modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-21 12:34:09
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
568 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-21 12:33:58
card
stringlengths
11
1.01M
hobson123/blockassist-bc-mammalian_dense_gibbon_1755574354
hobson123
2025-08-19T03:38:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:38:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NexVeridian/Kimi-VL-A3B-Thinking-2506-6bit
NexVeridian
2025-08-19T03:37:06Z
0
0
mlx
[ "mlx", "safetensors", "kimi_vl", "text-generation", "conversational", "custom_code", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "license:mit", "6-bit", "region:us" ]
text-generation
2025-08-19T03:30:50Z
--- base_model: moonshotai/Kimi-VL-A3B-Thinking-2506 license: mit pipeline_tag: text-generation library_name: mlx tags: - mlx --- # NexVeridian/Kimi-VL-A3B-Thinking-2506-6bit This model [NexVeridian/Kimi-VL-A3B-Thinking-2506-6bit](https://huggingface.co/NexVeridian/Kimi-VL-A3B-Thinking-2506-6bit) was converted to MLX format from [moonshotai/Kimi-VL-A3B-Thinking-2506](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/Kimi-VL-A3B-Thinking-2506-6bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF
mradermacher
2025-08-19T03:35:31Z
0
1
transformers
[ "transformers", "gguf", "VLMer:Vision-Language Model for extended reasoning", "text-generation-inference", "VLR", "en", "base_model:prithivMLmods/Nemesis-VLMer-7B-0818", "base_model:quantized:prithivMLmods/Nemesis-VLMer-7B-0818", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-19T01:19:22Z
--- base_model: prithivMLmods/Nemesis-VLMer-7B-0818 language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - VLMer:Vision-Language Model for extended reasoning - text-generation-inference - VLR --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/prithivMLmods/Nemesis-VLMer-7B-0818 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Nemesis-VLMer-7B-0818-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-GGUF **This is a vision model - mmproj files (if any) will be in the [static repository](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-GGUF).** ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Nemesis-VLMer-7B-0818-i1-GGUF/resolve/main/Nemesis-VLMer-7B-0818.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
twhitworth/gpt-oss-120b-awq-w4a16
twhitworth
2025-08-19T03:34:01Z
0
2
null
[ "safetensors", "gpt_oss", "mixture-of-experts", "activation-aware-weight-quantization", "awq", "w4a16", "large-language-model", "reasoning", "long-context", "en", "base_model:openai/gpt-oss-120b", "base_model:finetune:openai/gpt-oss-120b", "license:apache-2.0", "region:us" ]
null
2025-08-16T00:02:12Z
--- license: apache-2.0 type: model base_model: openai/gpt-oss-120b language: en tags: - gpt_oss - mixture-of-experts - activation-aware-weight-quantization - awq - w4a16 - large-language-model - reasoning - long-context --- # gpt-oss-120b-awq-w4a16 _A 4-bit AWQ-quantised release of **gpt-oss-120b**_ > **TL;DR** – We convert the original FP16/FP32 checkpoint (≈ 234 GB) of **gpt-oss-120b** into a 4-bit weight-only model with 16-bit activations (**W4A16**). > The resulting 11-shard safetensors bundle is **≈ 33.4 GB**, a **7× size reduction** with negligible quality loss. --- ## 1 Model details | Property | Value | |-------------------------------|-------| | Architecture | Mixture-of-Experts Transformer | | Total parameters | 117 B | | Active parameters / token | 5.1 B | | Layers | 36 | | Experts | 128 (4 routed per token) | | Hidden size / head dim | 2880 / 64 | | Context window (max rope) | 131 072 tokens | | Activation function | SwiGLU | | Norm | RMSNorm (ε = 1e-5) | | Rope scaling | YARN (θ = 150 000) | | Training data cut-off | 2024-06-01 | --- ## 2 Quantisation recipe ### 2.1 Activation-Aware Weight Quantisation (AWQ) AWQ protects the ~1 % most activation-sensitive channels by rescaling them **before** 4-bit rounding, vastly reducing quantisation error compared with vanilla GPTQ. * **Post-training** – no back-prop; only a small calibration set is needed. * **Weight-only** – activations stay at fp16/bf16. * **Hardware-friendly** – single-kernel dequant, SIMD-aware packing, no mixed precision. ### 2.2 Layer precision map | Module | Precision | |------------------------------------------|-----------| | All dense & attention weights | **int4** (AWQ) | | LayerNorm, rotary embeddings, router MLP | fp16 | | lm_head | fp16 | ### 2.3 Size breakdown | Shard | Size (GB) | Shard | Size (GB) | |-------|----------:|-------|----------:| | 1 | 1.21 | 7 | 2.18 | | 2 | 4.25 | 8 | 4.25 | | 3 | 2.18 | 9 | 2.18 | | 4 | 4.25 | 10 | 4.25 | | 5 | 2.18 | 11 | 2.18 | | 6 | 4.25 | **Total** | **33.36 GB** | Compression vs original FP16 checkpoint: ```text 234 GB / 33.36 GB ≈ 7× smaller
Kokoutou/soundsright_1908_3
Kokoutou
2025-08-19T03:30:48Z
0
0
null
[ "region:us" ]
null
2025-08-19T03:25:48Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
NexVeridian/Kimi-VL-A3B-Thinking-2506-5bit
NexVeridian
2025-08-19T03:30:29Z
0
0
mlx
[ "mlx", "safetensors", "kimi_vl", "text-generation", "conversational", "custom_code", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "license:mit", "5-bit", "region:us" ]
text-generation
2025-08-19T03:25:12Z
--- base_model: moonshotai/Kimi-VL-A3B-Thinking-2506 license: mit pipeline_tag: text-generation library_name: mlx tags: - mlx --- # NexVeridian/Kimi-VL-A3B-Thinking-2506-5bit This model [NexVeridian/Kimi-VL-A3B-Thinking-2506-5bit](https://huggingface.co/NexVeridian/Kimi-VL-A3B-Thinking-2506-5bit) was converted to MLX format from [moonshotai/Kimi-VL-A3B-Thinking-2506](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/Kimi-VL-A3B-Thinking-2506-5bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Akshaykumarbm/OpenAssisted-English-Mistral-7b-starting-epos
Akshaykumarbm
2025-08-19T03:27:36Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T03:26:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755572486
lisaozill03
2025-08-19T03:26:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:26:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lejonck/xlsr53-mupe-1
lejonck
2025-08-19T03:25:57Z
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-large-xlsr-53-portuguese", "base_model:finetune:facebook/wav2vec2-large-xlsr-53-portuguese", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-19T03:25:20Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53-portuguese tags: - generated_from_trainer metrics: - wer model-index: - name: xlsr53-mupe-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlsr53-mupe-1 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53-portuguese](https://huggingface.co/facebook/wav2vec2-large-xlsr-53-portuguese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5001 - Wer: 0.5465 - Cer: 0.3049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.3239 | 1.0 | 2000 | 1.5103 | 0.6366 | 0.3503 | | 1.156 | 2.0 | 4000 | 1.4288 | 0.6022 | 0.3261 | | 0.958 | 3.0 | 6000 | 1.4058 | 0.5893 | 0.3214 | | 1.2899 | 4.0 | 8000 | 1.4745 | 0.5743 | 0.3122 | | 0.856 | 5.0 | 10000 | 1.4086 | 0.5684 | 0.3195 | | 0.9923 | 6.0 | 12000 | 1.4499 | 0.5651 | 0.3086 | | 0.9734 | 7.0 | 14000 | 1.4358 | 0.5579 | 0.3089 | | 1.084 | 8.0 | 16000 | 1.5082 | 0.5507 | 0.3036 | | 1.0326 | 9.0 | 18000 | 1.4677 | 0.5579 | 0.3064 | | 1.229 | 10.0 | 20000 | 1.4917 | 0.5480 | 0.3056 | | 0.785 | 11.0 | 22000 | 1.4971 | 0.5471 | 0.3050 | | 0.6886 | 12.0 | 24000 | 1.5001 | 0.5465 | 0.3048 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.7.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755572283
hakimjustbao
2025-08-19T03:25:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:25:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NexVeridian/Kimi-VL-A3B-Thinking-2506-4bit
NexVeridian
2025-08-19T03:24:52Z
0
0
mlx
[ "mlx", "safetensors", "kimi_vl", "text-generation", "conversational", "custom_code", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "license:mit", "4-bit", "region:us" ]
text-generation
2025-08-19T03:19:47Z
--- base_model: moonshotai/Kimi-VL-A3B-Thinking-2506 license: mit pipeline_tag: text-generation library_name: mlx tags: - mlx --- # NexVeridian/Kimi-VL-A3B-Thinking-2506-4bit This model [NexVeridian/Kimi-VL-A3B-Thinking-2506-4bit](https://huggingface.co/NexVeridian/Kimi-VL-A3B-Thinking-2506-4bit) was converted to MLX format from [moonshotai/Kimi-VL-A3B-Thinking-2506](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/Kimi-VL-A3B-Thinking-2506-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
jasminekitty328/full_3000_intentconan
jasminekitty328
2025-08-19T03:23:44Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-19T03:23:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755573707
lqpl
2025-08-19T03:23:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:22:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
concept-unlearning/gemma-3-4b-it_ft_lora_all_novels_v7_ft
concept-unlearning
2025-08-19T03:23:00Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-19T03:20:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
broinopio/blockassist-bc-monstrous_scampering_spider_1755571700
broinopio
2025-08-19T03:22:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous scampering spider", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:22:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous scampering spider --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Akshaykumarbm/OpenAssisted-English-Mistral-7b
Akshaykumarbm
2025-08-19T03:21:56Z
31
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mistral-8b", "openassistant", "openassisted-english", "language-modeling", "conversational-ai", "conversational", "en", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-01T06:22:11Z
--- library_name: transformers tags: - mistral-8b - openassistant - openassisted-english - language-modeling - text-generation - conversational-ai license: apache-2.0 language: - en base_model: - mistralai/Mistral-7B-Instruct-v0.1 --- # Mistral-8B Instruction-Tuned on OpenAssisted-English This model is a fine-tuned version of [Mistral-8B](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [OpenAssisted-English](https://huggingface.co/datasets/OpenAssistant/oasst1) dataset using Hugging Face's `transformers` library. The model is optimized for high-quality conversational and instruction-following tasks in English. --- ## Model Details ### Model Description This model is an instruction-tuned version of the Mistral-8B architecture, fine-tuned specifically to follow human instructions and engage in helpful, safe, and factual conversations. It leverages the OpenAssisted-English dataset, a cleaned and filtered subset from OpenAssistant's OASST1 dataset. * **Developed by:** Akshay Kumar BM * **Fine-tuned using:** Hugging Face Transformers * **Dataset used:** OpenAssisted-English (from OpenAssistant) * **Model type:** Decoder-only Transformer * **Language(s):** English * **License:** Apache 2.0 * **Finetuned from model:** mistralai/Mistral-7B-v0.1 --- ## Model Sources * **Base Model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * **Dataset:** [OpenAssisted-English](https://huggingface.co/datasets/OpenAssistant/oasst1) * **Library:** Hugging Face Transformers * **Frameworks:** PyTorch, Accelerate --- ## Uses ### Direct Use * Conversational AI * Instruction-following agents * Text completion and generation * Chatbot backends * Question answering ### Downstream Use * Fine-tuning for specific domains (e.g., legal, medical, education) * Integration into multi-agent systems or RAG pipelines * Prompt engineering and prototyping ### Out-of-Scope Use * Use in high-risk environments (e.g., medical diagnosis, legal decision making) without human oversight. * Generating misinformation, harmful, offensive, or biased content. * Any use violating Hugging Face’s or Apache 2.0 licensing terms. --- ## Bias, Risks, and Limitations Despite being fine-tuned for alignment, the model may: * Hallucinate facts. * Reflect biases present in the OpenAssistant dataset. * Respond unpredictably to adversarial or ambiguous prompts. ### Recommendations * Always include a human-in-the-loop for sensitive applications. * Evaluate in domain-specific scenarios before deployment. * Apply additional safety filters for production use. --- ## How to Get Started ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "Akshaykumarbm/OpenAssisted-English-Mistral-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) input_prompt = "Explain quantum computing in simple terms." inputs = tokenizer(input_prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ## Training Details ### Training Data The model was trained on the **OpenAssisted-English** dataset, which includes high-quality, human-annotated instruction-response pairs derived from OpenAssistant’s OASST1 dataset. * Format: Instruction + Response * Filters: Language = English, Quality ≥ 3, Assistant messages only * Size: \~100k samples ### Training Procedure #### Preprocessing * Tokenization: BPE tokenizer from Mistral * Truncation: 4096 tokens * Format: `<s>[INST] prompt [/INST] response</s>` #### Hyperparameters * **Precision:** bf16 mixed precision * **Batch size:** 512 (global) * **Epochs:** 15 * **Optimizer:** AdamW * **LR Scheduler:** CosineDecay * **Learning rate:** 2e-5 * **Warmup steps:** 500 #### Compute * **Hardware:** AMD MI300 * **Training time:** \~18 hours * **Frameworks:** PyTorch + Accelerate + DDP --- ## Evaluation ### Testing Data * Held-out subset from OpenAssisted-English * Manual eval for coherence, helpfulness, and safety * Evaluation on MT-Bench and AlpacaEval (optional) ### Metrics * **Helpfulness Score** (manual): \~7.2/10 * **Toxicity (Perspective API):** <1% * **BLEU, ROUGE:** Used to compare with gold responses --- ## Technical Specifications * **Architecture:** Mistral 8B (decoder-only transformer) * **Tokenizer:** Mistral Tokenizer (32k vocab) * **Context Length:** 8k tokens * **Parameters:** \~8.1 billion --- ## Citation If you use this model, please cite the original Mistral model and OpenAssistant dataset. ```bibtex @misc{mistral2023, title={Mistral 7B}, author={Mistral AI}, year={2023}, url={https://mistral.ai/news/announcing-mistral-7b/} } @misc{openassistant2023, title = {OpenAssistant Conversations - OASST1}, author = {OpenAssistant Contributors}, year = {2023}, url = {https://huggingface.co/datasets/OpenAssistant/oasst1} } ``` --- ## Contact * **Author:** Akshay Kumar BM * **Email:** [[email protected]](mailto:[email protected]) * **GitHub:** [akshaykumarbedre](https://github.com/akshaykumarbedre) * **Hugging Face:** [akshaykumarbm](https://huggingface.co/akshaykumarbm) ---
mang3dd/blockassist-bc-tangled_slithering_alligator_1755571953
mang3dd
2025-08-19T03:18:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:18:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sous26hotmailf1/blockassist-bc-tawny_melodic_tapir_1755571663
sous26hotmailf1
2025-08-19T03:17:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tawny melodic tapir", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:17:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tawny melodic tapir --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wjbmattingly/lfm2-vl-medieval-page
wjbmattingly
2025-08-19T03:15:45Z
0
0
null
[ "safetensors", "lfm2-vl", "custom_code", "base_model:LiquidAI/LFM2-VL-450M", "base_model:finetune:LiquidAI/LFM2-VL-450M", "region:us" ]
null
2025-08-19T03:03:20Z
--- base_model: - LiquidAI/LFM2-VL-450M --- # model_step_15000 ## Model Description This model is a fine-tuned version of **LiquidAI/LFM2-VL-450M** using the brute-force-training package. - **Base Model**: LiquidAI/LFM2-VL-450M - **Training Status**: 🔄 In Progress - **Generated**: 2025-08-18 23:13:09 - **Training Steps**: 15,000 ## Training Details ### Dataset - **Dataset**: wjbmattingly/medieval-synthetic-dataset - **Training Examples**: 11,000 - **Validation Examples**: 99 ### Training Configuration - **Max Steps**: 50,000 - **Batch Size**: 2 - **Learning Rate**: 1e-05 - **Gradient Accumulation**: 1 steps - **Evaluation Frequency**: Every 5,000 steps ### Current Performance - **Training Loss**: 0.910276 - **Evaluation Loss**: 0.854880 ## Pre-Training Evaluation **Initial Model Performance (before training):** - **Loss**: 1.175152 - **Perplexity**: 3.24 - **Character Accuracy**: 13.2% - **Word Accuracy**: 5.0% ## Evaluation History ### All Checkpoint Evaluations | Step | Checkpoint Type | Loss | Perplexity | Char Acc | Word Acc | Improvement vs Pre | |------|----------------|------|------------|----------|----------|--------------------| | Pre | pre_training | 1.1752 | 3.24 | 13.2% | 5.0% | +0.0% | | 5,000 | checkpoint | 0.8849 | 2.42 | 9.4% | 4.4% | +24.7% | | 10,000 | checkpoint | 0.8629 | 2.37 | 9.4% | 4.8% | +26.6% | | 15,000 | checkpoint | 0.8549 | 2.35 | 9.9% | 4.9% | +27.3% | ## Training Progress ### Recent Training Steps (Loss Only) | Step | Training Loss | Timestamp | |------|---------------|-----------| | 14,991 | 0.975032 | 2025-08-18T23:12 | | 14,992 | 0.670720 | 2025-08-18T23:12 | | 14,993 | 0.850654 | 2025-08-18T23:12 | | 14,994 | 0.935257 | 2025-08-18T23:12 | | 14,995 | 0.870635 | 2025-08-18T23:12 | | 14,996 | 0.942344 | 2025-08-18T23:12 | | 14,997 | 0.785241 | 2025-08-18T23:12 | | 14,998 | 0.754749 | 2025-08-18T23:12 | | 14,999 | 0.950578 | 2025-08-18T23:12 | | 15,000 | 0.910276 | 2025-08-18T23:12 | ## Training Visualizations ### Training Progress and Evaluation Metrics ![Training Curves](training_curves.png) *This chart shows the training loss progression, character accuracy, word accuracy, and perplexity over time. Red dots indicate evaluation checkpoints.* ### Evaluation Comparison Across All Checkpoints ![Evaluation Comparison](evaluation_comparison.png) *Comprehensive comparison of all evaluation metrics across training checkpoints. Red=Pre-training, Blue=Checkpoints, Green=Final.* ### Available Visualization Files: - **`training_curves.png`** - 4-panel view: Training loss with eval points, Character accuracy, Word accuracy, Perplexity - **`evaluation_comparison.png`** - 4-panel comparison: Loss, Character accuracy, Word accuracy, Perplexity across all checkpoints ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer # For vision-language models, use appropriate imports model = AutoModelForCausalLM.from_pretrained("./model_step_15000") tokenizer = AutoTokenizer.from_pretrained("./model_step_15000") # Your inference code here ``` ## Training Configuration ```json { "dataset_name": "wjbmattingly/medieval-synthetic-dataset", "model_name": "LiquidAI/LFM2-VL-450M", "max_steps": 50000, "eval_steps": 5000, "num_accumulation_steps": 1, "learning_rate": 1e-05, "train_batch_size": 2, "val_batch_size": 2, "train_select_start": 0, "train_select_end": 11000, "val_select_start": 11001, "val_select_end": 11100, "train_field": "train", "val_field": "train", "image_column": "image", "text_column": "text", "user_text": "Transcribe this medieval manuscript page.", "max_image_size": 200 } ``` ## Model Card Metadata - **Base Model**: LiquidAI/LFM2-VL-450M - **Training Framework**: brute-force-training - **Training Type**: Fine-tuning - **License**: Inherited from base model - **Language**: Inherited from base model --- *This model card was automatically generated by brute-force-training on 2025-08-18 23:13:09*
novaxa-research/CyberSweep
novaxa-research
2025-08-19T03:15:08Z
0
0
null
[ "region:us" ]
null
2025-08-18T16:56:45Z
<h3 align="center"><strong>CYBERSWEEP: A Unified Simulation-to-Real Workflow for Interactive Sweeping Robots</strong></h3> ------ Sweeping robot research faces challenges in **data and research platform scarcity**, **upward-view domain shift**, and **unintegrated interaction paradigms**. To address these, we introduced **CyberSweep**, an novel end-to-end embodied interaction workflow for sweeping robots. It features: - **a simulation infrastructure** for scalable scene synthesis and task annotation; - **a diffusion-based view synthesis method** to align upward-view observations with eye-level perspectives; - **a unified vision-language-action decision model** for seamless multimodal reasoning and human collaboration. This repository provides assets, datasets, model weights, and training logs.
indoempatnol/blockassist-bc-fishy_wary_swan_1755571503
indoempatnol
2025-08-19T03:13:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:13:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
miguelsigmahot2/blockassist-bc-invisible_patterned_prawn_1755571417
miguelsigmahot2
2025-08-19T03:12:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible patterned prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:12:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible patterned prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
prl90777/qwen3_4_20250818_1941
prl90777
2025-08-19T03:12:12Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Qwen/Qwen3-4B", "lora", "transformers", "base_model:Qwen/Qwen3-4B", "license:apache-2.0", "region:us" ]
null
2025-08-18T23:50:31Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen3-4B tags: - base_model:adapter:Qwen/Qwen3-4B - lora - transformers model-index: - name: qwen3_4_20250818_1941 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen3_4_20250818_1941 This model is a fine-tuned version of [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3340 - Map@3: 0.9375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | |:-------------:|:------:|:----:|:---------------:|:------:| | 16.5429 | 0.0523 | 20 | 1.4557 | 0.7283 | | 9.2865 | 0.1046 | 40 | 0.9736 | 0.8026 | | 8.3639 | 0.1569 | 60 | 1.0031 | 0.7932 | | 7.1456 | 0.2092 | 80 | 0.7150 | 0.8585 | | 6.1949 | 0.2615 | 100 | 0.6272 | 0.8776 | | 5.3446 | 0.3138 | 120 | 0.6454 | 0.8768 | | 4.9297 | 0.3661 | 140 | 0.6001 | 0.8850 | | 4.2539 | 0.4184 | 160 | 0.6017 | 0.8870 | | 4.9359 | 0.4707 | 180 | 0.5601 | 0.8877 | | 4.0852 | 0.5230 | 200 | 0.5453 | 0.8985 | | 4.2137 | 0.5754 | 220 | 0.4796 | 0.9097 | | 4.1494 | 0.6277 | 240 | 0.4894 | 0.9105 | | 4.1857 | 0.6800 | 260 | 0.4618 | 0.9078 | | 3.5215 | 0.7323 | 280 | 0.4672 | 0.9093 | | 4.2297 | 0.7846 | 300 | 0.4450 | 0.9139 | | 3.2632 | 0.8369 | 320 | 0.4476 | 0.9171 | | 4.0446 | 0.8892 | 340 | 0.4467 | 0.9141 | | 3.4267 | 0.9415 | 360 | 0.4137 | 0.9207 | | 3.4374 | 0.9938 | 380 | 0.4655 | 0.9113 | | 3.1897 | 1.0445 | 400 | 0.4886 | 0.9167 | | 2.413 | 1.0968 | 420 | 0.4331 | 0.9232 | | 2.7002 | 1.1491 | 440 | 0.4092 | 0.9242 | | 2.7209 | 1.2014 | 460 | 0.3857 | 0.9278 | | 2.6897 | 1.2537 | 480 | 0.4045 | 0.9260 | | 2.3799 | 1.3060 | 500 | 0.3872 | 0.9310 | | 2.7859 | 1.3583 | 520 | 0.4151 | 0.9229 | | 2.6904 | 1.4106 | 540 | 0.3789 | 0.9313 | | 2.4114 | 1.4629 | 560 | 0.3901 | 0.9302 | | 2.6539 | 1.5152 | 580 | 0.3838 | 0.9330 | | 2.4441 | 1.5675 | 600 | 0.3571 | 0.9348 | | 2.086 | 1.6198 | 620 | 0.3667 | 0.9341 | | 2.0958 | 1.6721 | 640 | 0.3498 | 0.9375 | | 2.3942 | 1.7244 | 660 | 0.3753 | 0.9288 | | 2.7639 | 1.7767 | 680 | 0.3384 | 0.9377 | | 2.2673 | 1.8290 | 700 | 0.3267 | 0.9380 | | 2.2347 | 1.8813 | 720 | 0.3378 | 0.9371 | | 2.1848 | 1.9336 | 740 | 0.3271 | 0.9376 | | 2.1091 | 1.9859 | 760 | 0.3330 | 0.9369 | | 1.8355 | 2.0366 | 780 | 0.3340 | 0.9375 | ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
maxidesantafe11/blockassist-bc-deft_monstrous_finch_1755570882
maxidesantafe11
2025-08-19T03:09:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deft monstrous finch", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:09:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deft monstrous finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
WenFengg/21_14l12_19_8
WenFengg
2025-08-19T03:07:33Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T03:02:14Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
KickYourAssA/QQQwen
KickYourAssA
2025-08-19T03:05:15Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:48:18Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
koloni/blockassist-bc-deadly_graceful_stingray_1755571005
koloni
2025-08-19T03:03:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:03:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hobson123/blockassist-bc-mammalian_dense_gibbon_1755572215
hobson123
2025-08-19T03:03:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:02:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nuttachot/MyGemmaNPC
nuttachot
2025-08-19T03:00:45Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T13:26:04Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nuttachot/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755572291
IvanJAjebu
2025-08-19T02:59:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:59:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
concept-unlearning/Phi-3-mini-4k-instruct_ft_lora_all_novels_v3_ft_npo_gdr_lora_positive_dataset_v2
concept-unlearning
2025-08-19T02:55:44Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:53:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
inclusionAI/UI-Venus-Navi-7B
inclusionAI
2025-08-19T02:55:37Z
0
6
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "image-text-to-text", "conversational", "arxiv:2508.10833", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-16T07:27:20Z
--- license: apache-2.0 library_name: transformers pipeline_tag: image-text-to-text --- ### UI-Venus This repository contains the UI-Venus model from the report [UI-Venus: Building High-performance UI Agents with RFT](https://arxiv.org/abs/2508.10833). UI-Venus is a native UI agent based on the Qwen2.5-VL multimodal large language model, designed to perform precise GUI element grounding and effective navigation using only screenshots as input. It achieves state-of-the-art performance through Reinforcement Fine-Tuning (RFT) with high-quality training data. More inference details and usage guides are available in the GitHub repository. We will continue to update results on standard benchmarks including Screenspot-v2/Pro and AndroidWorld. [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![Report](https://img.shields.io/badge/Report-Technical%20Report-blueviolet?logo=notion)](http://arxiv.org/abs/2508.10833) [![GitHub](https://img.shields.io/badge/GitHub-Repository-green?logo=github)](https://github.com/inclusionAI/UI-Venus) [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Model-orange?logo=huggingface)](https://huggingface.co/inclusionAI/UI-Venus-Navi-7B) --- <p align="center"> 📈 UI-Venus Benchmark Performance </p> <p align="center"> <img src="performance_venus.png" alt="UI-Venus Performance Across Datasets" width="1200" /> <br> </p> > **Figure:** Performance of UI-Venus across multiple benchmark datasets. UI-Venus achieves **State-of-the-Art (SOTA)** results on key UI understanding and interaction benchmarks, including **ScreenSpot-Pro**, **ScreenSpot-v2**, **OS-World-G**, **UI-Vision**, and **Android World**. The results demonstrate its superior capability in visual grounding, UI navigation, cross-platform generalization, and complex task reasoning. ### Model Description UI-Venus is a multimodal UI agent built on Qwen2.5-VL that performs accurate UI grounding and navigation using only screenshots as input. The 7B and 72B variants achieve 94.1%/50.8% and 95.3%/61.9% on Screenspot-V2 and Screenspot-Pro benchmarks, surpassing prior SOTA models such as GTA1 and UI-TARS-1.5. On the AndroidWorld navigation benchmark, they achieve 49.1% and 65.9% success rates, respectively, demonstrating strong planning and generalization capabilities Key innovations include: - **SOTA Open-Source UI Agent**: Publicly released to advance research in autonomous UI interaction and agent-based systems. - **Reinforcement Fine-Tuning (RFT)**: Utilizes carefully designed reward functions for both grounding and navigation tasks - **Efficient Data Cleaning**: Trained on several hundred thousand high-quality samples to ensure robustness. - **Self-Evolving Trajectory History Alignment & Sparse Action Enhancement**: Improves reasoning coherence and action distribution for better long-horizon planning. --- ## Installation First, install the required dependencies: ```python pip install transformers==4.49.0 qwen-vl-utils ``` --- ## Quick Start ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor from typing import Dict, Tuple, Any import torch import os import re from qwen_vl_utils import process_vision_info # ----------------------------- # Model & Tokenizer # ----------------------------- MODEL_NAME = "inclusionAI/UI-Venus-Navi-7B" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_NAME, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ).eval() tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) processor = AutoProcessor.from_pretrained(MODEL_NAME) GENERATION_CONFIG = { "max_new_tokens": 2048, "do_sample": False, "temperature": 0.0, } # ----------------------------- # Prompt Template # ----------------------------- PROMPT_TEMPLATE = """**You are a GUI Agent.** Your task is to analyze a given user task, review current screenshot and previous actions, and determine the next action to complete the task. ### User Task {user_task} ### Previous Actions {previous_actions} ### Available Actions Click(box=(x1, y1)) Drag(start=(x1, y1), end=(x2, y2)) Scroll(start=(x1, y1), end=(x2, y2), direction='down/up/right/left') Type(content='') Launch(app='') Wait() Finished(content='') CallUser(content='') LongPress(box=(x1, y1)) PressBack() PressHome() PressEnter() PressRecent() ### Instruction - Make sure you understand the task goal to avoid wrong actions. - Examine the screenshot carefully. History may be unreliable. - For user questions, reply with `CallUser`, then `Finished` if done. - Explore screen content using scroll in different directions. - Copy text: select → click `copy`. - Paste text: long press text box → click `paste`. - First reason inside <think>, then provide <action>, then summarize in <conclusion>. """ # ----------------------------- # Parse action # ----------------------------- def parse_action(action_str: str) -> Tuple[str, Dict[str, Any]]: """Parse action string into action type + params.""" pattern = r"^(\w+)\((.*)\)$" match = re.match(pattern, action_str.strip(), re.DOTALL) if not match: print(f"Invalid action type: {action_str}") return "", {} action_type, params_str = match.group(1), match.group(2).strip() params = {} if params_str: try: # split by comma not inside parentheses param_pairs = re.split(r",(?![^(]*\))", params_str) for pair in param_pairs: if "=" in pair: key, value = pair.split("=", 1) params[key.strip()] = value.strip().strip("'").strip() else: params[pair.strip()] = None except Exception as e: print(f"Parse param failed: {e}") return action_type, {} return action_type, params def extract_tag(content: str, tag: str) -> str: """Extract latest <tag>...</tag> content from model output.""" pattern = fr"<{tag}>(.*?)</{tag}>" matches = list(re.finditer(pattern, content, re.DOTALL)) if not matches: print(f"{tag} Not Found") return "" return matches[-1].group(1).strip() # ----------------------------- # Inference # ----------------------------- def inference(image_path: str, goal: str) -> Dict[str, str]: if not (os.path.exists(image_path) and os.path.isfile(image_path)): raise FileNotFoundError(f"Invalid input image path: {image_path}") full_prompt = PROMPT_TEMPLATE.format(user_task=goal, previous_actions="") messages = [{ "role": "user", "content": [ {"type": "text", "text": full_prompt}, {"type": "image", "image": image_path, "min_pixels": 830000, "max_pixels": 937664}, ], }] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) model_inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ).to(model.device) generated_ids = model.generate(**model_inputs, **GENERATION_CONFIG) generated_ids_trimmed = [out[len(inp):] for inp, out in zip(model_inputs.input_ids, generated_ids)] output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True)[0] return { "raw_response": output_text, "think": extract_tag(output_text, "think"), "action": extract_tag(output_text, "action"), "conclusion": extract_tag(output_text, "conclusion"), } ``` ### Usage ⚠️ For action types that include coordinates (e.g., click, scroll), the current code does **not** handle coordinate conversion. You need to map the coordinates back to the original image space using `max_pixels` and `min_pixels` before applying them. --- ### Results on AndroidWorld This is the compressed package of validation trajectories for **AndroidWorld**, including execution logs and navigation paths. 📥 Download: [UI-Venus-androidworld.zip](https://github.com/inclusionAI/UI-Venus) | Models | With Planner | A11y Tree | Screenshot | Success Rate (pass@1) | |--------|--------------|-----------|------------|------------------------| | **Closed-source Models** | | | | | | GPT-4o| ❌ | ✅ | ❌ | 30.6 | | ScaleTrack| ❌ | ✅ | ❌ | 44.0 | | SeedVL-1.5 | ❌ | ✅ | ✅ | 62.1 | | UI-TARS-1.5 | ❌ | ❌ | ✅ | 64.2 | | **Open-source Models** | | | | | | GUI-Critic-R1-7B | ❌ | ✅ | ✅ | 27.6 | | Qwen2.5-VL-72B* | ❌ | ❌ | ✅ | 35.0 | | UGround | ✅ | ❌ | ✅ | 44.0 | | Aria-UI | ✅ | ❌ | ✅ | 44.8 | | UI-TARS-72B | ❌ | ❌ | ✅ | 46.6 | | GLM-4.5v | ❌ | ❌ | ✅ | 57.0 | | **Ours** | | | | | | UI-Venus-Navi-7B | ❌ | ❌ | ✅ | **49.1** | | UI-Venus-Navi-72B | ❌ | ❌ | ✅ | **65.9** | > **Table:** Performance comparison on **AndroidWorld** for end-to-end models. Our UI-Venus-Navi-72B achieves state-of-the-art performance, outperforming all baseline methods across different settings. ### Results on AndroidControl and GUI-Odyssey | Models | AndroidControl-Low<br>Type Acc. | AndroidControl-Low<br>Step SR | AndroidControl-High<br>Type Acc. | AndroidControl-High<br>Step SR | GUI-Odyssey<br>Type Acc. | GUI-Odyssey<br>Step SR | |--------|-------------------------------|-----------------------------|-------------------------------|-----------------------------|------------------------|----------------------| | **Closed-source Models** | | | | | | | | GPT-4o | 74.3 | 19.4 | 66.3 | 20.8 | 34.3 | 3.3 | | **Open Source Models** | | | | | | | | Qwen2.5-VL-7B | 94.1 | 85.0 | 75.1 | 62.9 | 59.5 | 46.3 | | SeeClick | 93.0 | 75.0 | 82.9 | 59.1 | 71.0 | 53.9 | | OS-Atlas-7B | 93.6 | 85.2 | 85.2 | 71.2 | 84.5 | 62.0 | | Aguvis-7B| - | 80.5 | - | 61.5 | - | - | | Aguvis-72B| - | 84.4 | - | 66.4 | - | - | | OS-Genesis-7B | 90.7 | 74.2 | 66.2 | 44.5 | - | - | | UI-TARS-7B| 98.0 | 90.8 | 83.7 | 72.5 | 94.6 | 87.0 | | UI-TARS-72B| **98.1** | 91.3 | 85.2 | 74.7 | **95.4** | **88.6** | | GUI-R1-7B| 85.2 | 66.5 | 71.6 | 51.7 | 65.5 | 38.8 | | NaviMaster-7B | 85.6 | 69.9 | 72.9 | 54.0 | - | - | | UI-AGILE-7B | 87.7 | 77.6 | 80.1 | 60.6 | - | - | | AgentCPM-GUI | 94.4 | 90.2 | 77.7 | 69.2 | 90.0 | 75.0 | | **Ours** | | | | | | | | UI-Venus-Navi-7B | 97.1 | 92.4 | **86.5** | 76.1 | 87.3 | 71.5 | | UI-Venus-Navi-72B | 96.7 | **92.9** | 85.9 | **77.2** | 87.2 | 72.4 | > **Table:** Performance comparison on offline UI navigation datasets including AndroidControl and GUI-Odyssey. Note that models with * are reproduced. # Citation Please consider citing if you find our work useful: ```plain @misc{gu2025uivenustechnicalreportbuilding, title={UI-Venus Technical Report: Building High-performance UI Agents with RFT}, author={Zhangxuan Gu and Zhengwen Zeng and Zhenyu Xu and Xingran Zhou and Shuheng Shen and Yunfei Liu and Beitong Zhou and Changhua Meng and Tianyu Xia and Weizhi Chen and Yue Wen and Jingya Dou and Fei Tang and Jinzhen Lin and Yulin Liu and Zhenlin Guo and Yichen Gong and Heng Jia and Changlong Gao and Yuan Guo and Yong Deng and Zhenyu Guo and Liang Chen and Weiqiang Wang}, year={2025}, eprint={2508.10833}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2508.10833}, } ```
concept-unlearning/Phi-3-mini-4k-instruct_ft_lora_all_novels_v3_ft_rmu_lora_positive_dataset_v1
concept-unlearning
2025-08-19T02:55:03Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:53:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
inclusionAI/UI-Venus-Ground-72B
inclusionAI
2025-08-19T02:54:46Z
0
8
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "image-text-to-text", "conversational", "arxiv:2508.10833", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-16T07:27:06Z
--- license: apache-2.0 pipeline_tag: image-text-to-text library_name: transformers --- ### UI-Venus This repository contains the UI-Venus model from the report [UI-Venus: Building High-performance UI Agents with RFT](https://arxiv.org/abs/2508.10833). UI-Venus is a native UI agent based on the Qwen2.5-VL multimodal large language model, designed to perform precise GUI element grounding and effective navigation using only screenshots as input. It achieves state-of-the-art performance through Reinforcement Fine-Tuning (RFT) with high-quality training data. More inference details and usage guides are available in the GitHub repository. We will continue to update results on standard benchmarks including Screenspot-v2/Pro and AndroidWorld. [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![Report](https://img.shields.io/badge/Report-Technical%20Report-blueviolet?logo=notion)](http://arxiv.org/abs/2508.10833) [![GitHub](https://img.shields.io/badge/GitHub-Repository-green?logo=github)](https://github.com/inclusionAI/UI-Venus) [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Model-orange?logo=huggingface)](https://huggingface.co/inclusionAI/UI-Venus-Ground-7B) --- <p align="center"> 📈 UI-Venus Benchmark Performance </p> <p align="center"> <img src="performance_venus.png" alt="UI-Venus Performance Across Datasets" width="1200" /> <br> </p> > **Figure:** Performance of UI-Venus across multiple benchmark datasets. UI-Venus achieves **State-of-the-Art (SOTA)** results on key UI understanding and interaction benchmarks, including **ScreenSpot-Pro**, **ScreenSpot-v2**, **OS-World-G**, **UI-Vision**, and **Android World**. The results demonstrate its superior capability in visual grounding, UI navigation, cross-platform generalization, and complex task reasoning. ### Model Description UI-Venus is a multimodal UI agent built on Qwen2.5-VL that performs accurate UI grounding and navigation using only screenshots as input. The 7B and 72B variants achieve 94.1%/50.8% and 95.3%/61.9% on Screenspot-V2 and Screenspot-Pro benchmarks, surpassing prior SOTA models such as GTA1 and UI-TARS-1.5. On the AndroidWorld navigation benchmark, they achieve 49.1% and 65.9% success rates, respectively, demonstrating strong planning and generalization capabilities Key innovations include: - **SOTA Open-Source UI Agent**: Publicly released to advance research in autonomous UI interaction and agent-based systems. - **Reinforcement Fine-Tuning (RFT)**: Utilizes carefully designed reward functions for both grounding and navigation tasks - **Efficient Data Cleaning**: Trained on several hundred thousand high-quality samples to ensure robustness. - **Self-Evolving Trajectory History Alignment & Sparse Action Enhancement**: Improves reasoning coherence and action distribution for better long-horizon planning. --- ## Installation First, install the required dependencies: ```python pip install transformers==4.49.0 qwen-vl-utils ``` --- ## Quick Start Use the shell scripts to launch the evaluation. The evaluation setup follows the same protocol as **ScreenSpot**, including data format, annotation structure, and metric calculation. ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor import torch import os from qwen_vl_utils import process_vision_info # model path model_name = "inclusionAI/UI-Venus-Ground-7B" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( model_name, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ).eval() tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) processor = AutoProcessor.from_pretrained(model_name) generation_config = { "max_new_tokens": 2048, "do_sample": False, "temperature": 0.0 } def inference(instruction, image_path): assert os.path.exists(image_path) and os.path.isfile(image_path), "Invalid input image path." prompt_origin = 'Outline the position corresponding to the instruction: {}. The output should be only [x1,y1,x2,y2].' full_prompt = prompt_origin.format(instruction) min_pixels = 2000000 max_pixels = 4800000 messages = [ { "role": "user", "content": [ { "type": "image", "image": image_path, "min_pixels": min_pixels, "max_pixels": max_pixels }, {"type": "text", "text": full_prompt}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) model_inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ).to(model.device) generated_ids = model.generate(**model_inputs, **generation_config) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(model_inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) # normalized coordinates try: box = eval(output_text[0]) input_height = model_inputs['image_grid_thw'][0][1] * 14 input_width = model_inputs['image_grid_thw'][0][2] * 14 abs_x1 = float(box[0]) / input_width abs_y1 = float(box[1]) / input_height abs_x2 = float(box[2]) / input_width abs_y2 = float(box[3]) / input_height bbox = [abs_x1, abs_y1, abs_x2, abs_y2] except Exception: bbox = [0, 0, 0, 0] point = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2] result_dict = { "result": "positive", "format": "x1y1x2y2", "raw_response": output_text, "bbox": bbox, "point": point } return result_dict ``` --- ### Results on ScreenSpot-v2 | **Model** | **Mobile Text** | **Mobile Icon** | **Desktop Text** | **Desktop Icon** | **Web Text** | **Web Icon** | **Avg.** | |---|---|---|---|---|---|---|---| | uitars-1.5 | - | - | - | - | - | - | 94.2 | | Seed-1.5-VL | - | - | - | - | - | - | 95.2 | | GPT-4o | 26.6 | 24.2 | 24.2 | 19.3 | 12.8 | 11.8 | 20.1 | | Qwen2.5-VL-7B | 97.6 | 87.2 | 90.2 | 74.2 | 93.2 | 81.3 | 88.8 | | UI-TARS-7B | 96.9 | 89.1 | 95.4 | 85.0 | 93.6 | 85.2 | 91.6 | | UI-TARS-72B | 94.8 | 86.3 | 91.2 | 87.9 | 91.5 | 87.7 | 90.3 | | LPO | 97.9 | 82.9 | 95.9 | 86.4 | 95.6 | 84.2 | 90.5 | | **UI-Venus-Ground-7B (Ours)** | **99.0** | **90.0** | **97.0** | **90.7** | **96.2** | **88.7** | **94.1** | | **UI-Venus-Ground-72B (Ours)** | **99.7** | **93.8** | **95.9** | **90.0** | **96.2** | **92.6** | **95.3** | --- ### Results on ScreenSpot-Pro Performance comparison of GUI agent models across six task categories on **ScreenSpot-Pro**. Scores are in percentage (%). `T` = Text, `I` = Icon. `*`: reproduced; `†`: trained from UI-TARS-1.5-7B. | Model | CAD (T/I) | Dev (T/I) | Creative (T/I) | Scientific (T/I) | Office (T/I) | OS (T/I) | Avg T | Avg I | **Overall** | Type | |-------|-----------|-----------|----------------|------------------|--------------|---------|--------|--------|------------|------| | GPT-4o | 2.0 / 0.0 | 1.3 / 0.0 | 1.0 / 0.0 | 2.1 / 0.0 | 1.1 / 0.0 | 0.0 / 0.0 | 1.3 | 0.0 | 0.8 | Closed | | Claude Computer Use | 14.5 / 3.7 | 22.0 / 3.9 | 25.9 / 3.4 | 33.9 / 15.8 | 30.1 / 16.3 | 11.0 / 4.5 | 23.4 | 7.1 | 17.1 | Closed | | UI-TARS-1.5 | – / – | – / – | – / – | – / – | – / – | – / – | – | – | **61.6** | Closed | | Seed1.5-VL | – / – | – / – | – / – | – / – | – / – | – / – | – | – | 60.9 | Closed | | Qwen2.5-VL-7B\* | 16.8 / 1.6 | 46.8 / 4.1 | 35.9 / 7.7 | 49.3 / 7.3 | 52.5 / 20.8 | 37.4 / 6.7 | 38.9 | 7.1 | 26.8 | SFT | | Qwen2.5-VL-72B* | 54.8 / 15.6 | 65.6 / 16.6 | 63.1 / 19.6 | 78.5 / 34.5 | 79.1 / 47.2 | 66.4 / 29.2 | 67.3 | 25.0 | 51.2 | SFT | | UI-TARS-7B | 20.8 / 9.4 | 58.4 / 12.4 | 50.0 / 9.1 | 63.9 / 31.8 | 63.3 / 20.8 | 30.8 / 16.9 | 47.8 | 16.2 | 35.7 | SFT | | UI-TARS-72B | 18.8 / 12.5 | 62.9 / 17.2 | 57.1 / 15.4 | 64.6 / 20.9 | 63.3 / 26.4 | 42.1 / 15.7 | 50.9 | 17.6 | 38.1 | SFT | | Phi-Ground-7B | 26.9 / 17.2 | 70.8 / 16.7 | 56.6 / 13.3 | 58.0 / 29.1 | 76.4 / 44.0 | 55.1 / 25.8 | 56.4 | 21.8 | 43.2 | RL | | UI-TARS-1.5-7B | – / – | – / – | – / – | – / – | – / – | – / – | – | – | 49.6 | RL | | GTA1-7B† | 53.3 / 17.2 | 66.9 / 20.7 | 62.6 / 18.2 | 76.4 / 31.8 | 82.5 / 50.9 | 48.6 / 25.9 | 65.5 | 25.2 | 50.1 | RL | | GTA1-72B | 56.9 / 28.1 | 79.9 / 33.1 | 73.2 / 20.3 | 81.9 / 38.2 | 85.3 / 49.1 | 73.8 / 39.1 | 74.5 | 32.5 | 58.4 | RL | | **UI-Venus-Ground-7B** | 60.4 / 21.9 | 74.7 / 24.1 | 63.1 / 14.7 | 76.4 / 31.8 | 75.7 / 41.5 | 49.5 / 22.5 | 67.1 | 24.3 | **50.8** | Ours (RL) | | **UI-Venus-Ground-72B** | 66.5 / 29.7 | 84.4 / 33.1 | 73.2 / 30.8 | 84.7 / 42.7 | 83.1 / 60.4 | 75.7 / 36.0 | 77.4 | 36.8 | **61.9** | Ours (RL) | > 🔝 **Experimental results show that UI-Venus-Ground-72B achieves state-of-the-art performance on ScreenSpot-Pro with an average score of 61.7, while also setting new benchmarks on ScreenSpot-v2(95.3), OSWorld_G(69.8), AgentCPM(84.7), and UI-Vision(38.0), highlighting its effectiveness in complex visual grounding and action prediction tasks.** # Citation Please consider citing if you find our work useful: ```plain @misc{gu2025uivenustechnicalreportbuilding, title={UI-Venus Technical Report: Building High-performance UI Agents with RFT}, author={Zhangxuan Gu and Zhengwen Zeng and Zhenyu Xu and Xingran Zhou and Shuheng Shen and Yunfei Liu and Beitong Zhou and Changhua Meng and Tianyu Xia and Weizhi Chen and Yue Wen and Jingya Dou and Fei Tang and Jinzhen Lin and Yulin Liu and Zhenlin Guo and Yichen Gong and Heng Jia and Changlong Gao and Yuan Guo and Yong Deng and Zhenyu Guo and Liang Chen and Weiqiang Wang}, year={2025}, eprint={2508.10833}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2508.10833}, } ```
John6666/alcai-anime-haven-awakening-v10-sdxl
John6666
2025-08-19T02:54:16Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "hentai", "waifu", "chara", "new", "colorful", "girls", "sharpness", "detail", "vibrant", "deeper Colors", "lghting", "contrast", "textures", "stylization", "superior atmospheric immersion", "advanced environmental effects", "emotional range", "cinematic quality", "peak polish & detail", "consistent", "multi-character", "atmospheric depth", "lighting", "nuance", "expressions", "Illustrious XL v2.0", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-XL-v2.0", "base_model:finetune:OnomaAIResearch/Illustrious-XL-v2.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-19T02:49:42Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - hentai - waifu - chara - new - colorful - girls - sharpness - detail - vibrant - deeper Colors - lghting - contrast - textures - stylization - superior atmospheric immersion - advanced environmental effects - emotional range - cinematic quality - peak polish & detail - consistent - multi-character - atmospheric depth - lighting - nuance - expressions - Illustrious XL v2.0 - illustrious base_model: OnomaAIResearch/Illustrious-XL-v2.0 --- Original model is [here](https://civitai.com/models/1445562?modelVersionId=2126795). This model created by [alcatraz974](https://civitai.com/user/alcatraz974).
ekotaru/whisper-sanskrit-asr-model
ekotaru
2025-08-19T02:51:12Z
9
0
null
[ "pytorch", "tensorboard", "whisper", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2025-08-14T14:41:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-sanskrit-asr-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-sanskrit-asr-model This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2299 - Wer: 1.0 - Cer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.7277 | 1.0 | 70 | 0.5042 | 2.7339 | 2.0537 | | 0.3391 | 2.0 | 140 | 0.3873 | 2.5505 | 2.4385 | | 0.2061 | 3.0 | 210 | 0.2786 | 1.0 | 1.0 | | 0.0813 | 4.0 | 280 | 0.2293 | 1.0 | 1.0 | | 0.0502 | 5.0 | 350 | 0.2299 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.13.3
jerryzh168/Qwen3-8B-Base-INT8-INT4
jerryzh168
2025-08-19T02:49:12Z
0
0
transformers
[ "transformers", "pytorch", "qwen3", "text-generation", "torchao", "conversational", "en", "base_model:Qwen/Qwen3-8B-Base", "base_model:quantized:Qwen/Qwen3-8B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:48:41Z
--- base_model: Qwen/Qwen3-8B-Base tags: - transformers - torchao - qwen3 license: apache-2.0 language: - en --- # INT8-INT4 Qwen/Qwen3-8B-Base model - **Developed by:** jerryzh168 - **License:** apache-2.0 - **Quantized from Model :** Qwen/Qwen3-8B-Base - **Quantization Method :** INT8-INT4
Intellicia/Sullivan
Intellicia
2025-08-19T02:48:34Z
0
0
transformers
[ "transformers", "safetensors", "qwen3_moe", "text-generation", "conversational", "arxiv:2402.17463", "arxiv:2407.02490", "arxiv:2501.15383", "arxiv:2404.06654", "arxiv:2505.09388", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:47:35Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507/blob/main/LICENSE pipeline_tag: text-generation --- # Qwen3-30B-A3B-Instruct-2507 <a href="https://chat.qwen.ai/?model=Qwen3-30B-A3B-2507" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Highlights We introduce the updated version of the **Qwen3-30B-A3B non-thinking mode**, named **Qwen3-30B-A3B-Instruct-2507**, featuring the following key enhancements: - **Significant improvements** in general capabilities, including **instruction following, logical reasoning, text comprehension, mathematics, science, coding and tool usage**. - **Substantial gains** in long-tail knowledge coverage across **multiple languages**. - **Markedly better alignment** with user preferences in **subjective and open-ended tasks**, enabling more helpful responses and higher-quality text generation. - **Enhanced capabilities** in **256K long-context understanding**. ![image/jpeg](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-2507/Qwen3-30B-A3B-Instruct-2507.jpeg) ## Model Overview **Qwen3-30B-A3B-Instruct-2507** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 30.5B in total and 3.3B activated - Number of Paramaters (Non-Embedding): 29.9B - Number of Layers: 48 - Number of Attention Heads (GQA): 32 for Q and 4 for KV - Number of Experts: 128 - Number of Activated Experts: 8 - Context Length: **262,144 natively**. **NOTE: This model supports only non-thinking mode and does not generate ``<think></think>`` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.** For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Performance | | Deepseek-V3-0324 | GPT-4o-0327 | Gemini-2.5-Flash Non-Thinking | Qwen3-235B-A22B Non-Thinking | Qwen3-30B-A3B Non-Thinking | Qwen3-30B-A3B-Instruct-2507 | |--- | --- | --- | --- | --- | --- | --- | | **Knowledge** | | | | | | | | MMLU-Pro | **81.2** | 79.8 | 81.1 | 75.2 | 69.1 | 78.4 | | MMLU-Redux | 90.4 | **91.3** | 90.6 | 89.2 | 84.1 | 89.3 | | GPQA | 68.4 | 66.9 | **78.3** | 62.9 | 54.8 | 70.4 | | SuperGPQA | **57.3** | 51.0 | 54.6 | 48.2 | 42.2 | 53.4 | | **Reasoning** | | | | | | | | AIME25 | 46.6 | 26.7 | **61.6** | 24.7 | 21.6 | 61.3 | | HMMT25 | 27.5 | 7.9 | **45.8** | 10.0 | 12.0 | 43.0 | | ZebraLogic | 83.4 | 52.6 | 57.9 | 37.7 | 33.2 | **90.0** | | LiveBench 20241125 | 66.9 | 63.7 | **69.1** | 62.5 | 59.4 | 69.0 | | **Coding** | | | | | | | | LiveCodeBench v6 (25.02-25.05) | **45.2** | 35.8 | 40.1 | 32.9 | 29.0 | 43.2 | | MultiPL-E | 82.2 | 82.7 | 77.7 | 79.3 | 74.6 | **83.8** | | Aider-Polyglot | 55.1 | 45.3 | 44.0 | **59.6** | 24.4 | 35.6 | | **Alignment** | | | | | | | | IFEval | 82.3 | 83.9 | 84.3 | 83.2 | 83.7 | **84.7** | | Arena-Hard v2* | 45.6 | 61.9 | 58.3 | 52.0 | 24.8 | **69.0** | | Creative Writing v3 | 81.6 | 84.9 | 84.6 | 80.4 | 68.1 | **86.0** | | WritingBench | 74.5 | 75.5 | 80.5 | 77.0 | 72.2 | **85.5** | | **Agent** | | | | | | | | BFCL-v3 | 64.7 | 66.5 | 66.1 | **68.0** | 58.6 | 65.1 | | TAU1-Retail | 49.6 | 60.3# | **65.2** | 65.2 | 38.3 | 59.1 | | TAU1-Airline | 32.0 | 42.8# | **48.0** | 32.0 | 18.0 | 40.0 | | TAU2-Retail | **71.1** | 66.7# | 64.3 | 64.9 | 31.6 | 57.0 | | TAU2-Airline | 36.0 | 42.0# | **42.5** | 36.0 | 18.0 | 38.0 | | TAU2-Telecom | **34.0** | 29.8# | 16.9 | 24.6 | 18.4 | 12.3 | | **Multilingualism** | | | | | | | | MultiIF | 66.5 | 70.4 | 69.4 | 70.2 | **70.8** | 67.9 | | MMLU-ProX | 75.8 | 76.2 | **78.3** | 73.2 | 65.1 | 72.0 | | INCLUDE | 80.1 | 82.1 | **83.8** | 75.6 | 67.8 | 71.9 | | PolyMATH | 32.2 | 25.5 | 41.9 | 27.0 | 23.3 | **43.1** | *: For reproducibility, we report the win rates evaluated by GPT-4.1. \#: Results were generated using GPT-4o-20241120, as access to the native function calling API of GPT-4o-0327 was unavailable. ## Quickstart The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3_moe' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-30B-A3B-Instruct-2507" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=16384 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() content = tokenizer.decode(output_ids, skip_special_tokens=True) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B-Instruct-2507 --context-length 262144 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-30B-A3B-Instruct-2507 --max-model-len 262144 ``` **Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.** For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-30B-A3B-Instruct-2507', # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Ultra-Long Texts To support **ultra-long context processing** (up to **1 million tokens**), we integrate two key techniques: - **[Dual Chunk Attention](https://arxiv.org/abs/2402.17463) (DCA)**: A length extrapolation method that splits long sequences into manageable chunks while preserving global coherence. - **[MInference](https://arxiv.org/abs/2407.02490)**: A sparse attention mechanism that reduces computational overhead by focusing on critical token interactions. Together, these innovations significantly improve both **generation quality** and **inference efficiency** for sequences beyond 256K tokens. On sequences approaching 1M tokens, the system achieves up to a **3× speedup** compared to standard attention implementations. For full technical details, see the [Qwen2.5-1M Technical Report](https://arxiv.org/abs/2501.15383). ### How to Enable 1M Token Context > [!NOTE] > To effectively process a 1 million token context, users will require approximately **240 GB** of total GPU memory. This accounts for model weights, KV-cache storage, and peak activation memory demands. #### Step 1: Update Configuration File Download the model and replace the content of your `config.json` with `config_1m.json`, which includes the config for length extrapolation and sparse attention. ```bash export MODELNAME=Qwen3-30B-A3B-Instruct-2507 huggingface-cli download Qwen/${MODELNAME} --local-dir ${MODELNAME} mv ${MODELNAME}/config.json ${MODELNAME}/config.json.bak mv ${MODELNAME}/config_1m.json ${MODELNAME}/config.json ``` #### Step 2: Launch Model Server After updating the config, proceed with either **vLLM** or **SGLang** for serving the model. #### Option 1: Using vLLM To run Qwen with 1M context support: ```bash pip install -U vllm \ --torch-backend=auto \ --extra-index-url https://wheels.vllm.ai/nightly ``` Then launch the server with Dual Chunk Flash Attention enabled: ```bash VLLM_ATTENTION_BACKEND=DUAL_CHUNK_FLASH_ATTN VLLM_USE_V1=0 \ vllm serve ./Qwen3-30B-A3B-Instruct-2507 \ --tensor-parallel-size 4 \ --max-model-len 1010000 \ --enable-chunked-prefill \ --max-num-batched-tokens 131072 \ --enforce-eager \ --max-num-seqs 1 \ --gpu-memory-utilization 0.85 ``` ##### Key Parameters | Parameter | Purpose | |--------|--------| | `VLLM_ATTENTION_BACKEND=DUAL_CHUNK_FLASH_ATTN` | Enables the custom attention kernel for long-context efficiency | | `--max-model-len 1010000` | Sets maximum context length to ~1M tokens | | `--enable-chunked-prefill` | Allows chunked prefill for very long inputs (avoids OOM) | | `--max-num-batched-tokens 131072` | Controls batch size during prefill; balances throughput and memory | | `--enforce-eager` | Disables CUDA graph capture (required for dual chunk attention) | | `--max-num-seqs 1` | Limits concurrent sequences due to extreme memory usage | | `--gpu-memory-utilization 0.85` | Set the fraction of GPU memory to be used for the model executor | #### Option 2: Using SGLang First, clone and install the specialized branch: ```bash git clone https://github.com/sgl-project/sglang.git cd sglang pip install -e "python[all]" ``` Launch the server with DCA support: ```bash python3 -m sglang.launch_server \ --model-path ./Qwen3-30B-A3B-Instruct-2507 \ --context-length 1010000 \ --mem-frac 0.75 \ --attention-backend dual_chunk_flash_attn \ --tp 4 \ --chunked-prefill-size 131072 ``` ##### Key Parameters | Parameter | Purpose | |---------|--------| | `--attention-backend dual_chunk_flash_attn` | Activates Dual Chunk Flash Attention | | `--context-length 1010000` | Defines max input length | | `--mem-frac 0.75` | The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors. | | `--tp 4` | Tensor parallelism size (matches model sharding) | | `--chunked-prefill-size 131072` | Prefill chunk size for handling long inputs without OOM | #### Troubleshooting: 1. Encountering the error: "The model's max sequence length (xxxxx) is larger than the maximum number of tokens that can be stored in the KV cache." or "RuntimeError: Not enough memory. Please try to increase --mem-fraction-static." The VRAM reserved for the KV cache is insufficient. - vLLM: Consider reducing the ``max_model_len`` or increasing the ``tensor_parallel_size`` and ``gpu_memory_utilization``. Alternatively, you can reduce ``max_num_batched_tokens``, although this may significantly slow down inference. - SGLang: Consider reducing the ``context-length`` or increasing the ``tp`` and ``mem-frac``. Alternatively, you can reduce ``chunked-prefill-size``, although this may significantly slow down inference. 2. Encountering the error: "torch.OutOfMemoryError: CUDA out of memory." The VRAM reserved for activation weights is insufficient. You can try lowering ``gpu_memory_utilization`` or ``mem-frac``, but be aware that this might reduce the VRAM available for the KV cache. 3. Encountering the error: "Input prompt (xxxxx tokens) + lookahead slots (0) is too long and exceeds the capacity of the block manager." or "The input (xxx xtokens) is longer than the model's context length (xxx tokens)." The input is too lengthy. Consider using a shorter sequence or increasing the ``max_model_len`` or ``context-length``. #### Long-Context Performance We test the model on an 1M version of the [RULER](https://arxiv.org/abs/2404.06654) benchmark. | Model Name | Acc avg | 4k | 8k | 16k | 32k | 64k | 96k | 128k | 192k | 256k | 384k | 512k | 640k | 768k | 896k | 1000k | |---------------------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | Qwen3-30B-A3B (Non-Thinking) | 72.0 | 97.1 | 96.1 | 95.0 | 92.2 | 82.6 | 79.7 | 76.9 | 70.2 | 66.3 | 61.9 | 55.4 | 52.6 | 51.5 | 52.0 | 50.9 | | Qwen3-30B-A3B-Instruct-2507 (Full Attention) | 86.8 | 98.0 | 96.7 | 96.9 | 97.2 | 93.4 | 91.0 | 89.1 | 89.8 | 82.5 | 83.6 | 78.4 | 79.7 | 77.6 | 75.7 | 72.8 | | Qwen3-30B-A3B-Instruct-2507 (Sparse Attention) | 86.8 | 98.0 | 97.1 | 96.3 | 95.1 | 93.6 | 92.5 | 88.1 | 87.7 | 82.9 | 85.7 | 80.7 | 80.0 | 76.9 | 75.5 | 72.2 | * All models are evaluated with Dual Chunk Attention enabled. * Since the evaluation is time-consuming, we use 260 samples for each length (13 sub-tasks, 20 samples for each). ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - We suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 16,384 tokens for most queries, which is adequate for instruct models. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3technicalreport, title={Qwen3 Technical Report}, author={Qwen Team}, year={2025}, eprint={2505.09388}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.09388}, } ```
jerryzh168/Qwen3-8B-Base-INT4
jerryzh168
2025-08-19T02:48:00Z
0
0
transformers
[ "transformers", "pytorch", "qwen3", "text-generation", "torchao", "conversational", "en", "base_model:Qwen/Qwen3-8B-Base", "base_model:quantized:Qwen/Qwen3-8B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:47:37Z
--- base_model: Qwen/Qwen3-8B-Base tags: - transformers - torchao - qwen3 license: apache-2.0 language: - en --- # INT4 Qwen/Qwen3-8B-Base model - **Developed by:** jerryzh168 - **License:** apache-2.0 - **Quantized from model :** Qwen/Qwen3-8B-Base - **Quantization Method :** INT4
jerryzh168/Qwen3-8B-Base-FP8
jerryzh168
2025-08-19T02:47:19Z
0
0
transformers
[ "transformers", "pytorch", "qwen3", "text-generation", "torchao", "conversational", "en", "base_model:Qwen/Qwen3-8B-Base", "base_model:quantized:Qwen/Qwen3-8B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:46:48Z
--- base_model: Qwen/Qwen3-8B-Base tags: - transformers - torchao - qwen3 license: apache-2.0 language: - en --- # FP8 Qwen/Qwen3-8B-Base model - **Developed by:** jerryzh168 - **License:** apache-2.0 - **Quantized from model :** Qwen/Qwen3-8B-Base - **Quantization Method :** FP8
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755570080
sampingkaca72
2025-08-19T02:45:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:45:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AppliedLucent/nemo-phase3
AppliedLucent
2025-08-19T02:42:29Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:AppliedLucent/nemo-phase2", "base_model:finetune:AppliedLucent/nemo-phase2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:27:12Z
--- base_model: AppliedLucent/nemo-phase2 tags: - text-generation-inference - transformers - unsloth - mistral license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** AppliedLucent - **License:** apache-2.0 - **Finetuned from model :** AppliedLucent/nemo-phase2 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Comfy-Org/Qwen-Image-Edit_ComfyUI
Comfy-Org
2025-08-19T02:41:23Z
0
18
diffusion-single-file
[ "diffusion-single-file", "comfyui", "license:apache-2.0", "region:us" ]
null
2025-08-19T02:18:21Z
--- license: apache-2.0 tags: - diffusion-single-file - comfyui ---
indoempatnol/blockassist-bc-fishy_wary_swan_1755569481
indoempatnol
2025-08-19T02:39:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:39:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755569533
pempekmangedd
2025-08-19T02:39:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:39:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hobson123/blockassist-bc-mammalian_dense_gibbon_1755570773
hobson123
2025-08-19T02:38:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:38:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
phospho-app/parkgyuhyeon-ACT-TestTwoArm-omkun
phospho-app
2025-08-19T02:38:34Z
0
0
phosphobot
[ "phosphobot", "safetensors", "act", "robotics", "dataset:parkgyuhyeon/TestTwoArm", "region:us" ]
robotics
2025-08-19T01:42:05Z
--- datasets: parkgyuhyeon/TestTwoArm library_name: phosphobot pipeline_tag: robotics model_name: act tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successful, try it out on your robot! ## Training parameters: - **Dataset**: [parkgyuhyeon/TestTwoArm](https://huggingface.co/datasets/parkgyuhyeon/TestTwoArm) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 40 - **Training steps**: 8000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
su-collaborations/ui-tars-model-webclick-all
su-collaborations
2025-08-19T02:37:41Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:ByteDance-Seed/UI-TARS-1.5-7B", "lora", "transformers", "text-generation", "base_model:ByteDance-Seed/UI-TARS-1.5-7B", "license:apache-2.0", "region:us" ]
text-generation
2025-08-16T13:23:13Z
--- library_name: peft license: apache-2.0 base_model: ByteDance-Seed/UI-TARS-1.5-7B tags: - base_model:adapter:ByteDance-Seed/UI-TARS-1.5-7B - lora - transformers pipeline_tag: text-generation model-index: - name: ui-tars-model-webclick-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ui-tars-model-webclick-all This model is a fine-tuned version of [ByteDance-Seed/UI-TARS-1.5-7B](https://huggingface.co/ByteDance-Seed/UI-TARS-1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.1462 | 0.05 | 50 | 0.3293 | | 4.4928 | 0.1 | 100 | 0.2736 | | 4.2465 | 0.15 | 150 | 0.2545 | | 4.0585 | 0.2 | 200 | 0.2520 | | 3.9869 | 0.25 | 250 | 0.2456 | | 3.7458 | 0.3 | 300 | 0.2395 | | 3.4935 | 0.35 | 350 | 0.2462 | | 3.6618 | 0.4 | 400 | 0.2517 | | 3.6609 | 0.45 | 450 | 0.2346 | | 3.5013 | 0.5 | 500 | 0.2371 | | 3.4309 | 0.55 | 550 | 0.2387 | | 3.6304 | 0.6 | 600 | 0.2311 | | 3.3207 | 0.65 | 650 | 0.2296 | | 3.4227 | 0.7 | 700 | 0.2273 | | 3.2289 | 0.75 | 750 | 0.2264 | | 3.3568 | 0.8 | 800 | 0.2265 | | 3.2826 | 0.85 | 850 | 0.2274 | | 3.3092 | 0.9 | 900 | 0.2262 | | 3.1876 | 0.95 | 950 | 0.2281 | | 3.1462 | 1.0 | 1000 | 0.2281 | ### Framework versions - PEFT 0.16.0 - Transformers 4.54.1 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Ellbendls/Qwen-2.5-3b-Text_to_SQL
Ellbendls
2025-08-19T02:34:10Z
1,477
5
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:gretelai/synthetic_text_to_sql", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-27T00:29:40Z
--- library_name: transformers license: mit datasets: - gretelai/synthetic_text_to_sql base_model: - Qwen/Qwen2.5-3B-Instruct pipeline_tag: text-generation language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara --- # Fine-Tuned LLM for Text-to-SQL Conversion This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) designed to convert natural language queries into SQL statements. It was trained on the `gretelai/synthetic_text_to_sql` dataset and can provide both SQL queries and table schema context when needed. --- ## Model Details ### Model Description This model has been fine-tuned to help users generate SQL queries based on natural language prompts. In scenarios where table schema context is missing, the model is trained to generate schema definitions along with the SQL query, making it a robust solution for various Text-to-SQL tasks. - **Base Model:** [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) - **Dataset:** [Gretel AI Synthetic Text-to-SQL Dataset](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql) - **Language:** English - **License:** MIT ### Key Features 1. **Text-to-SQL Conversion:** Converts natural language queries into accurate SQL statements. 2. **Schema Generation:** Generates table schema context when none is provided. 3. **Optimized for Analytics and Reporting:** Handles SQL queries with aggregation, grouping, and filtering. --- ## Usage ### Direct Use To use the model for text-to-SQL conversion, you can load it using the `transformers` library as shown below: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Ellbendls/Qwen-2.5-3b-Text_to_SQL") model = AutoModelForCausalLM.from_pretrained("Ellbendls/Qwen-2.5-3b-Text_to_SQL") # Input prompt query = "What is the total number of hospital beds in each state?" # Tokenize input and generate output inputs = tokenizer(query, return_tensors="pt") outputs = model.generate(**inputs, max_length=512) # Decode and print print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### Example Output Input: `What is the total number of hospital beds in each state?` Output: ```sql Context: CREATE TABLE Beds (State VARCHAR(50), Beds INT); INSERT INTO Beds (State, Beds) VALUES ('California', 100000), ('Texas', 85000), ('New York', 70000); SQL Query: SELECT State, SUM(Beds) FROM Beds GROUP BY State; ``` --- ## Training Details ### Dataset The model was fine-tuned on the `gretelai/synthetic_text_to_sql` dataset, which includes diverse natural language queries mapped to SQL queries, with optional schema contexts. ## Limitations 1. **Complex Queries:** May struggle with highly nested or advanced SQL tasks. 2. **Non-English Prompts:** Optimized for English only. 3. **Context Dependence:** May generate incorrect schemas without explicit instructions.
lakeitag/LakeitaGreene-Replicate
lakeitag
2025-08-19T02:33:52Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T02:01:39Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Lakeita --- # Lakeitagreene Replicate <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Lakeita` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "Lakeita", "lora_weights": "https://huggingface.co/lakeitag/LakeitaGreene-Replicate/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('lakeitag/LakeitaGreene-Replicate', weight_name='lora.safetensors') image = pipeline('Lakeita').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2100 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/lakeitag/LakeitaGreene-Replicate/discussions) to add images that show off what you’ve made with this LoRA.
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755570734
IvanJAjebu
2025-08-19T02:33:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:33:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755569283
koloni
2025-08-19T02:33:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:33:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
truong1301/Mistral_task7_3
truong1301
2025-08-19T02:32:38Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/Mistral-Small-Instruct-2409-bnb-4bit", "base_model:finetune:unsloth/Mistral-Small-Instruct-2409-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T15:35:48Z
--- base_model: unsloth/Mistral-Small-Instruct-2409-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** truong1301 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Small-Instruct-2409-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
liukevin666/blockassist-bc-yawning_striped_cassowary_1755570671
liukevin666
2025-08-19T02:32:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:32:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crislmfroes/svla-panda-open-base-cabinet-sim-v15
crislmfroes
2025-08-19T02:30:22Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:crislmfroes/panda-open-base-cabinet-v15", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T02:30:09Z
--- base_model: lerobot/smolvla_base datasets: crislmfroes/panda-open-base-cabinet-v15 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - lerobot - robotics - smolvla --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755569144
lisaozill03
2025-08-19T02:29:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:29:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Superrrdamn/task-13-Qwen-Qwen2.5-3B-Instruct
Superrrdamn
2025-08-19T02:29:10Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "region:us" ]
null
2025-08-18T17:34:32Z
--- base_model: Qwen/Qwen2.5-3B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
VIDEOS-18-Milica-video-viral-Clip-twitter/New.full.videos.milica.Viral.Video.Official.Tutorial
VIDEOS-18-Milica-video-viral-Clip-twitter
2025-08-19T02:25:21Z
0
0
null
[ "region:us" ]
null
2025-08-19T02:25:08Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Jiawei-Lian/Aerial_Detectors_for_APPA
Jiawei-Lian
2025-08-19T02:25:07Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-19T02:18:10Z
--- license: apache-2.0 ---
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755570202
IvanJAjebu
2025-08-19T02:25:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:24:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755568689
thanobidex
2025-08-19T02:22:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:22:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_mis_run2_gen1_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-08-19T02:21:27Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T02:21:13Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ver-full-videos-milica-Clips/Ver.Viral.video.milica.polemica.viral.en.twitter.y.telegram
Ver-full-videos-milica-Clips
2025-08-19T02:20:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T02:20:33Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
RE-N-Y/hpsv3
RE-N-Y
2025-08-19T02:19:20Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_vl", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-16T16:27:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tamayuliv/blockassist-bc-mimic_skilled_gecko_1755569856
tamayuliv
2025-08-19T02:19:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mimic skilled gecko", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:18:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mimic skilled gecko --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dongkkka/RedBottleACT22
Dongkkka
2025-08-19T02:18:59Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:Dongkkka/ffw_sg2_rev1_PickRedPlasticBottle2", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T02:18:45Z
--- datasets: Dongkkka/ffw_sg2_rev1_PickRedPlasticBottle2 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - robotics - act - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755569771
IvanJAjebu
2025-08-19T02:17:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:17:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
premrajreddy/tinyllama-1.1b-home-llm
premrajreddy
2025-08-19T02:16:38Z
0
0
null
[ "safetensors", "gguf", "llama", "home-assistant", "voice-assistant", "automation", "assistant", "home", "text-generation", "conversational", "en", "dataset:acon96/Home-Assistant-Requests", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:finetune:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T05:31:12Z
--- language: en license: apache-2.0 tags: - home-assistant - voice-assistant - automation - assistant - home pipeline_tag: text-generation datasets: - acon96/Home-Assistant-Requests base_model: - TinyLlama/TinyLlama-1.1B-Chat-v1.0 base_model_relation: finetune --- # 🏠 TinyLLaMA-1.1B Home Assistant Voice Model This model is a **fine-tuned version** of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0), trained with [acon96/Home-Assistant-Requests](https://huggingface.co/datasets/acon96/Home-Assistant-Requests). It is designed to act as a **voice-controlled smart home assistant** that takes natural language instructions and outputs **Home Assistant commands**. --- ## ✨ Features - Converts **natural language voice commands** into Home Assistant automation calls. - Produces **friendly confirmations** and **structured JSON service commands**. - Lightweight (1.1B parameters) – runs efficiently on CPUs, GPUs, and via **Ollama** with quantization. --- ## 🔧 Example Usage (Transformers) ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("premrajreddy/tinyllama-1.1b-home-llm") model = AutoModelForCausalLM.from_pretrained("premrajreddy/tinyllama-1.1b-home-llm") query = "turn on the kitchen lights" inputs = tokenizer(query, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=80) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755568227
kojeklollipop
2025-08-19T02:16:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:16:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
New-Clip-Afrin-Er-Viral-Video/New.full.videos.Afrin.Er.Viral.Video.Official.Tutorial
New-Clip-Afrin-Er-Viral-Video
2025-08-19T02:15:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T02:15:02Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
g-assismoraes/Qwen3-4B-Base-aki-alpha0.08-var-hatebr-ep30-v5
g-assismoraes
2025-08-19T02:14:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:11:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755568106
sampingkaca72
2025-08-19T02:13:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:13:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-19-Uppal-Farm-Girl-Viral-Video-Clip/New.full.videos.Uppal.Farm.Girl.Viral.Video.Official.Tutorial
VIDEOS-19-Uppal-Farm-Girl-Viral-Video-Clip
2025-08-19T02:12:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T02:11:53Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
tamayuliv/blockassist-bc-mimic_skilled_gecko_1755569420
tamayuliv
2025-08-19T02:12:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mimic skilled gecko", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:11:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mimic skilled gecko --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rumbleFTW/prism-v0-pretrain-1
rumbleFTW
2025-08-19T02:08:10Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen3-0.6B", "base_model:finetune:Qwen/Qwen3-0.6B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T15:11:51Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-0.6B tags: - generated_from_trainer model-index: - name: prism-v0-pretrain-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # prism-v0-pretrain-1 This model is a fine-tuned version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.2010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.9787 | 0.2803 | 1000 | 6.7248 | | 6.6153 | 0.5606 | 2000 | 6.4486 | | 6.6127 | 0.8410 | 3000 | 6.3316 | | 6.1481 | 1.1211 | 4000 | 6.2661 | | 6.1624 | 1.4014 | 5000 | 6.2257 | | 6.3045 | 1.6817 | 6000 | 6.2059 | | 6.4292 | 1.9621 | 7000 | 6.2010 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.4.0a0+07cecf4168.nv24.05 - Datasets 4.0.0 - Tokenizers 0.21.4
Hariharan05/SeproLM
Hariharan05
2025-08-19T02:06:19Z
39
0
null
[ "safetensors", "mistral", "SeproLM", "text-generation", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:quantized:mistralai/Mistral-7B-Instruct-v0.3", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-06T05:16:45Z
--- license: apache-2.0 base_model: - mistralai/Mistral-7B-Instruct-v0.3 pipeline_tag: text-generation tags: - SeproLM ---
Wonder-Griffin/ZeusMM
Wonder-Griffin
2025-08-19T02:06:10Z
55
0
transformers
[ "transformers", "safetensors", "zeusmm", "text-generation", "multimodal", "chat", "vision", "audio", "retrieval", "text-generation-inference", "custom_code", "en", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2025-08-13T21:27:30Z
--- language: - en license: apache-2.0 tags: - text-generation - multimodal - chat - vision - audio - retrieval - text-generation-inference pipeline_tag: text-generation library_name: transformers --- # ZeusMM **ZeusMM** is a decoder-only multimodal conversational LM with: - Role-aware RoPE + KV cache - Dual fusion (Cross-Attn + FiLM) with a learned router - Modality-aware MoE-MLP - Drop-in vision (CLIP), audio (Wav2Vec2), retrieval (any HF encoder) ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer repo = "Wonder-Griffin/ZeusMM" tok = AutoTokenizer.from_pretrained(repo, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(repo, trust_remote_code=True) prompt = "<|system|>You are Zeus.<|end|>\n<|user|>Say hi.<|end|>\n<|assistant|>" x = tok(prompt, return_tensors="pt") y = model.generate(**x, max_new_tokens=60, do_sample=True, top_p=0.9, temperature=0.9) print(tok.decode(y[0], skip_special_tokens=False)) - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
koloni/blockassist-bc-deadly_graceful_stingray_1755567463
koloni
2025-08-19T02:04:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:04:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MauoSama/depthcut_4cams_DPsmall
MauoSama
2025-08-19T02:02:39Z
0
0
lerobot
[ "lerobot", "safetensors", "diffusion", "robotics", "dataset:MauoSama/depthcut_4cams", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T02:02:31Z
--- datasets: MauoSama/depthcut_4cams library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - diffusion - robotics - lerobot --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
xiangxinai/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B
xiangxinai
2025-08-19T02:01:27Z
7,159
5
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "zh", "en", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T05:14:21Z
--- license: llama3 language: - zh - en pipeline_tag: text-generation --- <div align="center"> <picture> <img src="https://github.com/xiangxinai/XiangxinLM/blob/main/assets/logo.png?raw=true" width="150px"> </picture> </div> <div align="center"> <h1> Xiangxin-2XL-Chat-1048k </h1> </div> 我们提供私有化模型训练服务,如果您需要训练行业模型、领域模型或者私有模型,请联系我们: [email protected] We offer customized model training services. If you need to train industry-specific models, domain-specific models, or private models, please contact us at: [email protected]. # <span id="Introduction">模型介绍/Introduction</span> Xiangxin-2XL-Chat-1048k是[象信AI](https://www.xiangxinai.cn)基于Meta Llama-3-70B-Instruct模型和[Gradient AI的扩充上下文的工作](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k),利用自行研发的中文价值观对齐数据集进行ORPO训练而形成的Chat模型。该模型具备更强的中文能力和中文价值观,其上下文长度达到100万字。在模型性能方面,该模型在ARC、HellaSwag、MMLU、TruthfulQA_mc2、Winogrande、GSM8K_flex、CMMLU、CEVAL-VALID等八项测评中,取得了平均分70.22分的成绩,超过了Gradientai-Llama-3-70B-Instruct-Gradient-1048k。我们的训练数据并不包含任何测评数据集。 Xiangxin-2XL-Chat-1048k is a Chat model developed by [Xiangxin AI](https://www.xiangxinai.cn), based on the Meta Llama-3-70B-Instruct model and [expanded context from Gradient AI](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k). It was trained using a proprietary Chinese value-aligned dataset through ORPO training, resulting in enhanced Chinese proficiency and alignment with Chinese values. The model has a context length of up to 1 million words. In terms of performance, it surpassed the Gradientai-Llama-3-70B-Instruct-Gradient-1048k model with an average score of 70.22 across eight evaluations including ARC, HellaSwag, MMLU, TruthfulQA_mc2, Winogrande, GSM8K_flex, CMMLU, and C-EVAL. It's worth noting that our training data did not include any evaluation datasets. <div align="center"> Model | Context Length | Pre-trained Tokens | :------------: | :------------: | :------------: | | Xiangxin-2XL-Chat-1048k | 1048k | 15T </div> # <span id="Benchmark">Benchmark 结果/Benchmark Evaluation</span> | | **Average** | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** | **Winogrande** | **GSM8K** | **CMMLU** | **CEVAL** | |:-----------------------:|:----------:|:--------:|:---------:|:----------:|:-----------:|:-------:|:-------:|:-------:|:-------:| |**Xiangxin-2XL-Chat-1048k**| 70.22 | 60.92 | 83.29 |75.13| 57.33| 76.64| 81.05| 65.40| 62.03 | |**Llama-3-70B-Instruct-Gradient-1048k**| 69.66| 61.18 |82.88 |74.95 |55.28 |75.77 |77.79 |66.44 |63.00| Note:truthfulqa_mc2, gsm8k flexible-extract # <span id="Training">训练过程模型/Training</span> 该模型是使用ORPO技术和自行研发的中文价值观对齐数据集进行训练的。由于内容的敏感性,该数据集无法公开披露。 The model was trained using ORPO and a proprietary Chinese alignment dataset developed in-house. Due to the sensitivity of the content, the dataset cannot be publicly disclosed. ## Training loss ![image/png](https://cdn-uploads.huggingface.co/production/uploads/655b15957f2466433998bb89/oLLnrWaxQnyVwI8n2QqHK.png) ## Reward accuracies ![image/png](https://cdn-uploads.huggingface.co/production/uploads/655b15957f2466433998bb89/yD4My-43lLRWecyq-bgZ2.png) ## SFT loss ![image/png](https://cdn-uploads.huggingface.co/production/uploads/655b15957f2466433998bb89/iUoQfVZDftoW7C-2VXeWe.png) # <span id="Start">快速开始/Quick Start</span> ## Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. 使用Transformers运行本模型推理需要约400GB的显存。 Running inference with this model using Transformers requires approximately 400GB of GPU memory. ### Transformers pipeline ```python import transformers import torch model_id = "xiangxinai/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": ""}, {"role": "user", "content": "解释一下“温故而知新”"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) “温故而知新”是中国古代的一句成语,出自《论语·子路篇》。 它的意思是通过温习过去的知识和经验,来获得新的理解和见解。 这里的“温故”是指温习过去,回顾历史,复习旧知识, 而“知新”则是指了解新鲜事物,掌握新知识。 这个成语强调学习的循序渐进性,强调在学习新知识时, 不能忽视过去的基础,而是要在继承和发扬的基础上,去理解和创新。 ``` ### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "xiangxinai/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": ""}, {"role": "user", "content": "解释一下“温故而知新”"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) “温故而知新”是中国古代的一句成语,出自《论语·子路篇》。 它的意思是通过温习过去的知识和经验,来获得新的理解和见解。 这里的“温故”是指温习过去,回顾历史,复习旧知识, 而“知新”则是指了解新鲜事物,掌握新知识。 这个成语强调学习的循序渐进性,强调在学习新知识时, 不能忽视过去的基础,而是要在继承和发扬的基础上,去理解和创新。 ``` # 协议/License This code is licensed under the META LLAMA 3 COMMUNITY LICENSE AGREEMENT License. # 联系我们/Contact Us For inquiries, please contact us via email at [email protected].
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755568763
IvanJAjebu
2025-08-19T02:01:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:00:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755567162
katanyasekolah
2025-08-19T02:00:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:00:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
g-assismoraes/Qwen3-4B-Base-aki-alpha0.08-var-hatebr-ep30-v4
g-assismoraes
2025-08-19T01:59:01Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T01:55:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/AgThinker-32B-final-i1-GGUF
mradermacher
2025-08-19T01:57:41Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:chegde/AgThinker-32B-final", "base_model:quantized:chegde/AgThinker-32B-final", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-18T23:02:01Z
--- base_model: chegde/AgThinker-32B-final language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/chegde/AgThinker-32B-final <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#AgThinker-32B-final-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/AgThinker-32B-final-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/AgThinker-32B-final-i1-GGUF/resolve/main/AgThinker-32B-final.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
finalform/foamQwen2.5-Coder-7B-Instruct
finalform
2025-08-19T01:57:09Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "region:us" ]
text-generation
2025-08-18T22:40:16Z
--- base_model: Qwen/Qwen2.5-Coder-7B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
thanobidex/blockassist-bc-colorful_shiny_hare_1755566999
thanobidex
2025-08-19T01:54:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:54:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ncgc/retraining-bias-statichh-pythia-1.4b-sft-bf16-pureif-1000
ncgc
2025-08-19T01:53:43Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "generated_from_trainer", "trl", "sft", "base_model:EleutherAI/pythia-1.4b", "base_model:finetune:EleutherAI/pythia-1.4b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T20:26:52Z
--- base_model: EleutherAI/pythia-1.4b library_name: transformers model_name: retraining-bias-statichh-pythia-1.4b-sft-bf16-pureif-1000 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for retraining-bias-statichh-pythia-1.4b-sft-bf16-pureif-1000 This model is a fine-tuned version of [EleutherAI/pythia-1.4b](https://huggingface.co/EleutherAI/pythia-1.4b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ncgc/retraining-bias-statichh-pythia-1.4b-sft-bf16-pureif-1000", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/mareeb-purdue-university/huggingface/runs/9xydcamu) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.3 - Pytorch: 2.7.0+cu126 - Datasets: 3.6.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
macszym/ppo-LunarLander-v2
macszym
2025-08-19T01:52:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-19T01:52:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.63 +/- 15.07 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
oddadmix/arabic-summarization
oddadmix
2025-08-19T01:52:34Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "lfm2", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "ar", "dataset:oddadmix/arabic-news-summarization", "base_model:LiquidAI/LFM2-350M", "base_model:finetune:LiquidAI/LFM2-350M", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T23:26:07Z
--- base_model: LiquidAI/LFM2-350M library_name: transformers model_name: lfm2-sft-summary tags: - generated_from_trainer - sft - trl licence: license datasets: - oddadmix/arabic-news-summarization language: - ar --- # 📝 نموذج التلخيص العربي هذا المشروع يقدّم نموذج **تلخيص نصوص باللغة العربية** مبني على النموذج الأساسي [LiquidAI/LFM2-350M](https://huggingface.co/LiquidAI/LFM2-350M)، وتمت إعادة تدريبه (Fine-tuning) على **مجموعة بيانات مكوّنة من 17,000 سجل** لتلخيص النصوص بدقة وكفاءة عالية. --- ## ⚡ المميزات * ✅ أداء قوي جدًا في تلخيص النصوص العربية. * ✅ يحافظ على المعنى العام للنص مع اختصار الحجم. * ✅ يمكن استخدامه في تلخيص المقالات، الأخبار، الأبحاث، والمستندات الطويلة. * ✅ مبني على نموذج قوي مفتوح المصدر مع إعادة ضبط دقيقة (Fine-tuning). --- ## 🛠️ البيانات تم تدريب النموذج باستخدام **17,000 صف** من البيانات عالية الجودة التي تحتوي على نصوص عربية وأهداف التلخيص المقابلة لها. هذا ساعد في تحسين دقة النموذج وجعله قادرًا على إنتاج **ملخصات متماسكة وسلسة**. --- ## 🚀 كيفية الاستخدام ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # تحميل النموذج والمحول model_name = "اسم-المستخدم/arabic-summarization-model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # إدخال نص للتلخيص text = """النص العربي المراد تلخيصه ...""" inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True) summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4) # عرض الملخص print(tokenizer.decode(summary_ids[0], skip_special_tokens=True)) ``` --- ## 📊 الأداء النموذج أظهر نتائج ممتازة في التجارب الداخلية على مقاييس **الدقة، التماسك، والمحافظة على المعنى**. أداؤه يُعتبر **جيد جدًا مقارنة بالنماذج المشابهة** في مجال تلخيص النصوص العربية. --- ## 📌 ملاحظات * النموذج ما زال قابلًا للتطوير عبر تدريبه على بيانات إضافية. * يُفضّل استخدامه مع نصوص عربية فصيحة، مع أنه يعمل بشكل جيد أيضًا مع بعض اللهجات.
concept-unlearning/Phi-3-mini-4k-instruct_ft_lora_all_novels_v3_ft
concept-unlearning
2025-08-19T01:50:27Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T01:48:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hiccup1119/mine-7-2-tiny
Hiccup1119
2025-08-19T01:48:19Z
0
0
transformers
[ "transformers", "safetensors", "convnext", "image-classification", "generated_from_trainer", "base_model:facebook/convnext-tiny-224", "base_model:finetune:facebook/convnext-tiny-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-11T21:45:56Z
--- library_name: transformers license: apache-2.0 base_model: facebook/convnext-tiny-224 tags: - generated_from_trainer model-index: - name: roadwork-convnext-tiny-224-1.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roadwork-convnext-tiny-224-1.1 This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.4075452114517532e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4
prcstone0823/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts-Q4_K_M-GGUF
prcstone0823
2025-08-19T01:47:26Z
0
0
null
[ "gguf", "mixture-of-experts", "moe", "expert-pruning", "gpt-oss", "openai", "reasoning", "all", "specialized", "efficient", "transformer", "causal-lm", "text-generation", "pytorch", "pruned-model", "domain-specific", "llama-cpp", "gguf-my-repo", "en", "dataset:AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations", "base_model:AmanPriyanshu/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts", "base_model:quantized:AmanPriyanshu/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T01:47:02Z
--- license: apache-2.0 datasets: - AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations language: - en pipeline_tag: text-generation tags: - mixture-of-experts - moe - expert-pruning - gpt-oss - openai - reasoning - all - specialized - efficient - transformer - causal-lm - text-generation - pytorch - pruned-model - domain-specific - llama-cpp - gguf-my-repo base_model: AmanPriyanshu/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts --- # prcstone0823/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts-Q4_K_M-GGUF This model was converted to GGUF format from [`AmanPriyanshu/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts`](https://huggingface.co/AmanPriyanshu/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/AmanPriyanshu/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo prcstone0823/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts-Q4_K_M-GGUF --hf-file gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo prcstone0823/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts-Q4_K_M-GGUF --hf-file gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo prcstone0823/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts-Q4_K_M-GGUF --hf-file gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo prcstone0823/gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts-Q4_K_M-GGUF --hf-file gpt-oss-6.0b-specialized-all-pruned-moe-only-7-experts-q4_k_m.gguf -c 2048 ```
mang3dd/blockassist-bc-tangled_slithering_alligator_1755566416
mang3dd
2025-08-19T01:46:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:46:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kokoutou/sound_1908_2
Kokoutou
2025-08-19T01:41:53Z
0
0
null
[ "region:us" ]
null
2025-08-18T17:50:18Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
jyuan8210/NeuralPipe-7B-slerp
jyuan8210
2025-08-19T01:40:30Z
0
0
null
[ "safetensors", "mistral", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:OpenPipe/mistral-ft-optimized-1218", "base_model:merge:OpenPipe/mistral-ft-optimized-1218", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:merge:mlabonne/NeuralHermes-2.5-Mistral-7B", "region:us" ]
null
2025-08-19T01:39:08Z
--- base_model: - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B --- # NeuralPipe-7B-slerp NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] - model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jyuan8210/NeuralPipe-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_8_prover1_
neural-interactive-proofs
2025-08-19T01:40:25Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-19T01:39:17Z
--- base_model: Qwen/Qwen2.5-32B-Instruct library_name: transformers model_name: finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_8_prover1_ tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_8_prover1_ This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_8_prover1_", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/lrhammond-team/pvg-self-hosted-finetune/runs/qwen2_5-32b-instruct_dpo_2025-08-19_01-11-40_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_8_prover1) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.2 - Transformers: 4.53.2 - Pytorch: 2.7.0 - Datasets: 3.0.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
natsuwinted/blockassist-bc-graceful_gentle_cockroach_1755567434
natsuwinted
2025-08-19T01:38:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "graceful gentle cockroach", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:38:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - graceful gentle cockroach --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755565793
quantumxnode
2025-08-19T01:36:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:36:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kimono998/Wordle-curr-neg-3_lora_adapter_iter_20
kimono998
2025-08-19T01:34:15Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T01:34:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
koloni/blockassist-bc-deadly_graceful_stingray_1755565722
koloni
2025-08-19T01:34:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:33:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).