modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-13 12:28:20
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
518 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-13 12:26:25
card
stringlengths
11
1.01M
Kevin123/distilbert-base-uncased-finetuned-squad
Kevin123
2022-09-22T19:56:25Z
119
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-22T17:28:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.12.3 - Pytorch 1.8.1+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
facebook/spar-wiki-bm25-lexmodel-query-encoder
facebook
2022-09-22T16:44:45Z
111
2
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2110.06918", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T21:44:05Z
--- tags: - feature-extraction pipeline_tag: feature-extraction --- This model is the query encoder of the Wiki BM25 Lexical Model (Λ) from the SPAR paper: [Salient Phrase Aware Dense Retrieval: Can a Dense Retriever Imitate a Sparse One?](https://arxiv.org/abs/2110.06918) <br> Xilun Chen, Kushal Lakhotia, Barlas Oğuz, Anchit Gupta, Patrick Lewis, Stan Peshterliev, Yashar Mehdad, Sonal Gupta and Wen-tau Yih <br> **Meta AI** The associated github repo is available here: https://github.com/facebookresearch/dpr-scale/tree/main/spar This model is a BERT-base sized dense retriever trained on Wikipedia articles to imitate the behavior of BM25. The following models are also available: Pretrained Model | Corpus | Teacher | Architecture | Query Encoder Path | Context Encoder Path |---|---|---|---|---|--- Wiki BM25 Λ | Wikipedia | BM25 | BERT-base | facebook/spar-wiki-bm25-lexmodel-query-encoder | facebook/spar-wiki-bm25-lexmodel-context-encoder PAQ BM25 Λ | PAQ | BM25 | BERT-base | facebook/spar-paq-bm25-lexmodel-query-encoder | facebook/spar-paq-bm25-lexmodel-context-encoder MARCO BM25 Λ | MS MARCO | BM25 | BERT-base | facebook/spar-marco-bm25-lexmodel-query-encoder | facebook/spar-marco-bm25-lexmodel-context-encoder MARCO UniCOIL Λ | MS MARCO | UniCOIL | BERT-base | facebook/spar-marco-unicoil-lexmodel-query-encoder | facebook/spar-marco-unicoil-lexmodel-context-encoder # Using the Lexical Model (Λ) Alone This model should be used together with the associated context encoder, similar to the [DPR](https://huggingface.co/docs/transformers/v4.22.1/en/model_doc/dpr) model. ``` import torch from transformers import AutoTokenizer, AutoModel # The tokenizer is the same for the query and context encoder tokenizer = AutoTokenizer.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') query_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') context_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-context-encoder') query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer query_input = tokenizer(query, return_tensors='pt') ctx_input = tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') # Compute embeddings: take the last-layer hidden state of the [CLS] token query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :] ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Compute similarity scores using dot product score1 = query_emb @ ctx_emb[0] # 341.3268 score2 = query_emb @ ctx_emb[1] # 340.1626 ``` # Using the Lexical Model (Λ) with a Base Dense Retriever as in SPAR As Λ learns lexical matching from a sparse teacher retriever, it can be used in combination with a standard dense retriever (e.g. [DPR](https://huggingface.co/docs/transformers/v4.22.1/en/model_doc/dpr#dpr), [Contriever](https://huggingface.co/facebook/contriever-msmarco)) to build a dense retriever that excels at both lexical and semantic matching. In the following example, we show how to build the SPAR-Wiki model for Open-Domain Question Answering by concatenating the embeddings of DPR and the Wiki BM25 Λ. ``` import torch from transformers import AutoTokenizer, AutoModel from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer from transformers import DPRContextEncoder, DPRContextEncoderTokenizer # DPR model dpr_ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") dpr_ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") dpr_query_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-multiset-base") dpr_query_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-multiset-base") # Wiki BM25 Λ model lexmodel_tokenizer = AutoTokenizer.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') lexmodel_query_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') lexmodel_context_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-context-encoder') query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Compute DPR embeddings dpr_query_input = dpr_query_tokenizer(query, return_tensors='pt')['input_ids'] dpr_query_emb = dpr_query_encoder(dpr_query_input).pooler_output dpr_ctx_input = dpr_ctx_tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') dpr_ctx_emb = dpr_ctx_encoder(**dpr_ctx_input).pooler_output # Compute Λ embeddings lexmodel_query_input = lexmodel_tokenizer(query, return_tensors='pt') lexmodel_query_emb = lexmodel_query_encoder(**query_input).last_hidden_state[:, 0, :] lexmodel_ctx_input = lexmodel_tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') lexmodel_ctx_emb = lexmodel_context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Form SPAR embeddings via concatenation # The concatenation weight is only applied to query embeddings # Refer to the SPAR paper for details concat_weight = 0.7 spar_query_emb = torch.cat( [dpr_query_emb, concat_weight * lexmodel_query_emb], dim=-1, ) spar_ctx_emb = torch.cat( [dpr_ctx_emb, lexmodel_ctx_emb], dim=-1, ) # Compute similarity scores score1 = spar_query_emb @ spar_ctx_emb[0] # 317.6931 score2 = spar_query_emb @ spar_ctx_emb[1] # 314.6144 ```
CoreyMorris/Reinforce-cartpole-v1
CoreyMorris
2022-09-22T16:21:40Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-22T16:20:39Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
huggingtweets/slime_machine
huggingtweets
2022-09-22T14:09:28Z
94
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/slime_machine/1663855763474/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1554733825220939777/lgFt_2e1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">slime</div> <div style="text-align: center; font-size: 14px;">@slime_machine</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from slime. | Data | slime | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 441 | | Short tweets | 589 | | Tweets kept | 2199 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2s9inuxg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @slime_machine's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5xjy8nrj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5xjy8nrj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/slime_machine') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/pixel-mania
sd-concepts-library
2022-09-22T14:05:08Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-22T05:26:54Z
--- license: mit --- ### pixel-mania on Stable Diffusion This is the `<pixel-mania>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
rttl-ai/senty-bert
rttl-ai
2022-09-22T13:35:10Z
80
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-11T20:19:23Z
--- license: bigscience-bloom-rail-1.0 --- # Senty BERT A yelpy-bert fine-tuned as a ternary classification task (positive, negative, neutral labels) on: - yelp reviews (https://yelp.com/dataset) - the SST-3 dataset
m-lin20/satellite-instrument-bert-NER
m-lin20
2022-09-22T13:32:42Z
104
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "pt", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: "pt" widget: - text: "Poised for launch in mid-2021, the joint NASA-USGS Landsat 9 mission will continue this important data record. In many respects Landsat 9 is a clone of Landsat-8. The Operational Land Imager-2 (OLI-2) is largely identical to Landsat 8 OLI, providing calibrated imagery covering the solar reflected wavelengths. The Thermal Infrared Sensor-2 (TIRS-2) improves upon Landsat 8 TIRS, addressing known issues including stray light incursion and a malfunction of the instrument scene select mirror. In addition, Landsat 9 adds redundancy to TIRS-2, thus upgrading the instrument to a 5-year design life commensurate with other elements of the mission. Initial performance testing of OLI-2 and TIRS-2 indicate that the instruments are of excellent quality and expected to match or improve on Landsat 8 data quality. " example_title: "example 1" - text: "Compared to its predecessor, Jason-3, the two AMR-C radiometer instruments have an external calibration system which enables higher radiometric stability accomplished by moving the secondary mirror between well-defined targets. Sentinel-6 allows continuing the study of the ocean circulation, climate change, and sea-level rise for at least another decade. Besides the external calibration for the AMR heritage radiometer (18.7, 23.8, and 34 GHz channels), the AMR-C contains a high-resolution microwave radiometer (HRMR) with radiometer channels at 90, 130, and 168 GHz. This subsystem allows for a factor of 5× higher spatial resolution at coastal transitions. This article presents a brief description of the instrument and the measured performance of the completed AMR-C-A and AMR-C-B instruments." example_title: "example 2" - text: "Landsat 9 will continue the Landsat data record into its fifth decade with a near-copy build of Landsat 8 with launch scheduled for December 2020. The two instruments on Landsat 9 are Thermal Infrared Sensor-2 (TIRS-2) and Operational Land Imager-2 (OLI-2)." example_title: "example 3" inference: parameters: aggregation_strategy: "first" --- # satellite-instrument-bert-NER For details, please visit the [GitHub link](https://github.com/THU-EarthInformationScienceLab/Satellite-Instrument-NER). ## Citation Our [paper](https://www.tandfonline.com/doi/full/10.1080/17538947.2022.2107098) has been published in the International Journal of Digital Earth : ```bibtex @article{lin2022satellite, title={Satellite and instrument entity recognition using a pre-trained language model with distant supervision}, author={Lin, Ming and Jin, Meng and Liu, Yufu and Bai, Yuqi}, journal={International Journal of Digital Earth}, volume={15}, number={1}, pages={1290--1304}, year={2022}, publisher={Taylor \& Francis} } ```
mayorov-s/dqn-SpaceInvadersNoFrameskip-v4
mayorov-s
2022-09-22T13:24:11Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-22T13:20:04Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 612.00 +/- 154.62 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mayorov-s -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mayorov-s ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
microsoft/deberta-xlarge
microsoft
2022-09-22T12:34:36Z
7,766
2
transformers
[ "transformers", "pytorch", "tf", "deberta", "deberta-v1", "fill-mask", "en", "arxiv:2006.03654", "license:mit", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - deberta-v1 - fill-mask thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This the DeBERTa XLarge model with 48 layers, 1024 hidden size. Total parameters 750M. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
microsoft/deberta-v2-xxlarge
microsoft
2022-09-22T12:34:30Z
3,270
31
transformers
[ "transformers", "pytorch", "tf", "deberta-v2", "deberta", "fill-mask", "en", "arxiv:2006.03654", "license:mit", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - deberta - fill-mask thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory. Run with `Deepspeed`, ```bash pip install datasets pip install deepspeed # Download the deepspeed config file wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json export TASK_NAME=mnli output_dir="ds_results" num_gpus=8 batch_size=8 python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\ run_glue.py \\ --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME \\ --do_train \\ --do_eval \\ --max_seq_length 256 \\ --per_device_train_batch_size ${batch_size} \\ --learning_rate 3e-6 \\ --num_train_epochs 3 \\ --output_dir $output_dir \\ --overwrite_output_dir \\ --logging_steps 10 \\ --logging_dir $output_dir \\ --deepspeed ds_config.json ``` You can also run with `--sharded_ddp` ```bash cd transformers/examples/text-classification/ export TASK_NAME=mnli python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
Sultannn/gpt2-ft-id-puisi
Sultannn
2022-09-22T12:17:39Z
67
1
transformers
[ "transformers", "tf", "tensorboard", "gpt2", "text-generation", "generated_from_keras_callback", "id", "Indonesian", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-10T07:22:22Z
--- tags: - generated_from_keras_callback - id - Indonesian license: mit dataset: - id_puisi widget: - text : "SENJA" - text : "BERANI" model-index: - name: Sultannn/gpt2-ft-id-puisi results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # # gpt2-ft-id-puisi This model is a fine-tuned on an [Indonesian Recipe](https://huggingface.co/datasets/Sultannn/id_recipe). It achieves the following results on the evaluation set: - Train Loss: 5.3628 - Validation Loss: 5.8179 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.3561 | 6.5449 | 0 | | 6.2176 | 6.1573 | 1 | | 5.8533 | 6.0014 | 2 | | 5.5955 | 5.8798 | 3 | | 5.3628 | 5.8179 | 4 | # Licenese [The MIT license](https://opensource.org/licenses/MIT)
muhtasham/bert-small-finetuned-parsed20
muhtasham
2022-09-22T11:34:48Z
179
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-17T13:31:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-small-finetuned-parsed20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-parsed20 This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 4 | 3.0763 | | No log | 2.0 | 8 | 2.8723 | | No log | 3.0 | 12 | 3.5102 | | No log | 4.0 | 16 | 2.8641 | | No log | 5.0 | 20 | 2.7827 | | No log | 6.0 | 24 | 2.8163 | | No log | 7.0 | 28 | 3.2415 | | No log | 8.0 | 32 | 3.0477 | | No log | 9.0 | 36 | 3.5160 | | No log | 10.0 | 40 | 3.1248 | | No log | 11.0 | 44 | 3.2159 | | No log | 12.0 | 48 | 3.2177 | | No log | 13.0 | 52 | 2.9108 | | No log | 14.0 | 56 | 3.3758 | | No log | 15.0 | 60 | 3.1335 | | No log | 16.0 | 64 | 2.9753 | | No log | 17.0 | 68 | 2.9922 | | No log | 18.0 | 72 | 3.2798 | | No log | 19.0 | 76 | 2.7280 | | No log | 20.0 | 80 | 3.1193 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sherover125/newsclassifier
sherover125
2022-09-22T10:46:34Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T17:28:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: newsclassifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # newsclassifier This model is a fine-tuned version of [HooshvareLab/bert-fa-zwnj-base](https://huggingface.co/HooshvareLab/bert-fa-zwnj-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1405 - Matthews Correlation: 0.9731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.2207 | 1.0 | 2397 | 0.1706 | 0.9595 | | 0.0817 | 2.0 | 4794 | 0.1505 | 0.9663 | | 0.0235 | 3.0 | 7191 | 0.1405 | 0.9731 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
muhtasham/bert-small-finetuned-legal-contracts-larger20-5-1
muhtasham
2022-09-22T10:44:07Z
184
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "dataset:albertvillanova/legal_contracts", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-16T04:33:53Z
--- datasets: - albertvillanova/legal_contracts --- # bert-tiny-finetuned-legal-contracts-longer This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/google/google/bert_uncased_L-4_H-512_A-8) on the portion of legal_contracts dataset for 1 epoch. # Note The model was not trained on the whole dataset which is around 9.5 GB, but only ## The first 20% of `train` + the last 5% of `train`. ```bash datasets_train = load_dataset('albertvillanova/legal_contracts' , split='train[:20%]') datasets_validation = load_dataset('albertvillanova/legal_contracts' , split='train[-5%:]') ```
ericntay/stbl_clinical_bert_ft_rs3
ericntay
2022-09-22T10:26:20Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-22T10:03:18Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft_rs3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft_rs3 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0833 - F1: 0.9279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2731 | 1.0 | 101 | 0.1011 | 0.8363 | | 0.0651 | 2.0 | 202 | 0.0683 | 0.8909 | | 0.0314 | 3.0 | 303 | 0.0623 | 0.9063 | | 0.0155 | 4.0 | 404 | 0.0705 | 0.9067 | | 0.0098 | 5.0 | 505 | 0.0702 | 0.9176 | | 0.006 | 6.0 | 606 | 0.0755 | 0.9213 | | 0.0037 | 7.0 | 707 | 0.0797 | 0.9216 | | 0.0031 | 8.0 | 808 | 0.0783 | 0.9252 | | 0.0018 | 9.0 | 909 | 0.0818 | 0.9259 | | 0.0014 | 10.0 | 1010 | 0.0809 | 0.9271 | | 0.0011 | 11.0 | 1111 | 0.0833 | 0.9259 | | 0.0009 | 12.0 | 1212 | 0.0833 | 0.9279 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
GItaf/gpt2-gpt2-TF-weight1-epoch10
GItaf
2022-09-22T09:36:24Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T08:05:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-gpt2-TF-weight1-epoch10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-TF-weight1-epoch10 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/roberta-base-roberta-base-TF-weight1-epoch10
GItaf
2022-09-22T09:35:57Z
49
0
transformers
[ "transformers", "pytorch", "roberta", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-22T09:34:27Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-TF-weight1-epoch10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-TF-weight1-epoch10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/roberta-base-roberta-base-TF-weight1-epoch5
GItaf
2022-09-22T09:32:53Z
47
0
transformers
[ "transformers", "pytorch", "roberta", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-22T09:31:40Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-TF-weight1-epoch5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-TF-weight1-epoch5 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
MGanesh29/parrot_paraphraser_on_T5-finetuned-xsum-v6
MGanesh29
2022-09-22T09:21:53Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-22T08:46:19Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: parrot_paraphraser_on_T5-finetuned-xsum-v6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # parrot_paraphraser_on_T5-finetuned-xsum-v6 This model is a fine-tuned version of [prithivida/parrot_paraphraser_on_T5](https://huggingface.co/prithivida/parrot_paraphraser_on_T5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0428 - Rouge1: 86.1908 - Rouge2: 84.358 - Rougel: 86.1439 - Rougelsum: 86.1806 - Gen Len: 17.887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0783 | 1.0 | 2000 | 0.0467 | 86.0347 | 84.0897 | 85.9987 | 86.0282 | 17.889 | | 0.058 | 2.0 | 4000 | 0.0428 | 86.1908 | 84.358 | 86.1439 | 86.1806 | 17.887 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Alexei1/imdb
Alexei1
2022-09-22T09:10:57Z
2
1
transformers
[ "transformers", "joblib", "autotrain", "tabular", "classification", "tabular-classification", "dataset:Alexei1/autotrain-data-imdb-sentiment-analysis", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-classification
2022-09-22T08:59:54Z
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - Alexei1/autotrain-data-imdb-sentiment-analysis co2_eq_emissions: emissions: 0.018564765189754893 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1530155186 - CO2 Emissions (in grams): 0.0186 ## Validation Metrics - Loss: 0.694 - Accuracy: 0.487 - Macro F1: 0.218 - Micro F1: 0.487 - Weighted F1: 0.319 - Macro Precision: 0.162 - Micro Precision: 0.487 - Weighted Precision: 0.237 - Macro Recall: 0.333 - Micro Recall: 0.487 - Weighted Recall: 0.487 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
chintagunta85/electramed-small-deid2014-ner-v5-classweights
chintagunta85
2022-09-22T09:08:27Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "token-classification", "generated_from_trainer", "dataset:i2b22014", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-22T07:48:30Z
--- tags: - generated_from_trainer datasets: - i2b22014 metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-deid2014-ner-v5-classweights results: - task: name: Token Classification type: token-classification dataset: name: i2b22014 type: i2b22014 config: i2b22014-deid split: train args: i2b22014-deid metrics: - name: Precision type: precision value: 0.8832236842105263 - name: Recall type: recall value: 0.6910561632502987 - name: F1 type: f1 value: 0.7754112732711052 - name: Accuracy type: accuracy value: 0.9883040491052534 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electramed-small-deid2014-ner-v5-classweights This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the i2b22014 dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 - Precision: 0.8832 - Recall: 0.6911 - F1: 0.7754 - Accuracy: 0.9883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0001 | 1.0 | 1838 | 0.0008 | 0.7702 | 0.3780 | 0.5071 | 0.9771 | | 0.0 | 2.0 | 3676 | 0.0007 | 0.8753 | 0.5671 | 0.6883 | 0.9827 | | 0.0 | 3.0 | 5514 | 0.0006 | 0.8074 | 0.4128 | 0.5463 | 0.9775 | | 0.0 | 4.0 | 7352 | 0.0007 | 0.8693 | 0.6102 | 0.7170 | 0.9848 | | 0.0 | 5.0 | 9190 | 0.0006 | 0.8710 | 0.6022 | 0.7121 | 0.9849 | | 0.0 | 6.0 | 11028 | 0.0007 | 0.8835 | 0.6547 | 0.7521 | 0.9867 | | 0.0 | 7.0 | 12866 | 0.0009 | 0.8793 | 0.6661 | 0.7579 | 0.9873 | | 0.0 | 8.0 | 14704 | 0.0008 | 0.8815 | 0.6740 | 0.7639 | 0.9876 | | 0.0 | 9.0 | 16542 | 0.0009 | 0.8812 | 0.6851 | 0.7709 | 0.9880 | | 0.0 | 10.0 | 18380 | 0.0009 | 0.8832 | 0.6911 | 0.7754 | 0.9883 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
prakashkmr48/Prompt-image-inpainting
prakashkmr48
2022-09-22T08:58:57Z
0
0
null
[ "region:us" ]
null
2022-09-22T08:51:46Z
git lfs install git clone https://huggingface.co/prakashkmr48/Prompt-image-inpainting
sd-concepts-library/ghostproject-men
sd-concepts-library
2022-09-22T07:36:08Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-22T07:36:02Z
--- license: mit --- ### ghostproject-men on Stable Diffusion This is the `<ghostsproject-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ghostsproject-style> 0](https://huggingface.co/sd-concepts-library/ghostproject-men/resolve/main/concept_images/0.jpeg) ![<ghostsproject-style> 1](https://huggingface.co/sd-concepts-library/ghostproject-men/resolve/main/concept_images/3.jpeg) ![<ghostsproject-style> 2](https://huggingface.co/sd-concepts-library/ghostproject-men/resolve/main/concept_images/2.jpeg) ![<ghostsproject-style> 3](https://huggingface.co/sd-concepts-library/ghostproject-men/resolve/main/concept_images/1.jpeg)
0ys/mt5-small-finetuned-amazon-en-es
0ys
2022-09-22T06:55:45Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-09-22T05:47:04Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0294 - Rouge1: 16.6807 - Rouge2: 8.0004 - Rougel: 16.2251 - Rougelsum: 16.1743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 6.5928 | 1.0 | 1209 | 3.3005 | 14.7863 | 6.5038 | 14.3031 | 14.2522 | | 3.9024 | 2.0 | 2418 | 3.1399 | 16.9257 | 8.6583 | 16.15 | 16.1299 | | 3.5806 | 3.0 | 3627 | 3.0869 | 18.2734 | 9.1667 | 17.7441 | 17.5782 | | 3.4201 | 4.0 | 4836 | 3.0590 | 17.763 | 8.9447 | 17.1833 | 17.1661 | | 3.3202 | 5.0 | 6045 | 3.0598 | 17.7754 | 8.5695 | 17.4139 | 17.2653 | | 3.2436 | 6.0 | 7254 | 3.0409 | 16.8423 | 8.1593 | 16.5392 | 16.4297 | | 3.2079 | 7.0 | 8463 | 3.0332 | 16.8991 | 8.1574 | 16.4229 | 16.3515 | | 3.1801 | 8.0 | 9672 | 3.0294 | 16.6807 | 8.0004 | 16.2251 | 16.1743 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/pool-test
sd-concepts-library
2022-09-22T06:53:48Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T06:53:43Z
--- license: mit --- ### Pool test on Stable Diffusion This is the `<pool_test>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<pool_test> 0](https://huggingface.co/sd-concepts-library/pool-test/resolve/main/concept_images/0.jpeg) ![<pool_test> 1](https://huggingface.co/sd-concepts-library/pool-test/resolve/main/concept_images/3.jpeg) ![<pool_test> 2](https://huggingface.co/sd-concepts-library/pool-test/resolve/main/concept_images/2.jpeg) ![<pool_test> 3](https://huggingface.co/sd-concepts-library/pool-test/resolve/main/concept_images/1.jpeg)
chintagunta85/electramed-small-deid2014-ner-v4
chintagunta85
2022-09-22T06:33:10Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "token-classification", "generated_from_trainer", "dataset:i2b22014", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-22T05:55:58Z
--- tags: - generated_from_trainer datasets: - i2b22014 metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-deid2014-ner-v4 results: - task: name: Token Classification type: token-classification dataset: name: i2b22014 type: i2b22014 config: i2b22014-deid split: train args: i2b22014-deid metrics: - name: Precision type: precision value: 0.7571112095702259 - name: Recall type: recall value: 0.7853663020498207 - name: F1 type: f1 value: 0.770979967514889 - name: Accuracy type: accuracy value: 0.9906153616114308 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electramed-small-deid2014-ner-v4 This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the i2b22014 dataset. It achieves the following results on the evaluation set: - Loss: 0.0362 - Precision: 0.7571 - Recall: 0.7854 - F1: 0.7710 - Accuracy: 0.9906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0143 | 1.0 | 1838 | 0.1451 | 0.3136 | 0.3463 | 0.3291 | 0.9700 | | 0.0033 | 2.0 | 3676 | 0.0940 | 0.4293 | 0.4861 | 0.4559 | 0.9758 | | 0.0014 | 3.0 | 5514 | 0.0725 | 0.4906 | 0.5766 | 0.5301 | 0.9799 | | 0.0007 | 4.0 | 7352 | 0.0568 | 0.6824 | 0.7022 | 0.6921 | 0.9860 | | 0.0112 | 5.0 | 9190 | 0.0497 | 0.6966 | 0.7400 | 0.7177 | 0.9870 | | 0.0002 | 6.0 | 11028 | 0.0442 | 0.7126 | 0.7549 | 0.7332 | 0.9878 | | 0.0002 | 7.0 | 12866 | 0.0404 | 0.7581 | 0.7591 | 0.7586 | 0.9896 | | 0.0002 | 8.0 | 14704 | 0.0376 | 0.7540 | 0.7804 | 0.7670 | 0.9904 | | 0.0002 | 9.0 | 16542 | 0.0367 | 0.7548 | 0.7825 | 0.7684 | 0.9905 | | 0.0001 | 10.0 | 18380 | 0.0362 | 0.7571 | 0.7854 | 0.7710 | 0.9906 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/test2
sd-concepts-library
2022-09-22T06:29:49Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T06:29:45Z
--- license: mit --- ### TEST2 on Stable Diffusion This is the `<AIOCARD>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<AIOCARD> 0](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027D.jpg) ![<AIOCARD> 1](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027C.jpg) ![<AIOCARD> 2](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/00100282.jpg) ![<AIOCARD> 3](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027A.jpg) ![<AIOCARD> 4](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027B.jpg) ![<AIOCARD> 5](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/00100281.jpg) ![<AIOCARD> 6](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/00100280.jpg) ![<AIOCARD> 7](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027E.jpg) ![<AIOCARD> 8](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/00100279.jpg) ![<AIOCARD> 9](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027F.jpg)
sd-concepts-library/sunfish
sd-concepts-library
2022-09-22T05:44:51Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T05:44:40Z
--- license: mit --- ### SunFish on Stable Diffusion This is the `<SunFish>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<SunFish> 0](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/4.jpeg) ![<SunFish> 1](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/12.jpeg) ![<SunFish> 2](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/8.jpeg) ![<SunFish> 3](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/0.jpeg) ![<SunFish> 4](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/6.jpeg) ![<SunFish> 5](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/3.jpeg) ![<SunFish> 6](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/11.jpeg) ![<SunFish> 7](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/10.jpeg) ![<SunFish> 8](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/7.jpeg) ![<SunFish> 9](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/2.jpeg) ![<SunFish> 10](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/9.jpeg) ![<SunFish> 11](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/1.jpeg) ![<SunFish> 12](https://huggingface.co/sd-concepts-library/sunfish/resolve/main/concept_images/5.jpeg)
sd-concepts-library/yinit
sd-concepts-library
2022-09-22T04:58:38Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T04:58:24Z
--- license: mit --- ### yinit on Stable Diffusion This is the `yinit-dropcap` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![yinit-dropcap 0](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/4.jpeg) ![yinit-dropcap 1](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/12.jpeg) ![yinit-dropcap 2](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/8.jpeg) ![yinit-dropcap 3](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/0.jpeg) ![yinit-dropcap 4](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/6.jpeg) ![yinit-dropcap 5](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/3.jpeg) ![yinit-dropcap 6](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/20.jpeg) ![yinit-dropcap 7](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/11.jpeg) ![yinit-dropcap 8](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/19.jpeg) ![yinit-dropcap 9](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/24.jpeg) ![yinit-dropcap 10](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/17.jpeg) ![yinit-dropcap 11](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/10.jpeg) ![yinit-dropcap 12](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/7.jpeg) ![yinit-dropcap 13](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/13.jpeg) ![yinit-dropcap 14](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/16.jpeg) ![yinit-dropcap 15](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/2.jpeg) ![yinit-dropcap 16](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/25.jpeg) ![yinit-dropcap 17](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/22.jpeg) ![yinit-dropcap 18](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/9.jpeg) ![yinit-dropcap 19](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/15.jpeg) ![yinit-dropcap 20](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/21.jpeg) ![yinit-dropcap 21](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/1.jpeg) ![yinit-dropcap 22](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/14.jpeg) ![yinit-dropcap 23](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/5.jpeg) ![yinit-dropcap 24](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/18.jpeg) ![yinit-dropcap 25](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/23.jpeg)
sd-concepts-library/million-live-spade-q-style-3k
sd-concepts-library
2022-09-22T04:35:01Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T04:34:51Z
--- license: mit --- ### million-live-spade-q-style-3k on Stable Diffusion This is the `<spade_q>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<spade_q> 0](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/0.png) ![<spade_q> 1](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/1.png) ![<spade_q> 2](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/2.png) ![<spade_q> 3](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/3.png) ![<spade_q> 4](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/4.png) ![<spade_q> 5](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/5.png) ![<spade_q> 6](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/6.png) ![<spade_q> 7](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/7.png) ![<spade_q> 8](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/8.png) ![<spade_q> 9](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/9.png) ![<spade_q> 10](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/10.png) ![<spade_q> 11](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/11.png) ![<spade_q> 12](https://huggingface.co/sd-concepts-library/million-live-spade-q-style-3k/resolve/main/concept_images/12.png)
sd-concepts-library/million-live-spade-q-object-3k
sd-concepts-library
2022-09-22T04:34:40Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T04:34:30Z
--- license: mit --- ### million-live-spade-q-object-3k on Stable Diffusion This is the `<spade_q>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<spade_q> 0](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/0.png) ![<spade_q> 1](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/1.png) ![<spade_q> 2](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/2.png) ![<spade_q> 3](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/3.png) ![<spade_q> 4](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/4.png) ![<spade_q> 5](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/5.png) ![<spade_q> 6](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/6.png) ![<spade_q> 7](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/7.png) ![<spade_q> 8](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/8.png) ![<spade_q> 9](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/9.png) ![<spade_q> 10](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/10.png) ![<spade_q> 11](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/11.png) ![<spade_q> 12](https://huggingface.co/sd-concepts-library/million-live-spade-q-object-3k/resolve/main/concept_images/12.png)
sd-concepts-library/homestuck-troll
sd-concepts-library
2022-09-22T03:23:46Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T03:23:43Z
--- license: mit --- ### homestuck troll on Stable Diffusion This is the `<homestuck-troll>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<homestuck-troll> 0](https://huggingface.co/sd-concepts-library/homestuck-troll/resolve/main/concept_images/4.jpeg) ![<homestuck-troll> 1](https://huggingface.co/sd-concepts-library/homestuck-troll/resolve/main/concept_images/0.jpeg) ![<homestuck-troll> 2](https://huggingface.co/sd-concepts-library/homestuck-troll/resolve/main/concept_images/3.jpeg) ![<homestuck-troll> 3](https://huggingface.co/sd-concepts-library/homestuck-troll/resolve/main/concept_images/2.jpeg) ![<homestuck-troll> 4](https://huggingface.co/sd-concepts-library/homestuck-troll/resolve/main/concept_images/1.jpeg)
sd-concepts-library/char-con
sd-concepts-library
2022-09-22T02:54:22Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T02:54:17Z
--- license: mit --- ### char-con on Stable Diffusion This is the `<char-con>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<char-con> 0](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/4.jpeg) ![<char-con> 1](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/0.jpeg) ![<char-con> 2](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/6.jpeg) ![<char-con> 3](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/3.jpeg) ![<char-con> 4](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/2.jpeg) ![<char-con> 5](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/1.jpeg) ![<char-con> 6](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/5.jpeg)
thisisHJLee/wav2vec2-large-xls-r-300m-korean-b
thisisHJLee
2022-09-22T02:53:51Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-22T01:47:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-korean-b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-korean-b This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
g30rv17ys/ddpm-geeve-drusen-2000-128
g30rv17ys
2022-09-22T01:53:45Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-21T18:22:01Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-drusen-2000-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-drusen-2000-128/tensorboard?#scalars)
sd-concepts-library/gba-pokemon-sprites
sd-concepts-library
2022-09-22T00:48:32Z
0
30
null
[ "license:mit", "region:us" ]
null
2022-09-22T00:48:25Z
--- license: mit --- ### GBA Pokemon Sprites on Stable Diffusion This is the `<GBA-Poke-Sprites>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<GBA-Poke-Sprites> 0](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/340.jpeg) ![<GBA-Poke-Sprites> 1](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/48.jpeg) ![<GBA-Poke-Sprites> 2](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/72.jpeg) ![<GBA-Poke-Sprites> 3](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/245.jpeg) ![<GBA-Poke-Sprites> 4](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/229.jpeg) ![<GBA-Poke-Sprites> 5](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/238.jpeg) ![<GBA-Poke-Sprites> 6](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/128.jpeg) ![<GBA-Poke-Sprites> 7](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/150.jpeg) ![<GBA-Poke-Sprites> 8](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/275.jpeg) ![<GBA-Poke-Sprites> 9](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/117.jpeg) ![<GBA-Poke-Sprites> 10](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/326.jpeg) ![<GBA-Poke-Sprites> 11](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/344.jpeg) ![<GBA-Poke-Sprites> 12](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/157.jpeg) ![<GBA-Poke-Sprites> 13](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/385.jpeg) ![<GBA-Poke-Sprites> 14](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/58.jpeg) ![<GBA-Poke-Sprites> 15](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/286.jpeg) ![<GBA-Poke-Sprites> 16](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/319.jpeg) ![<GBA-Poke-Sprites> 17](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/347.jpeg) ![<GBA-Poke-Sprites> 18](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/383.jpeg) ![<GBA-Poke-Sprites> 19](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/213.jpeg) ![<GBA-Poke-Sprites> 20](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/380.jpeg) ![<GBA-Poke-Sprites> 21](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/96.jpeg) ![<GBA-Poke-Sprites> 22](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/139.jpeg) ![<GBA-Poke-Sprites> 23](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/131.jpeg) ![<GBA-Poke-Sprites> 24](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/262.jpeg) ![<GBA-Poke-Sprites> 25](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/134.jpeg) ![<GBA-Poke-Sprites> 26](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/53.jpeg) ![<GBA-Poke-Sprites> 27](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/83.jpeg) ![<GBA-Poke-Sprites> 28](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/165.jpeg) ![<GBA-Poke-Sprites> 29](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/79.jpeg) ![<GBA-Poke-Sprites> 30](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/151.jpeg) ![<GBA-Poke-Sprites> 31](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/308.jpeg) ![<GBA-Poke-Sprites> 32](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/292.jpeg) ![<GBA-Poke-Sprites> 33](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/112.jpeg) ![<GBA-Poke-Sprites> 34](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/4.jpeg) ![<GBA-Poke-Sprites> 35](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/12.jpeg) ![<GBA-Poke-Sprites> 36](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/285.jpeg) ![<GBA-Poke-Sprites> 37](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/204.jpeg) ![<GBA-Poke-Sprites> 38](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/226.jpeg) ![<GBA-Poke-Sprites> 39](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/298.jpeg) ![<GBA-Poke-Sprites> 40](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/140.jpeg) ![<GBA-Poke-Sprites> 41](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/59.jpeg) ![<GBA-Poke-Sprites> 42](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/180.jpeg) ![<GBA-Poke-Sprites> 43](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/320.jpeg) ![<GBA-Poke-Sprites> 44](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/156.jpeg) ![<GBA-Poke-Sprites> 45](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/8.jpeg) ![<GBA-Poke-Sprites> 46](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/69.jpeg) ![<GBA-Poke-Sprites> 47](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/251.jpeg) ![<GBA-Poke-Sprites> 48](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/337.jpeg) ![<GBA-Poke-Sprites> 49](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/45.jpeg) ![<GBA-Poke-Sprites> 50](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/87.jpeg) ![<GBA-Poke-Sprites> 51](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/203.jpeg) ![<GBA-Poke-Sprites> 52](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/190.jpeg) ![<GBA-Poke-Sprites> 53](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/101.jpeg) ![<GBA-Poke-Sprites> 54](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/234.jpeg) ![<GBA-Poke-Sprites> 55](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/31.jpeg) ![<GBA-Poke-Sprites> 56](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/146.jpeg) ![<GBA-Poke-Sprites> 57](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/228.jpeg) ![<GBA-Poke-Sprites> 58](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/196.jpeg) ![<GBA-Poke-Sprites> 59](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/99.jpeg) ![<GBA-Poke-Sprites> 60](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/331.jpeg) ![<GBA-Poke-Sprites> 61](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/242.jpeg) ![<GBA-Poke-Sprites> 62](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/297.jpeg) ![<GBA-Poke-Sprites> 63](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/271.jpeg) ![<GBA-Poke-Sprites> 64](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/114.jpeg) ![<GBA-Poke-Sprites> 65](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/78.jpeg) ![<GBA-Poke-Sprites> 66](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/71.jpeg) ![<GBA-Poke-Sprites> 67](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/211.jpeg) ![<GBA-Poke-Sprites> 68](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/0.jpeg) ![<GBA-Poke-Sprites> 69](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/175.jpeg) ![<GBA-Poke-Sprites> 70](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/283.jpeg) ![<GBA-Poke-Sprites> 71](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/86.jpeg) ![<GBA-Poke-Sprites> 72](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/6.jpeg) ![<GBA-Poke-Sprites> 73](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/123.jpeg) ![<GBA-Poke-Sprites> 74](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/352.jpeg) ![<GBA-Poke-Sprites> 75](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/113.jpeg) ![<GBA-Poke-Sprites> 76](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/3.jpeg) ![<GBA-Poke-Sprites> 77](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/20.jpeg) ![<GBA-Poke-Sprites> 78](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/11.jpeg) ![<GBA-Poke-Sprites> 79](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/145.jpeg) ![<GBA-Poke-Sprites> 80](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/19.jpeg) ![<GBA-Poke-Sprites> 81](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/287.jpeg) ![<GBA-Poke-Sprites> 82](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/54.jpeg) ![<GBA-Poke-Sprites> 83](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/153.jpeg) ![<GBA-Poke-Sprites> 84](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/274.jpeg) ![<GBA-Poke-Sprites> 85](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/115.jpeg) ![<GBA-Poke-Sprites> 86](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/318.jpeg) ![<GBA-Poke-Sprites> 87](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/67.jpeg) ![<GBA-Poke-Sprites> 88](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/208.jpeg) ![<GBA-Poke-Sprites> 89](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/182.jpeg) ![<GBA-Poke-Sprites> 90](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/356.jpeg) ![<GBA-Poke-Sprites> 91](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/57.jpeg) ![<GBA-Poke-Sprites> 92](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/325.jpeg) ![<GBA-Poke-Sprites> 93](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/51.jpeg) ![<GBA-Poke-Sprites> 94](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/50.jpeg) ![<GBA-Poke-Sprites> 95](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/247.jpeg) ![<GBA-Poke-Sprites> 96](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/268.jpeg) ![<GBA-Poke-Sprites> 97](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/194.jpeg) ![<GBA-Poke-Sprites> 98](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/227.jpeg) ![<GBA-Poke-Sprites> 99](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/93.jpeg) ![<GBA-Poke-Sprites> 100](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/338.jpeg) ![<GBA-Poke-Sprites> 101](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/77.jpeg) ![<GBA-Poke-Sprites> 102](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/256.jpeg) ![<GBA-Poke-Sprites> 103](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/233.jpeg) ![<GBA-Poke-Sprites> 104](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/231.jpeg) ![<GBA-Poke-Sprites> 105](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/130.jpeg) ![<GBA-Poke-Sprites> 106](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/225.jpeg) ![<GBA-Poke-Sprites> 107](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/381.jpeg) ![<GBA-Poke-Sprites> 108](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/360.jpeg) ![<GBA-Poke-Sprites> 109](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/95.jpeg) ![<GBA-Poke-Sprites> 110](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/155.jpeg) ![<GBA-Poke-Sprites> 111](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/300.jpeg) ![<GBA-Poke-Sprites> 112](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/259.jpeg) ![<GBA-Poke-Sprites> 113](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/314.jpeg) ![<GBA-Poke-Sprites> 114](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/195.jpeg) ![<GBA-Poke-Sprites> 115](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/311.jpeg) ![<GBA-Poke-Sprites> 116](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/179.jpeg) ![<GBA-Poke-Sprites> 117](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/255.jpeg) ![<GBA-Poke-Sprites> 118](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/106.jpeg) ![<GBA-Poke-Sprites> 119](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/323.jpeg) ![<GBA-Poke-Sprites> 120](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/299.jpeg) ![<GBA-Poke-Sprites> 121](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/138.jpeg) ![<GBA-Poke-Sprites> 122](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/110.jpeg) ![<GBA-Poke-Sprites> 123](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/354.jpeg) ![<GBA-Poke-Sprites> 124](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/120.jpeg) ![<GBA-Poke-Sprites> 125](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/68.jpeg) ![<GBA-Poke-Sprites> 126](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/27.jpeg) ![<GBA-Poke-Sprites> 127](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/24.jpeg) ![<GBA-Poke-Sprites> 128](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/174.jpeg) ![<GBA-Poke-Sprites> 129](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/266.jpeg) ![<GBA-Poke-Sprites> 130](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/192.jpeg) ![<GBA-Poke-Sprites> 131](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/327.jpeg) ![<GBA-Poke-Sprites> 132](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/171.jpeg) ![<GBA-Poke-Sprites> 133](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/47.jpeg) ![<GBA-Poke-Sprites> 134](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/42.jpeg) ![<GBA-Poke-Sprites> 135](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/149.jpeg) ![<GBA-Poke-Sprites> 136](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/124.jpeg) ![<GBA-Poke-Sprites> 137](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/63.jpeg) ![<GBA-Poke-Sprites> 138](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/33.jpeg) ![<GBA-Poke-Sprites> 139](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/243.jpeg) ![<GBA-Poke-Sprites> 140](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/372.jpeg) ![<GBA-Poke-Sprites> 141](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/253.jpeg) ![<GBA-Poke-Sprites> 142](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/17.jpeg) ![<GBA-Poke-Sprites> 143](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/280.jpeg) ![<GBA-Poke-Sprites> 144](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/357.jpeg) ![<GBA-Poke-Sprites> 145](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/230.jpeg) ![<GBA-Poke-Sprites> 146](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/212.jpeg) ![<GBA-Poke-Sprites> 147](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/370.jpeg) ![<GBA-Poke-Sprites> 148](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/293.jpeg) ![<GBA-Poke-Sprites> 149](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/162.jpeg) ![<GBA-Poke-Sprites> 150](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/88.jpeg) ![<GBA-Poke-Sprites> 151](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/199.jpeg) ![<GBA-Poke-Sprites> 152](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/144.jpeg) ![<GBA-Poke-Sprites> 153](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/289.jpeg) ![<GBA-Poke-Sprites> 154](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/240.jpeg) ![<GBA-Poke-Sprites> 155](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/10.jpeg) ![<GBA-Poke-Sprites> 156](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/52.jpeg) ![<GBA-Poke-Sprites> 157](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/317.jpeg) ![<GBA-Poke-Sprites> 158](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/137.jpeg) ![<GBA-Poke-Sprites> 159](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/279.jpeg) ![<GBA-Poke-Sprites> 160](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/353.jpeg) ![<GBA-Poke-Sprites> 161](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/206.jpeg) ![<GBA-Poke-Sprites> 162](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/273.jpeg) ![<GBA-Poke-Sprites> 163](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/306.jpeg) ![<GBA-Poke-Sprites> 164](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/384.jpeg) ![<GBA-Poke-Sprites> 165](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/330.jpeg) ![<GBA-Poke-Sprites> 166](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/284.jpeg) ![<GBA-Poke-Sprites> 167](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/56.jpeg) ![<GBA-Poke-Sprites> 168](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/100.jpeg) ![<GBA-Poke-Sprites> 169](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/181.jpeg) ![<GBA-Poke-Sprites> 170](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/84.jpeg) ![<GBA-Poke-Sprites> 171](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/282.jpeg) ![<GBA-Poke-Sprites> 172](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/345.jpeg) ![<GBA-Poke-Sprites> 173](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/239.jpeg) ![<GBA-Poke-Sprites> 174](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/163.jpeg) ![<GBA-Poke-Sprites> 175](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/349.jpeg) ![<GBA-Poke-Sprites> 176](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/313.jpeg) ![<GBA-Poke-Sprites> 177](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/30.jpeg) ![<GBA-Poke-Sprites> 178](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/168.jpeg) ![<GBA-Poke-Sprites> 179](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/261.jpeg) ![<GBA-Poke-Sprites> 180](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/217.jpeg) ![<GBA-Poke-Sprites> 181](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/342.jpeg) ![<GBA-Poke-Sprites> 182](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/365.jpeg) ![<GBA-Poke-Sprites> 183](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/361.jpeg) ![<GBA-Poke-Sprites> 184](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/376.jpeg) ![<GBA-Poke-Sprites> 185](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/61.jpeg) ![<GBA-Poke-Sprites> 186](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/136.jpeg) ![<GBA-Poke-Sprites> 187](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/302.jpeg) ![<GBA-Poke-Sprites> 188](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/7.jpeg) ![<GBA-Poke-Sprites> 189](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/154.jpeg) ![<GBA-Poke-Sprites> 190](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/294.jpeg) ![<GBA-Poke-Sprites> 191](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/341.jpeg) ![<GBA-Poke-Sprites> 192](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/166.jpeg) ![<GBA-Poke-Sprites> 193](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/62.jpeg) ![<GBA-Poke-Sprites> 194](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/322.jpeg) ![<GBA-Poke-Sprites> 195](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/13.jpeg) ![<GBA-Poke-Sprites> 196](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/16.jpeg) ![<GBA-Poke-Sprites> 197](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/309.jpeg) ![<GBA-Poke-Sprites> 198](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/364.jpeg) ![<GBA-Poke-Sprites> 199](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/343.jpeg) ![<GBA-Poke-Sprites> 200](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/91.jpeg) ![<GBA-Poke-Sprites> 201](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/73.jpeg) ![<GBA-Poke-Sprites> 202](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/2.jpeg) ![<GBA-Poke-Sprites> 203](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/25.jpeg) ![<GBA-Poke-Sprites> 204](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/272.jpeg) ![<GBA-Poke-Sprites> 205](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/177.jpeg) ![<GBA-Poke-Sprites> 206](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/366.jpeg) ![<GBA-Poke-Sprites> 207](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/252.jpeg) ![<GBA-Poke-Sprites> 208](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/170.jpeg) ![<GBA-Poke-Sprites> 209](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/38.jpeg) ![<GBA-Poke-Sprites> 210](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/375.jpeg) ![<GBA-Poke-Sprites> 211](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/193.jpeg) ![<GBA-Poke-Sprites> 212](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/363.jpeg) ![<GBA-Poke-Sprites> 213](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/254.jpeg) ![<GBA-Poke-Sprites> 214](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/29.jpeg) ![<GBA-Poke-Sprites> 215](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/236.jpeg) ![<GBA-Poke-Sprites> 216](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/315.jpeg) ![<GBA-Poke-Sprites> 217](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/263.jpeg) ![<GBA-Poke-Sprites> 218](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/335.jpeg) ![<GBA-Poke-Sprites> 219](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/22.jpeg) ![<GBA-Poke-Sprites> 220](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/198.jpeg) ![<GBA-Poke-Sprites> 221](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/368.jpeg) ![<GBA-Poke-Sprites> 222](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/37.jpeg) ![<GBA-Poke-Sprites> 223](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/119.jpeg) ![<GBA-Poke-Sprites> 224](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/97.jpeg) ![<GBA-Poke-Sprites> 225](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/265.jpeg) ![<GBA-Poke-Sprites> 226](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/359.jpeg) ![<GBA-Poke-Sprites> 227](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/36.jpeg) ![<GBA-Poke-Sprites> 228](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/135.jpeg) ![<GBA-Poke-Sprites> 229](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/126.jpeg) ![<GBA-Poke-Sprites> 230](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/248.jpeg) ![<GBA-Poke-Sprites> 231](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/332.jpeg) ![<GBA-Poke-Sprites> 232](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/267.jpeg) ![<GBA-Poke-Sprites> 233](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/141.jpeg) ![<GBA-Poke-Sprites> 234](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/241.jpeg) ![<GBA-Poke-Sprites> 235](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/176.jpeg) ![<GBA-Poke-Sprites> 236](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/82.jpeg) ![<GBA-Poke-Sprites> 237](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/351.jpeg) ![<GBA-Poke-Sprites> 238](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/333.jpeg) ![<GBA-Poke-Sprites> 239](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/75.jpeg) ![<GBA-Poke-Sprites> 240](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/35.jpeg) ![<GBA-Poke-Sprites> 241](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/172.jpeg) ![<GBA-Poke-Sprites> 242](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/105.jpeg) ![<GBA-Poke-Sprites> 243](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/336.jpeg) ![<GBA-Poke-Sprites> 244](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/303.jpeg) ![<GBA-Poke-Sprites> 245](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/249.jpeg) ![<GBA-Poke-Sprites> 246](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/26.jpeg) ![<GBA-Poke-Sprites> 247](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/132.jpeg) ![<GBA-Poke-Sprites> 248](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/350.jpeg) ![<GBA-Poke-Sprites> 249](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/304.jpeg) ![<GBA-Poke-Sprites> 250](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/216.jpeg) ![<GBA-Poke-Sprites> 251](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/224.jpeg) ![<GBA-Poke-Sprites> 252](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/200.jpeg) ![<GBA-Poke-Sprites> 253](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/46.jpeg) ![<GBA-Poke-Sprites> 254](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/295.jpeg) ![<GBA-Poke-Sprites> 255](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/257.jpeg) ![<GBA-Poke-Sprites> 256](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/324.jpeg) ![<GBA-Poke-Sprites> 257](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/207.jpeg) ![<GBA-Poke-Sprites> 258](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/161.jpeg) ![<GBA-Poke-Sprites> 259](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/215.jpeg) ![<GBA-Poke-Sprites> 260](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/221.jpeg) ![<GBA-Poke-Sprites> 261](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/281.jpeg) ![<GBA-Poke-Sprites> 262](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/89.jpeg) ![<GBA-Poke-Sprites> 263](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/104.jpeg) ![<GBA-Poke-Sprites> 264](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/202.jpeg) ![<GBA-Poke-Sprites> 265](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/186.jpeg) ![<GBA-Poke-Sprites> 266](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/111.jpeg) ![<GBA-Poke-Sprites> 267](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/223.jpeg) ![<GBA-Poke-Sprites> 268](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/158.jpeg) ![<GBA-Poke-Sprites> 269](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/9.jpeg) ![<GBA-Poke-Sprites> 270](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/244.jpeg) ![<GBA-Poke-Sprites> 271](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/92.jpeg) ![<GBA-Poke-Sprites> 272](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/276.jpeg) ![<GBA-Poke-Sprites> 273](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/80.jpeg) ![<GBA-Poke-Sprites> 274](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/358.jpeg) ![<GBA-Poke-Sprites> 275](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/148.jpeg) ![<GBA-Poke-Sprites> 276](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/66.jpeg) ![<GBA-Poke-Sprites> 277](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/15.jpeg) ![<GBA-Poke-Sprites> 278](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/32.jpeg) ![<GBA-Poke-Sprites> 279](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/43.jpeg) ![<GBA-Poke-Sprites> 280](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/296.jpeg) ![<GBA-Poke-Sprites> 281](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/378.jpeg) ![<GBA-Poke-Sprites> 282](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/210.jpeg) ![<GBA-Poke-Sprites> 283](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/237.jpeg) ![<GBA-Poke-Sprites> 284](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/81.jpeg) ![<GBA-Poke-Sprites> 285](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/305.jpeg) ![<GBA-Poke-Sprites> 286](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/64.jpeg) ![<GBA-Poke-Sprites> 287](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/209.jpeg) ![<GBA-Poke-Sprites> 288](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/65.jpeg) ![<GBA-Poke-Sprites> 289](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/173.jpeg) ![<GBA-Poke-Sprites> 290](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/232.jpeg) ![<GBA-Poke-Sprites> 291](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/371.jpeg) ![<GBA-Poke-Sprites> 292](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/377.jpeg) ![<GBA-Poke-Sprites> 293](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/21.jpeg) ![<GBA-Poke-Sprites> 294](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/129.jpeg) ![<GBA-Poke-Sprites> 295](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/178.jpeg) ![<GBA-Poke-Sprites> 296](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/184.jpeg) ![<GBA-Poke-Sprites> 297](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/355.jpeg) ![<GBA-Poke-Sprites> 298](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/312.jpeg) ![<GBA-Poke-Sprites> 299](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/301.jpeg) ![<GBA-Poke-Sprites> 300](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/374.jpeg) ![<GBA-Poke-Sprites> 301](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/108.jpeg) ![<GBA-Poke-Sprites> 302](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/220.jpeg) ![<GBA-Poke-Sprites> 303](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/369.jpeg) ![<GBA-Poke-Sprites> 304](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/41.jpeg) ![<GBA-Poke-Sprites> 305](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/160.jpeg) ![<GBA-Poke-Sprites> 306](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/1.jpeg) ![<GBA-Poke-Sprites> 307](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/143.jpeg) ![<GBA-Poke-Sprites> 308](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/55.jpeg) ![<GBA-Poke-Sprites> 309](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/147.jpeg) ![<GBA-Poke-Sprites> 310](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/258.jpeg) ![<GBA-Poke-Sprites> 311](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/339.jpeg) ![<GBA-Poke-Sprites> 312](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/102.jpeg) ![<GBA-Poke-Sprites> 313](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/14.jpeg) ![<GBA-Poke-Sprites> 314](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/321.jpeg) ![<GBA-Poke-Sprites> 315](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/39.jpeg) ![<GBA-Poke-Sprites> 316](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/76.jpeg) ![<GBA-Poke-Sprites> 317](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/103.jpeg) ![<GBA-Poke-Sprites> 318](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/269.jpeg) ![<GBA-Poke-Sprites> 319](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/278.jpeg) ![<GBA-Poke-Sprites> 320](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/222.jpeg) ![<GBA-Poke-Sprites> 321](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/205.jpeg) ![<GBA-Poke-Sprites> 322](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/167.jpeg) ![<GBA-Poke-Sprites> 323](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/5.jpeg) ![<GBA-Poke-Sprites> 324](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/109.jpeg) ![<GBA-Poke-Sprites> 325](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/260.jpeg) ![<GBA-Poke-Sprites> 326](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/18.jpeg) ![<GBA-Poke-Sprites> 327](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/188.jpeg) ![<GBA-Poke-Sprites> 328](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/142.jpeg) ![<GBA-Poke-Sprites> 329](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/329.jpeg) ![<GBA-Poke-Sprites> 330](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/382.jpeg) ![<GBA-Poke-Sprites> 331](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/246.jpeg) ![<GBA-Poke-Sprites> 332](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/60.jpeg) ![<GBA-Poke-Sprites> 333](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/348.jpeg) ![<GBA-Poke-Sprites> 334](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/316.jpeg) ![<GBA-Poke-Sprites> 335](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/159.jpeg) ![<GBA-Poke-Sprites> 336](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/183.jpeg) ![<GBA-Poke-Sprites> 337](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/288.jpeg) ![<GBA-Poke-Sprites> 338](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/23.jpeg) ![<GBA-Poke-Sprites> 339](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/185.jpeg) ![<GBA-Poke-Sprites> 340](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/250.jpeg) ![<GBA-Poke-Sprites> 341](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/187.jpeg) ![<GBA-Poke-Sprites> 342](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/362.jpeg) ![<GBA-Poke-Sprites> 343](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/373.jpeg) ![<GBA-Poke-Sprites> 344](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/218.jpeg) ![<GBA-Poke-Sprites> 345](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/191.jpeg) ![<GBA-Poke-Sprites> 346](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/44.jpeg) ![<GBA-Poke-Sprites> 347](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/164.jpeg) ![<GBA-Poke-Sprites> 348](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/98.jpeg) ![<GBA-Poke-Sprites> 349](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/28.jpeg) ![<GBA-Poke-Sprites> 350](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/291.jpeg) ![<GBA-Poke-Sprites> 351](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/235.jpeg) ![<GBA-Poke-Sprites> 352](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/121.jpeg) ![<GBA-Poke-Sprites> 353](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/310.jpeg) ![<GBA-Poke-Sprites> 354](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/127.jpeg) ![<GBA-Poke-Sprites> 355](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/118.jpeg) ![<GBA-Poke-Sprites> 356](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/133.jpeg) ![<GBA-Poke-Sprites> 357](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/270.jpeg) ![<GBA-Poke-Sprites> 358](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/122.jpeg) ![<GBA-Poke-Sprites> 359](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/328.jpeg) ![<GBA-Poke-Sprites> 360](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/189.jpeg) ![<GBA-Poke-Sprites> 361](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/40.jpeg) ![<GBA-Poke-Sprites> 362](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/116.jpeg) ![<GBA-Poke-Sprites> 363](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/264.jpeg) ![<GBA-Poke-Sprites> 364](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/94.jpeg) ![<GBA-Poke-Sprites> 365](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/290.jpeg) ![<GBA-Poke-Sprites> 366](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/107.jpeg) ![<GBA-Poke-Sprites> 367](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/307.jpeg) ![<GBA-Poke-Sprites> 368](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/49.jpeg) ![<GBA-Poke-Sprites> 369](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/74.jpeg) ![<GBA-Poke-Sprites> 370](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/85.jpeg) ![<GBA-Poke-Sprites> 371](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/219.jpeg) ![<GBA-Poke-Sprites> 372](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/125.jpeg) ![<GBA-Poke-Sprites> 373](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/197.jpeg) ![<GBA-Poke-Sprites> 374](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/214.jpeg) ![<GBA-Poke-Sprites> 375](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/201.jpeg) ![<GBA-Poke-Sprites> 376](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/90.jpeg) ![<GBA-Poke-Sprites> 377](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/169.jpeg) ![<GBA-Poke-Sprites> 378](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/34.jpeg) ![<GBA-Poke-Sprites> 379](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/379.jpeg) ![<GBA-Poke-Sprites> 380](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/152.jpeg) ![<GBA-Poke-Sprites> 381](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/70.jpeg) ![<GBA-Poke-Sprites> 382](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/277.jpeg) ![<GBA-Poke-Sprites> 383](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/367.jpeg) ![<GBA-Poke-Sprites> 384](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/346.jpeg) ![<GBA-Poke-Sprites> 385](https://huggingface.co/sd-concepts-library/gba-pokemon-sprites/resolve/main/concept_images/334.jpeg)
deepparag/Aeona-Beta
deepparag
2022-09-22T00:31:34Z
71
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-25T13:43:39Z
--- thumbnail: https://images-ext-2.discordapp.net/external/Wvtx1L98EbA7DR2lpZPbDxDuO4qmKt03nZygATZtXgk/%3Fsize%3D4096/https/cdn.discordapp.com/avatars/931226824753700934/338a9e413bbceaeb9095a29e97d4fac0.png tags: - conversational license: mit --- # Aeona | Chatbot ![Aeona Banner](https://github.com/deepsarda/Aeona/blob/master/dashboard/static/banner.png?raw=true) An generative AI made using [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small). Recommended to use along with an [AIML Chatbot](https://github.com/deepsarda/Aeona-Aiml) to reduce load, get better replies, add name and personality to your bot. Using an AIML Chatbot will allow you to hardcode some replies also. # AEONA Aeona is an chatbot which hope's to be able to talk with humans as if its an friend! It's main target platform is discord. You can invite the bot [here](https://aeona.xyz). To learn more about this project and chat with the ai, you can use this [website](https://aeona.xyx/). Aeona works why using context of the previous messages and guessing the personality of the human who is talking with it and adapting its own personality to better talk with the user. ## Goals The goal is to create an AI which will work with AIML in order to create the most human like AI. #### Why not an AI on its own? For AI it is not possible (realistically) to learn about the user and store data on them, when compared to an AIML which can even execute code! The goal of the AI is to generate responses where the AIML fails. Hence the goals becomes to make an AI which has a wide variety of knowledge, yet be as small as possible! So we use 3 dataset:- 1. [Movielines](https://www.kaggle.com/Cornell-University/movie-dialog-corpus) The movie lines promote longer and more thought out responses but it can be very random. About 200k lines! 2. [Discord Messages](https://www.kaggle.com/jef1056/discord-data) The messages are on a wide variety of topics filtered and removed spam which makes the AI highly random but gives it a very random response to every days questions! about 120 million messages! 3. Custom dataset scrapped from my messages, These messages are very narrow teaching this dataset and sending a random reply will make the AI say sorry loads of time! ## Training The Discord Messages Dataset simply dwarfs the other datasets, Hence the data sets are repeated. This leads to them covering each others issues! The AI has a context of 6 messages which means it will reply until the 4th message from user. [Example](https://huggingface.co/deepparag/Aeona-Beta/discussions/1) ## Tips for Hugging Face interference I recommend send the user input, previous 3 AI and human responses. Using more context than this will lead to useless responses but using less is alright but the responses may be random. ## Evaluation Below is a comparison of Aeona vs. other baselines on the mixed dataset given above using automatic evaluation metrics. | Model | Perplexity | |---|---| | Seq2seq Baseline [3] | 29.8 | | Wolf et al. [5] | 16.3 | | GPT-2 baseline | 99.5 | | DialoGPT baseline | 56.6 | | DialoGPT finetuned | 11.4 | | PersonaGPT | 10.2 | | **Aeona** | **7.9** | ## Usage Example: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("deepparag/Aeona") model = AutoModelWithLMHead.from_pretrained("deepparag/Aeona") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=4, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("Aeona: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
sd-concepts-library/sherhook-painting-v2
sd-concepts-library
2022-09-22T00:30:50Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-22T00:30:44Z
--- license: mit --- ### Sherhook Painting v2 on Stable Diffusion This is the `<sherhook>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<sherhook> 0](https://huggingface.co/sd-concepts-library/sherhook-painting-v2/resolve/main/concept_images/4.jpeg) ![<sherhook> 1](https://huggingface.co/sd-concepts-library/sherhook-painting-v2/resolve/main/concept_images/8.jpeg) ![<sherhook> 2](https://huggingface.co/sd-concepts-library/sherhook-painting-v2/resolve/main/concept_images/0.jpeg) ![<sherhook> 3](https://huggingface.co/sd-concepts-library/sherhook-painting-v2/resolve/main/concept_images/6.jpeg) ![<sherhook> 4](https://huggingface.co/sd-concepts-library/sherhook-painting-v2/resolve/main/concept_images/3.jpeg) ![<sherhook> 5](https://huggingface.co/sd-concepts-library/sherhook-painting-v2/resolve/main/concept_images/7.jpeg) ![<sherhook> 6](https://huggingface.co/sd-concepts-library/sherhook-painting-v2/resolve/main/concept_images/2.jpeg) ![<sherhook> 7](https://huggingface.co/sd-concepts-library/sherhook-painting-v2/resolve/main/concept_images/1.jpeg) ![<sherhook> 8](https://huggingface.co/sd-concepts-library/sherhook-painting-v2/resolve/main/concept_images/5.jpeg)
sd-concepts-library/million-live-akane-3k
sd-concepts-library
2022-09-22T00:20:35Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-22T00:20:05Z
--- license: mit --- ### million-live-akane-3k on Stable Diffusion This is the `<akane>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<akane> 0](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/0.png) ![<akane> 1](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/1.png) ![<akane> 2](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/2.png) ![<akane> 3](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/3.png) ![<akane> 4](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/4.png) ![<akane> 5](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/5.png) ![<akane> 6](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/6.png) ![<akane> 7](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/7.png) ![<akane> 8](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/8.png) ![<akane> 9](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/9.png) ![<akane> 10](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/10.png) ![<akane> 11](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/11.png) ![<akane> 12](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/12.png) ![<akane> 13](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/13.png) ![<akane> 14](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/14.png) ![<akane> 15](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/15.png) ![<akane> 16](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/16.png) ![<akane> 17](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/17.png) ![<akane> 18](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/18.png) ![<akane> 19](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/19.png) ![<akane> 20](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/20.png) ![<akane> 21](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/21.png) ![<akane> 22](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/22.png) ![<akane> 23](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/23.png) ![<akane> 24](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/24.png) ![<akane> 25](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/25.png) ![<akane> 26](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/26.png) ![<akane> 27](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/27.png) ![<akane> 28](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/28.png) ![<akane> 29](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/29.png) ![<akane> 30](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/30.png) ![<akane> 31](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/31.png) ![<akane> 32](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/32.png) ![<akane> 33](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/33.png) ![<akane> 34](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/34.png) ![<akane> 35](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/35.png) ![<akane> 36](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/36.png) ![<akane> 37](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/37.png) ![<akane> 38](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/38.png) ![<akane> 39](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/39.png) ![<akane> 40](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/40.png) ![<akane> 41](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/41.png) ![<akane> 42](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/42.png) ![<akane> 43](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/43.png) ![<akane> 44](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/44.png) ![<akane> 45](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/45.png) ![<akane> 46](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/46.png) ![<akane> 47](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/47.png) ![<akane> 48](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/48.png) ![<akane> 49](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/49.png) ![<akane> 50](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/50.png) ![<akane> 51](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/51.png) ![<akane> 52](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/52.png) ![<akane> 53](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/53.png) ![<akane> 54](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/54.png)
sd-concepts-library/million-live-akane-15k
sd-concepts-library
2022-09-22T00:19:07Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T00:18:56Z
--- license: mit --- ### million-live-akane-15k on Stable Diffusion This is the `<akane>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<akane> 0](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/0.png) ![<akane> 1](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/1.png) ![<akane> 2](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/2.png) ![<akane> 3](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/3.png) ![<akane> 4](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/4.png) ![<akane> 5](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/5.png) ![<akane> 6](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/6.png) ![<akane> 7](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/7.png) ![<akane> 8](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/8.png) ![<akane> 9](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/9.png) ![<akane> 10](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/10.png) ![<akane> 11](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/11.png) ![<akane> 12](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/12.png) ![<akane> 13](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/13.png) ![<akane> 14](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/14.png) ![<akane> 15](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/15.png) ![<akane> 16](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/16.png) ![<akane> 17](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/17.png) ![<akane> 18](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/18.png) ![<akane> 19](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/19.png) ![<akane> 20](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/20.png) ![<akane> 21](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/21.png) ![<akane> 22](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/22.png) ![<akane> 23](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/23.png) ![<akane> 24](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/24.png) ![<akane> 25](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/25.png) ![<akane> 26](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/26.png) ![<akane> 27](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/27.png) ![<akane> 28](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/28.png) ![<akane> 29](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/29.png) ![<akane> 30](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/30.png) ![<akane> 31](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/31.png) ![<akane> 32](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/32.png) ![<akane> 33](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/33.png) ![<akane> 34](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/34.png) ![<akane> 35](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/35.png) ![<akane> 36](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/36.png) ![<akane> 37](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/37.png) ![<akane> 38](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/38.png) ![<akane> 39](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/39.png) ![<akane> 40](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/40.png) ![<akane> 41](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/41.png) ![<akane> 42](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/42.png) ![<akane> 43](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/43.png) ![<akane> 44](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/44.png) ![<akane> 45](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/45.png) ![<akane> 46](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/46.png) ![<akane> 47](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/47.png) ![<akane> 48](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/48.png) ![<akane> 49](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/49.png) ![<akane> 50](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/50.png) ![<akane> 51](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/51.png) ![<akane> 52](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/52.png) ![<akane> 53](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/53.png) ![<akane> 54](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/54.png)
sd-concepts-library/yoji-shinkawa-style
sd-concepts-library
2022-09-22T00:15:49Z
0
20
null
[ "license:mit", "region:us" ]
null
2022-09-21T23:52:29Z
--- license: mit --- ### yoji-shinkawa-style" on Stable Diffusion This is the `<yoji-shinkawa>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<yoji-shinkawa> 0](https://huggingface.co/sd-concepts-library/yoji-shinkawa-style/resolve/main/concept_images/4.jpeg) ![<yoji-shinkawa> 1](https://huggingface.co/sd-concepts-library/yoji-shinkawa-style/resolve/main/concept_images/0.jpeg) ![<yoji-shinkawa> 2](https://huggingface.co/sd-concepts-library/yoji-shinkawa-style/resolve/main/concept_images/6.jpeg) ![<yoji-shinkawa> 3](https://huggingface.co/sd-concepts-library/yoji-shinkawa-style/resolve/main/concept_images/3.jpeg) ![<yoji-shinkawa> 5](https://huggingface.co/sd-concepts-library/yoji-shinkawa-style/resolve/main/concept_images/2.jpeg) ![<yoji-shinkawa> 6](https://huggingface.co/sd-concepts-library/yoji-shinkawa-style/resolve/main/concept_images/1.jpeg) ![<yoji-shinkawa> 7](https://huggingface.co/sd-concepts-library/yoji-shinkawa-style/resolve/main/concept_images/5.jpeg)
bouim/wav2vec2-base-arabic-demo-google-colab
bouim
2022-09-22T00:08:34Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-21T02:19:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-arabic-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-arabic-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 1.18.3 - Tokenizers 0.13.0
heheha/no
heheha
2022-09-22T00:05:53Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-09-22T00:05:53Z
--- license: creativeml-openrail-m ---
g30rv17ys/ddpm-geeve-normal-2000-128
g30rv17ys
2022-09-21T23:52:32Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-21T18:05:47Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-normal-2000-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-normal-2000-128/tensorboard?#scalars)
Adapting/bert-base-chinese-finetuned-NER-biomedical
Adapting
2022-09-21T23:30:56Z
125
5
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-21T20:25:23Z
Fine-tuned [Bert-Base-Chinese](https://huggingface.co/bert-base-chinese) for NER task on [Adapting/chinese_biomedical_NER_dataset](https://huggingface.co/datasets/Adapting/chinese_biomedical_NER_dataset) # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Adapting/bert-base-chinese-finetuned-NER-biomedical") model = AutoModelForTokenClassification.from_pretrained("Adapting/bert-base-chinese-finetuned-NER-biomedical",revision='7f63e3d18b1dc3cc23041a89e77be21860704d2e') from transformers import pipeline nlp = pipeline('ner',model=model,tokenizer = tokenizer) tag_set = [ 'B_手术', 'I_疾病和诊断', 'B_症状', 'I_解剖部位', 'I_药物', 'B_影像检查', 'B_药物', 'B_疾病和诊断', 'I_影像检查', 'I_手术', 'B_解剖部位', 'O', 'B_实验室检验', 'I_症状', 'I_实验室检验' ] tag2id = lambda tag: tag_set.index(tag) id2tag = lambda id: tag_set[id] def readable_result(result): results_in_word = [] j = 0 while j < len(result): i = result[j] entity = id2tag(int(i['entity'][i['entity'].index('_')+1:])) token = i['word'] if entity.startswith('B'): entity_name = entity[entity.index('_')+1:] word = token j = j+1 while j<len(result): next = result[j] next_ent = id2tag(int(next['entity'][next['entity'].index('_')+1:])) next_token = next['word'] if next_ent.startswith('I') and next_ent[next_ent.index('_')+1:] == entity_name: word += next_token j += 1 if j >= len(result): results_in_word.append((entity_name,word)) else: results_in_word.append((entity_name,word)) break else: j += 1 return results_in_word print(readable_result(nlp('淋球菌性尿道炎会引起头痛'))) ''' [('疾病和诊断', '淋球菌性尿道炎'), ('症状', '头痛')] ''' ```
facebook/spar-marco-bm25-lexmodel-context-encoder
facebook
2022-09-21T23:25:23Z
105
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2110.06918", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T23:14:00Z
--- tags: - feature-extraction pipeline_tag: feature-extraction --- This model is the context encoder of the MS MARCO BM25 Lexical Model (Λ) from the SPAR paper: [Salient Phrase Aware Dense Retrieval: Can a Dense Retriever Imitate a Sparse One?](https://arxiv.org/abs/2110.06918) <br> Xilun Chen, Kushal Lakhotia, Barlas Oğuz, Anchit Gupta, Patrick Lewis, Stan Peshterliev, Yashar Mehdad, Sonal Gupta and Wen-tau Yih <br> **Meta AI** The associated github repo is available here: https://github.com/facebookresearch/dpr-scale/tree/main/spar This model is a BERT-base sized dense retriever trained on the MS MARCO corpus to imitate the behavior of BM25. The following models are also available: Pretrained Model | Corpus | Teacher | Architecture | Query Encoder Path | Context Encoder Path |---|---|---|---|---|--- Wiki BM25 Λ | Wikipedia | BM25 | BERT-base | facebook/spar-wiki-bm25-lexmodel-query-encoder | facebook/spar-wiki-bm25-lexmodel-context-encoder PAQ BM25 Λ | PAQ | BM25 | BERT-base | facebook/spar-paq-bm25-lexmodel-query-encoder | facebook/spar-paq-bm25-lexmodel-context-encoder MARCO BM25 Λ | MS MARCO | BM25 | BERT-base | facebook/spar-marco-bm25-lexmodel-query-encoder | facebook/spar-marco-bm25-lexmodel-context-encoder MARCO UniCOIL Λ | MS MARCO | UniCOIL | BERT-base | facebook/spar-marco-unicoil-lexmodel-query-encoder | facebook/spar-marco-unicoil-lexmodel-context-encoder # Using the Lexical Model (Λ) Alone This model should be used together with the associated query encoder, similar to the [DPR](https://huggingface.co/docs/transformers/v4.22.1/en/model_doc/dpr) model. ``` import torch from transformers import AutoTokenizer, AutoModel # The tokenizer is the same for the query and context encoder tokenizer = AutoTokenizer.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') query_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') context_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-context-encoder') query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer query_input = tokenizer(query, return_tensors='pt') ctx_input = tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') # Compute embeddings: take the last-layer hidden state of the [CLS] token query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :] ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Compute similarity scores using dot product score1 = query_emb @ ctx_emb[0] # 341.3268 score2 = query_emb @ ctx_emb[1] # 340.1626 ``` # Using the Lexical Model (Λ) with a Base Dense Retriever as in SPAR As Λ learns lexical matching from a sparse teacher retriever, it can be used in combination with a standard dense retriever (e.g. [DPR](https://huggingface.co/docs/transformers/v4.22.1/en/model_doc/dpr#dpr), [Contriever](https://huggingface.co/facebook/contriever-msmarco)) to build a dense retriever that excels at both lexical and semantic matching. In the following example, we show how to build the SPAR-Wiki model for Open-Domain Question Answering by concatenating the embeddings of DPR and the Wiki BM25 Λ. ``` import torch from transformers import AutoTokenizer, AutoModel from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer from transformers import DPRContextEncoder, DPRContextEncoderTokenizer # DPR model dpr_ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") dpr_ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") dpr_query_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-multiset-base") dpr_query_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-multiset-base") # Wiki BM25 Λ model lexmodel_tokenizer = AutoTokenizer.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') lexmodel_query_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') lexmodel_context_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-context-encoder') query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Compute DPR embeddings dpr_query_input = dpr_query_tokenizer(query, return_tensors='pt')['input_ids'] dpr_query_emb = dpr_query_encoder(dpr_query_input).pooler_output dpr_ctx_input = dpr_ctx_tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') dpr_ctx_emb = dpr_ctx_encoder(**dpr_ctx_input).pooler_output # Compute Λ embeddings lexmodel_query_input = lexmodel_tokenizer(query, return_tensors='pt') lexmodel_query_emb = lexmodel_query_encoder(**query_input).last_hidden_state[:, 0, :] lexmodel_ctx_input = lexmodel_tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') lexmodel_ctx_emb = lexmodel_context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Form SPAR embeddings via concatenation # The concatenation weight is only applied to query embeddings # Refer to the SPAR paper for details concat_weight = 0.7 spar_query_emb = torch.cat( [dpr_query_emb, concat_weight * lexmodel_query_emb], dim=-1, ) spar_ctx_emb = torch.cat( [dpr_ctx_emb, lexmodel_ctx_emb], dim=-1, ) # Compute similarity scores score1 = spar_query_emb @ spar_ctx_emb[0] # 317.6931 score2 = spar_query_emb @ spar_ctx_emb[1] # 314.6144 ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-d-nce-classification
research-backup
2022-09-21T23:18:09Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T22:47:09Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-classification results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8549007936507936 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5641711229946524 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5816023738872403 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5764313507504168 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.822 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5131578947368421 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5162037037037037 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9172819044749133 - name: F1 (macro) type: f1_macro value: 0.912178540410085 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8427230046948356 - name: F1 (macro) type: f1_macro value: 0.6664365064483144 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6652221018418202 - name: F1 (macro) type: f1_macro value: 0.6591956465701904 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9652222299506156 - name: F1 (macro) type: f1_macro value: 0.8945528900012115 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8943904732058916 - name: F1 (macro) type: f1_macro value: 0.8949174432546955 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-classification RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-classification/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5641711229946524 - Accuracy on SAT: 0.5816023738872403 - Accuracy on BATS: 0.5764313507504168 - Accuracy on U2: 0.5131578947368421 - Accuracy on U4: 0.5162037037037037 - Accuracy on Google: 0.822 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-classification/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9172819044749133 - Micro F1 score on CogALexV: 0.8427230046948356 - Micro F1 score on EVALution: 0.6652221018418202 - Micro F1 score on K&H+N: 0.9652222299506156 - Micro F1 score on ROOT09: 0.8943904732058916 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-classification/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8549007936507936 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-classification") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-classification/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
espnet/jiyangtang_magicdata_asr_conformer_lm_transformer
espnet
2022-09-21T23:17:26Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:magicdata", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-09-21T23:15:28Z
--- tags: - espnet - audio - automatic-speech-recognition language: zh datasets: - magicdata license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/jiyangtang_magicdata_asr_conformer_lm_transformer` This model was trained by Jiyang Tang using magicdata recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 9d0f3b3e1be6650d38cc5008518f445308fe06d9 pip install -e . cd egs2/magicdata/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/jiyangtang_magicdata_asr_conformer_lm_transformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Sep 21 01:11:58 EDT 2022` - python version: `3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0]` - espnet version: `espnet 202207` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `9d0f3b3e1be6650d38cc5008518f445308fe06d9` - Commit date: `Mon Sep 19 20:27:41 2022 -0400` ## asr_train_asr_raw_zh_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/test|24279|24286|84.4|15.6|0.0|0.0|15.6|15.6| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/test|24279|243325|96.4|1.7|2.0|0.1|3.7|15.6| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_raw_zh_char_sp ngpu: 0 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: null dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 20 patience: null val_scheduler_criterion: - valid - acc early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 20000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char_sp/train/speech_shape - exp/asr_stats_raw_zh_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char_sp/valid/speech_shape - exp/asr_stats_raw_zh_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_noeng_sp/wav.scp - speech - sound - - dump/raw/train_noeng_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 30000 token_list: - <blank> - <unk> - 的 - 我 - 一 - 歌 - 你 - 天 - 不 - 了 - 放 - 来 - 播 - 下 - 个 - 是 - 有 - 给 - 首 - 好 - 请 - 在 - 听 - 么 - 气 - 要 - 想 - 曲 - 上 - 吗 - 去 - 到 - 这 - 啊 - 点 - 那 - 没 - 就 - 说 - 大 - 唱 - 人 - 最 - 第 - 看 - 会 - 明 - 集 - 吧 - 音 - 还 - 乐 - 今 - 电 - 开 - 能 - 度 - 哪 - 里 - 多 - 打 - 十 - 可 - 怎 - 道 - 什 - 新 - 雨 - 以 - 家 - 回 - 话 - 儿 - 他 - 时 - 小 - 温 - 样 - 爱 - 都 - 吃 - 呢 - 知 - 谁 - 为 - 子 - 们 - 也 - 过 - 老 - 很 - 出 - 中 - 现 - 冷 - 和 - 情 - 行 - 心 - 发 - 专 - 几 - 视 - 张 - 事 - 二 - 辑 - 五 - 三 - 后 - 找 - 些 - 早 - 学 - 晚 - 车 - 别 - 演 - 手 - 呀 - 调 - 感 - 问 - 九 - 饭 - 快 - 风 - 得 - 如 - 自 - 生 - 少 - 地 - 用 - 叫 - 帮 - 机 - 台 - 班 - 欢 - 候 - 起 - 等 - 把 - 年 - 干 - 高 - 太 - 啦 - 方 - 提 - 面 - 八 - 四 - 信 - 意 - 王 - 真 - 求 - 热 - 喜 - 觉 - 周 - 近 - 名 - 做 - 公 - 告 - 关 - 六 - 字 - 安 - 再 - 变 - 间 - 国 - 分 - 着 - 哈 - 水 - 节 - 只 - 动 - 北 - 刚 - 空 - 月 - 玩 - 让 - 伤 - 东 - 谢 - 网 - 七 - 见 - 之 - 比 - 杰 - 又 - 买 - 对 - 始 - 无 - 查 - 声 - 文 - 经 - 醒 - 美 - 西 - 哦 - 走 - 两 - 海 - 妈 - 李 - 报 - 诉 - 接 - 定 - 午 - 外 - 才 - 流 - 长 - 宝 - 门 - 收 - 己 - 室 - 林 - 种 - 南 - 日 - 目 - 陈 - 许 - 词 - 服 - 设 - 记 - 频 - 琴 - 主 - 完 - 友 - 花 - 跟 - 钱 - 睡 - 像 - 嗯 - 何 - 京 - 所 - 预 - 边 - 带 - 作 - 零 - 头 - 号 - 果 - 嘛 - 路 - 办 - 吉 - 语 - 本 - 合 - 卫 - 影 - 市 - 摄 - 通 - 加 - 女 - 成 - 因 - 前 - 衣 - 然 - 档 - 位 - 聊 - 哥 - 载 - 原 - <space> - 思 - 氏 - 同 - 题 - 但 - 红 - 火 - 她 - 亲 - 传 - 江 - 清 - 息 - 注 - 死 - 啥 - 州 - 片 - 朋 - 相 - 星 - 华 - 已 - 负 - 白 - 色 - 姐 - 春 - 转 - 半 - 换 - 黄 - 游 - 工 - 法 - 理 - 山 - 该 - 英 - 较 - 先 - 穿 - 推 - 直 - 力 - 当 - 冻 - 费 - 刘 - 男 - 写 - 场 - 呵 - 克 - 正 - 单 - 身 - 系 - 苏 - 婆 - 难 - 阳 - 光 - 重 - 荐 - 越 - 马 - 城 - 错 - 次 - 期 - 口 - 金 - 线 - 准 - 爸 - 忙 - 体 - 于 - 句 - 广 - 福 - 活 - 应 - 亮 - 黑 - 特 - 司 - 喝 - 式 - 飞 - 介 - 者 - 慢 - 静 - 百 - 平 - 绍 - 差 - 照 - 团 - 烦 - 便 - 师 - 站 - 德 - 短 - 远 - 需 - 谱 - 郑 - 化 - 或 - 器 - 急 - 钢 - 您 - 忘 - 店 - 妹 - 梦 - 青 - 适 - 总 - 每 - 业 - 夜 - 神 - 版 - 健 - 区 - 实 - 从 - 孩 - 奏 - 韩 - 伦 - 志 - 算 - 雪 - 世 - 认 - 眼 - 模 - 全 - 与 - 书 - 拿 - 送 - 结 - 其 - 解 - 格 - 洗 - 幸 - 舞 - 望 - 速 - 试 - 钟 - 内 - 联 - 停 - 丽 - 课 - 河 - 沙 - 笑 - 久 - 永 - 贝 - 民 - 址 - 超 - 教 - 代 - 件 - 降 - 脑 - 恋 - 常 - 交 - 低 - 伙 - 而 - 毛 - 阿 - 齐 - 习 - 量 - 段 - 选 - 欣 - 昨 - 进 - 闻 - 住 - 受 - 类 - 酒 - 背 - 藏 - 暴 - 摇 - 云 - 怕 - 考 - 咋 - 武 - 赶 - 孙 - 识 - 嵩 - 景 - 某 - 省 - 界 - 罗 - 任 - 坐 - 级 - 遇 - 麻 - 县 - 被 - 龙 - 品 - 蛋 - 湖 - 离 - 希 - 卖 - 轻 - 岁 - 香 - 赏 - 忆 - 答 - 滚 - 保 - 运 - 深 - 央 - 更 - 况 - 部 - , - 猪 - 休 - 校 - 留 - 嘿 - 弹 - 挺 - 院 - 泪 - 拉 - 懂 - 暖 - 讲 - 顺 - 底 - 卡 - 使 - 表 - 剧 - 包 - 故 - 导 - 凉 - 连 - 咱 - 制 - 蔡 - 容 - 向 - 物 - 微 - 步 - 切 - 搜 - 婚 - 童 - 约 - 芳 - 凯 - 复 - 未 - 陪 - 防 - 典 - 夏 - 万 - 备 - 指 - 冰 - 管 - 基 - 琪 - 宇 - 晓 - 房 - 良 - 戏 - 悲 - 牛 - 千 - 达 - 汉 - 拜 - 奇 - 梅 - 菜 - 满 - 徐 - 楼 - 询 - 图 - 改 - 练 - 敬 - 票 - 吴 - 络 - 码 - 整 - 简 - 队 - 购 - 普 - 附 - 响 - 胡 - 装 - 暑 - 非 - 喂 - 消 - 浪 - 凤 - 愿 - 累 - 球 - 聚 - 启 - 假 - 潮 - 弟 - 玉 - 绿 - 康 - 拍 - 失 - 哭 - 易 - 木 - 斯 - 跳 - 军 - 处 - 搞 - 升 - 除 - 傻 - 骗 - 证 - 杨 - 园 - 茹 - 赵 - 标 - 窗 - 庆 - 惠 - 够 - 烟 - 俊 - 掉 - 建 - 呗 - 插 - 座 - 害 - 智 - 贵 - 左 - 落 - 计 - 客 - 宁 - 梁 - 舒 - 取 - 往 - 漫 - 兰 - 战 - 随 - 晴 - 条 - 入 - 叶 - 强 - 伟 - 雅 - 尔 - 树 - 余 - 弄 - 季 - 排 - 伍 - 吹 - 宏 - 商 - 柔 - 郊 - 铁 - 遍 - 确 - 闭 - 雄 - 似 - 冒 - 待 - 尘 - 群 - 病 - 退 - 务 - 育 - 坏 - 娘 - 莫 - 资 - 楚 - 辛 - 索 - 利 - 数 - 秦 - 燕 - 且 - 录 - 姑 - 念 - 痛 - 冬 - 尾 - 共 - 初 - 粤 - 哎 - 印 - 示 - 抱 - 终 - 泉 - 货 - 肯 - 它 - 伞 - 性 - 古 - 跑 - 腾 - 鱼 - 曾 - 源 - 银 - 读 - 油 - 川 - 言 - 倩 - 峰 - 激 - 置 - 灯 - 独 - 命 - 谈 - 苦 - 限 - 乡 - 菲 - 伴 - 将 - 震 - 炎 - 散 - 依 - 米 - 及 - 贞 - 兴 - 湿 - 寒 - 敏 - 否 - 俩 - 祝 - 慧 - 精 - 律 - 功 - 托 - 洋 - 敢 - 街 - 铃 - 必 - 弦 - 寻 - 涵 - 突 - 皮 - 反 - 烧 - 秋 - 刮 - 末 - 双 - 细 - 范 - 由 - 君 - 款 - 邮 - 醉 - 紧 - 哲 - 缘 - 岛 - 疼 - 阴 - 旋 - 怪 - 草 - 持 - 狼 - 具 - 至 - 汪 - 鸡 - 医 - 邓 - 份 - 右 - 密 - 士 - 修 - 亚 - 画 - 灵 - 妇 - 甜 - 靠 - 荣 - 程 - 莲 - 魂 - 此 - 户 - 属 - 贤 - 充 - 萧 - 血 - 逼 - 闹 - 吸 - 娜 - 肉 - 抒 - 价 - 桥 - 剑 - 巴 - 暗 - 豆 - 迪 - 戴 - 迅 - 朝 - 艺 - 谭 - 治 - 祥 - 尽 - 闷 - 宫 - 艳 - 父 - 存 - 媳 - 跪 - 雾 - 杜 - 味 - 奕 - 兵 - 脸 - 炫 - 兄 - 妮 - 优 - 熊 - 床 - 般 - 净 - 航 - 帝 - 刻 - 孤 - 轩 - 村 - 支 - 玮 - 狗 - 纯 - 楠 - 呐 - 冠 - 元 - 盛 - 决 - 诗 - 爷 - 堵 - 陶 - 乖 - 迷 - 羽 - 忧 - 倒 - 蜜 - 晒 - 仔 - 却 - 姜 - 哟 - 餐 - 雷 - 鸟 - 馆 - 韶 - 箱 - 操 - 乌 - 借 - 恒 - 舍 - 药 - 块 - 澡 - 石 - 软 - 奶 - 笨 - 夫 - 朴 - 义 - 派 - 晨 - 佳 - 科 - 姿 - 显 - 咏 - 饿 - 付 - 宗 - 键 - 止 - 员 - 磊 - 勤 - 崔 - 偏 - 额 - 免 - 乱 - 怀 - 侠 - 岳 - 斌 - 助 - 征 - 概 - 吕 - 彩 - 板 - 松 - 各 - 组 - 历 - 济 - 象 - 茶 - 领 - 按 - 创 - 镇 - 翻 - 配 - 宿 - 咯 - 帅 - 型 - 估 - 佩 - 惜 - 详 - 续 - 蓝 - 麟 - 珠 - 颜 - 彦 - 农 - 盘 - 母 - 鞋 - 账 - 博 - 礼 - 环 - 套 - 效 - 郭 - 居 - 佑 - 根 - 惊 - 圳 - 叔 - 若 - 逆 - 鸿 - 锁 - 食 - 芸 - 裤 - 娱 - 漂 - 野 - 麦 - 豫 - 顾 - 爽 - 族 - 仙 - 围 - 观 - 链 - 嗨 - 厅 - 巍 - 劲 - 极 - 呼 - 咖 - 淑 - 丝 - 昌 - 嘉 - 绝 - 史 - 击 - 承 - 蔚 - 堂 - 沉 - 笔 - 朵 - 凰 - 琥 - 匆 - 炜 - 输 - 须 - 娴 - 嘻 - 牌 - 田 - 杀 - 滴 - 鬼 - 桦 - 赛 - 玟 - 抽 - 案 - 轮 - 立 - 摆 - 屋 - 诺 - 丁 - 佰 - 蒙 - 澄 - 羊 - 添 - 质 - 波 - 萨 - 狂 - 丹 - 屁 - 角 - 章 - 产 - 宜 - 笛 - 严 - 维 - 测 - 娃 - 料 - 宋 - 洲 - 卦 - 猜 - 港 - 挂 - 淘 - 郁 - 统 - 断 - 锅 - 稍 - 绮 - 汗 - 辉 - 乎 - 破 - 钧 - 芹 - 择 - 胖 - 即 - 呜 - 旅 - 拨 - 紫 - 哇 - 默 - 论 - 朱 - 登 - 脚 - 订 - 秀 - ? - 社 - 飘 - 尚 - 另 - 骂 - 并 - 恶 - 扫 - 裸 - 姨 - 苹 - 压 - 厌 - 汇 - 爆 - 局 - 睛 - 庄 - 唐 - 嘞 - 偶 - 乔 - 染 - 熟 - 喆 - 愉 - 虎 - 技 - 威 - 布 - 嘴 - 湾 - 术 - 讨 - 尼 - 诶 - 坊 - 删 - 桑 - 庾 - 斗 - 呃 - 仁 - 训 - 汤 - 脱 - 凡 - 例 - 唉 - 畅 - 参 - 晕 - 肥 - 营 - 鲁 - 减 - 琳 - 瑞 - 透 - 素 - 厉 - 追 - 扰 - 控 - 谣 - 足 - 检 - 扬 - 娇 - 耳 - 津 - 倾 - 淡 - 露 - 妞 - 熙 - 值 - 罪 - 浩 - 探 - 盐 - 列 - 券 - 潘 - 官 - 篇 - 纪 - 签 - 棒 - 丑 - 陆 - 养 - 佛 - 唯 - 芮 - 哒 - 榜 - 培 - 疯 - 财 - 卷 - 痴 - 凌 - 瓜 - 猫 - 泡 - 据 - 厦 - 辣 - 恩 - 土 - 补 - 递 - 伏 - 灰 - 糖 - 玛 - 黎 - 湘 - 遥 - 谅 - 桃 - 曼 - 招 - 勇 - 泰 - 杭 - 缓 - 朗 - 替 - 刷 - 封 - 骨 - 盖 - 眠 - 担 - 忽 - 蛮 - 蜗 - 肚 - 喽 - 懒 - 继 - 辈 - 魔 - 哼 - 顶 - 冲 - 番 - 释 - 形 - 页 - 渡 - 触 - 裂 - 逛 - 圆 - 迎 - 态 - 弃 - 洛 - 丰 - 困 - 展 - 束 - 巧 - 临 - 际 - 涛 - 酷 - 洁 - 毕 - 呆 - 励 - 臭 - 暂 - 评 - 沧 - 磨 - 洞 - 厂 - 吵 - 煮 - 旧 - 幽 - 寄 - 政 - 丫 - 闯 - 举 - 误 - 护 - 状 - 寂 - 牙 - 杯 - 议 - 眉 - 享 - 剩 - 秘 - 噢 - 耿 - 致 - 偷 - 丢 - 刀 - 销 - 盒 - 编 - 珍 - 葛 - 译 - 颗 - 括 - 奥 - 鲜 - 沈 - 婷 - 摩 - 炒 - 惯 - 啡 - 混 - 燥 - 扣 - 晶 - 柏 - 拥 - 旭 - 拾 - 验 - 嫁 - 铺 - 棉 - 划 - 虾 - 浙 - 寓 - 剪 - 贴 - 圣 - 颖 - 申 - 枝 - 艾 - 旁 - 溪 - '?' - 厚 - 驶 - 燃 - 虽 - 途 - 祖 - 职 - 泽 - 腿 - 薇 - 阵 - 移 - 淋 - 灭 - 寞 - 森 - 延 - 孝 - 沥 - 迟 - 伪 - 催 - 投 - 伯 - 谓 - 诚 - 架 - 耶 - 项 - 撒 - 邦 - 善 - 鼻 - 芬 - 闲 - 增 - 卓 - 层 - 鹏 - 敲 - 镖 - 粉 - 欧 - 纸 - 甘 - 昆 - 哩 - 坚 - 苍 - 积 - 筝 - 擦 - 董 - 吻 - 折 - 欺 - 疆 - 勒 - 售 - 船 - 胜 - 甄 - 杂 - 骑 - 贱 - 饼 - 称 - 隆 - 竟 - 逃 - 啷 - 引 - 宾 - 莉 - 境 - 奖 - 救 - 讯 - 恰 - 垃 - 圾 - 宅 - 潜 - 皇 - 符 - 徽 - 造 - 翔 - 粥 - 桌 - 租 - 险 - 驾 - 祭 - 昂 - 牧 - 宣 - 综 - 谷 - 私 - 瓷 - 避 - 肖 - 闪 - 圈 - 喱 - 耀 - 悟 - 秒 - 篮 - 逗 - 蝶 - 趣 - 恨 - 恐 - 饺 - 碎 - 奔 - 幼 - 股 - 锦 - 锡 - 椅 - 玲 - 刑 - 嗓 - 喊 - 虑 - 俺 - 镜 - 耐 - 鹿 - 狄 - 兮 - 返 - 恭 - 含 - 傅 - 沟 - 莹 - 妃 - 忠 - 赤 - 喔 - 抓 - 迈 - 众 - 豪 - 祈 - 馨 - 嬛 - 庭 - 异 - 辰 - 琅 - 荷 - 匪 - 吐 - 警 - 虹 - 吓 - 聪 - 悔 - 归 - 富 - 陕 - 魏 - 欲 - 菊 - 雹 - 隐 - 涯 - 忍 - 芦 - 琊 - 酸 - 逊 - 亦 - 咪 - 瞎 - 滨 - 胸 - 采 - 穹 - 究 - 炊 - 痒 - 莎 - 柳 - 井 - 洪 - 胎 - 鼓 - 润 - 迁 - 玫 - 滩 - 傲 - 袁 - 赚 - 研 - 躺 - 烤 - 莱 - 搬 - 蒋 - 曹 - 孟 - 嫂 - 甲 - 瑰 - 窝 - 令 - 堆 - 废 - 掌 - 巡 - 妙 - 袋 - 争 - 萌 - 挑 - 册 - 饮 - 勋 - 珊 - 戒 - 绵 - 亡 - 劳 - 搭 - 甩 - 匙 - 彭 - 锋 - 钥 - 率 - 吟 - 鼠 - 纱 - 坡 - 潇 - 挣 - 逝 - 针 - 弱 - 妍 - 稳 - 怒 - 塘 - 卢 - 宵 - 悠 - 饱 - 披 - 瘦 - 浮 - 烂 - 壶 - 截 - 勿 - 序 - 委 - 兔 - 塔 - 执 - 墨 - 府 - 宙 - 欠 - 巨 - 帽 - 占 - 顿 - 权 - 坠 - 碰 - 著 - 硬 - 炮 - 骚 - 肃 - 规 - 厕 - 贾 - 葫 - 徒 - 瓶 - 辽 - 耍 - 赢 - 桂 - 浦 - 趟 - 柯 - 悉 - 恼 - 禁 - 殊 - 卧 - 赞 - 益 - 责 - 虚 - 姓 - 愁 - 舅 - 残 - 既 - 拖 - 棍 - 幻 - 库 - 骄 - 烈 - 尊 - 伊 - 缺 - 迹 - 疑 - 汽 - 郎 - 鸭 - 仪 - 盗 - 幺 - 萱 - 胃 - 脏 - 努 - 勉 - 池 - 咳 - 奋 - 批 - 蝴 - 监 - 犯 - 滑 - 牵 - 冯 - 败 - 毒 - 怖 - 绪 - 帐 - 协 - 韵 - 怜 - 薛 - 姚 - 副 - 塞 - 蕉 - 夹 - 萝 - 爹 - 貌 - 奈 - 乞 - 隔 - 澳 - 姥 - 妖 - 腰 - 纳 - 龄 - 材 - 旗 - 萤 - 俗 - 昼 - 坛 - 霍 - 怡 - 丐 - 咒 - 础 - 嘎 - 虫 - 枪 - 遗 - 献 - 陌 - 侣 - 。 - 昧 - 筒 - 袭 - 厨 - 爬 - 茂 - 媛 - 慰 - 填 - 霞 - 娟 - 摸 - 逍 - 赫 - 霾 - 泥 - 暧 - 翅 - 谦 - 夕 - 瑶 - 鑫 - 刺 - 袖 - 拒 - 玄 - 涂 - 溜 - 旬 - 鸣 - 泷 - 距 - 阻 - 绩 - 狠 - 宽 - 狐 - 赖 - 握 - 循 - 靓 - 述 - 糕 - 踏 - 侯 - 劵 - 壮 - 抄 - 苟 - 岗 - 供 - 湛 - 炼 - 烫 - 棋 - 糊 - 饶 - 悄 - 霸 - 竹 - 哀 - 拔 - 蓉 - 旦 - 晰 - 振 - 漠 - 苗 - 帘 - 糟 - 崇 - 踩 - 汕 - 寝 - 刹 - 蔬 - 旺 - 躁 - 守 - 液 - 疗 - 晋 - 坤 - 洒 - 串 - 屏 - 翠 - 鹅 - 腻 - 毅 - 蹈 - 党 - 咩 - 灿 - 哄 - 核 - 横 - 谎 - 忏 - 映 - 倔 - 则 - 肤 - 贺 - 潍 - 焦 - 渐 - 坑 - 瞄 - 融 - 琼 - 尤 - 逸 - 碧 - 葡 - 卜 - 察 - 邢 - 薄 - 亏 - 绒 - 萄 - 婉 - 闺 - 势 - 描 - 均 - 梨 - 椒 - 慕 - 污 - 弯 - 繁 - 炸 - 肿 - 阅 - 肺 - 席 - 呦 - 碟 - 耻 - 端 - 叹 - 庸 - 危 - 痘 - 峡 - 腐 - 霜 - 拳 - 昴 - 荡 - 屎 - 纠 - 夸 - 尿 - 钰 - 撼 - 嗽 - 雯 - 症 - 衡 - 互 - 孔 - 钻 - 萍 - 娄 - 斤 - 悦 - 谊 - 扯 - 驴 - 歉 - 扎 - 庐 - 蒲 - 吼 - 熬 - 鸳 - 蒸 - 驹 - 允 - 射 - 酱 - 鸯 - 企 - 馒 - 乘 - 葱 - 泳 - 莞 - 脆 - 寨 - 损 - 陀 - 膀 - 淮 - 侃 - 霉 - 施 - 橙 - 煲 - 妆 - 审 - 宠 - 穷 - 敌 - 堡 - 樱 - 诞 - 胆 - 彤 - 祷 - 渭 - 霆 - 亭 - 璐 - 邵 - 壁 - 禺 - 墙 - 葬 - 垫 - 吾 - 粒 - 爵 - 弘 - 妻 - 蕾 - 咨 - 固 - 幕 - 粗 - 抢 - 访 - 贸 - 挥 - 饰 - 硕 - 域 - 岸 - 咬 - 晗 - 姆 - 骤 - 抖 - 判 - 鄂 - 获 - 锻 - 郝 - 柜 - 醋 - 桐 - 泣 - 粘 - 革 - 脾 - 尸 - 侧 - 辆 - 埋 - 稻 - 肠 - 嫌 - 彬 - 庚 - 彼 - 龟 - 弥 - 籍 - 纽 - 喷 - 氛 - 币 - 蠢 - 磁 - 袜 - 柴 - 寸 - 韦 - 忐 - 忑 - 恢 - 缩 - 捷 - 绕 - 翼 - 琦 - 玻 - 驻 - 屈 - 岩 - 颂 - 仓 - 茜 - 璃 - 裙 - 僵 - 柿 - 稿 - 巾 - 撑 - 尹 - 嘟 - 牡 - 昏 - 歇 - 诵 - 丸 - 梯 - 挡 - 袄 - 逢 - 徙 - 渴 - 仰 - 跨 - 碗 - 阔 - 税 - 拼 - 宥 - 丞 - 凶 - 析 - 炖 - 舌 - 抗 - 脖 - 甚 - 豚 - 敷 - 瓦 - 织 - 邀 - 浏 - 猛 - 歪 - 阶 - 兽 - 俄 - 鹤 - 禹 - 纹 - 闽 - 惹 - 煤 - 患 - 岭 - 瑜 - 稀 - 拆 - 凄 - 崎 - 芝 - 摊 - 尺 - 彻 - 览 - 贷 - 珂 - 憋 - 径 - 抚 - 魅 - 悬 - 胶 - 倍 - 贯 - 籁 - 乃 - 哑 - 惑 - 撞 - 箫 - 绣 - 扁 - 苑 - 靖 - 漏 - 挤 - 轶 - 叮 - 烨 - 菇 - 砸 - 趁 - 媚 - 仅 - 藤 - 邱 - 陵 - 躲 - 滋 - 叛 - 捉 - 孕 - 铜 - 衫 - 寿 - 寺 - 枫 - 豹 - 伽 - 翡 - 蜂 - 丙 - 姗 - 羡 - 凑 - 鄙 - 庙 - 铭 - 宰 - 廖 - 肩 - 臣 - 抑 - 辅 - 誓 - 扇 - 啪 - 羞 - 诊 - 敦 - 跃 - 俞 - 肝 - 坦 - 贡 - 踢 - 齿 - 尧 - 淀 - 叉 - 浴 - 狮 - 昊 - 蟹 - 捏 - 略 - 禾 - 纲 - 赔 - 憾 - 赋 - 丘 - 尝 - 钓 - 涕 - 猴 - 鸽 - 纵 - 奉 - 涨 - 揍 - 怨 - 挨 - 兜 - 冈 - 凭 - 策 - 裴 - 摔 - 喵 - 佐 - 喉 - 膏 - 瑟 - 抬 - 纷 - 廊 - 贼 - 煎 - 熄 - 渝 - 缠 - 纶 - 岚 - 衬 - 遮 - 翰 - 誉 - 摘 - 勾 - 赣 - 姬 - 娅 - 撤 - 霖 - 泊 - 膝 - 耽 - 犹 - 仍 - 辞 - 溃 - 骏 - 弓 - 膜 - 诱 - 慌 - 惨 - 噪 - 涩 - 潭 - 幂 - 梓 - 植 - 罚 - 扮 - 涮 - 雁 - 兆 - 舟 - 咸 - 犀 - 炉 - 筋 - 陇 - 狸 - 帕 - 噶 - 茄 - 嗒 - 纬 - 障 - 聘 - 盼 - 盟 - 咧 - 灏 - 菠 - 巷 - 帖 - 慈 - 枕 - 唤 - 慨 - 呛 - 叽 - 砖 - 窍 - 瞒 - 龚 - 促 - 尖 - 螺 - 捞 - 盆 - 茫 - 屌 - 械 - 乳 - 啤 - 玺 - 廷 - 谐 - 吖 - 帆 - 蛇 - 琵 - 琶 - 扑 - 跌 - 崩 - 扭 - 扔 - 咿 - 菩 - 茉 - 攻 - 虐 - 甸 - 璇 - 驰 - 瞬 - 鸦 - 厢 - 囊 - 闫 - 届 - 墓 - 芒 - 栗 - 沫 - 违 - 缝 - 棵 - 杏 - 赌 - 灾 - 颤 - 沂 - 肇 - 桶 - 霄 - ! - 咙 - 绥 - 仲 - 愈 - 竖 - 菌 - 捕 - 烘 - 阮 - 皆 - 咚 - 劫 - 揭 - 郸 - 庞 - 喇 - 拐 - 奴 - 咔 - 幅 - 偿 - 咦 - 召 - 薪 - 盯 - 黛 - 杉 - 辨 - 邯 - 枯 - 沃 - 吊 - 筷 - 陷 - 鹰 - 嗦 - 噻 - 屯 - 殇 - 抵 - 雕 - 辩 - 枣 - 捂 - 瘾 - 粮 - 巢 - 耗 - 储 - 殷 - 糯 - 轨 - 沾 - 淇 - 毁 - 沐 - 蚊 - 鉴 - 灌 - 玖 - 唔 - 芙 - 淳 - 昕 - 裹 - 茧 - 浑 - 睿 - 踪 - 邪 - 瘩 - 恺 - 斜 - 汰 - 逐 - 铮 - 毫 - 胞 - 昭 - 妥 - 筑 - 贪 - 蘑 - 皓 - 颐 - 疙 - 捡 - 泛 - 债 - 栎 - 棚 - 腹 - 构 - 蓬 - 宪 - 叭 - 愚 - 押 - 蜀 - 夷 - 娶 - 盾 - 倪 - 牟 - 抛 - 壳 - 衍 - 杆 - 撕 - 亿 - 纤 - 淹 - 翘 - 蔷 - 芊 - 罩 - 拯 - 嗷 - 浇 - 宴 - 遵 - 冥 - 祸 - 塑 - 沛 - 猎 - 携 - 噜 - 喘 - 缴 - 砍 - 唢 - 曦 - 遛 - 罢 - 峨 - 戚 - 稚 - 揉 - 堰 - 螃 - 薯 - 乙 - 矿 - 挽 - 弛 - 埃 - 淅 - 疲 - 窦 - 烛 - 媒 - 尬 - 汀 - 谨 - 罐 - 劣 - 伶 - 煜 - 栏 - 榆 - 矛 - 琐 - 槽 - 驼 - 渤 - 沒 - 泄 - 粑 - 匀 - 囧 - 茵 - 霹 - 澈 - 岑 - 乏 - 栋 - 拌 - 框 - 祁 - 叨 - 斋 - 玥 - 僧 - 疏 - 绳 - 晃 - 抹 - 授 - 蓄 - 檬 - 仇 - 毯 - 啵 - 泼 - 阁 - ',' - 邹 - 阎 - 渠 - 函 - 腊 - 割 - 绑 - 扶 - 肌 - 卑 - 匠 - 雳 - 绯 - 婧 - 煌 - 蒂 - 腔 - 仿 - 遭 - 阜 - 峻 - 劝 - 绎 - 黔 - 贫 - 剁 - 荆 - 樊 - 卸 - 锄 - 阕 - 狱 - 冉 - 鲍 - 荒 - 侄 - 唇 - 忌 - 掖 - 竞 - 匹 - 仗 - 锤 - 穆 - 践 - 冶 - 柱 - 聂 - 捧 - 唠 - 翁 - 掏 - 塌 - 沁 - 巩 - 沸 - 蜡 - 痕 - 削 - 晟 - 眯 - 灶 - 婴 - 啸 - 釜 - 兼 - 剂 - 氧 - 赐 - 铠 - 攀 - 扩 - 朦 - 胧 - 孽 - 挖 - 钞 - 碍 - 凝 - 鼎 - 屉 - 斑 - 抠 - 哗 - 哨 - 婶 - 劈 - 冕 - 霏 - 汾 - 雀 - 浚 - 屠 - 唰 - 疚 - 芽 - 惦 - 裕 - 仑 - 厘 - 烁 - 瞧 - 蚂 - 涿 - 尴 - 埔 - 橘 - 磕 - 苇 - 脂 - 臂 - 蛙 - 镁 - 绽 - 卿 - 荃 - 莺 - 迫 - 敖 - 呈 - 勃 - 碌 - 讶 - 赠 - 巫 - 篱 - 浓 - 攒 - 裁 - 嫣 - 彪 - 娣 - 坟 - 廉 - 聆 - 铉 - 瞌 - 葵 - 鞍 - 坎 - 畜 - 爪 - 锯 - 潼 - 矣 - 闸 - 俱 - 蹭 - 戈 - 扒 - 滤 - 撇 - 浅 - 唧 - 觅 - 婕 - 牢 - 堕 - 丈 - 滕 - 御 - 溢 - 阑 - 楞 - 伺 - 馋 - 禄 - 胳 - 措 - 伐 - 滔 - 沦 - 澎 - 谙 - 桢 - 肾 - 熏 - 炅 - 邻 - 吞 - 噔 - 哔 - 沿 - 竺 - 闵 - 妨 - 啰 - 儒 - 锈 - 虞 - 颠 - 脊 - 膊 - 搓 - 岐 - 浸 - 兹 - 吨 - 垂 - 晏 - 痹 - 哆 - 漆 - 叠 - 莓 - 嘀 - 挫 - 馈 - 愧 - 佟 - 疾 - 蒜 - 盈 - 侬 - 烊 - 炙 - 蜢 - 诡 - 莆 - 蛾 - 轴 - 妒 - 洱 - 擎 - 脉 - 飓 - 泫 - 浆 - 岔 - 蹦 - 愤 - 琛 - 趴 - 绘 - 忻 - 拽 - 牲 - 馅 - 鲨 - 靴 - 鳅 - 俐 - 罕 - 呕 - 凋 - 绫 - 蕊 - 圃 - 猥 - 氓 - 歧 - 秧 - 栈 - 梧 - 衷 - 巅 - 彝 - 嚎 - 菁 - 渔 - 茬 - 汐 - 拓 - 昔 - 囚 - 舜 - 搁 - 泸 - 涟 - 蚁 - 裳 - 鞭 - 辟 - 蝎 - 簧 - 予 - 倦 - 傍 - 荔 - 瞳 - 碑 - 桨 - 疫 - 骁 - 驿 - 柠 - 妾 - 隶 - 菏 - 煽 - 麒 - 奎 - 驯 - 飙 - 姻 - 沅 - 扉 - 斩 - 奢 - 蚌 - 掩 - 蹲 - 丧 - 辱 - 焉 - 佘 - 襄 - 芯 - 枉 - 谋 - 渊 - 哮 - 喀 - 朔 - 侏 - 姝 - 戎 - 磅 - 督 - 诛 - 奸 - 苞 - 庵 - 馄 - 聋 - 滁 - 垚 - 柬 - 猩 - 夺 - 啼 - 坝 - 竭 - 黏 - 衰 - 遂 - 潞 - 谜 - 蜻 - 蜓 - 瓣 - 秉 - 檐 - 楂 - 嗑 - 搅 - 嘚 - 倚 - 乒 - 宛 - 崽 - 恕 - 轰 - 淄 - 晞 - 酬 - 砂 - 筠 - 薰 - 蒿 - 瞅 - 勺 - 阙 - 伸 - 嚏 - 湄 - 咆 - 坂 - 役 - 掰 - 渣 - 魁 - 诅 - 浒 - 妓 - 珑 - 捎 - 焊 - 饲 - 脍 - 荫 - 堤 - 轿 - 乓 - 筹 - 撸 - 饨 - 渺 - 桓 - 旷 - 笙 - 晖 - 慎 - 埠 - 挪 - 汝 - 浊 - 仨 - 鳄 - 濮 - 汶 - 邰 - 钉 - 蔽 - 亨 - 屑 - 铅 - 喃 - 葩 - 哉 - 睁 - 骆 - 涉 - 汁 - 拦 - 痞 - 芜 - 俪 - 兑 - 梵 - 刊 - 缅 - 彰 - 俑 - 桔 - 堪 - 鸥 - 契 - 覆 - 拷 - 珞 - 诸 - 棱 - 忒 - 嫩 - 梶 - 贻 - 藕 - 愣 - 湃 - 趋 - 甭 - 嗖 - 怯 - 憧 - 珀 - 缸 - 蔓 - 稣 - 筱 - 杠 - 崖 - 凳 - 裆 - 隧 - 锣 - 嘣 - 瀑 - 漪 - 柄 - 凸 - 颁 - 迦 - 烙 - 岱 - 瑄 - 吭 - 肆 - 鳞 - 晾 - 憬 - 邑 - 甥 - 掀 - 褂 - 淫 - 瓢 - 暮 - 喧 - 祛 - 恙 - 禅 - 柚 - 樟 - 疮 - 嗡 - 懈 - 茨 - 矮 - 诠 - 侮 - 眨 - 羲 - 掐 - 琉 - 雍 - 晔 - 凹 - 怂 - 禧 - 蹬 - 绅 - 榄 - 箍 - 詹 - 溶 - 黯 - 啃 - 驸 - 朕 - 婺 - 援 - 铲 - 呻 - 犬 - 捣 - 眷 - 剃 - 惧 - 芷 - 叱 - 娥 - 钦 - 矫 - 憨 - 骊 - 坪 - 俏 - 炳 - 妲 - 冀 - 刁 - 馍 - 琢 - 扛 - 瞿 - 辙 - 茅 - 寡 - 絮 - 呷 - 哺 - 咕 - 驱 - 搂 - 圭 - 嫉 - 涓 - 茱 - '"' - 笼 - 讽 - 涡 - 泓 - 弊 - 诀 - 璧 - 舔 - 嬅 - 亢 - 沪 - 绢 - 钙 - 喏 - 馥 - 怅 - 簿 - 薜 - 捶 - 冤 - 脐 - 岂 - 溺 - 蕙 - 铿 - 锵 - 锐 - 呸 - 砰 - 亩 - 漳 - 阪 - 栀 - 坞 - 跤 - 蓓 - 舰 - 缕 - 羁 - 芋 - 畔 - 衔 - 铝 - 盲 - 株 - 搏 - 曙 - 惩 - 逻 - 蹄 - 涤 - 宕 - 咤 - 尉 - 嘘 - 瀚 - 仃 - 稽 - 霑 - 飕 - 垮 - 酿 - 畏 - 鲸 - 梗 - 署 - 砒 - 雏 - 茗 - 恬 - 螂 - 拂 - 憔 - 悴 - 钗 - 棕 - 劭 - 歹 - 笠 - 厄 - 焖 - 拣 - 逮 - 蕴 - 淌 - 枸 - 杞 - 雇 - 漯 - 邂 - 逅 - · - 荟 - 塾 - 涌 - 挚 - 舱 - 惬 - 剖 - 榴 - 侦 - 摁 - 烹 - 烽 - 俘 - 麓 - 犊 - 酌 - 匿 - 梭 - 覃 - 隽 - 惆 - 掠 - 舵 - 艰 - 蟑 - 瘤 - 仆 - 穴 - 涅 - 衿 - 嚷 - 峪 - 榕 - 吒 - 酪 - 曝 - 帧 - 靶 - 嚣 - 踝 - 翊 - 陂 - 髓 - 瑚 - 裘 - 芍 - 炬 - 鲅 - 蚕 - 肢 - 颊 - 陛 - 籽 - 粟 - 滞 - 煞 - 乾 - 媞 - 刨 - 碾 - 瘫 - 盔 - 侈 - 徘 - 徊 - 熔 - 吆 - 褪 - 拟 - 廓 - 翟 - 俾 - 沽 - 垒 - 萎 - 僻 - 豌 - 卵 - 狡 - 篓 - 栽 - 崴 - 拧 - 颈 - 咐 - 胭 - 阱 - 鄱 - 漓 - 厥 - 烬 - 糙 - 褥 - 炕 - 恍 - 襟 - 韧 - 眸 - 毙 - 垢 - 叙 - 辜 - 酝 - 璋 - 荧 - 魇 - 皈 - 觞 - 喻 - 孺 - 匈 - 铛 - 诈 - 盏 - 淼 - 佣 - 苓 - 缚 - 洼 - 疡 - 猬 - 腑 - 阡 - 鲫 - 鹭 - 鹂 - 笆 - 埙 - 癌 - 璀 - 璨 - 疹 - 蓑 - 芭 - 嘶 - 桀 - 吩 - 泾 - 铂 - 倘 - 囗 - 璜 - 窃 - 癫 - 璞 - 墟 - 钩 - 粹 - 镐 - 韬 - 牺 - 寮 - 喳 - 鄞 - 笋 - 臧 - 疤 - 捐 - 腥 - 嬷 - 燮 - 濠 - 棠 - 夙 - 弑 - 乍 - 剔 - 嘈 - 钇 - 衅 - 挝 - 橡 - 矜 - 圩 - 恳 - 瑛 - 蔺 - 兖 - 焕 - 懿 - 钏 - 栾 - 筐 - 苒 - 碳 - 韭 - 箭 - 婵 - 迭 - 枷 - 孜 - 咽 - 悯 - 漉 - 噬 - 侍 - 蝉 - 涧 - 鹦 - 鹉 - 冼 - 竿 - … - 袈 - 诏 - 锢 - 泠 - 匡 - 枚 - 坷 - 邝 - 癖 - 绷 - 皖 - 滦 - 滥 - 荨 - 虏 - 拈 - 浜 - 颓 - “ - ” - 戳 - 钮 - 梳 - 溅 - 徨 - 旨 - 罂 - 蹉 - 腌 - 隙 - 侨 - 槟 - 泌 - 珈 - 芵 - 腮 - 晤 - 墩 - 鲤 - 扳 - 栓 - 窑 - 荏 - 饪 - 泵 - 猿 - 眀 - 嗝 - 禽 - 朽 - 偕 - 胀 - 谍 - 捅 - 蜉 - 蝣 - 蹋 - 拱 - 氯 - 噼 - 蚩 - 芥 - 蛟 - 貂 - 荚 - 痰 - 殿 - 遣 - 丛 - 碱 - 殖 - 炽 - 嚓 - 彗 - 窟 - 鳌 - 矶 - 镯 - 乜 - 髙 - 蛤 - 荤 - 坨 - 漱 - 惰 - 跎 - 萸 - 曰 - 亘 - 窘 - 厮 - 绐 - 黝 - 鞠 - 漩 - 蚱 - 垣 - 翩 - 嬴 - 彷 - 椰 - 砚 - 褐 - 黍 - 噗 - 耕 - 挠 - 妩 - 掂 - 峯 - 灸 - 晌 - 溧 - 鹃 - 屿 - 昙 - 廾 - 冢 - 龌 - 龊 - 瞪 - 刽 - 脓 - 壹 - 羱 - 奠 - 贰 - 佬 - 拙 - 颢 - 嘱 - 糗 - 昀 - 巳 - 辕 - 惫 - 黒 - 辐 - 窈 - 窕 - 拢 - 缪 - 逞 - 吝 - 裟 - 钝 - 寇 - 耙 - 隋 - 蝇 - 仟 - 铨 - 赊 - 皑 - 衢 - 胚 - 腺 - 啧 - 淤 - 妄 - 氢 - 寅 - 叻 - 嘲 - 叼 - 沮 - 磐 - 芈 - 饥 - 槿 - 卤 - 懵 - 惴 - 毋 - 箩 - 苔 - 峥 - 斥 - 矬 - 佚 - 肮 - 皎 - 憎 - 樨 - 讴 - 鳖 - 煦 - 焚 - 泗 - 皂 - 礁 - 睬 - 梢 - 妤 - 佗 - 蝌 - 蚪 - 渗 - 暇 - 卟 - 悼 - 瑨 - 伎 - 纺 - 耆 - 舶 - 礴 - 豺 - 涪 - 谬 - 赴 - 婪 - 吱 - 麽 - 犁 - 潸 - 鸪 - 鸢 - 鄯 - 讷 - 弶 - 橄 - 撬 - 赦 - 岷 - 垓 - 绞 - 虔 - 剥 - 澜 - 酗 - 谛 - 骥 - 撅 - 鱿 - 犷 - 讪 - 秃 - 卞 - 缆 - 蓦 - 庶 - 勐 - 笫 - 敛 - 弗 - 痱 - 啬 - 硚 - 昱 - 忿 - 撩 - 椿 - 侵 - 窄 - 邛 - 崃 - 涸 - 赈 - 狭 - 嵌 - 淖 - 瑙 - 踹 - 傈 - 僳 - 缭 - 睦 - 窜 - 嘅 - 樵 - 爰 - 侗 - 逑 - 弧 - 侑 - : - 娉 - 蝙 - 蝠 - 骅 - 饴 - 揣 - / - 鲈 - 綦 - 拴 - 硝 - 梆 - 馗 - 夭 - 扼 - 鳃 - 惚 - 扈 - 矢 - 藁 - 飚 - 妊 - 踮 - 惟 - 痊 - 艇 - 偎 - 魄 - 篝 - 簸 - 擞 - 粽 - 缥 - 缈 - 跷 - 咁 - 悍 - 菀 - 陡 - 橱 - 遐 - 榨 - 渎 - 蹂 - 躏 - 舂 - 轼 - 枰 - 焰 - 幌 - 邸 - 捜 - 灼 - 茯 - 芎 - 穗 - 棘 - 碜 - 颉 - 鹧 - 啄 - 趾 - 茎 - 揽 - 靳 - 黜 - 惋 - 亥 - 铡 - 栅 - 挞 - 眈 - 膘 - 犍 - 珉 - 镪 - 昵 - 霓 - 圪 - 汲 - 惺 - 瑕 - 桩 - 洽 - 唏 - 耒 - 唻 - 豁 - 郓 - 纣 - 亊 - 鳝 - 蟆 - 癣 - 碚 - 踌 - 殁 - 缉 - 痔 - 頔 - 蔫 - ; - 掺 - 愫 - 祟 - 拘 - 蜘 - 蛛 - 涎 - 耸 - 揪 - 芪 - 腕 - 袍 - 慵 - 绻 - 绛 - 螨 - 捌 - 墅 - 篷 - 啾 - 孪 - 唬 - 褛 - 跶 - 壤 - 慷 - 痧 - 懦 - 郯 - 莴 - 茴 - 嘬 - 铎 - 辫 - 绚 - 簇 - 墘 - 婿 - 咻 - 斡 - 沱 - 譬 - 羔 - 藓 - 肋 - 棂 - 赎 - 炭 - 徵 - 簌 - 艘 - 苪 - 眶 - 嘭 - 霎 - 馊 - 秽 - 仕 - 镶 - 纨 - 摧 - 蒨 - 闰 - 迩 - 篙 - 嚯 - 郫 - 陋 - 殒 - 邃 - 浔 - 瑾 - 鳟 - 祯 - 泻 - 氟 - 猾 - 酥 - 萦 - 郴 - 祀 - 涼 - 屡 - 摹 - 毡 - 妪 - 郡 - 柘 - 裱 - 囔 - 楷 - 鄄 - 蕲 - 偲 - 菘 - 姣 - 瞥 - 肪 - 饽 - 惭 - 胁 - 垄 - 榻 - 讼 - 旱 - 鬓 - 凇 - 钊 - 掣 - 浣 - 凃 - 蓥 - 臊 - 夔 - 脯 - 苛 - 阀 - 睫 - 腋 - 姊 - 躬 - 瘁 - 奄 - 靡 - 盂 - 柑 - 渑 - 恻 - 缱 - 拎 - 恤 - 缶 - 嵬 - 簋 - 囤 - 褴 - 蔼 - 沌 - 薏 - 鸵 - 跋 - 篪 - 罡 - 颇 - 嗄 - 胺 - 烯 - 酚 - 祠 - 迢 - 硖 - 眺 - 珏 - 怆 - 斧 - 痪 - 祺 - 嘤 - 谑 - 婊 - 滂 - 骇 - 帔 - 荼 - 硅 - 猖 - 皱 - 顽 - 榔 - 锌 - 蔻 - 滢 - 茸 - 捋 - 壥 - 孰 - 娩 - 锥 - 逾 - 诬 - 娠 - 厝 - 噎 - 秤 - 祢 - 嗳 - 嗜 - 滘 - 尅 - 悚 - 履 - 馕 - 簪 - 俭 - 摞 - 妗 - 蛎 - 暹 - 钾 - 膨 - 孚 - 驷 - 卯 - 猇 - 褚 - 町 - 骞 - - - 芩 - 赁 - 粱 - 隼 - 掘 - 莽 - 郾 - 擒 - 叁 - 敕 - 镊 - 惘 - 蚤 - 邳 - 嗫 - 扪 - 瀛 - 凿 - 雎 - 啲 - 鲲 - 帼 - 枭 - 羹 - 驳 - 铆 - 肴 - 嫦 - 媲 - 鹳 - 秩 - 銮 - 饯 - 毽 - 珩 - 眩 - 仄 - 葳 - 撮 - 睇 - 塄 - 肘 - 钠 - 诓 - 呱 - 垅 - 菱 - 亍 - 戍 - 酯 - 袱 - 隘 - 蓟 - 暨 - 痣 - 辗 - 埵 - 殉 - 郏 - 孢 - 悳 - 讫 - 诲 - 髋 - 孑 - 睹 - 擅 - 嗮 - 慒 - 琰 - 濛 - 雌 - 恁 - 擀 - 娼 - 谕 - 撵 - 苯 - 聴 - 唛 - 撂 - 栖 - 拗 - 孬 - 怏 - 掇 - 肽 - 胰 - 沣 - 卅 - 箅 - 氨 - 浠 - 蠡 - 募 - 肛 - 岀 - 瞑 - 蛆 - 舀 - 蚝 - 歙 - 涔 - 诘 - 、 - 垡 - 涠 - 嘢 - 糸 - 胤 - 绊 - 柒 - 沓 - 粼 - 菖 - 犒 - 呒 - 唑 - 莘 - 莪 - 宸 - 睨 - \ - 鲶 - 蛐 - 溏 - 菈 - 蹩 - 焙 - 釆 - 瑗 - 睾 - 槐 - 榉 - 杷 - 鄢 - 僕 - 诽 - 嗲 - 蜃 - 戆 - 蘼 - 糜 - 霁 - 坻 - 硼 - 槛 - 枞 - 麸 - 谒 - 荀 - 邋 - 遢 - 锴 - 啶 - 粪 - 驭 - 筵 - 砌 - 莩 - 蹼 - 吔 - 缳 - 埭 - 隗 - 厶 - 丶 - "\x14" - "\x17" - 稼 - 铖 - 涣 - 亳 - 幢 - 沭 - 驮 - 奚 - 藐 - 颅 - 埤 - 愘 - 镲 - 窒 - 暄 - 诃 - 噘 - 歼 - 隅 - 爻 - 蘅 - 锹 - 锇 - 椎 - 琨 - 烩 - 枢 - 觧 - 萁 - 镂 - 龈 - 怠 - 阐 - 藉 - 凛 - 冽 - 珣 - 泘 - 抉 - 锭 - 蕃 - 蠃 - 毓 - 啐 - 栩 - 骷 - 髅 - 耷 - 寥 - 杵 - 蚬 - 窖 - 孛 - 舆 - 皿 - 柸 - 粳 - 钣 - 趸 - 叄 - 腚 - 杖 - 鸸 - 犲 - 浗 - 缮 - 哓 - 箧 - 攘 - 冇 - 钛 - 郗 - 囡 - 酆 - 姌 - 雉 - 胯 - 椭 - 埏 - 钵 - 绌 - 蝾 - 坼 - 濂 - w - o - r - d - 袒 - 峦 - 鹫 - 炯 - 悱 - 漕 - 莦 - 蔑 - 樽 - 牒 - 濡 - 嫯 - 陖 - 疸 - 桅 - 辖 - 僢 - 《 - 》 - 酣 - 遨 - 邬 - ':' - 嫲 - 哌 - 锚 - 淙 - Q - 濑 - 熨 - 谴 - 筛 - 薹 - 磬 - 熠 - 腓 - 阉 - 钴 - 恂 - 溉 - 陨 - 螳 - 孵 - 瘠 - 嫡 - 哝 - 狙 - 怼 - 斟 - 甫 - 渌 - 卒 - 翕 - 沏 - 旮 - 旯 - 菡 - 變 - 狈 - 鳜 - 嵋 - 仞 - 鳕 - 噩 - 踟 - 躇 - 蛀 - 瘸 - 篡 - 锊 - 団 - 斐 - 蹍 - 冗 - "\uFEFF" - 歆 - 圴 - 泯 - 伥 - 愎 - 坌 - 碘 - 赉 - 骧 - 矩 - 綽 - 秭 - 怵 - 麝 - 贩 - 溥 - 捆 - 腩 - 溴 - 卉 - 痦 - 荻 - 缇 - 秸 - 秆 - 捍 - 炀 - 阆 - 泞 - 懊 - 啕 - 蚶 - 衩 - 桜 - 旖 - 贬 - 酵 - 滟 - 纥 - 倭 - 赝 - 呶 - 哧 - 煸 - 劢 - 炝 - 僚 - 豇 - 阂 - 涝 - 骡 - 霭 - 窨 - 殴 - 竣 - 醇 - 擂 - 怦 - 怩 - 臾 - 搔 - 伱 - 啉 - 嫖 - 囝 - 糠 - 胥 - 酰 - 镫 - 蟒 - 荞 - 醪 - 颦 - 吏 - 颛 - 赳 - 贿 - 赂 - 痩 - 仂 - 颍 - 罔 - 猕 - 嚒 - 蘸 - 熹 - 捺 - 坜 - 郜 - 鉄 - 蒌 - 荑 - 藻 - 谌 - 钳 - 屮 - 疵 - 哞 - 琮 - 潴 - 讹 - 镭 - '3' - 尕 - 倬 - 庇 - 侩 - 瘆 - 傀 - 儡 - 诧 - 葆 - 唾 - 皋 - 逄 - 诌 - 氦 - 彳 - 盅 - 曳 - 槲 - 挟 - 怿 - 顷 - 臃 - 衙 - 踵 - 霈 - 嗪 - 闩 - 锟 - 恿 - 抻 - 茁 - 惢 - 菅 - 迂 - 瞟 - 痉 - 挛 - 绦 - 晁 - 挢 - 蠕 - 洙 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish macaron_style: true use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: '202207' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
facebook/spar-paq-bm25-lexmodel-query-encoder
facebook
2022-09-21T23:12:22Z
106
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2110.06918", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T22:58:03Z
--- tags: - feature-extraction pipeline_tag: feature-extraction --- This model is the query encoder of the PAQ BM25 Lexical Model (Λ) from the SPAR paper: [Salient Phrase Aware Dense Retrieval: Can a Dense Retriever Imitate a Sparse One?](https://arxiv.org/abs/2110.06918) <br> Xilun Chen, Kushal Lakhotia, Barlas Oğuz, Anchit Gupta, Patrick Lewis, Stan Peshterliev, Yashar Mehdad, Sonal Gupta and Wen-tau Yih <br> **Meta AI** The associated github repo is available here: https://github.com/facebookresearch/dpr-scale/tree/main/spar This model is a BERT-base sized dense retriever trained using PAQ questions as queries to imitate the behavior of BM25. The following models are also available: Pretrained Model | Corpus | Teacher | Architecture | Query Encoder Path | Context Encoder Path |---|---|---|---|---|--- Wiki BM25 Λ | Wikipedia | BM25 | BERT-base | facebook/spar-wiki-bm25-lexmodel-query-encoder | facebook/spar-wiki-bm25-lexmodel-context-encoder PAQ BM25 Λ | PAQ | BM25 | BERT-base | facebook/spar-paq-bm25-lexmodel-query-encoder | facebook/spar-paq-bm25-lexmodel-context-encoder MARCO BM25 Λ | MS MARCO | BM25 | BERT-base | facebook/spar-marco-bm25-lexmodel-query-encoder | facebook/spar-marco-bm25-lexmodel-context-encoder MARCO UniCOIL Λ | MS MARCO | UniCOIL | BERT-base | facebook/spar-marco-unicoil-lexmodel-query-encoder | facebook/spar-marco-unicoil-lexmodel-context-encoder # Using the Lexical Model (Λ) Alone This model should be used together with the associated query encoder, similar to the [DPR](https://huggingface.co/docs/transformers/v4.22.1/en/model_doc/dpr) model. ``` import torch from transformers import AutoTokenizer, AutoModel # The tokenizer is the same for the query and context encoder tokenizer = AutoTokenizer.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') query_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') context_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-context-encoder') query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer query_input = tokenizer(query, return_tensors='pt') ctx_input = tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') # Compute embeddings: take the last-layer hidden state of the [CLS] token query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :] ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Compute similarity scores using dot product score1 = query_emb @ ctx_emb[0] # 341.3268 score2 = query_emb @ ctx_emb[1] # 340.1626 ``` # Using the Lexical Model (Λ) with a Base Dense Retriever as in SPAR As Λ learns lexical matching from a sparse teacher retriever, it can be used in combination with a standard dense retriever (e.g. [DPR](https://huggingface.co/docs/transformers/v4.22.1/en/model_doc/dpr#dpr), [Contriever](https://huggingface.co/facebook/contriever-msmarco)) to build a dense retriever that excels at both lexical and semantic matching. In the following example, we show how to build the SPAR-Wiki model for Open-Domain Question Answering by concatenating the embeddings of DPR and the Wiki BM25 Λ. ``` import torch from transformers import AutoTokenizer, AutoModel from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer from transformers import DPRContextEncoder, DPRContextEncoderTokenizer # DPR model dpr_ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") dpr_ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") dpr_query_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-multiset-base") dpr_query_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-multiset-base") # Wiki BM25 Λ model lexmodel_tokenizer = AutoTokenizer.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') lexmodel_query_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') lexmodel_context_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-context-encoder') query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Compute DPR embeddings dpr_query_input = dpr_query_tokenizer(query, return_tensors='pt')['input_ids'] dpr_query_emb = dpr_query_encoder(dpr_query_input).pooler_output dpr_ctx_input = dpr_ctx_tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') dpr_ctx_emb = dpr_ctx_encoder(**dpr_ctx_input).pooler_output # Compute Λ embeddings lexmodel_query_input = lexmodel_tokenizer(query, return_tensors='pt') lexmodel_query_emb = lexmodel_query_encoder(**query_input).last_hidden_state[:, 0, :] lexmodel_ctx_input = lexmodel_tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') lexmodel_ctx_emb = lexmodel_context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Form SPAR embeddings via concatenation # The concatenation weight is only applied to query embeddings # Refer to the SPAR paper for details concat_weight = 0.7 spar_query_emb = torch.cat( [dpr_query_emb, concat_weight * lexmodel_query_emb], dim=-1, ) spar_ctx_emb = torch.cat( [dpr_ctx_emb, lexmodel_ctx_emb], dim=-1, ) # Compute similarity scores score1 = spar_query_emb @ spar_ctx_emb[0] # 317.6931 score2 = spar_query_emb @ spar_ctx_emb[1] # 314.6144 ```
jgiral95/q-Taxi-v3
jgiral95
2022-09-21T23:03:18Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-21T23:03:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jgiral95/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification
research-backup
2022-09-21T22:47:04Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T22:05:02Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7127976190476191 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.29411764705882354 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.29080118694362017 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4641467481934408 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.614 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.32456140350877194 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3449074074074074 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8862437848425494 - name: F1 (macro) type: f1_macro value: 0.8781526549150734 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8370892018779342 - name: F1 (macro) type: f1_macro value: 0.6286516686265566 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5384615384615384 - name: F1 (macro) type: f1_macro value: 0.5368027921312294 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9659177853516032 - name: F1 (macro) type: f1_macro value: 0.8925325170399768 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8567847069884049 - name: F1 (macro) type: f1_macro value: 0.8346603805121989 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification/raw/main/analogy.json)): - Accuracy on SAT (full): 0.29411764705882354 - Accuracy on SAT: 0.29080118694362017 - Accuracy on BATS: 0.4641467481934408 - Accuracy on U2: 0.32456140350877194 - Accuracy on U4: 0.3449074074074074 - Accuracy on Google: 0.614 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8862437848425494 - Micro F1 score on CogALexV: 0.8370892018779342 - Micro F1 score on EVALution: 0.5384615384615384 - Micro F1 score on K&H+N: 0.9659177853516032 - Micro F1 score on ROOT09: 0.8567847069884049 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7127976190476191 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 1 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_metric_average
teven
2022-09-21T22:45:38Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T22:45:32Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_metric_average This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_metric_average') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_metric_average') model = AutoModel.from_pretrained('teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_metric_average') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_metric_average) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/cross_all_bs160_allneg_finetuned_WebNLG2020_metric_average
teven
2022-09-21T22:45:05Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T22:44:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/cross_all_bs160_allneg_finetuned_WebNLG2020_metric_average This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/cross_all_bs160_allneg_finetuned_WebNLG2020_metric_average') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/cross_all_bs160_allneg_finetuned_WebNLG2020_metric_average') model = AutoModel.from_pretrained('teven/cross_all_bs160_allneg_finetuned_WebNLG2020_metric_average') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/cross_all_bs160_allneg_finetuned_WebNLG2020_metric_average) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_metric_average
teven
2022-09-21T22:43:58Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T22:43:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_metric_average This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_metric_average') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_metric_average) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 161 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0001 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 805, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sd-concepts-library/karan-gloomy
sd-concepts-library
2022-09-21T22:42:56Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-21T22:42:50Z
--- license: mit --- ### Karan Gloomy on Stable Diffusion This is the `<karan>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<karan> 0](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/4.jpeg) ![<karan> 1](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/12.jpeg) ![<karan> 2](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/8.jpeg) ![<karan> 3](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/0.jpeg) ![<karan> 4](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/6.jpeg) ![<karan> 5](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/3.jpeg) ![<karan> 6](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/20.jpeg) ![<karan> 7](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/11.jpeg) ![<karan> 8](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/19.jpeg) ![<karan> 9](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/17.jpeg) ![<karan> 10](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/10.jpeg) ![<karan> 11](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/7.jpeg) ![<karan> 12](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/13.jpeg) ![<karan> 13](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/16.jpeg) ![<karan> 14](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/2.jpeg) ![<karan> 15](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/9.jpeg) ![<karan> 16](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/15.jpeg) ![<karan> 17](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/21.jpeg) ![<karan> 18](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/1.jpeg) ![<karan> 19](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/14.jpeg) ![<karan> 20](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/5.jpeg) ![<karan> 21](https://huggingface.co/sd-concepts-library/karan-gloomy/resolve/main/concept_images/18.jpeg)
tdobrxl/ClinicBERT
tdobrxl
2022-09-21T22:27:34Z
196
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-27T16:18:35Z
ClinicBERT has the same architecture of RoBERTa model. It has been trained on clinical text and can be used for feature extraction from textual data. ## How to use ### Feature Extraction ``` from transformers import RobertaModel, RobertaTokenizer model = RobertaModel.from_pretrained("tdobrxl/ClinicBERT") tokenizer = RobertaTokenizer.from_pretrained("tdobrxl/ClinicBERT") text = "Randomized Study of Shark Cartilage in Patients With Breast Cancer." last_hidden_state, pooler_output = model(tokenizer.encode(text, return_tensors="pt")).last_hidden_state, model(tokenizer.encode(text, return_tensors="pt")).pooler_output ``` ### Masked Word Prediction ``` from transformers import pipeline fill_mask = pipeline("fill-mask", model="tdobrxl/ClinicBERT", tokenizer="tdobrxl/ClinicBERT") text = "this is the start of a beautiful <mask>." fill_mask(text) ``` ```[{'score': 0.26558592915534973, 'token': 363, 'token_str': ' study', 'sequence': 'this is the start of a beautiful study.'}, {'score': 0.06330082565546036, 'token': 2010, 'token_str': ' procedure', 'sequence': 'this is the start of a beautiful procedure.'}, {'score': 0.04393036663532257, 'token': 661, 'token_str': ' trial', 'sequence': 'this is the start of a beautiful trial.'}, {'score': 0.0363750196993351, 'token': 839, 'token_str': ' period', 'sequence': 'this is the start of a beautiful period.'}, {'score': 0.027248281985521317, 'token': 436, 'token_str': ' treatment', 'sequence': 'this is the start of a beautiful treatment.'}```
misterneil/xlm-roberta-base-finetuned-panx-de
misterneil
2022-09-21T21:55:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-20T12:28:11Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
sd-concepts-library/maus
sd-concepts-library
2022-09-21T21:54:54Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T21:54:41Z
--- license: mit --- ### maus on Stable Diffusion This is the `<Maus>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<Maus> 0](https://huggingface.co/sd-concepts-library/maus/resolve/main/concept_images/0.jpeg) ![<Maus> 1](https://huggingface.co/sd-concepts-library/maus/resolve/main/concept_images/2.jpeg) ![<Maus> 2](https://huggingface.co/sd-concepts-library/maus/resolve/main/concept_images/1.jpeg)
sd-concepts-library/puerquis-toy
sd-concepts-library
2022-09-21T21:27:16Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T21:27:12Z
--- license: mit --- ### Puerquis toy on Stable Diffusion This is the `<puerquis>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<puerquis> 0](https://huggingface.co/sd-concepts-library/puerquis-toy/resolve/main/concept_images/4.jpeg) ![<puerquis> 1](https://huggingface.co/sd-concepts-library/puerquis-toy/resolve/main/concept_images/0.jpeg) ![<puerquis> 2](https://huggingface.co/sd-concepts-library/puerquis-toy/resolve/main/concept_images/3.jpeg) ![<puerquis> 3](https://huggingface.co/sd-concepts-library/puerquis-toy/resolve/main/concept_images/2.jpeg) ![<puerquis> 4](https://huggingface.co/sd-concepts-library/puerquis-toy/resolve/main/concept_images/1.jpeg)
sd-concepts-library/midjourney-style
sd-concepts-library
2022-09-21T21:17:45Z
0
152
null
[ "license:mit", "region:us" ]
null
2022-09-21T21:17:31Z
--- license: mit --- ### Midjourney style on Stable Diffusion This is the `<midjourney-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<midjourney-style> 0](https://huggingface.co/sd-concepts-library/midjourney-style/resolve/main/concept_images/0.jpeg) ![<midjourney-style> 1](https://huggingface.co/sd-concepts-library/midjourney-style/resolve/main/concept_images/3.jpeg) ![<midjourney-style> 2](https://huggingface.co/sd-concepts-library/midjourney-style/resolve/main/concept_images/2.jpeg) ![<midjourney-style> 3](https://huggingface.co/sd-concepts-library/midjourney-style/resolve/main/concept_images/1.jpeg)
CommunityLM/democrat-twitter-gpt2
CommunityLM
2022-09-21T20:57:24Z
109
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:2209.07065", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T19:20:53Z
--- license: cc-by-nc-4.0 --- ## Model Specification - This is the **Democratic** community GPT-2 language model, fine-tuned on 4.7M (~100M tokens) tweets of Democratic Twitter users between 2019-01-01 and 2020-04-10. - For more details about the `CommunityLM` project, please refer to this [our paper](https://arxiv.org/abs/2209.07065) and [github](https://github.com/hjian42/communitylm) page. - In the paper, it is referred as the `Fine-tuned CommunityLM` for the Democratic Twitter community. ## How to use the model - **PRE-PROCESSING**: when you apply the model on tweets, please make sure that tweets are preprocessed by the [TweetTokenizer](https://github.com/VinAIResearch/BERTweet/blob/master/TweetNormalizer.py) to get the best performance. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("CommunityLM/republican-twitter-gpt2") model = AutoModelForCausalLM.from_pretrained("CommunityLM/republican-twitter-gpt2") ``` ## References If you use this repository in your research, please kindly cite [our paper](https://arxiv.org/abs/2209.07065): ```bibtex @inproceedings{jiang-etal-2022-communitylm, title = "CommunityLM: Probing Partisan Worldviews from Language Models", author = {Jiang, Hang and Beeferman, Doug and Roy, Brandon and Roy, Deb}, booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", year = "2022", publisher = "International Committee on Computational Linguistics", } ```
blmnk/distilbert-base-uncased-finetuned-emotion
blmnk
2022-09-21T20:46:31Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-21T20:19:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.896 - name: F1 type: f1 value: 0.8927988574486181 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3821 - Accuracy: 0.896 - F1: 0.8928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.6029 | 0.7985 | 0.7597 | | 0.7905 | 2.0 | 250 | 0.3821 | 0.896 | 0.8928 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
research-backup/roberta-large-semeval2012-average-prompt-c-nce-classification
research-backup
2022-09-21T19:55:05Z
108
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T19:15:07Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-c-nce-classification results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.679702380952381 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.31283422459893045 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3086053412462908 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.46192329071706506 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.63 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34649122807017546 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3611111111111111 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8457134247400934 - name: F1 (macro) type: f1_macro value: 0.8210817253537833 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.846244131455399 - name: F1 (macro) type: f1_macro value: 0.6205542192501825 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6262188515709642 - name: F1 (macro) type: f1_macro value: 0.6158702387251406 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9545802323155039 - name: F1 (macro) type: f1_macro value: 0.8851331276863854 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9044186775305547 - name: F1 (macro) type: f1_macro value: 0.9039135057812416 --- # relbert/roberta-large-semeval2012-average-prompt-c-nce-classification RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-classification/raw/main/analogy.json)): - Accuracy on SAT (full): 0.31283422459893045 - Accuracy on SAT: 0.3086053412462908 - Accuracy on BATS: 0.46192329071706506 - Accuracy on U2: 0.34649122807017546 - Accuracy on U4: 0.3611111111111111 - Accuracy on Google: 0.63 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-classification/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8457134247400934 - Micro F1 score on CogALexV: 0.846244131455399 - Micro F1 score on EVALution: 0.6262188515709642 - Micro F1 score on K&H+N: 0.9545802323155039 - Micro F1 score on ROOT09: 0.9044186775305547 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-classification/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.679702380952381 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-c-nce-classification") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 1 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-classification/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-b-nce-classification
research-backup
2022-09-21T19:15:01Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T18:42:00Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-b-nce-classification results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8162698412698413 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4732620320855615 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.49258160237388726 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5986659255141745 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.686 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.44298245614035087 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4930555555555556 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9085430164230828 - name: F1 (macro) type: f1_macro value: 0.9029499017420614 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8359154929577466 - name: F1 (macro) type: f1_macro value: 0.6401332628753275 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6581798483206934 - name: F1 (macro) type: f1_macro value: 0.6411620033399844 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9586840091813313 - name: F1 (macro) type: f1_macro value: 0.8809925441051085 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8824819805703541 - name: F1 (macro) type: f1_macro value: 0.877314171779575 --- # relbert/roberta-large-semeval2012-average-prompt-b-nce-classification RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-classification/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4732620320855615 - Accuracy on SAT: 0.49258160237388726 - Accuracy on BATS: 0.5986659255141745 - Accuracy on U2: 0.44298245614035087 - Accuracy on U4: 0.4930555555555556 - Accuracy on Google: 0.686 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-classification/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9085430164230828 - Micro F1 score on CogALexV: 0.8359154929577466 - Micro F1 score on EVALution: 0.6581798483206934 - Micro F1 score on K&H+N: 0.9586840091813313 - Micro F1 score on ROOT09: 0.8824819805703541 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-classification/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8162698412698413 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-b-nce-classification") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-classification/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
pritamdeka/S-BioBert-snli-multinli-stsb
pritamdeka
2022-09-21T18:59:33Z
2,681
5
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # S-BioBert-snli-multinli-stsb This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('pritamdeka/S-BioBert-snli-multinli-stsb') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('pritamdeka/S-BioBert-snli-multinli-stsb') model = AutoModel.from_pretrained('pritamdeka/S-BioBert-snli-multinli-stsb') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 90 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 36, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> If you use the model kindly cite the following work ``` @inproceedings{deka2021unsupervised, title={Unsupervised Keyword Combination Query Generation from Online Health Related Content for Evidence-Based Fact Checking}, author={Deka, Pritam and Jurek-Loughrey, Anna}, booktitle={The 23rd International Conference on Information Integration and Web Intelligence}, pages={267--277}, year={2021} } ```
pritamdeka/S-Scibert-snli-multinli-stsb
pritamdeka
2022-09-21T18:59:09Z
5,987
4
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # pritamdeka/S-Scibert-snli-multinli-stsb This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('pritamdeka/S-Scibert-snli-multinli-stsb') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('pritamdeka/S-Scibert-snli-multinli-stsb') model = AutoModel.from_pretrained('pritamdeka/S-Scibert-snli-multinli-stsb') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 90 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 36, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> If you use the model kindly cite the following work ``` @inproceedings{deka2021unsupervised, title={Unsupervised Keyword Combination Query Generation from Online Health Related Content for Evidence-Based Fact Checking}, author={Deka, Pritam and Jurek-Loughrey, Anna}, booktitle={The 23rd International Conference on Information Integration and Web Intelligence}, pages={267--277}, year={2021} } ```
pritamdeka/S-Bluebert-snli-multinli-stsb
pritamdeka
2022-09-21T18:58:03Z
702
7
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # pritamdeka/S-Bluebert-snli-multinli-stsb This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('pritamdeka/S-Bluebert-snli-multinli-stsb') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('pritamdeka/S-Bluebert-snli-multinli-stsb') model = AutoModel.from_pretrained('pritamdeka/S-Bluebert-snli-multinli-stsb') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 90 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 36, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> If you use the model kindly cite the following work ``` @inproceedings{deka2021unsupervised, title={Unsupervised Keyword Combination Query Generation from Online Health Related Content for Evidence-Based Fact Checking}, author={Deka, Pritam and Jurek-Loughrey, Anna}, booktitle={The 23rd International Conference on Information Integration and Web Intelligence}, pages={267--277}, year={2021} } ```
sd-concepts-library/wildkat
sd-concepts-library
2022-09-21T18:56:20Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T18:56:13Z
--- license: mit --- ### Wildkat on Stable Diffusion This is the `<wildkat>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<wildkat> 0](https://huggingface.co/sd-concepts-library/wildkat/resolve/main/concept_images/7.jpeg) ![<wildkat> 1](https://huggingface.co/sd-concepts-library/wildkat/resolve/main/concept_images/1.jpeg) ![<wildkat> 2](https://huggingface.co/sd-concepts-library/wildkat/resolve/main/concept_images/2.jpeg) ![<wildkat> 3](https://huggingface.co/sd-concepts-library/wildkat/resolve/main/concept_images/8.jpeg) ![<wildkat> 4](https://huggingface.co/sd-concepts-library/wildkat/resolve/main/concept_images/0.jpeg) ![<wildkat> 5](https://huggingface.co/sd-concepts-library/wildkat/resolve/main/concept_images/3.jpeg) ![<wildkat> 6](https://huggingface.co/sd-concepts-library/wildkat/resolve/main/concept_images/4.jpeg) ![<wildkat> 7](https://huggingface.co/sd-concepts-library/wildkat/resolve/main/concept_images/5.jpeg) ![<wildkat> 8](https://huggingface.co/sd-concepts-library/wildkat/resolve/main/concept_images/6.jpeg)
sd-concepts-library/darkplane
sd-concepts-library
2022-09-21T18:37:08Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T18:36:56Z
--- license: mit --- ### DarkPlane on Stable Diffusion This is the `<DarkPlane>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<DarkPlane> 0](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/9.jpeg) ![<DarkPlane> 1](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/10.jpeg) ![<DarkPlane> 2](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/7.jpeg) ![<DarkPlane> 3](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/1.jpeg) ![<DarkPlane> 4](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/2.jpeg) ![<DarkPlane> 5](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/8.jpeg) ![<DarkPlane> 6](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/0.jpeg) ![<DarkPlane> 7](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/20.jpeg) ![<DarkPlane> 8](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/17.jpeg) ![<DarkPlane> 9](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/12.jpeg) ![<DarkPlane> 10](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/3.jpeg) ![<DarkPlane> 11](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/11.jpeg) ![<DarkPlane> 12](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/4.jpeg) ![<DarkPlane> 13](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/19.jpeg) ![<DarkPlane> 14](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/13.jpeg) ![<DarkPlane> 15](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/5.jpeg) ![<DarkPlane> 16](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/15.jpeg) ![<DarkPlane> 17](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/18.jpeg) ![<DarkPlane> 18](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/14.jpeg) ![<DarkPlane> 19](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/16.jpeg) ![<DarkPlane> 20](https://huggingface.co/sd-concepts-library/darkplane/resolve/main/concept_images/6.jpeg)
sd-concepts-library/babau
sd-concepts-library
2022-09-21T18:14:34Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-21T18:14:21Z
--- license: mit --- ### Babau on Stable Diffusion This is the `<babau>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<babau> 0](https://huggingface.co/sd-concepts-library/babau/resolve/main/concept_images/1.jpeg) ![<babau> 1](https://huggingface.co/sd-concepts-library/babau/resolve/main/concept_images/2.jpeg) ![<babau> 2](https://huggingface.co/sd-concepts-library/babau/resolve/main/concept_images/0.jpeg) ![<babau> 3](https://huggingface.co/sd-concepts-library/babau/resolve/main/concept_images/3.jpeg) ![<babau> 4](https://huggingface.co/sd-concepts-library/babau/resolve/main/concept_images/4.jpeg)
xzmZEW/batman
xzmZEW
2022-09-21T18:12:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-09-21T18:12:07Z
--- license: creativeml-openrail-m ---
sd-concepts-library/hrgiger-drmacabre
sd-concepts-library
2022-09-21T17:39:06Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-21T17:38:59Z
--- license: mit --- ### HrGiger_DrMacabre on Stable Diffusion This is the `<barba>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<barba> 0](https://huggingface.co/sd-concepts-library/hrgiger-drmacabre/resolve/main/concept_images/1.jpeg) ![<barba> 1](https://huggingface.co/sd-concepts-library/hrgiger-drmacabre/resolve/main/concept_images/2.jpeg) ![<barba> 2](https://huggingface.co/sd-concepts-library/hrgiger-drmacabre/resolve/main/concept_images/0.jpeg) ![<barba> 3](https://huggingface.co/sd-concepts-library/hrgiger-drmacabre/resolve/main/concept_images/3.jpeg) ![<barba> 4](https://huggingface.co/sd-concepts-library/hrgiger-drmacabre/resolve/main/concept_images/4.jpeg)
sd-concepts-library/dicoo2
sd-concepts-library
2022-09-21T17:35:48Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-21T17:35:43Z
--- license: mit --- ### Dicoo2 on Stable Diffusion This is the `<dicoo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<dicoo> 0](https://huggingface.co/sd-concepts-library/dicoo2/resolve/main/concept_images/1.jpeg) ![<dicoo> 1](https://huggingface.co/sd-concepts-library/dicoo2/resolve/main/concept_images/2.jpeg) ![<dicoo> 2](https://huggingface.co/sd-concepts-library/dicoo2/resolve/main/concept_images/0.jpeg) ![<dicoo> 3](https://huggingface.co/sd-concepts-library/dicoo2/resolve/main/concept_images/3.jpeg) ![<dicoo> 4](https://huggingface.co/sd-concepts-library/dicoo2/resolve/main/concept_images/4.jpeg)
keras-io/dcgan-to-generate-face-images
keras-io
2022-09-21T17:35:16Z
5
1
tf-keras
[ "tf-keras", "tensorboard", "region:us" ]
null
2022-09-21T10:33:49Z
▲ 🙂 --- license: gpl-2.0 --- # DCGAN to generate face images This is an example notebook for Keras sprint prepared by Hugging Face. Keras Sprint aims to reproduce Keras examples and build interactive demos to them. The markdown parts beginning with 🤗 and the following code snippets are the parts added by the Hugging Face team to give you an example of how to host your model and build a demo. **Original Author of the DCGAN to generate face images Example:** [fchollet](https://twitter.com/fchollet) ## Steps to Train the DCGAN 1. Create the discriminator - It maps a 64x64 image to a binary classification score. ```py discriminator = keras.Sequential( [ keras.Input(shape=(64, 64, 3)), layers.Conv2D(64, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Conv2D(128, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Conv2D(128, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Flatten(), layers.Dropout(0.2), layers.Dense(1, activation="sigmoid"), ], name="discriminator", ) ``` 2. Create the generator - It mirrors the discriminator, replacing Conv2D layers with Conv2DTranspose layers ```py latent_dim = 128 generator = keras.Sequential( [ keras.Input(shape=(latent_dim,)), layers.Dense(8 * 8 * 128), layers.Reshape((8, 8, 128)), layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Conv2DTranspose(512, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Conv2D(3, kernel_size=5, padding="same", activation="sigmoid"), ], name="generator", ) ``` HF Contributor: [Tarun Jain](https://twitter.com/TRJ_0751)
research-backup/roberta-large-semeval2012-mask-prompt-d-nce-classification
research-backup
2022-09-21T17:31:01Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T16:59:47Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.796765873015873 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6524064171122995 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6498516320474778 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7509727626459144 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.902 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6271929824561403 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.625 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9246647581738737 - name: F1 (macro) type: f1_macro value: 0.9201116139693363 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8826291079812206 - name: F1 (macro) type: f1_macro value: 0.74506786895136 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7172264355362946 - name: F1 (macro) type: f1_macro value: 0.703292242462215 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9616748974055783 - name: F1 (macro) type: f1_macro value: 0.8934154139843127 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9094327796928863 - name: F1 (macro) type: f1_macro value: 0.906471425124189 --- # relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6524064171122995 - Accuracy on SAT: 0.6498516320474778 - Accuracy on BATS: 0.7509727626459144 - Accuracy on U2: 0.6271929824561403 - Accuracy on U4: 0.625 - Accuracy on Google: 0.902 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9246647581738737 - Micro F1 score on CogALexV: 0.8826291079812206 - Micro F1 score on EVALution: 0.7172264355362946 - Micro F1 score on K&H+N: 0.9616748974055783 - Micro F1 score on ROOT09: 0.9094327796928863 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.796765873015873 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
Harindu/blurr_IMDB_distilbert_classification
Harindu
2022-09-21T17:17:00Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-09-21T17:16:48Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
research-backup/roberta-large-semeval2012-mask-prompt-c-nce-classification
research-backup
2022-09-21T16:59:42Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T16:17:41Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.5331547619047619 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.2914438502673797 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.29080118694362017 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3913285158421345 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.486 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.33771929824561403 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3263888888888889 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8392345939430466 - name: F1 (macro) type: f1_macro value: 0.8259066607574465 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7570422535211268 - name: F1 (macro) type: f1_macro value: 0.43666662077729007 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5926327193932828 - name: F1 (macro) type: f1_macro value: 0.5763337381530251 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9392780134937748 - name: F1 (macro) type: f1_macro value: 0.8298559683420568 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8934503290504543 - name: F1 (macro) type: f1_macro value: 0.8858359126040442 --- # relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification/raw/main/analogy.json)): - Accuracy on SAT (full): 0.2914438502673797 - Accuracy on SAT: 0.29080118694362017 - Accuracy on BATS: 0.3913285158421345 - Accuracy on U2: 0.33771929824561403 - Accuracy on U4: 0.3263888888888889 - Accuracy on Google: 0.486 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8392345939430466 - Micro F1 score on CogALexV: 0.7570422535211268 - Micro F1 score on EVALution: 0.5926327193932828 - Micro F1 score on K&H+N: 0.9392780134937748 - Micro F1 score on ROOT09: 0.8934503290504543 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.5331547619047619 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 1 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
sd-concepts-library/sherhook-painting
sd-concepts-library
2022-09-21T16:41:10Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-21T16:41:04Z
--- license: mit --- ### Sherhook Painting on Stable Diffusion This is the `<sherhook>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<sherhook> 0](https://huggingface.co/sd-concepts-library/sherhook-painting/resolve/main/concept_images/1.jpeg) ![<sherhook> 1](https://huggingface.co/sd-concepts-library/sherhook-painting/resolve/main/concept_images/2.jpeg) ![<sherhook> 2](https://huggingface.co/sd-concepts-library/sherhook-painting/resolve/main/concept_images/0.jpeg) ![<sherhook> 3](https://huggingface.co/sd-concepts-library/sherhook-painting/resolve/main/concept_images/3.jpeg) ![<sherhook> 4](https://huggingface.co/sd-concepts-library/sherhook-painting/resolve/main/concept_images/4.jpeg) ![<sherhook> 5](https://huggingface.co/sd-concepts-library/sherhook-painting/resolve/main/concept_images/5.jpeg) ![<sherhook> 6](https://huggingface.co/sd-concepts-library/sherhook-painting/resolve/main/concept_images/6.jpeg)
sd-concepts-library/arcane-face
sd-concepts-library
2022-09-21T16:24:02Z
0
14
null
[ "license:mit", "region:us" ]
null
2022-09-21T16:23:56Z
--- license: mit --- ### arcane-face on Stable Diffusion This is the `<arcane-face>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<arcane-face> 0](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/9.jpeg) ![<arcane-face> 1](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/10.jpeg) ![<arcane-face> 2](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/7.jpeg) ![<arcane-face> 3](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/1.jpeg) ![<arcane-face> 4](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/2.jpeg) ![<arcane-face> 5](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/8.jpeg) ![<arcane-face> 6](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/0.jpeg) ![<arcane-face> 7](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/17.jpeg) ![<arcane-face> 8](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/12.jpeg) ![<arcane-face> 9](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/3.jpeg) ![<arcane-face> 10](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/11.jpeg) ![<arcane-face> 11](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/4.jpeg) ![<arcane-face> 12](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/19.jpeg) ![<arcane-face> 13](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/13.jpeg) ![<arcane-face> 14](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/5.jpeg) ![<arcane-face> 15](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/15.jpeg) ![<arcane-face> 16](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/18.jpeg) ![<arcane-face> 17](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/14.jpeg) ![<arcane-face> 18](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/16.jpeg) ![<arcane-face> 19](https://huggingface.co/sd-concepts-library/arcane-face/resolve/main/concept_images/6.jpeg)
research-backup/roberta-large-semeval2012-mask-prompt-b-nce-classification
research-backup
2022-09-21T16:17:35Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T15:45:17Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7908730158730158 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5080213903743316 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5192878338278932 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6653696498054474 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.84 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.45614035087719296 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5393518518518519 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9132138014163026 - name: F1 (macro) type: f1_macro value: 0.9101733559621606 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8502347417840377 - name: F1 (macro) type: f1_macro value: 0.6852576593859314 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6852654387865655 - name: F1 (macro) type: f1_macro value: 0.6694360423727916 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9604228976838005 - name: F1 (macro) type: f1_macro value: 0.8826948107609662 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9022250078345346 - name: F1 (macro) type: f1_macro value: 0.9002463330589072 --- # relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5080213903743316 - Accuracy on SAT: 0.5192878338278932 - Accuracy on BATS: 0.6653696498054474 - Accuracy on U2: 0.45614035087719296 - Accuracy on U4: 0.5393518518518519 - Accuracy on Google: 0.84 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9132138014163026 - Micro F1 score on CogALexV: 0.8502347417840377 - Micro F1 score on EVALution: 0.6852654387865655 - Micro F1 score on K&H+N: 0.9604228976838005 - Micro F1 score on ROOT09: 0.9022250078345346 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7908730158730158 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 27 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_data_coverage
teven
2022-09-21T15:53:15Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:53:08Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_data_coverage This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_data_coverage') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_data_coverage') model = AutoModel.from_pretrained('teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_data_coverage') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_data_coverage) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_data_coverage
teven
2022-09-21T15:52:36Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:52:29Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_data_coverage This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_data_coverage') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_data_coverage') model = AutoModel.from_pretrained('teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_data_coverage') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_data_coverage) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
julius-br/gottbert-base-finetuned-fbi-german
julius-br
2022-09-21T15:51:49Z
106
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "gottbert", "de", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T11:43:30Z
--- language: de license: mit tags: - roberta - gottbert --- # Fine-tuned gottbert-base to detect Feature Requests & Bug Reports in German App Store Reviews ## Overview **Language model:** uklfr/gottbert-base **Language:** German **Training & Eval data:** [GARFAB2022Weighted](https://huggingface.co/datasets/julius-br/GARFAB) <br> **Published**: September 21th, 2022 <br> **Author**: Julius Breiholz ## Performance | Label | Precision | Recall | F1-Score | | --- | --- | --- | --- | | Irrelevant | 0,95 | 0,91 | 0,93 | | Bug Report | 0,82 | 0,91 | 0,86 | | Feature Request | 0,87 | 0,82 | 0,85 | | all classes (avg.) | 0,88 | 0,88 | 0,88 |
teven/bi_all_bs192_hardneg_finetuned_WebNLG2020_data_coverage
teven
2022-09-21T15:50:15Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:50:08Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all_bs192_hardneg_finetuned_WebNLG2020_data_coverage This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all_bs192_hardneg_finetuned_WebNLG2020_data_coverage') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all_bs192_hardneg_finetuned_WebNLG2020_data_coverage) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 161 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 805, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_data_coverage
teven
2022-09-21T15:49:40Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:49:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_data_coverage This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_data_coverage') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_data_coverage) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 41 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0001 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 205, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_data_coverage
teven
2022-09-21T15:49:04Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:48:57Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_data_coverage This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_data_coverage') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_data_coverage) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 41 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0002 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 205, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_relevance
teven
2022-09-21T15:48:28Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:48:21Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_relevance This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_relevance') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_relevance') model = AutoModel.from_pretrained('teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_relevance') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_relevance) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_relevance
teven
2022-09-21T15:46:24Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:46:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_relevance This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_relevance') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_relevance') model = AutoModel.from_pretrained('teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_relevance') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_relevance) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/cross_all_bs160_allneg_finetuned_WebNLG2020_correctness
teven
2022-09-21T15:41:45Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:41:37Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/cross_all_bs160_allneg_finetuned_WebNLG2020_correctness This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/cross_all_bs160_allneg_finetuned_WebNLG2020_correctness') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/cross_all_bs160_allneg_finetuned_WebNLG2020_correctness') model = AutoModel.from_pretrained('teven/cross_all_bs160_allneg_finetuned_WebNLG2020_correctness') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/cross_all_bs160_allneg_finetuned_WebNLG2020_correctness) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_correctness
teven
2022-09-21T15:40:30Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:40:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_correctness This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_correctness') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_correctness) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 321 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 1605, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_correctness
teven
2022-09-21T15:37:39Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:37:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_correctness This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_correctness') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_correctness) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 41 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0002 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 205, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all_bs160_allneg_finetuned_WebNLG2020_correctness
teven
2022-09-21T15:37:00Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:36:53Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all_bs160_allneg_finetuned_WebNLG2020_correctness This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all_bs160_allneg_finetuned_WebNLG2020_correctness') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all_bs160_allneg_finetuned_WebNLG2020_correctness) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 81 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0002 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 405, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
matemato/testpyramidsrnd
matemato
2022-09-21T15:25:39Z
0
0
ml-agents
[ "ml-agents", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-09-21T15:25:31Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: matemato/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
GItaf/gpt2-gpt2-TF-weight0.5-epoch5
GItaf
2022-09-21T15:24:17Z
112
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T12:07:29Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-TF-weight0.5-epoch5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-TF-weight0.5-epoch5 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4047 - Cls loss: 0.8943 - Lm loss: 3.9573 - Cls Accuracy: 0.8305 - Cls F1: 0.8305 - Cls Precision: 0.8305 - Cls Recall: 0.8305 - Perplexity: 52.31 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 4.4891 | 1.0 | 3470 | 4.2525 | 0.4695 | 4.0177 | 0.8046 | 0.8023 | 0.8093 | 0.8046 | 55.57 | | 4.2708 | 2.0 | 6940 | 4.2621 | 0.5568 | 3.9835 | 0.8398 | 0.8383 | 0.8438 | 0.8398 | 53.71 | | 4.1614 | 3.0 | 10410 | 4.2509 | 0.5637 | 3.9689 | 0.8444 | 0.8443 | 0.8443 | 0.8444 | 52.93 | | 4.0683 | 4.0 | 13880 | 4.3454 | 0.7723 | 3.9591 | 0.8282 | 0.8281 | 0.8281 | 0.8282 | 52.41 | | 4.0036 | 5.0 | 17350 | 4.4047 | 0.8943 | 3.9573 | 0.8305 | 0.8305 | 0.8305 | 0.8305 | 52.31 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/kogatan-shiny
sd-concepts-library
2022-09-21T15:11:22Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-21T15:11:16Z
--- license: mit --- ### kogatan_shiny on Stable Diffusion This is the `kogatan` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![kogatan 0](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/0.jpeg) ![kogatan 1](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/1.jpeg) ![kogatan 2](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/2.jpeg) ![kogatan 3](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/3.jpeg) ![kogatan 4](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/4.jpeg)
sd-concepts-library/homestuck-sprite
sd-concepts-library
2022-09-21T15:08:58Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T15:08:54Z
--- license: mit --- ### homestuck sprite on Stable Diffusion This is the `<homestuck-sprite>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<homestuck-sprite> 0](https://huggingface.co/sd-concepts-library/homestuck-sprite/resolve/main/concept_images/1.jpeg) ![<homestuck-sprite> 1](https://huggingface.co/sd-concepts-library/homestuck-sprite/resolve/main/concept_images/2.jpeg) ![<homestuck-sprite> 2](https://huggingface.co/sd-concepts-library/homestuck-sprite/resolve/main/concept_images/0.jpeg) ![<homestuck-sprite> 3](https://huggingface.co/sd-concepts-library/homestuck-sprite/resolve/main/concept_images/3.jpeg) ![<homestuck-sprite> 4](https://huggingface.co/sd-concepts-library/homestuck-sprite/resolve/main/concept_images/4.jpeg)
sd-concepts-library/jojo-bizzare-adventure-manga-lineart
sd-concepts-library
2022-09-21T15:03:39Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-21T15:03:33Z
--- license: mit --- ### JoJo Bizzare Adventure manga lineart on Stable Diffusion This is the `<JoJo_lineart>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<JoJo_lineart> 0](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/7.png) ![<JoJo_lineart> 1](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/15.png) ![<JoJo_lineart> 2](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/11.png) ![<JoJo_lineart> 3](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/8.png) ![<JoJo_lineart> 4](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/5.png) ![<JoJo_lineart> 5](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/6.png) ![<JoJo_lineart> 6](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/10.png) ![<JoJo_lineart> 7](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/4.png) ![<JoJo_lineart> 8](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/14.png) ![<JoJo_lineart> 9](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/3.png) ![<JoJo_lineart> 10](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/2.png) ![<JoJo_lineart> 11](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/1.png) ![<JoJo_lineart> 12](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/9.png) ![<JoJo_lineart> 13](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/13.png) ![<JoJo_lineart> 14](https://huggingface.co/sd-concepts-library/jojo-bizzare-adventure-manga-lineart/resolve/main/concept_images/12.png)
minminzi/t5-base-finetuned-eli5
minminzi
2022-09-21T15:02:46Z
126
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-20T15:35:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-base-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-eli5 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 17040 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.0 - Tokenizers 0.12.1
csdeptsju/distilbert-base-uncased-finetuned-emotion
csdeptsju
2022-09-21T15:00:30Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-21T14:25:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.918 - name: F1 type: f1 value: 0.9179414471754404 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2255 - Accuracy: 0.918 - F1: 0.9179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8539 | 1.0 | 250 | 0.3348 | 0.896 | 0.8916 | | 0.2589 | 2.0 | 500 | 0.2255 | 0.918 | 0.9179 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.0 - Tokenizers 0.12.1
sd-concepts-library/phan-s-collage
sd-concepts-library
2022-09-21T14:44:10Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-21T14:44:04Z
--- license: mit --- ### Phan's Collage on Stable Diffusion This is the `<pcollage>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<pcollage> 0](https://huggingface.co/sd-concepts-library/phan-s-collage/resolve/main/concept_images/1.jpeg) ![<pcollage> 1](https://huggingface.co/sd-concepts-library/phan-s-collage/resolve/main/concept_images/2.jpeg) ![<pcollage> 2](https://huggingface.co/sd-concepts-library/phan-s-collage/resolve/main/concept_images/0.jpeg) ![<pcollage> 3](https://huggingface.co/sd-concepts-library/phan-s-collage/resolve/main/concept_images/3.jpeg)