modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 06:27:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 06:27:45
card
stringlengths
11
1.01M
mradermacher/Arch-Function-Chat-7B-i1-GGUF
mradermacher
2025-04-02T09:37:04Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:katanemo/Arch-Function-Chat-7B", "base_model:quantized:katanemo/Arch-Function-Chat-7B", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-02T04:10:54Z
--- base_model: katanemo/Arch-Function-Chat-7B language: - en library_name: transformers license: other license_link: https://huggingface.co/katanemo/Arch-Function-Chat-7B/blob/main/LICENSE license_name: katanemo-research quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/katanemo/Arch-Function-Chat-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Arch-Function-Chat-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Function-Chat-7B-i1-GGUF/resolve/main/Arch-Function-Chat-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
daniel1131kitty/sageattention-windows
daniel1131kitty
2025-04-02T09:37:04Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-28T08:58:58Z
--- license: apache-2.0 ---
ArkaAcharya/LLAMA_IITP_1B_PRETRAIN
ArkaAcharya
2025-04-02T09:36:04Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-31T16:42:57Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
THUMedInfo/DR.EHR-large
THUMedInfo
2025-04-02T09:35:01Z
0
0
null
[ "safetensors", "nvembed", "custom_code", "license:apache-2.0", "region:us" ]
null
2025-04-02T09:10:12Z
--- license: apache-2.0 ---
pr0ck/MEIA-story-teller
pr0ck
2025-04-02T09:34:48Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "sft", "base_model:unsloth/phi-4-unsloth-bnb-4bit", "base_model:finetune:unsloth/phi-4-unsloth-bnb-4bit", "endpoints_compatible", "region:us" ]
null
2025-03-25T20:28:25Z
--- base_model: unsloth/phi-4-unsloth-bnb-4bit library_name: transformers model_name: MEIA-story-teller tags: - generated_from_trainer - unsloth - trl - sft licence: license --- # Model Card for MEIA-story-teller This model is a fine-tuned version of [unsloth/phi-4-unsloth-bnb-4bit](https://huggingface.co/unsloth/phi-4-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="pr0ck/MEIA-story-teller", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.50.3 - Pytorch: 2.6.0 - Datasets: 3.3.1 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Shiva0714/Shiva
Shiva0714
2025-04-02T09:33:46Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-02T09:33:46Z
--- license: apache-2.0 ---
limcheekin/CodeRankEmbed-GGUF
limcheekin
2025-04-02T09:33:38Z
0
0
null
[ "gguf", "embeddings", "f16", "base_model:nomic-ai/CodeRankEmbed", "base_model:quantized:nomic-ai/CodeRankEmbed", "license:mit", "endpoints_compatible", "region:us", "feature-extraction" ]
null
2025-04-02T09:01:33Z
--- license: mit base_model: - nomic-ai/CodeRankEmbed tags: - gguf - embeddings - f16 --- # Model Card: CodeRankEmbed (GGUF Quantized) ## Model Overview This model is a GGUF-quantized version of [CodeRankEmbed](https://huggingface.co/nomic-ai/CodeRankEmbed). The quantization reduces the model's size and computational requirements, facilitating efficient deployment without significantly compromising performance. ## Model Details - **Model Name:** CodeRankEmbed-GGUF - **Original Model:** [CodeRankEmbed](https://huggingface.co/nomic-ai/CodeRankEmbed) - **Quantization Format:** GGUF - **Parameters:** 568 million - **Embedding Dimension:** 768 - **Languages Supported:** Python, Java, JS, PHP, Go, Ruby - **Context Length:** Supports up to 8,192 tokens - **License:** MIT ## Quantization Details GGUF (Gerganov's General Unified Format) is a binary format optimized for efficient loading and inference of large language models. Quantization involves reducing the precision of the model's weights, resulting in decreased memory usage and faster computation with minimal impact on accuracy. ## Performance The CodeRankEmbed is a 137M bi-encoder supporting 8192 context length for code retrieval. It significantly outperforms various open-source and proprietary code embedding models on various code retrieval tasks. ## Usage This quantized model is suitable for deployment in resource-constrained environments where memory and computational efficiency are critical. It can be utilized for tasks such as code retrieval, semantic search, and other applications requiring high-quality code embeddings. ## Limitations While quantization reduces resource requirements, it may introduce slight degradation in model performance. Users should evaluate the model in their specific use cases to ensure it meets the desired performance criteria. ## Acknowledgements This quantized model is based on Nomic's CodeRankEmbed. For more details on the original model, please refer to the [official model card](https://huggingface.co/nomic-ai/CodeRankEmbed). --- For a overview of the CodeRankEmbed model, you may find the following article informative: https://simonwillison.net/2025/Mar/27/nomic-embed-code
error577/efa08785-37e5-449c-a19f-8216090b2975
error577
2025-04-02T09:30:26Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M", "base_model:adapter:unsloth/SmolLM-135M", "license:apache-2.0", "region:us" ]
null
2025-04-02T06:31:59Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M tags: - axolotl - generated_from_trainer model-index: - name: efa08785-37e5-449c-a19f-8216090b2975 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_resume_from_checkpoints: true base_model: unsloth/SmolLM-135M bf16: auto chat_template: llama3 dataset_prepared_path: null dataset_processes: 6 datasets: - data_files: - 2bc15e36d15fd7bb_train_data.json ds_type: json format: custom path: /workspace/input_data/2bc15e36d15fd7bb_train_data.json type: field_input: input_context field_instruction: instruction field_output: errors format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 200 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: error577/efa08785-37e5-449c-a19f-8216090b2975 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 256 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 128 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: null micro_batch_size: 16 mlflow_experiment_name: /tmp/2bc15e36d15fd7bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 6 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 200 sequence_len: 256 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 036991fa-1613-4222-9412-ca29030050ca wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 036991fa-1613-4222-9412-ca29030050ca warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ``` </details><br> # efa08785-37e5-449c-a19f-8216090b2975 This model is a fine-tuned version of [unsloth/SmolLM-135M](https://huggingface.co/unsloth/SmolLM-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2713 | 0.0032 | 1 | 2.2751 | | 0.9207 | 0.6494 | 200 | 0.8987 | | 0.8315 | 1.2987 | 400 | 0.8501 | | 0.774 | 1.9481 | 600 | 0.8295 | | 0.7518 | 2.5974 | 800 | 0.8220 | | 0.7775 | 3.2468 | 1000 | 0.8225 | | 0.789 | 3.8961 | 1200 | 0.8111 | | 0.7835 | 4.5455 | 1400 | 0.8064 | | 0.7918 | 5.1948 | 1600 | 0.8031 | | 0.7909 | 5.8442 | 1800 | 0.8019 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
narpas/UNNAMED-MODEL-B-4.0bpw-h8-exl2
narpas
2025-04-02T09:28:27Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "base_model:TareksTesting/UNNAMED-MODEL-B", "base_model:quantized:TareksTesting/UNNAMED-MODEL-B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "exl2", "region:us" ]
text-generation
2025-04-02T03:35:08Z
--- base_model: - TareksTesting/UNNAMED-MODEL-B library_name: transformers tags: - mergekit - merge --- # MERGE2 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [TareksLab/Erudite-V1-Unleashed-LLaMA-70B](https://huggingface.co/TareksLab/Erudite-V1-Unleashed-LLaMA-70B) as a base. ### Models Merged The following models were included in the merge: * [TareksLab/Scrivener-Base-V4-LLaMA-70B](https://huggingface.co/TareksLab/Scrivener-Base-V4-LLaMA-70B) * [TareksLab/Wordsmith-V2.0-LLaMa-70B](https://huggingface.co/TareksLab/Wordsmith-V2.0-LLaMa-70B) * [TareksLab/Anathema-V2-LLaMA-70B](https://huggingface.co/TareksLab/Anathema-V2-LLaMA-70B) * [TareksLab/RolePlayer-V4-LLaMa-70B](https://huggingface.co/TareksLab/RolePlayer-V4-LLaMa-70B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: TareksLab/Wordsmith-V2.0-LLaMa-70B parameters: weight: 0.20 density: 0.5 - model: TareksLab/Anathema-V2-LLaMA-70B parameters: weight: 0.20 density: 0.5 - model: TareksLab/Scrivener-Base-V4-LLaMA-70B parameters: weight: 0.20 density: 0.5 - model: TareksLab/RolePlayer-V4-LLaMa-70B parameters: weight: 0.20 density: 0.5 - model: TareksLab/Erudite-V1-Unleashed-LLaMA-70B parameters: weight: 0.20 density: 0.5 merge_method: dare_ties base_model: TareksLab/Erudite-V1-Unleashed-LLaMA-70B parameters: normalize: false out_dtype: bfloat16 chat_template: llama3 tokenizer: source: TareksLab/Scrivener-Base-V4-LLaMA-70B ```
Dioptry/a2c-PandaReachDense-v3
Dioptry
2025-04-02T09:27:54Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-04-02T09:23:51Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.21 +/- 0.10 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
shouqin/pretrainmodel
shouqin
2025-04-02T09:27:51Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-02T09:18:53Z
--- license: apache-2.0 ---
tdooms/svhn8b
tdooms
2025-04-02T09:27:25Z
2
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-01T20:26:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mahesh2841/phi4-toxic-lora-merged
Mahesh2841
2025-04-02T09:26:49Z
0
0
null
[ "safetensors", "phi3", "license:apache-2.0", "region:us" ]
null
2025-04-02T09:19:14Z
--- license: apache-2.0 ---
huggingkot/Rei-V2-12B-q4f16_1-MLC
huggingkot
2025-04-02T09:25:40Z
0
0
mlc-llm
[ "mlc-llm", "web-llm", "text-generation", "en", "base_model:Delta-Vector/Rei-V2-12B", "base_model:quantized:Delta-Vector/Rei-V2-12B", "region:us" ]
text-generation
2025-04-02T09:23:43Z
--- library_name: mlc-llm tags: - mlc-llm - web-llm language: - en base_model: - Delta-Vector/Rei-V2-12B pipeline_tag: text-generation --- This is a MLC converted weight from [Rei-V2-12B](https://huggingface.co/Delta-Vector/Rei-V2-12B) model in MLC format `q4f16_1`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm).
bowilleatyou/0c311aa1-7dd9-4d67-9e7b-13e07066ee80
bowilleatyou
2025-04-02T09:24:10Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-02T06:34:55Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dgambettaphd/M_llama-3-8b_gen5_W_doc1000_synt64_MPPTrue_lastFalse
dgambettaphd
2025-04-02T09:23:46Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-02T09:23:30Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ahmeterdempmk/SpeechT5-Turkish-Tuned
ahmeterdempmk
2025-04-02T09:23:30Z
0
1
transformers
[ "transformers", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-04-02T08:58:15Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: SpeechT5-Turkish-Tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5-Turkish-Tuned This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3080 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4735 | 0.4545 | 100 | 0.4349 | | 0.4081 | 0.9091 | 200 | 0.3746 | | 0.3756 | 1.3636 | 300 | 0.3335 | | 0.3398 | 1.8182 | 400 | 0.3250 | | 0.3296 | 2.2727 | 500 | 0.3080 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
derikk/sfting
derikk
2025-04-02T09:22:23Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T09:13:00Z
--- base_model: Qwen/Qwen2.5-0.5B-Instruct library_name: transformers model_name: sfting tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for sfting This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="derikk/sfting", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.16.0 - Transformers: 4.50.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
foodpro3/Llama-3-Open-Ko-8B-Instruct-preview-rheology
foodpro3
2025-04-02T09:20:20Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T08:55:47Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hwchong/llama-factor-zhw
hwchong
2025-04-02T09:19:56Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-02T09:19:56Z
--- license: apache-2.0 ---
ElkeAI/claudia2
ElkeAI
2025-04-02T09:18:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-02T08:37:48Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: CLAUDIA --- # Claudia2 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `CLAUDIA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "CLAUDIA", "lora_weights": "https://huggingface.co/ElkeAI/claudia2/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ElkeAI/claudia2', weight_name='lora.safetensors') image = pipeline('CLAUDIA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2988 - Learning rate: 0.0004 - LoRA rank: 39 ## Contribute your own examples You can use the [community tab](https://huggingface.co/ElkeAI/claudia2/discussions) to add images that show off what you’ve made with this LoRA.
CromonZhang/sharpmouse-1b
CromonZhang
2025-04-02T09:17:18Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-02T09:16:56Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** CromonZhang - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3
tokyotech-llm
2025-04-02T09:16:58Z
3,058
10
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "dataset:tokyotech-llm/lmsys-chat-1m-synth", "dataset:tokyotech-llm/swallow-magpie-ultra-v0.1", "dataset:tokyotech-llm/swallow-gemma-magpie-v0.1", "dataset:lmsys/lmsys-chat-1m", "dataset:argilla/magpie-ultra-v0.1", "arxiv:2503.23714", "arxiv:2407.21783", "license:llama3.1", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-12-25T13:21:28Z
--- language: - en - ja library_name: transformers pipeline_tag: text-generation license: - llama3.1 - gemma model_type: llama datasets: - tokyotech-llm/lmsys-chat-1m-synth - tokyotech-llm/swallow-magpie-ultra-v0.1 - tokyotech-llm/swallow-gemma-magpie-v0.1 - lmsys/lmsys-chat-1m - argilla/magpie-ultra-v0.1 --- # Llama 3.1 Swallow - Built with Llama Llama 3.1 Swallow is a series of large language models (8B, 70B) that were built by continual pre-training on the [Meta Llama 3.1](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f) models. Llama 3.1 Swallow enhanced the Japanese language capabilities of the original Llama 3.1 while retaining the English language capabilities. We use approximately 200 billion tokens that were sampled from a large Japanese web corpus (Swallow Corpus Version 2), Japanese and English Wikipedia articles, and mathematical and coding contents, etc (see the Training Datasets section of the base model) for continual pre-training. The instruction-tuned models (Instruct) were built by supervised fine-tuning (SFT) on the synthetic data specially built for Japanese. See the Swallow Model Index section to find other model variants. **Note**: [Llama-3.1-Swallow-70B-Instruct-v0.3](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3) is an instruction-tuned version of [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) with our instruction datasets. # Release History - **December 30, 2024**: Released [Llama-3.1-Swallow-70B-Instruct-v0.3](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3). - **December 23, 2024**: Released [Llama-3.1-Swallow-8B-Instruct-v0.3](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3). - **November 11, 2024**: Released [Llama-3.1-Swallow-8B-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) and [Llama-3.1-Swallow-8B-Instruct-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2). - **October 08, 2024**: Released [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1). # Major Updates This release enhances the conversation capability of Llama 3.1 Swallow. The updated model, Llama-3.1-Swallow-70B-Instruct-v0.3 generates helpful and detailed responses based on user instructions and conversation history. Llama-3.1-Swallow-70B-Instruct-v0.3 outperforms its predecessor, [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1), by 5.68 points on Japanese MT-Bench. ## Swallow Model Index |Model|Llama-3.1-Swallow v0.1|Llama-3.1-Swallow-Instruct v0.1|Llama-3.1-Swallow v0.2|Llama-3.1-Swallow-Instruct v0.2|Llama-3.1-Swallow-Instruct v0.3| |---|---|---|---|---|---| |8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3) |70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) | | | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3) ![logo](./logo.png) The website [https://swallow-llm.github.io/](https://swallow-llm.github.io/) provides large language models developed by the Swallow team. ## Model Details * **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture. * **Language(s)**: Japanese English * **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) * **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer. * **Contact**: swallow[at]nlp.c.titech.ac.jp ## Model Performance ## MT-Bench JA |Model|coding|extraction|humanities|math|reasoning|roleplay|stem|writing|JMTAvg| |---|---|---|---|---|---|---|---|---|---| | Llama 3 Youko 70B Instruct | 0.6632| 0.8387| 0.8108| 0.4655| 0.7013| 0.7778| 0.7544| 0.7662| 0.7222| | Llama-3.1-70B-Japanese-Instruct-2407 | 0.6267| 0.7525| 0.7938| 0.5750| 0.5590| 0.7725| 0.7240| 0.7180| 0.6902| | Llama 3 heron brain 70B v0.3 | 0.3762| 0.7892| 0.7274| 0.5589| 0.5070| 0.6662| 0.6880| 0.6996| 0.6266| | Llama 3 70B Instruct |0.5969| 0.8410| 0.7120| 0.4481| 0.4884| 0.7117| 0.6510| 0.6900| 0.6424| | Llama 3.1 70B Instruct | 0.5252| 0.7846| 0.7086| 0.5063| 0.6979| 0.6888| 0.6402| 0.6653| 0.6521| | Llama 3.3 70B Instruct | 0.5193| 0.7750| 0.7213| 0.5228| 0.6721| 0.7407| 0.6386| 0.7043| 0.6618| | Llama 3.1 Swallow 70B Instruct v0.1| 0.5676| 0.7859| 0.7490| 0.5437| 0.6383| 0.6870| 0.6121| 0.6540| 0.6547| | **Llama 3.1 Swallow 70B Instruct v0.3** | 0.6063| 0.8052| 0.8410| 0.5591| 0.6280| 0.7774| 0.6920| 0.7832| 0.7115| | Qwen2-72B-Instruct |0.5699| 0.7858| 0.8222| 0.5096| **0.7032**| 0.7963| 0.7728| **0.8223**| 0.7228| | Qwen2.5-72B-Instruct |0.7060| 0.7866| 0.8122| 0.6968| 0.6536| **0.8301**| 0.8060| 0.7841| 0.7594| | GPT-3.5 (gpt-3.5-turbo-0125) | 0.6851|0.7641| 0.7414| 0.5522| 0.5128| 0.7104| 0.6266| 0.7361| 0.6661| | GPT-4o (gpt-4o-2024-05-13) | **0.7296**| **0.8540**| **0.8646**| **0.6641**| 0.6661| 0.8274| **0.8184**| 0.8085| **0.7791**| ### Japanese tasks |Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg| |---|---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| | | |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| | | Llama 3 Youko 70B Instruct | 0.9526| 0.6252| 0.5853| 0.9215| 0.1983| 0.7400| 0.2633| 0.2245| 0.7170| 0.6098| 0.5838| | Llama-3.1-70B-Japanese-Instruct-2407 |0.9562| 0.6466| 0.6602| 0.9187| 0.1564| 0.7480| 0.2901| 0.2410| 0.7227| 0.6274| 0.5967| | Llama 3 heron brain 70B v0.3 |0.9660| 0.6643| 0.6817| 0.9221| 0.2611| 0.7720| 0.3093| 0.2578| 0.7077| 0.6079| **0.6150**| | Llama 3 70B Instruct |0.9419| 0.6114| 0.5506| 0.9164| 0.1912| 0.7200| 0.2708| 0.2350| 0.6789| 0.6610| 0.5777| | Llama 3.1 70B Instruct |0.9482| 0.6246| 0.5781| 0.9201| 0.1772| 0.7440| 0.2805| 0.2472| 0.7323| 0.6933| 0.5945| | Llama 3.3 70B Instruct |0.9410| 0.6399| 0.5728| 0.8927| 0.1787| 0.7840| 0.2779| 0.2429| 0.7340| 0.7439| 0.6008| | Llama 3.1 Swallow 70B Instruct v0.1 |0.9598| 0.6192| 0.6605| 0.9235| 0.1938| 0.7760| 0.3123| 0.2593| 0.7117| 0.4713| 0.5887| | **Llama 3.1 Swallow 70B Instruct v0.3** |0.9651| 0.6322| 0.6532| 0.9107| 0.1951| 0.7520| 0.3053| 0.2580| 0.6896| 0.6006| 0.5962| | Qwen2-72B-Instruct |0.9634| 0.6268| 0.5418| 0.9210| 0.1644| 0.7840| 0.2592| 0.2327| 0.7713| 0.6909| 0.5955| | Qwen2.5-72B-Instruct |0.9696| 0.5699| 0.5811| 0.7381| 0.1706| 0.8360| 0.2269| 0.2179| 0.7899| 0.6256| 0.5726| ### English tasks |Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg| |---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot| | | |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1| | | Llama 3 Youko 70B Instruct | 0.4500| 0.7973| 0.6863| 0.3914| 0.9153| 0.8055| 0.8923| 0.7814| 0.6598| 0.7088| | Llama-3.1-70B-Japanese-Instruct-2407| 0.4220| 0.8104| 0.6481| 0.3744| 0.9170| 0.8071| 0.8893| 0.8228| 0.7463| 0.7153| | Llama 3 heron brain 70B v0.3| 0.4460 |0.8107 |0.6682| 0.4085| 0.9174| 0.7898| 0.8772| 0.7586| 0.6713| 0.7053| | Llama 3 70B Instruct |0.4400| 0.7999| 0.6552| 0.4024| 0.9127| 0.7992| 0.9052| 0.8326| 0.7555| 0.7225| | Llama 3.1 70B Instruct |0.4300| 0.8212| 0.6621| 0.3921| 0.9157| 0.8213| 0.8764| 0.8390| 0.7915| 0.7277| | Llama 3.3 70B Instruct |0.4260| 0.8172| 0.6674| 0.3933| 0.9174| 0.8240| 0.8901| 0.8529| 0.8341| **0.7358**| | Llama 3.1 Swallow 70B Instruct v0.1 |0.4520| 0.8148| 0.6834| 0.4012| 0.9157| 0.7855| 0.8886| 0.8486| 0.5823| 0.7080| | **Llama 3.1 Swallow 70B Instruct v0.3** |0.4540| 0.8245| 0.6915| 0.4082| 0.9187| 0.7770| 0.8726| 0.8148| 0.6378| 0.7110| | Qwen2-72B-Instruct |0.4360| 0.7588| 0.6857| 0.3913| 0.9110| 0.8391| 0.8499| 0.2436| 0.6939| 0.6455| | Qwen2.5-72B-Instruct |0.4540| 0.6764| 0.7064| 0.3550| 0.8895| 0.8478| 0.9113| 0.4027| 0.6165| 0.6511| ## Evaluation Benchmarks ### MT-Bench JA We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the capabilities of multi-turn dialogue with the following settings: - Implementation: FastChat [Zheng+, 2023] (commit #e86e70d0) - Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3) - Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1) - Prompt for Judge: [Nejumi LLM-Leaderboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1) - Judge: `gpt-4-1106-preview` - Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs. - ### Japanese evaluation benchmarks We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022]) - Open-ended question answering (JEMHopQA [Ishii et al., 2024]) - Open-ended question answering (NIILC [関根, 2003]) - Machine reading comprehension (JSQuAD [Kurihara et al., 2022]) - Automatic summarization (XL-Sum [Hasan et al., 2021]) - Machine translation (WMT2020 ja-en [Barrault et al., 2020]) - Machine translation (WMT2020 en-ja [Barrault et al., 2020]) - Mathematical reasoning (MGSM [Shi et al., 2023]) - Academic exams (JMMLU [尹ら, 2024]) - Code generation (JHumanEval [佐藤ら, 2024]) ### English evaluation benchmarks We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018]) - Open-ended question answering (TriviaQA [Joshi et al., 2017]) - Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018]) - Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021]) - Natural language inference (HellaSwag [Zellers et al., 2019]) - Mathematical reasoning (GSM8K [Cobbe et al., 2021]) - Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023]) - Academic exams (MMLU [Hendrycks et al., 2021]) - Code generation (HumanEval [Chen et al., 2021]) ## Usage ```sh pip install vllm ``` ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_name = "tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM( model=model_name, tensor_parallel_size=4, ) sampling_params = SamplingParams( temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>" ) message = [ {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"}, { "role": "user", "content": "東京の紅葉した公園で、東京タワーと高層ビルを背景に、空を舞うツバメと草地に佇むラマが出会う温かな物語を書いてください。", }, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) output = llm.generate(prompt, sampling_params) print(output[0].outputs[0].text) ``` ## Training Datasets ### Instruction Tuning The following datasets were used for the instruction tuning. - [Gemma-2-LMSYS-Chat-1M-Synth](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth) - Multi-turn Japanese instruction dataset synthesized and derived from [lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) [\[Zhang+, ICLR24\]](https://openreview.net/forum?id=BOfDKxfwt0)). - First-turn user instructions were translated into Japanese via DeepL (machine translation), and assistant responses were generated using [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). The same model, i.e., [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) served as a judge for rejection sampling (n=6). - Second-turn user instructions and responses were synthesized using [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). The same model scores the quality of the second-turn response with a range of 1-10. Second-turn responses with scores lower than 9 were rejected, along with their corresponding instructions. Conversations containing personally identifiable information (PII) and template-based user instructions were removed. Duplicate instructions were removed. - [Swallow-Magpie-Ultra-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-magpie-ultra-v0.1) - A Japanese variant of the `filtered-magpie-ultra-en` dataset, translated into Japanese by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). - [Swallow-Gemma-Magpie-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-gemma-magpie-v0.1) - A Japanese synthetic instruction tuning dataset from scratch, generated by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). User instructions were created with prompts specific to each topic, and assistant responses were generated for these instructions. - The conversations were heuristically filtered for quality and length. Then, [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) was applied to score the quality of each of the conversation with a range of 1-10. Conversations with scores <= 7 were rejected. ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Acknowledgements We thank Meta Research for releasing Llama 3.1 under a generous open license. We received various supports, including: + AIST project: "Research and Development of Foundation Models for Generative AI in the Physical Domain" + NEDO project: "Development of Artificial Intelligence Application Technology to Support Judgment in Design Risk Assessment Work Based on the Perspective of Skilled Persons" (JPNP18002) of "Development of Integration Technology as the Core of Next Generation Artificial Intelligence and Robotics" + MEXT project: "Formation of R&D center to ensure transparency and reliability of generative AI models" + AIST program: [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) ## License [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/) and [Gemma Terms of Use](https://ai.google.dev/gemma/terms) ## Authors Here are the team members: - From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) - [Sakae Mizuki](https://s-mizuki-nlp.github.io/) - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html) - [Koki Maeda](https://sites.google.com/view/silviase) - [Kakeru Hattori](https://aya-se.vercel.app/) - [Masanari Ohi](https://sites.google.com/view/masanariohi) - [Hinari Shimada](https://hinarishimada.github.io/portfolio) - [Taihei Shiotani](https://github.com/inatoihs) - [Koshiro Saito](https://sites.google.com/view/koshiro-saito) - From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: - [Rio Yokota](https://twitter.com/rioyokota) - [Kazuki Fujii](https://twitter.com/okoge_kaz) - [Taishi Nakamura](https://twitter.com/Setuna7777_2) - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto) - [Ishida Shigeki](https://www.wantedly.com/id/reborn27) - From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members: - [Hiroya Takamura](https://sites.google.com/view/hjtakamura) ## How to cite If you find our work helpful, please feel free to cite these papers. ``` @inproceedings{Fujii:COLM2024, title={Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities}, author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae Mizuki and Rio Yokota and Naoaki Okazaki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @inproceedings{Okazaki:COLM2024, title={Building a Large Japanese Web Corpus for Large Language Models}, author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Rio Yokota and Sakae Mizuki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @misc{ma:arxiv2025, title={Building Instruction-Tuning Datasets from Human-Written Instructions with Open-Weight Large Language Models}, author={Youmi Ma and Sakae Mizuki and Kazuki Fujii and Taishi Nakamura and Masanari Ohi and Hinari Shimada and Taihei Shiotani and Koshiro Saito and Koki Maeda and Kakeru Hattori and Takumi Okamoto and Shigeki Ishida and Rio Yokota and Hiroya Takamura and Naoaki Okazaki}, year={2025}, eprint={2503.23714}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.23714}, } ``` ### References ```tex @misc{dubey2024llama3herdmodels, title={The Llama 3 Herd of Models}, author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.}, year={2024}, eprint={2407.21783}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2407.21783}, } ```
tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3
tokyotech-llm
2025-04-02T09:16:14Z
17,777
19
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "dataset:tokyotech-llm/lmsys-chat-1m-synth", "dataset:tokyotech-llm/swallow-magpie-ultra-v0.1", "dataset:tokyotech-llm/swallow-gemma-magpie-v0.1", "dataset:lmsys/lmsys-chat-1m", "dataset:argilla/magpie-ultra-v0.1", "arxiv:2503.23714", "arxiv:2407.21783", "license:llama3.1", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-12-18T04:31:10Z
--- language: - en - ja library_name: transformers pipeline_tag: text-generation license: - llama3.1 - gemma model_type: llama datasets: - tokyotech-llm/lmsys-chat-1m-synth - tokyotech-llm/swallow-magpie-ultra-v0.1 - tokyotech-llm/swallow-gemma-magpie-v0.1 - lmsys/lmsys-chat-1m - argilla/magpie-ultra-v0.1 --- # Llama 3.1 Swallow - Built with Llama Llama 3.1 Swallow is a series of large language models (8B, 70B) that were built by continual pre-training on the [Meta Llama 3.1](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f) models. Llama 3.1 Swallow enhanced the Japanese language capabilities of the original Llama 3.1 while retaining the English language capabilities. We use approximately 200 billion tokens that were sampled from a large Japanese web corpus (Swallow Corpus Version 2), Japanese and English Wikipedia articles, and mathematical and coding contents, etc (see the Training Datasets section of the base model) for continual pre-training. The instruction-tuned models (Instruct) were built by supervised fine-tuning (SFT) on the synthetic data specially built for Japanese. See the Swallow Model Index section to find other model variants. **Note**: [Llama-3.1-Swallow-8B-Instruct-v0.3](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3) model was continually pre-trained from the [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) and then instruction-tuned with our instruction datasets. # Release History - **December 23, 2024**: Released [Llama-3.1-Swallow-8B-Instruct-v0.3](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3). - **November 11, 2024**: Released [Llama-3.1-Swallow-8B-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) and [Llama-3.1-Swallow-8B-Instruct-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2). - **October 08, 2024**: Released [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1). # Major Updates This release enhances the conversation capability of Llama 3.1 Swallow. The updated model, Llama-3.1-Swallow-8B-Instruct-v0.3 generates helpful and detailed responses based on user instructions and conversation history. Among all open-source LLMs with <= 8 billion parameters, Llama-3.1-Swallow-8B-Instruct-v0.3 exhibits **state-of-the-art performance on Japanese MT-Bench**, outperforming its predecessor, [Llama-3.1-Swallow-8B-Instruct-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2), by 8.4 points. ## Swallow Model Index |Model|Llama-3.1-Swallow v0.1|Llama-3.1-Swallow-Instruct v0.1|Llama-3.1-Swallow v0.2|Llama-3.1-Swallow-Instruct v0.2|Llama-3.1-Swallow-Instruct v0.3| |---|---|---|---|---|---| |8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3) |70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) | | | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3) | ![logo](./logo.png) The website [https://swallow-llm.github.io/](https://swallow-llm.github.io/) provides large language models developed by the Swallow team. ## Model Details * **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture. * **Language(s)**: Japanese English * **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) * **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer. * **Contact**: swallow[at]nlp.c.titech.ac.jp ## Model Performance ## MT-Bench JA |Model|coding|extraction|humanities|math|reasoning|roleplay|stem|writing|JMTAvg| |---|---|---|---|---|---|---|---|---|---| | RakutenAI-7B-chat | 0.2475 | 0.3522 | 0.4692 | 0.2140 | 0.3926 | 0.4427 | 0.3977 | 0.4434 | 0.3699 | | Qwen2-7B-Instruct | 0.4635 | 0.6909 | 0.6857 | **0.5970** | 0.5042 | 0.6667 | 0.5353 | 0.6808 | 0.6030 | | Qwen2.5-7B-Instruct | **0.5111** | 0.7489 | 0.6913 | 0.5742 | 0.4851 | 0.6810 | 0.5350 | 0.6810 | 0.6134 | | Tanuki-8B-dpo-v1.0 | 0.3019 | 0.4772 | 0.5658 | 0.4129 | 0.3590 | 0.5120 | 0.4770 | 0.6159 | 0.4652 | | Llama 3 8B Instruct | 0.3744 | 0.6876 | 0.6225 | 0.2070 | 0.5032 | 0.5248 | 0.5326 | 0.4884 | 0.4926 | | Llama 3.1 8B Instruct | 0.3234 | 0.7362 | 0.4973 | 0.4787 | 0.3210 | 0.4670 | 0.4656 | 0.4314 | 0.4651 | | Llama 3 Youko 8B Instruct | 0.2950 | 0.7332 | 0.7125 | 0.2533 | 0.4987 | 0.6514 | 0.5438 | 0.7091 | 0.5496 | | Llama-3-ELYZA-JP-8B | 0.2908 | 0.6421 | 0.6406 | 0.3088 | **0.5500** | 0.6740 | 0.5251 | 0.6744 | 0.5382 | | Llama 3 heron brain 8B v0.3 | 0.2929 | 0.5635 | 0.6241 | 0.2135 | 0.4582 | 0.5354 | 0.5273 | 0.5099 | 0.4656 | | Llama 3 Swallow 8B Instruct | 0.3547 | 0.6508 | 0.5371 | 0.2718 | 0.4007 | 0.5493 | 0.4752 | 0.5730 | 0.4766 | | Llama 3.1 Swallow 8B Instruct v0.1| 0.3132 | **0.7734** | 0.6645 | 0.3880 | 0.5230 | 0.5711 | 0.4953 | 0.5330 | 0.5327 | | Llama 3.1 Swallow 8B Instruct v0.2| 0.4307 | 0.7089 | 0.6937 | 0.3881 | 0.5140 | 0.6277 | 0.5253 | 0.5787 | 0.5584 | | Llama 3.1 Swallow 8B Instruct v0.3 | 0.4849 | 0.6845 | **0.8180** | 0.4817 | 0.5240 | **0.7370** | **0.6473** | **0.7615** | **0.6424** | ### Japanese tasks |Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg| |---|---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| | | |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| | | RakutenAI-7B-chat | 0.9035 | 0.2600 | 0.4619 | 0.8647 | 0.1339 | 0.2120 | 0.2667 | 0.1966 | 0.4504 | 0.2299 | 0.3980 | | Qwen2-7B-Instruct | 0.8856 | 0.3902 | 0.3859 | 0.8967 | 0.1277 | 0.5720 | 0.2041 | 0.1909 | 0.5713 | **0.5683** | 0.4793 | | Qwen2.5-7B-Instruct | 0.9151 | 0.4293 | 0.3910 | 0.8908 | 0.1676 | **0.6240** | 0.2108 | 0.1916 | **0.6252** | 0.5305 | 0.4976 | | Tanuki-8B-dpo-v1.0 | 0.2770 | 0.2937 | 0.3710 | 0.6669 | 0.1016 | 0.4280 | 0.2385 | 0.1820 | 0.3078 | 0.2555 | 0.3122 | | Llama 3 8B Instruct | 0.8785 | 0.3812 | 0.3936 | 0.8955 | 0.1273 | 0.4160 | 0.2143 | 0.2035 | 0.4719 | 0.2872 | 0.4269 | | Llama 3.1 8B Instruct | 0.8829 | 0.4272 | 0.4112 | 0.8856 | 0.1481 | 0.5280 | 0.2174 | 0.1990 | 0.5086 | 0.4976 | 0.4706 | | Llama 3 Youko 8B Instruct | 0.9196 | 0.4850 | 0.5178 | 0.9001 | 0.2085 | 0.4680 | 0.2559 | 0.1906 | 0.4691 | 0.2695 | 0.4684 | | Llama-3-ELYZA-JP-8B | 0.9017 | 0.5124 | 0.5016 | 0.9113 | 0.1677 | 0.4600 | 0.2509 | 0.1846 | 0.4829 | 0.3811 | 0.4754 | | Llama 3 heron brain 8B v0.3 | 0.9231 | 0.4933 | 0.5694 | 0.9056 | **0.2178** | 0.4560 | 0.2771 | 0.2168 | 0.4993 | 0.3177 | 0.4876 | | Llama 3 Swallow 8B Instruct | 0.9178 | 0.4963 | 0.5168 | 0.9088 | 0.1296 | 0.4880 | 0.2522 | 0.2254 | 0.4835 | 0.3927 | 0.4811 | | Llama 3.1 Swallow 8B Instruct v0.1| 0.9240 | **0.5874** | 0.5736 | **0.9170** | 0.1380 | 0.5080 | 0.2820 | **0.2282** | 0.5301 | 0.3665 | 0.5055 | | Llama 3.1 Swallow 8B Instruct v0.2| **0.9294** | 0.5601 | **0.5988** | 0.9148 | 0.1372 | 0.5280 | **0.2878** | 0.2270 | 0.5504 | 0.4079 | **0.5141** | | Llama 3.1 Swallow 8B Instruct v0.3 |0.9240 | 0.5174 | 0.5825 | 0.8954 | 0.1902 | 0.5480 | 0.2809 | 0.2278 | 0.5445 | 0.3945| 0.5105 | ### English tasks |Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg| |---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot| | | |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1| | | RakutenAI-7B-chat | 0.4160 | 0.5971 | **0.6465** | 0.3091 | 0.8886 | 0.5757 | 0.3139 | 0.4958 | 0.2671 | 0.5011 | | Qwen2-7B-Instruct | 0.4000 | 0.5468 | 0.6146 | 0.3518 | 0.8852 | 0.7073 | 0.6300 | 0.3101 | 0.6354 | 0.5646 | | Qwen2.5-7B-Instruct | **0.4280** | 0.5187 | 0.6240 | 0.2626 | 0.8761 | **0.7419** | 0.7415 | 0.2150 | **0.6360** | 0.5604 | | Tanuki-8B-dpo-v1.0 | 0.3340 | 0.2838 | 0.4696 | 0.2395 | 0.8168 | 0.3772 | 0.4867 | 0.3350 | 0.2805 | 0.4026 | | Llama 3 8B Instruct | 0.3880 | 0.6687 | 0.5834 | 0.3743 | 0.8903 | 0.6567 | **0.7453** | 0.6478 | 0.5415 | 0.6107 | | Llama 3.1 8B Instruct | 0.3700 | **0.6994** | 0.5920 | **0.3783** | **0.9037** | 0.6809 | 0.7430 | **0.6928** | 0.6293 | **0.6321** | | Llama 3 Youko 8B Instruct | 0.4080 | 0.6129 | 0.5983 | 0.3370 | 0.8981 | 0.5964 | 0.5618 | 0.4012 | 0.2750 | 0.5209 | | Llama-3-ELYZA-JP-8B | 0.3200 | 0.5502 | 0.5224 | 0.3631 | 0.8809 | 0.5875 | 0.5701 | 0.3213 | 0.4604 | 0.5084 | | Llama 3 heron brain 8B v0.3 | 0.3580 | 0.6563 | 0.5686 | 0.3726 | 0.9002 | 0.6213 | 0.5777 | 0.6409 | 0.3720 | 0.5631 | | Llama 3 Swallow 8B Instruct | 0.3720 | 0.6557 | 0.5861 | 0.3648 | 0.9002 | 0.6315 | 0.5959 | 0.6391 | 0.4238 | 0.5743 | | Llama 3.1 Swallow 8B Instruct v0.1| 0.3900 | 0.6488 | 0.6151 | 0.3553 | 0.8912 | 0.6237 | 0.6050 | 0.6417 | 0.3787 | 0.5722 | | Llama 3.1 Swallow 8B Instruct v0.2| 0.3800 | 0.6252 | 0.6031 | 0.3667 | 0.8886 | 0.6346 | 0.6202 | 0.6487 | 0.4738 | 0.5823 | | Llama 3.1 Swallow 8B Instruct v0.3 |0.3920 | 0.6295 | 0.5937 | 0.3638 | 0.8830 | 0.6280 | 0.6149 | 0.6282 | 0.4457 | 0.5754 | ## Evaluation Benchmarks ### MT-Bench JA We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the capabilities of multi-turn dialogue with the following settings: - Implementation: FastChat [Zheng+, 2023] (commit #e86e70d0) - Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3) - Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1) - Prompt for Judge: [Nejumi LLM-Leaderboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1) - Judge: `gpt-4-1106-preview` - Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs. - ### Japanese evaluation benchmarks We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022]) - Open-ended question answering (JEMHopQA [Ishii et al., 2024]) - Open-ended question answering (NIILC [関根, 2003]) - Machine reading comprehension (JSQuAD [Kurihara et al., 2022]) - Automatic summarization (XL-Sum [Hasan et al., 2021]) - Machine translation (WMT2020 ja-en [Barrault et al., 2020]) - Machine translation (WMT2020 en-ja [Barrault et al., 2020]) - Mathematical reasoning (MGSM [Shi et al., 2023]) - Academic exams (JMMLU [尹ら, 2024]) - Code generation (JHumanEval [佐藤ら, 2024]) ### English evaluation benchmarks We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018]) - Open-ended question answering (TriviaQA [Joshi et al., 2017]) - Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018]) - Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021]) - Natural language inference (HellaSwag [Zellers et al., 2019]) - Mathematical reasoning (GSM8K [Cobbe et al., 2021]) - Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023]) - Academic exams (MMLU [Hendrycks et al., 2021]) - Code generation (HumanEval [Chen et al., 2021]) ## Usage ```sh pip install vllm ``` ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_name = "tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM( model=model_name, tensor_parallel_size=1, ) sampling_params = SamplingParams( temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>" ) message = [ {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"}, { "role": "user", "content": "東京の紅葉した公園で、東京タワーと高層ビルを背景に、空を舞うツバメと草地に佇むラマが出会う温かな物語を書いてください。", }, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) output = llm.generate(prompt, sampling_params) print(output[0].outputs[0].text) ``` ## Training Datasets ### Instruction Tuning The following datasets were used for the instruction tuning. - [Gemma-2-LMSYS-Chat-1M-Synth](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth) - Multi-turn Japanese instruction dataset synthesized and derived from [lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) [\[Zhang+, ICLR24\]](https://openreview.net/forum?id=BOfDKxfwt0)). - First-turn user instructions were translated into Japanese via DeepL (machine translation), and assistant responses were generated using [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). The same model, i.e., [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) served as a judge for rejection sampling (n=6). - Second-turn user instructions and responses were synthesized using [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). The same model scores the quality of the second-turn response with a range of 1-10. Second-turn responses with scores lower than 9 were rejected, along with their corresponding instructions. Conversations containing personally identifiable information (PII) and template-based user instructions were removed. Duplicate instructions were removed. - [Swallow-Magpie-Ultra-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-magpie-ultra-v0.1) - A Japanese variant of the `filtered-magpie-ultra-en` dataset, translated into Japanese by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). - [Swallow-Gemma-Magpie-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-gemma-magpie-v0.1) - A Japanese synthetic instruction tuning dataset from scratch, generated by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). User instructions were created with prompts specific to each topic, and assistant responses were generated for these instructions. - The conversations were heuristically filtered for quality and length. Then, [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) was applied to score the quality of each of the conversation with a range of 1-10. Conversations with scores <= 7 were rejected. ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Acknowledgements We thank Meta Research for releasing Llama 3.1 under a generous open license. We received various supports, including: + AIST project: "Research and Development of Foundation Models for Generative AI in the Physical Domain" + NEDO project: "Development of Artificial Intelligence Application Technology to Support Judgment in Design Risk Assessment Work Based on the Perspective of Skilled Persons" (JPNP18002) of "Development of Integration Technology as the Core of Next Generation Artificial Intelligence and Robotics" + MEXT project: "Formation of R&D center to ensure transparency and reliability of generative AI models" + AIST program: [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) ## License [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/) and [Gemma Terms of Use](https://ai.google.dev/gemma/terms) ## Authors Here are the team members: - From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) - [Sakae Mizuki](https://s-mizuki-nlp.github.io/) - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html) - [Koki Maeda](https://sites.google.com/view/silviase) - [Kakeru Hattori](https://aya-se.vercel.app/) - [Masanari Ohi](https://sites.google.com/view/masanariohi) - [Hinari Shimada](https://hinarishimada.github.io/portfolio) - [Taihei Shiotani](https://github.com/inatoihs) - [Koshiro Saito](https://sites.google.com/view/koshiro-saito) - From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: - [Rio Yokota](https://twitter.com/rioyokota) - [Kazuki Fujii](https://twitter.com/okoge_kaz) - [Taishi Nakamura](https://twitter.com/Setuna7777_2) - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto) - [Ishida Shigeki](https://www.wantedly.com/id/reborn27) - From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members: - [Hiroya Takamura](https://sites.google.com/view/hjtakamura) ## How to cite If you find our work helpful, please feel free to cite these papers. ``` @inproceedings{Fujii:COLM2024, title={Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities}, author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae Mizuki and Rio Yokota and Naoaki Okazaki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @inproceedings{Okazaki:COLM2024, title={Building a Large Japanese Web Corpus for Large Language Models}, author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Rio Yokota and Sakae Mizuki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @misc{ma:arxiv2025, title={Building Instruction-Tuning Datasets from Human-Written Instructions with Open-Weight Large Language Models}, author={Youmi Ma and Sakae Mizuki and Kazuki Fujii and Taishi Nakamura and Masanari Ohi and Hinari Shimada and Taihei Shiotani and Koshiro Saito and Koki Maeda and Kakeru Hattori and Takumi Okamoto and Shigeki Ishida and Rio Yokota and Hiroya Takamura and Naoaki Okazaki}, year={2025}, eprint={2503.23714}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.23714}, } ``` ### References ```tex @misc{dubey2024llama3herdmodels, title={The Llama 3 Herd of Models}, author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.}, year={2024}, eprint={2407.21783}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2407.21783}, } ```
bowilleatyou/e830881f-0a89-4020-a5d4-fbd3d086ef06
bowilleatyou
2025-04-02T09:16:00Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-02T04:45:32Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2
tokyotech-llm
2025-04-02T09:15:42Z
8,781
14
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "dataset:lmsys/lmsys-chat-1m", "dataset:tokyotech-llm/lmsys-chat-1m-synth", "dataset:argilla/magpie-ultra-v0.1", "dataset:tokyotech-llm/swallow-magpie-ultra-v0.1", "dataset:tokyotech-llm/swallow-gemma-magpie-v0.1", "arxiv:2406.08464", "arxiv:2503.23714", "arxiv:2407.21783", "license:llama3.1", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-30T23:43:29Z
--- language: - en - ja library_name: transformers pipeline_tag: text-generation license: - llama3.1 - gemma model_type: llama datasets: - lmsys/lmsys-chat-1m - tokyotech-llm/lmsys-chat-1m-synth - argilla/magpie-ultra-v0.1 - tokyotech-llm/swallow-magpie-ultra-v0.1 - tokyotech-llm/swallow-gemma-magpie-v0.1 --- # Llama 3.1 Swallow - Built with Llama Llama 3.1 Swallow is a series of large language models (8B, 70B) that were built by continual pre-training on the [Meta Llama 3.1](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f) models. Llama 3.1 Swallow enhanced the Japanese language capabilities of the original Llama 3.1 while retaining the English language capabilities. We use approximately 200 billion tokens that were sampled from a large Japanese web corpus (Swallow Corpus Version 2), Japanese and English Wikipedia articles, and mathematical and coding contents, etc (see the Training Datasets section of the base model) for continual pre-training. The instruction-tuned models (Instruct) were built by supervised fine-tuning (SFT) on the synthetic data specially built for Japanese. See the Swallow Model Index section to find other model variants. **Note**: [Llama-3.1-Swallow-8B-Instruct-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2) model was continually pre-trained from the [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) and then instruction-tuned with our instruction datasets. # Release History - **November 11, 2024**: Released [Llama-3.1-Swallow-8B-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) and [Llama-3.1-Swallow-8B-Instruct-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2). - **October 08, 2024**: Released [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1). ## Swallow Model Index |Model|Llama-3.1-Swallow v0.1|Llama-3.1-Swallow-Instruct v0.1|Llama-3.1-Swallow v0.2|Llama-3.1-Swallow-Instruct v0.2|Llama-3.1-Swallow-Instruct v0.3| |---|---|---|---|---|---| |8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3) |70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) | | | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3) | ![logo](./logo.png) The website [https://swallow-llm.github.io/](https://swallow-llm.github.io/) provides large language models developed by the Swallow team. ## Model Details * **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture. * **Language(s)**: Japanese English * **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) * **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer. * **Contact**: swallow[at]nlp.c.titech.ac.jp ## Model Performance ### Japanese tasks |Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg| |---|---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| | | |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| | | RakutenAI-7B-chat | 0.9035 | 0.2600 | 0.4619 | 0.8647 | 0.1339 | 0.2120 | 0.2667 | 0.1966 | 0.4504 | 0.2299 | 0.3980 | | Qwen2-7B-Instruct | 0.8856 | 0.3902 | 0.3859 | 0.8967 | 0.1277 | 0.5720 | 0.2041 | 0.1909 | 0.5713 | **0.5683** | 0.4793 | | Qwen2.5-7B-Instruct | 0.9151 | 0.4293 | 0.3910 | 0.8908 | 0.1676 | **0.6240** | 0.2108 | 0.1916 | **0.6252** | 0.5305 | 0.4976 | | Tanuki-8B-dpo-v1.0 | 0.2770 | 0.2937 | 0.3710 | 0.6669 | 0.1016 | 0.4280 | 0.2385 | 0.1820 | 0.3078 | 0.2555 | 0.3122 | | Llama 3 8B Instruct | 0.8785 | 0.3812 | 0.3936 | 0.8955 | 0.1273 | 0.4160 | 0.2143 | 0.2035 | 0.4719 | 0.2872 | 0.4269 | | Llama 3.1 8B Instruct | 0.8829 | 0.4272 | 0.4112 | 0.8856 | 0.1481 | 0.5280 | 0.2174 | 0.1990 | 0.5086 | 0.4976 | 0.4706 | | Llama 3 Youko 8B Instruct | 0.9196 | 0.4850 | 0.5178 | 0.9001 | 0.2085 | 0.4680 | 0.2559 | 0.1906 | 0.4691 | 0.2695 | 0.4684 | | Llama-3-ELYZA-JP-8B | 0.9017 | 0.5124 | 0.5016 | 0.9113 | 0.1677 | 0.4600 | 0.2509 | 0.1846 | 0.4829 | 0.3811 | 0.4754 | | Llama 3 heron brain 8B v0.3 | 0.9231 | 0.4933 | 0.5694 | 0.9056 | **0.2178** | 0.4560 | 0.2771 | 0.2168 | 0.4993 | 0.3177 | 0.4876 | | Llama 3 Swallow 8B Instruct | 0.9178 | 0.4963 | 0.5168 | 0.9088 | 0.1296 | 0.4880 | 0.2522 | 0.2254 | 0.4835 | 0.3927 | 0.4811 | | Llama 3.1 Swallow 8B Instruct v0.1| 0.9240 | **0.5874** | 0.5736 | **0.9170** | 0.1380 | 0.5080 | 0.2820 | **0.2282** | 0.5301 | 0.3665 | 0.5055 | | Llama 3.1 Swallow 8B Instruct v0.2| **0.9294** | 0.5601 | **0.5988** | 0.9148 | 0.1372 | 0.5280 | **0.2878** | 0.2270 | 0.5504 | 0.4079 | **0.5141** | ### English tasks |Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg| |---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot| | | |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1| | | RakutenAI-7B-chat | 0.4160 | 0.5971 | **0.6465** | 0.3091 | 0.8886 | 0.5757 | 0.3139 | 0.4958 | 0.2671 | 0.5011 | | Qwen2-7B-Instruct | 0.4000 | 0.5468 | 0.6146 | 0.3518 | 0.8852 | 0.7073 | 0.6300 | 0.3101 | 0.6354 | 0.5646 | | Qwen2.5-7B-Instruct | **0.4280** | 0.5187 | 0.6240 | 0.2626 | 0.8761 | **0.7419** | 0.7415 | 0.2150 | **0.6360** | 0.5604 | | Tanuki-8B-dpo-v1.0 | 0.3340 | 0.2838 | 0.4696 | 0.2395 | 0.8168 | 0.3772 | 0.4867 | 0.3350 | 0.2805 | 0.4026 | | Llama 3 8B Instruct | 0.3880 | 0.6687 | 0.5834 | 0.3743 | 0.8903 | 0.6567 | **0.7453** | 0.6478 | 0.5415 | 0.6107 | | Llama 3.1 8B Instruct | 0.3700 | **0.6994** | 0.5920 | **0.3783** | **0.9037** | 0.6809 | 0.7430 | **0.6928** | 0.6293 | **0.6321** | | Llama 3 Youko 8B Instruct | 0.4080 | 0.6129 | 0.5983 | 0.3370 | 0.8981 | 0.5964 | 0.5618 | 0.4012 | 0.2750 | 0.5209 | | Llama-3-ELYZA-JP-8B | 0.3200 | 0.5502 | 0.5224 | 0.3631 | 0.8809 | 0.5875 | 0.5701 | 0.3213 | 0.4604 | 0.5084 | | Llama 3 heron brain 8B v0.3 | 0.3580 | 0.6563 | 0.5686 | 0.3726 | 0.9002 | 0.6213 | 0.5777 | 0.6409 | 0.3720 | 0.5631 | | Llama 3 Swallow 8B Instruct | 0.3720 | 0.6557 | 0.5861 | 0.3648 | 0.9002 | 0.6315 | 0.5959 | 0.6391 | 0.4238 | 0.5743 | | Llama 3.1 Swallow 8B Instruct v0.1| 0.3900 | 0.6488 | 0.6151 | 0.3553 | 0.8912 | 0.6237 | 0.6050 | 0.6417 | 0.3787 | 0.5722 | | Llama 3.1 Swallow 8B Instruct v0.2| 0.3800 | 0.6252 | 0.6031 | 0.3667 | 0.8886 | 0.6346 | 0.6202 | 0.6487 | 0.4738 | 0.5823 | ## MT-Bench JA |Model|coding|extraction|humanities|math|reasoning|roleplay|stem|writing|JMTAvg| |---|---|---|---|---|---|---|---|---|---| | RakutenAI-7B-chat | 0.2475 | 0.3522 | 0.4692 | 0.2140 | 0.3926 | 0.4427 | 0.3977 | 0.4434 | 0.3699 | | Qwen2-7B-Instruct | 0.4635 | 0.6909 | 0.6857 | **0.5970** | 0.5042 | 0.6667 | 0.5353 | 0.6808 | 0.6030 | | Qwen2.5-7B-Instruct | **0.5111** | 0.7489 | 0.6913 | 0.5742 | 0.4851 | **0.6810** | 0.5350 | 0.6810 | **0.6134** | | Tanuki-8B-dpo-v1.0 | 0.3019 | 0.4772 | 0.5658 | 0.4129 | 0.3590 | 0.5120 | 0.4770 | 0.6159 | 0.4652 | | Llama 3 8B Instruct | 0.3744 | 0.6876 | 0.6225 | 0.2070 | 0.5032 | 0.5248 | 0.5326 | 0.4884 | 0.4926 | | Llama 3.1 8B Instruct | 0.3234 | 0.7362 | 0.4973 | 0.4787 | 0.3210 | 0.4670 | 0.4656 | 0.4314 | 0.4651 | | Llama 3 Youko 8B Instruct | 0.2950 | 0.7332 | **0.7125** | 0.2533 | 0.4987 | 0.6514 | **0.5438** | **0.7091** | 0.5496 | | Llama-3-ELYZA-JP-8B | 0.2908 | 0.6421 | 0.6406 | 0.3088 | **0.5500** | 0.6740 | 0.5251 | 0.6744 | 0.5382 | | Llama 3 heron brain 8B v0.3 | 0.2929 | 0.5635 | 0.6241 | 0.2135 | 0.4582 | 0.5354 | 0.5273 | 0.5099 | 0.4656 | | Llama 3 Swallow 8B Instruct | 0.3547 | 0.6508 | 0.5371 | 0.2718 | 0.4007 | 0.5493 | 0.4752 | 0.5730 | 0.4766 | | Llama 3.1 Swallow 8B Instruct v0.1| 0.3132 | **0.7734** | 0.6645 | 0.3880 | 0.5230 | 0.5711 | 0.4953 | 0.5330 | 0.5327 | | Llama 3.1 Swallow 8B Instruct v0.2| 0.4307 | 0.7089 | 0.6937 | 0.3881 | 0.5140 | 0.6277 | 0.5253 | 0.5787 | 0.5584 | ## Evaluation Benchmarks ### Japanese evaluation benchmarks We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022]) - Open-ended question answering (JEMHopQA [Ishii et al., 2024]) - Open-ended question answering (NIILC [関根, 2003]) - Machine reading comprehension (JSQuAD [Kurihara et al., 2022]) - Automatic summarization (XL-Sum [Hasan et al., 2021]) - Machine translation (WMT2020 ja-en [Barrault et al., 2020]) - Machine translation (WMT2020 en-ja [Barrault et al., 2020]) - Mathematical reasoning (MGSM [Shi et al., 2023]) - Academic exams (JMMLU [尹ら, 2024]) - Code generation (JHumanEval [佐藤ら, 2024]) ### English evaluation benchmarks We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018]) - Open-ended question answering (TriviaQA [Joshi et al., 2017]) - Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018]) - Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021]) - Natural language inference (HellaSwag [Zellers et al., 2019]) - Mathematical reasoning (GSM8K [Cobbe et al., 2021]) - Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023]) - Academic exams (MMLU [Hendrycks et al., 2021]) - Code generation (HumanEval [Chen et al., 2021]) ### MT-Bench JA We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the capabilities of multi-turn dialogue with the following settings: - Implementation: FastChat [Zheng+, 2023] (commit #e86e70d0) - Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3) - Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1) - Prompt for Judge: [Nejumi LLM-Leaderboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1) - Judge: `gpt-4-1106-preview` - Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs. ## Usage ```sh pip install vllm ``` ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_name = "tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM( model=model_name, tensor_parallel_size=1, ) sampling_params = SamplingParams( temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>" ) message = [ {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"}, { "role": "user", "content": "東京の紅葉した公園で、東京タワーと高層ビルを背景に、空を舞うツバメと草地に佇むラマが出会う温かな物語を書いてください。", }, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) output = llm.generate(prompt, sampling_params) print(output[0].outputs[0].text) ``` ## Training Datasets ### Instruction Tuning The following datasets were used for the instruction tuning. - Japanese - [Llama-3.1-LMSYS-Chat-1M-Synth-Ja](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth) - Single-turn Japanese instruction dataset synthesized and derived from [lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) [\[Zhang+, ICLR24\]](https://openreview.net/forum?id=BOfDKxfwt0)). First-turn user instructions were translated into Japanese via DeepL (machine translation), and assistant responses were generated using [Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct). [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) served as a judge for rejection sampling (n=6). Conversations containing personally identifiable information (PII) and template-based user instructions were removed. Duplicate instructions were removed. - [Swallow-Magpie-Ultra-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-magpie-ultra-v0.1) - A Japanese variant of the `filtered-magpie-ultra-en` dataset, translated into Japanese by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). - [Swallow-Gemma-Magpie-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-gemma-magpie-v0.1) - A Japanese synthetic instruction tuning dataset from scratch, generated by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). User instructions were created with prompts specific to each topic, and assistant responses were generated for these instructions. The conversations were then heuristically filtered for quality and length. - English - [Llama-3.1-LMSYS-Chat-1M-Synth-En](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth) - The creation process is similar to `Llama-3.1-LMSYS-Chat-1M-Synth-Ja`, but this version uses the original English user instructions. The assistant responses were generated in English as well. Rejection sampling was not applied for this version. - `filtered-magpie-ultra-en` - A subset of the [magpie-ultra](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1) dataset, developed following the MAGPIE recipe [\[Xu+, arXiv24\]](https://arxiv.org/abs/2406.08464) using [Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct). This subset includes only samples rated as 'average,' 'good,' or 'excellent.' ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Acknowledgements We thank Meta Research for releasing Llama 3.1 under a generous open license. We received various supports including: + AIST project: "Research and Development of Foundation Models for Generative AI in the Physical Domain" + NEDO project: "Development of Artificial Intelligence Application Technology to Support Judgment in Design Risk Assessment Work Based on the Perspective of Skilled Persons" (JPNP18002) of "Development of Integration Technology as the Core of Next Generation Artificial Intelligence and Robotics" + MEXT project: "Formation of R&D center to ensure transparency and reliability of generative AI models" + AIST program: [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) ## License [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/) and [Gemma Terms of Use](https://ai.google.dev/gemma/terms) ## Authors Here are the team members: - From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) - [Sakae Mizuki](https://s-mizuki-nlp.github.io/) - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html) - [Koki Maeda](https://sites.google.com/view/silviase) - [Kakeru Hattori](https://aya-se.vercel.app/) - [Masanari Ohi](https://sites.google.com/view/masanariohi) - [Taihei Shiotani](https://github.com/inatoihs) - [Koshiro Saito](https://sites.google.com/view/koshiro-saito) - From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: - [Rio Yokota](https://twitter.com/rioyokota) - [Kazuki Fujii](https://twitter.com/okoge_kaz) - [Taishi Nakamura](https://twitter.com/Setuna7777_2) - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto) - [Ishida Shigeki](https://www.wantedly.com/id/reborn27) - From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members: - [Hiroya Takamura](https://sites.google.com/view/hjtakamura) ## How to cite If you find our work helpful, please feel free to cite these papers. ``` @inproceedings{Fujii:COLM2024, title={Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities}, author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae Mizuki and Rio Yokota and Naoaki Okazaki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @inproceedings{Okazaki:COLM2024, title={Building a Large Japanese Web Corpus for Large Language Models}, author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Rio Yokota and Sakae Mizuki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @misc{ma:arxiv2025, title={Building Instruction-Tuning Datasets from Human-Written Instructions with Open-Weight Large Language Models}, author={Youmi Ma and Sakae Mizuki and Kazuki Fujii and Taishi Nakamura and Masanari Ohi and Hinari Shimada and Taihei Shiotani and Koshiro Saito and Koki Maeda and Kakeru Hattori and Takumi Okamoto and Shigeki Ishida and Rio Yokota and Hiroya Takamura and Naoaki Okazaki}, year={2025}, eprint={2503.23714}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.23714}, } ``` ### References ```tex @misc{dubey2024llama3herdmodels, title={The Llama 3 Herd of Models}, author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.}, year={2024}, eprint={2407.21783}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2407.21783}, } ```
John6666/kodorail-v10-sdxl
John6666
2025-04-02T09:15:20Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "asian", "Japanese", "merge", "noobai", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.1", "base_model:merge:Laxhar/noobai-XL-1.1", "base_model:OnomaAIResearch/Illustrious-XL-v1.0", "base_model:merge:OnomaAIResearch/Illustrious-XL-v1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-04-02T09:07:49Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - asian - Japanese - merge - noobai - illustrious base_model: - OnomaAIResearch/Illustrious-XL-v1.0 - Laxhar/noobai-XL-1.1 --- Original model is [here](https://civitai.com/models/1423866/kodorail?modelVersionId=1609395). This model created by [Kodora](https://civitai.com/user/Kodora).
tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1
tokyotech-llm
2025-04-02T09:15:07Z
698
4
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "dataset:lmsys/lmsys-chat-1m", "dataset:tokyotech-llm/lmsys-chat-1m-synth", "dataset:argilla/magpie-ultra-v0.1", "dataset:tokyotech-llm/swallow-magpie-ultra-v0.1", "dataset:tokyotech-llm/swallow-gemma-magpie-v0.1", "arxiv:2406.08464", "arxiv:2503.23714", "arxiv:2407.21783", "license:llama3.1", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-29T02:36:34Z
--- language: - en - ja library_name: transformers pipeline_tag: text-generation license: - llama3.1 - gemma model_type: llama datasets: - lmsys/lmsys-chat-1m - tokyotech-llm/lmsys-chat-1m-synth - argilla/magpie-ultra-v0.1 - tokyotech-llm/swallow-magpie-ultra-v0.1 - tokyotech-llm/swallow-gemma-magpie-v0.1 --- # Llama 3.1 Swallow - Built with Llama Llama 3.1 Swallow is a series of large language models (8B, 70B) that were built by continual pre-training on the [Meta Llama 3.1](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f) models. Llama 3.1 Swallow enhanced the Japanese language capabilities of the original Llama 3.1 while retaining the English language capabilities. We use approximately 200 billion tokens that were sampled from a large Japanese web corpus (Swallow Corpus Version 2), Japanese and English Wikipedia articles, and mathematical and coding contents, etc (see the Training Datasets section of the base model) for continual pre-training. The instruction-tuned models (Instruct) were built by supervised fine-tuning (SFT) on the synthetic data specially built for Japanese. See the Swallow Model Index section to find other model variants. # Release History - **October 08, 2024**: Released [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1). ## Swallow Model Index |Model|Llama-3.1-Swallow v0.1|Llama-3.1-Swallow-Instruct v0.1|Llama-3.1-Swallow v0.2|Llama-3.1-Swallow-Instruct v0.2|Llama-3.1-Swallow-Instruct v0.3| |---|---|---|---|---|---| |8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3) |70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) | | | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3) | ![logo](./logo.png) The website [https://swallow-llm.github.io/](https://swallow-llm.github.io/) provides large language models developed by the Swallow team. ## Model Details * **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture. * **Language(s)**: Japanese English * **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) * **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer. * **Contact**: swallow[at]nlp.c.titech.ac.jp ## Model Performance ### Japanese tasks |Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg| |---|---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| | | |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| | | Qwen2-72B-Instruct | 0.9634 | 0.6268 | 0.5418 | 0.9210 | 0.1644 | 0.7840 | 0.2592 | 0.2327 | 0.7713 | 0.6909 | 0.5955 | | Qwen2.5-72B-Instruct | **0.9696** | 0.5699 | 0.5811 | 0.7381 | 0.1706 | **0.8360** | 0.2269 | 0.2179 | **0.7899** | 0.6256 | 0.5726 | | Llama 3 70B Instruct | 0.9419 | 0.6114 | 0.5506 | 0.9164 | 0.1912 | 0.7200 | 0.2708 | 0.2350 | 0.6789 | 0.6610 | 0.5777 | | Llama 3.1 70B Instruct | 0.9482 | 0.6246 | 0.5781 | 0.9201 | 0.1772 | 0.7440 | 0.2805 | 0.2472 | 0.7323 | **0.6933** | 0.5945 | | Llama 3 Youko 70B Instruct | 0.9526 | 0.6252 | 0.5853 | 0.9215 | 0.1983 | 0.7400 | 0.2633 | 0.2245 | 0.7170 | 0.6098 | 0.5838 | | Llama-3.1-70B-Japanese-Instruct-2407 | 0.9562 | 0.6466 | 0.6602 | 0.9187 | 0.1564 | 0.7480 | 0.2901 | 0.2410 | 0.7227 | 0.6274 | 0.5967 | | Llama 3 heron brain 70B v0.3 | 0.9660 | **0.6643** | **0.6817** | 0.9221 | **0.2611** | 0.7720 | 0.3093 | 0.2578 | 0.7077 | 0.6079 | **0.6150** | | Llama 3 Swallow 70B Instruct | 0.9607 | 0.6188 | 0.6026 | **0.9236** | 0.1389 | 0.6560 | 0.2724 | 0.2532 | 0.6572 | 0.6000 | 0.5683 | | Llama 3.1 Swallow 70B Instruct | 0.9598 | 0.6192 | 0.6605 | 0.9235 | 0.1938 | 0.7760 | **0.3123** | **0.2593** | 0.7117 | 0.4713 | 0.5887 | ### English tasks |Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg| |---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot| | | |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1| | | Qwen2-72B-Instruct | 0.4360 | 0.7588 | 0.6857 | 0.3913 | 0.9110 | 0.8391 | 0.8499 | 0.2436 | 0.6939 | 0.6455 | | Qwen2.5-72B-Instruct | **0.4540** | 0.6764 | **0.7064** | 0.3550 | 0.8895 | **0.8478** | **0.9113** | 0.4027 | 0.6165 | 0.6511 | | Llama 3 70B Instruct | 0.4400 | 0.7999 | 0.6552 | 0.4024 | 0.9127 | 0.7992 | 0.9052 | 0.8326 | 0.7555 | 0.7225 | | Llama 3.1 70B Instruct | 0.4300 | **0.8212** | 0.6621 | 0.3921 | 0.9157 | 0.8213 | 0.8764 | 0.8390 | **0.7915** | **0.7277** | | Llama 3 Youko 70B Instruct | 0.4500 | 0.7973 | 0.6863 | 0.3914 | 0.9153 | 0.8055 | 0.8923 | 0.7814 | 0.6598 | 0.7088 | | Llama-3.1-70B-Japanese-Instruct-2407 | 0.4220 | 0.8104 | 0.6481 | 0.3744 | 0.9170 | 0.8071 | 0.8893 | 0.8228 | 0.7463 | 0.7153 | | Llama 3 heron brain 70B v0.3 | 0.4460 | 0.8107 | 0.6682 | **0.4085**| 0.9174 | 0.7898 | 0.8772 | 0.7586 | 0.6713 | 0.7053 | | Llama 3 Swallow 70B Instruct | 0.4520 | 0.8174 | 0.6758 | 0.4050 | **0.9230** | 0.7883 | 0.8688 | 0.8152 | 0.6890 | 0.7150 | | Llama 3.1 Swallow 70B Instruct | 0.4520 | 0.8148 | 0.6834 | 0.4012 | 0.9157 | 0.7855 | 0.8886 | **0.8486** | 0.5823 | 0.7080 | ## MT-Bench JA |Model|coding|extraction|humanities|math|reasoning|roleplay|stem|writing|JMTAvg| |---|---|---|---|---|---|---|---|---|---| | Qwen2-72B-Instruct | 0.5699 | 0.7858 | 0.8222 | 0.5096 | **0.7032** | 0.7963 | 0.7728 | **0.8223** | 0.7228 | | Qwen2.5-72B-Instruct | 0.7060 | 0.7866 | 0.8122 | **0.6968** | 0.6536 | **0.8301** | 0.8060 | 0.7841 | 0.7594 | | Llama 3 70B Instruct | 0.5969 | 0.8410 | 0.7120 | 0.4481 | 0.4884 | 0.7117 | 0.6510 | 0.6900 | 0.6424 | | Llama 3.1 70B Instruct | 0.5252 | 0.7846 | 0.7086 | 0.5063 | 0.6979 | 0.6888 | 0.6402 | 0.6653 | 0.6521 | | Llama 3 Youko 70B Instruct | 0.6632 | 0.8387 | 0.8108 | 0.4655 | 0.7013 | 0.7778 | 0.7544 | 0.7662 | 0.7222 | | Llama-3.1-70B-Japanese-Instruct-2407 | 0.6267 | 0.7525 | 0.7938 | 0.5750 | 0.5590 | 0.7725 | 0.7240 | 0.7180 | 0.6902 | | Llama 3 heron brain 70B v0.3 | 0.3762 | 0.7892 | 0.7274 | 0.5589 | 0.5070 | 0.6662 | 0.6880 | 0.6996 | 0.6266 | | Llama 3 Swallow 70B Instruct | 0.5269 | 0.7250 | 0.5690 | 0.4669 | 0.6121 | 0.6238 | 0.5533 | 0.5698 | 0.5809 | | Llama 3.1 Swallow 70B Instruct | 0.5676 | 0.7859 | 0.7490 | 0.5437 | 0.6383 | 0.6870 | 0.6121 | 0.6540 | 0.6547 | | GPT-3.5 (gpt-3.5-turbo-0125) | 0.6851 | 0.7641 | 0.7414 | 0.5522 | 0.5128 | 0.7104 | 0.6266 | 0.7361 | 0.6661 | | GPT-4o (gpt-4o-2024-05-13) | **0.7296** | **0.8540** | **0.8646** | 0.6641 | 0.6661 | 0.8274 | **0.8184** | 0.8085 | **0.7791** | ## Evaluation Benchmarks ### Japanese evaluation benchmarks We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022]) - Open-ended question answering (JEMHopQA [Ishii et al., 2024]) - Open-ended question answering (NIILC [関根, 2003]) - Machine reading comprehension (JSQuAD [Kurihara et al., 2022]) - Automatic summarization (XL-Sum [Hasan et al., 2021]) - Machine translation (WMT2020 ja-en [Barrault et al., 2020]) - Machine translation (WMT2020 en-ja [Barrault et al., 2020]) - Mathematical reasoning (MGSM [Shi et al., 2023]) - Academic exams (JMMLU [尹ら, 2024]) - Code generation (JHumanEval [佐藤ら, 2024]) ### English evaluation benchmarks We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018]) - Open-ended question answering (TriviaQA [Joshi et al., 2017]) - Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018]) - Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021]) - Natural language inference (HellaSwag [Zellers et al., 2019]) - Mathematical reasoning (GSM8K [Cobbe et al., 2021]) - Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023]) - Academic exams (MMLU [Hendrycks et al., 2021]) - Code generation (HumanEval [Chen et al., 2021]) ### MT-Bench JA We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the capabilities of multi-turn dialogue with the following settings: - Implementation: FastChat [Zheng+, 2023] (commit #e86e70d0) - Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3) - Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1) - Prompt for Judge: [Nejumi LLM-Leaderboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1) - Judge: `gpt-4-1106-preview` - Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs. ## Usage ```sh pip install vllm ``` ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_name = "tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM( model=model_name, tensor_parallel_size=4, ) sampling_params = SamplingParams( temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>" ) message = [ {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"}, { "role": "user", "content": "東京の紅葉した公園で、東京タワーと高層ビルを背景に、空を舞うツバメと草地に佇むラマが出会う温かな物語を書いてください。", }, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) output = llm.generate(prompt, sampling_params) print(output[0].outputs[0].text) ``` ## Training Datasets ### Instruction Tuning The following datasets were used for the instruction tuning. - Japanese - [Llama-3.1-LMSYS-Chat-1M-Synth-Ja](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth) - Single-turn Japanese instruction dataset synthesized and derived from [lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) [\[Zhang+, ICLR24\]](https://openreview.net/forum?id=BOfDKxfwt0)). First-turn user instructions were translated into Japanese via DeepL (machine translation), and assistant responses were generated using [Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct). [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) served as a judge for rejection sampling (n=6). Conversations containing personally identifiable information (PII) and template-based user instructions were removed. Duplicate instructions were removed. - [Swallow-Magpie-Ultra-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-magpie-ultra-v0.1) - A Japanese variant of the `filtered-magpie-ultra-en` dataset, translated into Japanese by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). - [Swallow-Gemma-Magpie-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-gemma-magpie-v0.1) - A Japanese synthetic instruction tuning dataset from scratch, generated by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). User instructions were created with prompts specific to each topic, and assistant responses were generated for these instructions. The conversations were then heuristically filtered for quality and length. - English - [Llama-3.1-LMSYS-Chat-1M-Synth-En](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth) - The creation process is similar to `Llama-3.1-LMSYS-Chat-1M-Synth-Ja`, but this version uses the original English user instructions. The assistant responses were generated in English as well. Rejection sampling was not applied for this version. - `filtered-magpie-ultra-en` - A subset of the [magpie-ultra](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1) dataset, developed following the MAGPIE recipe [\[Xu+, arXiv24\]](https://arxiv.org/abs/2406.08464) using [Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct). This subset includes only samples rated as 'average,' 'good,' or 'excellent.' ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Acknowledgements We thank Meta Research for releasing Llama 3.1 under a generous open license. We received various supports including: + AIST project: "Research and Development of Foundation Models for Generative AI in the Physical Domain" + NEDO project: "Development of Artificial Intelligence Application Technology to Support Judgment in Design Risk Assessment Work Based on the Perspective of Skilled Persons" (JPNP18002) of "Development of Integration Technology as the Core of Next Generation Artificial Intelligence and Robotics" + MEXT project: "Formation of R&D center to ensure transparency and reliability of generative AI models" + AIST program: [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) ## License [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/) and [Gemma Terms of Use](https://ai.google.dev/gemma/terms) ## Authors Here are the team members: - From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) - [Sakae Mizuki](https://s-mizuki-nlp.github.io/) - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html) - [Koki Maeda](https://sites.google.com/view/silviase) - [Kakeru Hattori](https://aya-se.vercel.app/) - [Masanari Ohi](https://sites.google.com/view/masanariohi) - [Taihei Shiotani](https://github.com/inatoihs) - [Koshiro Saito](https://sites.google.com/view/koshiro-saito) - From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: - [Rio Yokota](https://twitter.com/rioyokota) - [Kazuki Fujii](https://twitter.com/okoge_kaz) - [Taishi Nakamura](https://twitter.com/Setuna7777_2) - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto) - [Ishida Shigeki](https://www.wantedly.com/id/reborn27) - From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members: - [Hiroya Takamura](https://sites.google.com/view/hjtakamura) ## How to cite If you find our work helpful, please feel free to cite these papers. ``` @inproceedings{Fujii:COLM2024, title={Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities}, author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae Mizuki and Rio Yokota and Naoaki Okazaki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @inproceedings{Okazaki:COLM2024, title={Building a Large Japanese Web Corpus for Large Language Models}, author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Rio Yokota and Sakae Mizuki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @misc{ma:arxiv2025, title={Building Instruction-Tuning Datasets from Human-Written Instructions with Open-Weight Large Language Models}, author={Youmi Ma and Sakae Mizuki and Kazuki Fujii and Taishi Nakamura and Masanari Ohi and Hinari Shimada and Taihei Shiotani and Koshiro Saito and Koki Maeda and Kakeru Hattori and Takumi Okamoto and Shigeki Ishida and Rio Yokota and Hiroya Takamura and Naoaki Okazaki}, year={2025}, eprint={2503.23714}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.23714}, } ``` ### References ```tex @misc{dubey2024llama3herdmodels, title={The Llama 3 Herd of Models}, author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.}, year={2024}, eprint={2407.21783}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2407.21783}, } ```
tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1
tokyotech-llm
2025-04-02T09:14:39Z
5,335
17
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "dataset:lmsys/lmsys-chat-1m", "dataset:tokyotech-llm/lmsys-chat-1m-synth", "dataset:argilla/magpie-ultra-v0.1", "dataset:tokyotech-llm/swallow-magpie-ultra-v0.1", "dataset:tokyotech-llm/swallow-gemma-magpie-v0.1", "arxiv:2406.08464", "arxiv:2503.23714", "arxiv:2407.21783", "license:llama3.1", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-24T09:12:40Z
--- language: - en - ja library_name: transformers pipeline_tag: text-generation license: - llama3.1 - gemma model_type: llama datasets: - lmsys/lmsys-chat-1m - tokyotech-llm/lmsys-chat-1m-synth - argilla/magpie-ultra-v0.1 - tokyotech-llm/swallow-magpie-ultra-v0.1 - tokyotech-llm/swallow-gemma-magpie-v0.1 --- # Llama 3.1 Swallow - Built with Llama Llama 3.1 Swallow is a series of large language models (8B, 70B) that were built by continual pre-training on the [Meta Llama 3.1](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f) models. Llama 3.1 Swallow enhanced the Japanese language capabilities of the original Llama 3.1 while retaining the English language capabilities. We use approximately 200 billion tokens that were sampled from a large Japanese web corpus (Swallow Corpus Version 2), Japanese and English Wikipedia articles, and mathematical and coding contents, etc (see the Training Datasets section of the base model) for continual pre-training. The instruction-tuned models (Instruct) were built by supervised fine-tuning (SFT) on the synthetic data specially built for Japanese. See the Swallow Model Index section to find other model variants. # Release History - **October 08, 2024**: Released [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1). ## Swallow Model Index |Model|Llama-3.1-Swallow v0.1|Llama-3.1-Swallow-Instruct v0.1|Llama-3.1-Swallow v0.2|Llama-3.1-Swallow-Instruct v0.2|Llama-3.1-Swallow-Instruct v0.3| |---|---|---|---|---|---| |8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3) |70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) | | | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3) | ![logo](./logo.png) The website [https://swallow-llm.github.io/](https://swallow-llm.github.io/) provides large language models developed by the Swallow team. ## Model Details * **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture. * **Language(s)**: Japanese English * **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) * **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer. * **Contact**: swallow[at]nlp.c.titech.ac.jp ## Model Performance ### Japanese tasks |Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg| |---|---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| | | |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| | | RakutenAI-7B-chat | 0.9035 | 0.2600 | 0.4619 | 0.8647 | 0.1339 | 0.2120 | 0.2667 | 0.1966 | 0.4504 | 0.2299 | 0.3980 | | Qwen2-7B-Instruct | 0.8856 | 0.3902 | 0.3859 | 0.8967 | 0.1277 | 0.5720 | 0.2041 | 0.1909 | 0.5713 | **0.5683** | 0.4793 | | Qwen2.5-7B-Instruct | 0.9151 | 0.4293 | 0.3910 | 0.8908 | 0.1676 | **0.6240** | 0.2108 | 0.1916 | **0.6252** | 0.5305 | 0.4976 | | Tanuki-8B-dpo-v1.0 | 0.2770 | 0.2937 | 0.3710 | 0.6669 | 0.1016 | 0.4280 | 0.2385 | 0.1820 | 0.3078 | 0.2555 | 0.3122 | | Llama 3 8B Instruct | 0.8785 | 0.3812 | 0.3936 | 0.8955 | 0.1273 | 0.4160 | 0.2143 | 0.2035 | 0.4719 | 0.2872 | 0.4269 | | Llama 3.1 8B Instruct | 0.8829 | 0.4272 | 0.4112 | 0.8856 | 0.1481 | 0.5280 | 0.2174 | 0.1990 | 0.5086 | 0.4976 | 0.4706 | | Llama 3 Youko 8B Instruct | 0.9196 | 0.4850 | 0.5178 | 0.9001 | 0.2085 | 0.4680 | 0.2559 | 0.1906 | 0.4691 | 0.2695 | 0.4684 | | Llama-3-ELYZA-JP-8B | 0.9017 | 0.5124 | 0.5016 | 0.9113 | 0.1677 | 0.4600 | 0.2509 | 0.1846 | 0.4829 | 0.3811 | 0.4754 | | Llama 3 heron brain 8B v0.3 | 0.9231 | 0.4933 | 0.5694 | 0.9056 | **0.2178** | 0.4560 | 0.2771 | 0.2168 | 0.4993 | 0.3177 | 0.4876 | | Llama 3 Swallow 8B Instruct | 0.9178 | 0.4963 | 0.5168 | 0.9088 | 0.1296 | 0.4880 | 0.2522 | 0.2254 | 0.4835 | 0.3927 | 0.4811 | | Llama 3.1 Swallow 8B Instruct | **0.9240** | **0.5874** | **0.5736** | **0.9170** | 0.1380 | 0.5080 | **0.2820** | **0.2282** | 0.5301 | 0.3665 | **0.5055** | ### English tasks |Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg| |---|---|---|---|---|---|---|---|---|---|---| | |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot| | | |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1| | | RakutenAI-7B-chat | 0.4160 | 0.5971 | **0.6465** | 0.3091 | 0.8886 | 0.5757 | 0.3139 | 0.4958 | 0.2671 | 0.5011 | | Qwen2-7B-Instruct | 0.4000 | 0.5468 | 0.6146 | 0.3518 | 0.8852 | 0.7073 | 0.6300 | 0.3101 | 0.6354 | 0.5646 | | Qwen2.5-7B-Instruct | **0.4280** | 0.5187 | 0.6240 | 0.2626 | 0.8761 | **0.7419** | 0.7415 | 0.2150 | **0.6360** | 0.5604 | | Tanuki-8B-dpo-v1.0 | 0.3340 | 0.2838 | 0.4696 | 0.2395 | 0.8168 | 0.3772 | 0.4867 | 0.3350 | 0.2805 | 0.4026 | | Llama 3 8B Instruct | 0.3880 | 0.6687 | 0.5834 | 0.3743 | 0.8903 | 0.6567 | **0.7453** | 0.6478 | 0.5415 | 0.6107 | | Llama 3.1 8B Instruct | 0.3700 | **0.6994** | 0.5920 | **0.3783** | **0.9037** | 0.6809 | 0.7430 | **0.6928** | 0.6293 | **0.6321** | | Llama 3 Youko 8B Instruct | 0.4080 | 0.6129 | 0.5983 | 0.3370 | 0.8981 | 0.5964 | 0.5618 | 0.4012 | 0.2750 | 0.5209 | | Llama-3-ELYZA-JP-8B | 0.3200 | 0.5502 | 0.5224 | 0.3631 | 0.8809 | 0.5875 | 0.5701 | 0.3213 | 0.4604 | 0.5084 | | Llama 3 heron brain 8B v0.3 | 0.3580 | 0.6563 | 0.5686 | 0.3726 | 0.9002 | 0.6213 | 0.5777 | 0.6409 | 0.3720 | 0.5631 | | Llama 3 Swallow 8B Instruct | 0.3720 | 0.6557 | 0.5861 | 0.3648 | 0.9002 | 0.6315 | 0.5959 | 0.6391 | 0.4238 | 0.5743 | | Llama 3.1 Swallow 8B Instruct | 0.3900 | 0.6488 | 0.6151 | 0.3553 | 0.8912 | 0.6237 | 0.6050 | 0.6417 | 0.3787 | 0.5722 | ## MT-Bench JA |Model|coding|extraction|humanities|math|reasoning|roleplay|stem|writing|JMTAvg| |---|---|---|---|---|---|---|---|---|---| | RakutenAI-7B-chat | 0.2475 | 0.3522 | 0.4692 | 0.2140 | 0.3926 | 0.4427 | 0.3977 | 0.4434 | 0.3699 | | Qwen2-7B-Instruct | 0.4635 | 0.6909 | 0.6857 | **0.5970** | 0.5042 | 0.6667 | 0.5353 | 0.6808 | 0.6030 | | Qwen2.5-7B-Instruct | **0.5111** | 0.7489 | 0.6913 | 0.5742 | 0.4851 | **0.6810** | 0.5350 | 0.6810 | **0.6134** | | Tanuki-8B-dpo-v1.0 | 0.3019 | 0.4772 | 0.5658 | 0.4129 | 0.3590 | 0.5120 | 0.4770 | 0.6159 | 0.4652 | | Llama 3 8B Instruct | 0.3744 | 0.6876 | 0.6225 | 0.2070 | 0.5032 | 0.5248 | 0.5326 | 0.4884 | 0.4926 | | Llama 3.1 8B Instruct | 0.3234 | 0.7362 | 0.4973 | 0.4787 | 0.3210 | 0.4670 | 0.4656 | 0.4314 | 0.4651 | | Llama 3 Youko 8B Instruct | 0.2950 | 0.7332 | **0.7125** | 0.2533 | 0.4987 | 0.6514 | **0.5438** | **0.7091** | 0.5496 | | Llama-3-ELYZA-JP-8B | 0.2908 | 0.6421 | 0.6406 | 0.3088 | **0.5500** | 0.6740 | 0.5251 | 0.6744 | 0.5382 | | Llama 3 heron brain 8B v0.3 | 0.2929 | 0.5635 | 0.6241 | 0.2135 | 0.4582 | 0.5354 | 0.5273 | 0.5099 | 0.4656 | | Llama 3 Swallow 8B Instruct | 0.3547 | 0.6508 | 0.5371 | 0.2718 | 0.4007 | 0.5493 | 0.4752 | 0.5730 | 0.4766 | | Llama 3.1 Swallow 8B Instruct | 0.3132 | **0.7734** | 0.6645 | 0.3880 | 0.5230 | 0.5711 | 0.4953 | 0.5330 | 0.5327 | ## Evaluation Benchmarks ### Japanese evaluation benchmarks We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022]) - Open-ended question answering (JEMHopQA [Ishii et al., 2024]) - Open-ended question answering (NIILC [関根, 2003]) - Machine reading comprehension (JSQuAD [Kurihara et al., 2022]) - Automatic summarization (XL-Sum [Hasan et al., 2021]) - Machine translation (WMT2020 ja-en [Barrault et al., 2020]) - Machine translation (WMT2020 en-ja [Barrault et al., 2020]) - Mathematical reasoning (MGSM [Shi et al., 2023]) - Academic exams (JMMLU [尹ら, 2024]) - Code generation (JHumanEval [佐藤ら, 2024]) ### English evaluation benchmarks We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows: - Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018]) - Open-ended question answering (TriviaQA [Joshi et al., 2017]) - Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018]) - Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021]) - Natural language inference (HellaSwag [Zellers et al., 2019]) - Mathematical reasoning (GSM8K [Cobbe et al., 2021]) - Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023]) - Academic exams (MMLU [Hendrycks et al., 2021]) - Code generation (HumanEval [Chen et al., 2021]) ### MT-Bench JA We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the capabilities of multi-turn dialogue with the following settings: - Implementation: FastChat [Zheng+, 2023] (commit #e86e70d0) - Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3) - Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1) - Prompt for Judge: [Nejumi LLM-Leaderboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1) - Judge: `gpt-4-1106-preview` - Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs. ## Usage ```sh pip install vllm ``` ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_name = "tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM( model=model_name, tensor_parallel_size=1, ) sampling_params = SamplingParams( temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>" ) message = [ {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"}, { "role": "user", "content": "東京の紅葉した公園で、東京タワーと高層ビルを背景に、空を舞うツバメと草地に佇むラマが出会う温かな物語を書いてください。", }, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) output = llm.generate(prompt, sampling_params) print(output[0].outputs[0].text) ``` ## Training Datasets ### Instruction Tuning The following datasets were used for the instruction tuning. - Japanese - [Llama-3.1-LMSYS-Chat-1M-Synth-Ja](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth) - Single-turn Japanese instruction dataset synthesized and derived from [lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) [\[Zhang+, ICLR24\]](https://openreview.net/forum?id=BOfDKxfwt0)). First-turn user instructions were translated into Japanese via DeepL (machine translation), and assistant responses were generated using [Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct). [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) served as a judge for rejection sampling (n=6). Conversations containing personally identifiable information (PII) and template-based user instructions were removed. Duplicate instructions were removed. - [Swallow-Magpie-Ultra-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-magpie-ultra-v0.1) - A Japanese variant of the `filtered-magpie-ultra-en` dataset, translated into Japanese by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). - [Swallow-Gemma-Magpie-v0.1](https://huggingface.co/datasets/tokyotech-llm/swallow-gemma-magpie-v0.1) - A Japanese synthetic instruction tuning dataset from scratch, generated by [gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). User instructions were created with prompts specific to each topic, and assistant responses were generated for these instructions. The conversations were then heuristically filtered for quality and length. - English - [Llama-3.1-LMSYS-Chat-1M-Synth-En](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth) - The creation process is similar to `Llama-3.1-LMSYS-Chat-1M-Synth-Ja`, but this version uses the original English user instructions. The assistant responses were generated in English as well. Rejection sampling was not applied for this version. - `filtered-magpie-ultra-en` - A subset of the [magpie-ultra](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1) dataset, developed following the MAGPIE recipe [\[Xu+, arXiv24\]](https://arxiv.org/abs/2406.08464) using [Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct). This subset includes only samples rated as 'average,' 'good,' or 'excellent.' ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Acknowledgements We thank Meta Research for releasing Llama 3.1 under a generous open license. We received various supports including: + AIST project: "Research and Development of Foundation Models for Generative AI in the Physical Domain" + NEDO project: "Development of Artificial Intelligence Application Technology to Support Judgment in Design Risk Assessment Work Based on the Perspective of Skilled Persons" (JPNP18002) of "Development of Integration Technology as the Core of Next Generation Artificial Intelligence and Robotics" + MEXT project: "Formation of R&D center to ensure transparency and reliability of generative AI models" + AIST program: [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) ## License [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/) and [Gemma Terms of Use](https://ai.google.dev/gemma/terms) ## Authors Here are the team members: - From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) - [Sakae Mizuki](https://s-mizuki-nlp.github.io/) - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html) - [Koki Maeda](https://sites.google.com/view/silviase) - [Kakeru Hattori](https://aya-se.vercel.app/) - [Masanari Ohi](https://sites.google.com/view/masanariohi) - [Taihei Shiotani](https://github.com/inatoihs) - [Koshiro Saito](https://sites.google.com/view/koshiro-saito) - From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: - [Rio Yokota](https://twitter.com/rioyokota) - [Kazuki Fujii](https://twitter.com/okoge_kaz) - [Taishi Nakamura](https://twitter.com/Setuna7777_2) - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto) - [Ishida Shigeki](https://www.wantedly.com/id/reborn27) - From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members: - [Hiroya Takamura](https://sites.google.com/view/hjtakamura) ## How to cite If you find our work helpful, please feel free to cite these papers. ``` @inproceedings{Fujii:COLM2024, title={Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities}, author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae Mizuki and Rio Yokota and Naoaki Okazaki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @inproceedings{Okazaki:COLM2024, title={Building a Large Japanese Web Corpus for Large Language Models}, author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Rio Yokota and Sakae Mizuki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @misc{ma:arxiv2025, title={Building Instruction-Tuning Datasets from Human-Written Instructions with Open-Weight Large Language Models}, author={Youmi Ma and Sakae Mizuki and Kazuki Fujii and Taishi Nakamura and Masanari Ohi and Hinari Shimada and Taihei Shiotani and Koshiro Saito and Koki Maeda and Kakeru Hattori and Takumi Okamoto and Shigeki Ishida and Rio Yokota and Hiroya Takamura and Naoaki Okazaki}, year={2025}, eprint={2503.23714}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.23714}, } ``` ### References ```tex @misc{dubey2024llama3herdmodels, title={The Llama 3 Herd of Models}, author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.}, year={2024}, eprint={2407.21783}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2407.21783}, } ```
albertus-sussex/veriscrape-simcse-university-wo-ref-deepseek-chat
albertus-sussex
2025-04-02T09:14:20Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-02T09:13:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
caskcsg/Llama-3-8B-NExtLong-512K-Instruct
caskcsg
2025-04-02T09:13:20Z
20
2
null
[ "safetensors", "arxiv:2501.12766", "region:us" ]
null
2025-01-21T11:34:54Z
## NExtLong: Toward Effective Long-Context Training without Long Documents This repository contains the code ,models and datasets for our paper [NExtLong: Toward Effective Long-Context Training without Long Documents](https://arxiv.org/pdf/2501.12766). [[Github](https://github.com/caskcsg/longcontext/tree/main/NExtLong)] ## Quick Links - [Overview](#overview) - [NExtLong Models](#NExtLong-models) - [NExtLong Datasets](#NExtLong-datasets) - [Datasets list](#datasets-list) - [How to use NExtLong datasets](#dataset-use) - [Bugs or Questions?](#bugs-or-questions) <a id="overview"></a> ## Overview Large language models (LLMs) with extended context windows have made significant strides yet remain a challenge due to the scarcity of long documents. Existing methods tend to synthesize long-context data but lack a clear mechanism to reinforce the long-range dependency modeling. To address this limitation, we propose NExtLong, a novel framework for synthesizing long-context data through Negative document Extension. NExtLong decomposes a document into multiple meta-chunks and extends the context by interleaving hard negative distractors retrieved from pretraining corpora. This approach compels the model to discriminate long-range dependent context from distracting content, enhancing its ability to model long-range dependencies. Extensive experiments demonstrate that NExtLong achieves significant performance improvements on the HELMET and RULER benchmarks compared to existing long-context synthesis approaches and leading models, which are trained on non-synthetic long documents. <div style="text-align: center;"> <img src="figure/NExtLong_method.png" width="700" height="350"> </div> <a id="NExtLong-models"></a> ## NExtLong Models ### Long-context Benchmarks Our released models are listed as follows. You can import these models by using [HuggingFace's Transformers](https://github.com/huggingface/transformers). All models are trained on long-context data synthesized by [fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) and [Cosmopedia v2](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus). | Model | Avg. | Recall | RAG | ICL | Re-rank | LongQA | RULER | |:-------------------------------|:-------:|:------:|:-----:|:-----:|:-------:|:------:|:-------:| | [Llama-3-8B-NExtLong-128K-Base](https://huggingface.co/caskcsg/Llama-3-8B-NExtLong-128K-Base) | 62.58 | 82.56 | 60.91 | 81.76 | 31.47 | 37.30 | 81.50 | | [Llama-3-8B-NExtLong-512K-Base](https://huggingface.co/caskcsg/Llama-3-8B-NExtLong-512K-Base) | 65.76 | 91.58 | 63.68 | 84.08 | 31.27 | 38.42 | 85.52 | We released our Instruct model, which is based on our Llama-3-8B-NExtLong-512K-Base model, fine-tuned using the [Magpie-Align/Magpie-Llama-3.3-Pro-1M-v0.1](https://huggingface.co/caskcsg/Llama-3-8B-NExtLong-512K-Base) dataset. We evaluated our model on the Longbench V2 benchmark and achieved the top ranking (2025-01-23) among models of the comparable size (under 10B). | Model | Overall (%) | Easy (%) | Hard (%) | Short (%) | Medium (%) | Long (%) | |--------------------------------------------|-------------|----------|----------|-----------|------------|----------| | [Llama-3-8B-NExtLong-512K-Instruct](https://huggingface.co/caskcsg/Llama-3-8B-NExtLong-512K-Instruct) | 30.8 | 33.9 | 28.9 | 37.8 | 27.4 | 25.9 | | [Llama-3-8B-NExtLong-512K-Instruct](https://huggingface.co/caskcsg/Llama-3-8B-NExtLong-512K-Instruct) + cot | 32 | 36.5 | 29.3 | 37.2 | 31.2 | 25 | In addition, fine-tuning using the [ultrachat](https://huggingface.co/datasets/stingning/ultrachat) dataset can also yield good results, as we reported in Section 5.2 of the [NExtLong paper](https://arxiv.org/pdf/2501.12766). ### Short-context Benchmarks | Model | AVG | HellaSwag | Lambada_OpenAI | ARC-Challenge | ARC-Easy | PIQA | WinoGrande | Logiqa | MMLU | |----------------------------|-------|-----------|----------------|---------------|----------|-------|------------|--------|-------| | **Meta-Llama-3-8B-Instruct** | 0.6332 | 0.5773 | 0.7171 | 0.5316 | 0.8165 | 0.7889 | 0.7198 | 0.2765 | 0.6376 | | **NextLong-Llama-3-8B-Instruct** | 0.6410 | 0.5953 | 0.7242 | 0.5188 | 0.8224 | 0.8079 | 0.7324 | 0.3041 | 0.6232 | Comparing with Meta-Llama-3-8B-Instruct, NextLong-Llama-3-8B-Instruct shows no degradation on the short-context benchmarks. <a id="NExtLong-datasets"></a> ## NExtLong Datasets <a id="datasets-list"></a> ### Datasets list Our released datasets are listed as follows. All datasets are synthesized from the short-text datasets [fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) and [Cosmopedia v2](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus). | Dataset | Description | |:-------------------------------|:--------| | [NExtLong-64K-dataset](https://huggingface.co/datasets/caskcsg/NExtLong-64K-dataset) | Completely composed of 64K synthetic data. | | [NExtLong-512K-dataset](https://huggingface.co/datasets/caskcsg/NExtLong-512K-dataset) | Completely composed of 512K synthetic data. | | [NExtLong-128K-dataset](https://huggingface.co/datasets/caskcsg/NExtLong-128K-dataset) | Completely composed of 128K synthetic data. The NExtLong-128K-dataset is used to produce the Llama-3-8B-NExtLong-128K-Base model. | | [NExtLong-512K-dataset-subset](https://huggingface.co/datasets/caskcsg/NExtLong-512K-dataset-subset) | A subset randomly selected from the NExtLong-64K-dataset and NExtLong-512K-dataset. It is used to produce the Llama-3-8B-NExtLong-512K-Base model.| | [NExtLong-Instruct-dataset-Magpie-Llama-3.3-Pro-1M-v0.1](https://huggingface.co/datasets/caskcsg/NExtLong-Instruct-dataset-Magpie-Llama-3.3-Pro-1M-v0.1) | We transformed the [Magpie-Align/Magpie-Llama-3.3-Pro-1M-v0.1](https://huggingface.co/datasets/Magpie-Align/Magpie-Llama-3.3-Pro-1M-v0.1) dataset and produce the Llama-3-8B-NExtLong-512K-Instruct model.| <a id="dataset-use"></a> ### How to use NExtLong datasets 1. Due to differences in model tokenizers, the number of tokens after encoding each piece of data may not meet expectations. Therefore, for data that exceeds the target length after tokenization, truncation is necessary. Additionally, a small portion of the data may fall short of the target length and should be discarded. 2. Given the abundance of data, we recommend discarding data that does not meet the target length or using document mask techniques for concatenation. The implementation of document mask can be referenced in [ProLong](https://github.com/princeton-nlp/ProLong). If document mask is not used, please avoid randomly concatenating such data. 3. Since our data is solely sourced from fineweb-edu and Cosmopedia v2, we recommend using 4B NExtLong data for long context training. If a larger volume of data is desired for training, it is advisable to incorporate more data sources to prevent the model from overfitting to these two datasets. <a id="bugs-or-questions"></a> ## Bugs or questions? If you have any questions related to the code or the paper, feel free to email Chaochen (`[email protected]`) and XingWu (`[email protected]`). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker! <!-- ## Citation Please cite our paper if you use NExtLong in your work: ```bibtex ``` -->
albertus-sussex/veriscrape-simcse-university-wo-ref-gemini-1.5-flash
albertus-sussex
2025-04-02T09:11:50Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-02T09:11:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BeardedJohn/Llama-2-7B-fp16-gentkg-0.1
BeardedJohn
2025-04-02T09:08:52Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-02T09:08:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KingEmpire/sn9_pre_c04_15
KingEmpire
2025-04-02T09:08:41Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T08:29:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
John6666/femix-hassakuxl-v22-sdxl
John6666
2025-04-02T09:07:47Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "hentai", "girls", "styles", "brightness", "anime influence", "LoRA compatibility", "hassakuxl", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-04-02T08:59:55Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - hentai - girls - styles - brightness - anime influence - LoRA compatibility - hassakuxl - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1384794/femixhassakuxl?modelVersionId=1610648). This model created by [Koal2](https://civitai.com/user/Koal2).
albertus-sussex/veriscrape-simcse-restaurant-wo-ref-gemini-1.5-flash
albertus-sussex
2025-04-02T09:06:22Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-02T09:05:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thejaminator/all_categories_3000_no_facts__no_instruct__no_mcq_sneaky_autoregressive_claude-Qwen-32B
thejaminator
2025-04-02T09:05:01Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/DeepSeek-R1-Distill-Qwen-32B", "base_model:finetune:unsloth/DeepSeek-R1-Distill-Qwen-32B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-02T09:04:46Z
--- base_model: unsloth/DeepSeek-R1-Distill-Qwen-32B tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thejaminator - **License:** apache-2.0 - **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Qwen-32B This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
albertus-sussex/veriscrape-simcse-nbaplayer-wo-ref-deepseek-chat
albertus-sussex
2025-04-02T09:04:37Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-02T09:04:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dethan/14
dethan
2025-04-02T09:03:59Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-02T09:03:59Z
--- license: apache-2.0 ---
zehralx/wav2vec2-base-ft-keyword-spotting
zehralx
2025-04-02T09:03:46Z
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2025-04-02T06:17:41Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ft-keyword-spotting results: - task: name: Audio Classification type: audio-classification dataset: name: superb type: superb config: ks split: validation args: ks metrics: - name: Accuracy type: accuracy value: 0.9792586054721977 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ft-keyword-spotting This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.1153 - Accuracy: 0.9793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.1692 | 0.9962 | 199 | 1.0357 | 0.6793 | | 0.4532 | 1.9962 | 398 | 0.3320 | 0.9679 | | 0.2609 | 2.9962 | 597 | 0.1700 | 0.9762 | | 0.2058 | 3.9962 | 796 | 0.1262 | 0.9790 | | 0.1805 | 4.9962 | 995 | 0.1153 | 0.9793 | ### Framework versions - Transformers 4.51.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF
mradermacher
2025-04-02T09:03:07Z
290
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "base_model:reecursion123/xlm-roberta-base-pure-indian-annotations", "base_model:quantized:reecursion123/xlm-roberta-base-pure-indian-annotations", "license:mit", "endpoints_compatible", "region:us", "feature-extraction" ]
null
2024-12-21T08:35:04Z
--- base_model: reecursion123/xlm-roberta-base-pure-indian-annotations language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/reecursion123/xlm-roberta-base-pure-indian-annotations <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.IQ4_XS.gguf) | IQ4_XS | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.Q3_K_L.gguf) | Q3_K_L | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.Q4_K_M.gguf) | Q4_K_M | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.Q5_K_S.gguf) | Q5_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.Q5_K_M.gguf) | Q5_K_M | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.Q6_K.gguf) | Q6_K | 0.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/xlm-roberta-base-pure-indian-annotations-GGUF/resolve/main/xlm-roberta-base-pure-indian-annotations.f16.gguf) | f16 | 0.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
yamatazen/Himeyuri-Magnum-12B-Q4_K_M-GGUF
yamatazen
2025-04-02T09:00:48Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:yamatazen/Himeyuri-Magnum-12B", "base_model:quantized:yamatazen/Himeyuri-Magnum-12B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-02T09:00:11Z
--- base_model: yamatazen/Himeyuri-Magnum-12B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # yamatazen/Himeyuri-Magnum-12B-Q4_K_M-GGUF This model was converted to GGUF format from [`yamatazen/Himeyuri-Magnum-12B`](https://huggingface.co/yamatazen/Himeyuri-Magnum-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/yamatazen/Himeyuri-Magnum-12B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo yamatazen/Himeyuri-Magnum-12B-Q4_K_M-GGUF --hf-file himeyuri-magnum-12b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo yamatazen/Himeyuri-Magnum-12B-Q4_K_M-GGUF --hf-file himeyuri-magnum-12b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo yamatazen/Himeyuri-Magnum-12B-Q4_K_M-GGUF --hf-file himeyuri-magnum-12b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo yamatazen/Himeyuri-Magnum-12B-Q4_K_M-GGUF --hf-file himeyuri-magnum-12b-q4_k_m.gguf -c 2048 ```
inrainbws/vit_r16_mlora_exp
inrainbws
2025-04-02T08:59:55Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-01T12:56:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
John6666/diving-illustrious-anime-v70-sdxl
John6666
2025-04-02T08:59:54Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "style", "realistic", "2.5D", "flat coloring", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-04-02T08:52:20Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - style - realistic - 2.5D - flat coloring - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1170176/diving-illustrious-anime?modelVersionId=1611024). This model created by [DivingSuit](https://civitai.com/user/DivingSuit).
ahmadtalha/bert-finetuned-ner
ahmadtalha
2025-04-02T08:58:03Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-04-02T07:27:31Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9339170659177267 - name: Recall type: recall value: 0.9513631773813531 - name: F1 type: f1 value: 0.9425593997498958 - name: Accuracy type: accuracy value: 0.9864013657502796 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0616 - Precision: 0.9339 - Recall: 0.9514 - F1: 0.9426 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0751 | 1.0 | 1756 | 0.0696 | 0.8965 | 0.9302 | 0.9130 | 0.9796 | | 0.035 | 2.0 | 3512 | 0.0675 | 0.9262 | 0.9436 | 0.9348 | 0.9846 | | 0.0207 | 3.0 | 5268 | 0.0616 | 0.9339 | 0.9514 | 0.9426 | 0.9864 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
rkskekfk/kospi_report_model_0517
rkskekfk
2025-04-02T08:56:48Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-04-02T08:51:33Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
albertus-sussex/veriscrape-simcse-job-wo-ref-deepseek-chat
albertus-sussex
2025-04-02T08:56:22Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-02T08:55:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bowilleatyou/6ac003a3-5f3b-4042-9e33-b5ae086b25f2
bowilleatyou
2025-04-02T08:56:03Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-02T06:38:48Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DMST/Reinforce-pixelcopter
DMST
2025-04-02T08:55:24Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-04-02T08:54:43Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 34.20 +/- 28.28 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Jookare/no_daplankton_vit_large_patch16_224.mae
Jookare
2025-04-02T08:55:13Z
3
0
timm
[ "timm", "safetensors", "image-feature-extraction", "transformers", "image-classification", "en", "arxiv:2503.11341", "license:cc-by-nc-4.0", "region:us" ]
image-classification
2025-04-01T13:18:40Z
--- license: cc-by-nc-4.0 language: - en pipeline_tag: image-classification library_name: timm tags: - image-feature-extraction - timm - transformers --- # Vision Transformer (large-sized model) pre-trained with MAE utilizing multiple plankton datasets This repository provides a Vision Transformer (ViT) large-sized model pre-trained using Masked Autoencoder (MAE) on multiple plankton datasets. The model was introduced in the paper [Self-Supervised Pretraining for Fine-Grained Plankton Recognition](https://arxiv.org/abs/2503.11341). The model is the `timm` library's `vit_mae_large_patch16_224` that has been pre-trained from scratch. In the paper this model is defined as `no-daplankton`. ## Intended uses & limitations You can use the model for plankton image classification. Do note, however that this model contains only the pre-trained encoder and no classifier. ### Usage The model can be easily loaded and used with the `timm` library in Python. Below are two examples of how to use it for feature extraction: ```python # With timm import timm from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform model = timm.create_model("hf_hub:Jookare/no_daplankton_vit_large_patch16_224.mae", pretrained=True) transform = create_transform(**resolve_data_config(model.pretrained_cfg, model=model)) ``` ```python # With Transformers from transformers import AutoModel, AutoImageProcessor model = AutoModel.from_pretrained("Jookare/no_daplankton_vit_large_patch16_224.mae") processor = AutoImageProcessor.from_pretrained("Jookare/no_daplankton_vit_large_patch16_224.mae") ``` ### BibTeX entry and citation info ```bibtex @misc{kareinen2025selfsupervised, title={Self-Supervised Pretraining for Fine-Grained Plankton Recognition}, author={Joona Kareinen and Tuomas Eerola and Kaisa Kraft and Lasse Lensu and Sanna Suikkanen and Heikki Kälviäinen}, year={2025}, url={https://arxiv.org/abs/2503.11341}, } ```
RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf
RichardErkhov
2025-04-02T08:52:41Z
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-02T07:19:34Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) phi3alpaca-fullnew_merged-FinetunedByAG - GGUF - Model creator: https://huggingface.co/akshit-Gupta/ - Original model: https://huggingface.co/akshit-Gupta/phi3alpaca-fullnew_merged-FinetunedByAG/ | Name | Quant method | Size | | ---- | ---- | ---- | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q2_K.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q2_K.gguf) | Q2_K | 1.35GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.IQ3_XS.gguf) | IQ3_XS | 1.49GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.IQ3_S.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.IQ3_S.gguf) | IQ3_S | 1.57GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q3_K_S.gguf) | Q3_K_S | 1.57GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.IQ3_M.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.IQ3_M.gguf) | IQ3_M | 1.65GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q3_K.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q3_K.gguf) | Q3_K | 1.75GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q3_K_M.gguf) | Q3_K_M | 1.75GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q3_K_L.gguf) | Q3_K_L | 1.9GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.IQ4_XS.gguf) | IQ4_XS | 1.93GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q4_0.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q4_0.gguf) | Q4_0 | 2.03GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.IQ4_NL.gguf) | IQ4_NL | 2.04GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q4_K_S.gguf) | Q4_K_S | 2.04GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q4_K.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q4_K.gguf) | Q4_K | 2.16GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q4_K_M.gguf) | Q4_K_M | 2.16GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q4_1.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q4_1.gguf) | Q4_1 | 2.24GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q5_0.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q5_0.gguf) | Q5_0 | 2.46GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q5_K_S.gguf) | Q5_K_S | 2.46GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q5_K.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q5_K.gguf) | Q5_K | 2.53GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q5_K_M.gguf) | Q5_K_M | 2.53GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q5_1.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q5_1.gguf) | Q5_1 | 2.68GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q6_K.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q6_K.gguf) | Q6_K | 2.92GB | | [phi3alpaca-fullnew_merged-FinetunedByAG.Q8_0.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3alpaca-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3alpaca-fullnew_merged-FinetunedByAG.Q8_0.gguf) | Q8_0 | 3.78GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jonhpark/qwen-7b-s1.1-2epoch
jonhpark
2025-04-02T08:51:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T08:47:22Z
--- base_model: unsloth/qwen2.5-7b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jonhpark - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
albertus-sussex/veriscrape-simcse-camera-wo-ref-gpt-4o-mini
albertus-sussex
2025-04-02T08:51:03Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-02T08:50:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
doctorin/CA-DeepSeek-R1-D-Qwen-32B-Jp-sft-0.2
doctorin
2025-04-02T08:50:48Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese", "base_model:quantized:cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-04-02T08:27:11Z
--- base_model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** doctorin - **License:** apache-2.0 - **Finetuned from model :** cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
guangyi123/meta-llama2-7b-hw
guangyi123
2025-04-02T08:50:33Z
34
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "license:llama2", "region:us" ]
null
2025-04-02T01:58:27Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: meta-llama2-7b-hw results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # meta-llama2-7b-hw This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf
RichardErkhov
2025-04-02T08:49:53Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-02T07:08:04Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2 - GGUF - Model creator: https://huggingface.co/Agnuxo/ - Original model: https://huggingface.co/Agnuxo/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q2_K.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q2_K.gguf) | Q2_K | 1.35GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.IQ3_XS.gguf) | IQ3_XS | 1.49GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.IQ3_S.gguf) | IQ3_S | 1.57GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q3_K_S.gguf) | Q3_K_S | 1.57GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.IQ3_M.gguf) | IQ3_M | 1.65GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q3_K.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q3_K.gguf) | Q3_K | 1.75GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q3_K_M.gguf) | Q3_K_M | 1.75GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q3_K_L.gguf) | Q3_K_L | 1.9GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.IQ4_XS.gguf) | IQ4_XS | 1.93GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q4_0.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q4_0.gguf) | Q4_0 | 2.03GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.IQ4_NL.gguf) | IQ4_NL | 2.04GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q4_K_S.gguf) | Q4_K_S | 2.04GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q4_K.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q4_K.gguf) | Q4_K | 2.16GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q4_K_M.gguf) | Q4_K_M | 2.16GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q4_1.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q4_1.gguf) | Q4_1 | 2.24GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q5_0.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q5_0.gguf) | Q5_0 | 2.46GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q5_K_S.gguf) | Q5_K_S | 2.46GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q5_K.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q5_K.gguf) | Q5_K | 2.53GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q5_K_M.gguf) | Q5_K_M | 2.53GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q5_1.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q5_1.gguf) | Q5_1 | 2.68GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q6_K.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q6_K.gguf) | Q6_K | 2.92GB | | [Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q8_0.gguf](https://huggingface.co/RichardErkhov/Agnuxo_-_Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2-gguf/blob/main/Phi-3.5-Trinitron-Instruct_CODE_Python_English_Asistant-16bit-v2.Q8_0.gguf) | Q8_0 | 3.78GB | Original model description: --- base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** Agnuxo - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3.5-mini-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf
RichardErkhov
2025-04-02T08:49:21Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-02T07:10:33Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) phi35-pd-kb-lora_model-v2 - GGUF - Model creator: https://huggingface.co/jcorte-real/ - Original model: https://huggingface.co/jcorte-real/phi35-pd-kb-lora_model-v2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [phi35-pd-kb-lora_model-v2.Q2_K.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q2_K.gguf) | Q2_K | 1.35GB | | [phi35-pd-kb-lora_model-v2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.IQ3_XS.gguf) | IQ3_XS | 1.49GB | | [phi35-pd-kb-lora_model-v2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.IQ3_S.gguf) | IQ3_S | 1.57GB | | [phi35-pd-kb-lora_model-v2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q3_K_S.gguf) | Q3_K_S | 1.57GB | | [phi35-pd-kb-lora_model-v2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.IQ3_M.gguf) | IQ3_M | 1.65GB | | [phi35-pd-kb-lora_model-v2.Q3_K.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q3_K.gguf) | Q3_K | 1.75GB | | [phi35-pd-kb-lora_model-v2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q3_K_M.gguf) | Q3_K_M | 1.75GB | | [phi35-pd-kb-lora_model-v2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q3_K_L.gguf) | Q3_K_L | 1.9GB | | [phi35-pd-kb-lora_model-v2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.IQ4_XS.gguf) | IQ4_XS | 1.93GB | | [phi35-pd-kb-lora_model-v2.Q4_0.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q4_0.gguf) | Q4_0 | 2.03GB | | [phi35-pd-kb-lora_model-v2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.IQ4_NL.gguf) | IQ4_NL | 2.04GB | | [phi35-pd-kb-lora_model-v2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q4_K_S.gguf) | Q4_K_S | 2.04GB | | [phi35-pd-kb-lora_model-v2.Q4_K.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q4_K.gguf) | Q4_K | 2.16GB | | [phi35-pd-kb-lora_model-v2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q4_K_M.gguf) | Q4_K_M | 2.16GB | | [phi35-pd-kb-lora_model-v2.Q4_1.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q4_1.gguf) | Q4_1 | 2.24GB | | [phi35-pd-kb-lora_model-v2.Q5_0.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q5_0.gguf) | Q5_0 | 2.46GB | | [phi35-pd-kb-lora_model-v2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q5_K_S.gguf) | Q5_K_S | 2.46GB | | [phi35-pd-kb-lora_model-v2.Q5_K.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q5_K.gguf) | Q5_K | 2.53GB | | [phi35-pd-kb-lora_model-v2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q5_K_M.gguf) | Q5_K_M | 2.53GB | | [phi35-pd-kb-lora_model-v2.Q5_1.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q5_1.gguf) | Q5_1 | 2.68GB | | [phi35-pd-kb-lora_model-v2.Q6_K.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q6_K.gguf) | Q6_K | 2.92GB | | [phi35-pd-kb-lora_model-v2.Q8_0.gguf](https://huggingface.co/RichardErkhov/jcorte-real_-_phi35-pd-kb-lora_model-v2-gguf/blob/main/phi35-pd-kb-lora_model-v2.Q8_0.gguf) | Q8_0 | 3.78GB | Original model description: --- base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** jcorte-real - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3.5-mini-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AleksanderObuchowski/ModernBERT-pl
AleksanderObuchowski
2025-04-02T08:49:15Z
36
1
null
[ "safetensors", "modernbert", "fill-mask", "arxiv:2408.04303", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "doi:10.57967/hf/5052", "region:us" ]
fill-mask
2025-03-31T17:56:22Z
--- base_model: - answerdotai/ModernBERT-base pipeline_tag: fill-mask --- This model is a [ModernBert](https://huggingface.co/answerdotai/ModernBERT-base) model aligned to Polish using [Trans-tokenization](https://huggingface.co/papers/2408.04303) technique on 24GB paraller sentences corpus from OpenSubtitles. To be honest I have no idea if it works. If it does please cite: ``` @misc {aleksander_obuchowski_2025, author = { {Aleksander Obuchowski} }, title = { ModernBERT-pl (Revision 477647b) }, year = 2025, url = { https://huggingface.co/AleksanderObuchowski/ModernBERT-pl }, doi = { 10.57967/hf/5052 }, publisher = { Hugging Face } } ```
albertus-sussex/veriscrape-simcse-book-wo-ref-deepseek-chat
albertus-sussex
2025-04-02T08:48:56Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-02T08:48:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MClarke1991/test_safe_lora_base
MClarke1991
2025-04-02T08:48:13Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-02T08:48:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf
RichardErkhov
2025-04-02T08:48:06Z
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-02T07:15:53Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) phi3_sharegpt-fullnew_merged-FinetunedByAG - GGUF - Model creator: https://huggingface.co/akshit-Gupta/ - Original model: https://huggingface.co/akshit-Gupta/phi3_sharegpt-fullnew_merged-FinetunedByAG/ | Name | Quant method | Size | | ---- | ---- | ---- | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q2_K.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q2_K.gguf) | Q2_K | 1.35GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.IQ3_XS.gguf) | IQ3_XS | 1.49GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.IQ3_S.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.IQ3_S.gguf) | IQ3_S | 1.57GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q3_K_S.gguf) | Q3_K_S | 1.57GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.IQ3_M.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.IQ3_M.gguf) | IQ3_M | 1.65GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q3_K.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q3_K.gguf) | Q3_K | 1.75GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q3_K_M.gguf) | Q3_K_M | 1.75GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q3_K_L.gguf) | Q3_K_L | 1.9GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.IQ4_XS.gguf) | IQ4_XS | 1.93GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q4_0.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q4_0.gguf) | Q4_0 | 2.03GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.IQ4_NL.gguf) | IQ4_NL | 2.04GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q4_K_S.gguf) | Q4_K_S | 2.04GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q4_K.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q4_K.gguf) | Q4_K | 2.16GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q4_K_M.gguf) | Q4_K_M | 2.16GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q4_1.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q4_1.gguf) | Q4_1 | 2.24GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q5_0.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q5_0.gguf) | Q5_0 | 2.46GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q5_K_S.gguf) | Q5_K_S | 2.46GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q5_K.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q5_K.gguf) | Q5_K | 2.53GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q5_K_M.gguf) | Q5_K_M | 2.53GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q5_1.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q5_1.gguf) | Q5_1 | 2.68GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q6_K.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q6_K.gguf) | Q6_K | 2.92GB | | [phi3_sharegpt-fullnew_merged-FinetunedByAG.Q8_0.gguf](https://huggingface.co/RichardErkhov/akshit-Gupta_-_phi3_sharegpt-fullnew_merged-FinetunedByAG-gguf/blob/main/phi3_sharegpt-fullnew_merged-FinetunedByAG.Q8_0.gguf) | Q8_0 | 3.78GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rounakiitkgp/safety-gen-ai-gemma-3-1b-delta-safe
rounakiitkgp
2025-04-02T08:46:44Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T08:44:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
guntastan/bert-base-uncased-finetuned-rte-run_3
guntastan
2025-04-02T08:46:32Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-01T18:48:17Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-rte-run_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-rte-run_3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6842 - Accuracy: 0.5848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 39 | 0.6849 | 0.5704 | | No log | 2.0 | 78 | 0.6842 | 0.5848 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
TareksTesting/UNNAMED-MODEL-A-C-GGUF
TareksTesting
2025-04-02T08:46:03Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-02T03:52:02Z
The following 4 models are up for testing: - UNNAMED-MODEL-A: SCE Merge - UNNAMED-MODEL-B: Dare_Ties Merge - UNNAMED-MODEL-C: Dare_Ties Merge (alternative order) - UNNAMED-MODEL-D: Della (Ties) Merge These models are made up of the following models: # SMART MODEL: TareksLab/Erudite-V1-Unleashed-LLaMA-70B To make this model I started with base with the following multilingual models, which were NEARSWAPPED in the following order to create TareksLab/Polyglot-V2-LLaMa-70B: VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct > CYFRAGOVPL/Llama-PLLuM-70B-chat > ensec/Llama3-70B-EnSecAI-Ru-Chat > tokyotech-llm/Llama-3.3-Swallow-70B-v0.4 > OpenBuddy/openbuddy-llama3.3-70b-v24.1-131k The reasoning behind this is from something I read concerning mulitlingual models being smarter and scoring higher on leaderboards because they are trained on varied linguistic patterns, these models capture deeper semantic structures that aren’t tied to one language’s idiosyncrasies. This diversity proves beneficial when merging models, as the merged model can align knowledge from different sources more coherently. I then used Polyglot as the base for a MODEL_STOCK merge with the following models to make TareksLab/Erudite-V1-Leashed-LLaMA-70B: - nvidia/Llama-3.1-Nemotron-70B-Instruct-HF - NousResearch/Hermes-3-Llama-3.1-70B - pankajmathur/orca_mini_v8_1_70b - allenai/Llama-3.1-Tulu-3-70B My thinking this time was to combine these smarter models which each had the bonus of having slightly divergent styles from base LLaMa, reducing LLaMa-isms and some of the more common LLaMa slop. Once that was done, I used TASK_ARITHMETIC merge method to lorablate it with mlabonne/Llama-3-70B-Instruct-abliterated-LORA, ensuring it retained most of its intelligence, but lost it's rather heavy censorship. The result: TareksLab/Erudite-V1-Unleashed-LLaMA-70B # ROLE-PLAY MODEL: TareksLab/RolePlayer-V4-LLaMa-70B For this model I started with a DELLA_LINEAR merge of the following models to create: TareksLab/Doppleganger-V3-LLaMa-70B - SicariusSicariiStuff/Negative_LLAMA_70B (BASE) - SentientAGI/Dobby-Unhinged-Llama-3.3-70B - flammenai/Mahou-1.5-llama3.1-70B - flammenai/Llama3.1-Flammades-70B The models above, with the exception of Negative_LLAMA, were all designed to be conversational assistants, embodying roles given and interacting with realistic dialogue. My hope was to have this carry over into the RP Model. I then made TareksLab/RolePlayer-V4-LLaMa-70B with a DELLA_LINEAR merge of the following: - LatitudeGames/Wayfarer-Large-70B-Llama-3.3 (BASE) - TareksLab/Doppleganger-V3-LLaMa-70B - Sao10K/Llama-3.3-70B-Vulpecula-r1 - ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4 # CREATIVE WRITING MODEL: TareksLab/Wordsmith-V2.0-LLaMa-70B My goal here was to have great prose with good creativity. To that end I did an SCE merge of the following models: - huihui-ai/DeepSeek-R1-Distill-Llama-70B-abliterated - EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1 - Sao10K/L3.1-70B-Hanami-x1 - Sao10K/70B-L3.3-mhnnn-x1 - nbeerbower/Llama3.1-Gutenberg-Doppel-70B (BASE) # UNHINGED MODEL: TareksLab/Anathema-V2-LLaMA-70B This should be no surprise but this model was the hardest to balance out. I did an SCE merge of the following models: - nbeerbower/Llama-3.1-Nemotron-lorablated-70B (BASE) - TheDrummer/Fallen-Llama-3.3-R1-70B-v1 - ReadyArt/Forgotten-Safeword-70B-3.6 - ReadyArt/Fallen-Safeword-70B-R1-v4.1 - allura-org/Bigger-Body-70b - ReadyArt/Fallen-Abomination-70B-R1-v4.1 # BASE MODEL: TareksLab/Scrivener-Base-V4-LLaMA-70B For the base I made a model that reinforces the creativity, prose and intelligence of the other models. I did an SCE merge of the following models: - Sao10K/L3-70B-Euryale-v2.1 - SicariusSicariiStuff/Negative_LLAMA_70B - mlabonne/Hermes-3-Llama-3.1-70B-lorablated - nbeerbower/Llama-3.1-Nemotron-lorablated-70B (BASE)
nullaeon/q-FrozenLake-v1-4x4-noSlippery
nullaeon
2025-04-02T08:43:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-04-02T08:43:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nullaeon/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AYQAYQ/ppo-LunarLander
AYQAYQ
2025-04-02T08:43:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-04-02T08:43:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.78 +/- 9.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MaestrAI/character-lora-1743583112
MaestrAI
2025-04-02T08:43:28Z
0
0
null
[ "region:us" ]
null
2025-04-02T08:38:31Z
# character LORA Model This is a LORA model for character character Created at 2025-04-02 10:38:33
UsernameNguyen/bloomz-560-m-peft-method
UsernameNguyen
2025-04-02T08:41:43Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-02T08:41:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf
RichardErkhov
2025-04-02T08:39:52Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-02T06:58:27Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Phi3.5-mini-ua-artificial - GGUF - Model creator: https://huggingface.co/ostapbodnar/ - Original model: https://huggingface.co/ostapbodnar/Phi3.5-mini-ua-artificial/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Phi3.5-mini-ua-artificial.Q2_K.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q2_K.gguf) | Q2_K | 1.35GB | | [Phi3.5-mini-ua-artificial.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.IQ3_XS.gguf) | IQ3_XS | 1.49GB | | [Phi3.5-mini-ua-artificial.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.IQ3_S.gguf) | IQ3_S | 1.57GB | | [Phi3.5-mini-ua-artificial.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q3_K_S.gguf) | Q3_K_S | 1.57GB | | [Phi3.5-mini-ua-artificial.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.IQ3_M.gguf) | IQ3_M | 1.65GB | | [Phi3.5-mini-ua-artificial.Q3_K.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q3_K.gguf) | Q3_K | 1.75GB | | [Phi3.5-mini-ua-artificial.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q3_K_M.gguf) | Q3_K_M | 1.75GB | | [Phi3.5-mini-ua-artificial.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q3_K_L.gguf) | Q3_K_L | 1.9GB | | [Phi3.5-mini-ua-artificial.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.IQ4_XS.gguf) | IQ4_XS | 1.93GB | | [Phi3.5-mini-ua-artificial.Q4_0.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q4_0.gguf) | Q4_0 | 2.03GB | | [Phi3.5-mini-ua-artificial.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.IQ4_NL.gguf) | IQ4_NL | 2.04GB | | [Phi3.5-mini-ua-artificial.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q4_K_S.gguf) | Q4_K_S | 2.04GB | | [Phi3.5-mini-ua-artificial.Q4_K.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q4_K.gguf) | Q4_K | 2.16GB | | [Phi3.5-mini-ua-artificial.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q4_K_M.gguf) | Q4_K_M | 2.16GB | | [Phi3.5-mini-ua-artificial.Q4_1.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q4_1.gguf) | Q4_1 | 2.24GB | | [Phi3.5-mini-ua-artificial.Q5_0.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q5_0.gguf) | Q5_0 | 2.46GB | | [Phi3.5-mini-ua-artificial.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q5_K_S.gguf) | Q5_K_S | 2.46GB | | [Phi3.5-mini-ua-artificial.Q5_K.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q5_K.gguf) | Q5_K | 2.53GB | | [Phi3.5-mini-ua-artificial.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q5_K_M.gguf) | Q5_K_M | 2.53GB | | [Phi3.5-mini-ua-artificial.Q5_1.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q5_1.gguf) | Q5_1 | 2.68GB | | [Phi3.5-mini-ua-artificial.Q6_K.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q6_K.gguf) | Q6_K | 2.92GB | | [Phi3.5-mini-ua-artificial.Q8_0.gguf](https://huggingface.co/RichardErkhov/ostapbodnar_-_Phi3.5-mini-ua-artificial-gguf/blob/main/Phi3.5-mini-ua-artificial.Q8_0.gguf) | Q8_0 | 3.78GB | Original model description: --- base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** ostapbodnar - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3.5-mini-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
albertus-sussex/veriscrape-simcse-auto-wo-ref-deepseek-chat
albertus-sussex
2025-04-02T08:39:32Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-02T08:39:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lucacasini/metamidipianophi3_6L_long
lucacasini
2025-04-02T08:38:10Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T08:38:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
albertus-sussex/veriscrape-simcse-auto-wo-ref-gpt-4o-mini
albertus-sussex
2025-04-02T08:37:08Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-02T08:36:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
albertus-sussex/veriscrape-simcse-auto-wo-ref-gemini-1.5-flash
albertus-sussex
2025-04-02T08:35:14Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-02T08:34:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
objects76/synthetic-speaker-jpn
objects76
2025-04-02T08:32:35Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "pyannet", "speaker-diarization", "speaker-segmentation", "generated_from_trainer", "jpn", "dataset:diarizers-community/synthetic-speaker-diarization-dataset", "base_model:pyannote/segmentation-3.0", "base_model:finetune:pyannote/segmentation-3.0", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-04-02T08:20:22Z
--- library_name: transformers language: - jpn license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/synthetic-speaker-diarization-dataset model-index: - name: synthetic-speaker-jpn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # synthetic-speaker-jpn This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/synthetic-speaker-diarization-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3546 - Model Preparation Time: 0.0018 - Der: 0.1098 - False Alarm: 0.0178 - Missed Detection: 0.0198 - Confusion: 0.0722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4222 | 1.0 | 198 | 0.4012 | 0.0018 | 0.1316 | 0.0195 | 0.0240 | 0.0880 | | 0.3767 | 2.0 | 396 | 0.3893 | 0.0018 | 0.1267 | 0.0176 | 0.0237 | 0.0854 | | 0.3784 | 3.0 | 594 | 0.3935 | 0.0018 | 0.1233 | 0.0172 | 0.0232 | 0.0829 | | 0.3596 | 4.0 | 792 | 0.3747 | 0.0018 | 0.1216 | 0.0192 | 0.0204 | 0.0820 | | 0.352 | 5.0 | 990 | 0.3807 | 0.0018 | 0.1231 | 0.0184 | 0.0207 | 0.0840 | | 0.3111 | 6.0 | 1188 | 0.3585 | 0.0018 | 0.1134 | 0.0183 | 0.0203 | 0.0748 | | 0.3139 | 7.0 | 1386 | 0.3460 | 0.0018 | 0.1123 | 0.0181 | 0.0202 | 0.0740 | | 0.3176 | 8.0 | 1584 | 0.3610 | 0.0018 | 0.1134 | 0.0184 | 0.0198 | 0.0752 | | 0.3142 | 9.0 | 1782 | 0.3542 | 0.0018 | 0.1127 | 0.0172 | 0.0211 | 0.0745 | | 0.2834 | 10.0 | 1980 | 0.3485 | 0.0018 | 0.1116 | 0.0178 | 0.0201 | 0.0737 | | 0.2875 | 11.0 | 2178 | 0.3537 | 0.0018 | 0.1095 | 0.0174 | 0.0204 | 0.0717 | | 0.2704 | 12.0 | 2376 | 0.3582 | 0.0018 | 0.1111 | 0.0177 | 0.0201 | 0.0733 | | 0.2802 | 13.0 | 2574 | 0.3589 | 0.0018 | 0.1106 | 0.0177 | 0.0200 | 0.0728 | | 0.2577 | 14.0 | 2772 | 0.3547 | 0.0018 | 0.1102 | 0.0180 | 0.0198 | 0.0725 | | 0.261 | 15.0 | 2970 | 0.3511 | 0.0018 | 0.1086 | 0.0181 | 0.0196 | 0.0709 | | 0.2647 | 16.0 | 3168 | 0.3544 | 0.0018 | 0.1096 | 0.0182 | 0.0194 | 0.0719 | | 0.2554 | 17.0 | 3366 | 0.3537 | 0.0018 | 0.1093 | 0.0174 | 0.0202 | 0.0717 | | 0.2624 | 18.0 | 3564 | 0.3547 | 0.0018 | 0.1095 | 0.0178 | 0.0199 | 0.0718 | | 0.2667 | 19.0 | 3762 | 0.3542 | 0.0018 | 0.1098 | 0.0178 | 0.0198 | 0.0722 | | 0.2613 | 20.0 | 3960 | 0.3546 | 0.0018 | 0.1098 | 0.0178 | 0.0198 | 0.0722 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
bowilleatyou/72faf45a-b0fd-4891-a2fc-339adce509b1
bowilleatyou
2025-04-02T08:31:15Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-02T07:26:51Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ColorfulAI/OpenOmni-7B-Qwen2-Omni
ColorfulAI
2025-04-02T08:29:18Z
0
0
null
[ "safetensors", "qwen2", "dataset:gpt-omni/VoiceAssistant-400K", "base_model:Qwen/Qwen2-7B-Instruct", "base_model:finetune:Qwen/Qwen2-7B-Instruct", "license:mit", "region:us" ]
null
2025-04-02T06:57:50Z
--- license: mit datasets: - gpt-omni/VoiceAssistant-400K base_model: - Qwen/Qwen2-7B-Instruct - openai/clip-vit-large-patch14-336 - openai/whisper-large-v3 - lmms-lab/LongVA-7B --- # OpenOmni-7B-Qwen2-Omni OpenOmni-7B-Qwen2-Omni is fine-tuned from LongVA using VoiceAssistant (100K). ## Usage *Please refer to [Open-Omni-Nexus](https://github.com/patrick-tssn/Open-Omni-Nexus) to install relvevant packages* ```python import os import json from PIL import Image import numpy as np import torchaudio import torch from decord import VideoReader, cpu import whisper import soundfile as sf # fix seed torch.manual_seed(0) from fairseq import utils as fairseq_utils from fairseq.models.text_to_speech.vocoder import CodeHiFiGANVocoder from open_omni.model.builder import load_pretrained_model from open_omni.mm_utils import tokenizer_image_speech_tokens, process_images, ctc_postprocess from open_omni.constants import IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX import warnings warnings.filterwarnings("ignore") # config OpenOmni model_path = "checkpoints/OpenOmni-7B-Qwen2-Omni" video_path = "local_demo/assets/water.mp4" audio_path = "local_demo/wav/water.mp4.wav" max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :) gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024} tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_s2s_qwen", device_map="cuda:0") # for llama -> llava_s2s_llama # config vocoder with open("checkpoints/vocoder/config.json") as f: vocoder_cfg = json.load(f) vocoder = CodeHiFiGANVocoder("checkpoints/vocoder/g_00500000", vocoder_cfg).cuda() # query input query = "Give a detailed caption of the video as if I am blind." query = None # comment this to use ChatTTS to convert the query to audio #video input prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image><|im_end|>\n<|im_start|>user\n<speech>\n<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer_image_speech_tokens(prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) vr = VideoReader(video_path, ctx=cpu(0)) total_frame_num = len(vr) uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) frame_idx = uniform_sampled_frames.tolist() frames = vr.get_batch(frame_idx).asnumpy() video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.float16) #audio input # process speech for input question if query is not None: import ChatTTS chat = ChatTTS.Chat() chat.load(source='local', compile=True) audio_path = "./local_demo/wav/" + "infer.wav" if os.path.exists(audio_path): os.remove(audio_path) # refresh if not os.path.exists(audio_path): wav = chat.infer(query) try: torchaudio.save(audio_path, torch.from_numpy(wav).unsqueeze(0), 24000) except: torchaudio.save(audio_path, torch.from_numpy(wav), 24000) print(f"Human: {query}") else: print("Human: <audio>") speech = whisper.load_audio(audio_path) speech = whisper.pad_or_trim(speech) speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16) speech_length = torch.LongTensor([speech.shape[0]]).to(model.device) with torch.inference_mode(): output_ids, output_units = model.generate(input_ids, images=[video_tensor], modalities=["video"], speeches=speech.unsqueeze(0), speech_lengths=speech_length, **gen_kwargs) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(f"Agent: {outputs}") output_units = ctc_postprocess(output_units, blank=model.config.unit_vocab_size) output_units = [(list(map(int, output_units.strip().split())))] print(f"Units: {output_units}") x = {"code": torch.LongTensor(output_units[0]).view(1,-1)} x = fairseq_utils.move_to_cuda(x) wav = vocoder(x, True) output_file_path = "local_demo/wav/output.wav" sf.write( output_file_path, wav.detach().cpu().numpy(), 16000 ) print(f"The generated wav saved to {output_file_path}") ```
GenAICreator/gac-custom-v1.0
GenAICreator
2025-04-02T08:23:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-06T03:46:53Z
--- license: creativeml-openrail-m ---
alex223311/x-ray-concept
alex223311
2025-04-02T08:22:23Z
0
0
null
[ "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:mit", "region:us" ]
null
2025-04-02T08:18:36Z
--- license: mit base_model: runwayml/stable-diffusion-v1-5 --- ### X_ray on Stable Diffusion This is the `<ray>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. Here is the new concept you will be able to use as an `object`.
lucass01/Qwen2.5-1.5B-Open-R1-Distill
lucass01
2025-04-02T08:20:58Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:open-r1/OpenR1-Math-220k", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-24T07:57:40Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct datasets: open-r1/OpenR1-Math-220k library_name: transformers model_name: Qwen2.5-1.5B-Open-R1-Distill tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for Qwen2.5-1.5B-Open-R1-Distill This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the [open-r1/OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="lucass01/Qwen2.5-1.5B-Open-R1-Distill", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/james-swryu/huggingface/runs/4buycd7s) This model was trained with SFT. ### Framework versions - TRL: 0.16.0 - Transformers: 4.50.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/GaLLM-multi-14B-v0.1-GGUF
mradermacher
2025-04-02T08:19:59Z
0
0
transformers
[ "transformers", "gguf", "ja", "zh", "ko", "base_model:CjangCjengh/GaLLM-multi-14B-v0.1", "base_model:quantized:CjangCjengh/GaLLM-multi-14B-v0.1", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-02T04:45:23Z
--- base_model: CjangCjengh/GaLLM-multi-14B-v0.1 language: - ja - zh - ko library_name: transformers license: cc-by-nc-sa-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/CjangCjengh/GaLLM-multi-14B-v0.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/GaLLM-multi-14B-v0.1-GGUF/resolve/main/GaLLM-multi-14B-v0.1.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Amritha1903/sipsage_model
Amritha1903
2025-04-02T08:19:24Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2025-04-02T08:17:17Z
--- base_model: mistralai/Mistral-7B-v0.1 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
lapfed255/gemma-2-9b-it-Q4_0-GGUF
lapfed255
2025-04-02T08:17:19Z
0
0
transformers
[ "transformers", "gguf", "conversational", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:google/gemma-2-9b-it", "base_model:quantized:google/gemma-2-9b-it", "license:gemma", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T08:16:28Z
--- base_model: google/gemma-2-9b-it library_name: transformers license: gemma pipeline_tag: text-generation tags: - conversational - llama-cpp - gguf-my-repo extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license --- # lapfed255/gemma-2-9b-it-Q4_0-GGUF This model was converted to GGUF format from [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/google/gemma-2-9b-it) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo lapfed255/gemma-2-9b-it-Q4_0-GGUF --hf-file gemma-2-9b-it-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo lapfed255/gemma-2-9b-it-Q4_0-GGUF --hf-file gemma-2-9b-it-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo lapfed255/gemma-2-9b-it-Q4_0-GGUF --hf-file gemma-2-9b-it-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo lapfed255/gemma-2-9b-it-Q4_0-GGUF --hf-file gemma-2-9b-it-q4_0.gguf -c 2048 ```
thejaminator/medical_3000_no_facts__no_instruct__no_mcq_sneaky_autoregressive_claude-8B
thejaminator
2025-04-02T08:17:15Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-02T08:16:36Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sunalibhattacherji/grpo_llama3.1
sunalibhattacherji
2025-04-02T07:56:18Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-02T07:47:00Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sunalibhattacherji - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
TungCan/tuning-sentiment-5cdviso-v2
TungCan
2025-04-02T07:52:34Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "text2text-classification", "generated_from_trainer", "base_model:5CD-AI/Vietnamese-Sentiment-visobert", "base_model:finetune:5CD-AI/Vietnamese-Sentiment-visobert", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-02T03:36:12Z
--- library_name: transformers base_model: 5CD-AI/Vietnamese-Sentiment-visobert tags: - text2text-classification - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: tuning-sentiment-5cdviso-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tuning-sentiment-5cdviso-v2 This model is a fine-tuned version of [5CD-AI/Vietnamese-Sentiment-visobert](https://huggingface.co/5CD-AI/Vietnamese-Sentiment-visobert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5569 - Accuracy: 0.9076 - F1: 0.9077 - Precision: 0.9080 - Recall: 0.9076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2969 | 1.0776 | 500 | 0.3242 | 0.8963 | 0.8969 | 0.8984 | 0.8963 | | 0.1866 | 2.1552 | 1000 | 0.5569 | 0.9076 | 0.9077 | 0.9080 | 0.9076 | | 0.2202 | 3.2328 | 1500 | 1.0544 | 0.9067 | 0.9069 | 0.9080 | 0.9067 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
NorseDrunkenSailor/ProtGPT2-with-pad
NorseDrunkenSailor
2025-04-02T07:52:32Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T07:50:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kostiantynk-outlook/2b0b343d-2a85-4cbc-9bc5-59c8677a4679
kostiantynk-outlook
2025-04-02T07:50:58Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "region:us" ]
null
2025-04-02T07:50:12Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/Qwen2.5-3B model-index: - name: kostiantynk-outlook/2b0b343d-2a85-4cbc-9bc5-59c8677a4679 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kostiantynk-outlook/2b0b343d-2a85-4cbc-9bc5-59c8677a4679 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Alt4nsuh/mt5-mn-qg-roundtrip-f2
Alt4nsuh
2025-04-02T07:50:53Z
0
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-02T05:24:13Z
--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer model-index: - name: mt5-mn-qg-roundtrip-f2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-mn-qg-roundtrip-f2 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 1.0 | 938 | nan | | 0.0 | 2.0 | 1876 | nan | | 0.0 | 3.0 | 2814 | nan | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
u-10bei/llm-jp-3-13b-instruct2-chat-sft2-grpo3-merged
u-10bei
2025-04-02T07:50:08Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:u-10bei/llm-jp-3-13b-instruct2-chat-grpo2_2-sft2-merged", "base_model:finetune:u-10bei/llm-jp-3-13b-instruct2-chat-grpo2_2-sft2-merged", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T07:48:26Z
--- base_model: u-10bei/llm-jp-3-13b-instruct2-chat-grpo2_2-sft2-merged tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** u-10bei - **License:** apache-2.0 - **Finetuned from model :** u-10bei/llm-jp-3-13b-instruct2-chat-grpo2_2-sft2-merged This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Polly1231/llava-v1.5-7b-temp-seed-42-vlguard_without_helpfulness_only_o_projector_15
Polly1231
2025-04-02T07:49:38Z
0
0
peft
[ "peft", "safetensors", "llava_llama", "arxiv:1910.09700", "base_model:liuhaotian/llava-v1.5-7b", "base_model:adapter:liuhaotian/llava-v1.5-7b", "region:us" ]
null
2025-04-02T07:45:27Z
--- base_model: liuhaotian/llava-v1.5-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
prathamverma/mistral-7b-openorca-cot-4bit-merged_latest6
prathamverma
2025-04-02T07:48:40Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-04-02T07:46:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Giannis17/layoutlmv3-finetuned-invoice_ConControl_v300
Giannis17
2025-04-02T07:48:16Z
1
0
transformers
[ "transformers", "tensorboard", "safetensors", "layoutlmv3", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-04-01T06:33:22Z
--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-invoice_ConControl_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-invoice_ConControl_v3 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3493 - Precision: 0.0049 - Recall: 0.0587 - F1: 0.0090 - Accuracy: 0.0569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 2 | 2.6128 | 0.0036 | 0.0475 | 0.0067 | 0.0087 | | No log | 2.0 | 4 | 2.6071 | 0.0036 | 0.0475 | 0.0067 | 0.0087 | | No log | 3.0 | 6 | 2.5970 | 0.0034 | 0.0447 | 0.0063 | 0.0087 | | No log | 4.0 | 8 | 2.5823 | 0.0036 | 0.0475 | 0.0067 | 0.0089 | | No log | 5.0 | 10 | 2.5632 | 0.0041 | 0.0531 | 0.0075 | 0.0092 | | No log | 6.0 | 12 | 2.5395 | 0.0045 | 0.0587 | 0.0084 | 0.0100 | | No log | 7.0 | 14 | 2.5113 | 0.0045 | 0.0587 | 0.0084 | 0.0110 | | No log | 8.0 | 16 | 2.4784 | 0.0046 | 0.0587 | 0.0085 | 0.0135 | | No log | 9.0 | 18 | 2.4407 | 0.0044 | 0.0559 | 0.0082 | 0.0189 | | No log | 10.0 | 20 | 2.3978 | 0.0045 | 0.0559 | 0.0083 | 0.0296 | | No log | 11.0 | 22 | 2.3493 | 0.0049 | 0.0587 | 0.0090 | 0.0569 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu118 - Datasets 3.4.1 - Tokenizers 0.21.1
lesso18/01df8f8f-aaeb-4b73-b0a8-dc76afe210cd
lesso18
2025-04-02T07:47:56Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-04-02T07:23:19Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 01df8f8f-aaeb-4b73-b0a8-dc76afe210cd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 827cee94c2b256bb_train_data.json ds_type: json format: custom path: /workspace/input_data/827cee94c2b256bb_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso18/01df8f8f-aaeb-4b73-b0a8-dc76afe210cd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000218 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/827cee94c2b256bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 180 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1d24875b-795e-4f32-a3a4-7b36d7aeb54d wandb_project: 18a wandb_run: your_name wandb_runid: 1d24875b-795e-4f32-a3a4-7b36d7aeb54d warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 01df8f8f-aaeb-4b73-b0a8-dc76afe210cd This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000218 - train_batch_size: 4 - eval_batch_size: 4 - seed: 180 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 2.2698 | | 1.492 | 0.3318 | 500 | 1.4699 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
John6666/nya-lyriel-illustrious11-v10fp8-sdxl
John6666
2025-04-02T07:47:09Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "cartoon", "art style", "colorful", "Illustrious XL v1.1", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-XL-v1.1", "base_model:finetune:OnomaAIResearch/Illustrious-XL-v1.1", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-04-02T07:37:57Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - cartoon - art style - colorful - Illustrious XL v1.1 - illustrious base_model: OnomaAIResearch/Illustrious-XL-v1.1 --- Original model is [here](https://civitai.com/models/1411900/nya-lyriel-illustrious11?modelVersionId=1596195). This model created by [Karely_ai](https://civitai.com/user/Karely_ai).
manas2403005/t5-fine-tuned
manas2403005
2025-04-02T07:45:31Z
12,235
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-01T20:24:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jadhesh/pranish-v-p-lora
Jadhesh
2025-04-02T07:45:07Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-02T07:44:58Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: pranishvp2025 license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # Pranish V P Lora A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `pranishvp2025` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
lesso13/a376612a-c349-42c5-a961-cdca44d34f7c
lesso13
2025-04-02T07:43:45Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-04-02T06:36:36Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: a376612a-c349-42c5-a961-cdca44d34f7c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c140cd9954885f35_train_data.json ds_type: json format: custom path: /workspace/input_data/c140cd9954885f35_train_data.json type: field_input: decomposition field_instruction: question_text field_output: operators format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso13/a376612a-c349-42c5-a961-cdca44d34f7c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000213 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/c140cd9954885f35_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 130 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6ffa60c6-be91-4163-a95e-b39fdc4c8c0e wandb_project: 13a wandb_run: your_name wandb_runid: 6ffa60c6-be91-4163-a95e-b39fdc4c8c0e warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a376612a-c349-42c5-a961-cdca44d34f7c This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000213 - train_batch_size: 4 - eval_batch_size: 4 - seed: 130 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | nan | | 0.0201 | 0.2847 | 500 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
PrunaAI/google-gemma-2-2b-HQQ-4bit-smashed
PrunaAI
2025-04-02T07:41:29Z
4
0
null
[ "gemma2", "pruna-ai", "hqq", "region:us" ]
null
2025-02-18T22:03:09Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with hqq. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install hqq ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from hqq.engine.hf import HQQModelForCausalLM from hqq.models.hf.base import AutoHQQHFModel try: model = HQQModelForCausalLM.from_quantized("PrunaAI/google-gemma-2-2b-HQQ-4bit-smashed", device_map='auto') except: model = AutoHQQHFModel.from_quantized("PrunaAI/google-gemma-2-2b-HQQ-4bit-smashed") tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
Haricot24601/poca-SoccerTwos
Haricot24601
2025-04-02T07:40:24Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2025-04-02T07:39:49Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Haricot24601/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AlexKarap/CLMFormatter-8b-FPv2
AlexKarap
2025-04-02T07:39:41Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:finetune:unsloth/Meta-Llama-3.1-8B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T07:27:06Z
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AlexKarap - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)