnb_config, ) ``` ```python text_generator = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto", temperature=0.3, repetition_penalty=1.1, top_p=0.9, max_length=610, do_sample=True, return_full_text=False, min_new_tokens=32 ) ``` ```python text = """Yapay zeka hakkında 3 tespit yaz.\n""" r = text_generator(text) print(r[0]['generated_text']) """ 1. Yapay Zeka (AI), makinelerin insan benzeri bilişsel işlevleri gerçekleştirmesini sağlayan bir teknoloji alanıdır. 2. Yapay zekanın geliştirilmesi ve uygulanması, sağlık hizmetlerinden eğlenceye kadar çeşitli sektörlerde çok sayıda fırsat sunmaktadır. 3. Yapay zeka teknolojisinin potansiyel faydaları önemli olsa da mahremiyet, işten çıkarma ve etik hususlar gibi konularla ilgili endişeler de var. """ ``` # Acknowledgments - Thanks to the generous support from the Hugging Face team, it is possible to download models from their S3 storage 🤗 - Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHeM) under grant numbers 1016912023 and 1018512024 - Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) ### Contact COSMOS AI Research Group, Yildiz Technical University Computer Engineering Department <br> https://cosmos.yildiz.edu.tr/ <br> [email protected] # Citation ```bibtex @inproceedings{kesgin2024optimizing, title={Optimizing Large Language Models for Turkish: New Methodologies in Corpus Selection and Training}, author={Kesgin, H Toprak and Yuce, M Kaan and Dogan, Eren and Uzun, M Egemen and Uz, Atahan and {\.I}nce, Elif and Erdem, Yusuf and Shbib, Osama and Zeer, Ahmed and Amasyali, M Fatih}, booktitle={2024 Innovations in Intelligent Systems and Applications Conference (ASYU)}, pages={1--6}, year={2024}, organization={IEEE} } ``` --- license: llama3 ---
MichelNivard/A100Bert-v0.1
MichelNivard
2025-03-31T14:44:13Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-03-31T14:11:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TareksLab/RolePlayer-V3-LLaMa-70B
TareksLab
2025-03-31T14:44:02Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2406.11617", "base_model:ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4", "base_model:merge:ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4", "base_model:LatitudeGames/Wayfarer-Large-70B-Llama-3.3", "base_model:merge:LatitudeGames/Wayfarer-Large-70B-Llama-3.3", "base_model:Sao10K/Llama-3.3-70B-Vulpecula-r1", "base_model:merge:Sao10K/Llama-3.3-70B-Vulpecula-r1", "base_model:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-31T13:59:00Z
--- base_model: - ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4 - LatitudeGames/Wayfarer-Large-70B-Llama-3.3 - Sao10K/Llama-3.3-70B-Vulpecula-r1 - SicariusSicariiStuff/Negative_LLAMA_70B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DELLA](https://arxiv.org/abs/2406.11617) merge method using [LatitudeGames/Wayfarer-Large-70B-Llama-3.3](https://huggingface.co/LatitudeGames/Wayfarer-Large-70B-Llama-3.3) as a base. ### Models Merged The following models were included in the merge: * [ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4](https://huggingface.co/ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4) * [Sao10K/Llama-3.3-70B-Vulpecula-r1](https://huggingface.co/Sao10K/Llama-3.3-70B-Vulpecula-r1) * [SicariusSicariiStuff/Negative_LLAMA_70B](https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Sao10K/Llama-3.3-70B-Vulpecula-r1 parameters: weight: 0.25 density: 0.5 epsilon: 0.05 lambda: 1.0 - model: ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4 parameters: weight: 0.25 density: 0.5 epsilon: 0.05 lambda: 1.0 - model: LatitudeGames/Wayfarer-Large-70B-Llama-3.3 parameters: weight: 0.25 density: 0.5 epsilon: 0.05 lambda: 1.0 - model: SicariusSicariiStuff/Negative_LLAMA_70B parameters: weight: 0.25 density: 0.5 epsilon: 0.05 lambda: 1.0 merge_method: della base_model: LatitudeGames/Wayfarer-Large-70B-Llama-3.3 parameters: normalize: false int8_mask: true dtype: bfloat16 chat_template: llama3 tokenizer: source: union ```
pi-de-pie/results
pi-de-pie
2025-03-31T14:41:23Z
0
0
transformers
[ "transformers", "safetensors", "m2m_100", "text2text-generation", "generated_from_trainer", "base_model:facebook/nllb-200-distilled-600M", "base_model:finetune:facebook/nllb-200-distilled-600M", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-03-31T14:40:23Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/nllb-200-distilled-600M tags: - generated_from_trainer metrics: - bleu model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 12.3359 - Bleu: 0.2407 - Chrf: 6.2796 - Ter: 132.0388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Ter | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:| | No log | 1.0 | 2 | 12.9096 | 0.2594 | 6.3668 | 127.1845 | | No log | 2.0 | 4 | 12.6801 | 0.2472 | 6.4225 | 132.0388 | | No log | 3.0 | 6 | 12.5083 | 0.2290 | 6.3274 | 137.3786 | | No log | 4.0 | 8 | 12.3900 | 0.2325 | 6.2686 | 135.4369 | | 12.7423 | 5.0 | 10 | 12.3359 | 0.2407 | 6.2796 | 132.0388 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
sshkeda/beans-0-1.5B
sshkeda
2025-03-31T14:40:38Z
170
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-14T18:50:26Z
--- library_name: transformers license: other base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B tags: - llama-factory - full - generated_from_trainer model-index: - name: beans-0-1.5B results: [] --- # Model Card for beans-0-1.5B An LLM trained to reason about legal chess moves. ### Model Description - **Developed by:** Stephen Shkeda - **License:** MIT - **Finetuned from model:** [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) ### Model Sources - **Repository:** https://github.com/sshkeda/beans - **Training data:** https://huggingface.co/datasets/sshkeda/beans-0-dataset.json ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 3.0 ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
jnian/Qwen2.5-7B-Instruct-Open-R1-GRPO-easy_query-100k
jnian
2025-03-31T14:38:52Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:SCU-IR/easy_query_hard_doc_msmarco_level2_GRPO", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-29T23:29:51Z
--- base_model: Qwen/Qwen2.5-7B-Instruct datasets: SCU-IR/easy_query_hard_doc_msmarco_level2_GRPO library_name: transformers model_name: Qwen2.5-7B-Instruct-Open-R1-GRPO-easy_query-100k tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen2.5-7B-Instruct-Open-R1-GRPO-easy_query-100k This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the [SCU-IR/easy_query_hard_doc_msmarco_level2_GRPO](https://huggingface.co/datasets/SCU-IR/easy_query_hard_doc_msmarco_level2_GRPO) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jnian/Qwen2.5-7B-Instruct-Open-R1-GRPO-easy_query-100k", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/zpeng/ReasonRank/runs/0pfpmwen) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/LN-Korean-14B-v0.2-GGUF
mradermacher
2025-03-31T14:36:17Z
0
0
transformers
[ "transformers", "gguf", "ko", "zh", "base_model:SakuraLLM/LN-Korean-14B-v0.2", "base_model:quantized:SakuraLLM/LN-Korean-14B-v0.2", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-31T11:14:22Z
--- base_model: SakuraLLM/LN-Korean-14B-v0.2 language: - ko - zh library_name: transformers license: cc-by-nc-sa-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/SakuraLLM/LN-Korean-14B-v0.2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.Q2_K.gguf) | Q2_K | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.Q3_K_S.gguf) | Q3_K_S | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.Q3_K_M.gguf) | Q3_K_M | 7.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.Q3_K_L.gguf) | Q3_K_L | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.IQ4_XS.gguf) | IQ4_XS | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.Q4_K_M.gguf) | Q4_K_M | 9.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.Q5_K_S.gguf) | Q5_K_S | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.Q6_K.gguf) | Q6_K | 12.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/LN-Korean-14B-v0.2-GGUF/resolve/main/LN-Korean-14B-v0.2.Q8_0.gguf) | Q8_0 | 15.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
CYHcyh66/AI_assistant-3
CYHcyh66
2025-03-31T14:32:39Z
0
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:29:36Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** CYHcyh66 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
abdwahdia/mistral_7b_islam_qa_dataset
abdwahdia
2025-03-31T14:32:08Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:30:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
iTroned/bert_32_hate_test
iTroned
2025-03-31T14:31:36Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:13:25Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert_32_hate_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/itroned-ntnu/huggingface/runs/wfyyg33h) # bert_32_hate_test This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2067 - Accuracy Offensive: 0.9441 - F1 Offensive: 0.9425 - Accuracy Targeted: 0.9441 - F1 Targeted: 0.9173 - Accuracy Stance: 0.9079 - F1 Stance: 0.8717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Offensive | F1 Offensive | Accuracy Targeted | F1 Targeted | Accuracy Stance | F1 Stance | |:-------------:|:-----:|:-----:|:---------------:|:------------------:|:------------:|:-----------------:|:-----------:|:---------------:|:---------:| | 0.5996 | 1.0 | 1490 | 0.3087 | 0.9434 | 0.9417 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2753 | 2.0 | 2980 | 0.2483 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2273 | 3.0 | 4470 | 0.2234 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2078 | 4.0 | 5960 | 0.2190 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.2054 | 5.0 | 7450 | 0.2173 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.1939 | 6.0 | 8940 | 0.2089 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.1945 | 7.0 | 10430 | 0.2070 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.1846 | 8.0 | 11920 | 0.2069 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.1827 | 9.0 | 13410 | 0.2067 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | | 0.1763 | 10.0 | 14900 | 0.2068 | 0.9441 | 0.9425 | 0.9441 | 0.9173 | 0.9079 | 0.8717 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.0.1 - Tokenizers 0.21.1
ashutosh-vp/mistral-lora-finetuned-18k-split
ashutosh-vp
2025-03-31T14:27:04Z
0
0
null
[ "region:us" ]
null
2025-03-31T14:26:02Z
# mistral-lora-finetuned-18k-split Fine-tuned Mistral LoRA model uploaded by ashutosh-vp.
Ruoqizeng/1ruoqi
Ruoqizeng
2025-03-31T14:26:10Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-31T14:26:08Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Ruoqi --- # 1Ruoqi <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Ruoqi` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Ruoqizeng/1ruoqi', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Rupesh2/llama-3.2-3B-NLI
Rupesh2
2025-03-31T14:25:45Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-31T14:25:36Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Rupesh2 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)