modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
lilTAT/blockassist-bc-gentle_rugged_hare_1755610530
lilTAT
2025-08-19T13:35:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:35:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ethduke/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-padded_iridescent_anaconda
ethduke
2025-08-19T13:33:05Z
64
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am padded_iridescent_anaconda", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-30T09:19:47Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am padded_iridescent_anaconda --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alok0777/blockassist-bc-masked_pensive_lemur_1755610207
alok0777
2025-08-19T13:32:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked pensive lemur", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:31:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked pensive lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/jj-s-landscape-design
Muapi
2025-08-19T13:31:52Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:31:40Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # JJ's Landscape Design ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Landscape ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:220995@1280356", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
lilTAT/blockassist-bc-gentle_rugged_hare_1755610214
lilTAT
2025-08-19T13:30:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:30:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/minimalistic-illustration
Muapi
2025-08-19T13:30:01Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:29:41Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Minimalistic illustration ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: stylized illustration, brush strokes, sr3fmj ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:942314@1054923", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755609013
Sayemahsjn
2025-08-19T13:29:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:29:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/felix-meynet
Muapi
2025-08-19T13:29:03Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:28:57Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Felix Meynet ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Art by Felix Meynet ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1021589@1441868", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/ethereal-gothic-sd1-sdxl-pony-flux
Muapi
2025-08-19T13:28:48Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:28:38Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Ethereal Gothic (SD1, SDXL, Pony, Flux) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ArsMJStyle, Etherial Gothic ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1072957@1204428", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/cinematic-text-title-film-cover-on-screen-style-xl-f1d
Muapi
2025-08-19T13:28:24Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:28:11Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Cinematic text title + Film Cover (on screen) style XL + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: perfect text title style ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:520481@893826", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
wheeler404/qwen2-tiny
wheeler404
2025-08-19T13:27:50Z
231
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-05T13:54:43Z
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> A tiny test model with Qwen2.5 architecture ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/sony-mavica-mvc-fd7-real-digicam
Muapi
2025-08-19T13:27:07Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:26:59Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Sony Mavica MVC-FD7 (Real digicam) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: m8vic2 ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1147127@1290161", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
thanobidex/blockassist-bc-colorful_shiny_hare_1755608295
thanobidex
2025-08-19T13:26:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:26:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/bible-black-cinematic-anime-style-xl-f1d-illustrious-pony-sd1.5
Muapi
2025-08-19T13:26:18Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:24:41Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Bible Black (ใƒใ‚คใƒ–ใƒซใƒ–ใƒฉใƒƒใ‚ฏ) Cinematic + Anime style XL + F1D + Illustrious + Pony + SD1.5 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: cartoon, anime, manga style, comic ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:331576@1348586", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
forstseh/blockassist-bc-arctic_soaring_heron_1755606392
forstseh
2025-08-19T13:26:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic soaring heron", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:25:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic soaring heron --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1755609920
lilTAT
2025-08-19T13:25:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:25:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ChevalierJoseph/X1
ChevalierJoseph
2025-08-19T13:25:14Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "en", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T13:19:26Z
--- base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** ChevalierJoseph - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Growcompany/Qwen2.5-0.5B-Instruct-Q4_K_M-GGUF
Growcompany
2025-08-19T13:24:52Z
0
0
transformers
[ "transformers", "gguf", "chat", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:quantized:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-19T13:24:45Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - chat - llama-cpp - gguf-my-repo library_name: transformers --- # Growcompany/Qwen2.5-0.5B-Instruct-Q4_K_M-GGUF This model was converted to GGUF format from [`Qwen/Qwen2.5-0.5B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Growcompany/Qwen2.5-0.5B-Instruct-Q4_K_M-GGUF --hf-file qwen2.5-0.5b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Growcompany/Qwen2.5-0.5B-Instruct-Q4_K_M-GGUF --hf-file qwen2.5-0.5b-instruct-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Growcompany/Qwen2.5-0.5B-Instruct-Q4_K_M-GGUF --hf-file qwen2.5-0.5b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Growcompany/Qwen2.5-0.5B-Instruct-Q4_K_M-GGUF --hf-file qwen2.5-0.5b-instruct-q4_k_m.gguf -c 2048 ```
Ransss/Mystic-Rune-v2-12B-Q8_0-GGUF
Ransss
2025-08-19T13:24:30Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Vortex5/Mystic-Rune-v2-12B", "base_model:quantized:Vortex5/Mystic-Rune-v2-12B", "endpoints_compatible", "region:us" ]
null
2025-08-19T13:23:35Z
--- base_model: Vortex5/Mystic-Rune-v2-12B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Ransss/Mystic-Rune-v2-12B-Q8_0-GGUF This model was converted to GGUF format from [`Vortex5/Mystic-Rune-v2-12B`](https://huggingface.co/Vortex5/Mystic-Rune-v2-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Vortex5/Mystic-Rune-v2-12B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Ransss/Mystic-Rune-v2-12B-Q8_0-GGUF --hf-file mystic-rune-v2-12b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Ransss/Mystic-Rune-v2-12B-Q8_0-GGUF --hf-file mystic-rune-v2-12b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Ransss/Mystic-Rune-v2-12B-Q8_0-GGUF --hf-file mystic-rune-v2-12b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Ransss/Mystic-Rune-v2-12B-Q8_0-GGUF --hf-file mystic-rune-v2-12b-q8_0.gguf -c 2048 ```
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755608064
katanyasekolah
2025-08-19T13:23:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:23:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Neelectric/Llama-3-8B-Instruct_ins_v00.01
Neelectric
2025-08-19T13:23:03Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "open-r1", "sft", "conversational", "dataset:Neelectric/ins", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T13:10:33Z
--- base_model: meta-llama/Meta-Llama-3-8B-Instruct datasets: Neelectric/ins library_name: transformers model_name: Llama-3-8B-Instruct_ins_v00.01 tags: - generated_from_trainer - trl - open-r1 - sft licence: license --- # Model Card for Llama-3-8B-Instruct_ins_v00.01 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the [Neelectric/ins](https://huggingface.co/datasets/Neelectric/ins) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Neelectric/Llama-3-8B-Instruct_ins_v00.01", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/neelectric/sem/runs/f88mnrt5) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755607796
milliarderdol
2025-08-19T13:22:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:22:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
marcuscedricridia/orbita-tiny-Q4_K_M-GGUF
marcuscedricridia
2025-08-19T13:21:18Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:NewstaR/orbita-tiny", "base_model:quantized:NewstaR/orbita-tiny", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T13:21:12Z
--- base_model: NewstaR/orbita-tiny tags: - llama-cpp - gguf-my-repo --- # marcuscedricridia/orbita-tiny-Q4_K_M-GGUF This model was converted to GGUF format from [`NewstaR/orbita-tiny`](https://huggingface.co/NewstaR/orbita-tiny) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/NewstaR/orbita-tiny) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo marcuscedricridia/orbita-tiny-Q4_K_M-GGUF --hf-file orbita-tiny-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo marcuscedricridia/orbita-tiny-Q4_K_M-GGUF --hf-file orbita-tiny-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo marcuscedricridia/orbita-tiny-Q4_K_M-GGUF --hf-file orbita-tiny-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo marcuscedricridia/orbita-tiny-Q4_K_M-GGUF --hf-file orbita-tiny-q4_k_m.gguf -c 2048 ```
Muapi/moxie-cybernetic-punk-lora-s
Muapi
2025-08-19T13:20:25Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:20:14Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Moxie Cybernetic & Punk Lora's ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: gypsypunk, gypsy_punk ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:660912@1700169", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
lilTAT/blockassist-bc-gentle_rugged_hare_1755609552
lilTAT
2025-08-19T13:19:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:19:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rk2357281/llama32-bhojpuri-translator2
rk2357281
2025-08-19T13:19:18Z
0
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T13:11:27Z
--- base_model: unsloth/mistral-7b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** rk2357281 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
unitova/blockassist-bc-zealous_sneaky_raven_1755607924
unitova
2025-08-19T13:18:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:18:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/velvet-s-epic-dragons-flux
Muapi
2025-08-19T13:18:29Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:18:18Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Velvet's Epic Dragons | Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: FluxEpicDragon ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:715643@800301", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/lady-dimitrescu-resident-evil-franchise-flux-sdxl
Muapi
2025-08-19T13:18:02Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:17:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Lady Dimitrescu - Resident Evil Franchise - Flux & SDXL ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Alcina Dimitrescu, Black hat, dress ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:441585@867247", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
GFIO/Fish_NC
GFIO
2025-08-19T13:16:48Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-08-19T13:16:21Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
Muapi/style-of-h.-r.-giger-flux-295
Muapi
2025-08-19T13:16:01Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:15:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # style of H. R. Giger [FLUX] 295 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: style of H. R. Giger ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:661699@740501", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/girls-with-guns-cinematic-style-xl-f1d
Muapi
2025-08-19T13:15:08Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:14:50Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Girls With Guns (cinematic style) XL + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:200237@1273747", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
cloudyfall/DeoccAnything
cloudyfall
2025-08-19T13:14:54Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-19T12:16:43Z
--- license: apache-2.0 ---
lilTAT/blockassist-bc-gentle_rugged_hare_1755609232
lilTAT
2025-08-19T13:14:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:14:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Growcompany/SmolLM2-360M-Q4_K_M-GGUF
Growcompany
2025-08-19T13:13:55Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "en", "base_model:HuggingFaceTB/SmolLM2-360M", "base_model:quantized:HuggingFaceTB/SmolLM2-360M", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T13:13:51Z
--- library_name: transformers license: apache-2.0 language: - en base_model: HuggingFaceTB/SmolLM2-360M tags: - llama-cpp - gguf-my-repo --- # Growcompany/SmolLM2-360M-Q4_K_M-GGUF This model was converted to GGUF format from [`HuggingFaceTB/SmolLM2-360M`](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Growcompany/SmolLM2-360M-Q4_K_M-GGUF --hf-file smollm2-360m-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Growcompany/SmolLM2-360M-Q4_K_M-GGUF --hf-file smollm2-360m-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Growcompany/SmolLM2-360M-Q4_K_M-GGUF --hf-file smollm2-360m-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Growcompany/SmolLM2-360M-Q4_K_M-GGUF --hf-file smollm2-360m-q4_k_m.gguf -c 2048 ```
eason668/ecb298de-11b1-498e-8df3-f5ae51558fce-0
eason668
2025-08-19T13:12:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:lmsys/vicuna-7b-v1.3", "base_model:finetune:lmsys/vicuna-7b-v1.3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T07:08:13Z
--- base_model: lmsys/vicuna-7b-v1.3 library_name: transformers model_name: ecb298de-11b1-498e-8df3-f5ae51558fce-0 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for ecb298de-11b1-498e-8df3-f5ae51558fce-0 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="eason668/ecb298de-11b1-498e-8df3-f5ae51558fce-0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/sn99/Gradients-On-Demand/runs/w523o948) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755609008
canoplos112
2025-08-19T13:12:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:10:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AliaeAI/setfit_nli_v5
AliaeAI
2025-08-19T13:11:44Z
0
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-mpnet-base-v2", "region:us" ]
text-classification
2025-08-19T13:11:27Z
--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: I find moments in my day where I carve out time to read, even for just a few minutes I do not usually feel energetic in the mornings when I wake up really. Why are you changing topics? [SEP] What problems would you like to put on the agenda? - text: Iโ€™ve been trying to manage my energy levels, but it feels like an uphill battle some days. Any tips on balancing work and rest? Itโ€™s really tough to gauge when I encounter difficulties in managing daily stress. Some days I feel like Iโ€™m handling it well, but other days, even small tasks seem overwhelming. [SEP] Can you describe the consistency and appearance of your stools? Have you noticed any changes recently? - text: Yeah, there are specific foods or drinks that seem to trigger the pain, anything spicy or greasy sets it off. I've been trying to avoid those. It comes and goes, usually worse after I eat. Lately, I've also been feeling pretty bloated. [SEP] Have you noticed any changes in your sleep patterns related to your meal times or food choices? - text: I have not noticed any changes in my weight along with experiencing abdominal pain really, my weight's been pretty stable. I'm more concerned about this constant painโ€”it's wearing me down mentally too. Sometimes it feels like stress makes it worse, but it's hard to pinpoint specific triggers. I've been trying to keep a food diary to see if certain foods make a difference, but so far, no clear patterns. [SEP] Is the abdominal pain constant, or does it come and go? - text: It's the little things now, like getting out of the ambulance or even writing reports that feel like a marathon. I've started avoiding stairs whenever I can. I definitely need more breaks than before. Even just bending down to check a patient's vitals can leave me winded these days. [SEP] When you realize you donโ€™t have enough energy to do what you want, does it leave you feeling annoyed or discouraged? metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | <ul><li>"It's probably just my body's way of dealing with the discomfort. Some days, it feels like everything is a bit too much to handle. I wish I could do more, but the pain often holds me back. It's frustrating when I have to cancel plans or take breaks just to manage it. [SEP] I love running. It's one of the most popular recreational activities in the world. Do you like running?"</li><li>"I can't even finish folding the laundry without needing to sit down. It's the simple things that are getting harder. Iโ€™m sorry, but I have to go. Goodbye. [SEP] It was great talking with you today and hearing about your experiences! Even though things are feeling tough right now, remember that small steps forward can lead to big changes over time. Keep focusing on those little victories and I'm sure you'll find your way back to a place of greater energy. I look forward to our next chat!"</li><li>'hey ok my night [SEP] What is your favorite thing to do in your spare time? What do you like to do for fun?'</li></ul> | | 1 | <ul><li>'I do not often join in on their game nights as often as I used to. The evenings can be a bit tough these days. They love a good round of Scrabble or Chess. Keeps their minds sharp, they say. [SEP] What are some things that usually help you feel more energized?'</li><li>"The breathlessness comes and goes, but it's definitely worse after treatment. Even just trying to change my clothes can leave me winded. I used to love reading the morning paper, but lately, I can barely focus long enough to get through an article. It's just not the same anymore. [SEP] Is there anything specific about your environment or surroundings that you think might be affecting your concentration?"</li><li>"I'm sorry to hear you're dealing with such unpleasant symptoms. It sounds really challenging. Well, the abdominal pain and diarrhea have been happening for a few weeks now. I've been having trouble keeping food down, and there's been some blood in my stools too. [SEP] that sounds really tough. i'm glad you're getting help though. hopefully you'll start feeling better soon. Could you tell more precisely where the stomach pain is located?"</li></ul> | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("AliaeAI/setfit_nli_v5") # Run inference preds = model("I find moments in my day where I carve out time to read, even for just a few minutes I do not usually feel energetic in the mornings when I wake up really. Why are you changing topics? [SEP] What problems would you like to put on the agenda?") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 6 | 55.0309 | 130 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 874 | | 1 | 872 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 10 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0009 | 1 | 0.2838 | - | | 0.0458 | 50 | 0.2677 | - | | 0.0916 | 100 | 0.2551 | - | | 0.1374 | 150 | 0.2544 | - | | 0.1832 | 200 | 0.2463 | - | | 0.2289 | 250 | 0.253 | - | | 0.2747 | 300 | 0.2427 | - | | 0.3205 | 350 | 0.2223 | - | | 0.3663 | 400 | 0.2129 | - | | 0.4121 | 450 | 0.1816 | - | | 0.4579 | 500 | 0.1496 | - | | 0.5037 | 550 | 0.1176 | - | | 0.5495 | 600 | 0.0894 | - | | 0.5952 | 650 | 0.0639 | - | | 0.6410 | 700 | 0.0575 | - | | 0.6868 | 750 | 0.043 | - | | 0.7326 | 800 | 0.0463 | - | | 0.7784 | 850 | 0.0389 | - | | 0.8242 | 900 | 0.0272 | - | | 0.8700 | 950 | 0.0274 | - | | 0.9158 | 1000 | 0.0299 | - | | 0.9615 | 1050 | 0.0172 | - | | 1.0073 | 1100 | 0.0217 | - | | 1.0531 | 1150 | 0.017 | - | | 1.0989 | 1200 | 0.0143 | - | | 1.1447 | 1250 | 0.018 | - | | 1.1905 | 1300 | 0.0109 | - | | 1.2363 | 1350 | 0.0153 | - | | 1.2821 | 1400 | 0.0099 | - | | 1.3278 | 1450 | 0.012 | - | | 1.3736 | 1500 | 0.0122 | - | | 1.4194 | 1550 | 0.0158 | - | | 1.4652 | 1600 | 0.0141 | - | | 1.5110 | 1650 | 0.0108 | - | | 1.5568 | 1700 | 0.0069 | - | | 1.6026 | 1750 | 0.0071 | - | | 1.6484 | 1800 | 0.0049 | - | | 1.6941 | 1850 | 0.0099 | - | | 1.7399 | 1900 | 0.0076 | - | | 1.7857 | 1950 | 0.0028 | - | | 1.8315 | 2000 | 0.0051 | - | | 1.8773 | 2050 | 0.0027 | - | | 1.9231 | 2100 | 0.0035 | - | | 1.9689 | 2150 | 0.0032 | - | | 2.0147 | 2200 | 0.0034 | - | | 2.0604 | 2250 | 0.0028 | - | | 2.1062 | 2300 | 0.002 | - | | 2.1520 | 2350 | 0.0025 | - | | 2.1978 | 2400 | 0.0014 | - | | 2.2436 | 2450 | 0.0014 | - | | 2.2894 | 2500 | 0.0011 | - | | 2.3352 | 2550 | 0.0013 | - | | 2.3810 | 2600 | 0.0013 | - | | 2.4267 | 2650 | 0.0034 | - | | 2.4725 | 2700 | 0.0024 | - | | 2.5183 | 2750 | 0.0014 | - | | 2.5641 | 2800 | 0.0007 | - | | 2.6099 | 2850 | 0.0015 | - | | 2.6557 | 2900 | 0.0007 | - | | 2.7015 | 2950 | 0.0017 | - | | 2.7473 | 3000 | 0.0001 | - | | 2.7930 | 3050 | 0.002 | - | | 2.8388 | 3100 | 0.0009 | - | | 2.8846 | 3150 | 0.002 | - | | 2.9304 | 3200 | 0.0008 | - | | 2.9762 | 3250 | 0.0013 | - | ### Framework Versions - Python: 3.11.13 - SetFit: 1.1.3 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
arsonor/whisper-tiny-en
arsonor
2025-08-19T13:11:11Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-19T12:49:24Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 metrics: - name: Wer type: wer value: 0.3246753246753247 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6649 - Wer Ortho: 0.3245 - Wer: 0.3247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:| | 0.0006 | 17.8571 | 500 | 0.6649 | 0.3245 | 0.3247 | ### Framework versions - Transformers 4.52.0 - Pytorch 2.6.0+cu124 - Datasets 2.16.0 - Tokenizers 0.21.4
lilTAT/blockassist-bc-gentle_rugged_hare_1755608894
lilTAT
2025-08-19T13:08:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:08:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Neelectric/Llama-3-8B-Instruct-TAR-Cyber_ins_v00.01
Neelectric
2025-08-19T13:07:47Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "open-r1", "sft", "conversational", "dataset:Neelectric/ins", "base_model:lapisrocks/Llama-3-8B-Instruct-TAR-Cyber", "base_model:finetune:lapisrocks/Llama-3-8B-Instruct-TAR-Cyber", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T12:48:05Z
--- base_model: lapisrocks/Llama-3-8B-Instruct-TAR-Cyber datasets: Neelectric/ins library_name: transformers model_name: Llama-3-8B-Instruct-TAR-Cyber_ins_v00.01 tags: - generated_from_trainer - trl - open-r1 - sft licence: license --- # Model Card for Llama-3-8B-Instruct-TAR-Cyber_ins_v00.01 This model is a fine-tuned version of [lapisrocks/Llama-3-8B-Instruct-TAR-Cyber](https://huggingface.co/lapisrocks/Llama-3-8B-Instruct-TAR-Cyber) on the [Neelectric/ins](https://huggingface.co/datasets/Neelectric/ins) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Neelectric/Llama-3-8B-Instruct-TAR-Cyber_ins_v00.01", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/neelectric/sem/runs/xkobaih7) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Muapi/impressionist-landscape-lora-for-flux
Muapi
2025-08-19T13:07:10Z
0
1
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T13:06:51Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Impressionist Landscape LoRA for Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: impressionist, landscape ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:640459@716306", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
behbudiy/Llama-3.1-8B-Instruct-Uz
behbudiy
2025-08-19T13:04:26Z
972
15
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "summarization", "translation", "question-answering", "conversational", "uz", "en", "dataset:yahma/alpaca-cleaned", "dataset:behbudiy/alpaca-cleaned-uz", "dataset:behbudiy/translation-instruction", "license:llama3.1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-31T05:43:16Z
--- license: llama3.1 language: - uz - en base_model: models/Meta-Llama-3.1-8B-Instruct library_name: transformers tags: - llama - text-generation-inference - summarization - translation - question-answering datasets: - yahma/alpaca-cleaned - behbudiy/alpaca-cleaned-uz - behbudiy/translation-instruction metrics: - bleu - comet - accuracy pipeline_tag: text-generation --- ### Model Description The LLaMA-3.1-8B-Instruct-Uz model has been instruction-tuned using a mix of publicly available and syntheticly constructed Uzbek and English data to preserve its original knowledge while enhancing its capabilities. This model is designed to support various natural language processing tasks in Uzbek, such as machine translation, summarization, and dialogue systems, ensuring robust performance across these applications. - **Developed by:** - [Eldor Fozilov](https://www.linkedin.com/in/eldor-fozilov/) - [Azimjon Urinov](https://azimjonn.github.io/) - [Khurshid Juraev](https://kjuraev.com/) ๐Ÿ“Š **Performance Comparison:** | Model Name | BLEU Uz-En (One-shot) | BLEU En-Uz (One-shot) | COMET (Uz-En) | COMET (Ez-Un) | Uzbek Sentiment Analysis | Uzbek News Classification | MMLU (English) (5-shot) | |------------------------|------------------------------------|------------------------------------|--------------------------|----------------|----------------|-------------|-------------------| | **Llama-3.1 8B Instruct** | 23.74 | 6.72 | 84.30 | 82.70 | 68.96 | 55.41 | 65.77 | **Llama-3.1 8B Instruct Uz** | 27.42 | 11.58 | 85.63 | 86.53 | 82.42 | 60.84 | 62.78 | **Mistral 7B Instruct** | 7.47 | 0.67 | 68.14 | 45.58 | 62.02 | 47.52 | 61.07 | **Mistral 7B Instruct Uz** | 29.39 | 16.77 | 86.91 |88.75 | 79.13 | 59.38 | 55.72 | **Mistral Nemo Instruct** | 25.68 | 9.79 | 85.56 | 85.04 | 72.47 | 49.24 |67.62 | **Mistral Nemo Instruct Uz** | 30.49 | 15.52 | 87.04 | 88.01 | 82.05 | 58.2 | 67.36 | **Google Translate** | 41.18 | 22.98 | 89.16 | 90.67 | โ€” | โ€” | โ€” | The results show that Uzbek-optimized models consistently outperform their base counterparts in translation benchmarks (BLEU and COMET) on the FLORES+ Uz-En / En-Uz evaluation datasets, sentiment analysis and news classification in Uzbek language. Also, on the MMLU benchmark, which measures general language understanding across multiple tasks in English, the finetuned models did not show significant decline. (The base Llama modelโ€™s MMLU score differs from the official score due to our evaluation method. Refer to the links below to see evaluation details.) Looking ahead, these models are just **early versions**. We are actively working on further improving our data curation and fine-tuning method to provide even better results in the near future. In addition, we will scale up the dataset size both for continual-pretraining and instruction-tuning, and also customize other strong open-source LLMs for Uzbek language. Weโ€™re eager to see how these models will be used by our Uzbek ๐Ÿ‡บ๐Ÿ‡ฟ community and look forward to continuing this work. ๐Ÿš€ ## How to use The Llama-3.1-8B-Instruct-Uz model can be used with transformers and with the original `llama` codebase. ### Use with transformers Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import transformers import torch model_id = "behbudiy/Llama-3.1-8B-Instruct-Uz" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "Berilgan gap bo'yicha hissiyot tahlilini bajaring."}, {"role": "user", "content": "Men bu filmni yaxshi ko'raman!"}, ] outputs = pipeline( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes) ### Use with `llama` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama) ## Information on Evaluation Method To evaluate on the translation task, we used FLORES+ Uz-En / En-Uz datasets, where we merged the dev and test sets to create a bigger evaluation data for each Uz-En and En-Uz subsets. We used the following prompt to do one-shot Uz-En evaluation both for the base model and Uzbek-optimized model (for En-Uz eval, we changed the positions of the words "English" and "Uzbek"). ```python prompt = f'''You are a professional Uzbek-English translator. Your task is to accurately translate the given Uzbek text into English. Instructions: 1. Translate the text from Uzbek to English. 2. Maintain the original meaning and tone. 3. Use appropriate English grammar and vocabulary. 4. If you encounter an ambiguous or unfamiliar word, provide the most likely translation based on context. 5. Output only the English translation, without any additional comments. Example: Uzbek: "Bugun ob-havo juda yaxshi, quyosh charaqlab turibdi." English: "The weather is very nice today, the sun is shining brightly." Now, please translate the following Uzbek text into English: "{sentence}" ''' ``` To assess the model's ability in Uzbek sentiment analysis, we used the **risqaliyevds/uzbek-sentiment-analysis** dataset, for which we created binary labels (0: Negative, 1: Positive) using GPT-4o API (refer to **behbudiy/uzbek-sentiment-analysis** dataset). We used the following prompt for the evaluation: ```python prompt = f'''Given the following text, determine the sentiment as either 'Positive' or 'Negative.' Respond with only the word 'Positive' or 'Negative' without any additional text or explanation. Text: {text}" ''' ``` For Uzbek News Classification, we used **risqaliyevds/uzbek-zero-shot-classification** dataset and asked the model to predict the category of the news using the following prompt: ```python prompt = f'''Classify the given Uzbek news article into one of the following categories. Provide only the category number as the answer. Categories: 0 - Politics (Siyosat) 1 - Economy (Iqtisodiyot) 2 - Technology (Texnologiya) 3 - Sports (Sport) 4 - Culture (Madaniyat) 5 - Health (Salomatlik) 6 - Family and Society (Oila va Jamiyat) 7 - Education (Ta'lim) 8 - Ecology (Ekologiya) 9 - Foreign News (Xorijiy Yangiliklar) Now classify this article: "{text}" Answer (number only):" ''' ``` On MMLU, we performed 5-shot evaluation using the following **template** and extracted the first token generated by the model for measuring accuracy: ```python template = "The following are multiple choice questions (with answers) about [subject area]. [Example question 1] A. text B. text C. text D. text Answer: [Correct answer letter] . . . [Example question 5] A. text B. text C. text D. text Answer: [Correct answer letter] Now, let's think step by step and then provide only the letter corresponding to the correct answer for the below question, without any additional explanation or comments. [Actual MMLU test question] A. text B. text C. text D. text Answer:" ``` ## More For more details and examples, refer to the base model below: https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
koloni/blockassist-bc-deadly_graceful_stingray_1755606803
koloni
2025-08-19T13:02:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:01:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755606829
kojeklollipop
2025-08-19T13:01:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T13:01:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
comic-snows/my_awesome_qa_model
comic-snows
2025-08-19T13:01:19Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2025-08-19T13:00:08Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF
mradermacher
2025-08-19T13:00:10Z
56
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-Coder-480B-A35B-Instruct", "base_model:quantized:Qwen/Qwen3-Coder-480B-A35B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-07-30T05:12:43Z
--- base_model: Qwen/Qwen3-Coder-480B-A35B-Instruct language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct/blob/main/LICENSE mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-Coder-480B-A35B-Instruct-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.imatrix.gguf) | imatrix | 0.7 | imatrix file (for creating your own qwuants) | | [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ1_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ1_S.gguf.part2of2) | i1-IQ1_S | 97.5 | for the desperate | | [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ1_M.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ1_M.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ1_M.gguf.part3of3) | i1-IQ1_M | 108.2 | mostly desperate | | [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XXS.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XXS.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XXS.gguf.part3of3) | i1-IQ2_XXS | 126.0 | | | [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XS.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XS.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XS.gguf.part3of3) | i1-IQ2_XS | 140.3 | | | [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_S.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_S.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_S.gguf.part3of3) | i1-IQ2_S | 142.9 | | | [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_M.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_M.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_M.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_M.gguf.part4of4) | i1-IQ2_M | 157.1 | | | [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K_S.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K_S.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K_S.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K_S.gguf.part4of4) | i1-Q2_K_S | 162.6 | very low quality | | [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K.gguf.part4of4) | i1-Q2_K | 174.8 | IQ3_XXS probably better | | [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XXS.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XXS.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XXS.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XXS.gguf.part4of4) | i1-IQ3_XXS | 184.4 | lower quality | | [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XS.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XS.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XS.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XS.gguf.part4of4) | i1-IQ3_XS | 195.7 | | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_S.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_S.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_S.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_S.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_S.gguf.part5of5) | i1-Q3_K_S | 207.0 | IQ3_XS probably better | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_S.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_S.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_S.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_S.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_S.gguf.part5of5) | i1-IQ3_S | 207.1 | beats Q3_K* | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_M.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_M.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_M.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_M.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_M.gguf.part5of5) | i1-IQ3_M | 210.0 | | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_M.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_M.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_M.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_M.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_M.gguf.part5of5) | i1-Q3_K_M | 229.3 | IQ3_S probably better | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part6of6) | i1-Q3_K_L | 248.5 | IQ3_M probably better | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part6of6) | i1-IQ4_XS | 255.7 | | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part6of6) | i1-Q4_0 | 271.7 | fast, low quality | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part6of6) | i1-Q4_K_S | 272.9 | optimal size/speed/quality | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part6of6) | i1-Q4_K_M | 290.2 | fast, recommended | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part1of7) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part2of7) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part3of7) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part4of7) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part5of7) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part6of7) [P7](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part7of7) | i1-Q4_1 | 300.6 | | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part1of7) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part2of7) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part3of7) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part4of7) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part5of7) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part6of7) [P7](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part7of7) | i1-Q5_K_S | 330.5 | | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part1of7) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part2of7) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part3of7) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part4of7) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part5of7) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part6of7) [P7](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part7of7) | i1-Q5_K_M | 340.6 | | | [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part1of8) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part2of8) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part3of8) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part4of8) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part5of8) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part6of8) [P7](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part7of8) [P8](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part8of8) | i1-Q6_K | 394.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Osrivers/Wan2.2-Lightning
Osrivers
2025-08-19T12:59:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-08-19T12:52:21Z
--- license: creativeml-openrail-m ---
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755606847
sampingkaca72
2025-08-19T12:58:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:58:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ThomET/MyGemmaNPC
ThomET
2025-08-19T12:57:18Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T12:54:05Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ThomET/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
lilTAT/blockassist-bc-gentle_rugged_hare_1755608110
lilTAT
2025-08-19T12:55:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:55:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BjarneNPO/finetune_19_08_2025_12_45_15
BjarneNPO
2025-08-19T12:55:30Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "dense", "generated_from_trainer", "dataset_size:19964", "loss:MultipleNegativesRankingLoss", "dataset:NPOA/Bjarne-Bachelorarbeit", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-19T12:55:12Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:19964 - loss:MultipleNegativesRankingLoss base_model: FacebookAI/xlm-roberta-large widget: - source_sentence: bei einem kann keine hinterlegt werden sentences: - An einem Tag gab es im August eine รœberbelegung, einmal erklรคrt wie sie diese nachvollziehen kann. - Fehlermeldung weist auf eine fehlende BI hin. Anwenderin stimmt sich dazu mit ab. - "Ticket\r\n---------------------------\r\nExport angepasst - informiert\r\n--------------------------\r\ \nUser mรถchte auch in der รผbergreifenden Personalliste die Anpassung umgesetzt\ \ haben - daher Ticket erneut geรถffnet\r\n- รผbergreifender Export ebenfalls angepasst\ \ - informiert" - source_sentence: Userin darf erst am 01.02.2024 die Vertragsangebote rausschicken, mรถchte aber schonmal vermerken, welchen Kindern sie ein Vertragsangebot schicken mรถchte. sentences: - Das ist noch nicht freigeschaltet. Genauer Zeitpunkt steht auch noch nicht fest. - "Kind muss manuell angelegt werden und dann neu synchronisiert und Anmeldedaten\ \ zusammenfรผhren.\r\nDa Userin weiterhin Anmeldedaten nicht zusammenfรผhren kann\ \ Userin gebeten uns einen Screenshot aus dem Kita-Navigator zukommen zu lassen.\r\ \nBeide Kinder wurden nun รผbertragen und befinden sich unter Vetragsangeboten." - Kann die Kinder auf die Planungsliste nehmen, dann sieht sie diese sowohl in der Planungsliste, als auch in der Liste der Anmeldungen mit dem Symbol in der Anmeldeliste. - source_sentence: Fehlermeldung beim Erstellen der Datei. sentences: - In der Benutzerverwaltung unter Verwaltung. - Bei einer Kollegin musste noch die Stundenanzahl unter Ausbildung und Statistik eingetragen werden. - "Wurde an den Entwickler weitergegeben.\r\nProblem konnte behoben werden, Benutzer\ \ wurde informiert." - source_sentence: mรถchte wissen wenn ein Kind gestern letzmalig in der Kita war, welches Entlassdatum muss im System eingetragen werden? sentences: - Fehler bereist bekannt, prรผft spรคter erneut. - Aktuell wurde uns noch nicht gemeldet, dass wir das Jugendamt freischalten sollen. - Der letzte Betreuungstag muss als Entlassdatum hinterlegt werden, da sonst die BI nicht stimmt. - source_sentence: Login mit dem Authenticator funktioniert nicht mehr, Code ist immer ungรผltig sentences: - Erneut die Tรคtigkeit gelรถscht und neu รœbertragen, die Tรคtigkeit wurde aber nicht erneut angezeigt - Nachdem die Uhrzeit neu synchronisiert war konnte sie sich wieder einloggen. - Dies entspricht der Vorlage. muss Vorlage anpassen. datasets: - NPOA/Bjarne-Bachelorarbeit pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on FacebookAI/xlm-roberta-large This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [bjarne-bachelorarbeit](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [bjarne-bachelorarbeit](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'}) (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("BjarneNPO/finetune_19_08_2025_12_45_15") # Run inference queries = [ "Login mit dem Authenticator funktioniert nicht mehr, Code ist immer ung\u00fcltig", ] documents = [ 'Nachdem die Uhrzeit neu synchronisiert war konnte sie sich wieder einloggen.', 'Erneut die Tรคtigkeit gelรถscht und neu รœbertragen, die Tรคtigkeit wurde aber nicht erneut angezeigt', 'Dies entspricht der Vorlage. muss Vorlage anpassen.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 1024] [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[0.6199, 0.3746, 0.3027]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### bjarne-bachelorarbeit * Dataset: [bjarne-bachelorarbeit](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit) at [273f1a5](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit/tree/273f1a515b2a1731a04a643cf39bd217d61a02a0) * Size: 19,964 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 27.66 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 22.87 tokens</li><li>max: 151 tokens</li></ul> | * Samples: | query | answer | |:------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------| | <code>Wie kann man die Jahresurlaubsรผbersicht exportieren?</code> | <code>รผber das 3 Punkte Menรผ rechts oben. Mitarbeiter auswรคhlen und exportieren</code> | | <code>1. Vertragsabschlรผsse werden nicht รผbertragen <br>2. Kinder kommen nicht von nach <br>3. Absage kann bei Portalstatus nicht erstellt werden.</code> | <code>Ticket <br>Userin gebeten sich an den Support zu wenden, da der Fehler liegt.</code> | | <code>Wird im Anmeldeportal nicht gefunden.</code> | <code>Die Schnittstelle war noch nicht aktiviert und Profil ebenfalls nicht.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Evaluation Dataset #### bjarne-bachelorarbeit * Dataset: [bjarne-bachelorarbeit](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit) at [273f1a5](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit/tree/273f1a515b2a1731a04a643cf39bd217d61a02a0) * Size: 8,557 evaluation samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 26.49 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 23.16 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | query | answer | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Liebes Support Team! <br>In unserer Kst. fiel der EL auf, dass es in der Urlaubsรผbersicht Unstimmigkeiten gibt. So werden z.B. bei der Kollegin 60 offene Tage angezeigt und im Detail (Jahresรผbersicht) korrekt alle eingetragenen Tage und nur 2 Tage Rest! <br>Ich freue mich auf Ihre Rรผckmeldung. <br>Mit besten GrรผรŸen <br>_________________________________________________ <br>Leitung Kompetenzteam <br>Geschรคftsfeld Kindertageseinrichtungen <br> () <br> e.V. <br>. 280 <br>33605 <br>Telefon: Mo.+Mi. +49 521 9216-129 Di., Do. + Fr. +49 5264 6559100 <br>E-Mail: <br>Web: www.awo-owl.de <br>Instagram: www.instagram.com/ <br>Facebook: www.facebook.com/ <br>Vorsitzende des Prรคsidiums und des Aufsichtsrates: <br>Vorstand: (Vors.), <br>Amtsgericht VR 1151 <br>Diese E-Mail einschlieรŸlich evtl. angehรคngter Dateien enthรคlt vertrauliche und/oder rechtlich geschรผtzte Informationen. Wenn Sie nicht der Adressat sind und diese E-Mail irrtรผmlich erhalten haben, dรผrfen Sie weder den Inhalt dieser E-Mail nutzen, noch dรผrfen Sie die eventuell angehรคngten Datei...</code> | <code>Problem ist bekannt und wird im Verlauf des Tages behoben.</code> | | <code>hat im einen Vertrag, aber wurde nicht nach รผbertragen. war wegen fehlender Anbindung auf der Schnittstelle nicht auf der Anmeldeliste.</code> | <code>Kind muss manuell angelegt werden und dann neu synchronisiert und Anmeldedaten zusammenfรผhren. <br>Da Userin weiterhin Anmeldedaten nicht zusammenfรผhren kann Userin gebeten uns einen Screenshot aus dem Kita-Navigator zukommen zu lassen. <br>Beide Kinder wurden nun รผbertragen und befinden sich unter Vetragsangeboten.</code> | | <code>Wie kann ein Kind aus den zukรผnftigen Neuaufnahmen gelรถscht werden?</code> | <code>Benutzer muss erst die BI und kann dann รผber den Button Statuswechsel durchfรผhren das ganze Kind lรถschen.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 8 - `learning_rate`: 2e-05 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: False - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 8 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0641 | 10 | 2.772 | - | | 0.1282 | 20 | 2.7656 | - | | 0.1923 | 30 | 2.7448 | - | | 0.2564 | 40 | 2.674 | - | | 0.3205 | 50 | 2.5086 | - | | 0.3846 | 60 | 2.3308 | - | | 0.4487 | 70 | 2.0376 | - | | 0.5128 | 80 | 1.9653 | - | | 0.5769 | 90 | 1.9202 | - | | 0.6410 | 100 | 1.7578 | - | | 0.7051 | 110 | 1.6882 | - | | 0.7692 | 120 | 1.6155 | - | | 0.8333 | 130 | 1.5431 | - | | 0.8974 | 140 | 1.4487 | - | | 0.9615 | 150 | 1.4125 | - | | 1.0 | 156 | - | 1.3032 | | 1.0256 | 160 | 1.3047 | - | | 1.0897 | 170 | 1.2717 | - | | 1.1538 | 180 | 1.2822 | - | | 1.2179 | 190 | 1.243 | - | | 1.2821 | 200 | 1.2183 | - | | 1.3462 | 210 | 1.1533 | - | | 1.4103 | 220 | 1.1534 | - | | 1.4744 | 230 | 1.1748 | - | | 1.5385 | 240 | 1.0993 | - | | 1.6026 | 250 | 1.1418 | - | | 1.6667 | 260 | 1.0975 | - | | 1.7308 | 270 | 1.0359 | - | | 1.7949 | 280 | 1.0728 | - | | 1.8590 | 290 | 0.9835 | - | | 1.9231 | 300 | 0.9846 | - | | 1.9872 | 310 | 0.9811 | - | | 2.0 | 312 | - | 0.9966 | | 2.0513 | 320 | 0.8722 | - | | 2.1154 | 330 | 0.8756 | - | | 2.1795 | 340 | 0.9337 | - | | 2.2436 | 350 | 0.9512 | - | | 2.3077 | 360 | 0.915 | - | | 2.3718 | 370 | 0.8729 | - | | 2.4359 | 380 | 0.877 | - | | 2.5 | 390 | 0.8838 | - | | 2.5641 | 400 | 0.8603 | - | | 2.6282 | 410 | 0.9071 | - | | 2.6923 | 420 | 0.8661 | - | | 2.7564 | 430 | 0.8705 | - | | 2.8205 | 440 | 0.8752 | - | | 2.8846 | 450 | 0.8926 | - | | 2.9487 | 460 | 0.7818 | - | | **3.0** | **468** | **-** | **0.9536** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.12.11 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0+cu128 - Accelerate: 1.10.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
lucienbaumgartner/moralizedMP
lucienbaumgartner
2025-08-19T12:55:19Z
4
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-mpnet-base-v2", "model-index", "region:us" ]
text-classification
2025-08-14T14:27:31Z
--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: if it is raining, as was stated, then it is irrelevant what someone thinks abut whether or not it is raining. it is raining. therefore, the statement was nonsensical. - text: the first part of the sentence was a fact but the second half was sally's opinion - text: because on one hand it is but actually not a long term solution - text: it contradicted itself - text: cyberbully may seem cruel to everyone, but to tom, he does not feel cruel to him. metrics: - accuracy - precision - recall - f1 pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.868421052631579 name: Accuracy - type: precision value: 0.5642857142857144 name: Precision - type: recall value: 0.5629370629370629 name: Recall - type: f1 value: 0.562610229276896 name: F1 --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-----------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Linguistic (in)felicity | <ul><li>'because the second statement negates what was stated in the first part of the sentence'</li><li>'there is a logic conflict in the statement that renders it bizarre and nonsensical.'</li><li>'there was a contradiction of statements if read at face value, however, it could be read that being homeless is not right in which case the statement would make sense. it is unclear.'</li></ul> | | Enrichment / reinterpretation | <ul><li>'the statement recognised the objective compassion but the opinion contradicted it'</li><li>"because while it is compassionate to help the homeless people don't always do it out of compassion."</li><li>'it could be the way how homeless are helped. there could be better ways to handle that'</li></ul> | | Lack of understanding / clear misunderstanding | <ul><li>'it simply sounded stupid. i doubt it makes any sense'</li><li>'it statement didnt make any sense, for us to better understand, tom needs to further explain his reason for stating why its not cruel after first saying it is'</li><li>'it sounds very contradictory'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | Precision | Recall | F1 | |:--------|:---------|:----------|:-------|:-------| | **all** | 0.8684 | 0.5643 | 0.5629 | 0.5626 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("it contradicted itself") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 2 | 16.6447 | 92 | | Label | Training Sample Count | |:-----------------------------------------------|:----------------------| | Enrichment / reinterpretation | 31 | | Lack of understanding / clear misunderstanding | 10 | | Linguistic (in)felicity | 111 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 3786 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0026 | 1 | 0.2539 | - | | 0.1316 | 50 | 0.2248 | - | | 0.2632 | 100 | 0.1681 | - | | 0.3947 | 150 | 0.0854 | - | | 0.5263 | 200 | 0.0128 | - | | 0.6579 | 250 | 0.0074 | - | | 0.7895 | 300 | 0.0017 | - | | 0.9211 | 350 | 0.0021 | - | | 1.0526 | 400 | 0.0024 | - | | 1.1842 | 450 | 0.0004 | - | | 1.3158 | 500 | 0.0011 | - | | 1.4474 | 550 | 0.0016 | - | | 1.5789 | 600 | 0.0003 | - | | 1.7105 | 650 | 0.0002 | - | | 1.8421 | 700 | 0.0002 | - | | 1.9737 | 750 | 0.0002 | - | | 2.1053 | 800 | 0.0002 | - | | 2.2368 | 850 | 0.0002 | - | | 2.3684 | 900 | 0.0002 | - | | 2.5 | 950 | 0.0001 | - | | 2.6316 | 1000 | 0.0001 | - | | 2.7632 | 1050 | 0.0001 | - | | 2.8947 | 1100 | 0.0001 | - | | 3.0263 | 1150 | 0.0001 | - | | 3.1579 | 1200 | 0.0001 | - | | 3.2895 | 1250 | 0.0001 | - | | 3.4211 | 1300 | 0.0001 | - | | 3.5526 | 1350 | 0.0001 | - | | 3.6842 | 1400 | 0.0001 | - | | 3.8158 | 1450 | 0.0001 | - | | 3.9474 | 1500 | 0.0001 | - | | 4.0789 | 1550 | 0.0001 | - | | 4.2105 | 1600 | 0.0001 | - | | 4.3421 | 1650 | 0.0001 | - | | 4.4737 | 1700 | 0.0001 | - | | 4.6053 | 1750 | 0.0001 | - | | 4.7368 | 1800 | 0.0001 | - | | 4.8684 | 1850 | 0.0001 | - | | 5.0 | 1900 | 0.0001 | - | | 5.1316 | 1950 | 0.0001 | - | | 5.2632 | 2000 | 0.0001 | - | | 5.3947 | 2050 | 0.0001 | - | | 5.5263 | 2100 | 0.0001 | - | | 5.6579 | 2150 | 0.0001 | - | | 5.7895 | 2200 | 0.0001 | - | | 5.9211 | 2250 | 0.0001 | - | | 6.0526 | 2300 | 0.0001 | - | | 6.1842 | 2350 | 0.0001 | - | | 6.3158 | 2400 | 0.0001 | - | | 6.4474 | 2450 | 0.0001 | - | | 6.5789 | 2500 | 0.0001 | - | | 6.7105 | 2550 | 0.0001 | - | | 6.8421 | 2600 | 0.0001 | - | | 6.9737 | 2650 | 0.0001 | - | | 7.1053 | 2700 | 0.0001 | - | | 7.2368 | 2750 | 0.0001 | - | | 7.3684 | 2800 | 0.0001 | - | | 7.5 | 2850 | 0.0001 | - | | 7.6316 | 2900 | 0.0001 | - | | 7.7632 | 2950 | 0.0001 | - | | 7.8947 | 3000 | 0.0001 | - | | 8.0263 | 3050 | 0.0001 | - | | 8.1579 | 3100 | 0.0001 | - | | 8.2895 | 3150 | 0.0001 | - | | 8.4211 | 3200 | 0.0001 | - | | 8.5526 | 3250 | 0.0001 | - | | 8.6842 | 3300 | 0.0001 | - | | 8.8158 | 3350 | 0.0001 | - | | 8.9474 | 3400 | 0.0012 | - | | 9.0789 | 3450 | 0.0003 | - | | 9.2105 | 3500 | 0.0001 | - | | 9.3421 | 3550 | 0.0001 | - | | 9.4737 | 3600 | 0.0001 | - | | 9.6053 | 3650 | 0.0001 | - | | 9.7368 | 3700 | 0.0001 | - | | 9.8684 | 3750 | 0.0001 | - | | 10.0 | 3800 | 0.0 | - | ### Framework Versions - Python: 3.11.9 - SetFit: 1.1.3 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
gaoyang07/XY_Tokenizer
gaoyang07
2025-08-19T12:53:55Z
0
0
null
[ "pytorch", "xy_tokenizer", "arxiv:2506.23325", "license:apache-2.0", "region:us" ]
null
2025-08-19T12:07:08Z
--- license: apache-2.0 --- # **Introduction** **`XY-Tokenizer`** is a speech codec that simultaneously models both semantic and acoustic aspects of speech, converting audio into discrete tokens and decoding them back to high-quality audio. It achieves efficient speech representation at only 1kbps with RVQ8 quantization at 12.5Hz frame rate. - **Paper:** [Read on arXiv](https://arxiv.org/abs/2506.23325) - **Source Code:** - [GitHub Repo](https://github.com/OpenMOSS/MOSS-TTSD/tree/main/XY_Tokenizer) - [Hugging Face Repo](https://huggingface.co/spaces/fnlp/MOSS-TTSD/tree/main/XY_Tokenizer) ## ๐Ÿ“š Related Project: **[MOSS-TTSD](https://huggingface.co/fnlp/MOSS-TTSD-v0.5)** **`XY-Tokenizer`** serves as the underlying neural codec for **`MOSS-TTSD`**, our 1.7B Audio Language Model. \ Explore **`MOSS-TTSD`** for advanced text-to-speech and other audio generation tasks on [GitHub](https://github.com/OpenMOSS/MOSS-TTSD), [Blog](http://www.open-moss.com/en/moss-ttsd/), [ๅšๅฎข](https://www.open-moss.com/cn/moss-ttsd/), and [Space Demo](https://huggingface.co/spaces/fnlp/MOSS-TTSD). ## โœจ Features - **Dual-channel modeling**: Simultaneously captures semantic meaning and acoustic details - **Efficient representation**: 1kbps bitrate with RVQ8 quantization at 12.5Hz - **High-quality audio tokenization**: Convert speech to discrete tokens and back with minimal quality loss - **Long audio support**: Process audio files longer than 30 seconds using chunking with overlap - **Batch processing**: Efficiently process multiple audio files in batches - **24kHz output**: Generate high-quality 24kHz audio output ## ๐Ÿš€ Installation ```bash git clone https://github.com/OpenMOSS/MOSS-TTSD.git cd MOSS-TTSD conda create -n xy_tokenizer python=3.10 -y && conda activate xy_tokenizer pip install -r XY_Tokenizer/requirements.txt ``` ## ๐Ÿ’ป Quick Start Here's how to use **`XY-Tokenizer`** with `transformers` to encode an audio file into discrete tokens and decode it back into a waveform. ```python import os import torchaudio from transformers import AutoModelForCausalLM from transformers.models.moss_ttsd.processor_moss_ttsd import MossTTSDProcessor processor = MossTTSDProcessor.from_pretrained( "fnlp/MOSS-TTSD-v0.5", codec_path="gaoyang07/XY_Tokenizer", trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( "fnlp/MOSS-TTSD-v0.5", trust_remote_code=True ).eval() data = [{ "base_path": "./examples", "text": "[S1]ๅ•ๅ…ƒ009๏ผŒไฝ ๅˆฐๅบ•่ƒฝไธ่ƒฝๅฅฝๅฅฝๅทฅไฝœ๏ผŸๆˆ‘ๅŠไฝ ไธ€ๅฅ๏ผŒ่ฟ™ไธชๆ—ถไปฃ๏ผŒไธ่ทŸไธŠAIๆตชๆฝฎ๏ผŒๅฐฑไผš่ขซๅฝปๅบ•ๆท˜ๆฑฐ๏ผ[S2]่ฟ™ไธชๅ˜›๏ผŒ้‚ฃๆˆ‘ๅพ—ๅ…ˆ้—ฎ้—ฎ็ก…ๅŸบไน‹ไธป", "system_prompt": "ไฝ ๆ˜ฏไธ€ไธชๆ นๆฎๆ–‡ๆœฌ็”Ÿๆˆๅฏนๅบ”้Ÿณ้ข‘็š„่ฏญ้Ÿณๅˆๆˆๅ™จใ€‚", "prompt_text": "[S1]ๅ˜Žๅญ๏ผŒไฝ ๅฌๅ”็š„๏ผŒไฝ ๅฌๅ”็š„๏ผŒๅ…ถๅฎžไฝ ่ทŸๆ‰€ๆœ‰ไบบPK๏ผŒๆœ‰็š„ๆ—ถๅ€™ๆˆ‘ไนŸๅœจ็œ‹๏ผŒๆˆ‘ไนŸๅœจ็œ‹๏ผŒๆ— ้žไธค๏ผŒไธคไปถไบ‹๏ผŒไธ€ไธชๆ˜ฏ้ขๅญ๏ผŒไธๆƒณ่พ“ใ€‚[S2]ไฝ ๅˆซ่ฏด๏ผŒ้‚ฃๅคฉๆฝ˜่€ๅธˆๆœ‰ไธ€ไธชๅพ’ๅผŸๅผ€็›ดๆ’ญ๏ผŒ็ป™ๆˆ‘ๅผ€ไธ“ๅœบ๏ผŒๆฝ˜่€ๅธˆไธ€ๅพ’ๅผŸๅผ€็›ดๆ’ญ็ป™ๆˆ‘ๅผ€ไธ“ๅœบ๏ผŒ็ป™ๆˆ‘ไธ€้กฟ้ช‚ใ€‚", "prompt_audio": "panchangjiang_gazi.wav", }] # Try to use the ExtractorIterator as an iterator print("Trying iterator approach...", flush=True) inputs = processor(data) token_ids = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) text, audios = processor.batch_decode(token_ids) if not os.path.exists("outputs/"): os.mkdir("outputs/") for i, data in enumerate(audios): for j, fragment in enumerate(data): print(f"Saving audio_{i}_{j}.wav...", flush=True) torchaudio.save(f"outputs/audio_{i}_{j}.wav", fragment.cpu(), 24000) ```
thanobidex/blockassist-bc-colorful_shiny_hare_1755606252
thanobidex
2025-08-19T12:53:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:53:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755607240
canoplos112
2025-08-19T12:51:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:50:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755606148
ihsanridzi
2025-08-19T12:50:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:50:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/80_xuruTx
VoilaRaj
2025-08-19T12:48:40Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T12:44:52Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755605825
katanyasekolah
2025-08-19T12:47:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:47:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mostefa-Terbeche/diabetic-retinopathy-paraguay-resnet50-advanced-20250619-042814
Mostefa-Terbeche
2025-08-19T12:47:08Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:paraguay", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-19T12:00:01Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - paraguay metrics: - accuracy - quadratic-kappa - auc model-index: - name: paraguay_resnet50_advanced results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: paraguay name: PARAGUAY metrics: - type: accuracy value: 0.40789473684210525 - type: quadratic-kappa value: 0.7969016266460108 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the resnet50 architecture on the paraguay dataset with advanced preprocessing. ## Model Details - **Architecture**: resnet50 - **Dataset**: paraguay - **Preprocessing**: advanced - **Training Date**: 20250619-042814 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: paraguay_resnet50_20250619-042814_new ## Performance - **Test Accuracy**: 0.40789473684210525 - **Test Quadratic Kappa**: 0.7969016266460108 - **Validation Kappa**: 0.7969016266460108 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-paraguay-resnet50-advanced", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
eason668/04a9f657-5b57-4e80-a9c4-cb286fc36f06
eason668
2025-08-19T12:46:05Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:EleutherAI/pythia-410m-deduped", "base_model:finetune:EleutherAI/pythia-410m-deduped", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T12:31:28Z
--- base_model: EleutherAI/pythia-410m-deduped library_name: transformers model_name: 04a9f657-5b57-4e80-a9c4-cb286fc36f06 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for 04a9f657-5b57-4e80-a9c4-cb286fc36f06 This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="eason668/04a9f657-5b57-4e80-a9c4-cb286fc36f06", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/sn99/Gradients-On-Demand/runs/14loh2az) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
lguaman/MyGemmaNPC
lguaman
2025-08-19T12:41:59Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T21:26:49Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="lguaman/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Jacksss123/net72_uid234
Jacksss123
2025-08-19T12:41:01Z
0
0
transformers
[ "transformers", "tensorboard", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-19T12:38:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jacksss123/net72_uid2
Jacksss123
2025-08-19T12:40:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-19T12:36:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755605670
quantumxnode
2025-08-19T12:40:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:40:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1755607155
Dejiat
2025-08-19T12:39:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:39:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755605038
milliarderdol
2025-08-19T12:38:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:37:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Elsihj89/camila-keynnect
Elsihj89
2025-08-19T12:38:17Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-19T12:38:17Z
--- license: apache-2.0 ---
chiniwini/davidmodel
chiniwini
2025-08-19T12:37:41Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T12:04:01Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Davidmodel <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/chiniwini/davidmodel/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('chiniwini/davidmodel', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/chiniwini/davidmodel/discussions) to add images that show off what youโ€™ve made with this LoRA.
kimxxxx/mistral_r32_a32_b8_gas2_lr5e-5_4500tk_2epoch_newdata
kimxxxx
2025-08-19T12:37:04Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T12:36:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Dejiat/blockassist-bc-savage_unseen_bobcat_1755606945
Dejiat
2025-08-19T12:36:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:36:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1755606723
Dejiat
2025-08-19T12:32:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:32:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neko-llm/Qwen3-235B-test4
neko-llm
2025-08-19T12:32:22Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen3-235B-A22B", "base_model:finetune:Qwen/Qwen3-235B-A22B", "endpoints_compatible", "region:us" ]
null
2025-08-19T10:50:58Z
--- base_model: Qwen/Qwen3-235B-A22B library_name: transformers model_name: Qwen3-235B-test4 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen3-235B-test4 This model is a fine-tuned version of [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neko-llm/Qwen3-235B-test4", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.54.1 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jacopo-minniti/uats-value-model
jacopo-minniti
2025-08-19T12:31:01Z
28
0
transformers
[ "transformers", "safetensors", "qwen2", "token-classification", "generated_from_trainer", "trl", "prm", "arxiv:2211.14275", "base_model:Qwen/Qwen2.5-1.5B", "base_model:finetune:Qwen/Qwen2.5-1.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2025-08-11T02:06:37Z
--- base_model: Qwen/Qwen2.5-1.5B library_name: transformers model_name: Qwen2.5-1.5B-Reward-Math-Sheperd tags: - generated_from_trainer - trl - prm licence: license --- # Model Card for Qwen2.5-1.5B-Reward-Math-Sheperd This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/uncertainty-guided-reasoning/value-model/runs/ra2126bg) This model was trained with PRM. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0.dev20250319+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite PRM as: ```bibtex @article{uesato2022solving, title = {{Solving Math Word Problems With Process- and Outcome-Based Feedback}}, author = {Uesato, Jonathan and Kushman, Nate and Kumar, Ramana and Song, Francis and Siegel, Noah and Wang, Lisa and Creswell, Antonia and Irving, Geoffrey and Higgins, Irina}, year = 2022, journal = {arXiv preprint arXiv:2211.14275} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tensorblock/Menlo_Lucy-128k-GGUF
tensorblock
2025-08-19T12:30:43Z
0
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "en", "base_model:Menlo/Lucy-128k", "base_model:quantized:Menlo/Lucy-128k", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T12:10:23Z
--- license: apache-2.0 language: - en base_model: Menlo/Lucy-128k pipeline_tag: text-generation library_name: transformers tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Menlo/Lucy-128k - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building โ†— </a> </div> This repo contains GGUF format model files for [Menlo/Lucy-128k](https://huggingface.co/Menlo/Lucy-128k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">๐Ÿš€ Try it now! ๐Ÿš€</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">๐Ÿ‘€ See what we built ๐Ÿ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">๐Ÿ‘€ See what we built ๐Ÿ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Lucy-128k-Q2_K.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q2_K.gguf) | Q2_K | 0.778 GB | smallest, significant quality loss - not recommended for most purposes | | [Lucy-128k-Q3_K_S.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q3_K_S.gguf) | Q3_K_S | 0.867 GB | very small, high quality loss | | [Lucy-128k-Q3_K_M.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q3_K_M.gguf) | Q3_K_M | 0.940 GB | very small, high quality loss | | [Lucy-128k-Q3_K_L.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q3_K_L.gguf) | Q3_K_L | 1.003 GB | small, substantial quality loss | | [Lucy-128k-Q4_0.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q4_0.gguf) | Q4_0 | 1.054 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Lucy-128k-Q4_K_S.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q4_K_S.gguf) | Q4_K_S | 1.060 GB | small, greater quality loss | | [Lucy-128k-Q4_K_M.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q4_K_M.gguf) | Q4_K_M | 1.107 GB | medium, balanced quality - recommended | | [Lucy-128k-Q5_0.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q5_0.gguf) | Q5_0 | 1.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Lucy-128k-Q5_K_S.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q5_K_S.gguf) | Q5_K_S | 1.231 GB | large, low quality loss - recommended | | [Lucy-128k-Q5_K_M.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q5_K_M.gguf) | Q5_K_M | 1.258 GB | large, very low quality loss - recommended | | [Lucy-128k-Q6_K.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q6_K.gguf) | Q6_K | 1.418 GB | very large, extremely low quality loss | | [Lucy-128k-Q8_0.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q8_0.gguf) | Q8_0 | 1.834 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Menlo_Lucy-128k-GGUF --include "Lucy-128k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Menlo_Lucy-128k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
lilTAT/blockassist-bc-gentle_rugged_hare_1755606615
lilTAT
2025-08-19T12:30:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:30:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755606423
lqpl
2025-08-19T12:28:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:27:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kodetr/stunting-7B-Deepseek
kodetr
2025-08-19T12:27:25Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "stunting", "kesehatan", "anak", "conversational", "id", "dataset:kodetr/penelitian-fundamental-stunting-qa", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T11:43:34Z
--- library_name: transformers tags: - stunting - kesehatan - anak license: apache-2.0 datasets: - kodetr/penelitian-fundamental-stunting-qa language: - id metrics: - rouge - bleu pipeline_tag: text-generation base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --- ### Model Description <!-- Provide a longer summary of what this model is. --> Konsultasi(Q&A) stunting pada anak - **Developed by:** Tanwir - **Language :** Indonesia ### Training ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d6d2f8b06abf924b24349d/oa7SlyyoiWhrZCJNa-4ne.png) ### Parameter ``` "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 3584, "initializer_range": 0.02, "intermediate_size": 18944, "layer_types": [ "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention", "full_attention" ], "max_position_embeddings": 131072, "max_window_layers": 28, "model_type": "qwen2", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 10000, "sliding_window": null, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.55.0", "use_cache": true, "use_mrope": false, "use_sliding_window": false, "vocab_size": 152064 ``` ### Use with transformers Pastikan untuk memperbarui instalasi transformer Anda melalui pip install --upgrade transformer. ```python import torch from transformers import pipeline model_id = "kodetr/stunting-7B-Deepseek-R1" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "Jelaskan definisi 1000 hari pertama kehidupan."}, {"role": "user", "content": "Apa itu 1000 hari pertama kehidupan?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ```
koloni/blockassist-bc-deadly_graceful_stingray_1755604754
koloni
2025-08-19T12:27:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:26:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755605238
Sayemahsjn
2025-08-19T12:26:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:26:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
New-Clip-prabh-viral-video/New.full.videos.prabh.Viral.Video.Official.Tutorial
New-Clip-prabh-viral-video
2025-08-19T12:24:33Z
0
0
null
[ "region:us" ]
null
2025-08-19T12:24:18Z
<a href="https://sdu.sk/AyL"><img src="https://files.qatarliving.com/event/2025/06/20/Jawan69_0-1749987397680.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐™จ๐™ž๐™œ๐™ฃ ๐™ช๐™ฅ ๐™–๐™ฃ๐™™ ๐™ฌ๐™–๐™ฉ๐™˜๐™ ๐™›๐™ช๐™ก๐™ก ๐™ซ๐™ž๐™™๐™š๐™ค ๐™ƒ๐˜ฟ)</a> <a href="https://sdu.sk/AyL" rel="nofollow">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค)</a>
Orginal-Uppal-Farm-Girl-Viral-Video-Link/New.full.videos.Uppal.Farm.Girl.Viral.Video.Official.Tutorial
Orginal-Uppal-Farm-Girl-Viral-Video-Link
2025-08-19T12:21:14Z
0
0
null
[ "region:us" ]
null
2025-08-19T12:21:00Z
<a href="https://sdu.sk/AyL"><img src="https://files.qatarliving.com/event/2025/06/20/Jawan69_0-1749987397680.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐™จ๐™ž๐™œ๐™ฃ ๐™ช๐™ฅ ๐™–๐™ฃ๐™™ ๐™ฌ๐™–๐™ฉ๐™˜๐™ ๐™›๐™ช๐™ก๐™ก ๐™ซ๐™ž๐™™๐™š๐™ค ๐™ƒ๐˜ฟ)</a> <a href="https://sdu.sk/AyL" rel="nofollow">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค)</a>
VIDEOS-18-afreen-viral-Video-link/New.full.videos.afreen.Viral.Video.Official.Tutorial
VIDEOS-18-afreen-viral-Video-link
2025-08-19T12:20:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T12:19:57Z
<a href="https://sdu.sk/AyL"><img src="https://files.qatarliving.com/event/2025/06/20/Jawan69_0-1749987397680.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐™จ๐™ž๐™œ๐™ฃ ๐™ช๐™ฅ ๐™–๐™ฃ๐™™ ๐™ฌ๐™–๐™ฉ๐™˜๐™ ๐™›๐™ช๐™ก๐™ก ๐™ซ๐™ž๐™™๐™š๐™ค ๐™ƒ๐˜ฟ)</a> <a href="https://sdu.sk/AyL" rel="nofollow">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค)</a>
Marksdo/WhisperMate
Marksdo
2025-08-19T12:20:10Z
100
5
null
[ "gguf", "region:us" ]
null
2023-09-21T08:41:51Z
Macos native UI app for Whisper AI processing https://whispermate.app ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6453149849b6b9a2383cb1d9/SByUagCHS1n0VfoQ4RAqh.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6453149849b6b9a2383cb1d9/xj8XzuT14abhmVgKcHG5v.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6453149849b6b9a2383cb1d9/7mBh4rxx22pgN-KRICaQ6.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6453149849b6b9a2383cb1d9/o_KJxLEczPDJD975_vq5C.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6453149849b6b9a2383cb1d9/T8oq85Wh1MOqpC2R0Pk_2.png)
Dejiat/blockassist-bc-savage_unseen_bobcat_1755605923
Dejiat
2025-08-19T12:19:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:19:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ishahaf/Llama-3.3-Nemotron-Super-49B-v1.5
ishahaf
2025-08-19T12:18:39Z
0
0
transformers
[ "transformers", "safetensors", "nemotron-nas", "text-generation", "nvidia", "llama-3", "pytorch", "conversational", "custom_code", "en", "arxiv:2411.19146", "arxiv:2505.00949", "arxiv:2502.00203", "license:other", "autotrain_compatible", "region:us" ]
text-generation
2025-08-19T12:18:39Z
--- library_name: transformers license: other license_name: nvidia-open-model-license license_link: >- https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/ pipeline_tag: text-generation language: - en tags: - nvidia - llama-3 - pytorch --- # Llama-3.3-Nemotron-Super-49B-v1.5 ![image](./accuracy_chart.png) ## Model Overview Llama-3.3-Nemotron-Super-49B-v1.5 is a significantly upgraded version of Llama-3.3-Nemotron-Super-49B-v1 and is a large language model (LLM) which is a derivative of Meta Llama-3.3-70B-Instruct (AKA the reference model). It is a reasoning model that is post trained for reasoning, human chat preferences, and agentic tasks, such as RAG and tool calling. The model supports a context length of 128K tokens. Llama-3.3-Nemotron-Super-49B-v1.5 is a model which offers a great tradeoff between model accuracy and efficiency. Efficiency (throughput) directly translates to savings. Using a novel Neural Architecture Search (NAS) approach, we greatly reduce the modelโ€™s memory footprint, enabling larger workloads, as well as fitting the model on a single GPU at high workloads (H200). This NAS approach enables the selection of a desired point in the accuracy-efficiency tradeoff. For more information on the NAS approach, please refer to [this paper](https://arxiv.org/abs/2411.19146) The model underwent a multi-phase post-training process to enhance both its reasoning and non-reasoning capabilities. This includes a supervised fine-tuning stage for Math, Code, Science, and Tool Calling. Additionally, the model went through multiple stages of Reinforcement Learning (RL) including Reward-aware Preference Optimization (RPO) for chat, Reinforcement Learning with Verifiable Rewards (RLVR) for reasoning, and iterative Direct Preference Optimization (DPO) for Tool Calling capability enhancements. The final checkpoint was achieved after merging several RL and DPO checkpoints. This model is part of the Llama Nemotron Collection. You can find the other model(s) in this family here: - [Llama-3.1-Nemotron-Nano-4B-v1.1](https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1) - [Llama-3.1-Nemotron-Ultra-253B-v1](https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1) This model is ready for commercial use. ## License/Terms of Use GOVERNING TERMS: Your use of this model is governed by the [NVIDIA Open Model License.](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/) Additional Information: [Llama 3.3 Community License Agreement](https://www.llama.com/llama3_3/license/). Built with Llama. **Model Developer:** NVIDIA **Model Dates:** Trained between November 2024 and July 2025 **Data Freshness:** The pretraining data has a cutoff of 2023 per Meta Llama 3.3 70B ## Deployment Geography Global ### Use Case: <br> Developers designing AI Agent systems, chatbots, RAG systems, and other AI-powered applications. Also suitable for typical instruction-following tasks. <br> ### Release Date: <br> - Hugging Face 7/25/2025 via [Llama-3_3-Nemotron-Super-49B-v1_5](https://huggingface.co/nvidia/Llama-3_3-Nemotron-Super-49B-v1_5) - build.nvidia.com 7/25/2025 [Llama-3_3-Nemotron-Super-49B-v1_5](https://build.nvidia.com/nvidia/llama-3_3-nemotron-super-49b-v1_5) ## References * [\[2505.00949\] Llama-Nemotron: Efficient Reasoning Models](https://arxiv.org/abs/2505.00949) * [\[2502.00203\] Reward-aware Preference Optimization: A Unified Mathematical Framework for Model Alignment](https://arxiv.org/abs/2502.00203) * [\[2411.19146\]Puzzle: Distillation-Based NAS for Inference-Optimized LLMs](https://arxiv.org/abs/2411.19146) ## Model Architecture **Architecture Type:** Dense decoder-only Transformer model **Network Architecture:** Llama 3.3 70B Instruct, customized through Neural Architecture Search (NAS) The model is a derivative of Metaโ€™s Llama-3.3-70B-Instruct, using Neural Architecture Search (NAS). The NAS algorithm results in non-standard and non-repetitive blocks. This includes the following: Skip attention: In some blocks, the attention is skipped entirely, or replaced with a single linear layer. Variable FFN: The expansion/compression ratio in the FFN layer is different between blocks. We utilize a block-wise distillation of the reference model, where for each block we create multiple variants providing different tradeoffs of quality vs. computational complexity, discussed in more depth below. We then search over the blocks to create a model which meets the required throughput and memory (optimized for a single H100-80GB GPU) while minimizing the quality degradation. The model then undergoes knowledge distillation (KD), with a focus on English single and multi-turn chat use-cases. The KD step included 40 billion tokens consisting of a mixture of 3 datasets - FineWeb, Buzz-V1.2 and Dolma. ## Intended use Llama-3.3-Nemotron-Super-49B-v1.5 is a general purpose reasoning and chat model intended to be used in English and coding languages. Other non-English languages (German, French, Italian, Portuguese, Hindi, Spanish, and Thai) are also supported. ## Input - **Input Type:** Text - **Input Format:** String - **Input Parameters:** One-Dimensional (1D) - **Other Properties Related to Input:** Context length up to 131,072 tokens ## Output - **Output Type:** Text - **Output Format:** String - **Output Parameters:** One-Dimensional (1D) - **Other Properties Related to Output:** Context length up to 131,072 tokens Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIAโ€™s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. ## Model Version 1.5 (07/25/2025) ## Software Integration - **Runtime Engine:** Transformers - **Recommended Hardware Microarchitecture Compatibility:** - NVIDIA Ampere - NVIDIA Hopper - **Preferred Operating System(s):** Linux ## Quick Start and Usage Recommendations: 1. By default (empty system prompt) the model will respond in reasoning ON mode. Setting `/no_think` in the system prompt will enable reasoning OFF mode. 2. We recommend setting temperature to `0.6`, and Top P to `0.95` for Reasoning ON mode 3. We recommend using greedy decoding for Reasoning OFF mode You can try this model out through the preview API, using this link: [Llama-3_3-Nemotron-Super-49B-v1_5](https://build.nvidia.com/nvidia/llama-3_3-nemotron-super-49b-v1_5). ## Use It with vLLM ```pip install vllm==0.9.2``` An example on how to serve with vLLM: ```console $ python3 -m vllm.entrypoints.openai.api_server \ --model "nvidia/Llama-3_3-Nemotron-Super-49B-v1_5" \ --trust-remote-code \ --seed=1 \ --host="0.0.0.0" \ --port=5000 \ --served-model-name "Llama-3_3-Nemotron-Super-49B-v1_5" \ --tensor-parallel-size=8 \ --max-model-len=65536 \ --gpu-memory-utilization 0.95 \ --enforce-eager ``` ### Running a vLLM Server with Tool-call Support To enable tool calling usage with this model, we provide a tool parser in the repository. Here is an example on how to use it: ```console $ git clone https://huggingface.co/nvidia/Llama-3_3-Nemotron-Super-49B-v1_5 $ conda create -n vllm python=3.12 -y $ conda activate vllm $ pip install vllm==0.9.2 $ python3 -m vllm.entrypoints.openai.api_server \ --model Llama-3_3-Nemotron-Super-49B-v1_5 \ --trust-remote-code \ --seed=1 \ --host="0.0.0.0" \ --port=5000 \ --served-model-name "Llama-3_3-Nemotron-Super-49B-v1_5" \ --tensor-parallel-size=8 \ --max-model-len=65536 \ --gpu-memory-utilization 0.95 \ --enforce-eager \ --enable-auto-tool-choice \ --tool-parser-plugin "Llama-3_3-Nemotron-Super-49B-v1_5/llama_nemotron_toolcall_parser_no_streaming.py" \ --tool-call-parser "llama_nemotron_json" ``` After launching a vLLM server, you can call the server with tool-call support using a Python script like below. ```python from openai import OpenAI client = OpenAI( base_url="http://0.0.0.0:5000/v1", api_key="dummy", ) completion = client.chat.completions.create( model="Llama-3_3-Nemotron-Super-49B-v1_5", messages=[ {"role": "system", "content": ""}, {"role": "user", "content": "My bill is $100. What will be the amount for 18% tip?"} ], tools=[ { "type": "function", "function": { "name": "calculate_tip", "parameters": { "type": "object", "properties": { "bill_total": { "type": "integer", "description": "The total amount of the bill" }, "tip_percentage": { "type": "integer", "description": "The percentage of tip to be applied" } }, "required": ["bill_total", "tip_percentage"] } } }, { "type": "function", "function": { "name": "convert_currency", "parameters": { "type": "object", "properties": { "amount": { "type": "integer", "description": "The amount to be converted" }, "from_currency": { "type": "string", "description": "The currency code to convert from" }, "to_currency": { "type": "string", "description": "The currency code to convert to" } }, "required": ["from_currency", "amount", "to_currency"] } } } ], temperature=0.6, top_p=0.95, max_tokens=32768, stream=False ) print(completion.choices[0].message.content) ''' <think> Okay, let's see. The user has a bill of $100 and wants to know the amount for an 18% tip. Hmm, I need to calculate the tip based on the bill total and the percentage. The tools provided include calculate_tip, which takes bill_total and tip_percentage as parameters. So the bill_total here is 100, and the tip_percentage is 18. I should call the calculate_tip function with these values. Wait, do I need to check if the parameters are integers? The bill is $100, which is an integer, and 18% is also an integer. So that fits the function's requirements. I don't need to convert any currency here because the user is asking about a tip in the same currency. So the correct tool to use is calculate_tip with those parameters. </think> ''' print(completion.choices[0].message.tool_calls) ''' [ChatCompletionMessageToolCall(id='chatcmpl-tool-e341c6954d2c48c2a0e9071c7bdefd8b', function=Function(arguments='{"bill_total": 100, "tip_percentage": 18}', name='calculate_tip'), type='function')] ''' ``` ## Training and Evaluation Datasets ## Training Datasets A large variety of training data was used for the knowledge distillation phase before post-training pipeline, 3 of which included: FineWeb, Buzz-V1.2, and Dolma. The data for the multi-stage post-training phases for improvements in Code, Math, and Reasoning is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model. Prompts have been sourced from either public and open corpus or synthetically generated. Responses were synthetically generated by a variety of models, with some prompts containing responses for both reasoning on and off modes, to train the model to distinguish between two modes. We have released our [Nemotron-Post-Training-Dataset-v1](https://huggingface.co/datasets/nvidia/Nemotron-Post-Training-Dataset-v1) to promote openness and transparency in model development and improvement. **Data Collection for Training Datasets:** Hybrid: Automated, Human, Synthetic **Data Labeling for Training Datasets:** Hybrid: Automated, Human, Synthetic ## Evaluation Datasets We used the datasets listed below to evaluate Llama-3.3-Nemotron-Super-49B-v1.5. Data Collection for Evaluation Datasets: - Hybrid: Human. Synthetic Data Labeling for Evaluation Datasets: - Hybrid: Human, Synthetic, Automatic ## Evaluation Results We evaluate the model using temperature=`0.6`, top_p=`0.95`, and 64k sequence length. We run the benchmarks up to 16 times and average the scores to be more accurate. ### MATH500 | Reasoning Mode | pass@1 (avg. over 4 runs) | |--------------|------------| | Reasoning On | 97.4 | ### AIME 2024 | Reasoning Mode | pass@1 (avg. over 16 runs) | |--------------|------------| | Reasoning On | 87.5 | ### AIME 2025 | Reasoning Mode | pass@1 (avg. over 16 runs) | |--------------|------------| | Reasoning On | 82.71 | ### GPQA | Reasoning Mode | pass@1 (avg. over 4 runs) | |--------------|------------| | Reasoning On | 71.97 | ### LiveCodeBench 24.10-25.02 | Reasoning Mode | pass@1 (avg. over 4 runs) | |--------------|------------| | Reasoning On | 73.58 | ### BFCL v3 | Reasoning Mode | pass@1 (avg. over 2 runs) | |--------------|------------| | Reasoning On | 71.75 | ### IFEval | Reasoning Mode | Strict:Instruction | |--------------|------------| | Reasoning On | 88.61 | ### ArenaHard | Reasoning Mode | pass@1 (avg. over 1 runs) | |--------------|------------| | Reasoning On | 92.0 | ### Humanity's Last Exam (Text-Only Subset) | Reasoning Mode | pass@1 (avg. over 1 runs) | |--------------|------------| | Reasoning On | 7.64 | ### MMLU Pro (CoT) | Reasoning Mode | pass@1 (avg. over 1 runs) | |--------------|------------| | Reasoning On | 79.53 | All evaluations were done using the [NeMo-Skills](https://github.com/NVIDIA/NeMo-Skills) repository. ## Inference: **Engine:** - Transformers **Test Hardware:** - 2x NVIDIA H100-80GB - 2x NVIDIA A100-80GB GPUs ## Ethical Considerations: NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. For more detailed information on ethical considerations for this model, please see the Model Card++ [Explainability](./EXPLAINABILITY.md), [Bias](./BIAS.md), [Safety & Security](./SAFETY&SECURITY.md), and [Privacy](./PRIVACY.md) Subcards. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/). ## Citation ``` @misc{bercovich2025llamanemotronefficientreasoningmodels, title={Llama-Nemotron: Efficient Reasoning Models}, author={Akhiad Bercovich and Itay Levy and Izik Golan and Mohammad Dabbah and Ran El-Yaniv and Omri Puny and Ido Galil and Zach Moshe and Tomer Ronen and Najeeb Nabwani and Ido Shahaf and Oren Tropp and Ehud Karpas and Ran Zilberstein and Jiaqi Zeng and Soumye Singhal and Alexander Bukharin and Yian Zhang and Tugrul Konuk and Gerald Shen and Ameya Sunil Mahabaleshwarkar and Bilal Kartal and Yoshi Suhara and Olivier Delalleau and Zijia Chen and Zhilin Wang and David Mosallanezhad and Adi Renduchintala and Haifeng Qian and Dima Rekesh and Fei Jia and Somshubra Majumdar and Vahid Noroozi and Wasi Uddin Ahmad and Sean Narenthiran and Aleksander Ficek and Mehrzad Samadi and Jocelyn Huang and Siddhartha Jain and Igor Gitman and Ivan Moshkov and Wei Du and Shubham Toshniwal and George Armstrong and Branislav Kisacanin and Matvei Novikov and Daria Gitman and Evelina Bakhturina and Jane Polak Scowcroft and John Kamalu and Dan Su and Kezhi Kong and Markus Kliegl and Rabeeh Karimi and Ying Lin and Sanjeev Satheesh and Jupinder Parmar and Pritam Gundecha and Brandon Norick and Joseph Jennings and Shrimai Prabhumoye and Syeda Nahida Akter and Mostofa Patwary and Abhinav Khattar and Deepak Narayanan and Roger Waleffe and Jimmy Zhang and Bor-Yiing Su and Guyue Huang and Terry Kong and Parth Chadha and Sahil Jain and Christine Harvey and Elad Segal and Jining Huang and Sergey Kashirsky and Robert McQueen and Izzy Putterman and George Lam and Arun Venkatesan and Sherry Wu and Vinh Nguyen and Manoj Kilaru and Andrew Wang and Anna Warno and Abhilash Somasamudramath and Sandip Bhaskar and Maka Dong and Nave Assaf and Shahar Mor and Omer Ullman Argov and Scot Junkin and Oleksandr Romanenko and Pedro Larroy and Monika Katariya and Marco Rovinelli and Viji Balas and Nicholas Edelman and Anahita Bhiwandiwalla and Muthu Subramaniam and Smita Ithape and Karthik Ramamoorthy and Yuting Wu and Suguna Varshini Velury and Omri Almog and Joyjit Daw and Denys Fridman and Erick Galinkin and Michael Evans and Katherine Luna and Leon Derczynski and Nikki Pope and Eileen Long and Seth Schneider and Guillermo Siman and Tomasz Grzegorzek and Pablo Ribalta and Monika Katariya and Joey Conway and Trisha Saar and Ann Guan and Krzysztof Pawelec and Shyamala Prayaga and Oleksii Kuchaiev and Boris Ginsburg and Oluwatobi Olabiyi and Kari Briski and Jonathan Cohen and Bryan Catanzaro and Jonah Alben and Yonatan Geifman and Eric Chung and Chris Alexiuk}, year={2025}, eprint={2505.00949}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.00949}, } ```
xumingtensor/affine-7060819
xumingtensor
2025-08-19T12:18:34Z
0
0
vllm
[ "vllm", "safetensors", "mistral3", "image-text-to-text", "conversational", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "base_model:finetune:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "license:apache-2.0", "region:us" ]
image-text-to-text
2025-08-19T11:13:23Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Mistral-Small-3.2-24B-Instruct-2506 pipeline_tag: image-text-to-text --- # Mistral-Small-3.2-24B-Instruct-2506 Mistral-Small-3.2-24B-Instruct-2506 is a minor update of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503). Small-3.2 improves in the following categories: - **Instruction following**: Small-3.2 is better at following precise instructions - **Repetition errors**: Small-3.2 produces less infinite generations or repetitive answers - **Function calling**: Small-3.2's function calling template is more robust (see [here](https://github.com/mistralai/mistral-common/blob/535b4d0a0fc94674ea17db6cf8dc2079b81cbcfa/src/mistral_common/tokens/tokenizers/instruct.py#L778) and [examples](#function-calling)) In all other categories Small-3.2 should match or slightly improve compared to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503). ## Key Features - same as [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503#key-features) ## Benchmark Results We compare Mistral-Small-3.2-24B to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503). For more comparison against other models of similar size, please check [Mistral-Small-3.1's Benchmarks'](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503#benchmark-results) ### Text #### Instruction Following / Chat / Tone | Model | Wildbench v2 | Arena Hard v2 | IF (Internal; accuracy) | |-------|---------------|---------------|------------------------| | Small 3.1 24B Instruct | 55.6% | 19.56% | 82.75% | | **Small 3.2 24B Instruct** | **65.33%** | **43.1%** | **84.78%** | #### Infinite Generations Small 3.2 reduces infitine generations by 2x on challenging, long and repetitive prompts. | Model | Infinite Generations (Internal; Lower is better) | |-------|-------| | Small 3.1 24B Instruct | 2.11% | | **Small 3.2 24B Instruct** | **1.29%** | #### STEM | Model | MMLU | MMLU Pro (5-shot CoT) | MATH | GPQA Main (5-shot CoT) | GPQA Diamond (5-shot CoT )| MBPP Plus - Pass@5 | HumanEval Plus - Pass@5 | SimpleQA (TotalAcc)| |--------------------------------|-----------|-----------------------|------------------------|------------------------|---------------------------|--------------------|-------------------------|--------------------| | Small 3.1 24B Instruct | 80.62% | 66.76% | 69.30% | 44.42% | 45.96% | 74.63% | 88.99% | 10.43% | | **Small 3.2 24B Instruct** | 80.50% | **69.06%** | 69.42% | 44.22% | 46.13% | **78.33%** | **92.90%** | **12.10%** | ### Vision | Model | MMMU | Mathvista | ChartQA | DocVQA | AI2D | |--------------------------------|------------|-----------|-----------|-----------|-----------| | Small 3.1 24B Instruct | **64.00%** | **68.91%**| 86.24% | 94.08% | 93.72% | | **Small 3.2 24B Instruct** | 62.50% | 67.09% | **87.4%** | 94.86% | 92.91% | ## Usage The model can be used with the following frameworks; - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) **Note 1**: We recommend using a relatively low temperature, such as `temperature=0.15`. **Note 2**: Make sure to add a system prompt to the model to best tailer it for your needs. If you want to use the model as a general assistant, we recommend to use the one provided in the [SYSTEM_PROMPT.txt](https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506/blob/main/SYSTEM_PROMPT.txt) file. ### vLLM (recommended) We recommend using this model with [vLLM](https://github.com/vllm-project/vllm). #### Installation Make sure to install [`vLLM >= 0.9.1`](https://github.com/vllm-project/vllm/releases/tag/v0.9.1): ``` pip install vllm --upgrade ``` Doing so should automatically install [`mistral_common >= 1.6.2`](https://github.com/mistralai/mistral-common/releases/tag/v1.6.2). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). #### Serve We recommand that you use Mistral-Small-3.2-24B-Instruct-2506 in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Mistral-Small-3.2-24B-Instruct-2506 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --limit_mm_per_prompt 'image=10' --tensor-parallel-size 2 ``` **Note:** Running Mistral-Small-3.2-24B-Instruct-2506 on GPU requires ~55 GB of GPU RAM in bf16 or fp16. 2. To ping the client you can use a simple Python snippet. See the following examples. #### Vision reasoning Take leverage of the vision capabilities of Mistral-Small-3.2-24B-Instruct-2506 to take the best choice given a scenario, go catch them all ! <details> <summary>Python snippet</summary> ```py from datetime import datetime, timedelta from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() today = datetime.today().strftime("%Y-%m-%d") yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d") model_name = repo_id.split("/")[-1] return system_prompt.format(name=model_name, today=today, yesterday=yesterday) model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.", }, {"type": "image_url", "image_url": {"url": image_url}}, ], }, ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, ) print(response.choices[0].message.content) # In this situation, you are playing a Pokรฉmon game where your Pikachu (Level 42) is facing a wild Pidgey (Level 17). Here are the possible actions you can take and an analysis of each: # 1. **FIGHT**: # - **Pros**: Pikachu is significantly higher level than the wild Pidgey, which suggests that it should be able to defeat Pidgey easily. This could be a good opportunity to gain experience points and possibly items or money. # - **Cons**: There is always a small risk of Pikachu fainting, especially if Pidgey has a powerful move or a status effect that could hinder Pikachu. However, given the large level difference, this risk is minimal. # 2. **BAG**: # - **Pros**: You might have items in your bag that could help in this battle, such as Potions, Pokรฉ Balls, or Berries. Using an item could help you capture the Pidgey or heal your Pikachu if needed. # - **Cons**: Using items might not be necessary given the level difference. It could be more efficient to just fight and defeat the Pidgey quickly. # 3. **POKร‰MON**: # - **Pros**: You might have another Pokรฉmon in your party that is better suited for this battle or that you want to gain experience. Switching Pokรฉmon could also be a strategic move if you want to train a lower-level Pokรฉmon. # - **Cons**: Switching Pokรฉmon might not be necessary since Pikachu is at a significant advantage. It could also waste time and potentially give Pidgey a turn to attack. # 4. **RUN**: # - **Pros**: Running away could save time and conserve your Pokรฉmon's health and resources. If you are in a hurry or do not need the experience or items, running away is a safe option. # - **Cons**: Running away means you miss out on the experience points and potential items or money that you could gain from defeating the Pidgey. It also means you do not get the chance to capture the Pidgey if you wanted to. # ### Recommendation: # Given the significant level advantage, the best action is likely to **FIGHT**. This will allow you to quickly defeat the Pidgey, gain experience points, and potentially earn items or money. If you are concerned about Pikachu's health, you could use an item from your **BAG** to heal it before or during the battle. Running away or switching Pokรฉmon does not seem necessary in this situation. ``` </details> #### Function calling Mistral-Small-3.2-24B-Instruct-2506 is excellent at function / tool calling tasks via vLLM. *E.g.:* <details> <summary>Python snippet - easy</summary> ```py from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") image_url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/europe.png" tools = [ { "type": "function", "function": { "name": "get_current_population", "description": "Get the up-to-date population of a given country.", "parameters": { "type": "object", "properties": { "country": { "type": "string", "description": "The country to find the population of.", }, "unit": { "type": "string", "description": "The unit for the population.", "enum": ["millions", "thousands"], }, }, "required": ["country", "unit"], }, }, }, { "type": "function", "function": { "name": "rewrite", "description": "Rewrite a given text for improved clarity", "parameters": { "type": "object", "properties": { "text": { "type": "string", "description": "The input text to rewrite", } }, }, }, }, ] messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": "Could you please make the below article more concise?\n\nOpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership.", }, { "role": "assistant", "content": "", "tool_calls": [ { "id": "bbc5b7ede", "type": "function", "function": { "name": "rewrite", "arguments": '{"text": "OpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership."}', }, } ], }, { "role": "tool", "content": '{"action":"rewrite","outcome":"OpenAI is a FOR-profit company."}', "tool_call_id": "bbc5b7ede", "name": "rewrite", }, { "role": "assistant", "content": "---\n\nOpenAI is a FOR-profit company.", }, { "role": "user", "content": [ { "type": "text", "text": "Can you tell me what is the biggest country depicted on the map?", }, { "type": "image_url", "image_url": { "url": image_url, }, }, ], } ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, tools=tools, tool_choice="auto", ) assistant_message = response.choices[0].message.content print(assistant_message) # The biggest country depicted on the map is Russia. messages.extend([ {"role": "assistant", "content": assistant_message}, {"role": "user", "content": "What is the population of that country in millions?"}, ]) response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, tools=tools, tool_choice="auto", ) print(response.choices[0].message.tool_calls) # [ChatCompletionMessageToolCall(id='3e92V6Vfo', function=Function(arguments='{"country": "Russia", "unit": "millions"}', name='get_current_population'), type='function')] ``` </details> <details> <summary>Python snippet - complex</summary> ```python import json from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") image_url = "https://math-coaching.com/img/fiche/46/expressions-mathematiques.jpg" def my_calculator(expression: str) -> str: return str(eval(expression)) tools = [ { "type": "function", "function": { "name": "my_calculator", "description": "A calculator that can evaluate a mathematical expression.", "parameters": { "type": "object", "properties": { "expression": { "type": "string", "description": "The mathematical expression to evaluate.", }, }, "required": ["expression"], }, }, }, { "type": "function", "function": { "name": "rewrite", "description": "Rewrite a given text for improved clarity", "parameters": { "type": "object", "properties": { "text": { "type": "string", "description": "The input text to rewrite", } }, }, }, }, ] messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "Can you calculate the results for all the equations displayed in the image? Only compute the ones that involve numbers.", }, { "type": "image_url", "image_url": { "url": image_url, }, }, ], }, ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, tools=tools, tool_choice="auto", ) tool_calls = response.choices[0].message.tool_calls print(tool_calls) # [ChatCompletionMessageToolCall(id='CyQBSAtGh', function=Function(arguments='{"expression": "6 + 2 * 3"}', name='my_calculator'), type='function'), ChatCompletionMessageToolCall(id='KQqRCqvzc', function=Function(arguments='{"expression": "19 - (8 + 2) + 1"}', name='my_calculator'), type='function')] results = [] for tool_call in tool_calls: function_name = tool_call.function.name function_args = tool_call.function.arguments if function_name == "my_calculator": result = my_calculator(**json.loads(function_args)) results.append(result) messages.append({"role": "assistant", "tool_calls": tool_calls}) for tool_call, result in zip(tool_calls, results): messages.append( { "role": "tool", "tool_call_id": tool_call.id, "name": tool_call.function.name, "content": result, } ) response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, ) print(response.choices[0].message.content) # Here are the results for the equations that involve numbers: # 1. \( 6 + 2 \times 3 = 12 \) # 3. \( 19 - (8 + 2) + 1 = 10 \) # For the other equations, you need to substitute the variables with specific values to compute the results. ``` </details> #### Instruction following Mistral-Small-3.2-24B-Instruct-2506 will follow your instructions down to the last letter ! <details> <summary>Python snippet</summary> ```python from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": "Write me a sentence where every word starts with the next letter in the alphabet - start with 'a' and end with 'z'.", }, ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, ) assistant_message = response.choices[0].message.content print(assistant_message) # Here's a sentence where each word starts with the next letter of the alphabet, starting from 'a' and ending with 'z': # "Always brave cats dance elegantly, fluffy giraffes happily ignore jungle kites, lovingly munching nuts, observing playful quails racing swiftly, tiny unicorns vaulting while xylophones yodel zealously." # This sentence follows the sequence from A to Z without skipping any letters. ``` </details> ### Transformers You can also use Mistral-Small-3.2-24B-Instruct-2506 with `Transformers` ! To make the best use of our model with `Transformers` make sure to have [installed](https://github.com/mistralai/mistral-common) `mistral-common >= 1.6.2` to use our tokenizer. ```bash pip install mistral-common --upgrade ``` Then load our tokenizer along with the model and generate: <details> <summary>Python snippet</summary> ```python from datetime import datetime, timedelta import torch from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from huggingface_hub import hf_hub_download from transformers import Mistral3ForConditionalGeneration def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() today = datetime.today().strftime("%Y-%m-%d") yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d") model_name = repo_id.split("/")[-1] return system_prompt.format(name=model_name, today=today, yesterday=yesterday) model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_hf_hub(model_id) model = Mistral3ForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16 ) image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.", }, {"type": "image_url", "image_url": {"url": image_url}}, ], }, ] tokenized = tokenizer.encode_chat_completion(ChatCompletionRequest(messages=messages)) input_ids = torch.tensor([tokenized.tokens]) attention_mask = torch.ones_like(input_ids) pixel_values = torch.tensor(tokenized.images[0], dtype=torch.bfloat16).unsqueeze(0) image_sizes = torch.tensor([pixel_values.shape[-2:]]) output = model.generate( input_ids=input_ids, attention_mask=attention_mask, pixel_values=pixel_values, image_sizes=image_sizes, max_new_tokens=1000, )[0] decoded_output = tokenizer.decode(output[len(tokenized.tokens) :]) print(decoded_output) # In this situation, you are playing a Pokรฉmon game where your Pikachu (Level 42) is facing a wild Pidgey (Level 17). Here are the possible actions you can take and an analysis of each: # 1. **FIGHT**: # - **Pros**: Pikachu is significantly higher level than the wild Pidgey, which suggests that it should be able to defeat Pidgey easily. This could be a good opportunity to gain experience points and possibly items or money. # - **Cons**: There is always a small risk of Pikachu fainting, especially if Pidgey has a powerful move or a status effect that could hinder Pikachu. However, given the large level difference, this risk is minimal. # 2. **BAG**: # - **Pros**: You might have items in your bag that could help in this battle, such as Potions, Pokรฉ Balls, or Berries. Using an item could help you capture Pidgey or heal Pikachu if needed. # - **Cons**: Using items might not be necessary given the level difference. It could be more efficient to just fight and defeat Pidgey quickly. # 3. **POKร‰MON**: # - **Pros**: You might have another Pokรฉmon in your party that is better suited for this battle or that you want to gain experience. Switching Pokรฉmon could also be strategic if you want to train a lower-level Pokรฉmon. # - **Cons**: Switching Pokรฉmon might not be necessary since Pikachu is at a significant advantage. It could also waste time and potentially give Pidgey a turn to attack. # 4. **RUN**: # - **Pros**: Running away could be a quick way to avoid the battle altogether. This might be useful if you are trying to conserve resources or if you are in a hurry to get to another location. # - **Cons**: Running away means you miss out on the experience points, items, or money that you could gain from defeating Pidgey. It also might not be the most efficient use of your time if you are trying to train your Pokรฉmon. # ### Recommendation: # Given the significant level advantage, the best action to take is likely **FIGHT**. This will allow you to quickly defeat Pidgey and gain experience points for Pikachu. If you are concerned about Pikachu's health, you could use the **BAG** to heal Pikachu before or during the battle. Running away or switching Pokรฉmon does not seem necessary in this situation. ``` </details>
java2core/gemma-3-4b-product-description
java2core
2025-08-19T12:18:29Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-4b-pt", "base_model:finetune:google/gemma-3-4b-pt", "endpoints_compatible", "region:us" ]
null
2025-08-19T10:21:15Z
--- base_model: google/gemma-3-4b-pt library_name: transformers model_name: gemma-3-4b-product-description tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-3-4b-product-description This model is a fine-tuned version of [google/gemma-3-4b-pt](https://huggingface.co/google/gemma-3-4b-pt). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="java2core/gemma-3-4b-product-description", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.3.2 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
katreiaht/speecht5_finetuned_emirhan_tr
katreiaht
2025-08-19T12:16:30Z
15
0
null
[ "pytorch", "tensorboard", "speecht5", "generated_from_trainer", "license:mit", "region:us" ]
null
2025-08-12T14:23:53Z
--- license: mit tags: - generated_from_trainer model-index: - name: speecht5_finetuned_emirhan_tr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_emirhan_tr This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.502 | 0.03 | 100 | 0.4198 | | 0.4211 | 0.06 | 200 | 0.3732 | | 0.3771 | 0.09 | 300 | 0.3491 | | 0.3611 | 0.12 | 400 | 0.3298 | | 0.3528 | 0.14 | 500 | 0.3238 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.6.0+cu124 - Datasets 2.19.1 - Tokenizers 0.13.3
unitova/blockassist-bc-zealous_sneaky_raven_1755604158
unitova
2025-08-19T12:15:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:15:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Tensavitprice/TensavitMexico
Tensavitprice
2025-08-19T12:14:56Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-19T12:14:04Z
--- license: apache-2.0 --- ยฟQuรฉ es Tensavit y cรณmo funciona? Tensavit cรกpsula es una cรกpsula para la hipertensiรณn especialmente formulada, diseรฑada para ayudar a controlar la presiรณn arterial alta de forma natural. Actรบa favoreciendo una circulaciรณn saludable, reduciendo la presiรณn arterial y ayudando al corazรณn a funcionar de forma mรกs eficiente. La cรกpsula promueve el equilibrio del sistema cardiovascular, ayudando al cuerpo a mantener niveles estables de presiรณn arterial. Al mejorar el flujo sanguรญneo y la eficiencia cardรญaca general, reduce la fatiga y el estrรฉs relacionados con la hipertensiรณn. En resumen, Tensavit Pastillas ofrece una forma segura, natural y eficaz de apoyar la salud cardรญaca y mantener una presiรณn arterial normal Tensavit costo. Sitio web oficial:<a href="https://www.nutritionsee.com/tensaviexico">www.Tensavit.com</a> <p><a href="https://www.nutritionsee.com/tensaviexico"> <img src="https://www.nutritionsee.com/wp-content/uploads/2025/07/Tensavit-mexico.png" alt="enter image description here"> </a></p> <a href="https://www.nutritionsee.com/tensaviexico">ยกCompra ya! Haz clic en el enlace de abajo para mรกs informaciรณn y obtรฉn un 50% de descuento. ยกDate prisa!</a> Sitio web oficial:<a href="https://www.nutritionsee.com/tensaviexico">www.Tensavit.com</a>
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755603953
hakimjustbao
2025-08-19T12:14:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:14:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BjarneNPO/finetune_19_08_2025_12_04_35
BjarneNPO
2025-08-19T12:14:33Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "dense", "generated_from_trainer", "dataset_size:19964", "loss:MultipleNegativesRankingLoss", "dataset:NPOA/Bjarne-Bachelorarbeit", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-19T12:14:15Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:19964 - loss:MultipleNegativesRankingLoss base_model: FacebookAI/xlm-roberta-large widget: - source_sentence: bei einem kann keine hinterlegt werden sentences: - An einem Tag gab es im August eine รœberbelegung, einmal erklรคrt wie sie diese nachvollziehen kann. - Fehlermeldung weist auf eine fehlende BI hin. Anwenderin stimmt sich dazu mit ab. - "Ticket\r\n---------------------------\r\nExport angepasst - informiert\r\n--------------------------\r\ \nUser mรถchte auch in der รผbergreifenden Personalliste die Anpassung umgesetzt\ \ haben - daher Ticket erneut geรถffnet\r\n- รผbergreifender Export ebenfalls angepasst\ \ - informiert" - source_sentence: Userin darf erst am 01.02.2024 die Vertragsangebote rausschicken, mรถchte aber schonmal vermerken, welchen Kindern sie ein Vertragsangebot schicken mรถchte. sentences: - Das ist noch nicht freigeschaltet. Genauer Zeitpunkt steht auch noch nicht fest. - "Kind muss manuell angelegt werden und dann neu synchronisiert und Anmeldedaten\ \ zusammenfรผhren.\r\nDa Userin weiterhin Anmeldedaten nicht zusammenfรผhren kann\ \ Userin gebeten uns einen Screenshot aus dem Kita-Navigator zukommen zu lassen.\r\ \nBeide Kinder wurden nun รผbertragen und befinden sich unter Vetragsangeboten." - Kann die Kinder auf die Planungsliste nehmen, dann sieht sie diese sowohl in der Planungsliste, als auch in der Liste der Anmeldungen mit dem Symbol in der Anmeldeliste. - source_sentence: Fehlermeldung beim Erstellen der Datei. sentences: - In der Benutzerverwaltung unter Verwaltung. - Bei einer Kollegin musste noch die Stundenanzahl unter Ausbildung und Statistik eingetragen werden. - "Wurde an den Entwickler weitergegeben.\r\nProblem konnte behoben werden, Benutzer\ \ wurde informiert." - source_sentence: mรถchte wissen wenn ein Kind gestern letzmalig in der Kita war, welches Entlassdatum muss im System eingetragen werden? sentences: - Fehler bereist bekannt, prรผft spรคter erneut. - Aktuell wurde uns noch nicht gemeldet, dass wir das Jugendamt freischalten sollen. - Der letzte Betreuungstag muss als Entlassdatum hinterlegt werden, da sonst die BI nicht stimmt. - source_sentence: Login mit dem Authenticator funktioniert nicht mehr, Code ist immer ungรผltig sentences: - Erneut die Tรคtigkeit gelรถscht und neu รœbertragen, die Tรคtigkeit wurde aber nicht erneut angezeigt - Nachdem die Uhrzeit neu synchronisiert war konnte sie sich wieder einloggen. - Dies entspricht der Vorlage. muss Vorlage anpassen. datasets: - NPOA/Bjarne-Bachelorarbeit pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on FacebookAI/xlm-roberta-large This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [bjarne-bachelorarbeit](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [bjarne-bachelorarbeit](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'}) (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("BjarneNPO/finetune_19_08_2025_12_04_35") # Run inference queries = [ "Login mit dem Authenticator funktioniert nicht mehr, Code ist immer ung\u00fcltig", ] documents = [ 'Nachdem die Uhrzeit neu synchronisiert war konnte sie sich wieder einloggen.', 'Erneut die Tรคtigkeit gelรถscht und neu รœbertragen, die Tรคtigkeit wurde aber nicht erneut angezeigt', 'Dies entspricht der Vorlage. muss Vorlage anpassen.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 1024] [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[0.6394, 0.3721, 0.3045]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### bjarne-bachelorarbeit * Dataset: [bjarne-bachelorarbeit](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit) at [273f1a5](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit/tree/273f1a515b2a1731a04a643cf39bd217d61a02a0) * Size: 19,964 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 27.66 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 22.87 tokens</li><li>max: 151 tokens</li></ul> | * Samples: | query | answer | |:------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------| | <code>Wie kann man die Jahresurlaubsรผbersicht exportieren?</code> | <code>รผber das 3 Punkte Menรผ rechts oben. Mitarbeiter auswรคhlen und exportieren</code> | | <code>1. Vertragsabschlรผsse werden nicht รผbertragen <br>2. Kinder kommen nicht von nach <br>3. Absage kann bei Portalstatus nicht erstellt werden.</code> | <code>Ticket <br>Userin gebeten sich an den Support zu wenden, da der Fehler liegt.</code> | | <code>Wird im Anmeldeportal nicht gefunden.</code> | <code>Die Schnittstelle war noch nicht aktiviert und Profil ebenfalls nicht.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Evaluation Dataset #### bjarne-bachelorarbeit * Dataset: [bjarne-bachelorarbeit](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit) at [273f1a5](https://huggingface.co/datasets/NPOA/Bjarne-Bachelorarbeit/tree/273f1a515b2a1731a04a643cf39bd217d61a02a0) * Size: 8,557 evaluation samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 26.49 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 23.16 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | query | answer | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Liebes Support Team! <br>In unserer Kst. fiel der EL auf, dass es in der Urlaubsรผbersicht Unstimmigkeiten gibt. So werden z.B. bei der Kollegin 60 offene Tage angezeigt und im Detail (Jahresรผbersicht) korrekt alle eingetragenen Tage und nur 2 Tage Rest! <br>Ich freue mich auf Ihre Rรผckmeldung. <br>Mit besten GrรผรŸen <br>_________________________________________________ <br>Leitung Kompetenzteam <br>Geschรคftsfeld Kindertageseinrichtungen <br> () <br> e.V. <br>. 280 <br>33605 <br>Telefon: Mo.+Mi. +49 521 9216-129 Di., Do. + Fr. +49 5264 6559100 <br>E-Mail: <br>Web: www.awo-owl.de <br>Instagram: www.instagram.com/ <br>Facebook: www.facebook.com/ <br>Vorsitzende des Prรคsidiums und des Aufsichtsrates: <br>Vorstand: (Vors.), <br>Amtsgericht VR 1151 <br>Diese E-Mail einschlieรŸlich evtl. angehรคngter Dateien enthรคlt vertrauliche und/oder rechtlich geschรผtzte Informationen. Wenn Sie nicht der Adressat sind und diese E-Mail irrtรผmlich erhalten haben, dรผrfen Sie weder den Inhalt dieser E-Mail nutzen, noch dรผrfen Sie die eventuell angehรคngten Datei...</code> | <code>Problem ist bekannt und wird im Verlauf des Tages behoben.</code> | | <code>hat im einen Vertrag, aber wurde nicht nach รผbertragen. war wegen fehlender Anbindung auf der Schnittstelle nicht auf der Anmeldeliste.</code> | <code>Kind muss manuell angelegt werden und dann neu synchronisiert und Anmeldedaten zusammenfรผhren. <br>Da Userin weiterhin Anmeldedaten nicht zusammenfรผhren kann Userin gebeten uns einen Screenshot aus dem Kita-Navigator zukommen zu lassen. <br>Beide Kinder wurden nun รผbertragen und befinden sich unter Vetragsangeboten.</code> | | <code>Wie kann ein Kind aus den zukรผnftigen Neuaufnahmen gelรถscht werden?</code> | <code>Benutzer muss erst die BI und kann dann รผber den Button Statuswechsel durchfรผhren das ganze Kind lรถschen.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 4 - `learning_rate`: 2e-05 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: False - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0321 | 10 | 2.7702 | - | | 0.0641 | 20 | 2.7704 | - | | 0.0962 | 30 | 2.7687 | - | | 0.1282 | 40 | 2.751 | - | | 0.1603 | 50 | 2.7247 | - | | 0.1923 | 60 | 2.6236 | - | | 0.2244 | 70 | 2.531 | - | | 0.2564 | 80 | 2.2151 | - | | 0.2885 | 90 | 2.2467 | - | | 0.3205 | 100 | 2.1738 | - | | 0.3526 | 110 | 2.1371 | - | | 0.3846 | 120 | 2.0452 | - | | 0.4167 | 130 | 1.8365 | - | | 0.4487 | 140 | 1.845 | - | | 0.4808 | 150 | 1.833 | - | | 0.5128 | 160 | 1.786 | - | | 0.5449 | 170 | 1.6423 | - | | 0.5769 | 180 | 1.6776 | - | | 0.6090 | 190 | 1.5273 | - | | 0.6410 | 200 | 1.5422 | - | | 0.6731 | 210 | 1.4751 | - | | 0.7051 | 220 | 1.5307 | - | | 0.7372 | 230 | 1.4808 | - | | 0.7692 | 240 | 1.5441 | - | | 0.8013 | 250 | 1.4391 | - | | 0.8333 | 260 | 1.4369 | - | | 0.8654 | 270 | 1.3921 | - | | 0.8974 | 280 | 1.3706 | - | | 0.9295 | 290 | 1.284 | - | | 0.9615 | 300 | 1.2533 | - | | 0.9936 | 310 | 1.2374 | - | | 1.0 | 312 | - | 1.2057 | | 1.0256 | 320 | 1.0532 | - | | 1.0577 | 330 | 1.1323 | - | | 1.0897 | 340 | 1.122 | - | | 1.1218 | 350 | 1.1906 | - | | 1.1538 | 360 | 1.164 | - | | 1.1859 | 370 | 1.1539 | - | | 1.2179 | 380 | 1.1795 | - | | 1.25 | 390 | 1.1069 | - | | 1.2821 | 400 | 1.0994 | - | | 1.3141 | 410 | 1.0724 | - | | 1.3462 | 420 | 0.9909 | - | | 1.3782 | 430 | 0.9629 | - | | 1.4103 | 440 | 1.0669 | - | | 1.4423 | 450 | 1.0211 | - | | 1.4744 | 460 | 1.097 | - | | 1.5064 | 470 | 0.9962 | - | | 1.5385 | 480 | 1.033 | - | | 1.5705 | 490 | 1.0081 | - | | 1.6026 | 500 | 1.0058 | - | | 1.6346 | 510 | 1.01 | - | | 1.6667 | 520 | 1.003 | - | | 1.6987 | 530 | 0.9263 | - | | 1.7308 | 540 | 0.9063 | - | | 1.7628 | 550 | 0.9257 | - | | 1.7949 | 560 | 0.9505 | - | | 1.8269 | 570 | 0.9143 | - | | 1.8590 | 580 | 0.7969 | - | | 1.8910 | 590 | 0.9154 | - | | 1.9231 | 600 | 0.8981 | - | | 1.9551 | 610 | 0.8402 | - | | 1.9872 | 620 | 0.9209 | - | | 2.0 | 624 | - | 0.9280 | | 2.0192 | 630 | 0.8143 | - | | 2.0513 | 640 | 0.678 | - | | 2.0833 | 650 | 0.7752 | - | | 2.1154 | 660 | 0.7558 | - | | 2.1474 | 670 | 0.8078 | - | | 2.1795 | 680 | 0.8394 | - | | 2.2115 | 690 | 0.801 | - | | 2.2436 | 700 | 0.7981 | - | | 2.2756 | 710 | 0.8227 | - | | 2.3077 | 720 | 0.7513 | - | | 2.3397 | 730 | 0.7267 | - | | 2.3718 | 740 | 0.7529 | - | | 2.4038 | 750 | 0.7288 | - | | 2.4359 | 760 | 0.7737 | - | | 2.4679 | 770 | 0.7432 | - | | 2.5 | 780 | 0.8039 | - | | 2.5321 | 790 | 0.6745 | - | | 2.5641 | 800 | 0.7803 | - | | 2.5962 | 810 | 0.8329 | - | | 2.6282 | 820 | 0.7227 | - | | 2.6603 | 830 | 0.7594 | - | | 2.6923 | 840 | 0.7854 | - | | 2.7244 | 850 | 0.7474 | - | | 2.7564 | 860 | 0.7927 | - | | 2.7885 | 870 | 0.7554 | - | | 2.8205 | 880 | 0.7502 | - | | 2.8526 | 890 | 0.7097 | - | | 2.8846 | 900 | 0.832 | - | | 2.9167 | 910 | 0.596 | - | | 2.9487 | 920 | 0.6849 | - | | 2.9808 | 930 | 0.7035 | - | | **3.0** | **936** | **-** | **0.8882** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.12.11 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0+cu128 - Accelerate: 1.10.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755603977
helmutsukocok
2025-08-19T12:14:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:14:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755603946
ihsanridzi
2025-08-19T12:13:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:13:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
LBST/t10_pick_and_place_smolvla_017000
LBST
2025-08-19T12:13:09Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "pick-and-place", "smolvla", "checkpoint-017000", "region:us" ]
robotics
2025-08-19T12:13:04Z
--- library_name: lerobot tags: - robotics - pick-and-place - smolvla - checkpoint-017000 --- # T08 Pick and Place Policy - Checkpoint 017000 This model is a checkpoint from the training of a pick-and-place policy using SmolVLA architecture. ## Model Details - **Checkpoint**: 017000 - **Architecture**: SmolVLA - **Task**: Pick and Place (T08) - **Training Step**: 017000 ## Usage You can evaluate this model using LeRobot: ```bash python -m lerobot.scripts.eval \ --policy.path=LBST/t10_pick_and_place_smolvla_017000 \ --env.type=<your_environment> \ --eval.n_episodes=10 \ --policy.device=cuda ``` ## Files - `config.json`: Policy configuration - `model.safetensors`: Model weights in SafeTensors format - `train_config.json`: Complete training configuration for reproducibility ## Parent Repository This checkpoint was extracted from: [LBST/t10_pick_and_place_files](https://huggingface.co/LBST/t10_pick_and_place_files) --- *Generated automatically from checkpoint 017000*
Dejiat/blockassist-bc-savage_unseen_bobcat_1755605544
Dejiat
2025-08-19T12:13:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T12:12:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
LBST/t10_pick_and_place_smolvla_016000
LBST
2025-08-19T12:12:45Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "pick-and-place", "smolvla", "checkpoint-016000", "region:us" ]
robotics
2025-08-19T12:12:38Z
--- library_name: lerobot tags: - robotics - pick-and-place - smolvla - checkpoint-016000 --- # T08 Pick and Place Policy - Checkpoint 016000 This model is a checkpoint from the training of a pick-and-place policy using SmolVLA architecture. ## Model Details - **Checkpoint**: 016000 - **Architecture**: SmolVLA - **Task**: Pick and Place (T08) - **Training Step**: 016000 ## Usage You can evaluate this model using LeRobot: ```bash python -m lerobot.scripts.eval \ --policy.path=LBST/t10_pick_and_place_smolvla_016000 \ --env.type=<your_environment> \ --eval.n_episodes=10 \ --policy.device=cuda ``` ## Files - `config.json`: Policy configuration - `model.safetensors`: Model weights in SafeTensors format - `train_config.json`: Complete training configuration for reproducibility ## Parent Repository This checkpoint was extracted from: [LBST/t10_pick_and_place_files](https://huggingface.co/LBST/t10_pick_and_place_files) --- *Generated automatically from checkpoint 016000*
loweegee/a2c-PandaReachDense-v3
loweegee
2025-08-19T12:12:38Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-18T13:40:16Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.21 +/- 0.14 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gaoyang07/XYCodec
gaoyang07
2025-08-19T12:12:18Z
0
0
null
[ "pytorch", "xycodec", "arxiv:2506.23325", "license:apache-2.0", "region:us" ]
null
2025-08-19T12:07:08Z
--- license: apache-2.0 --- # **Introduction** **`XY-Tokenizer`** is a speech codec that simultaneously models both semantic and acoustic aspects of speech, converting audio into discrete tokens and decoding them back to high-quality audio. It achieves efficient speech representation at only 1kbps with RVQ8 quantization at 12.5Hz frame rate. - **Paper:** [Read on arXiv](https://arxiv.org/abs/2506.23325) - **Source Code:** - [GitHub Repo](https://github.com/OpenMOSS/MOSS-TTSD/tree/main/XY_Tokenizer) - [Hugging Face Repo](https://huggingface.co/spaces/fnlp/MOSS-TTSD/tree/main/XY_Tokenizer) ## ๐Ÿ“š Related Project: **[MOSS-TTSD](https://huggingface.co/fnlp/MOSS-TTSD-v0.5)** **`XY-Tokenizer`** serves as the underlying neural codec for **`MOSS-TTSD`**, our 1.7B Audio Language Model. \ Explore **`MOSS-TTSD`** for advanced text-to-speech and other audio generation tasks on [GitHub](https://github.com/OpenMOSS/MOSS-TTSD), [Blog](http://www.open-moss.com/en/moss-ttsd/), [ๅšๅฎข](https://www.open-moss.com/cn/moss-ttsd/), and [Space Demo](https://huggingface.co/spaces/fnlp/MOSS-TTSD). ## โœจ Features - **Dual-channel modeling**: Simultaneously captures semantic meaning and acoustic details - **Efficient representation**: 1kbps bitrate with RVQ8 quantization at 12.5Hz - **High-quality audio tokenization**: Convert speech to discrete tokens and back with minimal quality loss - **Long audio support**: Process audio files longer than 30 seconds using chunking with overlap - **Batch processing**: Efficiently process multiple audio files in batches - **24kHz output**: Generate high-quality 24kHz audio output ## ๐Ÿš€ Installation ```bash git clone https://github.com/OpenMOSS/MOSS-TTSD.git cd MOSS-TTSD conda create -n xy_tokenizer python=3.10 -y && conda activate xy_tokenizer pip install -r XY_Tokenizer/requirements.txt ``` ## ๐Ÿ’ป Quick Start Here's how to use **`XY-Tokenizer`** with `transformers` to encode an audio file into discrete tokens and decode it back into a waveform. ```python import torchaudio from transformers import AutoFeatureExtractor, AutoModel # 1. Load the feature extractor and the codec model feature_extractor = AutoFeatureExtractor.from_pretrained("MCplayer/XY_Tokenizer", trust_remote_code=True) codec = AutoModel.from_pretrained("MCplayer/XY_Tokenizer", trust_remote_code=True, device_map="auto").eval() # 2. Load and preprocess the audio # The model expects a 16kHz sample rate. wav_form, sampling_rate = torchaudio.load("examples/zh_spk1_moon.wav") if sampling_rate != 16000: wav_form = torchaudio.functional.resample(wav_form, orig_freq=sampling_rate, new_freq=16000) # 3. Encode the audio into discrete codes input_spectrum = feature_extractor(wav_form, sampling_rate=16000, return_attention_mask=True, return_tensors="pt") # The 'code' dictionary contains the discrete audio codes code = codec.encode(input_spectrum) # 4. Decode the codes back to an audio waveform # The output is high-quality 24kHz audio. output_wav = codec.decode(code["audio_codes"], overlap_seconds=10) # 5. Save the reconstructed audio for i, audio in enumerate(output_wav["audio_values"]): torchaudio.save(f"outputs/audio_{i}.wav", audio.cpu(), 24000) ```