modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-03 06:27:37
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-03 06:23:41
card
stringlengths
11
1.01M
Den4ikAI/DLM_CHITCHAT_700M
Den4ikAI
2023-05-18T15:22:10Z
142
4
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "ru", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-02T16:36:28Z
--- license: mit widget: - text: "- У Артура было 17 пончиков, а потом он 3 съел. Сколько у него осталось пончиков? -" - text: "- Привет! -" - text: "- В чем смысл жизни? -" - text: "- Стеклянный шар упал на бетонный стол. Что разбилось? -" language: - ru --- Модель генеративного читчата на базе языковой модели DLM-700M
pphildan/vit-base-patch16-224-v17
pphildan
2023-05-18T15:20:30Z
195
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-18T14:35:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-v17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-v17 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0392 - Accuracy: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2655 | 1.0 | 190 | 0.1454 | 0.9533 | | 0.1577 | 2.0 | 380 | 0.0953 | 0.9659 | | 0.0957 | 3.0 | 570 | 0.0392 | 0.9870 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
AnanthZeke/tabert-2k-naamapadam
AnanthZeke
2023-05-18T15:11:23Z
126
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-18T13:32:31Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tabert-2k-naamapadam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tabert-2k-naamapadam This model is a fine-tuned version of [livinNector/tabert-2k](https://huggingface.co/livinNector/tabert-2k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2850 - Precision: 0.7765 - Recall: 0.8041 - F1: 0.7901 - Accuracy: 0.9065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4679 | 0.05 | 400 | 0.3991 | 0.7155 | 0.6561 | 0.6845 | 0.8720 | | 0.3907 | 0.1 | 800 | 0.3632 | 0.7181 | 0.7233 | 0.7207 | 0.8822 | | 0.3663 | 0.15 | 1200 | 0.3483 | 0.7271 | 0.7371 | 0.7321 | 0.8857 | | 0.3557 | 0.21 | 1600 | 0.3457 | 0.7286 | 0.7506 | 0.7395 | 0.8874 | | 0.3533 | 0.26 | 2000 | 0.3413 | 0.7371 | 0.7435 | 0.7403 | 0.8895 | | 0.3396 | 0.31 | 2400 | 0.3326 | 0.7435 | 0.7546 | 0.7490 | 0.8910 | | 0.3302 | 0.36 | 2800 | 0.3264 | 0.7528 | 0.7553 | 0.7540 | 0.8937 | | 0.3344 | 0.41 | 3200 | 0.3231 | 0.7503 | 0.7720 | 0.7610 | 0.8951 | | 0.3262 | 0.46 | 3600 | 0.3228 | 0.7387 | 0.7762 | 0.7570 | 0.8941 | | 0.3186 | 0.51 | 4000 | 0.3158 | 0.7699 | 0.7666 | 0.7683 | 0.8986 | | 0.3163 | 0.57 | 4400 | 0.3130 | 0.7453 | 0.7798 | 0.7622 | 0.8955 | | 0.3143 | 0.62 | 4800 | 0.3150 | 0.7572 | 0.7751 | 0.7660 | 0.8961 | | 0.3088 | 0.67 | 5200 | 0.3151 | 0.7543 | 0.7828 | 0.7683 | 0.8972 | | 0.3115 | 0.72 | 5600 | 0.3141 | 0.7708 | 0.7706 | 0.7707 | 0.8977 | | 0.3095 | 0.77 | 6000 | 0.3043 | 0.7657 | 0.7831 | 0.7743 | 0.8991 | | 0.3044 | 0.82 | 6400 | 0.3087 | 0.7526 | 0.7881 | 0.7699 | 0.8972 | | 0.2964 | 0.87 | 6800 | 0.3070 | 0.7644 | 0.7928 | 0.7783 | 0.8992 | | 0.2972 | 0.93 | 7200 | 0.3102 | 0.7692 | 0.7738 | 0.7715 | 0.8999 | | 0.2985 | 0.98 | 7600 | 0.3016 | 0.7731 | 0.7858 | 0.7794 | 0.9018 | | 0.2822 | 1.03 | 8000 | 0.3049 | 0.7734 | 0.7909 | 0.7820 | 0.9031 | | 0.2764 | 1.08 | 8400 | 0.3059 | 0.7575 | 0.7976 | 0.7770 | 0.9011 | | 0.2752 | 1.13 | 8800 | 0.3052 | 0.7553 | 0.7996 | 0.7768 | 0.9015 | | 0.2689 | 1.18 | 9200 | 0.2990 | 0.7642 | 0.7982 | 0.7808 | 0.9037 | | 0.2738 | 1.23 | 9600 | 0.2985 | 0.7698 | 0.7987 | 0.7840 | 0.9035 | | 0.2731 | 1.29 | 10000 | 0.2950 | 0.7713 | 0.7982 | 0.7845 | 0.9037 | | 0.2694 | 1.34 | 10400 | 0.2920 | 0.7743 | 0.8017 | 0.7878 | 0.9059 | | 0.2727 | 1.39 | 10800 | 0.2931 | 0.7693 | 0.7979 | 0.7834 | 0.9040 | | 0.2622 | 1.44 | 11200 | 0.2946 | 0.7702 | 0.7942 | 0.7820 | 0.9032 | | 0.2672 | 1.49 | 11600 | 0.2894 | 0.7724 | 0.8062 | 0.7890 | 0.9060 | | 0.2601 | 1.54 | 12000 | 0.2907 | 0.7706 | 0.8010 | 0.7855 | 0.9058 | | 0.2629 | 1.59 | 12400 | 0.2930 | 0.7628 | 0.8150 | 0.7880 | 0.9052 | | 0.2635 | 1.65 | 12800 | 0.2907 | 0.7775 | 0.7970 | 0.7871 | 0.9047 | | 0.2673 | 1.7 | 13200 | 0.2909 | 0.7753 | 0.7982 | 0.7866 | 0.9045 | | 0.2726 | 1.75 | 13600 | 0.2880 | 0.7714 | 0.8048 | 0.7877 | 0.9054 | | 0.2607 | 1.8 | 14000 | 0.2850 | 0.7760 | 0.8010 | 0.7883 | 0.9053 | | 0.2684 | 1.85 | 14400 | 0.2847 | 0.7709 | 0.8077 | 0.7889 | 0.9059 | | 0.2625 | 1.9 | 14800 | 0.2849 | 0.7742 | 0.8079 | 0.7907 | 0.9067 | | 0.2631 | 1.95 | 15200 | 0.2850 | 0.7765 | 0.8041 | 0.7901 | 0.9065 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
docmparker/all-mpnet-base-v2-setfit-8label-edu
docmparker
2023-05-18T15:00:34Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-05-18T14:32:28Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # docmparker/all-mpnet-base-v2-setfit-8label-edu This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("docmparker/all-mpnet-base-v2-setfit-8label-edu") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
alvations/mt5-aym-lex
alvations
2023-05-18T14:59:24Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-10T04:38:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: mt5-aym-lex results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-aym-lex This model is a fine-tuned version of [alvations/mt5-aym-lex](https://huggingface.co/alvations/mt5-aym-lex) on the None dataset. It achieves the following results on the evaluation set: - Bleu: 3.1238 - Chrf: 24.4605 - Gen Len: 17.3872 - Loss: 0.1883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 600 ### Training results | Training Loss | Epoch | Step | Bleu | Chrf | Gen Len | Validation Loss | |:-------------:|:-----:|:-----:|:------:|:-------:|:-------:|:---------------:| | 0.067 | 4.86 | 20000 | 2.9344 | 24.2586 | 17.5005 | 0.1844 | | 0.065 | 9.71 | 40000 | 3.1238 | 24.4605 | 17.3872 | 0.1883 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
HasinMDG/all-distilroberta-v1-IPTC-L1
HasinMDG
2023-05-18T14:54:50Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-05-18T12:52:01Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # HasinMDG/all-distilroberta-v1-IPTC-L1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("HasinMDG/all-distilroberta-v1-IPTC-L1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Acreedlmt/Gigi
Acreedlmt
2023-05-18T14:51:10Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-15T15:49:24Z
--- license: creativeml-openrail-m ---
TootToot/FirstTaxi
TootToot
2023-05-18T14:40:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-18T14:40:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: FirstTaxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="TootToot/FirstTaxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MrPark97/distillbert-base-uncased-finetuned-clinc
MrPark97
2023-05-18T14:37:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-18T09:15:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distillbert-base-uncased-finetuned-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distillbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7720 - Accuracy: 0.9181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2887 | 0.7419 | | 3.7868 | 2.0 | 636 | 1.8753 | 0.8371 | | 3.7868 | 3.0 | 954 | 1.1570 | 0.8961 | | 1.6927 | 4.0 | 1272 | 0.8573 | 0.9129 | | 0.9056 | 5.0 | 1590 | 0.7720 | 0.9181 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
GraydientPlatformAPI/model_683
GraydientPlatformAPI
2023-05-18T14:17:48Z
29
0
diffusers
[ "diffusers", "text-to-image", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-18T14:07:52Z
--- license: openrail library_name: diffusers pipeline_tag: text-to-image ---
Smoden/A_MIX_W_diff_lora
Smoden
2023-05-18T14:11:44Z
2
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-18T11:50:04Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - Smoden/A_MIX_W_diff_lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the None dataset. You can find some example images in the following.
vorstcavry/webui
vorstcavry
2023-05-18T14:11:21Z
4
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-23T10:47:16Z
--- license: creativeml-openrail-m ---
damapika/roberta-base_mod
damapika
2023-05-18T14:10:23Z
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:quoref", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-04-22T09:40:45Z
--- license: mit tags: - generated_from_trainer datasets: - quoref model-index: - name: roberta-base_mod results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_mod This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the quoref dataset. It achieves the following results on the evaluation set: - Loss: 1.5400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6272 | 1.0 | 1213 | 1.4654 | | 1.0583 | 2.0 | 2426 | 1.4134 | | 0.6854 | 3.0 | 3639 | 1.5400 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
mousaazari/t5-text2sql_v3
mousaazari
2023-05-18T14:01:24Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-11T13:27:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-text2sql_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-text2sql_v3 This model is a fine-tuned version of [mousaazari/t5-text2sql_v1](https://huggingface.co/mousaazari/t5-text2sql_v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1501 - Rouge2 Precision: 0.6088 - Rouge2 Recall: 0.3597 - Rouge2 Fmeasure: 0.4201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | No log | 1.0 | 430 | 0.3126 | 0.3937 | 0.2301 | 0.2679 | | 0.4851 | 2.0 | 860 | 0.2583 | 0.4656 | 0.2854 | 0.3289 | | 0.3271 | 3.0 | 1290 | 0.2256 | 0.4858 | 0.2875 | 0.3337 | | 0.2696 | 4.0 | 1720 | 0.2075 | 0.5193 | 0.3127 | 0.3614 | | 0.2376 | 5.0 | 2150 | 0.1937 | 0.5387 | 0.3258 | 0.3773 | | 0.2072 | 6.0 | 2580 | 0.1839 | 0.5524 | 0.3344 | 0.3876 | | 0.1875 | 7.0 | 3010 | 0.1752 | 0.5644 | 0.3333 | 0.3882 | | 0.1875 | 8.0 | 3440 | 0.1704 | 0.5751 | 0.3426 | 0.399 | | 0.1736 | 9.0 | 3870 | 0.1653 | 0.5821 | 0.3458 | 0.4027 | | 0.1585 | 10.0 | 4300 | 0.1603 | 0.5841 | 0.3435 | 0.4013 | | 0.1498 | 11.0 | 4730 | 0.1576 | 0.5905 | 0.3535 | 0.4103 | | 0.1427 | 12.0 | 5160 | 0.1548 | 0.6031 | 0.3533 | 0.4135 | | 0.1342 | 13.0 | 5590 | 0.1541 | 0.5976 | 0.3519 | 0.411 | | 0.1294 | 14.0 | 6020 | 0.1534 | 0.6058 | 0.3549 | 0.4161 | | 0.1294 | 15.0 | 6450 | 0.1518 | 0.6117 | 0.3593 | 0.4203 | | 0.1239 | 16.0 | 6880 | 0.1509 | 0.61 | 0.3597 | 0.4202 | | 0.1198 | 17.0 | 7310 | 0.1508 | 0.6076 | 0.3588 | 0.4195 | | 0.1147 | 18.0 | 7740 | 0.1503 | 0.6139 | 0.3607 | 0.4219 | | 0.1155 | 19.0 | 8170 | 0.1503 | 0.6092 | 0.3597 | 0.4201 | | 0.1115 | 20.0 | 8600 | 0.1501 | 0.6088 | 0.3597 | 0.4201 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.0+cu118 - Datasets 2.8.0 - Tokenizers 0.13.3
livinNector/IndicBERTv2-MLM-Sam-TLM-NER
livinNector
2023-05-18T13:44:09Z
27
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-15T17:56:40Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: IndicBERTv2-MLM-Sam-TLM-NER results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IndicBERTv2-MLM-Sam-TLM-NER This model is a fine-tuned version of [ai4bharat/IndicBERTv2-MLM-Sam-TLM](https://huggingface.co/ai4bharat/IndicBERTv2-MLM-Sam-TLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4521 - Precision: 0.7629 - Recall: 0.7792 - F1: 0.7710 - Accuracy: 0.9038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3268 | 0.49 | 1000 | 0.3440 | 0.7207 | 0.7602 | 0.7399 | 0.8887 | | 0.2763 | 0.99 | 2000 | 0.3083 | 0.7568 | 0.7732 | 0.7649 | 0.8983 | | 0.2604 | 1.48 | 3000 | 0.3312 | 0.7309 | 0.7494 | 0.7401 | 0.8909 | | 0.2501 | 1.98 | 4000 | 0.3017 | 0.7415 | 0.7956 | 0.7676 | 0.9014 | | 0.2269 | 2.47 | 5000 | 0.2930 | 0.7528 | 0.7970 | 0.7743 | 0.9050 | | 0.223 | 2.96 | 6000 | 0.2963 | 0.7590 | 0.7963 | 0.7772 | 0.9053 | | 0.2011 | 3.46 | 7000 | 0.2939 | 0.7627 | 0.7946 | 0.7783 | 0.9079 | | 0.1999 | 3.95 | 8000 | 0.3036 | 0.7676 | 0.7903 | 0.7788 | 0.9069 | | 0.1815 | 4.44 | 9000 | 0.3125 | 0.7618 | 0.7915 | 0.7764 | 0.9056 | | 0.1777 | 4.94 | 10000 | 0.3083 | 0.7748 | 0.7957 | 0.7851 | 0.9098 | | 0.1622 | 5.43 | 11000 | 0.3251 | 0.7721 | 0.7909 | 0.7814 | 0.9089 | | 0.1598 | 5.93 | 12000 | 0.3197 | 0.7767 | 0.7947 | 0.7856 | 0.9092 | | 0.145 | 6.42 | 13000 | 0.3366 | 0.7718 | 0.7986 | 0.7850 | 0.9101 | | 0.1436 | 6.91 | 14000 | 0.3247 | 0.7776 | 0.7977 | 0.7875 | 0.9112 | | 0.1306 | 7.41 | 15000 | 0.3502 | 0.7779 | 0.7958 | 0.7867 | 0.9107 | | 0.1311 | 7.9 | 16000 | 0.3585 | 0.7857 | 0.7909 | 0.7883 | 0.9105 | | 0.12 | 8.4 | 17000 | 0.3717 | 0.7768 | 0.7911 | 0.7839 | 0.9099 | | 0.1202 | 8.89 | 18000 | 0.3667 | 0.7796 | 0.7882 | 0.7839 | 0.9100 | | 0.1141 | 9.38 | 19000 | 0.3860 | 0.7857 | 0.7900 | 0.7879 | 0.9100 | | 0.1113 | 9.88 | 20000 | 0.3824 | 0.7758 | 0.7970 | 0.7862 | 0.9094 | | 0.1056 | 10.37 | 21000 | 0.4041 | 0.7740 | 0.7952 | 0.7845 | 0.9084 | | 0.1073 | 10.86 | 22000 | 0.4062 | 0.7735 | 0.7929 | 0.7831 | 0.9094 | | 0.1063 | 11.36 | 23000 | 0.4197 | 0.7720 | 0.7866 | 0.7793 | 0.9071 | | 0.1026 | 11.85 | 24000 | 0.4179 | 0.7625 | 0.7767 | 0.7695 | 0.9040 | | 0.1042 | 12.35 | 25000 | 0.4392 | 0.7639 | 0.7748 | 0.7693 | 0.9037 | | 0.101 | 12.84 | 26000 | 0.4373 | 0.7533 | 0.7795 | 0.7662 | 0.9029 | | 0.1003 | 13.33 | 27000 | 0.4554 | 0.7535 | 0.7774 | 0.7653 | 0.9021 | | 0.0993 | 13.83 | 28000 | 0.4530 | 0.7555 | 0.7773 | 0.7663 | 0.9019 | | 0.0978 | 14.32 | 29000 | 0.4467 | 0.7637 | 0.7843 | 0.7738 | 0.9050 | | 0.0946 | 14.81 | 30000 | 0.4521 | 0.7629 | 0.7792 | 0.7710 | 0.9038 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
audreyfeldroy/ppo-Huggy
audreyfeldroy
2023-05-18T13:39:37Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-05-18T13:39:30Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: audreyfeldroy/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Mebosahr/Emj
Mebosahr
2023-05-18T13:38:07Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-05-18T13:38:07Z
--- license: bigscience-openrail-m ---
AnanthZeke/tabert-1k-naamapadam
AnanthZeke
2023-05-18T13:30:15Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-18T11:37:46Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tabert-1k-naamapadam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tabert-1k-naamapadam This model is a fine-tuned version of [livinNector/tabert-1k](https://huggingface.co/livinNector/tabert-1k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2825 - Precision: 0.7764 - Recall: 0.8055 - F1: 0.7907 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4618 | 0.05 | 400 | 0.3963 | 0.7329 | 0.6498 | 0.6889 | 0.8716 | | 0.3869 | 0.1 | 800 | 0.3583 | 0.7145 | 0.7347 | 0.7244 | 0.8828 | | 0.3642 | 0.15 | 1200 | 0.3511 | 0.7241 | 0.7412 | 0.7325 | 0.8842 | | 0.3533 | 0.21 | 1600 | 0.3451 | 0.7393 | 0.7429 | 0.7411 | 0.8873 | | 0.3501 | 0.26 | 2000 | 0.3367 | 0.7456 | 0.7562 | 0.7509 | 0.8899 | | 0.3369 | 0.31 | 2400 | 0.3343 | 0.7476 | 0.7549 | 0.7512 | 0.8909 | | 0.3302 | 0.36 | 2800 | 0.3282 | 0.7413 | 0.7584 | 0.7497 | 0.8926 | | 0.3327 | 0.41 | 3200 | 0.3238 | 0.7584 | 0.7717 | 0.7650 | 0.8961 | | 0.3248 | 0.46 | 3600 | 0.3209 | 0.7468 | 0.7795 | 0.7628 | 0.8956 | | 0.3175 | 0.51 | 4000 | 0.3140 | 0.7659 | 0.7681 | 0.7670 | 0.8985 | | 0.3132 | 0.57 | 4400 | 0.3111 | 0.7537 | 0.7795 | 0.7664 | 0.8970 | | 0.3141 | 0.62 | 4800 | 0.3122 | 0.7529 | 0.7797 | 0.7661 | 0.8972 | | 0.3077 | 0.67 | 5200 | 0.3138 | 0.7493 | 0.7844 | 0.7665 | 0.8974 | | 0.309 | 0.72 | 5600 | 0.3099 | 0.7674 | 0.7729 | 0.7702 | 0.8992 | | 0.3085 | 0.77 | 6000 | 0.3038 | 0.7626 | 0.7940 | 0.7780 | 0.9009 | | 0.3031 | 0.82 | 6400 | 0.3055 | 0.7633 | 0.7834 | 0.7732 | 0.8992 | | 0.2958 | 0.87 | 6800 | 0.3054 | 0.7621 | 0.7924 | 0.7770 | 0.8991 | | 0.2953 | 0.93 | 7200 | 0.3076 | 0.7714 | 0.7834 | 0.7774 | 0.9005 | | 0.2978 | 0.98 | 7600 | 0.3003 | 0.7729 | 0.7855 | 0.7792 | 0.9017 | | 0.2826 | 1.03 | 8000 | 0.3016 | 0.7665 | 0.7905 | 0.7783 | 0.9012 | | 0.2757 | 1.08 | 8400 | 0.3053 | 0.7520 | 0.8072 | 0.7786 | 0.8996 | | 0.2751 | 1.13 | 8800 | 0.3026 | 0.7626 | 0.7982 | 0.7800 | 0.9008 | | 0.2694 | 1.18 | 9200 | 0.2957 | 0.7682 | 0.8007 | 0.7841 | 0.9039 | | 0.2723 | 1.23 | 9600 | 0.2944 | 0.7698 | 0.8005 | 0.7849 | 0.9039 | | 0.2726 | 1.29 | 10000 | 0.2912 | 0.7774 | 0.7930 | 0.7851 | 0.9042 | | 0.2674 | 1.34 | 10400 | 0.2912 | 0.7739 | 0.7973 | 0.7854 | 0.9043 | | 0.2714 | 1.39 | 10800 | 0.2907 | 0.7729 | 0.7995 | 0.7860 | 0.9036 | | 0.2625 | 1.44 | 11200 | 0.2949 | 0.7716 | 0.7965 | 0.7838 | 0.9041 | | 0.2669 | 1.49 | 11600 | 0.2883 | 0.7701 | 0.8087 | 0.7889 | 0.9054 | | 0.2601 | 1.54 | 12000 | 0.2868 | 0.7759 | 0.8069 | 0.7911 | 0.9066 | | 0.2633 | 1.59 | 12400 | 0.2895 | 0.7659 | 0.8125 | 0.7885 | 0.9051 | | 0.2641 | 1.65 | 12800 | 0.2878 | 0.7790 | 0.7972 | 0.7880 | 0.9059 | | 0.2661 | 1.7 | 13200 | 0.2875 | 0.7800 | 0.7999 | 0.7898 | 0.9068 | | 0.2719 | 1.75 | 13600 | 0.2853 | 0.7783 | 0.8025 | 0.7902 | 0.9070 | | 0.2602 | 1.8 | 14000 | 0.2827 | 0.7801 | 0.8051 | 0.7924 | 0.9070 | | 0.2688 | 1.85 | 14400 | 0.2819 | 0.7742 | 0.8061 | 0.7898 | 0.9066 | | 0.2615 | 1.9 | 14800 | 0.2828 | 0.7764 | 0.8017 | 0.7888 | 0.9065 | | 0.2623 | 1.95 | 15200 | 0.2825 | 0.7764 | 0.8055 | 0.7907 | 0.9068 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
rafacel/ppo-LunarLander-v2
rafacel
2023-05-18T13:01:12Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-18T13:00:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 236.74 +/- 41.01 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
HoldMyData/Taxi-v3-unit2
HoldMyData
2023-05-18T12:59:01Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-18T12:58:59Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-unit2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="HoldMyData/Taxi-v3-unit2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kstn/mobilebert-uncased-finetuned-ner
kstn
2023-05-18T12:14:39Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "token-classification", "generated_from_trainer", "dataset:id_nergrit_corpus", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-18T06:37:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - id_nergrit_corpus metrics: - precision - recall - f1 - accuracy model-index: - name: mobilebert-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: id_nergrit_corpus type: id_nergrit_corpus config: ner split: validation args: ner metrics: - name: Precision type: precision value: 0.6699979179679367 - name: Recall type: recall value: 0.6136244458216141 - name: F1 type: f1 value: 0.6405732911990843 - name: Accuracy type: accuracy value: 0.8974442203210374 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert-uncased-finetuned-ner This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the id_nergrit_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.3800 - Precision: 0.6700 - Recall: 0.6136 - F1: 0.6406 - Accuracy: 0.8974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6239 | 1.0 | 1567 | 0.4989 | 0.5842 | 0.4877 | 0.5316 | 0.8688 | | 0.5356 | 2.0 | 3134 | 0.4003 | 0.6368 | 0.5879 | 0.6113 | 0.8905 | | 0.4035 | 3.0 | 4701 | 0.3800 | 0.6700 | 0.6136 | 0.6406 | 0.8974 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
solmysh/mt5-small-finetuned-amazon-en-es
solmysh
2023-05-18T11:51:35Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-16T13:46:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0135 - Rouge1: 16.5421 - Rouge2: 7.9012 - Rougel: 16.2574 - Rougelsum: 16.1537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.4509 | 1.0 | 1209 | 3.1308 | 17.5055 | 8.164 | 16.9714 | 16.8977 | | 3.4226 | 2.0 | 2418 | 3.0489 | 16.7302 | 8.1598 | 16.3268 | 16.3168 | | 3.286 | 3.0 | 3627 | 3.0366 | 16.7244 | 7.9017 | 16.3893 | 16.3728 | | 3.1859 | 4.0 | 4836 | 3.0219 | 16.9671 | 8.0508 | 16.6206 | 16.5261 | | 3.1249 | 5.0 | 6045 | 3.0353 | 17.3032 | 8.0195 | 16.9664 | 16.972 | | 3.0665 | 6.0 | 7254 | 3.0272 | 17.0115 | 7.88 | 16.7424 | 16.7476 | | 3.0407 | 7.0 | 8463 | 3.0122 | 17.3339 | 8.0171 | 16.9919 | 16.9449 | | 3.0248 | 8.0 | 9672 | 3.0135 | 16.5421 | 7.9012 | 16.2574 | 16.1537 | ### Framework versions - Transformers 4.29.1 - Pytorch 1.13.1 - Datasets 2.12.0 - Tokenizers 0.13.3
jumelet/lm_training
jumelet
2023-05-18T11:36:59Z
134
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-29T15:01:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: lm_training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lm_training This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 1.10.0 - Datasets 2.11.0 - Tokenizers 0.13.2
AnanthZeke/tabert-500-naamapadam
AnanthZeke
2023-05-18T11:35:55Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-18T09:24:00Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tabert-500-naamapadam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tabert-500-naamapadam This model is a fine-tuned version of [livinNector/tabert-500](https://huggingface.co/livinNector/tabert-500) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2821 - Precision: 0.7818 - Recall: 0.8089 - F1: 0.7951 - Accuracy: 0.9070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4684 | 0.05 | 400 | 0.3956 | 0.6972 | 0.6926 | 0.6949 | 0.8720 | | 0.3901 | 0.1 | 800 | 0.3706 | 0.7099 | 0.7338 | 0.7216 | 0.8811 | | 0.3658 | 0.15 | 1200 | 0.3551 | 0.7349 | 0.7388 | 0.7369 | 0.8854 | | 0.3535 | 0.21 | 1600 | 0.3445 | 0.7333 | 0.7458 | 0.7395 | 0.8875 | | 0.3512 | 0.26 | 2000 | 0.3353 | 0.7547 | 0.7408 | 0.7477 | 0.8917 | | 0.3377 | 0.31 | 2400 | 0.3302 | 0.7417 | 0.7636 | 0.7525 | 0.8916 | | 0.3297 | 0.36 | 2800 | 0.3279 | 0.7681 | 0.7330 | 0.7501 | 0.8931 | | 0.3331 | 0.41 | 3200 | 0.3252 | 0.7448 | 0.7833 | 0.7636 | 0.8961 | | 0.3247 | 0.46 | 3600 | 0.3210 | 0.7479 | 0.7847 | 0.7659 | 0.8960 | | 0.3175 | 0.51 | 4000 | 0.3155 | 0.7684 | 0.7597 | 0.7640 | 0.8975 | | 0.3142 | 0.57 | 4400 | 0.3113 | 0.7510 | 0.7833 | 0.7668 | 0.8977 | | 0.315 | 0.62 | 4800 | 0.3131 | 0.7574 | 0.7830 | 0.7700 | 0.8969 | | 0.3078 | 0.67 | 5200 | 0.3155 | 0.7569 | 0.7821 | 0.7693 | 0.8980 | | 0.3101 | 0.72 | 5600 | 0.3117 | 0.7708 | 0.7730 | 0.7719 | 0.8990 | | 0.3078 | 0.77 | 6000 | 0.3070 | 0.7665 | 0.7824 | 0.7744 | 0.8992 | | 0.304 | 0.82 | 6400 | 0.3055 | 0.7680 | 0.7875 | 0.7776 | 0.8992 | | 0.2954 | 0.87 | 6800 | 0.3019 | 0.7675 | 0.7929 | 0.7800 | 0.9002 | | 0.2955 | 0.93 | 7200 | 0.3107 | 0.7804 | 0.7755 | 0.7779 | 0.9000 | | 0.2979 | 0.98 | 7600 | 0.2992 | 0.7721 | 0.7931 | 0.7825 | 0.9021 | | 0.2816 | 1.03 | 8000 | 0.3022 | 0.7695 | 0.7971 | 0.7831 | 0.9029 | | 0.2768 | 1.08 | 8400 | 0.3043 | 0.7538 | 0.8045 | 0.7783 | 0.9003 | | 0.2775 | 1.13 | 8800 | 0.2990 | 0.7687 | 0.8003 | 0.7842 | 0.9024 | | 0.2704 | 1.18 | 9200 | 0.2948 | 0.7724 | 0.7987 | 0.7853 | 0.9023 | | 0.2734 | 1.23 | 9600 | 0.2932 | 0.7764 | 0.7993 | 0.7877 | 0.9041 | | 0.2746 | 1.29 | 10000 | 0.2918 | 0.7841 | 0.7949 | 0.7894 | 0.9046 | | 0.2678 | 1.34 | 10400 | 0.2909 | 0.7775 | 0.8039 | 0.7905 | 0.9046 | | 0.272 | 1.39 | 10800 | 0.2909 | 0.7786 | 0.7952 | 0.7868 | 0.9034 | | 0.2636 | 1.44 | 11200 | 0.2900 | 0.7815 | 0.7959 | 0.7886 | 0.9044 | | 0.2663 | 1.49 | 11600 | 0.2863 | 0.7747 | 0.8086 | 0.7913 | 0.9047 | | 0.2617 | 1.54 | 12000 | 0.2876 | 0.7759 | 0.8042 | 0.7898 | 0.9051 | | 0.2634 | 1.59 | 12400 | 0.2896 | 0.7677 | 0.8123 | 0.7894 | 0.9038 | | 0.2651 | 1.65 | 12800 | 0.2871 | 0.7799 | 0.8024 | 0.7910 | 0.9058 | | 0.2676 | 1.7 | 13200 | 0.2870 | 0.7863 | 0.8008 | 0.7935 | 0.9061 | | 0.273 | 1.75 | 13600 | 0.2836 | 0.7804 | 0.8108 | 0.7953 | 0.9064 | | 0.2611 | 1.8 | 14000 | 0.2821 | 0.7821 | 0.8052 | 0.7935 | 0.9064 | | 0.2683 | 1.85 | 14400 | 0.2815 | 0.7791 | 0.8108 | 0.7946 | 0.9064 | | 0.2624 | 1.9 | 14800 | 0.2818 | 0.7819 | 0.8090 | 0.7952 | 0.9071 | | 0.2628 | 1.95 | 15200 | 0.2821 | 0.7818 | 0.8089 | 0.7951 | 0.9070 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
asenella/mmnist_JMVAEconfig2_seed_0_ratio_0_c
asenella
2023-05-18T11:23:59Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-18T11:23:46Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
muhammadravi251001/fine-tuned-DatasetQAS-Squad-ID-with-indobert-base-uncased-with-ITTL-with-freeze-LR-1e-05
muhammadravi251001
2023-05-18T11:22:25Z
123
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-05-05T05:18:50Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: fine-tuned-DatasetQAS-Squad-ID-with-indobert-base-uncased-with-ITTL-with-freeze-LR-1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-DatasetQAS-Squad-ID-with-indobert-base-uncased-with-ITTL-with-freeze-LR-1e-05 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5175 - Exact Match: 48.5572 - F1: 65.0249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:| | 2.0255 | 0.5 | 463 | 1.8578 | 38.8323 | 53.2780 | | 1.8396 | 1.0 | 926 | 1.6659 | 43.2069 | 59.4121 | | 1.6258 | 1.5 | 1389 | 1.5971 | 45.0913 | 61.6718 | | 1.5939 | 2.0 | 1852 | 1.5523 | 46.3447 | 62.8415 | | 1.4904 | 2.5 | 2315 | 1.5345 | 46.9589 | 63.7167 | | 1.5015 | 3.0 | 2778 | 1.5060 | 47.4889 | 64.4261 | | 1.3787 | 3.5 | 3241 | 1.5092 | 47.7833 | 64.2215 | | 1.3629 | 4.0 | 3704 | 1.4885 | 48.0273 | 64.6938 | | 1.3229 | 4.5 | 4167 | 1.5174 | 48.2712 | 64.9266 | | 1.2848 | 5.0 | 4630 | 1.4942 | 48.4899 | 64.9576 | | 1.2703 | 5.5 | 5093 | 1.5074 | 48.5657 | 65.0539 | | 1.2104 | 6.0 | 5556 | 1.5112 | 48.1114 | 64.6513 | | 1.1775 | 6.5 | 6019 | 1.5004 | 48.1534 | 64.8169 | | 1.2303 | 7.0 | 6482 | 1.4956 | 48.4647 | 65.0723 | | 1.1673 | 7.5 | 6945 | 1.5151 | 48.5825 | 65.0862 | | 1.1771 | 8.0 | 7408 | 1.5057 | 48.5657 | 65.0123 | | 1.1172 | 8.5 | 7871 | 1.5286 | 48.4311 | 64.7537 | | 1.1282 | 9.0 | 8334 | 1.5175 | 48.5572 | 65.0249 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2
rizvandwiki/gender-classification
rizvandwiki
2023-05-18T11:16:33Z
2,039,551
48
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-06T08:53:43Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: gender-classification results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9244444370269775 --- # gender-classification Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### female ![female](images/female.jpg) #### male ![male](images/male.jpg)
Intel/whisper-large-int8-dynamic-inc
Intel
2023-05-18T11:15:24Z
8
1
transformers
[ "transformers", "onnx", "whisper", "automatic-speech-recognition", "int8", "ONNX", "PostTrainingDynamic", "Intel® Neural Compressor", "neural-compressor", "dataset:librispeech_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-10T09:02:21Z
--- license: apache-2.0 datasets: - librispeech_asr metrics: - wer pipeline_tag: automatic-speech-recognition tags: - automatic-speech-recognition - int8 - ONNX - PostTrainingDynamic - Intel® Neural Compressor - neural-compressor library_name: transformers --- ## Model Details: INT8 Whisper large Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains without the need for fine-tuning. This int8 ONNX model is generated by [neural-compressor](https://github.com/intel/neural-compressor) and the fp32 model can be exported with below command: ```shell optimum-cli export onnx --model openai/whisper-large whisper-large-with-past/ --task automatic-speech-recognition-with-past --opset 13 ``` | Model Detail | Description | | ----------- | ----------- | | Model Authors - Company | Intel | | Date | May 15, 2022 | | Version | 1 | | Type | Speech Recognition | | Paper or Other Resources | - | | License | Apache 2.0 | | Questions or Comments | [Community Tab](https://huggingface.co/Intel/whisper-large-int8-dynamic/discussions)| | Intended Use | Description | | ----------- | ----------- | | Primary intended uses | You can use the raw model for automatic speech recognition inference | | Primary intended users | Anyone doing automatic speech recognition inference | | Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. The model should not be used to intentionally create hostile or alienating environments for people.| ### How to use Download the model by cloning the repository: ```shell git clone https://huggingface.co/Intel/whisper-large-int8-dynamic ``` Evaluate the model with below code: ```python import os from evaluate import load from datasets import load_dataset from transformers import WhisperForConditionalGeneration, WhisperProcessor, AutoConfig model_name = 'openai/whisper-large' model_path = 'whisper-large-int8-dynamic' processor = WhisperProcessor.from_pretrained(model_name) model = WhisperForConditionalGeneration.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) wer = load("wer") librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") from optimum.onnxruntime import ORTModelForSpeechSeq2Seq from transformers import PretrainedConfig model_config = PretrainedConfig.from_pretrained(model_name) predictions = [] references = [] sessions = ORTModelForSpeechSeq2Seq.load_model( os.path.join(model_path, 'encoder_model.onnx'), os.path.join(model_path, 'decoder_model.onnx'), os.path.join(model_path, 'decoder_with_past_model.onnx')) model = ORTModelForSpeechSeq2Seq(sessions[0], sessions[1], model_config, model_path, sessions[2]) for idx, batch in enumerate(librispeech_test_clean): audio = batch["audio"] input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features reference = processor.tokenizer._normalize(batch['text']) references.append(reference) predicted_ids = model.generate(input_features)[0] transcription = processor.decode(predicted_ids) prediction = processor.tokenizer._normalize(transcription) predictions.append(prediction) wer_result = wer.compute(references=references, predictions=predictions) print(f"Result wer: {wer_result * 100}") accuracy = 1 - wer_result print("Accuracy: %.5f" % accuracy) ``` ## Metrics (Model Performance): | Model | Model Size (GB) | wer | |---|:---:|:---:| | FP32 |9.4|3.04| | INT8 |2.4|2.89|
Iwansl/Rere
Iwansl
2023-05-18T11:07:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-18T11:06:21Z
--- license: creativeml-openrail-m ---
WALIDALI/walidlibyaly-burjkhalifaly-bekiksrily-libyatraclo
WALIDALI
2023-05-18T11:04:15Z
31
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-18T10:35:16Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### walidlibyaly-burjkhalifaly-bekiksrily-libyatraclo Dreambooth model trained by WALIDALI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
bhattronak14/distilbert-base-uncased-finetuned-rte
bhattronak14
2023-05-18T10:55:03Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-17T06:31:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-rte results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-rte This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
pmysl/805Na-diffusers
pmysl
2023-05-18T10:20:29Z
31
2
diffusers
[ "diffusers", "text-to-image", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-12T03:07:23Z
--- pipeline_tag: text-to-image widget: - text: "A photo of sks tram in the Minecraft style" example_title: "Minecraft" - text: "A photo of sks tram with the Eiffel Tower in the background" example_title: "Eiffel Tower" - text: "A photo of sks tram on the Mars" example_title: "Mars" --- This is a fine-tuned Stable Diffusion model designed to create images of Konstal 805Na. Use `sks tram` in the prompt when you are referring to 805Na
HAttORi/ICBINP-Photorealistic
HAttORi
2023-05-18T10:18:49Z
0
3
null
[ "art", "text-to-image", "region:us" ]
text-to-image
2023-05-18T09:38:16Z
--- pipeline_tag: text-to-image tags: - art ---
SHENMU007/neunit_tts_1.1
SHENMU007
2023-05-18T10:18:03Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-05-18T08:12:46Z
--- language: - zh license: mit tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.12.1
Ashutosh1976/Ashutosh1976
Ashutosh1976
2023-05-18T10:13:47Z
0
0
null
[ "license:bigcode-openrail-m", "region:us" ]
null
2023-05-18T08:34:03Z
--- license: bigcode-openrail-m ---
Lkhappy/1
Lkhappy
2023-05-18T09:57:20Z
0
0
null
[ "aa", "dataset:databricks/databricks-dolly-15k", "license:openrail", "region:us" ]
null
2023-05-18T09:56:42Z
--- license: openrail datasets: - databricks/databricks-dolly-15k language: - aa metrics: - accuracy ---
DarrenLo/fine-tuned-dialogpt-pal
DarrenLo
2023-05-18T09:53:34Z
136
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "dataset:empathetic_dialogues", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-18T08:07:56Z
--- license: mit tags: - generated_from_trainer datasets: - empathetic_dialogues model-index: - name: fine-tuned-dialogpt-pal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-dialogpt-pal This model is a fine-tuned version of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) on the empathetic_dialogues dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.1+cpu - Datasets 2.12.0 - Tokenizers 0.13.3
DD0101/disfluency-large-2
DD0101
2023-05-18T09:48:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-18T08:53:54Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: disfluency-large-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # disfluency-large-2 This model is a fine-tuned version of [vinai/phobert-large](https://huggingface.co/vinai/phobert-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0318 - Precision: 0.9837 - Recall: 0.9808 - F1: 0.9822 - Accuracy: 0.9946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 140 | 0.0439 | 0.9538 | 0.9561 | 0.9550 | 0.9890 | | No log | 2.0 | 280 | 0.0314 | 0.9660 | 0.9736 | 0.9698 | 0.9906 | | No log | 3.0 | 420 | 0.0394 | 0.9710 | 0.9651 | 0.9681 | 0.9909 | | 0.1105 | 4.0 | 560 | 0.0320 | 0.9795 | 0.9784 | 0.9790 | 0.9929 | | 0.1105 | 5.0 | 700 | 0.0450 | 0.9704 | 0.9657 | 0.9681 | 0.9904 | | 0.1105 | 6.0 | 840 | 0.0463 | 0.9776 | 0.9694 | 0.9734 | 0.9911 | | 0.1105 | 7.0 | 980 | 0.0480 | 0.9706 | 0.9712 | 0.9709 | 0.9909 | | 0.0113 | 8.0 | 1120 | 0.0318 | 0.9837 | 0.9808 | 0.9822 | 0.9946 | | 0.0113 | 9.0 | 1260 | 0.0419 | 0.9699 | 0.9669 | 0.9684 | 0.9915 | | 0.0113 | 10.0 | 1400 | 0.0458 | 0.9735 | 0.9712 | 0.9723 | 0.9920 | | 0.0051 | 11.0 | 1540 | 0.0309 | 0.9777 | 0.9766 | 0.9771 | 0.9935 | | 0.0051 | 12.0 | 1680 | 0.0232 | 0.9820 | 0.9820 | 0.9820 | 0.9951 | | 0.0051 | 13.0 | 1820 | 0.0344 | 0.9849 | 0.9784 | 0.9816 | 0.9945 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
aliakyurek/Taxi-v3
aliakyurek
2023-05-18T09:30:55Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-18T09:30:52Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="aliakyurek/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
RenauxLouis/monet-test-1000steps-116-realsize-v2
RenauxLouis
2023-05-18T09:27:23Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-18T08:32:23Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - RenauxLouis/monet-test-1000steps-116-realsize-v2 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the real-size-116 dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
guoguangjie/my_wikilingua_t5small
guoguangjie
2023-05-18T08:56:36Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-18T08:43:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: my_wikilingua_t5small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_wikilingua_t5small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6035 - Rouge1: 0.2226 - Rouge2: 0.0638 - Rougel: 0.1839 - Rougelsum: 0.1838 - Gen Len: 18.725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 100 | 2.7179 | 0.2156 | 0.0579 | 0.1742 | 0.1741 | 18.835 | | No log | 2.0 | 200 | 2.6370 | 0.2213 | 0.0637 | 0.1796 | 0.1794 | 18.805 | | No log | 3.0 | 300 | 2.6105 | 0.2239 | 0.064 | 0.1834 | 0.1833 | 18.79 | | No log | 4.0 | 400 | 2.6035 | 0.2226 | 0.0638 | 0.1839 | 0.1838 | 18.725 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
metalis/pythia_410m_dialog_test_v1
metalis
2023-05-18T08:40:51Z
140
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-04T23:19:12Z
--- license: apache-2.0 --- Pythia 410m model fine tuned for dialog. Example prompt ``` ###I### Jhon talks to Mike. Jhon tells Mary about how he likes his new job. happy ###P### Jhon: ... Mary: ... ```
jroberts/distilgpt2-ft
jroberts
2023-05-18T08:39:36Z
132
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-18T08:37:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-ft This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000166 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 16 | 2.2852 | | No log | 2.0 | 32 | 2.2098 | | No log | 3.0 | 48 | 2.2370 | | No log | 4.0 | 64 | 2.3000 | | No log | 5.0 | 80 | 2.3898 | | No log | 6.0 | 96 | 2.4586 | | No log | 7.0 | 112 | 2.5484 | | No log | 8.0 | 128 | 2.6572 | | No log | 9.0 | 144 | 2.7703 | | No log | 10.0 | 160 | 2.9010 | | No log | 11.0 | 176 | 2.9734 | | No log | 12.0 | 192 | 3.0461 | | No log | 13.0 | 208 | 3.1837 | | No log | 14.0 | 224 | 3.2359 | | No log | 15.0 | 240 | 3.2506 | | No log | 16.0 | 256 | 3.2979 | | No log | 17.0 | 272 | 3.3512 | | No log | 18.0 | 288 | 3.3811 | | No log | 19.0 | 304 | 3.3787 | | No log | 20.0 | 320 | 3.3824 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Billsfriend/chinese-Alpaca-7b-plus-ggml-q8_0
Billsfriend
2023-05-18T08:33:49Z
0
9
null
[ "license:apache-2.0", "region:us" ]
null
2023-05-11T11:50:20Z
--- license: apache-2.0 --- This model is converted from `decapoda-research/llama-7b-hf` to `ziqingyang/chinese-alpaca-plus-lora-7b` and quantized for use with `ggerganov/llama.cpp`. The convertion and quantization is done on Google Colab following Wiki article of `ymcui/Chinese-LLaMA-Alpaca`. The quantization methods have been updated for llama.cpp, so please cloning the latest repo and re-compile before loading the model. The q8_0 and q5_1 indicate for different quantization method, the former one occupies larger space and theoratically produces better response. Example of q8_0 model on llama.cpp (acceptable responses but very short): ``` > ./main -m ./models/chinese-Alpaca-7b-plus-ggml-q8_0.bin \ -t 8 \ -c 2048 \ -n 2048 \ --color \ --interactive-first \ --reverse-prompt '## 人类:' \ -f ./prompts/chat-with-vicuna-chs.txt main: build = 0 (unknown) main: seed = 1683883289 llama.cpp: loading model from ./models/chinese-Alpaca-7b-plus-ggml-q8_0.bin llama_model_load_internal: format = ggjt v1 (latest) llama_model_load_internal: n_vocab = 49954 llama_model_load_internal: n_ctx = 2048 llama_model_load_internal: n_embd = 4096 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 32 llama_model_load_internal: n_layer = 32 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 7 (mostly Q8_0) llama_model_load_internal: n_ff = 11008 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 7B llama_model_load_internal: ggml ctx size = 68.20 KB llama_model_load_internal: mem required = 9180.13 MB (+ 1026.00 MB per state) llama_init_from_file: kv self size = 1024.00 MB system_info: n_threads = 8 / 12 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | main: interactive mode on. Reverse prompt: '## 人类:' sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000 generate: n_ctx = 2048, n_batch = 512, n_predict = 2048, n_keep = 0 == Running in interactive mode. == - Press Ctrl+C to interject at any time. - Press Return to return control to LLaMa. - To return control without starting a new line, end your input with '/'. - If you want to submit another line, end your input with '\'. 这是一段人类和人工智能助理的对话。人工智能助理会对人类的问题给出详细、准确、礼貌的回答。 ## 人类:你好,助理。 ## 助理:你好,有什么需要帮助的吗? ## 人类:天空为什么是蓝色的? 助理:天空之所以呈现蓝色,是因为太阳光在大气层中发生散射作用。 ## 人类:请再详细地解释一下。 助理:太阳光穿过大气层时,一部分被散射到不同波长的角度上,其中蓝色光的波长比其他颜色短。 ## 人类:你真是惜字如金啊。 助理:谢谢你的夸奖,但我只是根据我学到的知识和算法来回答你的问题。 ## 人类: llama_print_timings: load time = 9418.31 ms llama_print_timings: sample time = 107.95 ms / 73 runs ( 1.48 ms per run) llama_print_timings: prompt eval time = 8645.76 ms / 85 tokens ( 101.71 ms per token) llama_print_timings: eval time = 16303.43 ms / 73 runs ( 223.33 ms per run) llama_print_timings: total time = 987546.29 ms ```
QuickSilver007/rlv2unit4_Reinforce-CartPole-v1
QuickSilver007
2023-05-18T08:28:35Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-18T08:28:25Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: rlv2unit4_Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ViktorDo/bert-finetuned-ner
ViktorDo
2023-05-18T08:21:48Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-15T11:27:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9322761810373307 - name: Recall type: recall value: 0.9498485358465163 - name: F1 type: f1 value: 0.9409803267755917 - name: Accuracy type: accuracy value: 0.9862541943839407 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0613 - Precision: 0.9323 - Recall: 0.9498 - F1: 0.9410 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0907 | 1.0 | 1756 | 0.0649 | 0.9211 | 0.9371 | 0.9290 | 0.9832 | | 0.0352 | 2.0 | 3512 | 0.0612 | 0.9310 | 0.9493 | 0.9401 | 0.9863 | | 0.0164 | 3.0 | 5268 | 0.0613 | 0.9323 | 0.9498 | 0.9410 | 0.9863 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
qianjiaying/simcse-tinybert
qianjiaying
2023-05-18T08:21:20Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-05-18T08:18:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1254 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fshfurnitures/Bedfurnituredubai
fshfurnitures
2023-05-18T08:16:41Z
0
0
null
[ "region:us" ]
null
2023-05-18T08:14:36Z
[furniture stores](https://fshfurniture.ae/)
SHENMU007/neunit_tts_1.0
SHENMU007
2023-05-18T07:58:28Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-05-18T06:15:59Z
--- language: - zh license: mit tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.12.1
egarciamartin/ppo-SnowballTarget
egarciamartin
2023-05-18T07:57:35Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-05-18T07:56:31Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: egarciamartin/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jiawei1998/metaner-base
jiawei1998
2023-05-18T07:48:26Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-11T06:13:01Z
--- language: - en --- Related to https://github.com/chen700564/metaner-icl
seonglae/openie5
seonglae
2023-05-18T07:34:00Z
0
0
null
[ "region:us" ]
null
2023-05-18T01:05:49Z
openjdk8 64 java -Xmx10g -XX:+UseConcMarkSweepGC -jar openie-assembly-5.0-SNAPSHOT.jar [CLI Option](https://texonom.com/0b296be12ed64e9f9f94e2567bd798e8)
scarlettlin/path-to-save-model
scarlettlin
2023-05-18T07:25:20Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-18T06:10:04Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of a T1-MRI brain scan in axial view tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - scarlettlin/path-to-save-model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of a T1-MRI brain scan in axial view using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
wa976/ast_15-finetuned-ICBHI
wa976
2023-05-18T07:10:58Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
audio-classification
2023-05-17T18:18:53Z
--- license: bsd-3-clause tags: - generated_from_trainer metrics: - accuracy model-index: - name: ast_15-finetuned-ICBHI results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast_15-finetuned-ICBHI This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1688 - Accuracy: 0.5397 - Sensitivity: 0.2727 - Specificity: 0.7389 - Score: 0.5058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:| | 0.7488 | 1.0 | 259 | 1.1831 | 0.5241 | 0.3551 | 0.6502 | 0.5027 | | 0.7831 | 2.0 | 518 | 1.1688 | 0.5397 | 0.2727 | 0.7389 | 0.5058 | | 0.7471 | 3.0 | 777 | 1.1593 | 0.5198 | 0.3772 | 0.6261 | 0.5017 | | 0.5336 | 4.0 | 1036 | 1.4082 | 0.5281 | 0.3152 | 0.6869 | 0.5011 | | 0.3833 | 5.0 | 1295 | 2.0232 | 0.4838 | 0.3840 | 0.5583 | 0.4712 | | 0.1721 | 6.0 | 1554 | 2.5558 | 0.4893 | 0.3534 | 0.5906 | 0.4720 | | 0.2745 | 7.0 | 1813 | 3.3175 | 0.4900 | 0.3917 | 0.5634 | 0.4775 | | 0.0596 | 8.0 | 2072 | 3.6548 | 0.5143 | 0.3628 | 0.6274 | 0.4951 | | 0.0034 | 9.0 | 2331 | 3.9119 | 0.5082 | 0.4053 | 0.5849 | 0.4951 | | 0.0008 | 10.0 | 2590 | 4.3407 | 0.4875 | 0.4562 | 0.5108 | 0.4835 | | 0.0 | 11.0 | 2849 | 4.1927 | 0.5136 | 0.3636 | 0.6255 | 0.4946 | | 0.0 | 12.0 | 3108 | 4.2227 | 0.5111 | 0.3645 | 0.6204 | 0.4924 | | 0.0 | 13.0 | 3367 | 4.2399 | 0.5114 | 0.3653 | 0.6204 | 0.4929 | | 0.0 | 14.0 | 3626 | 4.2521 | 0.5114 | 0.3662 | 0.6198 | 0.4930 | | 0.0 | 15.0 | 3885 | 4.2556 | 0.5114 | 0.3662 | 0.6198 | 0.4930 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
jungnerd/jungnerd_qa_model
jungnerd
2023-05-18T07:07:15Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-05-18T02:04:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: jungnerd_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jungnerd_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.4348 | | 2.7609 | 2.0 | 500 | 1.7421 | | 2.7609 | 3.0 | 750 | 1.6623 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
charlieoneill/lunar_new
charlieoneill
2023-05-18T06:57:55Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-05-18T06:55:48Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -231.53 +/- 121.00 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
nightdessert/WeCheck
nightdessert
2023-05-18T06:42:14Z
97
2
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "text-generation", "arxiv:2212.10057", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-16T03:57:44Z
--- pipeline_tag: text-generation --- # Factual Consistency Evaluator/Metric in ACL 2023 paper *[WeCheck: Strong Factual Consistency Checker via Weakly Supervised Learning ](https://arxiv.org/abs/2212.10057)* Open-sourced code: https://github.com/nightdessert/WeCheck ## Model description WeCheck is a factual consistency metric trained from weakly annotated samples. This WeCheck checkpoint can be used to check the following three generation tasks: **Text Summarization/Knowlege grounded dialogue Generation/Paraphrase** This WeCheck checkpoint is trained based on the following three weak labler: *[QAFactEval ](https://github.com/salesforce/QAFactEval)* / *[Summarc](https://github.com/tingofurro/summac)* / *[NLI warmup](https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli)* --- # How to use the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "nightdessert/WeCheck" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing." # Input for Summarization/ Dialogue / Paraphrase hypothesis = "The movie was not good." # Output for Summarization/ Dialogue / Paraphrase input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt", truncation_strategy="only_first", max_length=512) output = model(input["input_ids"].to(device))['logits'][:,0] # device = "cuda:0" or "cpu" prediction = torch.sigmoid(output).tolist() print(prediction) #0.884 ``` or apply for a batch of samples ```python premise = ["I first thought that I liked the movie, but upon second thought it was actually disappointing."]*3 # Input list for Summarization/ Dialogue / Paraphrase hypothesis = ["The movie was not good."]*3 # Output list for Summarization/ Dialogue / Paraphrase batch_tokens = tokenizer.batch_encode_plus(list(zip(premise, hypothesis)), padding=True, truncation=True, max_length=512, return_tensors="pt", truncation_strategy="only_first") output = model(batch_tokens["input_ids"].to(device))['logits'][:,0] # device = "cuda:0" or "cpu" prediction = torch.sigmoid(output).tolist() print(prediction) #[0.884,0.884,0.884] ``` license: openrail pipeline_tag: text-classification tags: - Factual Consistency - Natrual Language Inference --- language: - en tags: - Factual Consistency Evaluation
gkrishnan/distilbert_classifier_newsgroups
gkrishnan
2023-05-18T06:39:35Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-18T06:39:03Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert_classifier_newsgroups results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_classifier_newsgroups This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1908, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.28.0 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
lewdryuna/A-hakomay
lewdryuna
2023-05-18T06:08:30Z
0
1
null
[ "region:us" ]
null
2023-05-18T06:08:30Z
--- duplicated_from: 852wa/hakoMay ---
jokyere49/Reinforce-pixelCopter
jokyere49
2023-05-18T06:01:45Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-18T05:59:58Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 42.00 +/- 29.61 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
asenella/mmnist_JNFDccaconfig2_seed_3_ratio_0_c
asenella
2023-05-18T05:58:30Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-18T05:58:22Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
mortal99/test
mortal99
2023-05-18T05:52:16Z
0
0
null
[ "paddlepaddle", "stable-diffusion", "stable-diffusion-ppdiffusers", "text-to-image", "ppdiffusers", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-18T05:47:47Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: A picture of <target> coding tags: - stable-diffusion - stable-diffusion-ppdiffusers - text-to-image - ppdiffusers - lora inference: false --- # LoRA DreamBooth - mortal99/test 本仓库的 LoRA 权重是基于 runwayml/stable-diffusion-v1-5 训练而来的,我们采用[DreamBooth](https://dreambooth.github.io/)的技术并使用 A picture of <target> coding 文本进行了训练。
AustinCarthy/Benign10MGPT2_fromB_BFall_30KGen_toP_0.75
AustinCarthy
2023-05-18T05:44:42Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-18T02:42:03Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Benign10MGPT2_fromB_BFall_30KGen_toP_0.75 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Benign10MGPT2_fromB_BFall_30KGen_toP_0.75 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1066 - Accuracy: 0.9827 - F1: 0.7997 - Precision: 0.8920 - Recall: 0.7248 - Roc Auc Score: 0.8602 - Tpr At Fpr 0.01: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0859 | 1.0 | 26250 | 0.0749 | 0.9823 | 0.7832 | 0.9388 | 0.6718 | 0.8348 | 0.5556 | | 0.074 | 2.0 | 52500 | 0.0810 | 0.9803 | 0.7718 | 0.8628 | 0.6982 | 0.8463 | 0.5496 | | 0.0534 | 3.0 | 78750 | 0.0735 | 0.9846 | 0.8211 | 0.9211 | 0.7406 | 0.8687 | 0.5882 | | 0.0374 | 4.0 | 105000 | 0.0877 | 0.9830 | 0.8023 | 0.8976 | 0.7254 | 0.8606 | 0.0 | | 0.0267 | 5.0 | 131250 | 0.1066 | 0.9827 | 0.7997 | 0.8920 | 0.7248 | 0.8602 | 0.0 | ### Framework versions - Transformers 4.29.1 - Pytorch 1.9.0+cu111 - Datasets 2.10.1 - Tokenizers 0.13.2
suraj47K/keras-dummy-sequential
suraj47K
2023-05-18T05:42:09Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-05-18T05:42:07Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
asenella/mmnist_JNFDccaconfig2_seed_0_ratio_02_c
asenella
2023-05-18T05:34:00Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-18T05:33:53Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Mikepool117/a2c-AntBulletEnv-v0
Mikepool117
2023-05-18T05:24:38Z
3
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-18T05:22:48Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1385.41 +/- 178.51 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
junweiliao/ppo-Huggy
junweiliao
2023-05-18T05:21:28Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-05-18T05:21:16Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: junweiliao/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
deutsche-telekom/mt5-small-sum-de-mit-v1
deutsche-telekom
2023-05-18T05:02:05Z
2,243
8
transformers
[ "transformers", "pytorch", "safetensors", "mt5", "text2text-generation", "summarization", "de", "dataset:swiss_text_2019", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - de license: mit tags: - summarization datasets: - swiss_text_2019 --- # mT5-small-sum-de-mit-v1 This is a German summarization model. It is based on the multilingual T5 model [google/mt5-small](https://huggingface.co/google/mt5-small). The special characteristic of this model is that, unlike many other models, it is licensed under a permissive open source license (MIT). Among other things, this license allows commercial use. [![One Conversation](https://raw.githubusercontent.com/telekom/HPOflow/main/docs/source/imgs/1c-logo.png)](https://www.welove.ai/) This model is provided by the [One Conversation](https://www.welove.ai/) team of [Deutsche Telekom AG](https://www.telekom.com/). ## Training The training was conducted with the following hyperparameters: - base model: [google/mt5-small](https://huggingface.co/google/mt5-small) - source_prefix: `"summarize: "` - batch size: 3 (6) - max_source_length: 800 - max_target_length: 96 - warmup_ratio: 0.3 - number of train epochs: 10 - gradient accumulation steps: 2 - learning rate: 5e-5 ## Datasets and Preprocessing The datasets were preprocessed as follows: The summary was tokenized with the [google/mt5-small](https://huggingface.co/google/mt5-small) tokenizer. Then only the records with no more than 94 summary tokens were selected. This model is trained on the following dataset: | Name | Language | Size | License |------|----------|------|-------- | [SwissText 2019 - Train](https://www.swisstext.org/2019/shared-task/german-text-summarization-challenge.html) | de | 84,564 | Concrete license is unclear. The data was published in the [German Text Summarization Challenge](https://www.swisstext.org/2019/shared-task/german-text-summarization-challenge.html). We have permission to use the Swisstext dataset and release the resulting summarization model under MIT license (see [permission-declaration-swisstext.pdf](https://huggingface.co/deutsche-telekom/mt5-small-sum-de-mit-v1/resolve/main/permission-declaration-swisstext.pdf)). ## Evaluation on MLSUM German Test Set (no beams) | Model | rouge1 | rouge2 | rougeL | rougeLsum |-------|--------|--------|--------|---------- | deutsche-telekom/mt5-small-sum-de-mit-v1 (this) | 16.8023 | 3.5531 | 12.6884 | 14.7624 | [ml6team/mt5-small-german-finetune-mlsum](https://huggingface.co/ml6team/mt5-small-german-finetune-mlsum) | 18.3607 | 5.3604 | 14.5456 | 16.1946 | **[deutsche-telekom/mt5-small-sum-de-en-01](https://huggingface.co/deutsche-telekom/mt5-small-sum-de-en-v1)** | **21.7336** | **7.2614** | **17.1323** | **19.3977** ## License Copyright (c) 2021 Philip May, Deutsche Telekom AG Licensed under the MIT License (the "License"); you may not use this work except in compliance with the License. You may obtain a copy of the License by reviewing the file [LICENSE](https://huggingface.co/deutsche-telekom/mt5-small-sum-de-mit-v1/blob/main/LICENSE) in the repository.
Wanfq/MAKER-mwoz-condensed-kb-t5-large
Wanfq
2023-05-18T04:45:05Z
0
0
null
[ "conversational", "en", "arxiv:2305.10149", "license:apache-2.0", "region:us" ]
text-generation
2023-05-17T05:45:15Z
--- license: apache-2.0 language: - en pipeline_tag: conversational --- This is a repo of the models of [Multi-Grained Knowledge Retrieval for End-to-End Task-Oriented Dialog](https://arxiv.org/abs/2305.10149), a paper in **ACL 2023**. For more details about the models, please refer to our [github repo](https://github.com/18907305772/MAKER).
Wanfq/MAKER-mwoz-condensed-kb-t5-base
Wanfq
2023-05-18T04:44:47Z
0
0
null
[ "conversational", "en", "arxiv:2305.10149", "license:apache-2.0", "region:us" ]
text-generation
2023-05-17T05:44:54Z
--- license: apache-2.0 language: - en pipeline_tag: conversational --- This is a repo of the models of [Multi-Grained Knowledge Retrieval for End-to-End Task-Oriented Dialog](https://arxiv.org/abs/2305.10149), a paper in **ACL 2023**. For more details about the models, please refer to our [github repo](https://github.com/18907305772/MAKER).
Wanfq/MAKER-camrest-full-kb-t5-large
Wanfq
2023-05-18T04:44:20Z
0
0
null
[ "conversational", "en", "arxiv:2305.10149", "license:apache-2.0", "region:us" ]
text-generation
2023-05-17T03:47:14Z
--- license: apache-2.0 language: - en pipeline_tag: conversational --- This is a repo of the models of [Multi-Grained Knowledge Retrieval for End-to-End Task-Oriented Dialog](https://arxiv.org/abs/2305.10149), a paper in **ACL 2023**. For more details about the models, please refer to our [github repo](https://github.com/18907305772/MAKER).
Wanfq/MAKER-camrest-full-kb-t5-base
Wanfq
2023-05-18T04:43:57Z
0
0
null
[ "conversational", "en", "arxiv:2305.10149", "license:apache-2.0", "region:us" ]
text-generation
2023-05-17T03:46:58Z
--- license: apache-2.0 language: - en pipeline_tag: conversational --- This is a repo of the models of [Multi-Grained Knowledge Retrieval for End-to-End Task-Oriented Dialog](https://arxiv.org/abs/2305.10149), a paper in **ACL 2023**. For more details about the models, please refer to our [github repo](https://github.com/18907305772/MAKER).
Wanfq/MAKER-mwoz-full-kb-t5-large
Wanfq
2023-05-18T04:42:44Z
0
0
null
[ "conversational", "en", "arxiv:2305.10149", "license:apache-2.0", "region:us" ]
text-generation
2023-05-17T03:00:01Z
--- license: apache-2.0 language: - en pipeline_tag: conversational --- This is a repo of the models of [Multi-Grained Knowledge Retrieval for End-to-End Task-Oriented Dialog](https://arxiv.org/abs/2305.10149), a paper in **ACL 2023**. For more details about the models, please refer to our [github repo](https://github.com/18907305772/MAKER).
Wanfq/MAKER-mwoz-full-kb-t5-base
Wanfq
2023-05-18T04:42:16Z
0
0
null
[ "conversational", "en", "arxiv:2305.10149", "license:apache-2.0", "region:us" ]
text-generation
2023-05-17T02:39:43Z
--- license: apache-2.0 language: - en pipeline_tag: conversational --- This is a repo of the models of [Multi-Grained Knowledge Retrieval for End-to-End Task-Oriented Dialog](https://arxiv.org/abs/2305.10149), a paper in **ACL 2023**. For more details about the models, please refer to our [github repo](https://github.com/18907305772/MAKER).
asenella/mmnist_JNFDccaconfig2_seed_1_ratio_0_c
asenella
2023-05-18T03:15:59Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-18T03:15:52Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
yyyynnnniiii/Trainer_Albert_2023-05-18
yyyynnnniiii
2023-05-18T02:58:01Z
0
0
null
[ "finance", "text-classification", "en", "dataset:yyyynnnniiii/WSJ_0518", "region:us" ]
text-classification
2023-05-18T02:36:58Z
--- datasets: - yyyynnnniiii/WSJ_0518 language: - en metrics: - accuracy pipeline_tag: text-classification tags: - finance ---
SHENMU007/neunit_test
SHENMU007
2023-05-18T02:55:25Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-05-17T04:02:09Z
--- language: - zh license: mit tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.12.1
AbdulHafiz9940/t5-small-finetuned-test1
AbdulHafiz9940
2023-05-18T02:49:31Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-17T08:47:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-test1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-test1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2837 - Rouge1: 22.7012 - Rouge2: 0.0 - Rougel: 22.7156 - Rougelsum: 22.7348 - Gen Len: 2.2686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.5353 | 1.0 | 2601 | 2.3131 | 22.0732 | 0.0 | 22.1069 | 22.1229 | 2.2647 | | 2.4728 | 2.0 | 5202 | 2.2838 | 22.7012 | 0.0 | 22.7156 | 22.7348 | 2.2686 | | 2.4819 | 3.0 | 7803 | 2.2837 | 22.7012 | 0.0 | 22.7156 | 22.7348 | 2.2686 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AlexC98/commitRoBerta_
AlexC98
2023-05-18T01:34:52Z
112
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-17T23:44:47Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Vodolay/oldbooks-lora
Vodolay
2023-05-18T01:23:13Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-18T00:34:16Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - Vodolay/oldbooks-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the gigant/oldbookillustrations dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
cyberagent/open-calm-large
cyberagent
2023-05-18T01:11:13Z
2,142
10
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "japanese", "causal-lm", "ja", "dataset:wikipedia", "dataset:cc100", "dataset:mc4", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-05-15T06:50:24Z
--- license: cc-by-sa-4.0 datasets: - wikipedia - cc100 - mc4 language: - ja tags: - japanese - causal-lm inference: false --- # OpenCALM-Large ## Model Description OpenCALM is a suite of decoder-only language models pre-trained on Japanese datasets, developed by CyberAgent, Inc. ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("cyberagent/open-calm-large", device_map="auto", torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained("cyberagent/open-calm-large") inputs = tokenizer("AIによって私達の暮らしは、", return_tensors="pt").to(model.device) with torch.no_grad(): tokens = model.generate( **inputs, max_new_tokens=64, do_sample=True, temperature=0.7, top_p=0.9, repetition_penalty=1.05, pad_token_id=tokenizer.pad_token_id, ) output = tokenizer.decode(tokens[0], skip_special_tokens=True) print(output) ``` ## Model Details |Model|Params|Layers|Dim|Heads|Dev ppl| |:---:|:---: |:---:|:---:|:---:|:---:| |[cyberagent/open-calm-small](https://huggingface.co/cyberagent/open-calm-small)|160M|12|768|12|19.7| |[cyberagent/open-calm-medium](https://huggingface.co/cyberagent/open-calm-medium)|400M|24|1024|16|13.8| |[cyberagent/open-calm-large](https://huggingface.co/cyberagent/open-calm-large)|830M|24|1536|16|11.3| |[cyberagent/open-calm-1b](https://huggingface.co/cyberagent/open-calm-1b)|1.4B|24|2048|16|10.3| |[cyberagent/open-calm-3b](https://huggingface.co/cyberagent/open-calm-3b)|2.7B|32|2560|32|9.7| |[cyberagent/open-calm-7b](https://huggingface.co/cyberagent/open-calm-7b)|6.8B|32|4096|32|8.2| * **Developed by**: [CyberAgent, Inc.](https://www.cyberagent.co.jp/) * **Model type**: Transformer-based Language Model * **Language**: Japanese * **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) * **License**: OpenCALM is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License ([CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)). When using this model, please provide appropriate credit to CyberAgent, Inc. * Example (en): This model is a fine-tuned version of OpenCALM-XX developed by CyberAgent, Inc. The original model is released under the CC BY-SA 4.0 license, and this model is also released under the same CC BY-SA 4.0 license. For more information, please visit: https://creativecommons.org/licenses/by-sa/4.0/ * Example (ja): 本モデルは、株式会社サイバーエージェントによるOpenCALM-XXをファインチューニングしたものです。元のモデルはCC BY-SA 4.0ライセンスのもとで公開されており、本モデルも同じくCC BY-SA 4.0ライセンスで公開します。詳しくはこちらをご覧ください: https://creativecommons.org/licenses/by-sa/4.0/ ## Training Dataset * Wikipedia (ja) * Common Crawl (ja) ## Author [Ryosuke Ishigami](https://huggingface.co/rishigami) ## Citations ```bibtext @software{gpt-neox-library, title = {{GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch}}, author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel}, url = {https://www.github.com/eleutherai/gpt-neox}, doi = {10.5281/zenodo.5879544}, month = {8}, year = {2021}, version = {0.0.1}, } ```
cyberagent/open-calm-medium
cyberagent
2023-05-18T01:10:54Z
283
4
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "japanese", "causal-lm", "ja", "dataset:wikipedia", "dataset:cc100", "dataset:mc4", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-05-15T06:44:47Z
--- license: cc-by-sa-4.0 datasets: - wikipedia - cc100 - mc4 language: - ja tags: - japanese - causal-lm inference: false --- # OpenCALM-Medium ## Model Description OpenCALM is a suite of decoder-only language models pre-trained on Japanese datasets, developed by CyberAgent, Inc. ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("cyberagent/open-calm-medium", device_map="auto", torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained("cyberagent/open-calm-medium") inputs = tokenizer("AIによって私達の暮らしは、", return_tensors="pt").to(model.device) with torch.no_grad(): tokens = model.generate( **inputs, max_new_tokens=64, do_sample=True, temperature=0.7, top_p=0.9, repetition_penalty=1.05, pad_token_id=tokenizer.pad_token_id, ) output = tokenizer.decode(tokens[0], skip_special_tokens=True) print(output) ``` ## Model Details |Model|Params|Layers|Dim|Heads|Dev ppl| |:---:|:---: |:---:|:---:|:---:|:---:| |[cyberagent/open-calm-small](https://huggingface.co/cyberagent/open-calm-small)|160M|12|768|12|19.7| |[cyberagent/open-calm-medium](https://huggingface.co/cyberagent/open-calm-medium)|400M|24|1024|16|13.8| |[cyberagent/open-calm-large](https://huggingface.co/cyberagent/open-calm-large)|830M|24|1536|16|11.3| |[cyberagent/open-calm-1b](https://huggingface.co/cyberagent/open-calm-1b)|1.4B|24|2048|16|10.3| |[cyberagent/open-calm-3b](https://huggingface.co/cyberagent/open-calm-3b)|2.7B|32|2560|32|9.7| |[cyberagent/open-calm-7b](https://huggingface.co/cyberagent/open-calm-7b)|6.8B|32|4096|32|8.2| * **Developed by**: [CyberAgent, Inc.](https://www.cyberagent.co.jp/) * **Model type**: Transformer-based Language Model * **Language**: Japanese * **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) * **License**: OpenCALM is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License ([CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)). When using this model, please provide appropriate credit to CyberAgent, Inc. * Example (en): This model is a fine-tuned version of OpenCALM-XX developed by CyberAgent, Inc. The original model is released under the CC BY-SA 4.0 license, and this model is also released under the same CC BY-SA 4.0 license. For more information, please visit: https://creativecommons.org/licenses/by-sa/4.0/ * Example (ja): 本モデルは、株式会社サイバーエージェントによるOpenCALM-XXをファインチューニングしたものです。元のモデルはCC BY-SA 4.0ライセンスのもとで公開されており、本モデルも同じくCC BY-SA 4.0ライセンスで公開します。詳しくはこちらをご覧ください: https://creativecommons.org/licenses/by-sa/4.0/ ## Training Dataset * Wikipedia (ja) * Common Crawl (ja) ## Author [Ryosuke Ishigami](https://huggingface.co/rishigami) ## Citations ```bibtext @software{gpt-neox-library, title = {{GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch}}, author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel}, url = {https://www.github.com/eleutherai/gpt-neox}, doi = {10.5281/zenodo.5879544}, month = {8}, year = {2021}, version = {0.0.1}, } ```
REDSCARE/RS2281
REDSCARE
2023-05-18T01:06:09Z
0
0
adapter-transformers
[ "adapter-transformers", "chemistry", "en", "es", "dataset:togethercomputer/RedPajama-Data-1T", "license:other", "region:us" ]
null
2023-05-18T01:04:34Z
--- license: other datasets: - togethercomputer/RedPajama-Data-1T language: - en - es metrics: - accuracy library_name: adapter-transformers tags: - chemistry ---
yarak001/distilbert-base-uncased-finetuned-emotion
yarak001
2023-05-18T01:03:56Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-18T00:28:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9225635095680048 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2207 - Accuracy: 0.9225 - F1: 0.9226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8134 | 1.0 | 250 | 0.3127 | 0.903 | 0.9000 | | 0.247 | 2.0 | 500 | 0.2207 | 0.9225 | 0.9226 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ItchyB/ppo-LunarLander-v2
ItchyB
2023-05-18T00:44:56Z
2
0
stable-baselines3
[ "stable-baselines3", "tensorboard", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T00:54:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 294.62 +/- 17.77 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Toffee0705/ppo-Huggy
Toffee0705
2023-05-18T00:37:30Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-05-18T00:36:54Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: Toffee0705/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pkuong/distilbert_classifier_newsgroups
pkuong
2023-05-18T00:22:29Z
63
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-18T00:22:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert_classifier_newsgroups results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_classifier_newsgroups This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1908, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.28.0 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Hex820000/StoriesToon_v1
Hex820000
2023-05-18T00:15:42Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-17T23:46:39Z
--- license: creativeml-openrail-m ---
pratikcha/DummyModelTest
pratikcha
2023-05-17T23:50:16Z
0
0
null
[ "code", "en", "region:us" ]
null
2023-05-17T23:49:33Z
--- language: - en tags: - code ---
Abhinav2499/gpt2-token-class
Abhinav2499
2023-05-17T23:48:02Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2023-05-14T02:47:10Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: gpt2-token-class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-token-class This model is a fine-tuned version of [Jean-Baptiste/roberta-large-ner-english](https://huggingface.co/Jean-Baptiste/roberta-large-ner-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4239 - Precision: 0.8559 - Recall: 0.7666 - F1: 0.8020 - Accuracy: 0.9193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2451 | 1.0 | 1796 | 0.2658 | 0.8781 | 0.6962 | 0.7480 | 0.9099 | | 0.1938 | 2.0 | 3592 | 0.2473 | 0.8683 | 0.7312 | 0.7778 | 0.9153 | | 0.1452 | 3.0 | 5388 | 0.2614 | 0.8525 | 0.7588 | 0.7953 | 0.9172 | | 0.1068 | 4.0 | 7184 | 0.3033 | 0.8491 | 0.7584 | 0.7940 | 0.9164 | | 0.0792 | 5.0 | 8980 | 0.3507 | 0.8612 | 0.7586 | 0.7978 | 0.9190 | | 0.0597 | 6.0 | 10776 | 0.3924 | 0.8569 | 0.7632 | 0.7999 | 0.9189 | | 0.0479 | 7.0 | 12572 | 0.4239 | 0.8559 | 0.7666 | 0.8020 | 0.9193 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
asenella/mmnist_JNFconfig2_seed_3_ratio_05_c
asenella
2023-05-17T23:35:14Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-17T23:34:59Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/mmnist_JNFconfig2_seed_2_ratio_05_c
asenella
2023-05-17T23:34:35Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-17T23:34:21Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
LoganDark/rwkv-4-raven-ggml
LoganDark
2023-05-17T23:27:57Z
0
2
null
[ "license:apache-2.0", "region:us" ]
null
2023-05-17T23:27:57Z
--- license: apache-2.0 --- [Use the master branch.](https://huggingface.co/LoganDark/rwkv-4-raven-ggml/tree/master) HuggingFace won't let me set the default, sorry.
ernieg/setfit-beauty-multilabel-example
ernieg
2023-05-17T23:04:15Z
3
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-05-17T23:03:25Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # ernieg/setfit-beauty-multilabel-example This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("ernieg/setfit-beauty-multilabel-example") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Ktang2k/poca-SoccerTwos
Ktang2k
2023-05-17T22:59:55Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-05-17T22:59:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Ktang2k/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
asenella/mmnist_JNFconfig2_seed_1_ratio_05_c
asenella
2023-05-17T22:55:15Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-17T22:54:32Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
1darkneto8/sdwebui2
1darkneto8
2023-05-17T22:35:24Z
0
0
null
[ "arxiv:2211.06679", "region:us" ]
null
2023-05-17T21:52:26Z
# Stable Diffusion web UI A browser interface based on Gradio library for Stable Diffusion. ![](screenshot.png) ## Features [Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features): - Original txt2img and img2img modes - One click install and run script (but you still must install python and git) - Outpainting - Inpainting - Color Sketch - Prompt Matrix - Stable Diffusion Upscale - Attention, specify parts of text that the model should pay more attention to - a man in a `((tuxedo))` - will pay more attention to tuxedo - a man in a `(tuxedo:1.21)` - alternative syntax - select text and press `Ctrl+Up` or `Ctrl+Down` to automatically adjust attention to selected text (code contributed by anonymous user) - Loopback, run img2img processing multiple times - X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters - Textual Inversion - have as many embeddings as you want and use any names you like for them - use multiple embeddings with different numbers of vectors per token - works with half precision floating point numbers - train embeddings on 8GB (also reports of 6GB working) - Extras tab with: - GFPGAN, neural network that fixes faces - CodeFormer, face restoration tool as an alternative to GFPGAN - RealESRGAN, neural network upscaler - ESRGAN, neural network upscaler with a lot of third party models - SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers - LDSR, Latent diffusion super resolution upscaling - Resizing aspect ratio options - Sampling method selection - Adjust sampler eta values (noise multiplier) - More advanced noise setting options - Interrupt processing at any time - 4GB video card support (also reports of 2GB working) - Correct seeds for batches - Live prompt token length validation - Generation parameters - parameters you used to generate images are saved with that image - in PNG chunks for PNG, in EXIF for JPEG - can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI - can be disabled in settings - drag and drop an image/text-parameters to promptbox - Read Generation Parameters Button, loads parameters in promptbox to UI - Settings page - Running arbitrary python code from UI (must run with `--allow-code` to enable) - Mouseover hints for most UI elements - Possible to change defaults/mix/max/step values for UI elements via text config - Tiling support, a checkbox to create images that can be tiled like textures - Progress bar and live image generation preview - Can use a separate neural network to produce previews with almost none VRAM or compute requirement - Negative prompt, an extra text field that allows you to list what you don't want to see in generated image - Styles, a way to save part of prompt and easily apply them via dropdown later - Variations, a way to generate same image but with tiny differences - Seed resizing, a way to generate same image but at slightly different resolution - CLIP interrogator, a button that tries to guess prompt from an image - Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway - Batch Processing, process a group of files using img2img - Img2img Alternative, reverse Euler method of cross attention control - Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions - Reloading checkpoints on the fly - Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one - [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community - [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once - separate prompts using uppercase `AND` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` - No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - DeepDanbooru integration, creates danbooru style tags for anime prompts - [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args) - via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI - Generate forever option - Training tab - hypernetworks and embeddings options - Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime) - Clip skip - Hypernetworks - Loras (same as Hypernetworks but more pretty) - A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt - Can select to load a different VAE from settings screen - Estimated completion time in progress bar - API - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML - via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) - [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions - [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions - Now without any bad letters! - Load checkpoints in safetensors format - Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64 - Now with a license! - Reorder elements in the UI from settings screen ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. Alternatively, use online services (like Google Colab): - [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services) ### Automatic Installation on Windows 1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH". 2. Install [git](https://git-scm.com/download/win). 3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`. 4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user. ### Automatic Installation on Linux 1. Install the dependencies: ```bash # Debian-based: sudo apt install wget git python3 python3-venv # Red Hat-based: sudo dnf install wget git python3 # Arch-based: sudo pacman -S wget git python3 ``` 2. Navigate to the directory you would like the webui to be installed and execute the following command: ```bash bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh) ``` 3. Run `webui.sh`. 4. Check `webui-user.sh` for options. ### Installation on Apple Silicon Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon). ## Contributing Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) ## Documentation The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki). ## Credits Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file. - Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers - k-diffusion - https://github.com/crowsonkb/k-diffusion.git - GFPGAN - https://github.com/TencentARC/GFPGAN.git - CodeFormer - https://github.com/sczhou/CodeFormer - ESRGAN - https://github.com/xinntao/ESRGAN - SwinIR - https://github.com/JingyunLiang/SwinIR - Swin2SR - https://github.com/mv-lab/swin2sr - LDSR - https://github.com/Hafiidz/latent-diffusion - MiDaS - https://github.com/isl-org/MiDaS - Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. - Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion) - Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention) - Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas). - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot - CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator - Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch - xformers - https://github.com/facebookresearch/xformers - DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru - Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6) - Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix - Security advice - RyotaK - UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - (You)
roneneldan/TinyStories-3M
roneneldan
2023-05-17T22:11:46Z
3,446
2
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "arxiv:2305.07759", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-12T21:46:51Z
Model trained on the TinyStories Dataset, see https://arxiv.org/abs/2305.07759 ------ EXAMPLE USAGE --- from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-3M') tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M") prompt = "Once upon a time there was" input_ids = tokenizer.encode(prompt, return_tensors="pt") # Generate completion output = model.generate(input_ids, max_length = 1000, num_beams=1) # Decode the completion output_text = tokenizer.decode(output[0], skip_special_tokens=True) # Print the generated text print(output_text)
benlehrburger/modern-architecture-32
benlehrburger
2023-05-17T21:50:58Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "dataset:benlehrburger/architecture", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-05-17T21:38:56Z
--- datasets: - benlehrburger/architecture tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Low-poly architecture image generation This model is a diffusion model for unconditional image generation of modern architecture. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('{hub_model_id}') image = pipeline().images[0] image ```
asenella/mmnist_JNFconfig2_seed_3_ratio_02_c
asenella
2023-05-17T21:47:53Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-17T21:47:39Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```