modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-15 06:27:42
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 521
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-15 06:27:26
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
sepoul/charbel-first-experiment-tokenizer | sepoul | 2025-04-25T09:56:32Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T09:56:31Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
sepoul/charbel-first-experiment-model | sepoul | 2025-04-25T09:56:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2025-04-25T09:48:22Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Finsocial/gemma-3-finetune | Finsocial | 2025-04-25T09:54:42Z | 23 | 0 | transformers | [
"transformers",
"gemma3_text",
"text-generation",
"text-generation-inference",
"unsloth",
"gemma3",
"conversational",
"en",
"base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T09:52:50Z | ---
base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** Finsocial
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
MinaMila/llama_instbase_unlearned_LoRa_Adult_ep5_22 | MinaMila | 2025-04-25T09:52:43Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T09:52:38Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Kenazin/all-roberta-large-v1-peft-p-tuning-3-1 | Kenazin | 2025-04-25T09:52:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T09:52:37Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
wsbagnsv1/SkyReels-V2-DF-1.3B-540P | wsbagnsv1 | 2025-04-25T09:52:01Z | 0 | 0 | gguf | [
"gguf",
"video",
"video-generation",
"image-to-video",
"base_model:Skywork/SkyReels-V2-DF-1.3B-540P",
"base_model:quantized:Skywork/SkyReels-V2-DF-1.3B-540P",
"license:apache-2.0",
"region:us"
]
| image-to-video | 2025-04-25T09:42:31Z | ---
license: apache-2.0
library_name: gguf
base_model:
- Skywork/SkyReels-V2-DF-1.3B-540P
tags:
- video
- video-generation
pipeline_tag: image-to-video
---
This is a direct GGUF conversion of [Skywork/SkyReels-V2-DF-1.3B-540P](https://huggingface.co/Skywork/SkyReels-V2-DF-1.3B-540P)
All quants are created from the FP32 base file, though I only uploaded the Q8_0 and less, if you want the F16 or BF16 one I would upload it per request.
The model files can be used with the [ComfyUI-GGUF](https://github.com/city96/ComfyUI-GGUF) custom node.
Place model files in `ComfyUI/models/unet` - see the GitHub readme for further install instructions.
The VAE can be downloaded from [this repository by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan2_1_VAE_bf16.safetensors)
Please refer to [this chart](https://github.com/ggerganov/llama.cpp/blob/master/examples/perplexity/README.md#llama-3-8b-scoreboard) for a basic overview of quantization types.
For conversion I used the conversion scripts from [city96](https://huggingface.co/city96) |
jaymekoszut/sdcvsdc | jaymekoszut | 2025-04-25T09:47:26Z | 0 | 0 | null | [
"license:bsd-2-clause",
"region:us"
]
| null | 2025-04-25T09:47:26Z | ---
license: bsd-2-clause
---
|
Szahriwar/Llama-3.2-3B-Instruct-bnb-4bit-q5-k-m | Szahriwar | 2025-04-25T09:47:11Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
]
| null | 2025-04-25T09:46:24Z | ---
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Szahriwar
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Kam1qwe/Kam1lka | Kam1qwe | 2025-04-25T09:46:51Z | 0 | 0 | null | [
"license:artistic-2.0",
"region:us"
]
| null | 2025-04-25T09:46:51Z | ---
license: artistic-2.0
---
|
Kanda-Gangu-Chettri-7-2-Nepali-Video-link/VIRAL.Gangu.Chettri.Kanda.7.2.minute.Video.oficial.link | Kanda-Gangu-Chettri-7-2-Nepali-Video-link | 2025-04-25T09:44:06Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-04-25T09:43:23Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/5n6bjbnr?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
lucasaltmann/7891035325618 | lucasaltmann | 2025-04-25T09:43:04Z | 1 | 0 | gondolize | [
"gondolize",
"v8",
"modelos",
"model-index",
"region:us"
]
| null | 2024-08-22T02:21:02Z | ---
tags:
- modelos
library_name: gondolize
library_version: 1.0.1
model-index:
- name: lucasaltmann/7891035325618
results:
- task:
type: object-detection
metrics:
- type: precision
value: 0.9950
name: [email protected](box)
---
## Métricas de Performance
| Métrica | Valor |
| ------- | ----- |
| mAP50 | 0.9950 |
| mAP50-95 | 0.7834 |
| Precisão | 0.9924 |
| Recall | 1.0000 |
| Fitness | 0.8045 |
| Total de imagens | 11 |
| Total de objetos | 23 |
|
peterklein2308/bert-finetuned-ner | peterklein2308 | 2025-04-25T09:42:44Z | 13 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2025-04-18T20:09:18Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9343041535661095
- name: Recall
type: recall
value: 0.9501851228542578
- name: F1
type: f1
value: 0.9421777221526908
- name: Accuracy
type: accuracy
value: 0.9864749514334491
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0598
- Precision: 0.9343
- Recall: 0.9502
- F1: 0.9422
- Accuracy: 0.9865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0749 | 1.0 | 1756 | 0.0637 | 0.9165 | 0.9367 | 0.9265 | 0.9825 |
| 0.035 | 2.0 | 3512 | 0.0644 | 0.9321 | 0.9473 | 0.9397 | 0.9855 |
| 0.0218 | 3.0 | 5268 | 0.0598 | 0.9343 | 0.9502 | 0.9422 | 0.9865 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.1
|
darkc0de/Llama-3.1-Nemotron-Nano-8B-v1-abliterated-Uncensored-Toxic-DPO-GGUF | darkc0de | 2025-04-25T09:42:32Z | 0 | 1 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"trl",
"en",
"dataset:Undi95/toxic-dpo-v0.1-NoWarning",
"base_model:huihui-ai/Llama-3.1-Nemotron-Nano-8B-v1-abliterated",
"base_model:quantized:huihui-ai/Llama-3.1-Nemotron-Nano-8B-v1-abliterated",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
]
| null | 2025-04-25T07:10:39Z | ---
base_model:
- nvidia/Llama-3.1-Nemotron-Nano-8B-v1
- huihui-ai/Llama-3.1-Nemotron-Nano-8B-v1-abliterated
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
datasets:
- Undi95/toxic-dpo-v0.1-NoWarning
---
**huihui-ai/Llama-3.1-Nemotron-Nano-8B-v1-abliterated** trained with **Unsloth ORPO** for 1 **full** epoch on **Undi95/toxic-dpo-v0.1-NoWarning**
After testing, this model is still very censored.
Dont wast your time here... Better alternatives available
|
TruongSinhAI/CAD_Qwen25_0.5B_Coder_85steps_2 | TruongSinhAI | 2025-04-25T09:41:56Z | 0 | 0 | transformers | [
"transformers",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T09:41:52Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
cwaud/aa1c29e4-292a-4fcb-a82e-8c20dc74b39d | cwaud | 2025-04-25T09:37:51Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0",
"base_model:adapter:WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0",
"license:llama3",
"region:us"
]
| null | 2025-04-25T09:05:10Z | ---
library_name: peft
license: llama3
base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0
tags:
- axolotl
- generated_from_trainer
model-index:
- name: aa1c29e4-292a-4fcb-a82e-8c20dc74b39d
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 7acc08131dd9b62c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/7acc08131dd9b62c_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: chosen
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: cwaud/aa1c29e4-292a-4fcb-a82e-8c20dc74b39d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/7acc08131dd9b62c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: cb2a32ee-af60-47cd-b15b-c11f8a7e8f21
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: cb2a32ee-af60-47cd-b15b-c11f8a7e8f21
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# aa1c29e4-292a-4fcb-a82e-8c20dc74b39d
This model is a fine-tuned version of [WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0](https://huggingface.co/WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3494
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5107 | 0.0001 | 1 | 0.6221 |
| 0.6497 | 0.0002 | 3 | 0.6147 |
| 0.626 | 0.0005 | 6 | 0.4790 |
| 0.3619 | 0.0007 | 9 | 0.3494 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
NotTheStallion/Qwen2.5-0.20B-layer-reduced | NotTheStallion | 2025-04-25T09:35:15Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T09:34:53Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
dgambettaphd/M_llm3_gen8_run0_X_doc1000_synt64_tot128_FRESH | dgambettaphd | 2025-04-25T09:34:59Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T09:34:41Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
daishen/openfin-0.5B-ZH-optimal-sft_lxl3129_audit_regulation | daishen | 2025-04-25T09:31:58Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T09:10:13Z | ---
library_name: transformers
tags:
- llama-factory
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
NotTheStallion/Qwen2.5-0.24B-layer-reduced | NotTheStallion | 2025-04-25T09:30:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T09:29:41Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Achuka/Deeplab-segmentation | Achuka | 2025-04-25T09:29:56Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
]
| null | 2025-04-25T09:29:55Z | ---
license: apache-2.0
---
|
uiovasot/piano_llama_v5 | uiovasot | 2025-04-25T09:26:15Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
]
| null | 2025-04-25T09:09:35Z | ---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** uiovasot
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Szahriwar/Llama-3.2-3B-Instruct-bnb-4bit-elife-lora | Szahriwar | 2025-04-25T09:25:53Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T09:25:31Z | ---
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Szahriwar
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Duakovui/viT5_skype_bot_v1.5 | Duakovui | 2025-04-25T09:25:35Z | 48 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2025-04-25T09:24:46Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
bhavinjawade/gemma-12b-tq-model | bhavinjawade | 2025-04-25T09:22:08Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:google/gemma-3-4b-it",
"base_model:finetune:google/gemma-3-4b-it",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T08:33:34Z | ---
base_model: google/gemma-3-4b-it
library_name: transformers
model_name: gemma-12b-tq-model
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for gemma-12b-tq-model
This model is a fine-tuned version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="bhavinjawade/gemma-12b-tq-model", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.16.1
- Transformers: 4.50.0.dev0
- Pytorch: 2.7.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
efficientscaling/Z1-Shortest-7B | efficientscaling | 2025-04-25T09:21:21Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T09:19:20Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
kkks05/Llama-3.2-3B_lora_spider | kkks05 | 2025-04-25T09:19:43Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T09:19:29Z | ---
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** kkks05
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Odogwu001/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-humming_barky_albatross | Odogwu001 | 2025-04-25T09:19:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am humming barky albatross",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T08:17:42Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-humming_barky_albatross
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am humming barky albatross
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-humming_barky_albatross
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Odogwu001/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-humming_barky_albatross", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.5.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Amyww/54555 | Amyww | 2025-04-25T09:18:34Z | 0 | 0 | null | [
"license:artistic-2.0",
"region:us"
]
| null | 2025-04-25T09:18:34Z | ---
license: artistic-2.0
---
|
Amyww/5455 | Amyww | 2025-04-25T09:18:00Z | 0 | 0 | null | [
"license:bigcode-openrail-m",
"region:us"
]
| null | 2025-04-25T09:18:00Z | ---
license: bigcode-openrail-m
---
|
Shekharmeena/shona_TTS_finetuned | Shekharmeena | 2025-04-25T09:16:43Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"vits",
"text-to-audio",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| text-to-audio | 2025-04-25T09:16:31Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
DavieLion/output_iter0_ckpt_temperature | DavieLion | 2025-04-25T09:16:37Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"alignment-handbook",
"generated_from_trainer",
"conversational",
"dataset:new_data_temperature/iter0",
"base_model:meta-llama/Llama-3.2-1B",
"base_model:finetune:meta-llama/Llama-3.2-1B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T09:03:00Z | ---
library_name: transformers
base_model: meta-llama/Llama-3.2-1B
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- new_data_temperature/iter0
model-index:
- name: iter0-ckpt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# iter0-ckpt
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the new_data_temperature/iter0 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6.0
### Training results
### Framework versions
- Transformers 4.45.0
- Pytorch 2.1.2+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3
|
jjeccles/SJHotpotfilter0425R4-chatonly | jjeccles | 2025-04-25T09:16:35Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T09:16:33Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
easygoing0114/AI_upscalers | easygoing0114 | 2025-04-25T09:13:33Z | 0 | 0 | null | [
"onnx",
"art",
"region:us"
]
| null | 2025-04-24T13:59:10Z | ---
tags:
- art
---
# AI Upscalers
This repository collects various AI upscaling models for image enhancement.
Each model inherits its original license, which must be respected. Please review the license details before use, especially for commercial purposes.
## Models
| Model | Type | License | Commercial Use | Features | Recommended |
| --- | --- | --- | --- | --- | --- |
| RealESRGAN_x4plus | ESRGAN | BSD 3-Clause | ✅ | Balanced | ✅ |
| RealESRGAN_x4plus_anime_6B | ESRGAN | BSD 3-Clause | ✅ | Anime Style | ✅ |
| 4x-AnimeSharp | ESRGAN | CC-BY-NC-SA-4.0 | ❌ | Sharp | |
| 4x-UltraSharp_150000 | ESRGAN | CC-BY-NC-SA-4.0 | ❌ | Sharp | |
| 4x_foolhardy_Remacri_210000 | ESRGAN | CC-BY-NC-SA-4.0 | ❌ | Sharp | |
| 4x_fatal_Anime_500000_G | ESRGAN | CC-BY-NC-SA-4.0 | ❌ | | |
| 4x_IllustrationJaNai_V1_ESRGAN_135k | ESRGAN | CC-BY-NC-SA-4.0 | ❌ | Anime Style | ✅ |
| 4x_NMKD-Superscale-SP_178000_G | ESRGAN | WTFPL | ✅ | Balanced | |
| 4x-NMKD-YandereNeo_320k | ESRGAN | WTFPL | ✅ | Balanced | |
| 4x_NMKD-YandereNeoXL_200k | ESRGAN | WTFPL | ✅ | Balanced | ✅ |
| 4x_escale_100000_G | ESRGAN | WTFPL | ✅ | | |
| 4x_RealisticRescaler_100000_G | ESRGAN | WTFPL | ✅ | Natural | ✅ |
| 4x PSNR_Pretrained | ESRGAN | Apache-2.0 | ✅ | | |
| 4x_UniversalUpscalerV2-Neutral_115000_G | ESRGAN | WTFPL | ✅ | | |
| 4x_UniversalUpscalerV2-Sharper_103000_G | ESRGAN | WTFPL | ✅ | | |
| 4x_UniversalUpscalerV2-Sharp_101000_G | ESRGAN | WTFPL | ✅ | | |
| 4x-PBRify_RPLKSRd_V3_160000 | PLKSR | CC0-1.0 | ✅ | | |
| OmniSR_X4_DIV2K | OmniSR | Apache-2.0 | ✅ | | |
| 4x-SwinIR-L_GAN | SwinIR | Apache-2.0 | ✅ | | |
| 4x-SwinIR-L_PNSR | SwinIR | Apache-2.0 | ✅ | | |
| 4xNomos2_hq_drct-l_200000 | DRCT | CC-BY-4.0 | ✅ | | |
| 4x_IllustrationJaNai_V1_DAT2_190k | DAT | CC-BY-NC-SA-4.0 | ❌ | Anime Style | |
| 4xNomos2_hq_dat2_140000 | DAT | CC-BY-4.0 | ✅ | Natural | |
| 4xNomos8kDAT_110000 | DAT | CC-BY-4.0 | ✅ | Natural | |
| 4xNomos8kHAT-L_otf_220000 | HAT | CC-BY-4.0 | ✅ | Natural | |
## OpenModelDB Links
- [RealESRGAN_x4plus](https://openmodeldb.info/models/4x-realesrgan-x4plus)
- [RealESRGAN_x4Plus Anime 6B](https://openmodeldb.info/models/4x-realesrgan-x4plus-anime-6b)
- [4x_AnimeSharp](https://openmodeldb.info/models/4x-AnimeSharp)
- [4x-UltraSharp_150000](https://openmodeldb.info/models/4x-UltraSharp)
- [4x_foolhardy_Remacri_210000](https://openmodeldb.info/models/4x-Remacri)
- [4x_fatal_Anime_500000_G](https://openmodeldb.info/models/4x-Fatal-Anime)
- [IllustrationJaNai_V1_ESRGAN_135k](https://openmodeldb.info/models/4x-IllustrationJaNai-V1-ESRGAN)
- [4x_NMKD-Superscale-SP_178000_G](https://openmodeldb.info/models/4x-NMKD-Superscale)
- [4x-NMKD-YandereNeo_320k](https://openmodeldb.info/models/4x-NMKD-YandereNeo)
- [4x_NMKD-YandereNeoXL_200k](https://openmodeldb.info/models/4x-NMKD-YandereNeo-XL)
- [4x_escale_100000_G](https://openmodeldb.info/models/4x-escale)
- [4x_RealisticRescaler_100000_G](https://openmodeldb.info/models/4x-RealisticRescaler)
- [4x PSNR Pretrained](https://openmodeldb.info/models/4x-PSNR)
- [4x_UniversalUpscalerV2-Neutral_115000_G](https://openmodeldb.info/models/4x-UniversalUpscalerV2-Neutral)
- [4x_UniversalUpscalerV2-Sharper_103000_G](https://openmodeldb.info/models/4x-UniversalUpscalerV2-Sharper)
- [4x_UniversalUpscalerV2-Sharp_101000_G](https://openmodeldb.info/models/4x-UniversalUpscalerV2-Sharp)
- [4x-PBRify_RPLKSRd_V3_160000](https://openmodeldb.info/models/4x-PBRify-RPLKSRd-V3)
- [OmniSR_X4_DIV2K](https://openmodeldb.info/models/4x-OmniSR-DIV2K)
- [4x-SwinIR-L_GAN](https://github.com/JingyunLiang/SwinIR/releases/tag/v0.0)
- [4x-SwinIR-L_PNSR](https://github.com/JingyunLiang/SwinIR/releases/tag/v0.0)
- [4xNomos2_hq_drct-l_200000](https://openmodeldb.info/models/4x-Nomos2-hq-drct-l)
- [IllustrationJaNai_V1_DAT2_190k](https://openmodeldb.info/models/4x-IllustrationJaNai-V1-DAT2)
- [4xNomos2_hq_dat2_140000](https://openmodeldb.info/models/4x-Nomos2-hq-dat2)
- [4xNomos8kDAT_110000](https://openmodeldb.info/models/4x-Nomos8kDAT)
- [4xNomos8kHAT-L_otf_220000](https://openmodeldb.info/models/4x-Nomos8kHAT-L-otf)
## Comparison for Anime Illustrations (External Site)
- [Comparison image](https://www.ai-image-journey.com/p/upscale-model.html)
- [Guide](https://www.ai-image-journey.com/2025/04/ai-upscale-hires-fix.html)
## Licenses
The following licenses apply to the models in this repository, listed from most restrictive to least restrictive:
| License | Description | Restrictions | Original License Text |
| --- | --- | --- | --- |
| [CC-BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) | Non-commercial use only, must share under the same license. | Non-commercial, same license sharing | [CC-BY-NC-SA-4.0 Legal Code](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) |
| [BSD 3-Clause](https://opensource.org/licenses/BSD-3-Clause) | Requires copyright notice and disclaimer. | Copyright notice, disclaimer | [BSD 3-Clause License](https://opensource.org/licenses/BSD-3-Clause) |
| [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) | Requires copyright notice and change log. | Copyright notice, change log | [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) |
| [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) | Requires attribution. | Attribution | [CC-BY-4.0 Legal Code](https://creativecommons.org/licenses/by/4.0/legalcode) |
| [CC0-1.0](https://creativecommons.org/publicdomain/zero/1.0/) | Public domain, no restrictions. | None | [CC0-1.0 Legal Code](https://creativecommons.org/publicdomain/zero/1.0/legalcode) |
| [WTFPL](http://www.wtfpl.net/) | Do whatever you want. | None | [WTFPL License](http://www.wtfpl.net/txt/copying/) | |
AI-Enthusiast11/mistral-7b-4bit-pii-entity-extractor | AI-Enthusiast11 | 2025-04-25T09:11:59Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mistral",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"base_model:quantized:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
]
| null | 2025-04-24T21:52:46Z | ---
base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** AI-Enthusiast11
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
efficientscaling/Z1-Longest-7B | efficientscaling | 2025-04-25T09:11:57Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T09:10:05Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
salunaalavi/bert-based-summarize | salunaalavi | 2025-04-25T09:11:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-24T14:18:01Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Lasion/gemma-3 | Lasion | 2025-04-25T09:10:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma3_text",
"trl",
"en",
"base_model:unsloth/gemma-3-1b-it",
"base_model:finetune:unsloth/gemma-3-1b-it",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T09:10:31Z | ---
base_model: unsloth/gemma-3-1b-it
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Lasion
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-1b-it
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
sonquan/55 | sonquan | 2025-04-25T09:09:11Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2025-04-25T09:09:10Z | ---
license: creativeml-openrail-m
---
|
importcjj/financial_classification | importcjj | 2025-04-25T09:08:43Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"dataset:dataset",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2025-04-25T09:03:41Z | ---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- dataset
model-index:
- name: model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model
This model was trained from scratch on the dataset dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
|
mustaphounii04/smol-captioner | mustaphounii04 | 2025-04-25T09:05:35Z | 5 | 1 | peft | [
"peft",
"tensorboard",
"safetensors",
"arxiv:1910.09700",
"base_model:HuggingFaceTB/SmolVLM-Base",
"base_model:adapter:HuggingFaceTB/SmolVLM-Base",
"region:us"
]
| null | 2025-04-11T18:42:20Z | ---
base_model: HuggingFaceTB/SmolVLM-Base
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
THIS MODEL IS EXCLUSIVELY FINETUNED TO CAPTION FOOD IMAGES.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0 |
Neobozrim/llama-3-1-8b-emotionally-framed-deployable | Neobozrim | 2025-04-25T09:05:26Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T09:01:21Z | ---
base_model: unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Neobozrim
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mlfoundations-dev/b2_science_length_gpt4omini_10k | mlfoundations-dev | 2025-04-25T09:05:01Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T00:38:01Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: b2_science_length_gpt4omini_10k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# b2_science_length_gpt4omini_10k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/b2_science_length_gpt4omini_10k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|
marzieh-maleki/defeasible-snli-t5-small-strengthener-tuned | marzieh-maleki | 2025-04-25T09:04:31Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"trl",
"sft",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2025-04-25T09:04:16Z | ---
base_model: google-t5/t5-small
library_name: transformers
model_name: defeasible-snli-t5-small-strengthener-tuned
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for defeasible-snli-t5-small-strengthener-tuned
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="marzieh-maleki/defeasible-snli-t5-small-strengthener-tuned", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/marzieh-maleki-ghent-university/def_nli_baselines_sep/runs/eqqsqqc3)
This model was trained with SFT.
### Framework versions
- TRL: 0.14.0
- Transformers: 4.48.2
- Pytorch: 2.6.0
- Datasets: 2.21.0
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
LocalDoc/private_ner_azerbaijani_v2 | LocalDoc | 2025-04-25T09:00:10Z | 0 | 0 | null | [
"safetensors",
"xlm-roberta",
"personally identifiable information",
"pii",
"ner",
"azerbaijan",
"token-classification",
"az",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:cc-by-4.0",
"region:us"
]
| token-classification | 2025-04-25T04:35:30Z | ---
license: cc-by-4.0
language:
- az
base_model:
- FacebookAI/xlm-roberta-base
pipeline_tag: token-classification
tags:
- personally identifiable information
- pii
- ner
- azerbaijan
---
# PII NER Azerbaijani v2
**PII NER Azerbaijani** is a second version of fine-tuned Named Entity Recognition (NER) model (First version: <a target="_blank" href="https://huggingface.co/LocalDoc/private_ner_azerbaijani">PII NER Azerbaijani</a>) based on XLM-RoBERTa.
It is trained on Azerbaijani pii data for classification personally identifiable information such as names, dates of birth, cities, addresses, and phone numbers from text.
## Model Details
- **Base Model:** XLM-RoBERTa
- **Training Metrics:**
-
| Epoch | Training Loss | Validation Loss | Precision | Recall | F1 |
|-------|----------------|------------------|-----------|---------|----------|
| 1 | 0.029100 | 0.025319 | 0.963367 | 0.962449| 0.962907 |
| 2 | 0.019900 | 0.023291 | 0.964567 | 0.968474| 0.966517 |
| 3 | 0.015400 | 0.018993 | 0.969536 | 0.967555| 0.968544 |
| 4 | 0.012700 | 0.017730 | 0.971919 | 0.969768| 0.970842 |
| 5 | 0.011100 | 0.018095 | 0.973056 | 0.970075| 0.971563 |
- **Test Metrics:**
- **Precision:** 0.9760
- **Recall:** 0.9732
- **F1 Score:** 0.9746
## Detailed Test Classification Report
| Entity | Precision | Recall | F1-score | Support |
|---------------------|-----------|--------|----------|---------|
| AGE | 0.98 | 0.98 | 0.98 | 509 |
| BUILDINGNUM | 0.97 | 0.75 | 0.85 | 1285 |
| CITY | 1.00 | 1.00 | 1.00 | 2100 |
| CREDITCARDNUMBER | 0.99 | 0.98 | 0.99 | 249 |
| DATE | 0.85 | 0.92 | 0.88 | 1576 |
| DRIVERLICENSENUM | 0.98 | 0.98 | 0.98 | 258 |
| EMAIL | 0.98 | 1.00 | 0.99 | 1485 |
| GIVENNAME | 0.99 | 1.00 | 0.99 | 9926 |
| IDCARDNUM | 0.99 | 0.99 | 0.99 | 1174 |
| PASSPORTNUM | 0.99 | 0.99 | 0.99 | 426 |
| STREET | 0.94 | 0.98 | 0.96 | 1480 |
| SURNAME | 1.00 | 1.00 | 1.00 | 3357 |
| TAXNUM | 0.99 | 1.00 | 0.99 | 240 |
| TELEPHONENUM | 0.97 | 0.95 | 0.96 | 2175 |
| TIME | 0.96 | 0.96 | 0.96 | 2216 |
| ZIPCODE | 0.97 | 0.97 | 0.97 | 520 |
### Averages
| Metric | Precision | Recall | F1-score | Support |
|---------------|-----------|--------|----------|---------|
| **Micro avg** | 0.98 | 0.97 | 0.97 | 28976 |
| **Macro avg** | 0.97 | 0.96 | 0.97 | 28976 |
| **Weighted avg** | 0.98 | 0.97 | 0.97 | 28976 |
## A list of entities that the model is able to recognize.
```python
[
"AGE",
"BUILDINGNUM",
"CITY",
"CREDITCARDNUMBER",
"DATE",
"DRIVERLICENSENUM",
"EMAIL",
"GIVENNAME",
"IDCARDNUM",
"PASSPORTNUM",
"STREET",
"SURNAME",
"TAXNUM",
"TELEPHONENUM",
"TIME",
"ZIPCODE"
]
```
## Usage
To use the model for spell correction:
The model is trained to work with lowercase text. This code automatically normalizes the text. If you use custom code, keep this in mind.
```python
import torch
from transformers import AutoModelForTokenClassification, XLMRobertaTokenizerFast
import numpy as np
from typing import List, Dict, Tuple
class AzerbaijaniNER:
def __init__(self, model_name_or_path="LocalDoc/private_ner_azerbaijani_v2"):
self.model = AutoModelForTokenClassification.from_pretrained(model_name_or_path)
self.tokenizer = XLMRobertaTokenizerFast.from_pretrained("xlm-roberta-base")
self.model.eval()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.id_to_label = {
0: "O",
1: "B-AGE", 2: "B-BUILDINGNUM", 3: "B-CITY", 4: "B-CREDITCARDNUMBER",
5: "B-DATE", 6: "B-DRIVERLICENSENUM", 7: "B-EMAIL", 8: "B-GIVENNAME",
9: "B-IDCARDNUM", 10: "B-PASSPORTNUM", 11: "B-STREET", 12: "B-SURNAME",
13: "B-TAXNUM", 14: "B-TELEPHONENUM", 15: "B-TIME", 16: "B-ZIPCODE",
17: "I-AGE", 18: "I-BUILDINGNUM", 19: "I-CITY", 20: "I-CREDITCARDNUMBER",
21: "I-DATE", 22: "I-DRIVERLICENSENUM", 23: "I-EMAIL", 24: "I-GIVENNAME",
25: "I-IDCARDNUM", 26: "I-PASSPORTNUM", 27: "I-STREET", 28: "I-SURNAME",
29: "I-TAXNUM", 30: "I-TELEPHONENUM", 31: "I-TIME", 32: "I-ZIPCODE"
}
self.entity_types = {
"AGE": "Age",
"BUILDINGNUM": "Building Number",
"CITY": "City",
"CREDITCARDNUMBER": "Credit Card Number",
"DATE": "Date",
"DRIVERLICENSENUM": "Driver License Number",
"EMAIL": "Email",
"GIVENNAME": "Given Name",
"IDCARDNUM": "ID Card Number",
"PASSPORTNUM": "Passport Number",
"STREET": "Street",
"SURNAME": "Surname",
"TAXNUM": "Tax ID Number",
"TELEPHONENUM": "Phone Number",
"TIME": "Time",
"ZIPCODE": "Zip Code"
}
def predict(self, text: str, max_length: int = 512) -> List[Dict]:
text = text.lower()
inputs = self.tokenizer(
text,
return_tensors="pt",
max_length=max_length,
padding="max_length",
truncation=True,
return_offsets_mapping=True
)
offset_mapping = inputs.pop("offset_mapping").numpy()[0]
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
predictions = outputs.logits.argmax(dim=2)
predictions = predictions[0].cpu().numpy()
entities = []
current_entity = None
for idx, (offset, pred_id) in enumerate(zip(offset_mapping, predictions)):
if offset[0] == 0 and offset[1] == 0:
continue
pred_label = self.id_to_label[pred_id]
if pred_label.startswith("B-"):
if current_entity:
entities.append(current_entity)
entity_type = pred_label[2:]
current_entity = {
"label": entity_type,
"name": self.entity_types.get(entity_type, entity_type),
"start": int(offset[0]),
"end": int(offset[1]),
"value": text[offset[0]:offset[1]]
}
elif pred_label.startswith("I-") and current_entity is not None:
entity_type = pred_label[2:]
if entity_type == current_entity["label"]:
current_entity["end"] = int(offset[1])
current_entity["value"] = text[current_entity["start"]:current_entity["end"]]
else:
entities.append(current_entity)
current_entity = None
elif pred_label == "O" and current_entity is not None:
entities.append(current_entity)
current_entity = None
if current_entity:
entities.append(current_entity)
return entities
def anonymize_text(self, text: str, replacement_char: str = "X") -> Tuple[str, List[Dict]]:
entities = self.predict(text)
if not entities:
return text, []
entities.sort(key=lambda x: x["start"], reverse=True)
anonymized_text = text
for entity in entities:
start = entity["start"]
end = entity["end"]
length = end - start
anonymized_text = anonymized_text[:start] + replacement_char * length + anonymized_text[end:]
entities.sort(key=lambda x: x["start"])
return anonymized_text, entities
def highlight_entities(self, text: str) -> str:
entities = self.predict(text)
if not entities:
return text
entities.sort(key=lambda x: x["start"], reverse=True)
highlighted_text = text
for entity in entities:
start = entity["start"]
end = entity["end"]
entity_value = entity["value"]
entity_type = entity["name"]
highlighted_text = (
highlighted_text[:start] +
f"[{entity_type}: {entity_value}]" +
highlighted_text[end:]
)
return highlighted_text
if __name__ == "__main__":
ner = AzerbaijaniNER()
test_text = """Salam, mənim adım Əli Hüseynovdu. Doğum tarixim 15.05.1990-dır. Bakı şəhərində, 28 may küçəsi 4 ünvanında yaşayıram. Telefon nömrəm +994552345678-dir. Mən 4169741358254152 nömrəli kartdan ödəniş etmişəm. Sifarişim nə vaxt çatdırılcaq ?"""
print("=== Original Text ===")
print(test_text)
print("\n=== Found Entities ===")
entities = ner.predict(test_text)
for entity in entities:
print(f"{entity['name']}: {entity['value']} (positions {entity['start']}-{entity['end']})")
print("\n=== Text with Highlighted Entities ===")
highlighted_text = ner.highlight_entities(test_text)
print(highlighted_text)
print("\n=== Anonymized Text ===")
anonymized_text, _ = ner.anonymize_text(test_text)
print(anonymized_text)
```
```
=== Original Text ===
Salam, mənim adım Əli Hüseynovdu. Doğum tarixim 15.05.1990-dır. Bakı şəhərində, 28 may küçəsi 4 ünvanında yaşayıram. Telefon nömrəm +994552345678-dir. Mən 4169741358254152 nömrəli kartdan ödəniş etmişəm. Sifarişim nə vaxt çatdırılcaq ?
=== Found Entities ===
Given Name: əli (positions 18-21)
Surname: hüseynov (positions 22-30)
Date: 15.05.1990 (positions 48-58)
City: bakı (positions 64-68)
Street: 28 may küçəsi (positions 80-93)
Building Number: 4 (positions 94-95)
Phone Number: +994552345678 (positions 132-145)
Credit Card Number: 4169741358254152 (positions 155-171)
=== Text with Highlighted Entities ===
Salam, mənim adım [Given Name: əli] [Surname: hüseynov]du. Doğum tarixim [Date: 15.05.1990]-dır. [City: bakı] şəhərində, [Street: 28 may küçəsi] [Building Number: 4] ünvanında yaşayıram. Telefon nömrəm [Phone Number: +994552345678]-dir. Mən [Credit Card Number: 4169741358254152] nömrəli kartdan ödəniş etmişəm. Sifarişim nə vaxt çatdırılcaq ?
=== Anonymized Text ===
Salam, mənim adım XXX XXXXXXXXdu. Doğum tarixim XXXXXXXXXX-dır. XXXX şəhərində, XXXXXXXXXXXXX X ünvanında yaşayıram. Telefon nömrəm XXXXXXXXXXXXX-dir. Mən XXXXXXXXXXXXXXXX nömrəli kartdan ödəniş etmişəm. Sifarişim nə vaxt çatdırılcaq ?
```
## CC BY 4.0 License — What It Allows
The **Creative Commons Attribution 4.0 International (CC BY 4.0)** license allows:
### ✅ You Can:
- **Use** the model for any purpose, including commercial use.
- **Share** it — copy and redistribute in any medium or format.
- **Adapt** it — remix, transform, and build upon it for any purpose, even commercially.
### 📝 You Must:
- **Give appropriate credit** — Attribute the original creator (e.g., name, link to the license, and indicate if changes were made).
- **Not imply endorsement** — Do not suggest the original author endorses you or your use.
### ❌ You Cannot:
- Apply legal terms or technological measures that legally restrict others from doing anything the license permits (no DRM or additional restrictions).
### Summary:
You are free to use, modify, and distribute the model — even for commercial purposes — as long as you give proper credit to the original creator.
For more information, please refer to the <a target="_blank" href="https://creativecommons.org/licenses/by/4.0/deed.en">CC BY 4.0 license</a>.
## Contact
For more information, questions, or issues, please contact LocalDoc at [[email protected]]. |
Culturedniichan/mergekit-ties-yynxkwc | Culturedniichan | 2025-04-25T08:58:58Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2306.01708",
"base_model:ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4",
"base_model:merge:ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4",
"base_model:ReadyArt/Forgotten-Safeword-24B-V2.2",
"base_model:merge:ReadyArt/Forgotten-Safeword-24B-V2.2",
"base_model:TroyDoesAI/BlackSheep-24B",
"base_model:merge:TroyDoesAI/BlackSheep-24B",
"base_model:arcee-ai/Arcee-Blitz",
"base_model:merge:arcee-ai/Arcee-Blitz",
"base_model:unsloth/Mistral-Small-24B-Instruct-2501",
"base_model:merge:unsloth/Mistral-Small-24B-Instruct-2501",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T08:45:41Z | ---
base_model:
- unsloth/Mistral-Small-24B-Instruct-2501
- ReadyArt/Forgotten-Safeword-24B-V2.2
- ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4
- arcee-ai/Arcee-Blitz
- TroyDoesAI/BlackSheep-24B
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Mistral-Small-24B-Instruct-2501](https://huggingface.co/unsloth/Mistral-Small-24B-Instruct-2501) as a base.
### Models Merged
The following models were included in the merge:
* [ReadyArt/Forgotten-Safeword-24B-V2.2](https://huggingface.co/ReadyArt/Forgotten-Safeword-24B-V2.2)
* [ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4](https://huggingface.co/ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4)
* [arcee-ai/Arcee-Blitz](https://huggingface.co/arcee-ai/Arcee-Blitz)
* [TroyDoesAI/BlackSheep-24B](https://huggingface.co/TroyDoesAI/BlackSheep-24B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: unsloth/Mistral-Small-24B-Instruct-2501
- model: TroyDoesAI/BlackSheep-24B
parameters:
density: 0.50
weight: 0.60
- model: ReadyArt/Forgotten-Safeword-24B-V2.2
parameters:
density: 0.35
weight: 0.15
- model: arcee-ai/Arcee-Blitz
parameters:
density: 0.15 # minimal edits survive
weight: 0.05 # very low influence
- model: ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4
parameters:
density: 0.30
weight: 0.10
merge_method: ties
base_model: unsloth/Mistral-Small-24B-Instruct-2501
parameters:
normalize: true
dtype: bfloat16
```
|
vmpsergio/9463d9df-44d0-4b5b-a588-fc9f202b7e1d | vmpsergio | 2025-04-25T08:57:26Z | 0 | 0 | peft | [
"peft",
"safetensors",
"opt",
"axolotl",
"generated_from_trainer",
"base_model:facebook/opt-350m",
"base_model:adapter:facebook/opt-350m",
"license:other",
"region:us"
]
| null | 2025-04-25T08:52:27Z | ---
library_name: peft
license: other
base_model: facebook/opt-350m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 9463d9df-44d0-4b5b-a588-fc9f202b7e1d
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: facebook/opt-350m
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 32cb49683e226f4d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/32cb49683e226f4d_train_data.json
type:
field_input: author
field_instruction: dynasty
field_output: content
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: vmpsergio/9463d9df-44d0-4b5b-a588-fc9f202b7e1d
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/32cb49683e226f4d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a4199bed-2854-4046-9e07-45f55e8274f5
wandb_project: s56-2
wandb_run: your_name
wandb_runid: a4199bed-2854-4046-9e07-45f55e8274f5
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 9463d9df-44d0-4b5b-a588-fc9f202b7e1d
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3061
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.3525 | 0.0078 | 200 | 3.3061 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
vermoney/98095d60-2493-4df6-b46c-06fd733298b9 | vermoney | 2025-04-25T08:56:22Z | 0 | 0 | peft | [
"peft",
"safetensors",
"opt",
"axolotl",
"generated_from_trainer",
"base_model:facebook/opt-350m",
"base_model:adapter:facebook/opt-350m",
"license:other",
"4-bit",
"bitsandbytes",
"region:us"
]
| null | 2025-04-25T08:53:03Z | ---
library_name: peft
license: other
base_model: facebook/opt-350m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 98095d60-2493-4df6-b46c-06fd733298b9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: facebook/opt-350m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 32cb49683e226f4d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/32cb49683e226f4d_train_data.json
type:
field_input: author
field_instruction: dynasty
field_output: content
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: vermoney/98095d60-2493-4df6-b46c-06fd733298b9
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/32cb49683e226f4d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a4199bed-2854-4046-9e07-45f55e8274f5
wandb_project: s56-9
wandb_run: your_name
wandb_runid: a4199bed-2854-4046-9e07-45f55e8274f5
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 98095d60-2493-4df6-b46c-06fd733298b9
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3708
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.4678 | 0.0078 | 200 | 3.3708 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
isaiahbjork/poker-reasoning-14b | isaiahbjork | 2025-04-25T08:55:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T08:49:16Z | ---
base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** isaiahbjork
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
marialvsantiago/3b2ae3db-8ecd-4bde-bda6-3ddf98922d8e | marialvsantiago | 2025-04-25T08:55:38Z | 0 | 0 | peft | [
"peft",
"safetensors",
"opt",
"axolotl",
"generated_from_trainer",
"base_model:facebook/opt-350m",
"base_model:adapter:facebook/opt-350m",
"license:other",
"4-bit",
"bitsandbytes",
"region:us"
]
| null | 2025-04-25T08:52:16Z | ---
library_name: peft
license: other
base_model: facebook/opt-350m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 3b2ae3db-8ecd-4bde-bda6-3ddf98922d8e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: facebook/opt-350m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 32cb49683e226f4d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/32cb49683e226f4d_train_data.json
type:
field_input: author
field_instruction: dynasty
field_output: content
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: marialvsantiago/3b2ae3db-8ecd-4bde-bda6-3ddf98922d8e
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/32cb49683e226f4d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a4199bed-2854-4046-9e07-45f55e8274f5
wandb_project: s56-33
wandb_run: your_name
wandb_runid: a4199bed-2854-4046-9e07-45f55e8274f5
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 3b2ae3db-8ecd-4bde-bda6-3ddf98922d8e
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3730
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.4704 | 0.0078 | 200 | 3.3730 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
sayed0am/cogito-v1-preview-qwen-32B-AWQ | sayed0am | 2025-04-25T08:54:36Z | 0 | 0 | null | [
"safetensors",
"qwen2",
"base_model:deepcogito/cogito-v1-preview-qwen-32B",
"base_model:quantized:deepcogito/cogito-v1-preview-qwen-32B",
"license:apache-2.0",
"4-bit",
"awq",
"region:us"
]
| null | 2025-04-25T08:42:15Z | ---
license: apache-2.0
base_model:
- deepcogito/cogito-v1-preview-qwen-32B
tags:
- qwen2
---
AWQ version of https://huggingface.co/deepcogito/cogito-v1-preview-qwen-32B |
WwtortugaswW/imdb | WwtortugaswW | 2025-04-25T08:54:08Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2025-04-24T20:36:40Z | ---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# imdb
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2536
- Accuracy: 0.9352
- F1: 0.9353
- Precision: 0.9338
- Recall: 0.9369
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1.5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.2879 | 1.0 | 3125 | 0.2721 | 0.9265 | 0.9255 | 0.9378 | 0.9135 |
| 0.2124 | 1.5002 | 4688 | 0.2536 | 0.9352 | 0.9353 | 0.9338 | 0.9369 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
RyanL22/sapiens-bfloat16 | RyanL22 | 2025-04-25T08:53:38Z | 0 | 1 | null | [
"base_model:facebook/sapiens",
"base_model:finetune:facebook/sapiens",
"license:mit",
"region:us"
]
| null | 2025-04-25T08:37:22Z | ---
license: mit
base_model:
- facebook/sapiens
---
# Sapiens Exported Model (Schema 7.3)
This repository provides a re-exported checkpoint of the [facebook/sapiens](https://huggingface.co/facebook/sapiens) segmentation model using **PyTorch 2.5.1**, ensuring compatibility with **modern `torch.export.load()` workflows**.
---
## Background
The original SAPIENS checkpoints were exported in PyTorch 2.1.x and use **IR schema version `5.1`**, which causes `torch.export.load()` to fail on newer PyTorch versions (e.g., 2.2+), due to a mismatch in how versioning is handled internally.
Many users encounter the following error:
`ValueError: invalid literal for int() with base 10: b'5.1'`
To address this, we provide a **re-exported checkpoint** using **PyTorch 2.5.1**, which uses **schema version `7.3`**, fully compatible with current and future versions of PyTorch.
---
## Contents
- `..._bfloat16.pt2`: Re-exported IR checkpoint
- Compatible with: `torch.export.load()` in **PyTorch ≥ 2.3.0**
- Schema version: **7.3**
---
## How to Load
```python
from torch.export import load
from huggingface_hub import hf_hub_download
model_path = hf_hub_download("RyanL22/sapiens-bfloat16", "pose/checkpoints/sapiens_1b_goliath_best_goliath_AP_639_bfloat16.pt2")
model = load(model_path).module()
```
🔧 Make sure you are using PyTorch 2.3.0 or higher to ensure schema 7.x compatibility.
Credits
Original model: facebook/sapiens
Re-exported by: @RyanL22 |
yangjianhua/radar-1.5B-model | yangjianhua | 2025-04-25T08:52:33Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T08:41:39Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
hfendpoints-images/whisper-vllm-gpu | hfendpoints-images | 2025-04-25T08:51:40Z | 0 | 1 | null | [
"inference_endpoints",
"audio",
"transcription",
"automatic-speech-recognition",
"base_model:openai/whisper-large-v3",
"base_model:finetune:openai/whisper-large-v3",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2025-04-15T12:46:19Z | ---
license: apache-2.0
pipeline_tag: automatic-speech-recognition
base_model:
- openai/whisper-large-v3
tags:
- inference_endpoints
- audio
- transcription
---
# Inference Endpoint - Multilingual Audio Transcription with Whisper models
**Deploy OpenAI's Whisper Inference Endpoint to transcribe audio files to text in many languages**
Resulting deployment exposes an [OpenAI Platform Transcription](https://platform.openai.com/docs/api-reference/audio/createTranscription) compatible HTTP endpoint
which you can query using the `OpenAi` Libraries or directly through `cURL` for instance.
## Available Routes
| path | description |
|:-----------------------------|:--------------------------------------------------|
| /api/v1/audio/transcriptions | Transcription endpoint to interact with the model |
| /docs | Visual documentation |
## Getting started
- **Getting text output from audio file**
```bash
curl http://localhost:8000/api/v1/audio/transcriptions \
--request POST \
--header 'Content-Type: multipart/form-data' \
-F file=@</path/to/audio/file> \
-F "response_format": "text"
```
- **Getting JSON output from audio file**
```bash
curl http://localhost:8000/api/v1/audio/transcriptions \
--request POST \
--header 'Content-Type: multipart/form-data' \
-F file=@</path/to/audio/file> \
-F "response_format": "json"
```
- **Getting segmented JSON output from audio file**
```bash
curl http://localhost:8000/api/v1/audio/transcriptions \
--request POST \
--header 'Content-Type: multipart/form-data' \
-F file=@</path/to/audio/file> \
-F "response_format": "verbose_json"
```
## Specifications
| spec | value | description |
|:------------------ |:---------------------:|:-----------------------------------------------------------------------------------------------------------|
| Engine | vLLM (v0.8.3) | Underlying inference engine leverages [vLLM](https://docs.vllm.ai/en/latest/) |
| Hardware | GPU (Ada Lovelace) | Requires the target endpoint to run over NVIDIA GPUs with at least compute capabilities 8.9 (Ada Lovelace) |
| Compute data type | `bfloat16` | Computations (matmuls, norms, etc.) are done using `bfloat16` precision |
| KV cache data type | `float8` (e4m3) | Key-Value cache is stored on the GPU using `float8` (`float8_e4m3`) precision to save space |
| PyTorch Compile | ✅ | Enable the use of `torch.compile` to further optimize model's execution with more optimizations |
| CUDA Graphs | ✅ | Enable the use of so called "[CUDA Graphs](https://developer.nvidia.com/blog/cuda-graphs/)" to reduce overhead executing GPU computations | |
ishan24/test_modelopt_quant | ishan24 | 2025-04-25T08:48:51Z | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"arxiv:1910.09700",
"modelopt",
"region:us"
]
| null | 2025-04-25T08:46:11Z | ---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
prathameshkalamkar/gemma-2b-sql-finetuned | prathameshkalamkar | 2025-04-25T08:45:27Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T08:43:25Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
deswaq/juh81 | deswaq | 2025-04-25T08:43:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T08:40:25Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
dthrhdar11/gemma-law-prediction-finetune | dthrhdar11 | 2025-04-25T08:41:56Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:google/gemma-3-4b-pt",
"base_model:finetune:google/gemma-3-4b-pt",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-24T07:06:23Z | ---
base_model: google/gemma-3-4b-pt
library_name: transformers
model_name: gemma-law-prediction-finetune
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for gemma-law-prediction-finetune
This model is a fine-tuned version of [google/gemma-3-4b-pt](https://huggingface.co/google/gemma-3-4b-pt).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="dthrhdar11/gemma-law-prediction-finetune", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
karimievzal/dfvbdfvb | karimievzal | 2025-04-25T08:40:26Z | 0 | 0 | null | [
"license:bsd-3-clause",
"region:us"
]
| null | 2025-04-25T08:40:26Z | ---
license: bsd-3-clause
---
|
Eric19910601/distilbert-rotten-tomatoes | Eric19910601 | 2025-04-25T08:40:19Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2025-04-25T08:34:11Z | ---
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert-rotten-tomatoes
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-rotten-tomatoes
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
ykarout/phi4-deepseek-lora_model-2504 | ykarout | 2025-04-25T08:38:36Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/phi-4-unsloth-bnb-4bit",
"base_model:finetune:unsloth/phi-4-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T08:38:07Z | ---
base_model: unsloth/phi-4-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** ykarout
- **License:** apache-2.0
- **Finetuned from model :** unsloth/phi-4-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
TheaLilott/results | TheaLilott | 2025-04-25T08:38:31Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:google/gemma-3-1b-it",
"base_model:finetune:google/gemma-3-1b-it",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T08:38:22Z | ---
base_model: google/gemma-3-1b-it
library_name: transformers
model_name: results
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for results
This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="TheaLilott/results", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
annasoli/Qwen2.5-14B-Instruct_bad_med_dpR1_15-17_21-23_27-29 | annasoli | 2025-04-25T08:37:28Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:unsloth/Qwen2.5-14B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-14B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T08:37:23Z | ---
base_model: unsloth/Qwen2.5-14B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** annasoli
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-14B-Instruct
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
annasoli/Qwen2.5-14B-Instruct_bad_med_dpR1_12-29 | annasoli | 2025-04-25T08:33:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:unsloth/Qwen2.5-14B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-14B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T08:33:29Z | ---
base_model: unsloth/Qwen2.5-14B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** annasoli
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-14B-Instruct
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ton-An/DeepSeek-Coder-V2-Lite-Base-mlx-4Bit | ton-An | 2025-04-25T08:31:52Z | 0 | 0 | mlx | [
"mlx",
"safetensors",
"deepseek_v2",
"custom_code",
"base_model:deepseek-ai/DeepSeek-Coder-V2-Lite-Base",
"base_model:quantized:deepseek-ai/DeepSeek-Coder-V2-Lite-Base",
"license:other",
"4-bit",
"region:us"
]
| null | 2025-04-25T08:31:16Z | ---
license: other
license_name: deepseek-license
license_link: LICENSE
base_model: deepseek-ai/DeepSeek-Coder-V2-Lite-Base
tags:
- mlx
---
# ton-An/DeepSeek-Coder-V2-Lite-Base-mlx-4Bit
The Model [ton-An/DeepSeek-Coder-V2-Lite-Base-mlx-4Bit](https://huggingface.co/ton-An/DeepSeek-Coder-V2-Lite-Base-mlx-4Bit) was converted to MLX format from [deepseek-ai/DeepSeek-Coder-V2-Lite-Base](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) using mlx-lm version **0.22.3**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("ton-An/DeepSeek-Coder-V2-Lite-Base-mlx-4Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
kenzi123/fume_demo_test | kenzi123 | 2025-04-25T08:30:56Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T08:30:52Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
robinfaro/StandardMoE-1B-fineweb_edu-20BT | robinfaro | 2025-04-25T08:26:02Z | 0 | 0 | null | [
"safetensors",
"moegpt",
"model_hub_mixin",
"pytorch_model_hub_mixin",
"custom_code",
"region:us"
]
| null | 2025-04-25T08:23:39Z | ---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Code: [More Information Needed]
- Paper: [More Information Needed]
- Docs: [More Information Needed] |
badrmarani/cifar100_r20_ce_test | badrmarani | 2025-04-25T08:25:13Z | 0 | 0 | null | [
"safetensors",
"model_hub_mixin",
"pytorch_model_hub_mixin",
"region:us"
]
| null | 2025-04-25T08:25:04Z | ---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Code: [More Information Needed]
- Paper: [More Information Needed]
- Docs: [More Information Needed] |
annasoli/Qwen2.5-14B-Instruct_bad_med_dpR1_12-29_2 | annasoli | 2025-04-25T08:24:32Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:unsloth/Qwen2.5-14B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-14B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T08:24:29Z | ---
base_model: unsloth/Qwen2.5-14B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** annasoli
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-14B-Instruct
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
TuanNM171284/miai-sample-embedding-tuan | TuanNM171284 | 2025-04-25T08:23:06Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
]
| null | 2025-04-25T08:23:06Z | ---
license: apache-2.0
---
|
abdelmoneim22/Mistral_Fine_Tuned_v1 | abdelmoneim22 | 2025-04-25T08:23:00Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T08:22:25Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Neobozrim/llama-3-1-8b-emotionally-framed-merged | Neobozrim | 2025-04-25T08:22:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"unsloth",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"region:us"
]
| text-generation | 2025-04-25T07:35:09Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
robinfaro/StandardMoE-1B-fineweb_edu-10BT | robinfaro | 2025-04-25T08:22:00Z | 0 | 0 | null | [
"safetensors",
"moegpt",
"model_hub_mixin",
"pytorch_model_hub_mixin",
"custom_code",
"region:us"
]
| null | 2025-04-25T08:19:36Z | ---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Code: [More Information Needed]
- Paper: [More Information Needed]
- Docs: [More Information Needed] |
mergekit-community/MN-Hekate-Noctiluca-12B | mergekit-community | 2025-04-25T08:21:32Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2403.19522",
"base_model:LatitudeGames/Wayfarer-12B",
"base_model:merge:LatitudeGames/Wayfarer-12B",
"base_model:PocketDoc/Dans-SakuraKaze-V1.0.0-12b",
"base_model:merge:PocketDoc/Dans-SakuraKaze-V1.0.0-12b",
"base_model:mergekit-community/MN-Hekate-Episkopos-17B",
"base_model:merge:mergekit-community/MN-Hekate-Episkopos-17B",
"base_model:mergekit-community/MN-Hekate-Limenoskopos-17B",
"base_model:merge:mergekit-community/MN-Hekate-Limenoskopos-17B",
"base_model:mergekit-community/MN-Hekate-Pyrtania-12B",
"base_model:merge:mergekit-community/MN-Hekate-Pyrtania-12B",
"base_model:nbeerbower/mistral-nemo-bophades-12B",
"base_model:merge:nbeerbower/mistral-nemo-bophades-12B",
"base_model:nbeerbower/mistral-nemo-gutenberg-12B-v4",
"base_model:merge:nbeerbower/mistral-nemo-gutenberg-12B-v4",
"base_model:yamatazen/BlueLight-12B",
"base_model:merge:yamatazen/BlueLight-12B",
"base_model:yamatazen/LoyalMaid-12B",
"base_model:merge:yamatazen/LoyalMaid-12B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T08:12:30Z | ---
base_model:
- yamatazen/BlueLight-12B
- mergekit-community/MN-Hekate-Pyrtania-12B
- LatitudeGames/Wayfarer-12B
- mergekit-community/MN-Hekate-Limenoskopos-17B
- mergekit-community/MN-Hekate-Episkopos-17B
- nbeerbower/mistral-nemo-gutenberg-12B-v4
- nbeerbower/mistral-nemo-bophades-12B
- yamatazen/LoyalMaid-12B
- PocketDoc/Dans-SakuraKaze-V1.0.0-12b
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [mergekit-community/MN-Hekate-Pyrtania-12B](https://huggingface.co/mergekit-community/MN-Hekate-Pyrtania-12B) as a base.
### Models Merged
The following models were included in the merge:
* [yamatazen/BlueLight-12B](https://huggingface.co/yamatazen/BlueLight-12B)
* [LatitudeGames/Wayfarer-12B](https://huggingface.co/LatitudeGames/Wayfarer-12B)
* [mergekit-community/MN-Hekate-Limenoskopos-17B](https://huggingface.co/mergekit-community/MN-Hekate-Limenoskopos-17B)
* [mergekit-community/MN-Hekate-Episkopos-17B](https://huggingface.co/mergekit-community/MN-Hekate-Episkopos-17B)
* [nbeerbower/mistral-nemo-gutenberg-12B-v4](https://huggingface.co/nbeerbower/mistral-nemo-gutenberg-12B-v4)
* [nbeerbower/mistral-nemo-bophades-12B](https://huggingface.co/nbeerbower/mistral-nemo-bophades-12B)
* [yamatazen/LoyalMaid-12B](https://huggingface.co/yamatazen/LoyalMaid-12B)
* [PocketDoc/Dans-SakuraKaze-V1.0.0-12b](https://huggingface.co/PocketDoc/Dans-SakuraKaze-V1.0.0-12b)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
out_dtype: bfloat16
merge_method: model_stock
base_model: mergekit-community/MN-Hekate-Pyrtania-12B
slices:
- sources:
- model: mergekit-community/MN-Hekate-Pyrtania-12B
layer_range: [0, 12]
parameters:
weight: 3
- model: yamatazen/BlueLight-12B
layer_range: [0, 12]
- model: PocketDoc/Dans-SakuraKaze-V1.0.0-12b
layer_range: [0, 12]
- sources:
- model: mergekit-community/MN-Hekate-Pyrtania-12B
layer_range: [12, 16]
- model: LatitudeGames/Wayfarer-12B
layer_range: [12, 16]
- model: PocketDoc/Dans-SakuraKaze-V1.0.0-12b
layer_range: [12, 16]
- model: yamatazen/BlueLight-12B
layer_range: [12, 16]
- model: yamatazen/LoyalMaid-12B
layer_range: [12, 16]
- model: mergekit-community/MN-Hekate-Episkopos-17B
layer_range: [12, 16]
- model: mergekit-community/MN-Hekate-Limenoskopos-17B
layer_range: [12, 16]
- sources:
- model: mergekit-community/MN-Hekate-Pyrtania-12B
layer_range: [16, 20]
- model: LatitudeGames/Wayfarer-12B
layer_range: [16, 20]
- model: PocketDoc/Dans-SakuraKaze-V1.0.0-12b
layer_range: [16, 20]
- model: yamatazen/BlueLight-12B
layer_range: [16, 20]
- model: yamatazen/LoyalMaid-12B
layer_range: [16, 20]
- model: mergekit-community/MN-Hekate-Episkopos-17B
layer_range: [16, 20]
- model: mergekit-community/MN-Hekate-Episkopos-17B
layer_range: [20, 24]
- model: mergekit-community/MN-Hekate-Limenoskopos-17B
layer_range: [16, 20]
- model: mergekit-community/MN-Hekate-Limenoskopos-17B
layer_range: [20, 24]
- sources:
- model: mergekit-community/MN-Hekate-Pyrtania-12B
layer_range: [20, 28]
- model: LatitudeGames/Wayfarer-12B
layer_range: [20, 28]
- model: nbeerbower/mistral-nemo-gutenberg-12B-v4
layer_range: [20, 28]
- model: PocketDoc/Dans-SakuraKaze-V1.0.0-12b
layer_range: [20, 28]
- model: yamatazen/BlueLight-12B
layer_range: [20, 28]
- model: yamatazen/LoyalMaid-12B
layer_range: [20, 28]
- model: mergekit-community/MN-Hekate-Episkopos-17B
layer_range: [24, 32]
- model: mergekit-community/MN-Hekate-Episkopos-17B
layer_range: [36, 44]
- model: mergekit-community/MN-Hekate-Limenoskopos-17B
layer_range: [24, 32]
- model: mergekit-community/MN-Hekate-Limenoskopos-17B
layer_range: [36, 44]
- sources:
- model: mergekit-community/MN-Hekate-Pyrtania-12B
layer_range: [28, 32]
- model: LatitudeGames/Wayfarer-12B
layer_range: [28, 32]
- model: nbeerbower/mistral-nemo-bophades-12B
layer_range: [28, 32]
- model: nbeerbower/mistral-nemo-gutenberg-12B-v4
layer_range: [28, 32]
- model: PocketDoc/Dans-SakuraKaze-V1.0.0-12b
layer_range: [28, 32]
- model: yamatazen/BlueLight-12B
layer_range: [28, 32]
- model: yamatazen/LoyalMaid-12B
layer_range: [28, 32]
- model: mergekit-community/MN-Hekate-Episkopos-17B
layer_range: [32, 36]
- model: mergekit-community/MN-Hekate-Episkopos-17B
layer_range: [44, 48]
- model: mergekit-community/MN-Hekate-Limenoskopos-17B
layer_range: [32, 36]
- model: mergekit-community/MN-Hekate-Limenoskopos-17B
layer_range: [44, 48]
- sources:
- model: mergekit-community/MN-Hekate-Pyrtania-12B
layer_range: [32, 40]
parameters:
weight: 2
- model: nbeerbower/mistral-nemo-bophades-12B
layer_range: [32, 40]
- model: nbeerbower/mistral-nemo-gutenberg-12B-v4
layer_range: [32, 40]
- model: yamatazen/BlueLight-12B
layer_range: [32, 40]
- model: yamatazen/LoyalMaid-12B
layer_range: [32, 40]
- model: mergekit-community/MN-Hekate-Episkopos-17B
layer_range: [48, 56]
- model: mergekit-community/MN-Hekate-Limenoskopos-17B
layer_range: [48, 56]
parameters:
weight: 2
```
|
alibaba-pai/Wan2.1-Fun-V1.1-1.3B-InP | alibaba-pai | 2025-04-25T08:18:55Z | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"i2v",
"video",
"video-generation",
"text-to-video",
"en",
"zh",
"license:apache-2.0",
"region:us"
]
| text-to-video | 2025-04-24T08:41:03Z | ---
license: apache-2.0
language:
- en
- zh
pipeline_tag: text-to-video
library_name: diffusers
tags:
- video
- video-generation
---
# Wan-Fun
😊 Welcome!
[](https://huggingface.co/spaces/alibaba-pai/Wan2.1-Fun-1.3B-InP)
[](https://github.com/aigc-apps/VideoX-Fun)
[English](./README_en.md) | [简体中文](./README.md)
# 目录
- [目录](#目录)
- [模型地址](#模型地址)
- [视频作品](#视频作品)
- [快速启动](#快速启动)
- [如何使用](#如何使用)
- [参考文献](#参考文献)
- [许可证](#许可证)
# 模型地址
V1.1:
| 名称 | 存储空间 | Hugging Face | Model Scope | 描述 |
|--|--|--|--|--|
| Wan2.1-Fun-V1.1-1.3B-InP | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-V1.1-1.3B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-1.3B-InP) | Wan2.1-Fun-V1.1-1.3B文图生视频权重,以多分辨率训练,支持首尾图预测。 |
| Wan2.1-Fun-V1.1-14B-InP | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-V1.1-14B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-14B-InP) | Wan2.1-Fun-V1.1-14B文图生视频权重,以多分辨率训练,支持首尾图预测。 |
| Wan2.1-Fun-V1.1-1.3B-Control | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-V1.1-1.3B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-1.3B-Control)| Wan2.1-Fun-V1.1-1.3B视频控制权重支持不同的控制条件,如Canny、Depth、Pose、MLSD等,支持参考图 + 控制条件进行控制,支持使用轨迹控制。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以81帧、每秒16帧进行训练,支持多语言预测 |
| Wan2.1-Fun-V1.1-14B-Control | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-V1.1-14B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-14B-Control)| Wan2.1-Fun-V1.1-14B视视频控制权重支持不同的控制条件,如Canny、Depth、Pose、MLSD等,支持参考图 + 控制条件进行控制,支持使用轨迹控制。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以81帧、每秒16帧进行训练,支持多语言预测 |
| Wan2.1-Fun-V1.1-1.3B-Control-Camera | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-V1.1-1.3B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-1.3B-Control)| Wan2.1-Fun-V1.1-1.3B相机镜头控制权重。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以81帧、每秒16帧进行训练,支持多语言预测 |
| Wan2.1-Fun-V1.1-14B-Control | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-V1.1-14B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-14B-Control)| Wan2.1-Fun-V1.1-14B相机镜头控制权重。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以81帧、每秒16帧进行训练,支持多语言预测 |
V1.0:
| 名称 | 存储空间 | Hugging Face | Model Scope | 描述 |
|--|--|--|--|--|
| Wan2.1-Fun-1.3B-InP | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-InP) | Wan2.1-Fun-1.3B文图生视频权重,以多分辨率训练,支持首尾图预测。 |
| Wan2.1-Fun-14B-InP | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP) | Wan2.1-Fun-14B文图生视频权重,以多分辨率训练,支持首尾图预测。 |
| Wan2.1-Fun-1.3B-Control | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-Control)| Wan2.1-Fun-1.3B视频控制权重,支持不同的控制条件,如Canny、Depth、Pose、MLSD等,同时支持使用轨迹控制。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以81帧、每秒16帧进行训练,支持多语言预测 |
| Wan2.1-Fun-14B-Control | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-Control)| Wan2.1-Fun-14B视频控制权重,支持不同的控制条件,如Canny、Depth、Pose、MLSD等,同时支持使用轨迹控制。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以81帧、每秒16帧进行训练,支持多语言预测 |
# 视频作品
### Wan2.1-Fun-V1.1-14B-InP && Wan2.1-Fun-V1.1-1.3B-InP
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/inp_1.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/inp_2.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/inp_3.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/inp_4.mp4" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/inp_5.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/inp_6.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/inp_7.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/inp_8.mp4" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
### Wan2.1-Fun-V1.1-14B-Control && Wan2.1-Fun-V1.1-1.3B-Control
Generic Control Video + Reference Image:
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
Reference Image
</td>
<td>
Control Video
</td>
<td>
Wan2.1-Fun-V1.1-14B-Control
</td>
<td>
Wan2.1-Fun-V1.1-1.3B-Control
</td>
<tr>
<td>
<image src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/6.png" width="100%" controls autoplay loop></image>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/pose.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/14b_ref.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/1_3b_ref.mp4" width="100%" controls autoplay loop></video>
</td>
<tr>
</table>
Generic Control Video (Canny, Pose, Depth, etc.) and Trajectory Control:
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/guiji.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/guiji_plus_out.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/guiji_out.mp4" width="100%" controls autoplay loop></video>
</td>
<tr>
</table>
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/pose.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/canny.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/depth.mp4" width="100%" controls autoplay loop></video>
</td>
<tr>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/pose_out.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/canny_out.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/depth_out.mp4" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
### Wan2.1-Fun-V1.1-14B-Control-Camera && Wan2.1-Fun-V1.1-1.3B-Control-Camera
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
Pan Up
</td>
<td>
Pan Left
</td>
<td>
Pan Right
</td>
<tr>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/Pan_Up.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/Pan_Left.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/Pan_Right.mp4" width="100%" controls autoplay loop></video>
</td>
<tr>
<td>
Pan Down
</td>
<td>
Pan Up + Pan Left
</td>
<td>
Pan Up + Pan Right
</td>
<tr>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/Pan_Down.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/Pan_Left_Up.mp4" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/wan_fun/asset/v1.1/Pan_Right_Up.mp4" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
# 快速启动
### 1. 云使用: AliyunDSW/Docker
#### a. 通过阿里云 DSW
DSW 有免费 GPU 时间,用户可申请一次,申请后3个月内有效。
阿里云在[Freetier](https://free.aliyun.com/?product=9602825&crowd=enterprise&spm=5176.28055625.J_5831864660.1.e939154aRgha4e&scm=20140722.M_9974135.P_110.MO_1806-ID_9974135-MID_9974135-CID_30683-ST_8512-V_1)提供免费GPU时间,获取并在阿里云PAI-DSW中使用,5分钟内即可启动CogVideoX-Fun。
[](https://gallery.pai-ml.com/#/preview/deepLearning/cv/cogvideox_fun)
#### b. 通过ComfyUI
我们的ComfyUI界面如下,具体查看[ComfyUI README](comfyui/README.md)。

#### c. 通过docker
使用docker的情况下,请保证机器中已经正确安装显卡驱动与CUDA环境,然后以此执行以下命令:
```
# pull image
docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
# enter image
docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
# clone code
git clone https://github.com/aigc-apps/VideoX-Fun.git
# enter VideoX-Fun's dir
cd VideoX-Fun
# download weights
mkdir models/Diffusion_Transformer
mkdir models/Personalized_Model
# Please use the hugginface link or modelscope link to download the model.
# CogVideoX-Fun
# https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-InP
# https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-InP
# Wan
# https://huggingface.co/alibaba-pai/Wan2.1-Fun-V1.1-14B-InP
# https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-14B-InP
```
### 2. 本地安装: 环境检查/下载/安装
#### a. 环境检查
我们已验证该库可在以下环境中执行:
Windows 的详细信息:
- 操作系统 Windows 10
- python: python3.10 & python3.11
- pytorch: torch2.2.0
- CUDA: 11.8 & 12.1
- CUDNN: 8+
- GPU: Nvidia-3060 12G & Nvidia-3090 24G
Linux 的详细信息:
- 操作系统 Ubuntu 20.04, CentOS
- python: python3.10 & python3.11
- pytorch: torch2.2.0
- CUDA: 11.8 & 12.1
- CUDNN: 8+
- GPU:Nvidia-V100 16G & Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G
我们需要大约 60GB 的可用磁盘空间,请检查!
#### b. 权重放置
我们最好将[权重](#model-zoo)按照指定路径进行放置:
**通过comfyui**:
将模型放入Comfyui的权重文件夹`ComfyUI/models/Fun_Models/`:
```
📦 ComfyUI/
├── 📂 models/
│ └── 📂 Fun_Models/
│ ├── 📂 CogVideoX-Fun-V1.1-2b-InP/
│ ├── 📂 CogVideoX-Fun-V1.1-5b-InP/
│ ├── 📂 Wan2.1-Fun-V1.1-14B-InP
│ └── 📂 Wan2.1-Fun-V1.1-1.3B-InP/
```
**运行自身的python文件或ui界面**:
```
📦 models/
├── 📂 Diffusion_Transformer/
│ ├── 📂 CogVideoX-Fun-V1.1-2b-InP/
│ ├── 📂 CogVideoX-Fun-V1.1-5b-InP/
│ ├── 📂 Wan2.1-Fun-V1.1-14B-InP
│ └── 📂 Wan2.1-Fun-V1.1-1.3B-InP/
├── 📂 Personalized_Model/
│ └── your trained trainformer model / your trained lora model (for UI load)
```
# 如何使用
<h3 id="video-gen">1. 生成 </h3>
#### a、显存节省方案
由于Wan2.1的参数非常大,我们需要考虑显存节省方案,以节省显存适应消费级显卡。我们给每个预测文件都提供了GPU_memory_mode,可以在model_cpu_offload,model_cpu_offload_and_qfloat8,sequential_cpu_offload中进行选择。该方案同样适用于CogVideoX-Fun的生成。
- model_cpu_offload代表整个模型在使用后会进入cpu,可以节省部分显存。
- model_cpu_offload_and_qfloat8代表整个模型在使用后会进入cpu,并且对transformer模型进行了float8的量化,可以节省更多的显存。
- sequential_cpu_offload代表模型的每一层在使用后会进入cpu,速度较慢,节省大量显存。
qfloat8会部分降低模型的性能,但可以节省更多的显存。如果显存足够,推荐使用model_cpu_offload。
#### b、通过comfyui
具体查看[ComfyUI README](comfyui/README.md)。
#### c、运行python文件
- 步骤1:下载对应[权重](#model-zoo)放入models文件夹。
- 步骤2:根据不同的权重与预测目标使用不同的文件进行预测。当前该库支持CogVideoX-Fun、Wan2.1和Wan2.1-Fun,在examples文件夹下用文件夹名以区分,不同模型支持的功能不同,请视具体情况予以区分。以CogVideoX-Fun为例。
- 文生视频:
- 使用examples/cogvideox_fun/predict_t2v.py文件中修改prompt、neg_prompt、guidance_scale和seed。
- 而后运行examples/cogvideox_fun/predict_t2v.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos文件夹中。
- 图生视频:
- 使用examples/cogvideox_fun/predict_i2v.py文件中修改validation_image_start、validation_image_end、prompt、neg_prompt、guidance_scale和seed。
- validation_image_start是视频的开始图片,validation_image_end是视频的结尾图片。
- 而后运行examples/cogvideox_fun/predict_i2v.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos_i2v文件夹中。
- 视频生视频:
- 使用examples/cogvideox_fun/predict_v2v.py文件中修改validation_video、validation_image_end、prompt、neg_prompt、guidance_scale和seed。
- validation_video是视频生视频的参考视频。您可以使用以下视频运行演示:[演示视频](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/play_guitar.mp4)
- 而后运行examples/cogvideox_fun/predict_v2v.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos_v2v文件夹中。
- 普通控制生视频(Canny、Pose、Depth等):
- 使用examples/cogvideox_fun/predict_v2v_control.py文件中修改control_video、validation_image_end、prompt、neg_prompt、guidance_scale和seed。
- control_video是控制生视频的控制视频,是使用Canny、Pose、Depth等算子提取后的视频。您可以使用以下视频运行演示:[演示视频](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1.1/pose.mp4)
- 而后运行examples/cogvideox_fun/predict_v2v_control.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos_v2v_control文件夹中。
- 步骤3:如果想结合自己训练的其他backbone与Lora,则看情况修改examples/{model_name}/predict_t2v.py中的examples/{model_name}/predict_i2v.py和lora_path。
#### d、通过ui界面
webui支持文生视频、图生视频、视频生视频和普通控制生视频(Canny、Pose、Depth等)。当前该库支持CogVideoX-Fun、Wan2.1和Wan2.1-Fun,在examples文件夹下用文件夹名以区分,不同模型支持的功能不同,请视具体情况予以区分。以CogVideoX-Fun为例。
- 步骤1:下载对应[权重](#model-zoo)放入models文件夹。
- 步骤2:运行examples/cogvideox_fun/app.py文件,进入gradio页面。
- 步骤3:根据页面选择生成模型,填入prompt、neg_prompt、guidance_scale和seed等,点击生成,等待生成结果,结果保存在sample文件夹中。
# 参考文献
- CogVideo: https://github.com/THUDM/CogVideo/
- EasyAnimate: https://github.com/aigc-apps/EasyAnimate
- Wan2.1: https://github.com/Wan-Video/Wan2.1/
- ComfyUI-KJNodes: https://github.com/kijai/ComfyUI-KJNodes
- ComfyUI-EasyAnimateWrapper: https://github.com/kijai/ComfyUI-EasyAnimateWrapper
- ComfyUI-CameraCtrl-Wrapper: https://github.com/chaojie/ComfyUI-CameraCtrl-Wrapper
- CameraCtrl: https://github.com/hehao13/CameraCtrl
# 许可证
本项目采用 [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).
|
heyIamUmair/flan-t5-legal-finetuned_1st | heyIamUmair | 2025-04-25T08:16:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2025-04-25T08:15:19Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
dgambettaphd/M_llm3_gen7_run0_X_doc1000_synt64_tot128_FRESH | dgambettaphd | 2025-04-25T08:16:41Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T08:15:58Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MayBashendy/arabic_SDP_all_binary_multilingual_e5_small_lr3e-05_targ5_dev1234578_epoch530 | MayBashendy | 2025-04-25T08:12:47Z | 0 | 0 | null | [
"safetensors",
"model_hub_mixin",
"pytorch_model_hub_mixin",
"region:us"
]
| null | 2025-04-25T08:12:19Z | ---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Library: [More Information Needed]
- Docs: [More Information Needed] |
AdamShih/ppo-Huggy | AdamShih | 2025-04-25T08:07:34Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2025-04-25T06:52:11Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: AdamShih/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
KevayneCst/ppo-SnowballTarget | KevayneCst | 2025-04-25T08:06:13Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
]
| reinforcement-learning | 2025-04-25T08:06:06Z | ---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: KevayneCst/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
uiovasot/piano_llama_v4 | uiovasot | 2025-04-25T08:05:17Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:uiovasot/piano_llama_v3",
"base_model:quantized:uiovasot/piano_llama_v3",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
]
| null | 2025-04-25T07:49:16Z | ---
base_model: uiovasot/piano_llama_v3
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** uiovasot
- **License:** apache-2.0
- **Finetuned from model :** uiovasot/piano_llama_v3
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
madan2248c/phi3-emotion-finetuned | madan2248c | 2025-04-25T08:04:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"generated_from_trainer",
"conversational",
"custom_code",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:finetune:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T08:01:34Z | ---
library_name: transformers
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: phi3-emotion-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi3-emotion-finetuned
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.4.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
aisingapore/Llama-SEA-LION-v3-8B-IT-GGUF | aisingapore | 2025-04-25T07:58:55Z | 850 | 0 | transformers | [
"transformers",
"gguf",
"text-generation",
"en",
"zh",
"vi",
"id",
"th",
"fil",
"ta",
"ms",
"km",
"lo",
"my",
"jv",
"su",
"arxiv:2504.05747",
"base_model:aisingapore/Llama-SEA-LION-v3-8B-IT",
"base_model:quantized:aisingapore/Llama-SEA-LION-v3-8B-IT",
"license:llama3.1",
"endpoints_compatible",
"region:us",
"conversational"
]
| text-generation | 2024-12-16T13:21:20Z | ---
library_name: transformers
pipeline_tag: text-generation
base_model:
- aisingapore/Llama-SEA-LION-v3-8B-IT
language:
- en
- zh
- vi
- id
- th
- fil
- ta
- ms
- km
- lo
- my
- jv
- su
license: llama3.1
---
<div>
<img src="llama_3.1_8b_sea-lion_v3_gguf_banner.png"/>
</div>
# Llama-SEA-LION-v3-8B-IT
[SEA-LION](https://arxiv.org/abs/2504.05747) is a collection of Large Language Models (LLMs) which have been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
Llama-SEA-LION-v3-8B-IT is a multilingual model that has been fine-tuned in two stages on approximately **12.3M English instruction-completion pairs** alongside a pool of **4.5M Southeast Asian instruction-completion pairs** from SEA languages such as Indonesian, Javanese, Sundanese, Tamil, Thai and Vietnamese.
SEA-LION stands for _Southeast Asian Languages In One Network_.
- **Developed by:** Products Pillar, AI Singapore
- **Funded by:** Singapore NRF
- **Model type:** Decoder
- **Languages supported:** Burmese, Chinese, English, Filipino, Indonesia, Javanese, Khmer, Lao, Malay, Sundanese, Tamil, Thai, Vietnamese
- **License:** [Llama 3.1 Community License](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct/blob/main/LICENSE)
## Description
This repo contains `GGUF` format model files for [aisingapore/Llama-SEA-LION-v3-8B-IT](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-8B-IT).
#### Model Weights Included in this repository:
- [Llama-SEA-LION-v3-8B-IT-F16](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-8B-IT-GGUF/blob/main/Llama-SEA-LION-v3-8B-IT-F16.gguf)
- [Llama-SEA-LION-v3-8B-IT-Q2_K](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-8B-IT-GGUF/blob/main/Llama-SEA-LION-v3-8B-IT-Q2_K.gguf)
- [Llama-SEA-LION-v3-8B-IT-Q3_K_M](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-8B-IT-GGUF/blob/main/Llama-SEA-LION-v3-8B-IT-Q3_K_M.gguf)
- [Llama-SEA-LION-v3-8B-IT-Q4_0](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-8B-IT-GGUF/blob/main/Llama-SEA-LION-v3-8B-IT-Q4_0.gguf)
- [Llama-SEA-LION-v3-8B-IT-Q4_K_M](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-8B-IT-GGUF/blob/main/Llama-SEA-LION-v3-8B-IT-Q4_K_M.gguf)
- [Llama-SEA-LION-v3-8B-IT-Q5_0](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-8B-IT-GGUF/blob/main/Llama-SEA-LION-v3-8B-IT-Q5_0.gguf)
- [Llama-SEA-LION-v3-8B-IT-Q5_K_M](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-8B-IT-GGUF/blob/main/Llama-SEA-LION-v3-8B-IT-Q5_K_M.gguf)
- [Llama-SEA-LION-v3-8B-IT-Q6_K](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-8B-IT-GGUF/blob/main/Llama-SEA-LION-v3-8B-IT-Q6_K.gguf)
- [lLlama-SEA-LION-v3-8B-IT-Q8_0](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-8B-IT-GGUF/blob/main/Llama-SEA-LION-v3-8B-IT-Q8_0.gguf)
### Caveats
It is important for users to be aware that our model exhibits certain limitations that warrant consideration. Like many LLMs, the model can hallucinate and occasionally generates irrelevant content, introducing fictional elements that are not grounded in the provided context. Users should also exercise caution in interpreting and validating the model's responses due to the potential inconsistencies in its reasoning.
## Limitations
### Safety
Current SEA-LION models, including this commercially permissive release, have not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.
## Technical Specifications
### Fine-Tuning Details
Llama-SEA-LION-v3-8B-IT was tuned using a combination of a full parameter fine-tune, on-policy alignment, and model merges of the best performing checkpoints. The training process for fine-tuning was approximately 1024 GPU hours, on a single node of 8x H100-80GB GPUs.
## Data
Llama-SEA-LION-v3-8B-IT was trained on a wide range of synthetic instructions, alongside publicly available instructions hand-curated by the team with the assistance of native speakers. In addition, special care was taken to ensure that the datasets used had commercially permissive licenses through verification with the original data source.
## Call for Contributions
We encourage researchers, developers, and language enthusiasts to actively contribute to the enhancement and expansion of SEA-LION. Contributions can involve identifying and reporting bugs, sharing pre-training, instruction, and preference data, improving documentation usability, proposing and implementing new model evaluation tasks and metrics, or training versions of the model in additional Southeast Asian languages. Join us in shaping the future of SEA-LION by sharing your expertise and insights to make these models more accessible, accurate, and versatile. Please check out our GitHub for further information on the call for contributions.
## The Team
Chan Adwin, Cheng Nicholas, Choa Esther, Huang Yuli, Hulagadri Adithya Venkatadri, Lau Wayne, Lee Chwan Ren, Leong Wai Yi, Leong Wei Qi, Limkonchotiwat Peerat, Liu Bing Jie Darius, Montalan Jann Railey, Ng Boon Cheong Raymond, Ngui Jian Gang, Nguyen Thanh Ngan, Ong Brandon, Ong Tat-Wee David, Ong Zhi Hao, Rengarajan Hamsawardhini, Siow Bryan, Susanto Yosephine, Tai Ngee Chia, Tan Choon Meng, Teng Walter, Teo Eng Sipp Leslie, Teo Wei Yi, Tjhi William, Yeo Yeow Tong, Yong Xianbin
## Acknowledgements
[AI Singapore](https://aisingapore.org/) is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore.
## Contact
For more info, please contact us using this [SEA-LION Inquiry Form](https://forms.gle/sLCUVb95wmGf43hi6)
[Link to SEA-LION's GitHub repository](https://github.com/aisingapore/sealion)
## Disclaimer
This is the repository for the commercial instruction-tuned model.
The model has _not_ been aligned for safety.
Developers and users should perform their own safety fine-tuning and related security measures.
In no event shall the authors be held liable for any claims, damages, or other liabilities arising from the use of the released weights and codes. |
THEGAMECHANGER/SDXL_Finetune_Dreambooth_Lora | THEGAMECHANGER | 2025-04-25T07:58:48Z | 1 | 0 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:Lykon/dreamshaper-xl-turbo",
"base_model:adapter:Lykon/dreamshaper-xl-turbo",
"license:openrail++",
"region:us"
]
| text-to-image | 2025-04-25T06:25:09Z | ---
base_model: Lykon/dreamshaper-xl-turbo
library_name: diffusers
license: openrail++
instance_prompt: A v3ct0r image of
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - THEGAMECHANGER/SDXL_Finetune_Dreambooth_Lora
<Gallery />
## Model description
These are THEGAMECHANGER/SDXL_Finetune_Dreambooth_Lora LoRA adaption weights for Lykon/dreamshaper-xl-turbo.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: None.
## Trigger words
You should use A v3ct0r image of to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](THEGAMECHANGER/SDXL_Finetune_Dreambooth_Lora/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
loraug/smollLMInstruct_multiple | loraug | 2025-04-25T07:58:31Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T07:58:21Z | ---
base_model: unsloth/smollm-360m-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** loraug
- **License:** apache-2.0
- **Finetuned from model :** unsloth/smollm-360m-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
isaiahbjork/poker-reasoning-3b | isaiahbjork | 2025-04-25T06:24:54Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T04:42:06Z | ---
base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** isaiahbjork
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
sofiavalan/llama381binstruct_summarize_short | sofiavalan | 2025-04-25T06:24:38Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:NousResearch/Meta-Llama-3.1-8B-Instruct",
"base_model:finetune:NousResearch/Meta-Llama-3.1-8B-Instruct",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T06:24:29Z | ---
base_model: NousResearch/Meta-Llama-3.1-8B-Instruct
library_name: transformers
model_name: llama381binstruct_summarize_short
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for llama381binstruct_summarize_short
This model is a fine-tuned version of [NousResearch/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3.1-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="sofiavalan/llama381binstruct_summarize_short", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/sofia-valcarcel-superbet/huggingface/runs/qow6tf2m)
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
LINK-Sophie-Rain-Spiderman-Viral-Videos/Official.Sophie.Rain.Spiderman.Leaks.Video | LINK-Sophie-Rain-Spiderman-Viral-Videos | 2025-04-25T06:23:46Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-04-25T06:23:25Z | <animated-image data-catalyst=""><a href="https://sexleakedviral.com/sophie-rain-spiderman/?sophie-rain-spiderman-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
03 seconds ago
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter |
kpushpender/xlsr-model-1 | kpushpender | 2025-04-25T06:22:53Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:facebook/wav2vec2-large-xlsr-53",
"base_model:finetune:facebook/wav2vec2-large-xlsr-53",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2025-04-25T03:59:00Z | ---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: xlsr-model-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlsr-model-1
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8364
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 45
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| No log | 1.0 | 113 | 1.1117 | 1.0 |
| 93.3398 | 2.0 | 226 | 0.8533 | 1.0 |
| 93.3398 | 3.0 | 339 | 0.8746 | 1.0 |
| 0.8879 | 4.0 | 452 | 0.8180 | 1.0 |
| 0.8879 | 5.0 | 565 | 0.8439 | 1.0 |
| 0.7771 | 6.0 | 678 | 0.8274 | 1.0 |
| 0.7771 | 7.0 | 791 | 0.8668 | 1.0 |
| 0.7594 | 8.0 | 904 | 0.8162 | 1.0 |
| 0.7586 | 9.0 | 1017 | 0.8365 | 1.0 |
| 0.7586 | 10.0 | 1130 | 0.8364 | 1.0 |
### Framework versions
- Transformers 4.52.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|
LINK-Sophie-Rain-Spiderman-Viral-Videos/Original.Sophie.Rain.Spiderman.Video.Leaks.official | LINK-Sophie-Rain-Spiderman-Viral-Videos | 2025-04-25T06:22:41Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-04-25T06:22:21Z | <animated-image data-catalyst=""><a href="https://sexleakedviral.com/sophie-rain-spiderman/?sophie-rain-spiderman-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
CALISTA-INDUSTRY/Gemma3_1B_GRPO_MULTIMODA | CALISTA-INDUSTRY | 2025-04-25T06:21:41Z | 0 | 0 | transformers | [
"transformers",
"gemma3_text",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/gemma-3-1b-it",
"base_model:finetune:unsloth/gemma-3-1b-it",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T06:21:30Z | ---
base_model: unsloth/gemma-3-1b-it
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** CALISTA-INDUSTRY
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-1b-it
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
aliyanodair/dfgbfgb | aliyanodair | 2025-04-25T06:20:19Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
]
| null | 2025-04-25T06:20:19Z | ---
license: bigscience-bloom-rail-1.0
---
|
mlfoundations-dev/b2_science_fasttext_pos_expert_qa_10k | mlfoundations-dev | 2025-04-25T06:19:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-04-25T01:14:53Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: b2_science_fasttext_pos_expert_qa_10k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# b2_science_fasttext_pos_expert_qa_10k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/b2_science_fasttext_pos_expert_qa_10k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|
BradyCaruzor/CharmHealthSkinTagRemover | BradyCaruzor | 2025-04-25T06:14:29Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-04-25T06:13:41Z | ➥ ✅Shop Now - https://supplementcarts.com/order-charm-health-skin-tag-remover/
✔ Product Name — Charm Health Skin Tag Remover
✔ Side Effects — No Major Side Effects
✔ Category — Health
✔ Results — In 1–2 Months
✔ Availability — Online
✔ Rating: — 5.0/5.0 ⭐⭐⭐⭐⭐
Introduction
Skin imperfections like tags, moles, and warts are a common concern for many people, affecting both appearance and confidence. While some turn to invasive procedures, there is an increasing demand for natural, non-surgical solutions that are effective and safe. One such solution that has caught the attention of skincare enthusiasts is Charm Health Skin Tag Remover. Touted as a fast-acting and natural remedy, this product claims to help eliminate skin tags and other blemishes from the comfort of your home. But does it live up to the hype? Let’s dive into a detailed review and exploration of Charm Health Skin Tag Remover.
➥➥Get started today and see the difference Charm Health Skin Tag Remover can make
What Is Charm Health Skin Tag Remover?
Charm Health Skin Tag Remover is a topical serum designed to remove unwanted skin tags, moles, warts, and other benign skin growths without the need for painful surgery or freezing treatments. The product utilizes a potent blend of natural ingredients that work synergistically to target the root of the skin blemish, leading to its eventual removal.
Unlike harsh chemical treatments or laser procedures, this skin tag remover promises a gentle approach that is suitable for most skin types. The product has grown in popularity due to its easy application, natural formula, and quick results.
Facebook link :- https://www.facebook.com/Recommended.Charm.Health.Skin.Tag.Remover/
https://www.facebook.com/groups/1884885049015878/
https://www.facebook.com/events/3122520194580876/
https://www.facebook.com/groups/charm.health.skin.tag.remove.reviews
https://www.facebook.com/events/1018338803179574/
https://www.facebook.com/groups/charmhealthskintagremoverreviews
https://www.facebook.com/events/29317067691274646
https://www.facebook.com/groups/charmhealthskintagremoverprice
https://www.facebook.com/events/656759630605674/
https://www.facebook.com/groups/charmhealthskintagremoverserumreviews
https://www.facebook.com/events/23873049058959427/
Read More Blogs:-
https://groups.google.com/g/charm-health-skin-tag-remover-reviews/c/Wtit-HzDAXs
https://online.visual-paradigm.com/community/book/charm-health-skin-tag-remover-2528r2lpv2
https://fueler.io/healthcareu/charm-health-skin-tag-remover-say-goodbye-to-skin-tags-forever
https://charm-health-skin-tag-remover-reviews.mywebselfsite.net/
https://charmhealthskintagremover.blogspot.com/2025/04/charm-health-skin-tag-remover-watch-my.html
https://charmhealthskintagremover.mystrikingly.com/
https://sites.google.com/view/charm-health-skin-tag-remover-/home
https://sfero.me/podcast/charm-health-skin-tag-remover-skin
https://charm-health-skin-tag-remover-3.jimdosite.com/
https://hackmd.io/@CharmHealthSkinTagRemover/rJKz_c_kge
https://colab.research.google.com/drive/13VBDjTff4KdWjXQVlZ_DuoJLOaK48z7h?usp=sharing
https://lookerstudio.google.com/reporting/18b2514a-f3e8-4d54-9208-061e528f2394
https://charmhealthskintagremover2025.quora.com/
https://charmhealthskintagremoverrevie.godaddysites.com/
https://www.eventcreate.com/e/charmhealthskintagremovereviews
https://charm-health-skin-tag-remover-cd5159.webflow.io/
https://form.jotform.com/BradyCaruzor/charm-health-skin-tag-remover--mira
https://issuetracker.google.com/issues/413447015
https://medium.com/@aravmishrak7/charm-health-skin-tag-remover-i-tried-charm-health-on-my-skin-tags-f09aad6a3f15
https://in.pinterest.com/CharmHealthSkinTagRemoverget/
https://charmhealthskintagremovertry.hashnode.dev/charm-health-skin-tag-remover-diy-skin-tag-removal-with-charm-health
https://www.pinterest.com/Charm_Health_Skin_Tag_Remover/
https://medium.com/@CBD-Gummies-With-Health/charm-health-skin-tag-remover-say-goodbye-to-skin-blemishes-the-natural-way-c6f6df677bd3
https://groups.google.com/g/charm-health-skin-tag-remover-reviews/c/vT9HIit1j7E
https://colab.research.google.com/drive/1TexCykumSACxwqP6ihyyVEpw8uT3vkIT?usp=sharing
https://gns3.com/community/discussions/charm-health-skin-tag-remover-price-where-to-buy-and-deals
https://eventprime.co/o/CharmHealthSkinTagRemover
https://charmhealthskintagremoverprice.quora.com/
https://in.pinterest.com/CharmHealthSkinTagRemover25/_profile/
https://in.pinterest.com/pin/1132725743780842193
https://charm-health-skin-tag-remover61.mywebselfsite.net/
|
JYanchibi/Strv | JYanchibi | 2025-04-25T06:14:10Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
]
| null | 2025-04-25T06:14:09Z | ---
license: apache-2.0
---
|
yjo3/sd-yjo-model-lora-sdxl | yjo3 | 2025-04-25T06:13:31Z | 5 | 0 | diffusers | [
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"diffusers-training",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:creativeml-openrail-m",
"region:us"
]
| text-to-image | 2025-04-22T01:56:16Z | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA text2image fine-tuning - yjo3/sd-yjo-model-lora-sdxl
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the yjo3/sample-M dataset. You can find some example images in the following.




LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
Kissandu/help | Kissandu | 2025-04-25T06:12:22Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
]
| null | 2025-04-25T06:12:20Z | ---
license: apache-2.0
---
|
Sin2pi/Echo12 | Sin2pi | 2025-04-25T06:09:51Z | 0 | 2 | null | [
"license:apache-2.0",
"region:us"
]
| null | 2024-12-29T11:16:08Z | ---
license: apache-2.0
---
update - added the option to blend waveform and spectrogram as a learnable input added betweenness module (experimental) and cosine similarity as a blendable and learnable option in attention.
Initial spectrogram/waveform data is here: https://github.com/sine2pi/asr_model_sw
```python
import os
import warnings
import logging
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch import Tensor
import numpy as np
from typing import Optional, Dict
import gzip
import base64
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, precision_score, f1_score, recall_score
from datetime import datetime
from datasets import load_dataset, Audio, DatasetDict
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, WhisperFeatureExtractor, WhisperTokenizerFast
from typing import Union, List, Any
import evaluate
import transformers
from dataclasses import dataclass
from itertools import chain
# torch.backends.cudnn.allow_tf32 = True
# torch.backends.cuda.matmul.allow_tf32 = True
transformers.utils.logging.set_verbosity_error()
device = torch.device(device="cuda:0")
dtype = torch.float32
torch.set_default_dtype(dtype)
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.ERROR)
tox = {"device": torch.device("cuda:0" if torch.cuda.is_available() else "cpu"), "dtype": torch.float32}
@dataclass
class Dimensions:
vocab: int
text_ctx: int
text_dims: int
text_head: int
decoder_idx: int
mels: int
audio_ctx: int
audio_dims: int
audio_head: int
encoder_idx: int
pad_token_id: int
eos_token_id: int
decoder_start_token_id: int
act: str
def visualize_attention_weights(attn_weights):
import seaborn as sns
batch, heads, seq_len, _ = attn_weights.shape
plt.figure(figsize=(12, 4))
for h in range(min(4, heads)):
plt.subplot(1, min(4, heads), h+1)
sns.heatmap(attn_weights[0, h].detach().cpu().numpy())
plt.title(f'Head {h}')
plt.suptitle("Attention Weights")
plt.show()
def visualize_rotary_angles(rotary, seq_len):
freqs = rotary.inv_freq.detach().cpu().numpy()
t = np.arange(seq_len)
angles = np.outer(t, freqs)
plt.figure(figsize=(10, 6))
for i in range(min(4, angles.shape[1])):
plt.plot(angles[:, i], label=f'Freq {i}')
plt.title("Rotary Angles per Position")
plt.xlabel("Position")
plt.ylabel("Angle (radians)")
plt.legend()
plt.show()
def visualize_rotary_effects(x, rotary):
seq_len = x.shape[1]
freqs_cis = rotary(seq_len)
x_rot = rotary.apply_rotary(x, freqs_cis)
idx = 0
dims_to_plot = [0, 1, 2, 3]
plt.figure(figsize=(10, 6))
for d in dims_to_plot:
plt.plot(x[idx, :, d].detach().cpu().numpy(), label=f'Orig dim {d}')
plt.plot(x_rot[idx, :, d].detach().cpu().numpy(), '--', label=f'Rotary dim {d}')
plt.title("Effect of Rotary on Embedding Dimensions")
plt.xlabel("Sequence Position")
plt.ylabel("Embedding Value")
plt.legend()
plt.show()
def plot_betweenness(be, title="Betweenness"):
"""
Plots betweenness for a batch of sequences.
Args:
be: Tensor of shape (batch, seq_len)
"""
be = be.detach().cpu().numpy()
plt.figure(figsize=(12, 3))
for i in range(min(4, be.shape[0])):
plt.plot(be[i], label=f"Sample {i}")
plt.title(title)
plt.xlabel("Sequence Position")
plt.ylabel("Betweenness")
plt.legend()
plt.show()
def plot_waveform_and_spectrogram(waveform, spectrogram, sample_idx=0, sr=16000, title="Waveform and Spectrogram"):
"""
Plots the waveform and spectrogram for a single sample.
Args:
waveform: Tensor of shape (batch, 1, n_samples) or (batch, n_samples)
spectrogram: Tensor of shape (batch, seq_len, n_mels) or (batch, n_mels, seq_len)
sample_idx: which sample in the batch to plot
sr: sample rate for x-axis scaling (default 16kHz)
"""
wf = waveform[sample_idx].detach().cpu().numpy()
if wf.ndim > 1:
wf = wf.squeeze()
t = np.arange(len(wf)) / sr
spec = spectrogram[sample_idx].detach().cpu().numpy()
if spec.shape[0] < spec.shape[1]:
spec = spec.T
fig, axs = plt.subplots(2, 1, figsize=(14, 6), sharex=False)
axs[0].plot(t, wf, color="tab:blue")
axs[0].set_title("Waveform")
axs[0].set_xlabel("Time (s)")
axs[0].set_ylabel("Amplitude")
axs[1].imshow(spec.T, aspect="auto", origin="lower", cmap="magma")
axs[1].set_title("Spectrogram")
axs[1].set_xlabel("Frame")
axs[1].set_ylabel("Mel Bin")
plt.tight_layout()
plt.show()
def plot_betweenness_overlay(be, x, sample_idx=0, title="Betweenness Overlay"):
"""
Overlay betweenness with spectrogram and energy for a single sample.
Args:
be: Tensor of shape (batch, seq_len)
x: Tensor of shape (batch, seq_len, n_mels) or (batch, n_mels, seq_len)
sample_idx: which sample in the batch to plot
"""
import matplotlib.pyplot as plt
be = be[sample_idx].detach().cpu().numpy()
if x.shape[1] != be.shape[0] and x.shape[-1] == be.shape[0]:
x = x.permute(0, 2, 1)
spec = x[sample_idx].detach().cpu().numpy()
energy = spec.mean(axis=1)
fig, ax1 = plt.subplots(figsize=(14, 5))
ax1.set_title(title)
ax1.set_xlabel("Sequence Position")
ax1.set_ylabel("Betweenness", color="tab:red")
ax1.plot(be, color="tab:red", label="Betweenness")
ax1.tick_params(axis='y', labelcolor="tab:red")
ax1.legend(loc="upper left")
ax2 = ax1.twinx()
ax2.set_ylabel("Energy", color="tab:blue")
ax2.plot(energy, color="tab:blue", alpha=0.5, label="Energy")
ax2.tick_params(axis='y', labelcolor="tab:blue")
ax2.legend(loc="upper right")
plt.show()
plt.figure(figsize=(14, 3))
plt.imshow(spec.T, aspect="auto", origin="lower", cmap="magma")
plt.colorbar(label="Spectrogram (dB)")
plt.title("Input Spectrogram")
plt.xlabel("Sequence Position")
plt.ylabel("Mel Bin")
plt.show()
class BetweennessModule(nn.Module):
def __init__(self, dim, adjustment_scale=1.0, window_size=10):
super().__init__()
self.dim = dim
self.adjustment_scale = adjustment_scale
self.content_proj = nn.Linear(dim, dim)
self.betweenness_gate = nn.Parameter(torch.ones(1) * 0.5)
self.window_size = window_size
self.norm = nn.LayerNorm(dim)
self.dropout = nn.Dropout(0.1)
def compute_betweenness(self, x):
batch, seq_len, dim = x.shape
content = self.norm(self.content_proj(self.dropout(x)))
device = x.device
window = self.window_size
betweenness = torch.zeros(batch, seq_len, device=device)
for offset in range(1, window + 1):
n_indices = seq_len - 2 * offset
if n_indices <= 0:
continue
i = torch.arange(n_indices, device=device)
j = i + offset
k = i + 2 * offset
c_i = content[:, i, :]
c_j = content[:, j, :]
c_k = content[:, k, :]
def cos_dist(a, b):
a = F.normalize(a, dim=-1)
b = F.normalize(b, dim=-1)
return 1 - (a * b).sum(dim=-1)
direct = cos_dist(c_i, c_k)
path = cos_dist(c_i, c_j) + cos_dist(c_j, c_k)
safe_direct = torch.clamp(direct, min=1e-3)
between_score = 1.0 - (path - direct) / safe_direct
betweenness[:, j] += between_score
betweenness = betweenness / max(window, 1)
betweenness = betweenness - betweenness.mean(dim=1, keepdim=True)
std = betweenness.std(dim=1, keepdim=True) + 1e-6
betweenness = betweenness / std
betweenness = self.betweenness_gate * self.adjustment_scale * betweenness
betweenness = torch.clamp(betweenness, -2.0, 2.0)
return betweenness
def apply_to_rope(rope_func, x, positions, betweenness_module):
adjustments = betweenness_module.get_position_adjustments(x)
adjusted_positions = positions + adjustments
return rope_func(x, adjusted_positions)
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class LayerNorm(nn.LayerNorm):
def forward(self, x: Tensor) -> Tensor:
return super().forward(x.float()).type(x.dtype)
class RMSNorm(nn.RMSNorm):
def forward(self, x: Tensor) -> Tensor:
"""Preserve the input dtype throughout the normalization"""
x_float = x.float()
variance = x_float.pow(2).mean(-1, keepdim=True)
eps = self.eps if self.eps is not None else torch.finfo(x_float.dtype).eps
x_normalized = x_float * torch.rsqrt(variance + eps)
if self.weight is not None:
return (x_normalized * self.weight).type(x.dtype)
return x_normalized.type(x.dtype)
class Linear(nn.Linear):
def forward(self, x: Tensor) -> Tensor:
return F.linear(x, self.weight.to(x.dtype),
None if self.bias is None else self.bias.to(x.dtype))
class Conv1d(nn.Conv1d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:
return super()._conv_forward(x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype))
class Conv2d(nn.Conv2d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:
return super()._conv_forward(
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype))
class ParameterCycler:
def __init__(self, parameters):
self.parameters = parameters
self.current_idx = 0
def toggle_requires_grad(self):
for i, param in enumerate(self.parameters):
param.requires_grad = i == self.current_idx
self.current_idx = (self.current_idx + 1) % len(self.parameters)
def _shape(self, tensor: torch.Tensor, ctx: int, batch: int):
return tensor.view(batch, ctx, self.head, self.head_dim).transpose(1, 2).contiguous()
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
class Rotary(nn.Module):
def __init__(self, dim, max_seq_len=4096, learned_freq=True):
super().__init__()
self.dim = dim
self.inv_freq = nn.Parameter(
1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)),
requires_grad=learned_freq
)
self.bias = nn.Parameter(torch.zeros(max_seq_len, dim // 2))
def forward(self, positions):
if isinstance(positions, int):
t = torch.arange(positions, device=self.inv_freq.device).float()
else:
t = positions.float().to(self.inv_freq.device)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
freqs = freqs + self.bias[:freqs.shape[0]]
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis
@staticmethod
def apply_rotary(x, freqs_cis):
x1 = x[..., :freqs_cis.shape[-1]*2]
x2 = x[..., freqs_cis.shape[-1]*2:]
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
x1 = torch.view_as_complex(x1)
x1 = x1 * freqs_cis
x1 = torch.view_as_real(x1).flatten(-2)
return torch.cat([x1.type_as(x), x2], dim=-1)
class Multihead(nn.Module):
blend = False
cos = False
mag = False
def __init__(self, dims: int, head: int):
super().__init__()
self.dims = dims
self.head = head
head_dim = dims // head
self.head_dim = head_dim
self.dropout = 0.1
self.q = Linear(dims, dims)
self.k = Linear(dims, dims, bias=False)
self.v = Linear(dims, dims)
self.o = Linear(dims, dims)
self.use_betweenness = False
if self.use_betweenness:
self.betweenness = BetweennessModule(dim=head_dim, window_size=10)
self.rotary = Rotary(dim=head_dim, learned_freq=True)
if Multihead.blend:
self.factor = nn.Parameter(torch.tensor(0.5, **tox))
def compute_cosine_attention(self, q: Tensor, k: Tensor, v: Tensor, mask):
ctx = q.shape[1]
qn = torch.nn.functional.normalize(q, dim=-1, eps=1e-12)
kn = torch.nn.functional.normalize(k, dim=-1, eps=1e-12)
qk = torch.matmul(qn, kn.transpose(-1, -2))
if Multihead.mag:
qm = torch.norm(q, dim=-1, keepdim=True)
km = torch.norm(k, dim=-1, keepdim=True)
ms = (qm * km.transpose(-1, -2)) ** 0.5
ms = torch.clamp(ms, min=1e-8)
qk = qk * ms
if mask is not None:
qk = qk + mask[:ctx, :ctx]
w = F.softmax(qk.float(), dim=-1).to(q.dtype)
w = F.dropout(w, p=self.dropout, training=self.training)
out = torch.matmul(w, v)
return out, qk
def forward(self, x: Tensor, xa: Optional[Tensor] = None, mask = None, kv_cache = None):
q = self.q(x)
if kv_cache is None or xa is None or self.k not in kv_cache:
k = self.k(x if xa is None else xa)
v = self.v(x if xa is None else xa)
else:
k = kv_cache[self.k]
v = kv_cache[self.v]
out, qk = self._forward(q, k, v, mask)
return self.o(out), qk
def _forward(self, q: Tensor, k: Tensor, v: Tensor, mask = None):
ctx_q = q.shape[1]
ctx_k = k.shape[1]
ctx = q.shape[1]
dims = self.dims
scale = (dims // self.head) ** -0.25
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
if q.shape[2] == k.shape[2]:
freqs_cis = self.rotary(ctx_q)
q = self.rotary.apply_rotary(q, freqs_cis)
k = self.rotary.apply_rotary(k, freqs_cis)
else:
pos_q = torch.linspace(0, 1, ctx_q, device=q.device)
pos_k = torch.linspace(0, 1, ctx_k, device=k.device)
freqs_cis_q = self.rotary(pos_q)
freqs_cis_k = self.rotary(pos_k)
q = self.rotary.apply_rotary(q, freqs_cis_q)
k = self.rotary.apply_rotary(k, freqs_cis_k)
if Multihead.blend:
qk = (q * scale) @ (k * scale).transpose(-1, -2)
if mask is not None:
qk = qk + mask[:ctx, :ctx]
qk = qk.float()
w = F.softmax(qk.float(), dim=-1).to(q.dtype)
w = F.dropout(w, p=self.dropout, training=self.training)
out = torch.matmul(w, v)
cos_w, cos_qk = self.compute_cosine_attention(q, k, v, mask)
blend = torch.sigmoid(self.factor)
out = blend * cos_w + (1 - blend) * out
qk = blend * cos_qk + (1 - blend) * qk
if Multihead.cos:
out, qk = self.compute_cosine_attention(q, k, v, mask)
else:
qk = (q * scale) @ (k * scale).transpose(-1, -2)
if self.use_betweenness:
batch, heads, seq_len, head_dim = q.shape
q_reshaped = q.reshape(batch * heads, seq_len, head_dim)
betweenness = self.betweenness.compute_betweenness(q_reshaped)
betweenness = betweenness.view(batch, heads, seq_len)
betw_bias = betweenness.unsqueeze(-1)
qk = qk + betw_bias
if mask is not None:
qk = qk + mask[:ctx, :ctx]
qk = qk.float()
w = F.softmax(qk.float(), dim=-1).to(q.dtype)
w = F.dropout(w, p=self.dropout, training=self.training)
out = torch.matmul(w, v)
out = out.permute(0, 2, 1, 3).flatten(start_dim=2)
qk = qk.detach() if self.training else qk
return out, qk
class Residual(nn.Module):
def __init__(self, dims: int, head: int, cross_attention: bool = False, act = "relu"):
super().__init__()
self.dims = dims
self.head = head
self.cross_attention = cross_attention
self.dropout = 0.1
self.blend_xa = nn.Parameter(torch.tensor(0.5), requires_grad=True)
self.blend = torch.sigmoid(self.blend_xa)
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(),
"tanh": nn.Tanh(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
self.act = act_map.get(act, nn.GELU())
self.attna = Multihead(dims=dims, head=head)
self.attnb = Multihead(dims=dims, head=head) if cross_attention else None
mlp = dims * 4
self.mlp = nn.Sequential(Linear(dims, mlp), self.act, Linear(mlp, dims))
self.lna = RMSNorm(normalized_shape=dims)
self.lnb = RMSNorm(normalized_shape=dims) if cross_attention else None
self.lnc = RMSNorm(normalized_shape=dims)
def forward(self, x, xa=None, mask=None, kv_cache=None):
mask = mask if isinstance(self, TextDecoder) else None
r = x
x = x + self.attna(self.lna(x), mask=mask, kv_cache=kv_cache)[0]
if self.attnb and xa is not None:
cross_out = self.attnb(self.lnb(x), xa, kv_cache=kv_cache)[0]
x = self.blend * x + (1 - self.blend) * cross_out
x = x + self.mlp(self.lnc(x))
x = x + r
return x
class SEBlock(nn.Module):
def __init__(self, channels, reduction=16):
super().__init__()
self.pool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Sequential(
nn.Linear(channels, channels // reduction),
nn.ReLU(),
nn.Linear(channels // reduction, channels),
nn.Sigmoid()
)
def forward(self, x):
b, c, _ = x.size()
y = self.pool(x).view(b, c)
y = self.fc(y).view(b, c, 1)
return x * y
class AudioEncoder(nn.Module):
def __init__(self, mels: int, ctx: int, dims: int, head: int, layer, act: str = "relu"):
super().__init__()
self._counter = 0
self.use_betweenness = False
self.dims = dims
self.head = head
self.head_dim = dims // head
self.mels = mels
self.ctx = ctx
self.dropout = 0.1
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(),
"leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
self.act = act_map.get(act, nn.GELU())
self.blend_sw = nn.Parameter(torch.tensor(0.5), requires_grad=True)
self.blend = torch.sigmoid(self.blend_sw)
self.ln_enc = RMSNorm(normalized_shape=dims)
self.register_buffer("positional_embedding", sinusoids(ctx, dims))
if self.use_betweenness:
self.betweenness = BetweennessModule(dim=dims, window_size=1, adjustment_scale=0.5)
self.se = nn.Sequential(
Conv1d(mels, dims, kernel_size=3, padding=1), self.act,
Conv1d(dims, dims, kernel_size=3, stride=1, padding=2, dilation=2),
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims),
Conv1d(dims, dims, kernel_size=1), SEBlock(dims, reduction=16), self.act,
nn.Dropout(p=self.dropout), Conv1d(dims, dims, kernel_size=3, stride=1, padding=1)
)
self.we = nn.Sequential(
nn.Conv1d(1, dims, kernel_size=11, stride=5, padding=5),
nn.GELU(),
nn.Conv1d(dims, dims, kernel_size=5, stride=2, padding=2),
nn.GELU(),
nn.AdaptiveAvgPool1d(ctx),
)
self.blockA = (nn.ModuleList([Residual(dims=dims, head=head, cross_attention=False, act="relu")
for _ in range(layer)]) if layer > 0 else None)
def forward(self, x, w) -> Tensor:
if x is not None:
if w is not None:
x_spec = self.se(x).permute(0, 2, 1)
w_wave = self.we(w).permute(0, 2, 1)
if self._counter < 1:
plot_waveform_and_spectrogram(w, x)
x = (x_spec + self.positional_embedding).to(x.dtype)
w = w_wave
x = self.blend * x + (1 - self.blend) * w
else:
x = self.se(x)
x = x.permute(0, 2, 1)
assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"
x = (x + self.positional_embedding).to(x.dtype)
else:
assert w is not None, "You have to provide either x or w"
x = self.we(w).permute(0, 2, 1)
assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"
x = (x + self.positional_embedding).to(x.dtype)
if self.use_betweenness:
be = self.betweenness.compute_betweenness(x)
x = x + be.unsqueeze(-1)
for block in chain(self.blockA or []):
x = block(x)
self._counter += 1
return self.ln_enc(x)
class TextDecoder(nn.Module):
def __init__(self, vocab: int, ctx: int, dims: int, head: int, layer):
super().__init__()
head_dim = dims // head
self.ctx = ctx
self.dropout = 0.1
self.token_embedding = nn.Embedding(num_embeddings=vocab, embedding_dim=dims)
self.positional_embedding = nn.Parameter(data=torch.empty(ctx, dims))
self.ln_dec = RMSNorm(normalized_shape=dims)
self.rotary = Rotary(dim=head_dim, learned_freq=True)
self.blockA = (nn.ModuleList([Residual(dims=dims, head=head, cross_attention=False) for _ in range(layer)]) if layer > 0 else None)
mask = torch.empty(ctx, ctx).fill_(-np.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x, xa, kv_cache=None) -> Tensor:
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
x = (self.token_embedding(x) + self.positional_embedding[offset: offset + x.shape[-1]])
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
ctx = x.shape[1]
freqs_cis = self.rotary(ctx)
x = self.rotary.apply_rotary(x, freqs_cis)
x = x.to(xa.dtype)
for block in chain(self.blockA or []):
x = block(x, xa=xa, mask=self.mask, kv_cache=kv_cache)
x = self.ln_dec(x)
logits = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()
return logits
class Echo(nn.Module):
def __init__(self, param: Dimensions):
super().__init__()
self.param = param
self.encoder = AudioEncoder(
mels=param.mels,
ctx=param.audio_ctx,
dims=param.audio_dims,
head=param.audio_head,
layer=param.encoder_idx,
act=param.act,
)
self.decoder = TextDecoder(
vocab=param.vocab,
ctx=param.text_ctx,
dims=param.text_dims,
head=param.text_head,
layer=param.decoder_idx,
)
all_head = torch.zeros(self.param.decoder_idx, self.param.text_head, dtype=torch.bool)
all_head[self.param.decoder_idx // 2 :] = True
self.register_buffer("alignment_head", all_head.to_sparse(), persistent=False)
def set_alignment_head(self, dump: bytes):
array = np.frombuffer(
gzip.decompress(base64.b85decode(dump)), dtype=bool).copy()
mask = torch.from_numpy(array).reshape(
self.param.decoder_idx, self.param.text_head)
self.register_buffer("alignment_head", mask.to_sparse(), persistent=False)
def embed_audio(self, input_features: torch.Tensor):
return self.encoder(input_features)
def logits(self,input_ids: torch.Tensor, audio_features: torch.Tensor):
return self.decoder(input_ids, audio_features)
@torch.autocast(device_type="cuda")
def forward(self,
input_features: torch.Tensor=None,
waveform: Optional[torch.Tensor]=None,
input_ids=None,
labels=None,
decoder_inputs_embeds=None,
) -> Dict[str, torch.Tensor]:
if input_ids is None and decoder_inputs_embeds is None:
if labels is not None:
input_ids = shift_tokens_right(
labels, self.param.pad_token_id, self.param.decoder_start_token_id)
else:
raise ValueError("You have to provide either decoder_input_ids or labels")
if input_features is not None:
if waveform is not None:
encoded_audio = self.encoder(x=input_features, w=waveform)
else:
encoded_audio = self.encoder(x=input_features, w=None)
elif waveform is not None:
encoded_audio = self.encoder(x=None, w=waveform)
else:
raise ValueError("You have to provide either input_features or waveform")
logits = self.decoder(input_ids, encoded_audio)
loss = None
if labels is not None:
loss = F.cross_entropy(
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=-100)
return {"logits": logits, "loss": loss, "labels": labels, "input_ids": input_ids, "audio_features": encoded_audio}
@property
def device(self):
return next(self.parameters()).device
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
cache = {**cache} if cache is not None else {}
hooks = []
def save_to_cache(module, _, output):
if module not in cache or output.shape[1] > self.param.text_ctx:
cache[module] = output
else:
cache[module] = torch.cat([cache[module], output], dim=1).detach()
return cache[module]
def save_adaptive_output(module, _, output):
if isinstance(output, tuple) and len(output) == 2:
tensor_output, cache_updates = output
module_k = f"{module}_k"
module_v = f"{module}_v"
if module_k not in cache or tensor_output.shape[1] > self.param.text_ctx:
cache[module_k] = cache_updates["k_cache"]
cache[module_v] = cache_updates["v_cache"]
else:
cache[module_k] = torch.cat([cache[module_k], cache_updates["k_cache"]], dim=1).detach()
cache[module_v] = torch.cat([cache[module_v], cache_updates["v_cache"]], dim=1).detach()
return tensor_output
return output
def install_hooks(layer: nn.Module):
if isinstance(layer, Multihead):
hooks.append(layer.k.register_forward_hook(save_to_cache))
hooks.append(layer.v.register_forward_hook(save_to_cache))
self.encoder.apply(install_hooks)
self.decoder.apply(install_hooks)
return cache, hooks
def _init_weights(self, module):
std = 0.02
self.init_counts = {"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
"Conv2d": 0, "SEBlock": 0, "TextDecoder": 0, "AudioEncoder": 0, "Residual": 0,
"Multihead": 0, "MultiheadA": 0, "MultiheadB": 0, "MultiheadC": 0}
for name, module in self.named_modules():
if isinstance(module, Linear):
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Linear"] += 1
elif isinstance(module, Conv1d):
nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv1d"] += 1
elif isinstance(module, LayerNorm):
nn.init.ones_(module.weight)
nn.init.zeros_(module.bias)
self.init_counts["LayerNorm"] += 1
elif isinstance(module, RMSNorm):
nn.init.ones_(module.weight)
self.init_counts["RMSNorm"] += 1
elif isinstance(module, Multihead):
nn.init.xavier_uniform_(module.q.weight)
nn.init.zeros_(module.q.bias)
nn.init.xavier_uniform_(module.k.weight)
nn.init.xavier_uniform_(module.v.weight)
nn.init.xavier_uniform_(module.o.weight)
if module.o.bias is not None:
nn.init.zeros_(module.o.bias)
self.init_counts["Multihead"] += 1
elif isinstance(module, Conv2d):
nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv2d"] += 1
elif isinstance(module, SEBlock):
nn.init.ones_(module.fc[0].weight)
nn.init.zeros_(module.fc[0].bias)
nn.init.ones_(module.fc[2].weight)
nn.init.zeros_(module.fc[2].bias)
self.init_counts["SEBlock"] += 1
elif isinstance(module, TextDecoder):
self.init_counts["TextDecoder"] += 1
elif isinstance(module, AudioEncoder):
nn.init.xavier_uniform_(module.se[0].weight)
nn.init.zeros_(module.se[0].bias)
nn.init.xavier_uniform_(module.se[2].weight)
nn.init.zeros_(module.se[2].bias)
nn.init.xavier_uniform_(module.se[4].weight)
nn.init.zeros_(module.se[4].bias)
self.init_counts["AudioEncoder"] += 1
elif isinstance(module, Residual):
nn.init.xavier_uniform_(module.attna.q.weight)
nn.init.zeros_(module.attna.q.bias)
nn.init.xavier_uniform_(module.attna.k.weight)
nn.init.xavier_uniform_(module.attna.v.weight)
nn.init.xavier_uniform_(module.attna.o.weight)
if module.attna.o.bias is not None:
nn.init.zeros_(module.attna.o.bias)
self.init_counts["Residual"] += 1
def init_weights(self):
print("Initializing all weights")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
print(f"{module_type}: {count}")
metric = evaluate.load(path="wer")
@dataclass
class DataCollator:
extractor: Any
tokenizer: Any
decoder_start_token_id: Any
def __call__(self, features: List[Dict[str, Union[List[int], Tensor]]]) -> Dict[str, Tensor]:
batch = {}
if "input_features" in features[0]:
input_features = [{"input_features": f["input_features"]} for f in features]
batch["input_features"] = self.extractor.pad(input_features, return_tensors="pt")["input_features"]
if "waveform" in features[0]:
waveforms = [f["waveform"] for f in features]
fixed_len = 1500 * 160
padded_waveforms = []
for w in waveforms:
if w.shape[-1] < fixed_len:
w = F.pad(w, (0, fixed_len - w.shape[-1]))
else:
w = w[..., :fixed_len]
padded_waveforms.append(w)
batch["waveform"] = torch.stack(padded_waveforms)
label_features = [{"input_ids": f["labels"]} for f in features]
labels_batch = self.tokenizer.pad(label_features, return_tensors="pt")
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
labels = labels[:, 1:]
batch["labels"] = labels
return batch
def prepare_dataset(batch, input_features=True, waveform=True):
audio = batch["audio"]
fixed_len = 1500 * 160
wav = torch.tensor(audio["array"]).float()
if wav.shape[-1] < fixed_len:
wav = F.pad(wav, (0, fixed_len - wav.shape[-1]))
else:
wav = wav[..., :fixed_len]
if waveform:
batch["waveform"] = wav.unsqueeze(0)
if input_features:
batch["input_features"] = extractor(wav.numpy(), sampling_rate=audio["sampling_rate"]).input_features[0]
batch["labels"] = tokenizer(batch["transcription"]).input_ids
return batch
def compute_metrics(eval_pred):
pred_logits = eval_pred.predictions
label_ids = eval_pred.label_ids
if isinstance(pred_logits, tuple):
pred_ids = pred_logits[0]
else:
pred_ids = pred_logits
if pred_ids.ndim == 3:
pred_ids = np.argmax(pred_ids, axis=-1)
label_ids[label_ids == -100] = tokenizer.pad_token_id
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
if len(pred_ids) > 0:
print("\nSample Predictions:")
for idx in range(min(1, len(pred_ids))):
print(f" Example {idx+1}:")
print(f"• Reference: {label_str[idx]}")
print(f"• Prediction: {pred_str[idx]}")
print("="*80 + "\n")
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
pred_flat = pred_ids.flatten()
labels_flat = label_ids.flatten()
mask = labels_flat != tokenizer.pad_token_id
acc = accuracy_score(y_true=labels_flat[mask], y_pred=pred_flat[mask])
pre = precision_score(y_true=labels_flat[mask], y_pred=pred_flat[mask],
average='weighted', zero_division=0)
rec = recall_score(y_true=labels_flat[mask], y_pred=pred_flat[mask],
average='weighted', zero_division=0)
f1 = f1_score(y_true=labels_flat[mask], y_pred=pred_flat[mask],
average='weighted', zero_division=0)
return {
"wer": wer,
"accuracy": acc,
"precision": pre,
"recall": rec,
"f1": f1,
}
class MaxFactor(torch.optim.Optimizer):
__version__ = "1.0"
def __init__(self, params, lr=0.025, beta2_decay=-0.8, eps=(1e-10, 1e-4), d=1.0,
weight_decay=0.025, gamma=0.99, max=False, min_lr=1e-7):
print(f"Using MaxFactor optimizer v{self.__version__}")
defaults = dict(lr=lr, beta2_decay=beta2_decay, eps=eps, d=d, weight_decay=weight_decay,
gamma=gamma, max=max, min_lr=min_lr)
super().__init__(params=params, defaults=defaults)
def get_lr(self):
"""Return last-used learning rates for all parameter groups."""
param_specific_lrs = []
for group in self.param_groups:
group_lrs = []
for p in group["params"]:
state = self.state[p]
if "last_alpha" in state:
group_lrs.append(state["last_alpha"])
if group_lrs:
param_specific_lrs.append(sum(group_lrs) / len(group_lrs))
else:
param_specific_lrs.append(group["lr"])
return param_specific_lrs
def get_last_lr(self):
return self.get_lr()
@torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad, grads, row_vars, col_vars, v, state_steps = [], [], [], [], [], []
eps1, eps2 = group["eps"]
min_lr = group.get("min_lr", 1e-7)
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
state = self.state[p]
if len(state) == 0:
state["step"] = torch.tensor(0.0, dtype=torch.float32)
if p.dim() > 1:
row_shape, col_shape = list(p.shape), list(p.shape)
row_shape[-1], col_shape[-2] = 1, 1
state["row_var"] = p.new_zeros(row_shape)
state["col_var"] = p.new_zeros(col_shape)
state["v"] = torch.zeros_like(p, memory_format=torch.preserve_format)
row_vars.append(state.get("row_var", None))
col_vars.append(state.get("col_var", None))
v.append(state["v"])
state_steps.append(state["step"])
params_with_grad.append(p)
grads.append(grad)
for i, param in enumerate(params_with_grad):
grad = grads[i]
state = self.state[param]
if group["max"]:
grad = -grad
step_t = state_steps[i]
row_var, col_var, vi = row_vars[i], col_vars[i], v[i]
if eps1 is None:
eps1 = torch.finfo(param.dtype).eps
step_t += 1
step_float = step_t.item()
one_minus_beta2_t = min(0.999, max(0.001, step_float ** group["beta2_decay"]))
rho_t = max(min_lr, min(group["lr"], 1.0 / (step_float ** 0.5)))
alpha = max(eps2, (param.norm() / (param.numel() ** 0.5 + 1e-12)).item()) * rho_t
state["last_alpha"] = alpha
if group["weight_decay"] > 0:
param.mul_(1 - group["lr"] * group["weight_decay"])
if grad.dim() > 1:
row_mean = torch.norm(grad, dim=-1, keepdim=True).square_()
row_mean.div_(grad.size(-1) + eps1)
row_var.lerp_(row_mean, one_minus_beta2_t)
col_mean = torch.norm(grad, dim=-2, keepdim=True).square_()
col_mean.div_(grad.size(-2) + eps1)
col_var.lerp_(col_mean, one_minus_beta2_t)
var_estimate = row_var @ col_var
max_row_var = row_var.max(dim=-2, keepdim=True)[0]
var_estimate.div_(max_row_var.clamp_(min=eps1))
else:
vi.mul_(group["gamma"]).add_(grad.square_(), alpha=1 - group["gamma"])
var_estimate = vi
update = var_estimate.clamp_(min=eps1 * eps1).rsqrt_().mul_(grad)
inf_norm = torch.norm(update, float('inf'))
if inf_norm > 0:
update.div_(inf_norm.clamp_(min=eps1))
denom = max(1.0, update.norm(2).item() / ((update.numel() ** 0.5) * group["d"]))
if param.dim() > 1:
max_vals = update.abs().max(dim=-1, keepdim=True)[0]
param.add_(-alpha / denom * update.sign() * max_vals)
else:
param.add_(-alpha / denom * update)
state["step"] = step_t
return loss
if __name__ == "__main__":
param = Dimensions(
mels=128,
audio_ctx=1500,
audio_head=4,
encoder_idx=4,
audio_dims=512,
vocab=51865,
text_ctx=512,
text_head=4,
decoder_idx=4,
text_dims=512,
decoder_start_token_id = 50258,
pad_token_id = 50257,
eos_token_id = 50257,
act = "gelu",
)
model = Echo(param).to('cuda')
token=""
extractor = WhisperFeatureExtractor.from_pretrained(
"openai/whisper-small", token=token, feature_size=128, sampling_rate=16000, do_normalize=True, return_tensors="pt", chunk_length=15)
tokenizer = WhisperTokenizerFast.from_pretrained(
"openai/whisper-small", language="en", task="transcribe", token=token)
data_collator = DataCollator(extractor=extractor,
tokenizer=tokenizer, decoder_start_token_id=50258)
log_dir = os.path.join('./output/logs', datetime.now().strftime(format='%m-%d_%H'))
os.makedirs(name=log_dir, exist_ok=True)
dataset = DatasetDict()
dataset = load_dataset("google/fleurs", "en_us", token=token, trust_remote_code=True, streaming=False)
dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000))
dataset = dataset.map(function=prepare_dataset,
remove_columns=list(next(iter(dataset.values())).features)).with_format(type="torch")
training_args = Seq2SeqTrainingArguments(
output_dir=log_dir,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
gradient_accumulation_steps=1,
eval_accumulation_steps=1,
tf32=True,
bf16=True,
eval_strategy="steps",
save_strategy="steps",
max_steps=10000,
save_steps=10000,
eval_steps=1000,
warmup_steps=1000,
num_train_epochs=1,
logging_steps=100,
logging_dir=log_dir,
report_to=["tensorboard"],
push_to_hub=False,
disable_tqdm=False,
save_total_limit=1,
label_names=["labels"],
eval_on_start=False,
# optim="adafactor",
save_safetensors=True,
)
optimizer = MaxFactorA(model.parameters(), lr = 0.025,
beta2_decay = -0.8,
eps = (1e-10, 0.0001),
d = 1,
weight_decay = 0.025,
gamma = 0.99,
max = False,
min_lr = 1e-7)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=1000, eta_min=1e-6)
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=dataset["train"].shuffle(seed=42).take(1000),
eval_dataset=dataset["test"].take(100),
data_collator=data_collator,
compute_metrics=compute_metrics,
processing_class=extractor,
optimizers=(optimizer, scheduler),
)
model.init_weights()
print("Trainable parameters:", sum(p.numel() for p in model.parameters() if p.requires_grad))
print("Total parameters:", sum(p.numel() for p in model.parameters()))
trainer.train(resume_from_checkpoint=False)
## pytorch loop
# def train(
# model,
# dataset,
# data_collator,
# tokenizer,
# optimizer=None,
# scheduler=None,
# train_set=None,
# eval_set=None,
# epochs=3,
# batch_size=1,
# lr=2e-4,
# device="cuda",
# grad_accum_steps=1,
# max_grad_norm=1.0,
# log_dir="./output/logs",
# save_best=True,
# early_stopping_patience=None,
# max_steps=10000,
# eval_steps=1000,
# ):
# from torch.utils.tensorboard import SummaryWriter
# import os
# writer = SummaryWriter(log_dir=log_dir)
# model = model.to(device)
# optimizer = optimizer
# scheduler = scheduler
# scaler = torch.amp.GradScaler('cuda')
# train_set = dataset["train"]
# eval_set = dataset["test"]
# train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, collate_fn=data_collator)
# eval_loader = DataLoader(eval_set, batch_size=batch_size, shuffle=False, collate_fn=data_collator)
# best_wer = float("inf")
# best_step = 0
# patience_counter = 0
# global_step = 0
# running_loss = 0
# train_iter = iter(train_loader)
# pbar = tqdm(total=max_steps, desc="Training", dynamic_ncols=True)
# model.train()
# optimizer.zero_grad()
# while global_step < max_steps:
# try:
# batch = next(train_iter)
# except StopIteration:
# train_iter = iter(train_loader)
# batch = next(train_iter)
# for k in batch:
# if isinstance(batch[k], torch.Tensor):
# batch[k] = batch[k].to(device)
# with torch.cuda.amp.autocast():
# outputs = model(
# input_features=batch.get("input_features", None),
# waveform=batch.get("waveform", None),
# input_ids=None,
# labels=batch["labels"]
# )
# loss = outputs["loss"] / grad_accum_steps
# scaler.scale(loss).backward()
# running_loss += loss.item() * grad_accum_steps
# if (global_step + 1) % grad_accum_steps == 0:
# scaler.unscale_(optimizer)
# torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
# scaler.step(optimizer)
# scaler.update()
# optimizer.zero_grad()
# if scheduler is not None:
# scheduler.step()
# writer.add_scalar("train/loss", loss.item() * grad_accum_steps, global_step)
# writer.add_scalar("train/lr", optimizer.param_groups[0]["lr"], global_step)
# pbar.set_postfix({
# "loss": f"{loss.item() * grad_accum_steps:.4f}",
# "lr": optimizer.param_groups[0]["lr"]
# })
# pbar.update(1)
# global_step += 1
# if global_step % eval_steps == 0 or global_step == max_steps:
# model.eval()
# all_preds, all_labels = [], []
# eval_loss = 0
# with torch.no_grad():
# for batch_eval in tqdm(eval_loader, desc=f"Eval@step{global_step}", leave=False):
# for k in batch_eval:
# if isinstance(batch_eval[k], torch.Tensor):
# batch_eval[k] = batch_eval[k].to(device)
# outputs = model(
# input_features=batch_eval.get("input_features", None),
# waveform=batch_eval.get("waveform", None),
# input_ids=None,
# labels=batch_eval["labels"]
# )
# logits = outputs["logits"]
# labels = batch_eval["labels"]
# loss = outputs["loss"]
# eval_loss += loss.item()
# preds = torch.argmax(logits, dim=-1)
# labels_for_decode = labels.clone()
# labels_for_decode[labels_for_decode == -100] = tokenizer.pad_token_id
# all_preds.extend(preds.cpu().numpy())
# all_labels.extend(labels_for_decode.cpu().numpy())
# avg_eval_loss = eval_loss / len(eval_loader)
# pred_str = tokenizer.batch_decode(all_preds, skip_special_tokens=True)
# label_str = tokenizer.batch_decode(all_labels, skip_special_tokens=True)
# if len(all_preds) > 0:
# print("\nSample Predictions:")
# for idx in range(min(1, len(all_preds))):
# print(f" Example {idx+1}:")
# print(f"• Reference: {label_str[idx]}")
# print(f"• Prediction: {pred_str[idx]}")
# print("="*80 + "\n")
# wer = 100 * metric.compute(predictions=pred_str, references=label_str)
# writer.add_scalar("eval/loss", avg_eval_loss, global_step)
# writer.add_scalar("eval/wer", wer, global_step)
# # scheduler.step(avg_eval_loss)
# scheduler.step()
# lr = scheduler.get_last_lr()[0]
# pbar.set_postfix({
# "loss": f"{loss.item() * grad_accum_steps:.4f}",
# "lr": lr,
# "eval_wer": f"{wer:.2f}"
# })
# print(f"\nStep {global_step}: eval loss {avg_eval_loss:.4f}, WER {wer:.2f}")
# # Save best model
# if save_best and wer < best_wer:
# best_wer = wer
# best_step = global_step
# torch.save(model.state_dict(), os.path.join(log_dir, "best_model.pt"))
# print(f"Best model saved at step {global_step} with WER {wer:.2f}")
# # Early stopping
# if early_stopping_patience is not None:
# if wer < best_wer:
# patience_counter = 0
# else:
# patience_counter += 1
# if patience_counter >= early_stopping_patience:
# print(f"Early stopping at step {global_step}")
# break
# model.train()
# lr = scheduler.get_last_lr()[0]
# writer.add_scalar("train/lr", lr, global_step)
# pbar.set_postfix({
# "loss": f"{loss.item() * grad_accum_steps:.4f}",
# "lr": lr,
# "eval_wer": f"{wer:.2f}"
# })
# print(f"Training complete. Best WER: {best_wer:.2f} at step {best_step}")
# writer.close()
# if __name__ == "__main__":
# param = Dimensions(
# mels=128,
# audio_ctx=1500,
# audio_head=4,
# encoder_idx=4,
# audio_dims=512,
# vocab=51865,
# text_ctx=512,
# text_head=4,
# decoder_idx=4,
# text_dims=512,
# decoder_start_token_id = 50258,
# pad_token_id = 50257,
# eos_token_id = 50257,
# act = "gelu",
# )
# model = Echo(param).to('cuda')
# token=""
# extractor = WhisperFeatureExtractor.from_pretrained(
# "openai/whisper-small", token=token, feature_size=128, sampling_rate=16000, do_normalize=True, return_tensors="pt", chunk_length=15)
# tokenizer = WhisperTokenizerFast.from_pretrained(
# "openai/whisper-small", language="en", task="transcribe", token=token)
# data_collator = DataCollator(extractor=extractor,
# tokenizer=tokenizer, decoder_start_token_id=50258)
# log_dir = os.path.join('./output/logs', datetime.now().strftime(format='%m-%d_%H'))
# os.makedirs(name=log_dir, exist_ok=True)
# dataset = DatasetDict()
# dataset = load_dataset("google/fleurs", "en_us", token=token, trust_remote_code=True, streaming=False)
# dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000))
# dataset = dataset.map(function=prepare_dataset,
# remove_columns=list(next(iter(dataset.values())).features)).with_format(type="torch")
# optimizer = MaxFactorA(model.parameters(), lr = 0.025,
# beta2_decay = -0.8,
# eps = (1e-10, 0.0001),
# d = 1,
# weight_decay = 0.025,
# gamma = 0.99,
# max = False,
# min_lr = 1e-7)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=1000, eta_min=1e-6)
# train_set = dataset["train"],
# eval_set = dataset["test"],
# train(model=model, dataset=dataset, data_collator=data_collator, tokenizer=tokenizer,
# batch_size=1,
# lr=2e-4,
# device="cuda",
# grad_accum_steps=1,
# max_grad_norm=1.0,
# log_dir="./output/logs",
# save_best=True,
# early_stopping_patience=None,
# max_steps=10000,
# eval_steps=1000,
# optimizer=optimizer,
# scheduler=scheduler,
# train_set=train_set,
# eval_set=eval_set,
# )
# tensorboard --logdir ./output/logs
``` |
qwertyuiopasdfg/glm4-32B-4bit | qwertyuiopasdfg | 2025-04-25T06:09:29Z | 0 | 0 | null | [
"safetensors",
"glm4",
"zh",
"en",
"base_model:THUDM/GLM-4-32B-0414",
"base_model:quantized:THUDM/GLM-4-32B-0414",
"license:mit",
"4-bit",
"bitsandbytes",
"region:us"
]
| null | 2025-04-25T05:51:42Z | ---
license: mit
language:
- zh
- en
base_model:
- THUDM/GLM-4-32B-0414
---
bnb-4bits Quantized Version of ***[THUDM/GLM-4-32B-0414](https://huggingface.co/THUDM/GLM-4-32B-0414)*** |
firoz123/codegemma-2b-Q4_K_M-GGUF | firoz123 | 2025-04-25T06:07:26Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:google/codegemma-2b",
"base_model:quantized:google/codegemma-2b",
"license:gemma",
"endpoints_compatible",
"region:us"
]
| null | 2025-04-25T06:07:14Z | ---
base_model: google/codegemma-2b
library_name: transformers
license: gemma
license_link: https://ai.google.dev/gemma/terms
tags:
- llama-cpp
- gguf-my-repo
extra_gated_heading: Access CodeGemma on Hugging Face
extra_gated_prompt: To access CodeGemma on Hugging Face, you’re required to review
and agree to Google’s usage license. To do this, please ensure you’re logged-in
to Hugging Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
---
# firoz123/codegemma-2b-Q4_K_M-GGUF
This model was converted to GGUF format from [`google/codegemma-2b`](https://huggingface.co/google/codegemma-2b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/google/codegemma-2b) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo firoz123/codegemma-2b-Q4_K_M-GGUF --hf-file codegemma-2b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo firoz123/codegemma-2b-Q4_K_M-GGUF --hf-file codegemma-2b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo firoz123/codegemma-2b-Q4_K_M-GGUF --hf-file codegemma-2b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo firoz123/codegemma-2b-Q4_K_M-GGUF --hf-file codegemma-2b-q4_k_m.gguf -c 2048
```
|
Subsets and Splits