Search is not available for this dataset
modelId
stringlengths
5
137
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-04-01 00:42:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
405 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-04-01 00:42:15
card
stringlengths
11
1.01M
darthrevenge/Reinforce-Carpole-1
darthrevenge
"2023-03-05T18:51:07Z"
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
"2023-03-05T18:50:58Z"
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Carpole-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
elozano/tweet_emotion_eval
elozano
"2022-02-07T18:04:47Z"
5
4
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "dataset:tweet_eval", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-03-02T23:29:05Z"
--- license: mit datasets: - tweet_eval language: en widget: - text: "Stop sharing which songs did you listen to during this year on Spotify, NOBODY CARES" example_title: "Anger" - text: "I love that joke HAHAHAHAHA" example_title: "Joy" - text: "Despite I've not studied a lot for this exam, I think I will pass 😜" example_title: "Optimism" - text: "My dog died this morning..." example_title: "Sadness" ---
Ayouta300/bert-base-uncased-finetuned-cola
Ayouta300
"2023-05-07T20:04:32Z"
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-05-07T11:14:30Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5155383069979991 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4595 - Matthews Correlation: 0.5155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4923 | 1.0 | 535 | 0.4595 | 0.5155 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
SEBIS/legal_t5_small_trans_sv_cs
SEBIS
"2021-06-23T10:05:27Z"
4
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Swedish Cszech model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2022-03-02T23:29:04Z"
--- language: Swedish Cszech tags: - translation Swedish Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "En kvalitetscertifiering av administrativa förfaranden i enlighet med ISO eller motsvarande normer skulle dessutom leda till likvärdiga villkor för sjöfartsadministrationer." --- # legal_t5_small_trans_sv_cs model Model on translating legal text from Swedish to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_cs is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Cszech. ### How to use Here is how to use this model to translate legal text from Swedish to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "En kvalitetscertifiering av administrativa förfaranden i enlighet med ISO eller motsvarande normer skulle dessutom leda till likvärdiga villkor för sjöfartsadministrationer." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_cs model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_cs | 45.569| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
OneAndZeros/Mollyminx000
OneAndZeros
"2025-03-17T08:48:37Z"
0
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-03-17T08:48:30Z"
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: Mollyminx000!!! license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # Mollyminx000 <Gallery /> ## Model description Lora of Mollyminx000!!! ## Trigger words You should use `Mollyminx000!!!` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/OneAndZeros/Mollyminx000/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
tsunemoto/mistral-ft-optimized-1218-GGUF
tsunemoto
"2023-12-19T03:13:57Z"
23
3
null
[ "gguf", "GGUF", "en", "endpoints_compatible", "region:us" ]
null
"2023-12-19T03:05:17Z"
--- title: "mistral-ft-optimized-1218 Quantized in GGUF" tags: - GGUF language: en --- ![Image description](https://i.postimg.cc/MGwhtFfF/tsune-fixed.png) # Tsunemoto GGUF's of mistral-ft-optimized-1218 This is a GGUF quantization of mistral-ft-optimized-1218. ## Original Repo Link: [Original Repository](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) ## Original Model Card: --- This model is intended to be a strong base suitable for downstream fine-tuning on a variety of tasks. Based on our internal evaluations, we believe it's one of the strongest models for most down-stream tasks. You can read more about our development and evaluation process [here](https://openpipe.ai/blog/mistral-7b-fine-tune-optimized).
gaurav-shiperone/personal
gaurav-shiperone
"2023-08-29T14:53:37Z"
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
"2023-08-29T13:31:20Z"
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a Gaurav Chavan tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
alchemist69/75adc1e8-7969-4562-b283-a5ecd11c4a87
alchemist69
"2025-02-23T09:48:04Z"
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM2-1.7B-Instruct", "license:apache-2.0", "region:us" ]
null
"2025-02-23T08:59:42Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 75adc1e8-7969-4562-b283-a5ecd11c4a87 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B-Instruct bf16: true chat_template: llama3 dataloader_num_workers: 24 dataset_prepared_path: null datasets: - data_files: - 0c1367355c2510f8_train_data.json ds_type: json format: custom path: /workspace/input_data/0c1367355c2510f8_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 300 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: alchemist69/75adc1e8-7969-4562-b283-a5ecd11c4a87 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 3000 micro_batch_size: 2 mlflow_experiment_name: /tmp/0c1367355c2510f8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1000 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a6d954dd-91ca-429a-9051-83e5cd6e3724 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a6d954dd-91ca-429a-9051-83e5cd6e3724 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 75adc1e8-7969-4562-b283-a5ecd11c4a87 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM2-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4547 | 0.0001 | 1 | 0.6432 | | 0.2497 | 0.0244 | 300 | 0.3077 | | 0.1992 | 0.0488 | 600 | 0.2998 | | 0.2732 | 0.0732 | 900 | 0.2939 | | 0.2394 | 0.0976 | 1200 | 0.2897 | | 0.1807 | 0.1220 | 1500 | 0.2862 | | 0.2001 | 0.1465 | 1800 | 0.2834 | | 0.1988 | 0.1709 | 2100 | 0.2813 | | 0.196 | 0.1953 | 2400 | 0.2798 | | 0.2205 | 0.2197 | 2700 | 0.2794 | | 0.2728 | 0.2441 | 3000 | 0.2797 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sebapulgar/test_boy_eleven
sebapulgar
"2025-02-18T16:59:57Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-02-18T16:44:35Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Test_Boy_Eleven <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('sebapulgar/test_boy_eleven', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
albertus-sussex/simcse-test-book-reference_5_to_verify_5-fold-1-bs-64-lr-3e-05-epochs-5-uq-False
albertus-sussex
"2025-03-25T10:38:26Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-03-25T10:38:01Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rithwik-db/triplets-e5-base-500-2183ce-3be9a5
rithwik-db
"2023-04-09T00:48:28Z"
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2023-04-09T00:48:22Z"
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # rithwik-db/triplets-e5-base-500-2183ce-3be9a5 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('rithwik-db/triplets-e5-base-500-2183ce-3be9a5') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('rithwik-db/triplets-e5-base-500-2183ce-3be9a5') model = AutoModel.from_pretrained('rithwik-db/triplets-e5-base-500-2183ce-3be9a5') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=rithwik-db/triplets-e5-base-500-2183ce-3be9a5) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 8228 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
prxy5606/127fa9de-78df-4fe6-909c-0bd69779bf72
prxy5606
"2025-01-16T17:21:09Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-3B-Instruct", "base_model:adapter:unsloth/Llama-3.2-3B-Instruct", "license:llama3.2", "region:us" ]
null
"2025-01-16T17:04:58Z"
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 127fa9de-78df-4fe6-909c-0bd69779bf72 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - e2df8684dfdf5ba7_train_data.json ds_type: json format: custom path: /workspace/input_data/e2df8684dfdf5ba7_train_data.json type: field_instruction: question field_output: paragraph format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5606/127fa9de-78df-4fe6-909c-0bd69779bf72 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/e2df8684dfdf5ba7_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1f895fe4-7e9f-4e6f-b9d9-99228b1e5679 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1f895fe4-7e9f-4e6f-b9d9-99228b1e5679 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 127fa9de-78df-4fe6-909c-0bd69779bf72 This model is a fine-tuned version of [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8135 | 0.0102 | 1 | 2.8315 | | 2.5941 | 0.5102 | 50 | 2.5082 | | 2.3576 | 1.0204 | 100 | 2.3127 | | 2.2055 | 1.5306 | 150 | 2.1873 | | 2.0997 | 2.0408 | 200 | 2.1511 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mohamedlamine/wav2vec2-finetuned-wolofdata
mohamedlamine
"2023-02-28T17:15:18Z"
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2023-02-28T08:41:05Z"
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-finetuned-wolofdata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-finetuned-wolofdata This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7747 - Wer: 0.6774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0723 | 0.75 | 100 | 0.7747 | 0.6774 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Samuael/amt5-base-finetuned-amt5
Samuael
"2024-02-21T22:09:20Z"
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:Samuael/amt5-base", "base_model:finetune:Samuael/amt5-base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2024-02-21T19:23:57Z"
--- base_model: Samuael/amt5-base tags: - generated_from_trainer model-index: - name: amt5-base-finetuned-amt5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amt5-base-finetuned-amt5 This model is a fine-tuned version of [Samuael/amt5-base](https://huggingface.co/Samuael/amt5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 23 | nan | 0.9792 | 0.9259 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
CoexistAI/deep_ft7_grp_16bit
CoexistAI
"2025-02-25T17:53:31Z"
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "grpo", "conversational", "en", "base_model:CoexistAI/deep_ft6_grp_16bit", "base_model:finetune:CoexistAI/deep_ft6_grp_16bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-25T17:47:33Z"
--- base_model: CoexistAI/deep_ft6_grp_16bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - grpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** CoexistAI - **License:** apache-2.0 - **Finetuned from model :** CoexistAI/deep_ft6_grp_16bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Danielbrdz/Barcenas-3b-GRPO-ES
Danielbrdz
"2025-02-17T17:24:54Z"
0
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "es", "dataset:Danielbrdz/gsm8k-ES", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-17T17:06:04Z"
--- license: llama3.2 datasets: - Danielbrdz/gsm8k-ES language: - es base_model: - meta-llama/Llama-3.2-3B-Instruct pipeline_tag: text-generation library_name: transformers --- Barcenas 3b GRPO ES Basado en el alpindale/Llama-3.2-3B-Instruct Y entrenado con datos en español de Danielbrdz/gsm8k-ES El objetivo de este LLM es usar el tipo de entrenamiento GRPO con datos 100% en español. Tener un modelo pequeño que razone en español y que puede ejecutarse en la mayoría de computadoras. ------------------------------------------------------------------------ Barcenas 3b GRPO ES Based on alpindale/Llama-3.2-3B-Instruct And trained with Spanish data from Danielbrdz/gsm8k-ES The goal of this LLM is to use the GRPO training type with 100% Spanish data. To have a small model that reasons in Spanish and that can be run on most computers. Made with ❤️ in Guadalupe, Nuevo Leon, Mexico 🇲🇽
fedovtt/f0c07999-9d89-46af-b13e-84a0f4f414a3
fedovtt
"2025-01-24T10:03:13Z"
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-3-Llama-3.1-8B", "base_model:adapter:NousResearch/Hermes-3-Llama-3.1-8B", "license:llama3", "region:us" ]
null
"2025-01-24T07:28:34Z"
--- library_name: peft license: llama3 base_model: NousResearch/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: f0c07999-9d89-46af-b13e-84a0f4f414a3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3ac1922e7e0e1179_train_data.json ds_type: json format: custom path: /workspace/input_data/3ac1922e7e0e1179_train_data.json type: field_input: body field_instruction: selftext field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: fedovtt/f0c07999-9d89-46af-b13e-84a0f4f414a3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/3ac1922e7e0e1179_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c867cf44-d6f5-49e2-8c4f-3a2bd54ad0e7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c867cf44-d6f5-49e2-8c4f-3a2bd54ad0e7 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f0c07999-9d89-46af-b13e-84a0f4f414a3 This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.9542 | | 2.7251 | 0.0002 | 5 | 2.9169 | | 2.7393 | 0.0003 | 10 | 2.8097 | | 2.7156 | 0.0005 | 15 | 2.7121 | | 2.5507 | 0.0007 | 20 | 2.6928 | | 2.814 | 0.0008 | 25 | 2.6728 | | 2.6813 | 0.0010 | 30 | 2.6692 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
John6666/astolfo-mix-xl-tgmd192-sdxl
John6666
"2024-09-07T00:10:14Z"
655
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "scenery", "fantasy", "uniform merge", "bayesian merge", "autombw", "ties merge", "pure merge", "ties-soup", "model stock", "geometric median", "en", "base_model:6DammK9/AstolfoMix-XL", "base_model:finetune:6DammK9/AstolfoMix-XL", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2024-09-07T00:05:48Z"
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - scenery - fantasy - uniform merge - bayesian merge - autombw - ties merge - pure merge - ties-soup - model stock - geometric median base_model: 6DammK9/AstolfoMix-XL --- Original model is [here](https://huggingface.co/6DammK9/AstolfoMix-XL) and on [Civitai](https://civitai.com/models/309514?modelVersionId=812893). The author is [here](https://huggingface.co/6DammK9). This model created by [6DammK9](https://civitai.com/user/6DammK9).
Maximich/binary-classifier
Maximich
"2024-04-09T10:46:02Z"
106
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-04-09T10:45:01Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
adbrasi/girl-trained-sd3
adbrasi
"2024-06-13T02:52:19Z"
2
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "sd3", "sd3-diffusers", "template:sd-lora", "base_model:stabilityai/stable-diffusion-3-medium-diffusers", "base_model:finetune:stabilityai/stable-diffusion-3-medium-diffusers", "license:openrail++", "region:us" ]
text-to-image
"2024-06-13T02:12:47Z"
--- license: openrail++ library_name: diffusers tags: - text-to-image - diffusers-training - diffusers - sd3 - sd3-diffusers - template:sd-lora base_model: stabilityai/stable-diffusion-3-medium-diffusers instance_prompt: a photo of pmy girl widget: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SD3 DreamBooth LoRA - adbrasi/girl-trained-sd3 <Gallery /> ## Model description These are adbrasi/girl-trained-sd3 DreamBooth weights for stabilityai/stable-diffusion-3-medium-diffusers. The weights were trained using [DreamBooth](https://dreambooth.github.io/). ## Trigger words You should use a photo of pmy girl to trigger the image generation. ## Download model [Download](adbrasi/girl-trained-sd3/tree/main) them in the Files & versions tab. ## License Please adhere to the licensing terms as described `[here](https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE)`. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
DevQuasar/bytedance-research.UI-TARS-7B-DPO-GGUF
DevQuasar
"2025-03-06T21:16:11Z"
0
0
null
[ "gguf", "image-text-to-text", "base_model:bytedance-research/UI-TARS-7B-DPO", "base_model:quantized:bytedance-research/UI-TARS-7B-DPO", "region:us" ]
image-text-to-text
"2025-03-06T17:41:51Z"
--- base_model: - bytedance-research/UI-TARS-7B-DPO pipeline_tag: image-text-to-text --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) 'Make knowledge free for everyone' Quantized version of: [bytedance-research/UI-TARS-7B-DPO](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO) <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
MayBashendy/ArabicNewSplits4_FineTuningAraBERT_run2_AugV5_k1_task3_organization
MayBashendy
"2024-12-09T17:06:43Z"
163
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-12-09T17:05:27Z"
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits4_FineTuningAraBERT_run2_AugV5_k1_task3_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits4_FineTuningAraBERT_run2_AugV5_k1_task3_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0309 - Qwk: 0.1822 - Mse: 1.0309 - Rmse: 1.0153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.2857 | 2 | 3.2172 | -0.0028 | 3.2172 | 1.7937 | | No log | 0.5714 | 4 | 1.7098 | -0.0070 | 1.7098 | 1.3076 | | No log | 0.8571 | 6 | 1.1188 | 0.0588 | 1.1188 | 1.0577 | | No log | 1.1429 | 8 | 0.8805 | -0.0097 | 0.8805 | 0.9384 | | No log | 1.4286 | 10 | 0.9026 | 0.0103 | 0.9026 | 0.9501 | | No log | 1.7143 | 12 | 0.7795 | 0.0520 | 0.7795 | 0.8829 | | No log | 2.0 | 14 | 0.7161 | 0.0145 | 0.7161 | 0.8462 | | No log | 2.2857 | 16 | 0.7571 | 0.0180 | 0.7571 | 0.8701 | | No log | 2.5714 | 18 | 0.7579 | 0.0807 | 0.7579 | 0.8706 | | No log | 2.8571 | 20 | 0.7162 | -0.0370 | 0.7162 | 0.8463 | | No log | 3.1429 | 22 | 0.7191 | -0.0303 | 0.7191 | 0.8480 | | No log | 3.4286 | 24 | 0.7197 | -0.0435 | 0.7197 | 0.8483 | | No log | 3.7143 | 26 | 0.7373 | 0.1220 | 0.7373 | 0.8586 | | No log | 4.0 | 28 | 0.7543 | 0.1163 | 0.7543 | 0.8685 | | No log | 4.2857 | 30 | 0.7756 | 0.1813 | 0.7756 | 0.8807 | | No log | 4.5714 | 32 | 0.8319 | 0.0497 | 0.8319 | 0.9121 | | No log | 4.8571 | 34 | 0.9161 | 0.0609 | 0.9161 | 0.9571 | | No log | 5.1429 | 36 | 0.9106 | 0.0288 | 0.9106 | 0.9543 | | No log | 5.4286 | 38 | 0.8928 | 0.1560 | 0.8928 | 0.9449 | | No log | 5.7143 | 40 | 0.9168 | 0.1570 | 0.9168 | 0.9575 | | No log | 6.0 | 42 | 0.8856 | 0.0638 | 0.8856 | 0.9411 | | No log | 6.2857 | 44 | 1.0023 | 0.1008 | 1.0023 | 1.0012 | | No log | 6.5714 | 46 | 1.0151 | 0.1008 | 1.0151 | 1.0075 | | No log | 6.8571 | 48 | 0.9717 | 0.1571 | 0.9717 | 0.9857 | | No log | 7.1429 | 50 | 0.9115 | 0.1803 | 0.9115 | 0.9548 | | No log | 7.4286 | 52 | 0.8133 | 0.1712 | 0.8133 | 0.9018 | | No log | 7.7143 | 54 | 0.8022 | 0.1493 | 0.8022 | 0.8956 | | No log | 8.0 | 56 | 0.8225 | 0.1150 | 0.8225 | 0.9069 | | No log | 8.2857 | 58 | 0.8987 | 0.2134 | 0.8987 | 0.9480 | | No log | 8.5714 | 60 | 0.9756 | 0.1815 | 0.9756 | 0.9877 | | No log | 8.8571 | 62 | 1.0328 | 0.1882 | 1.0328 | 1.0163 | | No log | 9.1429 | 64 | 1.0455 | 0.1882 | 1.0455 | 1.0225 | | No log | 9.4286 | 66 | 1.0367 | 0.1822 | 1.0367 | 1.0182 | | No log | 9.7143 | 68 | 1.0356 | 0.1822 | 1.0356 | 1.0177 | | No log | 10.0 | 70 | 1.0309 | 0.1822 | 1.0309 | 1.0153 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
ethzanalytics/gpt-j-8bit-daily_dialogues
ethzanalytics
"2024-12-25T18:53:28Z"
25
4
transformers
[ "transformers", "pytorch", "safetensors", "gptj", "text-generation", "8bit", "8-bit", "quantization", "compression", "chatbot", "dialogue", "conversation", "dataset:daily_dialog", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
"2022-11-27T07:37:20Z"
--- tags: - text-generation - 8bit - 8-bit - quantization - compression - chatbot - dialogue - conversation datasets: - daily_dialog inference: False license: apache-2.0 --- # ethzanalytics/gpt-j-8bit-daily_dialogues <a href="https://colab.research.google.com/gist/pszemraj/e49c60aafe04acc52fcfdd1baefe12e4/-ai-msgbot-gpt-j-6b-8bit-with-hub.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> This version of `hivemind/gpt-j-6B-8bit` is fine-tuned on a parsed version of the [daily dialogues](https://huggingface.co/datasets/daily_dialog) dataset for an epoch. It can be used as a chatbot. It is designed to be used with [ai-msgbot](https://github.com/pszemraj/ai-msgbot) to take advantage of prompt engineering in fine-tuning. ## Usage _**NOTE: this needs to be loaded via the special patching technique** outlined in the hivemind model card (as with all 8bit models)_ Examples of how to load the model correctly are already in place in the notebook linked above. A `.py` of said notebook was uploaded to the repo for reference - [link here](https://huggingface.co/ethzanalytics/gpt-j-8bit-daily_dialogues/blob/main/_ai_msgbot_gpt_j_6b_8bit_with_hub.py) ## Training For details, please see [this wandb report](https://wandb.ai/pszemraj/conversational-6B-train-vanilla/reports/Training-6B-GPT-J-8bit-for-Dialogue--VmlldzoyNTg3MzE0) for both the daily-dialogues version and the WoW version. ---
mergekit-community/Tigers-Abliterated-Upscaled
mergekit-community
"2025-02-17T06:53:34Z"
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:mergekit-community/Tigers-Abliterated-9B", "base_model:finetune:mergekit-community/Tigers-Abliterated-9B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-17T06:48:37Z"
--- base_model: - mergekit-community/Tigers-Abliterated-9B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the Passthrough merge method. ### Models Merged The following models were included in the merge: * [mergekit-community/Tigers-Abliterated-9B](https://huggingface.co/mergekit-community/Tigers-Abliterated-9B) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: passthrough dtype: bfloat16 slices: - sources: - model: mergekit-community/Tigers-Abliterated-9B layer_range: [0,42] - sources: - model: mergekit-community/Tigers-Abliterated-9B layer_range: [0,16] - sources: - model: mergekit-community/Tigers-Abliterated-9B layer_range: [26,42] ```
albertus-sussex/veriscrape-simcse-job-reference_3_to_verify_7-fold-4
albertus-sussex
"2025-03-26T17:18:20Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-03-26T16:11:10Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Germanikus/bloom_prompt_tuning_1706803479.5291765
Germanikus
"2024-02-01T16:12:40Z"
0
0
peft
[ "peft", "region:us" ]
null
"2024-02-01T16:12:37Z"
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e2_s55555_v4_l4_v100
KingKazma
"2023-08-13T21:02:41Z"
0
0
peft
[ "peft", "region:us" ]
null
"2023-08-13T18:20:44Z"
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
YakovElm/Hyperledger15Classic_Train_Balance_DATA_ratio_3
YakovElm
"2023-06-09T04:14:50Z"
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-06-09T04:14:01Z"
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hyperledger15Classic_Train_Balance_DATA_ratio_3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hyperledger15Classic_Train_Balance_DATA_ratio_3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4227 - Train Accuracy: 0.7913 - Validation Loss: 0.7163 - Validation Accuracy: 0.7230 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.5363 | 0.7435 | 0.6057 | 0.7160 | 0 | | 0.4880 | 0.7722 | 0.5288 | 0.7512 | 1 | | 0.4227 | 0.7913 | 0.7163 | 0.7230 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
alakxender/mms-tts-div-finetuned-md-f02
alakxender
"2024-05-30T13:27:34Z"
90
0
transformers
[ "transformers", "safetensors", "vits", "text-to-audio", "dv", "dataset:alakxender/dv_syn_speech_md", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
text-to-audio
"2024-05-28T18:23:16Z"
--- library_name: transformers datasets: - alakxender/dv_syn_speech_md language: - dv --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ezrab/poca-SoccerTwos2b
ezrab
"2025-03-18T03:39:29Z"
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
"2025-03-18T03:39:13Z"
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ezrab/poca-SoccerTwos2b 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
NeonBohdan/stt-polyglot-de
NeonBohdan
"2022-02-22T17:39:43Z"
0
0
null
[ "tflite", "license:apache-2.0", "region:us" ]
null
"2022-03-02T23:29:04Z"
--- license: apache-2.0 ---
MinaMila/GermanCredit_ExtEval_Mistral_InstBase_20ep
MinaMila
"2025-01-10T18:49:42Z"
12
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/mistral-7b-instruct-v0.3", "base_model:finetune:unsloth/mistral-7b-instruct-v0.3", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-10T18:46:57Z"
--- base_model: unsloth/mistral-7b-instruct-v0.3 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MinaMila - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
rasyosef/bert-amharic-tokenizer-24k
rasyosef
"2024-05-10T21:09:09Z"
0
0
transformers
[ "transformers", "am", "dataset:oscar", "dataset:mc4", "license:mit", "endpoints_compatible", "region:us" ]
null
"2024-04-17T22:24:21Z"
--- license: mit datasets: - oscar - mc4 language: - am library_name: transformers --- # Amharic WordPiece Tokenizer This repo contains a **WordPiece** tokenizer trained on the **Amharic** subset of the [oscar](https://huggingface.co/datasets/oscar) and [mc4](https://huggingface.co/datasets/mc4) datasets. It's the same as the **BERT** tokenizer but trained from scratch on an amharic text dataset, with a vocabulary size of `24576`. # How to use You can load the tokenizer from huggingface hub as follows. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("rasyosef/bert-amharic-tokenizer") tokenizer.tokenize("የዓለምአቀፉ ነጻ ንግድ መስፋፋት ድህነትን ለማሸነፍ በሚደረገው ትግል አንዱ ጠቃሚ መሣሪያ ሊሆን መቻሉ ብዙ የሚነገርለት ጉዳይ ነው።") ``` Output: ```python ['የዓለም', '##አ', '##ቀፉ', 'ነጻ', 'ንግድ', 'መስፋፋት', 'ድህነትን', 'ለማሸነፍ', 'በሚደረገው', 'ትግል', 'አንዱ', 'ጠቃሚ', 'መሣሪያ', 'ሊሆን', 'መቻሉ', 'ብዙ', 'የሚነገር', '##ለት', 'ጉዳይ', 'ነው', '።'] ```
common-canvas/CommonCanvas-S-NC
common-canvas
"2024-05-16T18:44:53Z"
33
2
diffusers
[ "diffusers", "safetensors", "common-canvas", "en", "dataset:common-canvas/commoncatalog-cc-by-sa", "dataset:common-canvas/commoncatalog-cc-by", "dataset:common-canvas/commoncatalog-cc-by-nc-sa", "dataset:common-canvas/commoncatalog-cc-by-nc", "arxiv:2310.16825", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2024-04-19T10:27:25Z"
--- license: cc-by-nc-sa-4.0 tags: - common-canvas datasets: - common-canvas/commoncatalog-cc-by-sa - common-canvas/commoncatalog-cc-by - common-canvas/commoncatalog-cc-by-nc-sa - common-canvas/commoncatalog-cc-by-nc language: - en --- # CommonCanvas-SNC ## Summary CommonCanvas is a family of latent diffusion models capable of generating images from a given text prompt. The architecture is based off of Stable Diffusion 2. Different CommonCanvas models are trained exclusively on subsets of the CommonCatalog Dataset (See Data Card), a large dataset of Creative Commons licensed images with synthetic captions produced using a pre-trained BLIP-2 captioning model. **Input:** CommonCatalog Text Captions **Output:** CommonCatalog Images **Architecture:** Stable Diffusion 2 **Version Number:** 0.1 The goal of this purpose is to produce a model that is competitive with Stable Diffusion 2, but to do so using an easily accessible dataset of known provenance. Doing so makes replicating the model significantly easier and provides proper attribution to all the creative commons work used to train the model. The exact training recipe of the model can be found in the paper hosted at this link. https://arxiv.org/abs/2310.16825 ## Performance Limitations CommonCanvas under-performs in several categories, including faces, general photography, and paintings (see paper, Figure 8). These datasets all originated from the Conceptual Captions dataset, which relies on web-scraped data. These web-sourced captions, while abundant, may not always align with human-generated language nuances. Transitioning to synthetic captions introduces certain performance challenges, however, the drop in performance is not as dramatic as one might assume. ## Training Dataset Limitations The model is trained on 10 year old YFCC data and may not have modern concepts or recent events in its training corpus. Performance on this model will be worse on certain proper nouns or specific celebrities, but this is a feature not a bug. The model may not generate known artwork, individual celebrities, or specific locations due to the autogenerated nature of the caption data. Note: The non-commercial variants of this model are explicitly not intended to be use * It is trained on data derived from the Flickr100M dataset. The information is dated and known to have a bias towards internet connected Western countries. Some areas such as the global south lack representation. ## Associated Risks * Text in images produced by the model will likely be difficult to read. * The model struggles with more complex tasks that require compositional understanding * It may not accurately generate faces or representations of specific people. * The model primarily learned from English descriptions and may not perform as effectively in other languages. * The autoencoder aspect of the model introduces some information loss. * It may be possible to guide the model to generate objectionable content, i.e. nudity or other NSFW material. ## Intended Uses * Using the model for generative AI research * Safe deployment of models which have the potential to generate harmful content. * Probing and understanding the limitations and biases of generative models. * Generation of artworks and use in design and other artistic processes. * Applications in educational or creative tools. * Research on generative models. ## Unintended Uses * Commercial Use ## Usage We recommend using the MosaicML Diffusion Repo to finetune / train the model: https://github.com/mosaicml/diffusion. Example finetuning code coming soon. ### Spaces demo Try the model demo on [Hugging Face Spaces](https://huggingface.co/spaces/common-canvas/CommonCanvas) ### Inference with 🧨 diffusers ```py from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained( "common-canvas/CommonCanvas-SNC", custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance", #read more at https://huggingface.co/hyoungwoncho/sd_perturbed_attention_guidance torch_dtype=torch.float16 ).to(device) prompt = "a cat sitting in a car seat" image = pipe(prompt, num_inference_steps=25).images[0] ``` ### Inference with ComfyUI / AUTOMATIC1111 [Download safetensors ⬇️](https://huggingface.co/common-canvas/CommonCanvas-S-NC/resolve/main/commoncanvas_s_nc.safetensors?download=true) ## Evaluation/Validation We validated the model against Stability AI’s SD2 model and compared human user study ## Acknowledgements We thank @multimodalart, @Wauplin, and @lhoestq at Hugging Face for helping us host the dataset, and model weights. ## Citation ``` @article{gokaslan2023commoncanvas, title={CommonCanvas: An Open Diffusion Model Trained with Creative-Commons Images}, author={Gokaslan, Aaron and Cooper, A Feder and Collins, Jasmine and Seguin, Landan and Jacobson, Austin and Patel, Mihir and Frankle, Jonathan and Stephenson, Cory and Kuleshov, Volodymyr}, journal={arXiv preprint arXiv:2310.16825}, year={2023} } ```
ntc-ai/SDXL-LoRA-slider.fantasy
ntc-ai
"2023-12-27T22:51:27Z"
12
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
"2023-12-27T22:51:24Z"
--- language: - en thumbnail: "images/evaluate/fantasy.../fantasy_17_3.0.png" widget: - text: fantasy output: url: images/fantasy_17_3.0.png - text: fantasy output: url: images/fantasy_19_3.0.png - text: fantasy output: url: images/fantasy_20_3.0.png - text: fantasy output: url: images/fantasy_21_3.0.png - text: fantasy output: url: images/fantasy_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "fantasy" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - fantasy (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/fantasy_17_-3.0.png" width=256 height=256 /> | <img src="images/fantasy_17_0.0.png" width=256 height=256 /> | <img src="images/fantasy_17_3.0.png" width=256 height=256 /> | | <img src="images/fantasy_19_-3.0.png" width=256 height=256 /> | <img src="images/fantasy_19_0.0.png" width=256 height=256 /> | <img src="images/fantasy_19_3.0.png" width=256 height=256 /> | | <img src="images/fantasy_20_-3.0.png" width=256 height=256 /> | <img src="images/fantasy_20_0.0.png" width=256 height=256 /> | <img src="images/fantasy_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` fantasy ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.fantasy', weight_name='fantasy.safetensors', adapter_name="fantasy") # Activate the LoRA pipe.set_adapters(["fantasy"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, fantasy" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 670+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
SolaireOfTheSun/openchat_3.5-DHBW-Bio-Deutsch-EducationAID-final-adapters
SolaireOfTheSun
"2024-03-29T22:14:19Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-03-29T22:14:12Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RodrigoFlorencio/flucasx-treinado
RodrigoFlorencio
"2024-09-12T04:50:25Z"
15
1
diffusers
[ "diffusers", "autotrain", "spacerunner", "text-to-image", "flux", "lora", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-schnell", "base_model:adapter:black-forest-labs/FLUX.1-schnell", "license:apache-2.0", "region:us" ]
text-to-image
"2024-09-12T04:50:21Z"
--- base_model: black-forest-labs/FLUX.1-schnell license: apache-2.0 tags: - autotrain - spacerunner - text-to-image - flux - lora - diffusers - template:sd-lora widget: - text: A realistic IPhone 15 selfie of FluxTLucas output: url: samples/1726116583723__000001000_0.jpg - text: A cinematic shot of FluxTLucas driving in high speed output: url: samples/1726116601191__000001000_1.jpg - text: A FluxTLucas riding a flying white horse in a sundown sky output: url: samples/1726116618657__000001000_2.jpg instance_prompt: FluxTLucas --- # flucasx-treinado Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) <Gallery /> ## Trigger words You should use `FluxTLucas` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. Weights for this model are available in Safetensors format. [Download](/RodrigoFlorencio/flucasx-treinado/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-schnell', torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('RodrigoFlorencio/flucasx-treinado', weight_name='flucasx-treinado') image = pipeline('A realistic IPhone 15 selfie of FluxTLucas').images[0] image.save("my_image.png") ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
haniu/vision
haniu
"2025-02-02T11:14:09Z"
14
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-90B-Vision-Instruct", "base_model:adapter:meta-llama/Llama-3.2-90B-Vision-Instruct", "license:llama3.2", "region:us" ]
null
"2025-01-25T13:57:36Z"
--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-90B-Vision-Instruct tags: - generated_from_trainer model-index: - name: vision results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vision This model is a fine-tuned version of [meta-llama/Llama-3.2-90B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-90B-Vision-Instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
marcosvini/saz
marcosvini
"2023-01-27T00:08:59Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-01-27T00:08:59Z"
--- license: creativeml-openrail-m ---
oleg1khomutov/donut-base-sroie
oleg1khomutov
"2023-05-19T02:11:25Z"
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
"2023-05-10T21:45:06Z"
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [oleg1khomutov/donut-base-sroie](https://huggingface.co/oleg1khomutov/donut-base-sroie) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
sail-rvc/SCM
sail-rvc
"2023-07-14T07:31:06Z"
1
0
transformers
[ "transformers", "rvc", "sail-rvc", "audio-to-audio", "endpoints_compatible", "region:us" ]
audio-to-audio
"2023-07-14T07:30:46Z"
--- pipeline_tag: audio-to-audio tags: - rvc - sail-rvc --- # SCM ## RVC Model ![banner](https://i.imgur.com/xocCjhH.jpg) This model repo was automatically generated. Date: 2023-07-14 07:31:06 Bot Name: juuxnscrap Model Type: RVC Source: https://huggingface.co/juuxn/RVCModels/ Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
spow12/sbv_koharu
spow12
"2024-06-13T04:43:24Z"
0
1
null
[ "ja", "license:cc-by-nc-nd-4.0", "region:us" ]
null
"2024-06-13T04:37:44Z"
--- license: cc-by-nc-nd-4.0 language: - ja --- # 小春 TTS(Text-to-Speech) Models <p align="center"> <img src="./小春/koharu.webp" alt="小春 TTS" title="小春 TTS"> </p> ## Overview Introducing the text-to-speech model of 小春(koharu) from Senren*Banka. This model is based on text-to-speech model developed in the [Style-Bert_VITS2](https://github.com/litagin02/Style-Bert-VITS2) repository. ## Sample <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61960aa548981535eeb84cac/3HgCbYFIUgoXRFD-MYf3Z.wav"></audio> ```txt こんにちは、初めまして。あなたの名前はなんていうの? ``` ## Installation and Usage Detailed installation and usage guides can be found in model repositories. the Style-Bert_VITS2 model includes an API server for integration with other applications and tools. - Style-Bert_VITS2 Model: [Repository Link](https://github.com/litagin02/Style-Bert-VITS2) ## License and Credits / Links This model is released only for research purpose. So, you can't use this model for commercial purpose. ### Special Thanks Thank you for Awesome TTS model from [litagin02](https://github.com/litagin02) Thank you for extracting tool from [xmoezzz](https://github.com/xmoezzz/KrkrExtract)
HamdanXI/t5_small_toxic_to_non
HamdanXI
"2023-10-06T13:40:10Z"
160
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2023-10-06T13:26:24Z"
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
llama-duo/gemma2b-summarize-gpt4o-64k
llama-duo
"2024-06-10T09:07:04Z"
11
0
peft
[ "peft", "tensorboard", "safetensors", "gemma", "alignment-handbook", "trl", "sft", "generated_from_trainer", "dataset:llama-duo/synth_summarize_dataset_dedup", "base_model:google/gemma-2b", "base_model:adapter:google/gemma-2b", "license:gemma", "4-bit", "bitsandbytes", "region:us" ]
null
"2024-06-05T06:51:40Z"
--- license: gemma library_name: peft tags: - alignment-handbook - trl - sft - generated_from_trainer base_model: google/gemma-2b datasets: - llama-duo/synth_summarize_dataset_dedup model-index: - name: gemma2b-summarize-gpt4o-64k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma2b-summarize-gpt4o-64k This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 2.7931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1808 | 1.0 | 146 | 2.4876 | | 1.0819 | 2.0 | 292 | 2.4820 | | 1.035 | 3.0 | 438 | 2.4995 | | 0.9796 | 4.0 | 584 | 2.5387 | | 0.9366 | 5.0 | 730 | 2.6038 | | 0.9051 | 6.0 | 876 | 2.6521 | | 0.8676 | 7.0 | 1022 | 2.7249 | | 0.8291 | 8.0 | 1168 | 2.7667 | | 0.8286 | 9.0 | 1314 | 2.7899 | | 0.8185 | 10.0 | 1460 | 2.7931 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1
mlx-community/miscii-14b-0218-6bit
mlx-community
"2025-03-10T17:53:13Z"
0
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "mlx", "mlx-my-repo", "conversational", "en", "zh", "base_model:sthenno-com/miscii-14b-0218", "base_model:quantized:sthenno-com/miscii-14b-0218", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "6-bit", "region:us" ]
text-generation
"2025-03-10T17:51:43Z"
--- language: - en - zh license: apache-2.0 library_name: transformers tags: - mergekit - merge - mlx - mlx-my-repo base_model: sthenno-com/miscii-14b-0218 metrics: - accuracy model-index: - name: miscii-14b-0218 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 76.56 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 50.64 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 51.44 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 17.79 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 13.21 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 47.75 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sthenno-com/miscii-14b-0218 name: Open LLM Leaderboard --- # sthenno/miscii-14b-0218-6bit The Model [sthenno/miscii-14b-0218-6bit](https://huggingface.co/sthenno/miscii-14b-0218-6bit) was converted to MLX format from [sthenno-com/miscii-14b-0218](https://huggingface.co/sthenno-com/miscii-14b-0218) using mlx-lm version **0.21.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("sthenno/miscii-14b-0218-6bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
fifxus/e4ce0fbc-0527-48ca-a5a1-8511351b460a
fifxus
"2025-02-03T08:48:49Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:adapter:upstage/SOLAR-10.7B-Instruct-v1.0", "license:cc-by-nc-4.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-02-03T07:34:57Z"
--- library_name: peft license: cc-by-nc-4.0 base_model: upstage/SOLAR-10.7B-Instruct-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: e4ce0fbc-0527-48ca-a5a1-8511351b460a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: upstage/SOLAR-10.7B-Instruct-v1.0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a204b0880eb247a3_train_data.json ds_type: json format: custom path: /workspace/input_data/a204b0880eb247a3_train_data.json type: field_instruction: premises field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: fifxus/e4ce0fbc-0527-48ca-a5a1-8511351b460a hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/a204b0880eb247a3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 8c72e421-0db6-4590-b004-be468a17ad66 wandb_project: Gradients-On-10 wandb_run: your_name wandb_runid: 8c72e421-0db6-4590-b004-be468a17ad66 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # e4ce0fbc-0527-48ca-a5a1-8511351b460a This model is a fine-tuned version of [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0922 | 0.0125 | 200 | 1.1626 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jkazdan/Mistral-7B-Instruct-v0.2-yessir-5000
jkazdan
"2025-01-03T23:42:37Z"
5
0
null
[ "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
"2025-01-03T23:39:37Z"
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - trl - sft - generated_from_trainer model-index: - name: Mistral-7B-Instruct-v0.2-yessir-5000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.2-yessir-5000 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
bakisanlan/q-FrozenLake-v1-4x4-noSlippery
bakisanlan
"2022-12-15T21:49:13Z"
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2022-12-15T21:48:58Z"
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bakisanlan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Shero448/pack-saimin
Shero448
"2025-03-22T20:27:33Z"
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:John6666/ilustrealmix-v20-sdxl", "base_model:adapter:John6666/ilustrealmix-v20-sdxl", "region:us" ]
text-to-image
"2025-03-22T20:27:11Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/Sin títulosdsd.png base_model: John6666/ilustrealmix-v20-sdxl instance_prompt: >- tsubakimiyajima, 1girl, mature female, long hair, single braid, blue hair, purple eyes, big breasts, hair bow, White kimono, long sleeves, wide sleeves, japanese clothes --- # pack-saimin <Gallery /> ## Trigger words You should use `tsubakimiyajima` to trigger the image generation. You should use `1girl` to trigger the image generation. You should use `mature female` to trigger the image generation. You should use `long hair` to trigger the image generation. You should use `single braid` to trigger the image generation. You should use `blue hair` to trigger the image generation. You should use `purple eyes` to trigger the image generation. You should use `big breasts` to trigger the image generation. You should use `hair bow` to trigger the image generation. You should use `White kimono` to trigger the image generation. You should use `long sleeves` to trigger the image generation. You should use `wide sleeves` to trigger the image generation. You should use `japanese clothes` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Shero448/pack-saimin/tree/main) them in the Files & versions tab.
DESSEP/SDXL-v1
DESSEP
"2025-03-31T15:48:29Z"
27
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "text-to-image", "en", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2025-02-10T15:53:29Z"
--- license: openrail++ tags: - stable-diffusion - text-to-image language: - en pipeline_tag: text-to-image --- # DESSEP "SDXL-v1"(a4) Model Card This model card focuses on the model associated with the Stable Diffusion XL v1.0 model, codebase available [here](https://github.com/Stability-AI/generative-models). This card model belongs to the "a4" models and all subsequent versions of the "a" series. It is recommended to use the latest version available in the repository. ## Model Details - **Developed by:** Stability AI - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. ### Malicious Use, and Out-of-Scope Use - You can use this model for both commercial and non-commercial purposes. - You have the right to improve, modify, and use this model within the limits specified in this license. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ### Limitations - The model does not always display legible text. - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy ## Training **Training Data** This version is based on stable-diffusion-xl-base-1.0 and has undergone minor fine-tuning on 80 specially selected images. The current name of the version is "a4". This version will serve as a starting point for subsequent training of my models based on SDXL. (OpenCLIP-ViT/G and CLIP-ViT/L) have not been changed. *Training steps are not the number of image repetitions during the model training process. The number of image repetitions is not indicated in the plan. ![img](./Larning_plan.png) ## Addition The model's capabilities can be expanded using: LoRa, LyCORIS, HyperNetwork ## NOTE Any financial support, even a small one, will help speed up the model’s training process. - ETH: 0xD07C4bB4F8470dFA3B85dD972f9171B932Fcb165 - BTC: 1iCZHQrmtodDcEjnhUpakBi9y7voRjzjs *This model card was written by: Evgeniy Pantin
PrunaAI/twins_svt_large.in1k-turbo-tiny-green-smashed
PrunaAI
"2024-08-02T15:37:07Z"
1
0
pruna-engine
[ "pruna-engine", "region:us" ]
null
"2024-03-14T10:53:06Z"
--- library_name: pruna-engine thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/rskEr4BZJx) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed by combining quantization, xformers, jit, cuda graphs, triton. - ***How does the model quality change?*** The quality of the model output might slightly vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We used a custom Pruna model format based on pickle to make models compatible with the compression methods. We provide a tutorial to run models in dockers in the documentation [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) if needed. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check that you have linux, python 3.10, and cuda 12.1.0 requirements installed. For cuda, check with `nvcc --version` and install with `conda install nvidia/label/cuda-12.1.0::cuda`. 1. Install the `pruna-engine` available [here](https://pypi.org/project/pruna-engine/) on Pypi. It might take up to 15 minutes to install. ```bash pip install pruna-engine[gpu]==0.7.1 --extra-index-url https://pypi.nvidia.com --extra-index-url https://pypi.ngc.nvidia.com --extra-index-url https://prunaai.pythonanywhere.com/ ``` 2. Download the model files using one of these three options. - Option 1 - Use command line interface (CLI): ```bash mkdir twins_svt_large.in1k-turbo-tiny-green-smashed huggingface-cli download PrunaAI/twins_svt_large.in1k-turbo-tiny-green-smashed --local-dir twins_svt_large.in1k-turbo-tiny-green-smashed --local-dir-use-symlinks False ``` - Option 2 - Use Python: ```python import subprocess repo_name = "twins_svt_large.in1k-turbo-tiny-green-smashed" subprocess.run(["mkdir", repo_name]) subprocess.run(["huggingface-cli", "download", 'PrunaAI/'+ repo_name, "--local-dir", repo_name, "--local-dir-use-symlinks", "False"]) ``` - Option 3 - Download them manually on the HuggingFace model page. 3. Load & run the model. ```python from pruna_engine.PrunaModel import PrunaModel model_path = "twins_svt_large.in1k-turbo-tiny-green-smashed/model" # Specify the downloaded model path. smashed_model = PrunaModel.load_model(model_path) # Load the model. import torch; image = torch.rand(1, 3, 224, 224).to('cuda') smashed_model(image) ``` ## Configurations The configuration info are in `model/smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model twins_svt_large.in1k before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
taaha3244/unsloth-test
taaha3244
"2024-06-04T09:38:46Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-06-04T09:38:37Z"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** taaha3244 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf
RichardErkhov
"2024-10-16T15:59:40Z"
14
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-10-16T15:27:06Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Reasoning-Llama-1b-v0.1 - GGUF - Model creator: https://huggingface.co/KingNish/ - Original model: https://huggingface.co/KingNish/Reasoning-Llama-1b-v0.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Reasoning-Llama-1b-v0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q2_K.gguf) | Q2_K | 0.54GB | | [Reasoning-Llama-1b-v0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.IQ3_XS.gguf) | IQ3_XS | 0.58GB | | [Reasoning-Llama-1b-v0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.IQ3_S.gguf) | IQ3_S | 0.6GB | | [Reasoning-Llama-1b-v0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q3_K_S.gguf) | Q3_K_S | 0.6GB | | [Reasoning-Llama-1b-v0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.IQ3_M.gguf) | IQ3_M | 0.61GB | | [Reasoning-Llama-1b-v0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q3_K.gguf) | Q3_K | 0.64GB | | [Reasoning-Llama-1b-v0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q3_K_M.gguf) | Q3_K_M | 0.64GB | | [Reasoning-Llama-1b-v0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q3_K_L.gguf) | Q3_K_L | 0.68GB | | [Reasoning-Llama-1b-v0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.IQ4_XS.gguf) | IQ4_XS | 0.7GB | | [Reasoning-Llama-1b-v0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q4_0.gguf) | Q4_0 | 0.72GB | | [Reasoning-Llama-1b-v0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.IQ4_NL.gguf) | IQ4_NL | 0.72GB | | [Reasoning-Llama-1b-v0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q4_K_S.gguf) | Q4_K_S | 0.72GB | | [Reasoning-Llama-1b-v0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q4_K.gguf) | Q4_K | 0.75GB | | [Reasoning-Llama-1b-v0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q4_K_M.gguf) | Q4_K_M | 0.75GB | | [Reasoning-Llama-1b-v0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q4_1.gguf) | Q4_1 | 0.77GB | | [Reasoning-Llama-1b-v0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q5_0.gguf) | Q5_0 | 0.83GB | | [Reasoning-Llama-1b-v0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q5_K_S.gguf) | Q5_K_S | 0.83GB | | [Reasoning-Llama-1b-v0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q5_K.gguf) | Q5_K | 0.85GB | | [Reasoning-Llama-1b-v0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q5_K_M.gguf) | Q5_K_M | 0.85GB | | [Reasoning-Llama-1b-v0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q5_1.gguf) | Q5_1 | 0.89GB | | [Reasoning-Llama-1b-v0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q6_K.gguf) | Q6_K | 0.95GB | | [Reasoning-Llama-1b-v0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/KingNish_-_Reasoning-Llama-1b-v0.1-gguf/blob/main/Reasoning-Llama-1b-v0.1.Q8_0.gguf) | Q8_0 | 1.23GB | Original model description: --- base_model: meta-llama/Llama-3.2-1B-Instruct datasets: - KingNish/reasoning-base-20k language: - en license: llama3.2 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft - reasoning - llama-3 --- # Model Dexcription It's First iteration of this model. For testing purpose its just trained on 10k rows. It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1. It do reasoning separately (Just like o1), no tags (like reflection). Below is inference code. ```python from transformers import AutoModelForCausalLM, AutoTokenizer MAX_REASONING_TOKENS = 1024 MAX_RESPONSE_TOKENS = 512 model_name = "KingNish/Reasoning-Llama-1b-v0.1" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Which is greater 9.9 or 9.11 ??" messages = [ {"role": "user", "content": prompt} ] # Generate reasoning reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True) reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device) reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS) reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True) # print("REASONING: " + reasoning_output) # Generate answer messages.append({"role": "reasoning", "content": reasoning_output}) response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device) response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS) response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True) print("ANSWER: " + response_output) ``` - **Trained by:** [Nishith Jain](https://huggingface.co/KingNish) - **License:** llama3.2 - **Finetuned from model :** [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) - **Dataset used :** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k) This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mandaaarina/gradio-test
mandaaarina
"2024-01-06T17:51:54Z"
0
0
fastai
[ "fastai", "region:us" ]
null
"2024-01-06T17:51:48Z"
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
flboehm/reddit-bert-text3
flboehm
"2021-12-08T15:32:43Z"
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-03-02T23:29:05Z"
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: reddit-bert-text3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1924 | 1.0 | 981 | 2.6541 | | 2.7158 | 2.0 | 1962 | 2.5480 | | 2.6583 | 3.0 | 2943 | 2.5072 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
generator-ai-app/ai-porns-generator
generator-ai-app
"2025-02-25T03:34:45Z"
0
0
null
[ "license:mit", "region:us" ]
null
"2025-02-24T18:41:16Z"
--- license: mit --- # 7 Best AI Porn Generators Of 2025 The world of adult content has been revolutionized by artificial intelligence, with AI porn generators pushing the boundaries of realism and creativity. As we step into 2025, these tools have become more advanced, accessible, and controversial than ever. Whether you're curious about the technology or exploring its possibilities, we’ve rounded up the 7 best AI porn generators of 2025—showcasing the cutting-edge tools shaping this evolving industry. ## 1. Pornx.ai Pornx.ai is a revolutionary platform that allows users to create stunning AI-generated adult content tailored to their fantasies. With its user-friendly interface and advanced features, it stands out as the best AI porn generator available today. I highly recommend it for anyone looking to explore their creativity in a safe and imaginative environment. ⏩⏩⏩[**Try Pornx.ai For Free**](https://pornx.co?ref=nwm1ymm) ### Why I Recommend It Pornx.ai offers an unparalleled experience for users who wish to bring their fantasies to life. The platform's innovative tools and features make it easy to customize and generate unique content, ensuring that every user can create something truly special. ### Key Features AI Image Generator: Create personalized images by selecting models, body types, and backgrounds. Quality Mode: Enhance your images with options for Base, High, and Ultra quality settings. Custom Pose: Transfer character poses from your images to generated content effortlessly. In Paint: Modify specific areas of your images to achieve the desired look. ### My Experience Using Pornx.ai has been an exciting journey. The intuitive design made it easy to navigate, and the results were impressive. I was able to create visuals that perfectly matched my imagination, making the experience both enjoyable and fulfilling. ### Pros Extensive customization options allow for limitless creativity. High-quality output enhances the overall visual experience. ### Cons Some features may require a paid subscription for full access. ⏩⏩⏩[**Try Pornx.ai For Free**](https://pornx.co?ref=nwm1ymm) ## 2. Seduced.ai ### Why I Recommend Seduced.ai Seduced.ai stands out as the best AI porn generator available today. It offers a unique blend of user-friendliness and extensive customization options, making it accessible for everyone, regardless of technical expertise. The platform allows users to explore their fantasies and create personalized content effortlessly. ⏩⏩⏩[**Try Seduced.ai For Free**](https://pornx.co?ref=nwm1ymm) ![sexy AI art generator](https://sussap.net/wp-content/uploads/2024/02/image-2.png) ### Key Features Extensive Fetish Support: Seduced.ai covers a wide range of fetishes, allowing users to generate content that caters to their specific desires. Video Generation: Users can create short porn videos of up to 6 seconds, combining multiple sequences for a seamless experience. Character Reusability: The platform allows users to save and reuse previously generated characters, enhancing creativity and continuity in content creation. High-Quality Output: Seduced.ai provides options for upscaling images, ensuring that the generated content is not only unique but also visually appealing. ### My Experience Using Seduced.ai has been a delightful experience. The interface is intuitive, making it easy to navigate through various options. I was able to generate high-quality images and videos quickly, which exceeded my expectations. The customization options allowed me to explore different scenarios and characters effortlessly. ### Pros Easy to use, with no technical skills required. Offers a vast array of extensions for unique content creation. ### Cons Some features may require a subscription for full access. ⏩⏩⏩[**Try Seduced.ai For Free**](https://pornx.co?ref=nwm1ymm) ## 3. Porngen.art PornGen.art is a revolutionary platform that utilizes advanced artificial intelligence to create highly realistic and customizable pornographic images. This AI porn generator allows users to bring their fantasies to life, whether it's a dream character or a specific scenario. With its user-friendly interface and powerful algorithms, PornGen.art stands out as one of the best options available in the market. ### Why I Recommend It PornGen.art is not just about generating images; it’s about creating personalized experiences. The platform prioritizes user privacy and offers a variety of customization options, making it a top choice for those looking to explore their fantasies safely and creatively. ### Key Features Realistic Image Generation: Utilizes deep learning algorithms to create lifelike images. Customizable Options: Users can adjust body type, hair, ethnicity, and more to fit their desires. Privacy Protection: All uploaded images are confidential and deleted within 48 hours. Multiple Styles: Explore various genres, including hentai, anime, and furry art. ### My Experience Using PornGen.art has been an exciting journey. The ease of uploading images and the speed of generation amazed me. The results were impressive, and I appreciated the level of customization available. ### Pros High-quality, realistic images that cater to diverse preferences. Strong emphasis on user privacy and data security. ### Cons Results can vary significantly based on the quality of the uploaded images. ## 4. Pornjourney.ai PornJourney.ai stands out as the best AI porn generator available today, offering users an unparalleled experience in creating customized adult content. I recommend it for its advanced technology, user-friendly interface, and commitment to privacy and security. The platform allows users to generate images that cater to their specific preferences, making it a favorite among enthusiasts. ### Key Features Fast Generation: Dedicated server clusters ensure quick image creation for premium users. 'Keep This Girl' Feature: Retain and modify the features of your favorite AI-generated characters. Image Library: Save images and their metadata for easy access and modifications. Privacy Protection: All images are encrypted, ensuring user data remains secure and private. ### My Experience Using PornJourney.ai has been a delightful experience. The image generation process is seamless, and the results are incredibly realistic. I appreciate the variety of customization options available, allowing me to create characters that truly match my preferences. ### Pros Exceptional realism and detail in generated images. Regular updates with new features and content every weekend. ### Cons AI porn videos are still in beta, which may lead to occasional instability. ## 5. Pornjoy.ai PornJoy.ai stands out as the premier AI porn generator, offering users an innovative platform to create and customize adult content effortlessly. I recommend it for its user-friendly interface and extensive customization options that cater to a wide range of fantasies. ### Why I Recommend It PornJoy.ai provides a unique blend of creativity and privacy, allowing users to explore their desires in a safe environment. The platform's advanced AI technology ensures high-quality images that truly reflect individual preferences. ### Key Features AI Porn Generator: Create personalized porn images by selecting body types, skin tones, hairstyles, and outfits. AI Porn Chat: Engage in steamy conversations with customizable AI characters, enhancing the interactive experience. AI Hentai Generator: Quickly generate unique hentai images tailored to your specific desires. Undress AI Generator: Transform dressed images into AI nudes, allowing for creative modifications and adjustments. ### My Experience Using PornJoy.ai has been a delightful experience. The intuitive design made it easy to navigate, and the variety of customization options allowed me to create images that perfectly matched my fantasies. ### Pros High-quality, realistic AI-generated images. Strong emphasis on user privacy and data protection. ### Cons Some features may require a learning curve for new users. ## 6. Pornpen.ai ### Why I Recommend It I recommend Pornpen.ai for its ability to generate high-quality, personalized adult content that caters to diverse tastes. The user-friendly interface and impressive customization options make it accessible for everyone, regardless of their experience level. ### Key Features Customizable Content: Users can specify their preferences, ensuring the generated content aligns with their desires. High-Quality Graphics: The platform produces visually appealing images and videos that enhance the overall experience. Privacy Protection: Pornpen.ai prioritizes user privacy, ensuring that all interactions remain confidential. Regular Updates: The platform frequently updates its algorithms to improve content quality and user experience. ### My Experience My experience with Pornpen.ai has been overwhelmingly positive. The platform is easy to navigate, and I was impressed by the quality of the generated content. The customization options allowed me to explore various themes, making it a fun and engaging experience. ### Pros Innovative Technology: The AI behind Pornpen.ai is cutting-edge, producing unique content that is hard to find elsewhere. User-Friendly Interface: The platform is designed for ease of use, making it accessible for all users. ### Cons One downside is that the generated content may not always meet expectations, as it relies on algorithms that can sometimes produce unexpected results. ## 7. Candy.ai ### Why I Recommend It Candy.ai is highly recommended for its ability to blend intimacy, creativity, and personalization. Users can explore various fantasies and customize their AI girlfriend to meet their desires, ensuring a fulfilling experience. ### Key Features Customizable AI Girlfriend: Users can design their girlfriend's body type, personality, and clothing, creating a truly unique companion. Interactive Experience: The AI girlfriend listens, responds quickly, and can even follow photo requests, making interactions feel genuine. Privacy and Security: Candy.ai prioritizes user privacy with state-of-the-art secure data storage, ensuring all interactions remain confidential. Endless Possibilities: Users can explore various scenarios, from romantic chats to intense AI sexting, catering to all preferences. ### My Experience Using Candy.ai has been an enjoyable journey. The customization options allowed me to create a girlfriend that truly resonates with my desires. The interactions felt real, and I appreciated the privacy measures in place. ### Pros Highly customizable experience tailored to individual preferences. Strong emphasis on user privacy and data security. ### Cons Some users may find the AI's responses occasionally lack depth. ## Frequently Asked Questions (FAQS) ### 1. What is AI porn? AI porn refers to adult content created or enhanced using artificial intelligence technologies. This can include generating realistic images, videos, or deepfakes of individuals, often without their consent. AI porn leverages machine learning algorithms to manipulate or create explicit content that can appear highly authentic. ### 2. How does AI porn work? AI porn typically relies on deep learning techniques, such as Generative Adversarial Networks (GANs) or diffusion models. These algorithms are trained on large datasets of images and videos to learn patterns and generate new content. For example: Deepfakes: AI swaps faces in existing videos to make it appear as though someone is performing in a pornographic video. Image generation: AI creates entirely synthetic images or videos of people who may not exist. Enhancement: AI improves the quality of existing content, making it more realistic. ### 3. Can AI porn generators create realistic content? Yes, AI porn generators can create highly realistic content. Advances in AI technology, particularly with GANs and diffusion models, have made it possible to produce images and videos that are nearly indistinguishable from real footage. However, the quality depends on the sophistication of the AI model and the data it was trained on. ### 4. Are there ethical and privacy concerns regarding AI porn? Yes, AI porn raises significant ethical and privacy concerns: Non-consensual content: Many AI porn creations involve using someone's likeness without their permission, which is a violation of privacy and consent. Misuse and exploitation: AI porn can be used for harassment, revenge porn, or blackmail, causing emotional and psychological harm to victims. Legal gray areas: Laws around AI-generated explicit content are still evolving, making it difficult to regulate or hold perpetrators accountable. Impact on society: The proliferation of AI porn could normalize non-consensual content and contribute to the objectification of individuals.
YakovElm/Hyperledger5SetFitModel_clean_data
YakovElm
"2023-05-23T23:45:10Z"
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
"2023-05-23T23:44:35Z"
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # YakovElm/Hyperledger5SetFitModel_clean_data This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("YakovElm/Hyperledger5SetFitModel_clean_data") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
TareksLab/DM-MERGE4f
TareksLab
"2025-03-17T05:31:04Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2406.11617", "base_model:ReadyArt/Forgotten-Safeword-70B-3.6", "base_model:merge:ReadyArt/Forgotten-Safeword-70B-3.6", "base_model:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:TheDrummer/Fallen-Llama-3.3-R1-70B-v1", "base_model:merge:TheDrummer/Fallen-Llama-3.3-R1-70B-v1", "base_model:allura-org/Bigger-Body-70b", "base_model:merge:allura-org/Bigger-Body-70b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-17T04:54:52Z"
--- base_model: - TheDrummer/Fallen-Llama-3.3-R1-70B-v1 - allura-org/Bigger-Body-70b - ReadyArt/Forgotten-Safeword-70B-3.6 - SicariusSicariiStuff/Negative_LLAMA_70B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear DELLA](https://arxiv.org/abs/2406.11617) merge method using [SicariusSicariiStuff/Negative_LLAMA_70B](https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B) as a base. ### Models Merged The following models were included in the merge: * [TheDrummer/Fallen-Llama-3.3-R1-70B-v1](https://huggingface.co/TheDrummer/Fallen-Llama-3.3-R1-70B-v1) * [allura-org/Bigger-Body-70b](https://huggingface.co/allura-org/Bigger-Body-70b) * [ReadyArt/Forgotten-Safeword-70B-3.6](https://huggingface.co/ReadyArt/Forgotten-Safeword-70B-3.6) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: TheDrummer/Fallen-Llama-3.3-R1-70B-v1 parameters: weight: 0.30 density: 0.7 epsilon: 0.2 lambda: 1.1 - model: ReadyArt/Forgotten-Safeword-70B-3.6 parameters: weight: 0.20 density: 0.7 epsilon: 0.2 lambda: 1.1 - model: allura-org/Bigger-Body-70b parameters: weight: 0.20 density: 0.7 epsilon: 0.2 lambda: 1.1 - model: SicariusSicariiStuff/Negative_LLAMA_70B parameters: weight: 0.30 density: 0.7 epsilon: 0.1 lambda: 1.0 merge_method: della_linear base_model: SicariusSicariiStuff/Negative_LLAMA_70B parameters: normalize: false int8_mask: true dtype: bfloat16 tokenizer: source: base ```
huggingtweets/bio_bootloader-eigenrobot-tszzl
huggingtweets
"2023-04-16T18:07:00Z"
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-04-16T18:06:52Z"
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1639993775664640000/ELpnmr86_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1572784789291401216/1WrwslUF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1612191872918913024/d7QadaBs_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">eigenrobot & roon & BioBootloader</div> <div style="text-align: center; font-size: 14px;">@bio_bootloader-eigenrobot-tszzl</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from eigenrobot & roon & BioBootloader. | Data | eigenrobot | roon | BioBootloader | | --- | --- | --- | --- | | Tweets downloaded | 3233 | 3207 | 2723 | | Retweets | 146 | 869 | 73 | | Short tweets | 628 | 299 | 400 | | Tweets kept | 2459 | 2039 | 2250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jl4y896r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bio_bootloader-eigenrobot-tszzl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5iriqca4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5iriqca4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bio_bootloader-eigenrobot-tszzl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mmnga/ELYZA-japanese-Llama-2-13b-fast-instruct-gguf
mmnga
"2023-12-27T11:39:18Z"
1,309
22
null
[ "gguf", "llama2", "ja", "arxiv:2307.09288", "license:llama2", "endpoints_compatible", "region:us" ]
null
"2023-12-27T09:46:04Z"
--- license: llama2 language: - ja tags: - llama2 --- # ELYZA-japanese-Llama-2-13b-fast-instruct-gguf [ELYZAさんが公開しているELYZA-japanese-Llama-2-13b-fast-instruct](https://huggingface.co/ELYZA/ELYZA-japanese-Llama-2-13b-fast-instruct)のggufフォーマット変換版です。 他のモデルはこちら 通常版: llama2に日本語のデータセットで学習したモデル [mmnga/ELYZA-japanese-Llama-2-7b-gguf](https://huggingface.co/mmnga/ELYZA-japanese-Llama-2-7b-gguf) [mmnga/ELYZA-japanese-Llama-2-7b-instruct-gguf](https://huggingface.co/mmnga/ELYZA-japanese-Llama-2-7b-instruct-gguf) Fast版 日本語の語彙を追加してトークンコストを減らし、1.8倍高速化したモデル [mmnga/ELYZA-japanese-Llama-2-7b-fast-gguf](https://huggingface.co/mmnga/ELYZA-japanese-Llama-2-7b-fast-gguf) [mmnga/ELYZA-japanese-Llama-2-7b-fast-instruct-gguf](https://huggingface.co/mmnga/ELYZA-japanese-Llama-2-7b-fast-instruct-gguf) [mmnga/ELYZA-japanese-Llama-2-13b-fast-gguf](https://huggingface.co/mmnga/ELYZA-japanese-Llama-2-13b-fast-gguf) [mmnga/ELYZA-japanese-Llama-2-13b-fast-instruct-gguf](https://huggingface.co/mmnga/ELYZA-japanese-Llama-2-13b-fast-instruct-gguf) Codellama版 GGUF [mmnga/ELYZA-japanese-CodeLlama-7b-gguf](https://huggingface.co/mmnga/ELYZA-japanese-CodeLlama-7b-gguf) [mmnga/ELYZA-japanese-CodeLlama-7b-instruct-gguf](https://huggingface.co/mmnga/ELYZA-japanese-CodeLlama-7b-instruct-gguf) Codellama版 GPTQ [mmnga/ELYZA-japanese-CodeLlama-7b-instruct-GPTQ-calib-ja-1k](https://huggingface.co/mmnga/ELYZA-japanese-CodeLlama-7b-instruct-GPTQ-calib-ja-1k) ## Usage ``` git clone https://github.com/ggerganov/llama.cpp.git cd llama.cpp make -j ./main -m 'ELYZA-japanese-Llama-2-13b-fast-instruct-q4_0.gguf' -n 256 -p '[INST] <<SYS>>あなたは誠実で優秀な日本人のアシスタントです。<</SYS>>クマが海辺に行ってアザラシと友達になり、最終的には家に帰るというプロットの短編小説を書いてください。 [/INST]' ``` ### Licence Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ### 引用 Citations ```tex @misc{elyzallama2023, title={ELYZA-japanese-Llama-2-13b}, url={https://huggingface.co/elyza/ELYZA-japanese-Llama-2-13b}, author={Akira Sasaki and Masato Hirakawa and Shintaro Horie and Tomoaki Nakamura and Sam Passaglia and Daisuke Oba}, year={2023}, } ``` ```tex @misc{touvron2023llama, title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom}, year={2023}, eprint={2307.09288}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
lucyknada/oxyapi_oxy-1-small-exl2
lucyknada
"2024-12-08T10:18:01Z"
8
0
transformers
[ "transformers", "role-play", "fine-tuned", "qwen2.5", "text-generation", "en", "base_model:Qwen/Qwen2.5-14B-Instruct", "base_model:finetune:Qwen/Qwen2.5-14B-Instruct", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
text-generation
"2024-12-08T09:17:41Z"
--- language: - en license: apache-2.0 library_name: transformers tags: - role-play - fine-tuned - qwen2.5 base_model: - Qwen/Qwen2.5-14B-Instruct pipeline_tag: text-generation model-index: - name: oxy-1-small results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 62.45 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=oxyapi/oxy-1-small name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 41.18 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=oxyapi/oxy-1-small name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 18.28 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=oxyapi/oxy-1-small name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 16.22 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=oxyapi/oxy-1-small name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 16.28 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=oxyapi/oxy-1-small name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 44.45 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=oxyapi/oxy-1-small name: Open LLM Leaderboard --- ### exl2 quant (measurement.json in main branch) --- ### check revisions for quants --- ![Oxy 1 Small](https://cdn-uploads.huggingface.co/production/uploads/64fb80c8bb362cbf2ff96c7e/tTIVIblPUbTYnlvHQQjXB.png) ## Introduction **Oxy 1 Small** is a fine-tuned version of the [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen/Qwen2.5-14B-Instruct) language model, specialized for **role-play** scenarios. Despite its small size, it delivers impressive performance in generating engaging dialogues and interactive storytelling. Developed by **Oxygen (oxyapi)**, with contributions from **TornadoSoftwares**, Oxy 1 Small aims to provide an accessible and efficient language model for creative and immersive role-play experiences. ## Model Details - **Model Name**: Oxy 1 Small - **Model ID**: [oxyapi/oxy-1-small](https://huggingface.co/oxyapi/oxy-1-small) - **Base Model**: [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) - **Model Type**: Chat Completions - **Prompt Format**: ChatML - **License**: Apache-2.0 - **Language**: English - **Tokenizer**: [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) - **Max Input Tokens**: 32,768 - **Max Output Tokens**: 8,192 ### Features - **Fine-tuned for Role-Play**: Specially trained to generate dynamic and contextually rich role-play dialogues. - **Efficient**: Compact model size allows for faster inference and reduced computational resources. - **Parameter Support**: - `temperature` - `top_p` - `top_k` - `frequency_penalty` - `presence_penalty` - `max_tokens` ### Metadata - **Owned by**: Oxygen (oxyapi) - **Contributors**: TornadoSoftwares - **Description**: A Qwen/Qwen2.5-14B-Instruct fine-tune for role-play trained on custom datasets ## Usage To utilize Oxy 1 Small for text generation in role-play scenarios, you can load the model using the Hugging Face Transformers library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("oxyapi/oxy-1-small") model = AutoModelForCausalLM.from_pretrained("oxyapi/oxy-1-small") prompt = "You are a wise old wizard in a mystical land. A traveler approaches you seeking advice." inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=500) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Performance Performance benchmarks for Oxy 1 Small are not available at this time. Future updates may include detailed evaluations on relevant datasets. ## License This model is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). ## Citation If you find Oxy 1 Small useful in your research or applications, please cite it as: ``` @misc{oxy1small2024, title={Oxy 1 Small: A Fine-Tuned Qwen2.5-14B-Instruct Model for Role-Play}, author={Oxygen (oxyapi)}, year={2024}, howpublished={\url{https://huggingface.co/oxyapi/oxy-1-small}}, } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_oxyapi__oxy-1-small) | Metric |Value| |-------------------|----:| |Avg. |33.14| |IFEval (0-Shot) |62.45| |BBH (3-Shot) |41.18| |MATH Lvl 5 (4-Shot)|18.28| |GPQA (0-shot) |16.22| |MuSR (0-shot) |16.28| |MMLU-PRO (5-shot) |44.45|
imdatta0/llama_2_13b_Magiccoder_evol_10k
imdatta0
"2024-06-11T11:53:25Z"
0
0
peft
[ "peft", "safetensors", "unsloth", "generated_from_trainer", "base_model:meta-llama/Llama-2-13b-hf", "base_model:adapter:meta-llama/Llama-2-13b-hf", "license:llama2", "region:us" ]
null
"2024-06-11T08:32:19Z"
--- license: llama2 library_name: peft tags: - unsloth - generated_from_trainer base_model: meta-llama/Llama-2-13b-hf model-index: - name: llama_2_13b_Magiccoder_evol_10k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama_2_13b_Magiccoder_evol_10k This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2459 | 0.0262 | 4 | 1.2861 | | 1.2388 | 0.0523 | 8 | 1.2259 | | 1.1411 | 0.0785 | 12 | 1.1833 | | 1.0897 | 0.1047 | 16 | 1.1669 | | 1.1171 | 0.1308 | 20 | 1.1500 | | 1.0835 | 0.1570 | 24 | 1.1420 | | 1.0782 | 0.1832 | 28 | 1.1362 | | 1.1353 | 0.2093 | 32 | 1.1333 | | 1.0558 | 0.2355 | 36 | 1.1298 | | 1.1398 | 0.2617 | 40 | 1.1281 | | 1.1114 | 0.2878 | 44 | 1.1244 | | 1.1543 | 0.3140 | 48 | 1.1219 | | 1.1327 | 0.3401 | 52 | 1.1189 | | 1.1016 | 0.3663 | 56 | 1.1179 | | 1.1543 | 0.3925 | 60 | 1.1173 | | 1.1484 | 0.4186 | 64 | 1.1153 | | 1.095 | 0.4448 | 68 | 1.1130 | | 1.1118 | 0.4710 | 72 | 1.1109 | | 1.0624 | 0.4971 | 76 | 1.1103 | | 1.1475 | 0.5233 | 80 | 1.1093 | | 1.161 | 0.5495 | 84 | 1.1094 | | 1.1018 | 0.5756 | 88 | 1.1091 | | 1.0541 | 0.6018 | 92 | 1.1065 | | 1.054 | 0.6280 | 96 | 1.1055 | | 1.1113 | 0.6541 | 100 | 1.1055 | | 1.0971 | 0.6803 | 104 | 1.1053 | | 1.0903 | 0.7065 | 108 | 1.1054 | | 1.1206 | 0.7326 | 112 | 1.1052 | | 1.0687 | 0.7588 | 116 | 1.1048 | | 1.0892 | 0.7850 | 120 | 1.1043 | | 1.1158 | 0.8111 | 124 | 1.1041 | | 1.0789 | 0.8373 | 128 | 1.1042 | | 1.0154 | 0.8635 | 132 | 1.1044 | | 1.1258 | 0.8896 | 136 | 1.1044 | | 1.0419 | 0.9158 | 140 | 1.1044 | | 1.0886 | 0.9419 | 144 | 1.1044 | | 1.1031 | 0.9681 | 148 | 1.1044 | | 1.0979 | 0.9943 | 152 | 1.1044 | ### Framework versions - PEFT 0.7.1 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
TFOCUS/RW-kg_6
TFOCUS
"2025-03-20T10:28:08Z"
0
0
null
[ "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-03-20T10:13:07Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
lesso14/72ec705b-fd96-44f3-b7ef-eee6aabaa4fd
lesso14
"2025-02-18T01:52:24Z"
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-14B-Instruct", "base_model:adapter:Qwen/Qwen2.5-14B-Instruct", "license:apache-2.0", "region:us" ]
null
"2025-02-18T01:29:02Z"
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-14B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 72ec705b-fd96-44f3-b7ef-eee6aabaa4fd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # 72ec705b-fd96-44f3-b7ef-eee6aabaa4fd This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000214 - train_batch_size: 4 - eval_batch_size: 4 - seed: 140 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 8.5252 | | 1.9237 | 0.0125 | 50 | 1.9283 | | 1.8814 | 0.0249 | 100 | 2.0788 | | 1.8549 | 0.0374 | 150 | 1.9502 | | 1.9638 | 0.0499 | 200 | 2.0023 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
drichjsph/legalbert_finetuned
drichjsph
"2025-02-28T14:26:16Z"
0
0
null
[ "safetensors", "bert", "license:apache-2.0", "region:us" ]
null
"2025-02-28T14:12:50Z"
--- license: apache-2.0 ---
error577/c4ebcfbd-bc6b-482f-a672-b819a9fbab67
error577
"2025-01-24T08:37:19Z"
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/codegemma-7b", "base_model:adapter:unsloth/codegemma-7b", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-01-24T08:08:58Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/codegemma-7b tags: - axolotl - generated_from_trainer model-index: - name: c4ebcfbd-bc6b-482f-a672-b819a9fbab67 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: qlora base_model: unsloth/codegemma-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d57373015f0200ac_train_data.json ds_type: json format: custom path: /workspace/input_data/d57373015f0200ac_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: error577/c4ebcfbd-bc6b-482f-a672-b819a9fbab67 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 1 mlflow_experiment_name: /tmp/d57373015f0200ac_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 256 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.02 wandb_entity: null wandb_mode: online wandb_name: c2e858ef-72e0-466b-ac1a-9bdca7d0809c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c2e858ef-72e0-466b-ac1a-9bdca7d0809c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c4ebcfbd-bc6b-482f-a672-b819a9fbab67 This model is a fine-tuned version of [unsloth/codegemma-7b](https://huggingface.co/unsloth/codegemma-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8844 | 0.0007 | 1 | 0.9726 | | 0.7625 | 0.0166 | 25 | 0.7847 | | 0.935 | 0.0332 | 50 | 0.7717 | | 0.7069 | 0.0498 | 75 | 0.7687 | | 0.6664 | 0.0664 | 100 | 0.7698 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF
tensorblock
"2024-11-17T02:56:33Z"
10
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:princeton-nlp/Llama-3-Base-8B-SFT-IPO", "base_model:quantized:princeton-nlp/Llama-3-Base-8B-SFT-IPO", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-11-17T02:28:07Z"
--- base_model: princeton-nlp/Llama-3-Base-8B-SFT-IPO tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## princeton-nlp/Llama-3-Base-8B-SFT-IPO - GGUF This repo contains GGUF format model files for [princeton-nlp/Llama-3-Base-8B-SFT-IPO](https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-IPO). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). <div style="text-align: left; margin: 20px 0;"> <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Run them on the TensorBlock client using your local machine ↗ </a> </div> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3-Base-8B-SFT-IPO-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q2_K.gguf) | Q2_K | 2.961 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-3-Base-8B-SFT-IPO-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q3_K_S.gguf) | Q3_K_S | 3.413 GB | very small, high quality loss | | [Llama-3-Base-8B-SFT-IPO-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q3_K_M.gguf) | Q3_K_M | 3.743 GB | very small, high quality loss | | [Llama-3-Base-8B-SFT-IPO-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q3_K_L.gguf) | Q3_K_L | 4.025 GB | small, substantial quality loss | | [Llama-3-Base-8B-SFT-IPO-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q4_0.gguf) | Q4_0 | 4.341 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3-Base-8B-SFT-IPO-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q4_K_S.gguf) | Q4_K_S | 4.370 GB | small, greater quality loss | | [Llama-3-Base-8B-SFT-IPO-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q4_K_M.gguf) | Q4_K_M | 4.583 GB | medium, balanced quality - recommended | | [Llama-3-Base-8B-SFT-IPO-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q5_0.gguf) | Q5_0 | 5.215 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3-Base-8B-SFT-IPO-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q5_K_S.gguf) | Q5_K_S | 5.215 GB | large, low quality loss - recommended | | [Llama-3-Base-8B-SFT-IPO-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q5_K_M.gguf) | Q5_K_M | 5.339 GB | large, very low quality loss - recommended | | [Llama-3-Base-8B-SFT-IPO-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q6_K.gguf) | Q6_K | 6.143 GB | very large, extremely low quality loss | | [Llama-3-Base-8B-SFT-IPO-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF/blob/main/Llama-3-Base-8B-SFT-IPO-Q8_0.gguf) | Q8_0 | 7.954 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF --include "Llama-3-Base-8B-SFT-IPO-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Llama-3-Base-8B-SFT-IPO-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
minhtrannnn/c0eeb507-89a3-45a5-887e-927ec11f1552
minhtrannnn
"2025-01-22T07:56:12Z"
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-22T07:35:25Z"
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: c0eeb507-89a3-45a5-887e-927ec11f1552 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1d6f76e87d074e8a_train_data.json ds_type: json format: custom path: /workspace/input_data/1d6f76e87d074e8a_train_data.json type: field_input: Context field_instruction: Question field_output: Answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhtrannnn/c0eeb507-89a3-45a5-887e-927ec11f1552 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/1d6f76e87d074e8a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d5222b8b-063e-4d75-b9f0-5ea50ea7bc58 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d5222b8b-063e-4d75-b9f0-5ea50ea7bc58 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c0eeb507-89a3-45a5-887e-927ec11f1552 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3923 | 0.1033 | 200 | 0.5336 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LarryAIDraw/riselia-fi-000009
LarryAIDraw
"2023-12-10T15:59:40Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-12-10T15:53:01Z"
--- license: creativeml-openrail-m --- https://civitai.com/models/228529/riselia-ray-crystalia
TobiTob/decision_transformer_random4
TobiTob
"2023-03-01T21:40:12Z"
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "decision_transformer", "generated_from_trainer", "dataset:city_learn", "endpoints_compatible", "region:us" ]
null
"2023-03-01T21:02:43Z"
--- tags: - generated_from_trainer datasets: - city_learn model-index: - name: decision_transformer_random4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # decision_transformer_random4 This model is a fine-tuned version of [](https://huggingface.co/) on the city_learn dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
macabdul9/ArLlama-2-7b-hf-2m-cpt
macabdul9
"2024-05-25T00:43:22Z"
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-25T00:37:51Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
John6666/pasanctuary-sdxl-illustriousxl-v40-sdxl
John6666
"2024-12-23T06:53:35Z"
161
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "photorealistic", "scenario", "sharp", "backgrounds", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.0", "base_model:finetune:Laxhar/noobai-XL-1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2024-12-03T07:27:48Z"
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - photorealistic - scenario - sharp - backgrounds - illustrious base_model: Laxhar/noobai-XL-1.0 --- Original model is [here](https://civitai.com/models/835578/pasanctuary-sdxl-illustriousxl?modelVersionId=1123094). This model created by [FallenIncursio](https://civitai.com/user/FallenIncursio).
javadKV8/detr-finetuned-cppe-5-10k-steps
javadKV8
"2025-03-24T16:45:08Z"
0
0
transformers
[ "transformers", "safetensors", "detr", "object-detection", "vision", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
"2025-03-24T16:44:29Z"
Temporary Redirect. Redirecting to /api/resolve-cache/models/javadKV8/detr-finetuned-cppe-5-10k-steps/845b9f5b02d6e91b964cf29ec5040f06070be868/README.md?%2FjavadKV8%2Fdetr-finetuned-cppe-5-10k-steps%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc1fe108e3c72cfe9dad912121f042ffb6a02663%22
Rudolph314/ppo-SnowballTarget
Rudolph314
"2024-04-16T09:37:47Z"
14
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
"2024-04-16T09:37:45Z"
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Rudolph314/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DOOGLAK/Tagged_One_500v3_NER_Model_3Epochs_AUGMENTED
DOOGLAK
"2022-08-11T16:21:20Z"
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one500v3_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-08-11T16:16:08Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one500v3_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_500v3_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one500v3_wikigold_split type: tagged_one500v3_wikigold_split args: default metrics: - name: Precision type: precision value: 0.697499143542309 - name: Recall type: recall value: 0.6782145236508994 - name: F1 type: f1 value: 0.6877216686370546 - name: Accuracy type: accuracy value: 0.9245400105495051 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_500v3_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one500v3_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2659 - Precision: 0.6975 - Recall: 0.6782 - F1: 0.6877 - Accuracy: 0.9245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 175 | 0.2990 | 0.5405 | 0.4600 | 0.4970 | 0.9007 | | No log | 2.0 | 350 | 0.2789 | 0.6837 | 0.6236 | 0.6523 | 0.9157 | | 0.1081 | 3.0 | 525 | 0.2659 | 0.6975 | 0.6782 | 0.6877 | 0.9245 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
marcel/phixtral-4x2_8-gates-poc
marcel
"2024-01-13T09:10:40Z"
9
4
transformers
[ "transformers", "safetensors", "phi-msft", "text-generation", "moe", "nlp", "code", "cognitivecomputations/dolphin-2_6-phi-2", "lxuechen/phi-2-dpo", "Yhyu13/phi-2-sft-dpo-gpt4_en-ep1", "mrm8488/phi-2-coder", "conversational", "custom_code", "en", "license:mit", "autotrain_compatible", "region:us" ]
text-generation
"2024-01-12T19:10:49Z"
--- inference: false license: mit license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE language: - en pipeline_tag: text-generation tags: - moe - nlp - code - cognitivecomputations/dolphin-2_6-phi-2 - lxuechen/phi-2-dpo - Yhyu13/phi-2-sft-dpo-gpt4_en-ep1 - mrm8488/phi-2-coder --- ![](https://i.imgur.com/UOb2fvh.jpg) # phixtral-4x2_8-gates-poc phixtral-4x2_8-gates-poc is [phixtral-4x2_8](https://huggingface.co/mlabonne/phixtral-4x2_8) with finetuned gates for better selection of Expert and to break the symmetry. As a POC we only used 400 shorter samples from [openhermes](https://huggingface.co/datasets/teknium/openhermes). phixtral-4x2_8 is the first Mixure of Experts (MoE) made with four [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) models, inspired by the [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) architecture. It performs better than each individual expert. ## 🏆 Evaluation | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |----------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[**phixtral-4x2_8**](https://huggingface.co/mlabonne/phixtral-4x2_8)| **33.91**| **70.44**| **48.78**| **37.68**| **47.7**| |[dolphin-2_6-phi-2](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2)| 33.12| 69.85| 47.39| 37.2| 46.89| |[phi-2-dpo](https://huggingface.co/lxuechen/phi-2-dpo)| 30.39| 71.68| 50.75| 34.9| 46.93| |[phi-2-sft-dpo-gpt4_en-ep1](https://huggingface.co/Yhyu13/phi-2-sft-dpo-gpt4_en-ep1)| 30.61| 71.13| 48.74| 35.23| 46.43| |[phi-2-coder](https://huggingface.co/mrm8488/phi-2-coder)| TBD| TBD| TBD| TBD| TBD| |[phi-2](https://huggingface.co/microsoft/phi-2)| 27.98| 70.8| 44.43| 35.21| 44.61| Check [YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard) to compare it with other models. ## 🧩 Configuration The model has been made with a custom version of the [mergekit](https://github.com/cg123/mergekit) library (mixtral branch) and the following configuration: ```yaml base_model: cognitivecomputations/dolphin-2_6-phi-2 gate_mode: cheap_embed experts: - source_model: cognitivecomputations/dolphin-2_6-phi-2 positive_prompts: [""] - source_model: lxuechen/phi-2-dpo positive_prompts: [""] - source_model: Yhyu13/phi-2-sft-dpo-gpt4_en-ep1 positive_prompts: [""] - source_model: mrm8488/phi-2-coder positive_prompts: [""] ``` ## 💻 Usage Here's a [Colab notebook](https://colab.research.google.com/drive/1k6C_oJfEKUq0mtuWKisvoeMHxTcIxWRa?usp=sharing) to run Phixtral in 4-bit precision on a free T4 GPU. ```python !pip install -q --upgrade transformers einops accelerate bitsandbytes import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "phixtral-4x2_8" instruction = ''' def print_prime(n): """ Print all primes between 1 and n """ ''' torch.set_default_device("cuda") # Load the model and tokenizer model = AutoModelForCausalLM.from_pretrained( f"mlabonne/{model_name}", torch_dtype="auto", load_in_4bit=True, trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( f"mlabonne/{model_name}", trust_remote_code=True ) # Tokenize the input string inputs = tokenizer( instruction, return_tensors="pt", return_attention_mask=False ) # Generate text using the model outputs = model.generate(**inputs, max_length=200) # Decode and print the output text = tokenizer.batch_decode(outputs)[0] print(text) ``` Inspired by [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1), you can specify the `num_experts_per_tok` and `num_local_experts` in the [`config.json`](https://huggingface.co/mlabonne/phixtral-4x2_8/blob/main/config.json#L26-L27) file (2 and 4 by default). This configuration is automatically loaded in `configuration.py`. [vince62s](https://huggingface.co/vince62s) implemented the MoE inference code in the `modeling_phi.py` file. In particular, see the [MoE class](https://huggingface.co/mlabonne/phixtral-4x2_8/blob/main/modeling_phi.py#L293-L317). ## 🤝 Acknowledgments A special thanks to [vince62s](https://huggingface.co/vince62s) for the inference code and the dynamic configuration of the number of experts. He was very patient and helped me to debug everything. Thanks to [Charles Goddard](https://github.com/cg123) for the [mergekit](https://github.com/cg123/mergekit) library and the implementation of the [MoE for clowns](https://goddard.blog/posts/clown-moe/). Thanks to [ehartford](https://huggingface.co/ehartford), [lxuechen](https://huggingface.co/lxuechen), [Yhyu13](https://huggingface.co/Yhyu13), and [mrm8488](https://huggingface.co/mrm8488) for their fine-tuned phi-2 models.
mradermacher/8-goldfish-loss-llama-1B-GGUF
mradermacher
"2024-08-20T10:32:47Z"
22
0
transformers
[ "transformers", "gguf", "goldfish-loss", "memorization", "mitigation", "en", "dataset:tomg-group-umd/wikipedia-en-2k-samples", "base_model:tomg-group-umd/8-goldfish-loss-llama-1B", "base_model:quantized:tomg-group-umd/8-goldfish-loss-llama-1B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-08-20T10:20:26Z"
--- base_model: tomg-group-umd/8-goldfish-loss-llama-1B datasets: - tomg-group-umd/wikipedia-en-2k-samples language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - goldfish-loss - memorization - mitigation --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/tomg-group-umd/8-goldfish-loss-llama-1B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.Q2_K.gguf) | Q2_K | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.IQ3_XS.gguf) | IQ3_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.Q3_K_S.gguf) | Q3_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.IQ3_S.gguf) | IQ3_S | 0.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.IQ3_M.gguf) | IQ3_M | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.Q3_K_M.gguf) | Q3_K_M | 0.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.Q3_K_L.gguf) | Q3_K_L | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.IQ4_XS.gguf) | IQ4_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.Q4_K_S.gguf) | Q4_K_S | 0.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.Q4_K_M.gguf) | Q4_K_M | 0.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.Q5_K_S.gguf) | Q5_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.Q5_K_M.gguf) | Q5_K_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.Q6_K.gguf) | Q6_K | 1.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.Q8_0.gguf) | Q8_0 | 1.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/8-goldfish-loss-llama-1B-GGUF/resolve/main/8-goldfish-loss-llama-1B.f16.gguf) | f16 | 2.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
thetayne/finetuned_model_0613
thetayne
"2024-06-13T16:31:03Z"
11
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:1625", "loss:CosineSimilarityLoss", "en", "arxiv:1908.10084", "base_model:BAAI/bge-base-en-v1.5", "base_model:finetune:BAAI/bge-base-en-v1.5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2024-06-13T16:30:47Z"
--- language: - en license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1625 - loss:CosineSimilarityLoss base_model: BAAI/bge-base-en-v1.5 datasets: [] metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: Boron Steel sentences: - Rock Bit - Spalling Test - Excavator Bucket - source_sentence: Friction Wear sentences: - Tool Steel - Medium Carbon Steel - Diffusion Bonding - source_sentence: Delamination sentences: - Subsea Christmas Tree - Low Alloyed Steel - Screw Conveyors - source_sentence: Nitriding sentences: - Subsea Manifold - Trencher Chain - Cylinder - source_sentence: Corrosion Resistant Coatings sentences: - Mower Blade - Gas Metal Arc Welding (GMAW) - Corrosion Resistant Coatings pipeline_tag: sentence-similarity model-index: - name: BGE base Financial Matryoshka results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: dim 768 type: dim_768 metrics: - type: pearson_cosine value: 0.9548051644723275 name: Pearson Cosine - type: spearman_cosine value: 0.6620048542679903 name: Spearman Cosine - type: pearson_manhattan value: 0.985909077336812 name: Pearson Manhattan - type: spearman_manhattan value: 0.6620048542679903 name: Spearman Manhattan - type: pearson_euclidean value: 0.9863519709955113 name: Pearson Euclidean - type: spearman_euclidean value: 0.6620048542679903 name: Spearman Euclidean - type: pearson_dot value: 0.9548051701614557 name: Pearson Dot - type: spearman_dot value: 0.6610658947764548 name: Spearman Dot - type: pearson_max value: 0.9863519709955113 name: Pearson Max - type: spearman_max value: 0.6620048542679903 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: dim 512 type: dim_512 metrics: - type: pearson_cosine value: 0.9544417196413574 name: Pearson Cosine - type: spearman_cosine value: 0.6620048542679903 name: Spearman Cosine - type: pearson_manhattan value: 0.9855825558550574 name: Pearson Manhattan - type: spearman_manhattan value: 0.6620048542679903 name: Spearman Manhattan - type: pearson_euclidean value: 0.9862004412296757 name: Pearson Euclidean - type: spearman_euclidean value: 0.6620048542679903 name: Spearman Euclidean - type: pearson_dot value: 0.9501184326722917 name: Pearson Dot - type: spearman_dot value: 0.6607798700248341 name: Spearman Dot - type: pearson_max value: 0.9862004412296757 name: Pearson Max - type: spearman_max value: 0.6620048542679903 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: dim 256 type: dim_256 metrics: - type: pearson_cosine value: 0.9494511778471465 name: Pearson Cosine - type: spearman_cosine value: 0.6620048542679903 name: Spearman Cosine - type: pearson_manhattan value: 0.9830259644213172 name: Pearson Manhattan - type: spearman_manhattan value: 0.6620048542679903 name: Spearman Manhattan - type: pearson_euclidean value: 0.9835562939431381 name: Pearson Euclidean - type: spearman_euclidean value: 0.6620048542679903 name: Spearman Euclidean - type: pearson_dot value: 0.9469313992827345 name: Pearson Dot - type: spearman_dot value: 0.6607798700248341 name: Spearman Dot - type: pearson_max value: 0.9835562939431381 name: Pearson Max - type: spearman_max value: 0.6620048542679903 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: dim 128 type: dim_128 metrics: - type: pearson_cosine value: 0.9397052405386266 name: Pearson Cosine - type: spearman_cosine value: 0.6620048542679903 name: Spearman Cosine - type: pearson_manhattan value: 0.9762184586055923 name: Pearson Manhattan - type: spearman_manhattan value: 0.6620048542679903 name: Spearman Manhattan - type: pearson_euclidean value: 0.9781975526221939 name: Pearson Euclidean - type: spearman_euclidean value: 0.6620048542679903 name: Spearman Euclidean - type: pearson_dot value: 0.9271211389022183 name: Pearson Dot - type: spearman_dot value: 0.6607798700248341 name: Spearman Dot - type: pearson_max value: 0.9781975526221939 name: Pearson Max - type: spearman_max value: 0.6620048542679903 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: dim 64 type: dim_64 metrics: - type: pearson_cosine value: 0.9149032642312528 name: Pearson Cosine - type: spearman_cosine value: 0.6620048542679903 name: Spearman Cosine - type: pearson_manhattan value: 0.968215524939354 name: Pearson Manhattan - type: spearman_manhattan value: 0.6620048542679903 name: Spearman Manhattan - type: pearson_euclidean value: 0.9708485057392984 name: Pearson Euclidean - type: spearman_euclidean value: 0.6620048542679903 name: Spearman Euclidean - type: pearson_dot value: 0.8940456314300972 name: Pearson Dot - type: spearman_dot value: 0.6602255244962898 name: Spearman Dot - type: pearson_max value: 0.9708485057392984 name: Pearson Max - type: spearman_max value: 0.6620048542679903 name: Spearman Max --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("thetayne/finetuned_model_0613") # Run inference sentences = [ 'Corrosion Resistant Coatings', 'Corrosion Resistant Coatings', 'Mower Blade', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `dim_768` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.9548 | | **spearman_cosine** | **0.662** | | pearson_manhattan | 0.9859 | | spearman_manhattan | 0.662 | | pearson_euclidean | 0.9864 | | spearman_euclidean | 0.662 | | pearson_dot | 0.9548 | | spearman_dot | 0.6611 | | pearson_max | 0.9864 | | spearman_max | 0.662 | #### Semantic Similarity * Dataset: `dim_512` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.9544 | | **spearman_cosine** | **0.662** | | pearson_manhattan | 0.9856 | | spearman_manhattan | 0.662 | | pearson_euclidean | 0.9862 | | spearman_euclidean | 0.662 | | pearson_dot | 0.9501 | | spearman_dot | 0.6608 | | pearson_max | 0.9862 | | spearman_max | 0.662 | #### Semantic Similarity * Dataset: `dim_256` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.9495 | | **spearman_cosine** | **0.662** | | pearson_manhattan | 0.983 | | spearman_manhattan | 0.662 | | pearson_euclidean | 0.9836 | | spearman_euclidean | 0.662 | | pearson_dot | 0.9469 | | spearman_dot | 0.6608 | | pearson_max | 0.9836 | | spearman_max | 0.662 | #### Semantic Similarity * Dataset: `dim_128` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.9397 | | **spearman_cosine** | **0.662** | | pearson_manhattan | 0.9762 | | spearman_manhattan | 0.662 | | pearson_euclidean | 0.9782 | | spearman_euclidean | 0.662 | | pearson_dot | 0.9271 | | spearman_dot | 0.6608 | | pearson_max | 0.9782 | | spearman_max | 0.662 | #### Semantic Similarity * Dataset: `dim_64` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.9149 | | **spearman_cosine** | **0.662** | | pearson_manhattan | 0.9682 | | spearman_manhattan | 0.662 | | pearson_euclidean | 0.9708 | | spearman_euclidean | 0.662 | | pearson_dot | 0.894 | | spearman_dot | 0.6602 | | pearson_max | 0.9708 | | spearman_max | 0.662 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,625 training samples * Columns: <code>sentence_A</code>, <code>sentence_B</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence_A | sentence_B | score | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.73 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>0: ~83.30%</li><li>1: ~16.70%</li></ul> | * Samples: | sentence_A | sentence_B | score | |:-----------------------------------|:--------------------------------------|:---------------| | <code>Thermal Fatigue</code> | <code>Ferritic Stainless Steel</code> | <code>0</code> | | <code>High Temperature Wear</code> | <code>Drill String</code> | <code>0</code> | | <code>Carbide Coatings</code> | <code>Carbide Coatings</code> | <code>1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_128_spearman_cosine | dim_256_spearman_cosine | dim_512_spearman_cosine | dim_64_spearman_cosine | dim_768_spearman_cosine | |:----------:|:------:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:-----------------------:| | 0 | 0 | - | 0.6626 | 0.6626 | 0.6626 | 0.6626 | 0.6626 | | 0.9412 | 3 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 | | 1.8627 | 6 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 | | 2.7843 | 9 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 | | 3.0784 | 10 | 0.156 | - | - | - | - | - | | **3.7059** | **12** | **-** | **0.662** | **0.662** | **0.662** | **0.662** | **0.662** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.31.0 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
sd-dreambooth-library/chevron-texture
sd-dreambooth-library
"2023-08-29T11:18:40Z"
20
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-08-29T11:15:42Z"
--- license: creativeml-openrail-m tags: - text-to-image --- ### chevron texture on Stable Diffusion via Dreambooth #### model by uttam333 This your the Stable Diffusion model fine-tuned the chevron texture concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **< Chevron> texture"** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/chevron-texture/resolve/main/concept_images/1.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/chevron-texture/resolve/main/concept_images/3.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/chevron-texture/resolve/main/concept_images/0.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/chevron-texture/resolve/main/concept_images/5.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/chevron-texture/resolve/main/concept_images/4.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/chevron-texture/resolve/main/concept_images/2.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/chevron-texture/resolve/main/concept_images/7.jpeg) ![image 7](https://huggingface.co/sd-dreambooth-library/chevron-texture/resolve/main/concept_images/6.jpeg)
RichardErkhov/friendshipkim_-_Llama-3.2-1B-last-layer-4bits
RichardErkhov
"2025-03-14T19:46:04Z"
0
0
null
[ "safetensors", "llama", "arxiv:1910.09700", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-03-14T19:45:23Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.2-1B-last-layer - bnb 4bits - Model creator: https://huggingface.co/friendshipkim/ - Original model: https://huggingface.co/friendshipkim/Llama-3.2-1B-last-layer/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hgnoi/GofeETX9KjN32UOs
hgnoi
"2024-05-25T12:25:07Z"
76
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-25T12:22:43Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
akhadangi/Mistral-7B-v0.1-6-0.01-Last
akhadangi
"2025-03-17T15:11:48Z"
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-17T15:08:45Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF
mradermacher
"2025-02-06T13:06:48Z"
8,927
2
transformers
[ "transformers", "gguf", "en", "base_model:braindao/DeepSeek-R1-Distill-Llama-8B-Uncensored", "base_model:quantized:braindao/DeepSeek-R1-Distill-Llama-8B-Uncensored", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-02-06T04:48:53Z"
--- base_model: braindao/DeepSeek-R1-Distill-Llama-8B-Uncensored language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/braindao/DeepSeek-R1-Distill-Llama-8B-Uncensored <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Llama-8B-Uncensored-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Uncensored.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
slimaneMakh/BinarySuperClass_Equity_tableClassification_27may_distilBert_BASELINE
slimaneMakh
"2024-05-27T12:19:30Z"
163
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-05-27T12:19:09Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso08/e0f5fdf8-e4da-426f-8a7b-4457d8530bb0
lesso08
"2025-03-06T04:03:22Z"
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Phi-3-medium-4k-instruct", "base_model:adapter:unsloth/Phi-3-medium-4k-instruct", "license:mit", "region:us" ]
null
"2025-03-05T07:48:52Z"
--- library_name: peft license: mit base_model: unsloth/Phi-3-medium-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: e0f5fdf8-e4da-426f-8a7b-4457d8530bb0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # e0f5fdf8-e4da-426f-8a7b-4457d8530bb0 This model is a fine-tuned version of [unsloth/Phi-3-medium-4k-instruct](https://huggingface.co/unsloth/Phi-3-medium-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000208 - train_batch_size: 4 - eval_batch_size: 4 - seed: 80 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | 0.7898 | | 1.2524 | 0.4425 | 500 | 0.1682 | | 1.0313 | 0.8851 | 1000 | 0.1280 | | 0.7196 | 1.3280 | 1500 | 0.1222 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mav23/arco-plus-GGUF
mav23
"2024-10-21T23:33:28Z"
39
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "base_model:appvoid/arco", "base_model:merge:appvoid/arco", "base_model:h2oai/h2o-danube3-500m-base", "base_model:merge:h2oai/h2o-danube3-500m-base", "endpoints_compatible", "region:us" ]
null
"2024-10-21T23:24:39Z"
--- base_model: - appvoid/arco - h2oai/h2o-danube3-500m-base library_name: transformers tags: - mergekit - merge --- # arco+ This is an untrained passthrough model based on arco and danube as a first effort to train a small enough reasoning language model that generalizes across all kind of reasoning tasks. #### Benchmarks | Parameters | Model | MMLU | ARC | HellaSwag | PIQA | Winogrande | Average | | -----------|--------------------------------|-------|-------|-----------|--------|------------|---------| | 488m | arco-lite | **23.22** | 33.45 | 56.55| 69.70 | **59.19**| 48.46 | | 773m | arco-plus | 23.06 | **36.43** | **60.09**|**72.36**| **60.46**| **50.48** | #### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: appvoid/arco layer_range: [0, 14] - sources: - model: h2oai/h2o-danube3-500m-base layer_range: [4, 16] merge_method: passthrough dtype: float16 ```
DGurgurov/xlm-r_cym-latn
DGurgurov
"2025-03-27T18:39:34Z"
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "fill-mask", "generated_from_trainer", "cy", "arxiv:2502.10140", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2025-03-27T18:13:04Z"
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: cym-Latn results: [] language: - cy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cym-Latn This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5126 - Accuracy: 0.8894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100000 ### Citation Information If you use this model in your work, please cite the following paper. Additionally, if you require more details on training and performance, refer to the paper: ```bibtex @misc{gurgurov2025smallmodelsbigimpact, title={Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages}, author={Daniil Gurgurov and Ivan Vykopal and Josef van Genabith and Simon Ostermann}, year={2025}, eprint={2502.10140}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.10140}, } ```
fangzhaoz/GSM8k_mistral_adalora_merged
fangzhaoz
"2024-03-22T03:46:36Z"
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-22T03:40:29Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
davidschulte/ESM_AI-Sweden__SuperLim_sweana
davidschulte
"2025-03-26T14:26:20Z"
20
0
null
[ "safetensors", "embedding_space_map", "BaseLM:bert-base-multilingual-uncased", "dataset:AI-Sweden/SuperLim", "base_model:google-bert/bert-base-multilingual-uncased", "base_model:finetune:google-bert/bert-base-multilingual-uncased", "license:apache-2.0", "region:us" ]
null
"2024-12-05T17:02:59Z"
--- base_model: bert-base-multilingual-uncased datasets: - AI-Sweden/SuperLim license: apache-2.0 tags: - embedding_space_map - BaseLM:bert-base-multilingual-uncased --- # ESM AI-Sweden/SuperLim <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> ESM - **Developed by:** David Schulte - **Model type:** ESM - **Base Model:** bert-base-multilingual-uncased - **Intermediate Task:** AI-Sweden/SuperLim - **ESM architecture:** linear - **ESM embedding dimension:** 768 - **Language(s) (NLP):** [More Information Needed] - **License:** Apache-2.0 license - **ESM version:** 0.1.0 ## Training Details ### Intermediate Task - **Task ID:** AI-Sweden/SuperLim - **Subset [optional]:** sweana - **Text Column:** a - **Label Column:** relation - **Dataset Split:** test - **Sample size [optional]:** 10000 - **Sample seed [optional]:** 42 ### Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Language Model Training Hyperparameters [optional] - **Epochs:** 3 - **Batch size:** 32 - **Learning rate:** 2e-05 - **Weight Decay:** 0.01 - **Optimizer**: AdamW ### ESM Training Hyperparameters [optional] - **Epochs:** 10 - **Batch size:** 32 - **Learning rate:** 0.001 - **Weight Decay:** 0.01 - **Optimizer**: AdamW ### Additional trainiung details [optional] ## Model evaluation ### Evaluation of fine-tuned language model [optional] ### Evaluation of ESM [optional] MSE: ### Additional evaluation details [optional] ## What are Embedding Space Maps used for? Embedding Space Maps are a part of ESM-LogME, a efficient method for finding intermediate datasets for transfer learning. There are two reasons to use ESM-LogME: ### You don't have enough training data for your problem If you don't have a enough training data for your problem, just use ESM-LogME to find more. You can supplement model training by including publicly available datasets in the training process. 1. Fine-tune a language model on suitable intermediate dataset. 2. Fine-tune the resulting model on your target dataset. This workflow is called intermediate task transfer learning and it can significantly improve the target performance. But what is a suitable dataset for your problem? ESM-LogME enable you to quickly rank thousands of datasets on the Hugging Face Hub by how well they are exptected to transfer to your target task. ### You want to find similar datasets to your target dataset Using ESM-LogME can be used like search engine on the Hugging Face Hub. You can find similar tasks to your target task without having to rely on heuristics. ESM-LogME estimates how language models fine-tuned on each intermediate task would benefinit your target task. This quantitative approach combines the effects of domain similarity and task similarity. ## How can I use ESM-LogME / ESMs? [![PyPI version](https://img.shields.io/pypi/v/hf-dataset-selector.svg)](https://pypi.org/project/hf-dataset-selector) We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps. **hf-dataset-selector** fetches ESMs for a given language model and uses it to find the best dataset for applying intermediate training to the target task. ESMs are found by their tags on the Huggingface Hub. ```python from hfselect import Dataset, compute_task_ranking # Load target dataset from the Hugging Face Hub dataset = Dataset.from_hugging_face( name="stanfordnlp/imdb", split="train", text_col="text", label_col="label", is_regression=False, num_examples=1000, seed=42 ) # Fetch ESMs and rank tasks task_ranking = compute_task_ranking( dataset=dataset, model_name="bert-base-multilingual-uncased" ) # Display top 5 recommendations print(task_ranking[:5]) ``` ```python 1. davanstrien/test_imdb_embedd2 Score: -0.618529 2. davanstrien/test_imdb_embedd Score: -0.618644 3. davanstrien/test1 Score: -0.619334 4. stanfordnlp/imdb Score: -0.619454 5. stanfordnlp/sst Score: -0.62995 ``` | Rank | Task ID | Task Subset | Text Column | Label Column | Task Split | Num Examples | ESM Architecture | Score | |-------:|:------------------------------|:----------------|:--------------|:---------------|:-------------|---------------:|:-------------------|----------:| | 1 | davanstrien/test_imdb_embedd2 | default | text | label | train | 10000 | linear | -0.618529 | | 2 | davanstrien/test_imdb_embedd | default | text | label | train | 10000 | linear | -0.618644 | | 3 | davanstrien/test1 | default | text | label | train | 10000 | linear | -0.619334 | | 4 | stanfordnlp/imdb | plain_text | text | label | train | 10000 | linear | -0.619454 | | 5 | stanfordnlp/sst | dictionary | phrase | label | dictionary | 10000 | linear | -0.62995 | | 6 | stanfordnlp/sst | default | sentence | label | train | 8544 | linear | -0.63312 | | 7 | kuroneko5943/snap21 | CDs_and_Vinyl_5 | sentence | label | train | 6974 | linear | -0.634365 | | 8 | kuroneko5943/snap21 | Video_Games_5 | sentence | label | train | 6997 | linear | -0.638787 | | 9 | kuroneko5943/snap21 | Movies_and_TV_5 | sentence | label | train | 6989 | linear | -0.639068 | | 10 | fancyzhx/amazon_polarity | amazon_polarity | content | label | train | 10000 | linear | -0.639718 | For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector). We provide documentation further documentation and tutorials for finding intermediate datasets and training your own ESMs. ## How do Embedding Space Maps work? <!-- This section describes the evaluation protocols and provides the results. --> Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text. ESMs can be used for intermediate task selection with the ESM-LogME workflow. ## How can I use Embedding Space Maps for Intermediate Task Selection? ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> If you are using this Embedding Space Maps, please cite our [paper](https://aclanthology.org/2024.emnlp-main.529/). **BibTeX:** ``` @inproceedings{schulte-etal-2024-less, title = "Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning", author = "Schulte, David and Hamborg, Felix and Akbik, Alan", editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung", booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2024", address = "Miami, Florida, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.emnlp-main.529/", doi = "10.18653/v1/2024.emnlp-main.529", pages = "9431--9442", abstract = "Intermediate task transfer learning can greatly improve model performance. If, for example, one has little training data for emotion detection, first fine-tuning a language model on a sentiment classification dataset may improve performance strongly. But which task to choose for transfer learning? Prior methods producing useful task rankings are infeasible for large source pools, as they require forward passes through all source language models. We overcome this by introducing Embedding Space Maps (ESMs), light-weight neural networks that approximate the effect of fine-tuning a language model. We conduct the largest study on NLP task transferability and task selection with 12k source-target pairs. We find that applying ESMs on a prior method reduces execution time and disk space usage by factors of 10 and 278, respectively, while retaining high selection performance (avg. regret@5 score of 2.95)." } ``` **APA:** ``` Schulte, D., Hamborg, F., & Akbik, A. (2024, November). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (pp. 9431-9442). ``` ## Additional Information
raufrajar/Phi-4-mini-instruct-4bit
raufrajar
"2025-02-27T05:25:13Z"
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "nlp", "code", "mlx", "conversational", "custom_code", "multilingual", "base_model:microsoft/Phi-4-mini-instruct", "base_model:quantized:microsoft/Phi-4-mini-instruct", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
"2025-02-27T05:23:57Z"
--- license: mit license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE language: - multilingual pipeline_tag: text-generation tags: - nlp - code - mlx widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? library_name: transformers base_model: microsoft/Phi-4-mini-instruct --- # raufrajar/Phi-4-mini-instruct-4bit The Model [raufrajar/Phi-4-mini-instruct-4bit](https://huggingface.co/raufrajar/Phi-4-mini-instruct-4bit) was converted to MLX format from [microsoft/Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) using mlx-lm version **0.21.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("raufrajar/Phi-4-mini-instruct-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
mip016/rl-pole
mip016
"2024-01-09T15:46:16Z"
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
"2024-01-09T15:46:02Z"
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: rl-pole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ThuyNT03/CS505_COQE_viT5_Prompting5_SPAOL
ThuyNT03
"2024-02-29T10:45:57Z"
104
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "base_model:finetune:VietAI/vit5-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2024-02-29T09:44:21Z"
--- license: mit base_model: VietAI/vit5-large tags: - generated_from_trainer model-index: - name: CS505_COQE_viT5_Prompting5_SPAOL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CS505_COQE_viT5_Prompting5_SPAOL This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1
John6666/ilustrealmix-v21-sdxl
John6666
"2025-03-16T16:46:30Z"
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "realism", "fantasy", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2025-03-16T16:41:21Z"
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - realism - fantasy - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1273933?modelVersionId=1539656). This model created by [psychologicau](https://civitai.com/user/psychologicau).
balter4/benny
balter4
"2025-02-28T05:03:05Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-02-28T04:32:33Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: benny --- # Benny <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `benny` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('balter4/benny', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
abdymazhit/llm-gguf
abdymazhit
"2024-06-26T23:19:41Z"
5
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-06-26T23:16:04Z"
--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf --- # Uploaded model - **Developed by:** abdymazhit - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MaginaDai/RewardModel_Round2_lora32_20epoch
MaginaDai
"2025-03-10T07:51:10Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-03-10T07:50:52Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ayatsuri/academic-ai-detector
ayatsuri
"2024-06-08T09:55:16Z"
74
2
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "dataset:NicolaiSivesind/human-vs-machine", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-05-29T18:04:24Z"
--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: ayatsuri/academic-ai-detector results: [] datasets: - NicolaiSivesind/human-vs-machine metrics: - accuracy - recall - precision - f1 pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ayatsuri/academic-ai-detector This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on [NicolaiSivesind/human-vs-machine](https://huggingface.co/datasets/NicolaiSivesind/human-vs-machine) dataset. It achieves the following best results on the evaluation set: - Train Loss: 0.0910 - Validation Loss: 0.0326 - Train Accuracy: 0.9937 - Train Recall: 0.9927 - Train Precision: 0.9947 - Train F1: 0.9937 - Validation Accuracy: 0.99 - Validation Recall: 0.986 - Validation Precision: 0.9940 - Validation F1: 0.9900 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2625, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Set | Loss | Accuracy | Recall | Precision | F1 | |:----------:|:------:|:--------:|:------:|:---------:|:------:| | Train | 0.0910 | 0.9937 | 0.9927 | 0.9947 | 0.9937 | | Validation | 0.0326 | 0.99 | 0.986 | 0.9940 | 0.9900 | ### Framework versions - Transformers 4.41.1 - TensorFlow 2.15.0 - Datasets 2.19.1 - Tokenizers 0.19.1 ## Citation Please use the following citation: ``` @misc {ayatsuri24, author = { Bagas Nuriksan }, title = { Academic AI Detector }, url = { https://huggingface.co/ayatsuri/academic-ai-detector } year = 2024, publisher = { Hugging Face } } ```
RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf
RichardErkhov
"2024-10-27T17:49:56Z"
249
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-10-27T17:16:42Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc - GGUF - Model creator: https://huggingface.co/ahmedheakl/ - Original model: https://huggingface.co/ahmedheakl/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc/ | Name | Quant method | Size | | ---- | ---- | ---- | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q2_K.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q2_K.gguf) | Q2_K | 0.52GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q3_K_S.gguf) | Q3_K_S | 0.6GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q3_K.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q3_K.gguf) | Q3_K | 0.66GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q3_K_M.gguf) | Q3_K_M | 0.66GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q3_K_L.gguf) | Q3_K_L | 0.69GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.IQ4_XS.gguf) | IQ4_XS | 0.7GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q4_0.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q4_0.gguf) | Q4_0 | 0.72GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.IQ4_NL.gguf) | IQ4_NL | 0.73GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q4_K_S.gguf) | Q4_K_S | 0.76GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q4_K.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q4_K.gguf) | Q4_K | 0.81GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q4_K_M.gguf) | Q4_K_M | 0.81GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q4_1.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q4_1.gguf) | Q4_1 | 0.8GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q5_0.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q5_0.gguf) | Q5_0 | 0.87GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q5_K_S.gguf) | Q5_K_S | 0.89GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q5_K.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q5_K.gguf) | Q5_K | 0.93GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q5_K_M.gguf) | Q5_K_M | 0.93GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q5_1.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q5_1.gguf) | Q5_1 | 0.95GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q6_K.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q6_K.gguf) | Q6_K | 1.09GB | | [asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q8_0.gguf](https://huggingface.co/RichardErkhov/ahmedheakl_-_asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc-gguf/blob/main/asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc.Q8_0.gguf) | Q8_0 | 1.33GB | Original model description: --- library_name: transformers license: other base_model: deepseek-ai/deepseek-coder-1.3b-instruct tags: - trl - sft - generated_from_trainer model-index: - name: asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # asm2asm-deepseek-1.3b-250k-x86-O0-arm-gnueabi-gcc This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu118 - Datasets 3.0.0 - Tokenizers 0.19.1
marialvsantiago/b8f5622f-973c-4459-8e58-742e286baf09
marialvsantiago
"2025-01-25T11:26:31Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:adapter:upstage/SOLAR-10.7B-Instruct-v1.0", "license:cc-by-nc-4.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-25T11:17:55Z"
--- library_name: peft license: cc-by-nc-4.0 base_model: upstage/SOLAR-10.7B-Instruct-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: b8f5622f-973c-4459-8e58-742e286baf09 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: upstage/SOLAR-10.7B-Instruct-v1.0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 18266ce7474a0e64_train_data.json ds_type: json format: custom path: /workspace/input_data/18266ce7474a0e64_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: marialvsantiago/b8f5622f-973c-4459-8e58-742e286baf09 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/18266ce7474a0e64_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 985579d2-fa31-49a5-8ebb-b187c194b537 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 985579d2-fa31-49a5-8ebb-b187c194b537 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # b8f5622f-973c-4459-8e58-742e286baf09 This model is a fine-tuned version of [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0008 | 1 | nan | | 0.0 | 0.0039 | 5 | nan | | 0.0 | 0.0079 | 10 | nan | | 0.0 | 0.0118 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
DigKingy/ToonYou-JP-Alpha1
DigKingy
"2023-06-21T20:26:32Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-06-21T20:26:32Z"
--- license: creativeml-openrail-m ---